Haddas, Ram; Hooper, Troy; James, C Roger; Sizer, Phillip S
2016-12-01
Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear. To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights. Controlled laboratory study. Clinical biomechanics laboratory. Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg). Core-muscle activation using VPAC. We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings. During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption. The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.
NASA Astrophysics Data System (ADS)
Date, Kumi; Ishigure, Takaaki
2017-02-01
Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.
NASA Astrophysics Data System (ADS)
Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.
2014-09-01
Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.
Improving tree age estimates derived from increment cores: a case study of red pine
Shawn Fraver; John B. Bradford; Brian J. Palik
2011-01-01
Accurate tree ages are critical to a range of forestry and ecological studies. However, ring counts from increment cores, if not corrected for the years between the root collar and coring height, can produce sizeable age errors. The magnitude of errors is influenced by both the height at which the core is extracted and the growth rate. We destructively sampled saplings...
NASA Astrophysics Data System (ADS)
Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.
2017-12-01
Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.
Lee, Nam G; You, Joshua Sung H; Kim, Tae H; Choi, Bong S
2015-02-01
The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Controlled laboratory study. University research laboratory. A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t(18) = 3.691, P = .002) and erector spinae (t(18) = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t(18) range, 3.953-5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t(18) = -2.327, P = .03), and a reduction in external oblique muscle activity (t(18) = 3.172, P = .005). We provide the first evidence to highlight the positive effects of ADIM training on core and postural stability in nonathletes with core instability.
Lee, Nam G.; You, Joshua (Sung) H.; Kim, Tae H.; Choi, Bong S.
2015-01-01
Context: The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. Objective: To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Design: Controlled laboratory study. Setting: University research laboratory. Patients or Other Participants: A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Intervention(s): Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Main Outcome Measures(s): Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. Results: All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t18 = 3.691, P = .002) and erector spinae (t18 = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t18 range, 3.953–5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t18 = −2.327, P = .03), and a reduction in external oblique muscle activity (t18 = 3.172, P = .005). Conclusions: We provide the first evidence to highlight the positive effects of ADIM training on core and postural stability in nonathletes with core instability. PMID:25531145
CORE MUSCLE ACTIVITY DURING THE CLEAN AND JERK LIFT WITH BARBELL VERSUS SANDBAGS AND WATER BAGS.
Calatayud, Joaquin; Colado, Juan C; Martin, Fernando; Casaña, José; Jakobsen, Markus D; Andersen, Lars L
2015-11-01
While the traditional clean and jerk maneuver implies simultaneous participation of a large number of muscle groups, the use of this exercise with some variations to enhance core muscle activity remains uninvestigated. The purpose of this study was to compare the muscle activity during clean and jerk lift when performed with a barbell, sandbag and a water bag at same absolute load. Descriptive, repeated-measures study. Twenty-one young fit male university students (age: 25 ± 2.66 years; height: 180.71 ± 5.42 cm; body mass: 80.32 ± 9.8 kg; body fat percentage: 12.41 ± 3.56 %) participated. Surface electromyographic (EMG) signals were recorded from the anterior deltoid (AD), external oblique (OBLIQ), lumbar erector spinae (LUMB), and gluteus medius (GM) and were expressed as a percentage of the maximum voluntary isometric contraction (MVIC). There were no significantly significant differences for AD muscle activity between conditions, whereas muscle activation values for OBLIQ (60%MVIC), GM (29%MVIC) and LUMB (85%MVIC) were significantly higher during the water bag power clean and jerk maneuver when compared with the other conditions. The clean and jerk is an exercise that may be used to enhance core muscle activity. Performing the maneuver with water bags resulted in higher core muscle activity compared with sandbag and standard barbell versions. 3.
Modified Y-TZP Core Design Improves All-ceramic Crown Reliability
Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.
2011-01-01
This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036
Minimizing or eliminating refueling of nuclear reactor
Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.
1989-01-01
Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.
Clinical performance of a lithia disilicate-based core ceramic for three-unit posterior FPDs.
Esquivel-Upshaw, Josephine F; Anusavice, Kenneth J; Young, Henry; Jones, Jack; Gibbs, Charles
2004-01-01
The purpose of this research project was to determine the clinical success rate of a lithia disilicate-based core ceramic for use in posterior fixed partial dentures (FPD) as a function of bite force, cement type, connector height, and connector width. Thirty ceramic FPD core frameworks were prepared using a heat-pressing technique and a lithia disilicate-based core ceramic. The maximum clenching force was measured for each patient prior to tooth preparation. Connector height and width were measured for each FPD. Patients were recalled yearly after cementation for 2 years and evaluated using 11 clinical criteria. All FPDs were examined by two independent clinicians, and rankings from 1 to 4 were made for each criterion (4 = excellent; 1 = unacceptable). Two of the 30 ceramic FPDs fractured within the 2-year evaluation period, representing a 93% success rate. One fracture was associated with a low occlusal force and short connector height (2.9 mm). The other fracture was associated with the greatest occlusal force (1,031 N) and adequate connector height. All criteria were ranked good to excellent during the 2-year recall for all remaining FPDs. The performance of the experimental core ceramic in posterior FPDs was promising, with only a 7% fracture rate after 2 years. Because of the limited sample size, it is not possible to identify the maximum clenching force that is allowable to prevent fracture caused by interocclusal forces.
Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm
NASA Technical Reports Server (NTRS)
Mazur, V.; Rust, W. D.; Gerlach, J. C.
1986-01-01
The radar reflectivity structure and the distribution of lightning in a storm cell was investigated using S-band and UHF-band radar data for six storm cells over Wallops Island. The S-band scans were vertical and continuous, while the UHF data were taken in steps of 2.5 deg elevation. The peak in lightning activity during the study corresponded to a merging of two storm cells. A minimum height of 7 km was found necessary for the appearance of a 40 dBZ core with lightning, which first appears in a multicell thunderstorm at the leading edge of the 50 dBZ core of the cell and between a cell and its decaying neighbor. The lightning moves further into the cell during cell decay and decreases in density. Finally, the lightning is offset horizontally from the precipitation core during cell growth but colocates with the precipitation core as the cell dissipates.
LMFBR fuel assembly design for HCDA fuel dispersal
Lacko, Robert E.; Tilbrook, Roger W.
1984-01-01
A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi
2017-07-01
Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (D
The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.
Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan
2017-02-01
To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p < 0.001). The highest ∆E* ab value was recorded for the zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p < 0.001). The luting cement, the presence of titanium, and the color of zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.
Wood Specific Gravity Variation with Height and Its Implications for Biomass Estimation
Michael C. Wiemann; G. Bruce Williamson
2014-01-01
Wood specific gravity (SG) is widely employed by ecologists as a key variable in estimates of biomass. When it is important to have nondestructive methods for sampling wood for SG measurements, cores are extracted with an increment borer. While boring is a relatively difficult task even at breast height sampling, it is impossible at ground level and arduous at heights...
Towards lidar-based mapping of tree age at the Arctic forest tundra ecotone.
NASA Astrophysics Data System (ADS)
Jensen, J.; Maguire, A.; Oelkers, R.; Andreu-Hayles, L.; Boelman, N.; D'Arrigo, R.; Griffin, K. L.; Jennewein, J. S.; Hiers, E.; Meddens, A. J.; Russell, M.; Vierling, L. A.; Eitel, J.
2017-12-01
Climate change may cause spatial shifts in the forest-tundra ecotone (FTE). To improve our ability to study these spatial shifts, information on tree demography along the FTE is needed. The objective of this study was to assess the suitability of lidar derived tree heights as a surrogate for tree age. We calculated individual tree age from 48 tree cores collected at basal height from white spruce (Picea glauca) within the FTE in northern Alaska. Tree height was obtained from terrestrial lidar scans (<1cm spatial resolution). The relationship between age and height was examined using a linear regression model forced through the origin. We found a very strong predictive relationship between tree height and age (R2 = 0.90, RMSE = 19.34 years) for trees that ranged between 14 to 230 years. Separate regression models were also developed for small (height < 3 m) and large trees (height >= 3 m), yielding strong predictive relationships between height and age (R2 = 0.86, RMSE 12.21 years, and R2 = 0.93, RMSE = 25.16 years, respectively). The slope coefficient for small and large tree models (16.83 and 12.98 years/m, respectively) indicate that small trees grow 1.3 times faster than large trees at these FTE study sites. Although a strong, predictive relationship between age and height is uncommon in light-limited forest environments, our findings suggest that the sparseness of trees within the FTE may explain the strong tree height-age relationships found herein. Further analysis of 36 additional tree cores recently collected within the FTE near Inuvik, Canada will be performed. Our preliminary analysis suggests that lidar derived tree height could be a reliable proxy for tree age at the FTE, thereby establishing a new technique for scaling tree structure and demographics across larger portions of this sensitive ecotone.
Watson, Todd; Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor
2017-02-01
Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Within-subject repeated measures design. A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe' releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Statistically significant improvements were seen on single leg balance in passe' releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers' TrA activations across the four instruction conditions. This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. 2b.
Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor
2017-01-01
Background Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. Hypothesis/Purpose This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Study Design Within-subject repeated measures design. Methods A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe’ releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Results Statistically significant improvements were seen on single leg balance in passe’ releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers’ TrA activations across the four instruction conditions Conclusion This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. Level of Evidence 2b PMID:28217414
Core Muscle Activation During Unstable Bicep Curl Using a Water-Filled Instability Training Tube.
Glass, Stephen C; Blanchette, Taylor W; Karwan, Lauren A; Pearson, Spencer S; OʼNeil, Allison P; Karlik, Dustin A
2016-11-01
Glass, SC, Blanchette, TW, Karwan, LA, Pearson, SS, O'Neil, AP, and Karlik, DA. Core muscle activation during unstable bicep curl using a water-filled instability training tube. J Strength Cond Res 30(11): 3212-3219, 2016-The purpose of this study was to assess compensatory muscle activation created during a bicep curl using a water-filled, unstable lifting tube. Ten men (age = 21 ± 1.6 years, height = 180.0 ± 3.3 cm, mass = 87.4 ± 15.0 kg) and 10 women (age = 19.6 ± 1.3 years, height = 161.4 ± 12.0 cm, mass = 61.2 ± 7.4 kg) completed bicep curls using an 11.4-kg tube partially filled with water during a 50% open-valve, 100% open, and control setting. Subjects completed 8 repetitions within each condition with integrated electromyographic signal (converted to percent maximal voluntary contraction) of the bicep, deltoid, rectus abdominus, and paraspinal muscles measured. Compensatory activation was determined using the natural log of coefficient of variation across concentric (CON) and eccentric (ECC) contractions. There were no differences between gender for any condition. Significant variability was seen across treatments for paraspinal muscles for CON and ECC at 50% (CON LnCV = 3.13 ± 0.56%, ECC LnCV = 3.34 ± 0.58%) and 100% (CON = 3.24 ± 0.34%, ECC = 3.46 ± 0.35%) compared with control (CON = 2.59 ± 0.47%, ECC = 2.80 ± 0.61%). Deltoid variability was greater at the 100% open setting (CON = 3.51 ± 0.53%, ECC = 3.56 ± 0.36%) compared with control (CON = 2.98 ± 0.35%, ECC = 2.97 ± 0.45%). The abdominal CON 100% showed variability (3.02 ± 0.47%) compared with control (2.65 ± 0.43%). Bicep activation remained unvaried. Compensatory activation of postural muscles contribute to postural stability. This device may be a useful tool for neuromuscular training leading to improved stability and control.
IMPROVEMENTS RELATING TO NUCLEAR REACTOR CORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-03-01
A nuclear reactor core composed of a number of stacked horizontal layers is described. Each layer is made up of elements of moderator material of equal height and of generally hexagonal cross-section. Each element has holes containing nuclear fuel and separate ones for coolant. (C.E.S.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Rudisill, T.
2017-07-17
As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved using a flowsheet developed by the Savannahmore » River National Laboratory (SRNL) in either the 6.4D or 6.1D dissolver using a unique insert. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The recovered U will be down-blended into low-enriched U for subsequent use as commercial reactor fuel. During the development of the HFIR fuel dissolution flowsheet, the cycle time for the initial core was estimated at 28 to 40 h. Once the cycle is complete, H-Canyon personnel will open the dissolver and probe the HFIR insert wells to determine the height of any fuel fragments which did not dissolve. Before the next core can be charged to the dissolver, an analysis of the potential for H 2 gas generation must show that the combined surface area of the fuel fragments and the subsequent core will not generate H 2 concentrations in the dissolver offgas which exceeds 60% of the lower flammability limit (LFL) of H 2 at 200 °C. The objective of this study is to identify the maximum fuel fragment height as a function of the Al concentration in the dissolving solution which will provide criteria for charging successive HFIR cores to an H-Canyon dissolver.« less
Volumetric dimensional change of six direct core materials.
Chutinan, Supattriya; Platt, Jeffrey A; Cochran, Michael A; Moore, B Keith
2004-05-01
This study evaluated the influence of water on the volumetric dimensional change of six direct placement core build-up materials by using Archimedes' principle. The effect on dimensional change due to the setting reaction was determined through the use of a silicone oil storage medium. The materials used were two dual-cured resin composites (CoreStore and Build-It FR), two chemically activated resin composites (CorePaste and Ti-Core), one metal-reinforced glass ionomer cement (Ketac-Silver), and one resin-modified glass ionomer (Fuji II LC Core). Using the manufacturers' instructions for each material, cylindrical specimens were prepared with dimensions of 7+/-0.1 mm in diameter and 2+/-0.1 mm in height. Each material had four groups (n = 5) based on storage conditions; silicone oil at 23 and 37 degrees C and distilled water at 23 and 37 degrees C. A 0.01 mg resolution balance was used to determine volumetric dimensional change using an Archimedean equation. Measurements were made 30 min after mixing, and at the time intervals of 1, 14, and 56 days. All materials exhibited dimensional change. Ketac-Silver had the most shrinkage in silicone oil and Fuji II LC showed the highest expansion in distilled water. The glass ionomer materials showed more change than did any of the resin composite materials. Current direct placement core materials show variation in the amount of volumetric dimensional change seen over a period of 56 days.
Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.
Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E
2002-02-01
Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P < 0.0001). Within sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P < 0.005). Heartwood had only 2-10% of the respiratory potential of outer sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P < 0.0001). When scaled to the whole-tree level on a sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if the absolute differences are not.
Survey of specific gravity of eight Maine conifers
Harold E. Wahlgren; Gregory Baker; Robert R. Maeglin; Arthur C. Hart
1968-01-01
This analysis of a mass increment core sampling of eight coniferous species of Maine characterizes specific gravity for each of the species. No clear-cut relationships of specific gravity to forest type, stand density class, height class, or tree diameter at breast height were found. Included in the data are the species average specific gravity and the range. These...
Oscillatory erosion and transport flume with superimposed unidirectional flow
Jepsen, Richard A.; Roberts, Jesse D.
2004-01-20
A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.
Irregular topography at the Earth’s inner core boundary
Dai, Zhiyang; Wang, Wei; Wen, Lianxing
2012-01-01
Compressional seismic wave reflected off the Earth’s inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth’s ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4–8 km with a lateral length scale of 2–4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable. PMID:22547788
Irregular topography at the Earth's inner core boundary.
Dai, Zhiyang; Wang, Wei; Wen, Lianxing
2012-05-15
Compressional seismic wave reflected off the Earth's inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth's ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4-8 km with a lateral length scale of 2-4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable.
Fission control system for nuclear reactor
Conley, G.H.; Estes, G.P.
Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.
Effect of midrotation fertilization on growth and specific gravity of loblolly pine
Finto Antony; Lewis Jordan; Richard F. Daniels; Laurence R. Schimleck; Alexander Clark III; Daniel B. Hall
2009-01-01
Wood properties and growth were measured on breast-height cores and on disks collected at different heights from a thinned and fertilized midrotation loblolly pine (Pinus taeda L.) plantation in the lower Coastal Plain of North Carolina. The study was laid out in a randomized complete-block design receiving four levels of nitrogen (N) fertilizer: unfertilized...
Prieske, O; Muehlbauer, T; Borde, R; Gube, M; Bruhn, S; Behm, D G; Granacher, U
2016-01-01
Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 ± 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band® Stability Trainer, Togu© Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P < 0.05, d = 0.86), 10-20-m sprint time (3%, P < 0.05, d = 2.56), and kicking performance (1%, P < 0.01, d = 1.28). No significant Group × test interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Determining site index accurately in even-aged stands
Gayne G. Erdmann; Ralph M., Jr. Peterson
1992-01-01
Good site index estimates are necessary for intensive forest management. To get tree age used in determining site index, increment cores are commonly used. The diffuse-porous rings of northern hardwoods, though, are difficult to count in cores, so many site index estimates are imprecise. Also, measuring the height of standing trees is more difficult and less accurate...
Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin
2015-12-01
In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recuperator construction for a gas turbine engine
Kang, Yungmo; McKeirnan, Jr., Robert D.
2006-12-12
A counter-flow recuperator formed from annular arrays of recuperator core segments. The recuperator core segments are formed from two opposing sheets of fin fold material coined to form a primary surface zone disposed between two flattened manifold zones. Each primary surface zone has undulating corrugations including a uniform, full height central portion and a transition zone disposed between the central portion and one of the manifold zones. Corrugations of the transition zone rise from zero adjacent to the manifold zone and increase along a transition length to full crest height at the central portion. The transition lengths increase in a direction away from an inner edge containing the air inlet so as to equalize air flow to the distal regions of the primary surface zone.
Climatology of tracked persistent maxima of 500-hPa geopotential height
NASA Astrophysics Data System (ADS)
Liu, Ping; Zhu, Yuejian; Zhang, Qin; Gottschalck, Jon; Zhang, Minghua; Melhauser, Christopher; Li, Wei; Guan, Hong; Zhou, Xiaqiong; Hou, Dingchen; Peña, Malaquias; Wu, Guoxiong; Liu, Yimin; Zhou, Linjiong; He, Bian; Hu, Wenting; Sukhdeo, Raymond
2017-10-01
Persistent open ridges and blocking highs (maxima) of 500-hPa geopotential height (Z500; PMZ) adjacent in space and time are identified and tracked as one event with a Lagrangian objective approach to derive their climatological statistics with some dynamical reasoning. A PMZ starts with a core that contains a local eddy maximum of Z500 and its neighboring grid points whose eddy values decrease radially to about 20 geopotential meters (GPMs) smaller than the maximum. It connects two consecutive cores that share at least one grid point and are within 10° of longitude of each other using an intensity-weighted location. The PMZ ends at the core without a successor. On each day, the PMZ impacts an area of grid points contiguous to the core and with eddy values decreasing radially to 100 GPMs. The PMZs identified and tracked consist of persistent ridges, omega blockings and blocked anticyclones either connected or as individual events. For example, the PMZ during 2-13 August 2003 corresponds to persistent open ridges that caused the extreme heatwave in Western Europe. Climatological statistics based on the PMZs longer than 3 days generally agree with those of blockings. In the Northern Hemisphere, more PMZs occur in DJF season than in JJA and their duration both exhibit a log-linear distribution. Because more omega-shape blocking highs and open ridges are counted, the PMZs occur more frequently over Northeast Pacific than over Atlantic-Europe during cool seasons. Similar results are obtained using the 200-hPa geopotential height (in place of Z500), indicating the quasi-barotropic nature of the PMZ.
Speckle imaging of active galactic nuclei: NGC 1068 and NGC 4151
NASA Astrophysics Data System (ADS)
Ebstein, Steven Michael
High resolution images of NGC 1068 and NGC 4151 in the 5007 A line and the nearby continuum produced from data taken with the PAPA photon counting imaging detector using the technique of speckle imaging are presented. The images show an unresolved core of 5007 A emission in the middle of an extended emission region. The extended emission tends to lie alongside the subarcsecond radio structure. In NGC 4151, the extended emission comes from a nearly linear structure extending on both sides of the unresolved core. In NGC 1068, the extended emission is concentrated in lobes lying to the unresolved core but the emission is concentrated in lobes lying to either side of the major axis. The continuum of NGC 4151 is spatially unresolved. The continuum of NGC 1068 is extended approx. 1 in to the SW of the center of the 5007 A emission. Certain aspects of the PAPA detector are discussed, including the variable threshold discriminators that track the image intensifier pulse height and the camera artifacts. The data processing is described in detail.
Living standards in Black and White: evidence from the heights of Ohio Prison inmates, 1829-1913.
Maloney, Thomas N; Carson, Scott Alan
2008-07-01
The use of height data to measure living standards is now a well-established method in the economic history literature. Moreover, a number of core findings are widely agreed upon. There are still some populations, places, and times, however, for which anthropometric evidence remains limited. One such example is 19th century African-Americans in the Northern US. Here, we use new data from the Ohio state prison to track heights of Black and White men incarcerated between 1829 and 1913. We corroborate the well-known mid-century height decline among White men. We find that Black men were shorter than White men, throughout the century controlling for a number of characteristics. We also find a pattern of height decline among Black men in mid-century similar to that found for White men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki
Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density andmore » inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.« less
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Nicolai, Lars; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Kahnt, Maik; Falkenberg, Gerald; Schroer, Christian G.; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2017-02-01
Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated (In ,Ga )N /GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 ×90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed high-angle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finite-element method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs.
Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle
NASA Technical Reports Server (NTRS)
Dodson, J. Brant; Taylor, Patrick C.
2016-01-01
The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud
2015-11-04
This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective ofmore » this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and fabrication capacity per unit of core power. Nevertheless, these high-performance cores were designed to set upper bounds on the S&B core performance by using larger height and pressure drop than those of typical SFR design. A study was subsequently undertaken to quantify the tradeoff between S&B core design variables and the core performance. This study concludes that a viable S&B core can be designed without significant deviation from SFR core design practices. For example, the S&B core with 120cm active height will be comparable in volume, HM mass and specific power with the S-PRISM core and could fit within the S-PRISM reactor vessel. 43% of this core power will be generated by the once-through thorium blanket; the required capacity for reprocessing and remote fuel fabrication per unit of electricity generated will be approximately one fifth of that for a comparable ABR. The sodium void worth of this 120cm tall S&B core is significantly less positive than that of the reference ABR and the Doppler coefficient is only slightly smaller even though the seed uses a fertile-free fuel. The seed in the high transmutation core requires inert matrix fuel (TRU-40Zr) that has been successfully irradiated by the Fuel Cycle Research & Development program. An additional sensitivity analysis was later conducted to remove the bias introduced by the discrepancy between radiation damage constraints -- 200 DPA applied for S&B cores and fast fluence of 4x1023 n(>0.1MeV)/cm2 applied for ABR core design. Although the performance characteristics of the S&B cores are sensitive to the radiation damage constraint applied, the S&B cores offer very significant performance improvements relative to the conventional ABR core design when using identical constraint.« less
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height.
Davière, Jean-Michel; Wild, Michael; Regnault, Thomas; Baumberger, Nicolas; Eisler, Herfried; Genschik, Pascal; Achard, Patrick
2014-08-18
Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pre-Activity Modulation of Lower Extremity Muscles Within Different Types and Heights of Deep Jump
Mrdakovic, Vladimir; Ilic, Dusko B.; Jankovic, Nenad; Rajkovic, Zeljko; Stefanovic, Djordje
2008-01-01
The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m), who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump) from three different heights (40cm, 60cm, and 80cm). Surface EMG device (1000Hz) was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG) of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis) within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience. Key pointsHeight factor proved to be more relevant for the change in pre-activation level compared to the drop jump type factor.There is evident qualitative difference in pattern of pre-activation from lower and higher drop heights, compared to pattern of pre-activation obtained from optimal drop height.Drop jumps from the heights above the optimal one are not adequate for nicely preparing muscle activity for the impact. PMID:24149460
Investigation of the Effects of Teaching Core Exerciseson Young Soccer Players
ERIC Educational Resources Information Center
Yapici, Aysegül
2016-01-01
The objective of this study is to investigate the effects of teaching core exercises on some motoric parameters in young soccer players. 32 amateur male football players from Afjet Afyonspor and Muglaspor football team; 16 experimental group (average age 13.75 ± 0.46 years; mean body height 1.65.± 0.09 cm; mean body mass 52.88 ± 8.04 kg) and 16…
The effect of a healthy lifestyle programme on 8-9 year olds from social disadvantage.
Breslin, Gavin; Brennan, Deirdre; Rafferty, Ruth; Gallagher, Alison M; Hanna, Donncha
2012-07-01
This study assessed the efficacy of a school-based healthy lifestyle intervention (Sport for LIFE) for increasing physical activity, decreasing sedentary behaviour, reducing screen time behaviour, encouraging healthy attitudes and behaviour to nutrition, and reducing body mass index (BMI) in 8-9-year-old primary school children from lower socioeconomic backgrounds in Northern Ireland. A non-randomised controlled trial of 416 children from 24 schools took part. Schools were randomly assigned to one of two groups, an intervention or control group with 12 schools in each group. The intervention group received a 12-week school-based programme based on social cognitive theory. At baseline and follow-up, groups completed questionnaires assessing physical activity, screen time behaviour and dietary patterns. On each occasion anthropometric assessments of height and weight were taken. Physical activity and sedentary behaviour were measured by accelerometry. Significant effects were observed for vigorous, moderate and light activity for the intervention group at follow-up. Sedentary behaviour was significantly reduced for the intervention group but not for the control group. No significant effects of the intervention on BMI, screen time behaviour or attitudes to nutrition, with the exception of non-core foods, were shown. The programme was effective in increasing physical activity and reducing sedentary behaviour, however no significant changes in screen time behaviour and attitude to nutrition, with the exception of non-core foods, were observed. Future research ideas are offered for tackling low levels of physical activity in children.
Bouillon, Lucinda E; Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay
2012-12-01
Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single-limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Twenty men and 20 women who were recreationally active and healthy participated in the study. Two-dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side-step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed-model ANOVA, and ICCs with 95% confidence intervals were calculated. Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC(3,3) ranged from moderate to high (0.74 to 0.97) for the three tasks. Muscle activation among the eight muscles was similar between females and males during the lunge, side-step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus maximus and gluteus medius as compared to the trunk, hip flexors, or hamstring muscles. However these values were well below the recruitment levels necessary for strengthening in both genders. 4.
Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay
2012-01-01
Purpose/Background: Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single‐limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Methods: Twenty men and 20 women who were recreationally active and healthy participated in the study. Two‐dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side‐step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed‐model ANOVA, and ICCs with 95% confidence intervals were calculated. Results: Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC3,3 ranged from moderate to high (0.74 to 0.97) for the three tasks. Conclusions: Muscle activation among the eight muscles was similar between females and males during the lunge, side‐step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus maximus and gluteus medius as compared to the trunk, hip flexors, or hamstring muscles. However these values were well below the recruitment levels necessary for strengthening in both genders. Level of evidence: 4 PMID:23316423
Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason
2015-10-01
Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.
NASA Astrophysics Data System (ADS)
Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb
1990-10-01
Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.
NASA Astrophysics Data System (ADS)
Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele
2015-12-01
The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.
Core-temperature sensor ingestion timing and measurement variability.
Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C
2010-01-01
Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age = 27.0 ± 7.5 years, height = 172.9 ± 6.8 cm, body mass = 67.5 ± 6.1 kg, percentage body fat = 12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)] = 54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1 = 38.3°C ± 0.2°C, P2 = 38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.
Kerhoulas, Lucy P; Kane, Jeffrey M
2012-01-01
Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.
Real-time Monitoring of 2017 Hurricanes and Typhoons with Lightning
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Bracy, C.; Holzworth, R. H., II
2017-12-01
The 2017 Atlantic season had the highest number of major hurricanes since 2005. To tackle the demand of real-time tropical cyclone (TC) monitoring, our group has developed a unique "storm-following" satellite and ground-based lightning product known as WWLLN-TC (World Wide Lightning Location Network - Tropical Cyclones; http://wwlln.net/storms/). In the present study, we explore this tool and other datasets, combining lightning and microwave data to quantify areas of intense convection in 2017 TCs Harvey, Hato, Irma, Maria, Nate, Ophelia and others. For each storm, the temporal distribution of discharges outside and within the inner core is compared to the changes in TC intensity. The intensification processes, monitored in near real-time by WWLLN-TC, are quantified in terms of pressure and/or wind speed changes. A peak in lightning activity is often observed in the inner core of TCs before and during rapid weakening, such as in Hurricanes Irma and Maria and Typhoon Hato. The microwave frequencies investigated include the 37 to 183 GHz channels of the satellite sensors DMSP/SSMIS and GPM/GMI. We reconstruct brightness temperatures from lightning data, providing more detailed pictures of the evolution of TCs at moments when satellite passes are missing or incomplete. This study also compares lightning activity in the inner core with convective and environmental parameters. Examples of environmental parameters discussed are sea surface temperature, wind shear, and sea surface height anomalies. We conclude by considering possible implications of WWLLN-TC on forecasts of rapid intensity change and rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Tilden
This is the AmeriFlux version of the carbon flux data for the site US-Goo Goodwin Creek. Site Description - The Goodwin Creek site is located in the Bluff Hills, just east of the Mississippi River valley. In addition to being a core AmeriFlux site, Goodwin Creek is also affiliated with a multitude of other projects including SURFRAD, BSRN, and one of the twelve watersheds in the USDA Conservation Reserve Program. Natural disturbances are of minimal influence to the site. The immediate region is primarily used for grazing while infrequent logging activities occur in nearby forests. The grass surrounding the basemore » of the tower is mowed periodically to maintain a height consistent with the regional grasslands.« less
46 CFR 160.171-11 - Performance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... heat as follows: (1) The thermal conductivity of the suit material when submerged 1 m (39 in.) in water... insulation, following one jump into the water from a height of 4.5 m, to ensure that the wearer's body core...
46 CFR 160.171-11 - Performance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... heat as follows: (1) The thermal conductivity of the suit material when submerged 1 m (39 in.) in water... insulation, following one jump into the water from a height of 4.5 m, to ensure that the wearer's body core...
46 CFR 160.171-11 - Performance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... heat as follows: (1) The thermal conductivity of the suit material when submerged 1 m (39 in.) in water... insulation, following one jump into the water from a height of 4.5 m, to ensure that the wearer's body core...
46 CFR 160.171-11 - Performance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... heat as follows: (1) The thermal conductivity of the suit material when submerged 1 m (39 in.) in water... insulation, following one jump into the water from a height of 4.5 m, to ensure that the wearer's body core...
46 CFR 160.171-11 - Performance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... heat as follows: (1) The thermal conductivity of the suit material when submerged 1 m (39 in.) in water... insulation, following one jump into the water from a height of 4.5 m, to ensure that the wearer's body core...
Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J
2014-02-01
The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. © 2013 by the American College of Prosthodontists.
Esquivel-Upshaw, Josephine F.; Clark, Arthur E.; Shuster, Jonathan J.; Anusavice, Kenneth J.
2013-01-01
Purpose The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52–75 years) were recruited for the study to receive a 3-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. Material: ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Results Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher’s exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Conclusions Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. PMID:23758092
Thermal barrier and support for nuclear reactor fuel core
Betts, Jr., William S.; Pickering, J. Larry; Black, William E.
1987-01-01
A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.
Müller, Lisa; Hildebrandt, Carolin; Müller, Erich; Fink, Christian; Raschner, Christian
2017-01-01
Alpine ski racing is known to be a sport with a high risk of injuries. Because most studies have focused mainly on top-level athletes and on traumatic injuries, limited research exists about injury risk factors among youth ski racers. The aim of this study was to determine the intrinsic risk factors (anthropometrics, biological maturity, physical fitness, racing technique) for injury among youth alpine ski racers. Study participants were 81 youth ski racers attending a ski boarding school (50 males, 31 females; 9–14 years). A prospective longitudinal cohort design was used to monitor sports-related risk factors over two seasons and traumatic (TI) and overuse injuries (OI). At the beginning of the study, anthropometric characteristics (body height, body weight, sitting height, body mass index); biological maturity [status age at peak height velocity (APHV)]; physical performance parameters related to jump coordination, maximal leg and core strength, explosive and reactive strength, balance and endurance; and ski racing technique were assessed. Z score transformations normalized the age groups. Multivariate binary logistic regression (dependent variable: injury yes/no) and multivariate linear regression analyses (dependent variable: injury severity in total days of absence from training) were calculated. T-tests and multivariate analyses of variance were used to reveal differences between injured and non-injured athletes and between injury severity groups. The level of significance was set to p < 0.05. Relatively low rates of injuries were reported for both traumatic (0.63 TI/athlete) and overuse injuries (0.21 OI/athlete). Athletes with higher body weight, body height, and sitting height; lower APHV values; better core flexion strength; smaller core flexion:extension strength ratio; shorter drop jump contact time; and higher drop jump reactive strength index were at a lower injury risk or more vulnerable for fewer days of absence from training. However, significant differences between injured and non-injured athletes were only observed with respect to the drop jump reactive strength index. Regular documentation of anthropometric characteristics, biological maturity and physical fitness parameters is crucial to help to prevent injury in youth ski racing. The present findings suggest that neuromuscular training should be incorporated into the training regimen of youth ski racers to prevent injuries. PMID:28912731
Müller, Lisa; Hildebrandt, Carolin; Müller, Erich; Fink, Christian; Raschner, Christian
2017-01-01
Alpine ski racing is known to be a sport with a high risk of injuries. Because most studies have focused mainly on top-level athletes and on traumatic injuries, limited research exists about injury risk factors among youth ski racers. The aim of this study was to determine the intrinsic risk factors (anthropometrics, biological maturity, physical fitness, racing technique) for injury among youth alpine ski racers. Study participants were 81 youth ski racers attending a ski boarding school (50 males, 31 females; 9-14 years). A prospective longitudinal cohort design was used to monitor sports-related risk factors over two seasons and traumatic (TI) and overuse injuries (OI). At the beginning of the study, anthropometric characteristics (body height, body weight, sitting height, body mass index); biological maturity [status age at peak height velocity (APHV)]; physical performance parameters related to jump coordination, maximal leg and core strength, explosive and reactive strength, balance and endurance; and ski racing technique were assessed. Z score transformations normalized the age groups. Multivariate binary logistic regression (dependent variable: injury yes/no) and multivariate linear regression analyses (dependent variable: injury severity in total days of absence from training) were calculated. T -tests and multivariate analyses of variance were used to reveal differences between injured and non-injured athletes and between injury severity groups. The level of significance was set to p < 0.05. Relatively low rates of injuries were reported for both traumatic (0.63 TI/athlete) and overuse injuries (0.21 OI/athlete). Athletes with higher body weight, body height, and sitting height; lower APHV values; better core flexion strength; smaller core flexion:extension strength ratio; shorter drop jump contact time; and higher drop jump reactive strength index were at a lower injury risk or more vulnerable for fewer days of absence from training. However, significant differences between injured and non-injured athletes were only observed with respect to the drop jump reactive strength index. Regular documentation of anthropometric characteristics, biological maturity and physical fitness parameters is crucial to help to prevent injury in youth ski racing. The present findings suggest that neuromuscular training should be incorporated into the training regimen of youth ski racers to prevent injuries.
Inner core boundary topography explored with reflected and diffracted P waves
NASA Astrophysics Data System (ADS)
deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai
2018-03-01
The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.
Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries
NASA Astrophysics Data System (ADS)
Sankar, D. S.; Lee, Usik
2009-07-01
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel-Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.
NASA Astrophysics Data System (ADS)
Tanaka, Satoru; Tkalčić, Hrvoje
2015-12-01
Frequency-dependent reflection coefficients of P waves at the inner core boundary (ICB) are estimated from the spectral ratios of PKiKP and PcP waves observed by the high-sensitivity seismograph network (Hi-net) in Japan. The corresponding PKiKP reflection locations at the ICB are distributed beneath the western Pacific. At frequencies where noise levels are sufficiently low, spectra of reflection coefficients show four distinct sets of characteristics: a flat spectrum, a spectrum with a significant spectral hole at approximately 1 or 3 Hz, a spectrum with a strong peak at approximately 2 or 3 Hz, and a spectrum containing both a sharp peak and a significant hole. The variety in observed spectra suggests complex lateral variations in ICB properties. To explain the measured differences in frequency characteristics of ICB reflection coefficients, we conduct 2D finite difference simulations of seismic wavefields near the ICB. The models tested in our simulations include a liquid layer and a solid layer above the ICB, as well as sinusoidal and spike-shaped ICB topography with varying heights and scale lengths. We find that the existence of a layer above the ICB can be excluded as a possible explanation for the observed spectra. Furthermore, we find that an ICB topographic model with wavelengths and heights of several kilometers is too extreme to explain our measurements. However, restricting the ICB topography to wavelengths and heights of 1.0-1.5 km can explain the observed frequency-related phenomena. The existence of laterally varying topography may be a sign of lateral variations in inner core solidification.
Atomistic simulations of activated processes in nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Giberti, Federico; Galli, Giulia
Core-shell and Janus nanopartices are promising building blocks for new, highly efficient solar cells. One of the most common synthetic pathways to produce such nanostructures is the use of cation exchange reactions. Although widely used, these procedures are not completely understood. We employed classical Molecular Dynamics and Monte Carlo simulations to understand these transformation at the molecular level; in particular we investigated the conversion from CdSe (sphalerite) to PbSe (rocksalt) NPs with 2-3 nm diameter. In order to recover the equilibrium free energy surfaces we used state of the art enhanced sampling techniques, including Metadynamics. The formation of hybrid core-shell structures resulted to be an activated process, where the limiting step is the transition of a sphalerite to a rocksalt PbSe nucleus. We found that the barrier height and the stability of the two phases depend on the size of the PbSe nucleus, suggesting that the process could proceed via a two step mechanism, where a small sphalerite nucleus is formed first, and it then transforms to a rocksalt nucleus. Our results give insight into possible manipulation processes at the molecular scale, which could be used to stabilize metastable NPs and tune their physical and chemical properties. This work was supported by the DOE Grant No. DE-FG02-06ER46262.
NASA Astrophysics Data System (ADS)
Brown, W. L.; Toplis, M. J.
2003-04-01
Due to slow NaSi-CaAl exchange in plagioclase, the proportion of the anorthite component (An) may be considered essentially a primary feature in magmatic bodies such as small layered intrusions. Thus, An provides a potential window into the evolution of such magmatic systems on various length scales. In order to assess the utility of this approach, 13 thin sections covering the principal zones and sub-zones of the Layered Series of the Skaergaard intrusion, East Greenland, were studied. In each thin section 90 to 150 analyses of plagioclase were made using an electron microprobe. Analyses were made in grain centres and at grain edges, particular attention being paid to plagioclase-plagioclase contacts. The cores of large and moderately sized crystals show narrow compositional ranges, 90% of analyses lying within 3 mol% of the mean. In accordance with previous studies, we find that mean core compositions vary continuously with stratigraphic height, from ˜An70 at the lowest levels, to ˜An30 at the top of Upper Zone (UZ). Rim compositions of touching plagioclase also show strong maxima in their mode, but the variation of this composition with stratigraphic height is distinctly different from that of crystal cores. In the Lower Zone (LZ) and lower Middle Zone (MZ), the most abundant rim compositions are systematically An50± 1, core and rim compositions converging in the lower MZ. In the upper MZ to UZ, rim compositions are very similar to corresponding cores, but locally may be more evolved, particularly when plagioclase is intergrown with quartz. The systematic decrease of An as a function of stratigraphic height is strong evidence in favour of fractional crystallization of the main liquid. However, the fact that plagioclase zoning does not extend to nearly pure albite in the vast majority of rocks implies mobility of intercumulus liquid. If compaction (expulsion) were the mechanism responsible for this, it would be difficult to explain the remarkably constant cut-off in rim compositions at An50 in the LZ and lower MZ. On the other hand, this cut-off corresponds to the An content at magnetite saturation, which leads us to propose that the observed features are the result of a density inversion in the liquid following oxide saturation. This density inversion causes the intercumulus liquid to become gravitationally unstable relative to the overlying main liquid leading to compositional convection in the upper LZ and MZ, a hypothesis consistent with the adcumulus texture of those rocks.
Zeigenfuss, Linda C.; Johnson, Therese L.
2015-12-17
Increases in the number of small-diameter, tree-sized (stems greater than 2.5 meter height) aspen stems were observed but only inside fences that excluded ungulates. In unfenced areas, stand structure was stagnant, with many medium- and large-diameter (older) stems and no replacement of small-diameter stems. By 2013, aspen saplings (stems less than or equal to 2.5 meter height) were recruiting on 29 percent of sampled sites, an increase from 13 percent of sites at baseline, but this was mainly due to growth inside fences. Upland herbaceous offtake dropped below baseline levels (61 percent) on both core and noncore winter range in 2010–14. Less than 10 percent of the upland areas had intense herbivory (greater than 85 percent offtake), and less than 30 percent of the landscape had offtake greater than 70 percent after 2009. Offtake levels in 2013 and 2014 indicated an increase in grazing pressure on upland sites compared to 2010–12 levels, but this change may have been in response to loss of large patches of both herbaceous and woody forage in Moraine Park following the 2012 Fern Lake Fire. Winter willow offtake remained steady from 2009 to 2014, and although there were no substantial increases in offtake, there were also no consistent declines. Winter-range willow offtake was below the baseline level of 35 percent only in 2013 and 2014. Willow heights have stayed at or above baseline levels of 0.9 meter. Average heights of willow increased compared to baseline measures within fenced habitat on the core winter range and on noncore (all unfenced) winter range. Willow cover increased at least 75 percent compared to baseline within core winter-range fenced areas and roughly 25 percent in noncore winter range. Overall, during the first 5 years of implementation, the EVMP at Rocky Mountain National Park seems to be making steady progress toward the vegetation objectives set out by the EVMP. Habitat fencing has been the most effective means of improving aspen and willow habitat conditions.
Quadricep and hamstring activation during drop jumps with changes in drop height.
Peng, Hsien-Te; Kernozek, Thomas W; Song, Chen-Yi
2011-08-01
Compare the muscle activation patterns of the quadricep-hamstring during drop jumps with increasing demands of drop heights. Observational. University biomechanics laboratory. Fifteen male and eight female college physical education students. Electromyographic activity of the rectus femoris (RF) and biceps femoris (BF) during the landing and takeoff phase of drop jumps from 20 to 60-cm heights. The ground contact time, vertical ground reaction force (vGRF), knee flexion angle during ground contact, and jump height after takeoff were also analyzed. The activation of RF was higher in the drop jump from 60-cm than that from 20- and 30-cm (comparing 107.0 ± 45.9 to 82.3 ± 30.8 and 88.9 ± 38.9 %MVIC, P<.05) during the landing phase. Activation of BF remained similar across all drop heights. Drop jump from 60-cm resulted in greater contact time during takeoff phase and peak vGRF, and resulted in greater maximum knee flexion but straighter knee at ground contact than from lower drop heights. At drop height of 60-cm, the altered knee muscular activation and movement patterns may diminish the effectiveness of plyometric training and increase the potential injury risk of knee. Copyright © 2010 Elsevier Ltd. All rights reserved.
Illinois Precipitation Research: A Focus on Cloud and Precipitation Modification.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Czys, Robert R.; Scott, Robert W.; Westcott, Nancy E.
1991-05-01
At the heart of the 40-year atmospheric research endeavors of the Illinois State Water Survey have been studies to understand precipitation processes in order to learn how precipitation is modified purposefully and accidentally, and to measure the physical and socio-economic consequences of cloud and precipitation modification. Major field and laboratory activities of past years or briefly treated as a basis for describing the key findings of the past ten years. Recent studies of inadvertent and purposeful cloud and rain modification and their effects are emphasized, including a 1989 field project conducted in Illinois and key findings from an on-going exploratory experiment addressing cloud and rain modification. Results are encouraging for the use of dynamic seeding on summer cumuliform clouds of the Midwest.Typical in-cloud results at 10°C reveal multiple updrafts that tend to be filled with large amounts of supercooled drizzle and raindrops. Natural ice production is vigorous, and initial concentrations are larger than expected from ice nuclei. However, natural ice production is not so vigorous as to preclude opportunities for seeding. Radar-based studies of such clouds reveal that their echo cores usually can be identified prior to desired seeding times, which is significant for the evaluation of their behavior. Cell characteristics show considerable variance under different types of meteorological conditions. Analysis of cell mergers reveals that under conditions of weak vertical shear, mid-level intercell flow at 4 km occurs as the reflectivity bridge between cells rapidly intensifies. The degree of intensification of single-echo cores after they merge is strongly related to the age and vigor of the cores before they join. Hence, cloud growth may be enhanced if seeding can encourage echo cores to merge at critical times. Forecasting research has developed a technique for objectively distinguishing between operational seeding and nonoperational days and for objectively predicting maximum cloud-top height and seeding suitability. An accuracy rate of up to 60% in predicting maximum echo-top height using four categories has been achieved and suggests its use as a covariate in future experimentation. Impact studies illustrate that sizable summer rain increases would be necessary to produce economically beneficial outcomes for Corn Belt agriculture. Increases of 25% in July rainfall across certain high-production crop districts of the Corn Belt would produce economic effects realized nationally.
Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming
Bargar, Keith E.
1978-01-01
Mammoth Hot Springs, located about 8 km inside the north entrance to Yellowstone National Park, consists of nearly 100 hot springs scattered over a score of steplike travertine terraces. The travertine deposits range in age from late Pleistocene to the present. Sporadic records of hot-spring activity suggest that most of the current major springs have been intermittently active since at least 1871. Water moving along the Norris-Mammoth fault zone is heated by partly molten magma and enriched in calcium and bicarbonate. Upon reaching Mammoth this thermal water (temperature about 73?C) moves up through the old terrace deposits along preexisting vertical linear planes of weakness. As the water reaches the surface, pressure is released, carbon dioxide escapes as a gas, and bicarbonate in the water is partitioned into more carbon dioxide and carbonate; the carbonate then combines with calcium to precipitate calcium carbonate, forming travertine. The travertine usually precipitates rapidly from solution and is lightweight and porous; however, dense travertine, such as is found in core from the 113-m research drill hole Y-10 located on one of the upper terraces, forms beneath the surface by deposition in the pore spaces of older deposits. The terraces abound with unusual hot-spring deposits such as terracettes, cones, and fissure ridges. Semicircular ledges (ranging in width from about 0.3 m to as much as 2.5 m), called terracettes, formed by deposition of travertine around slowly rising pools. Complex steplike arrangements of terracettes have developed along runoff channels of some hot springs. A few hot springs have deposited cone-shaped mounds, most of which reach heights of 1-2 m before becoming dormant. However, one long-inactive cone named Liberty Cap attained a height of about 14 m. Fissure ridges are linear mounds of travertine deposited from numerous hot-spring vents along a medial fracture zone. The ridges range in height from about 1 to 6 m and in length from a few meters to nearly 300 m; width at the base of a ridge is equal to or greater than its height. In some places, such as along the northern border of Main Terrace, water from new hot-spring activity becomes ponded behind fissure-ridge barriers or dams and deposits travertine that eventually forms large flat terraces.
Modeling and testing of ethernet transformers
NASA Astrophysics Data System (ADS)
Bowen, David
2011-12-01
Twisted-pair Ethernet is now the standard home and office last-mile network technology. For decades, the IEEE standard that defines Ethernet has required electrical isolation between the twisted pair cable and the Ethernet device. So, for decades, every Ethernet interface has used magnetic core Ethernet transformers to isolate Ethernet devices and keep users safe in the event of a potentially dangerous fault on the network media. The current state-of-the-art Ethernet transformers are miniature (<5mm diameter) ferrite-core toroids wrapped with approximately 10 to 30 turns of wire. As small as current Ethernet transformers are, they still limit further Ethernet device miniaturization and require a separate bulky package or jack housing. New coupler designs must be explored which are capable of exceptional miniaturization or on-chip fabrication. This dissertation thoroughly explores the performance of the current commercial Ethernet transformers to both increase understanding of the device's behavior and outline performance parameters for replacement devices. Lumped element and distributed circuit models are derived; testing schemes are developed and used to extract model parameters from commercial Ethernet devices. Transfer relation measurements of the commercial Ethernet transformers are compared against the model's behavior and it is found that the tuned, distributed models produce the best transfer relation match to the measured data. Process descriptions and testing results on fabricated thin-film dielectric-core toroid transformers are presented. The best results were found for a 32-turn transformer loaded with 100Ω, the impedance of twisted pair cable. This transformer gave a flat response from about 10MHz to 40MHz with a height of approximately 0.45. For the fabricated transformer structures, theoretical methods to determine resistance, capacitance and inductance are presented. A special analytical and numerical analysis of the fabricated transformer inductance is presented. Planar cuts of magnetic slope fields around the dielectric-core toroid are shown that describe the effect of core height and winding density on flux uniformity without a magnetic core.
NASA Astrophysics Data System (ADS)
Ito, N.; Uematsu, A.; Yajima, Y.; Isoguchi, O.
2014-12-01
Japan Aerospace Exploration Agency (JAXA) is working on a conceptual study of altimeter mission named Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter (COMPIRA), which will carry a wide-swath altimeter named Synthetic aperture radar (SAR) Height Imaging Oceanic Sensor with Advanced Interferometry (SHIOSAI). Capturing meso/submeso-scale phenomena is one of important objectives of the COMPIRA mission, as well as operational oceanography and fishery. For operational oceanography including coastal forecast, swath of SHIOSAI is selected to be 80 km in left and right sides to maximize temporal and spatial sampling of the sea surface height. Orbit specifications are also designed to be better sampling especially for mid-latitude region. That is, a spatial grid sampling is 5 km and an observation times per revisit period (about 10 days) is 2 to 3 times. In order to meet both sampling frequency and spatial coverage requirements as much as possible, orbit inclination was set relatively low, 51 degrees. Although this sampling frequency is, of course, not enough high to capture time evolution of coastal phenomena, an assimilation process would compensate its time evolution if 2D SSH fields was observed at least once within decal time scale of phenomena. JAXA has launched a framework called "Coastal forecast core team" to aim at developing coastal forecast system through pre-launch activities toward COMPIRA. Assimilation segment as well as satellite and in situ data provision will play an important role on these activities. As a first step, we evaluated effects of ocean current forecast improvement with COMPIRA-simulated wide-swath and high sampling sea surface heights (SSH) data. Simulated SSH data are generated from regional ocean numerical models and the COMPIRA orbit and error specifications. Then, identical twin experiments are conducted to investigate the effect of wide-swath SSH measurements on coastal forecast in the Tohoku Pacific coast region. The experiment shows that simulated sea surface current using COMPIRA data as an input data for assimilation well represents vortical feature, which cannot be reproduced by conventional nadir altimeters.
NASA Astrophysics Data System (ADS)
Marquardt, Drew; Williams, Justin; Kucerka, Norbert; Atkinson, Jeffrey; Katsaras, John; Wassall, Stephen; Harroun, Thad
2013-03-01
There are no proven health benefits to supplementing with Vitamin E, so why do we require it for healthy living? The whole notion that vitamin E is an in-vivo antioxidant is now being seriously questioned. Using neutron diffraction and supporting techniques, we have correlated vitamin E's location in model membranes with its antioxidant activity. experiments were conducted using phosphatidylcholine (PC) bilayers whose fatty acid chains varied in their degree of unsaturation. We observe vitamin E up-right in all lipids examined, with its overall height in the bilayer lipid dependant. Interestingly we observe vitamin E's hydroxyl in the headgroup region of the bilayer for both the fully saturated and poly unsaturated lipids. Vitamin E was most effective at intercepting water borne oxidants than radical initiated within the bilayer core. However for lipids where vitamin E resides slightly lower (glycerol backbone) we observe comparable antioxidant activity against both water borne and hydrocarbon borne oxidants. Thus showing lipid species can modulate the location of vitamin E's activity.
Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach
NASA Astrophysics Data System (ADS)
Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu
This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.
Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.
2017-01-01
Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.
Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan
1999-01-01
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of ∼2.1 nm and a height of ∼7 nm. Tom40 is the key structural element of the TOM core complex. PMID:10579717
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Hence, Deanna A.; Houze, Robert A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Training for improved neuro-muscular control of balance in middle aged females.
Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B
2016-01-01
This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of core strength training on dynamic balance and agility in adolescent badminton players.
Ozmen, Tarik; Aydogmus, Mert
2016-07-01
The aim of the present study was to investigate effect of core strength training (CST) on core endurance, dynamic balance and agility in adolescent badminton players. Twenty adolescent (age = 10.8 ± 0.3 years; height = 140.6 ± 4.4 cm, weight = 33.9 ± 5.8 kg) badminton players were randomly divided into two groups as training group (TG) and control (CG) group. All subjects were evaluated with Star Excursion Balance Test (SEBT), Illinois Agility Test, and the core endurance tests. The TG completed CST twice a week, for 6 weeks. There were significant increases in (p < 0.05) directions of SEBT and core endurance tests (p < 0.05). However, no significant change was observed for agility (p > 0.05). The CST resulted in significant gains in directions of the SEBT and core endurances in adolescent badminton players, but not in agility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsao, Danika C.; Takekawa, John Y.; Woo, Isa; Yee, Julie L.; Evens, Jules G.
2009-01-01
Little is known about the movements and habitat selection of California Black Rails (Laterallus jamaicensis coturniculus) in coastal California. We captured 130 Black Rails, of which we radio-marked 48, in tidal marshes in San Francisco Bay during 2005 and 2006. Our objective was to examine their home ranges, movements, and habitat selection to improve the species' conservation. The mean fixed-kernel home range was 0.59 ha, the mean core area was 0.14 ha. Home ranges and core areas did not differ by year or site. Males had significantly larger home ranges and core areas than did females. All sites combined, Black Rails used areas with ≥94% total vegetative cover, with perennial pickleweed (Sarcocornia pacifica) the dominant plant. The rails' habitat selection varied by year and site but not by sex. A multivariate analysis of variance indicated that Black Rails selected areas with pickleweed taller and denser than average, greater cover and height of alkali bulrush (Bolboschoenus maritimus) and common saltgrass (Distichlis spicata), more stems between 20 and 30 cm above the ground, maximum vegetation height, and shorter distance to refugia. On average, Black Rails moved 27.6 ±1.8 (SE) m daily and 38.4 ± 5.5 m during extreme high tides. Understanding the California Black Rail's movements, home range, and habitat use is critical for management to benefit the species.
Selection of forest canopy gaps by male Cerulean Warblers in West Virginia
Perkins, Kelly A.; Wood, Petra Bohall
2014-01-01
Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Shefov, N. N.
2003-04-01
On the basis of the measurement data of temperature by rocket and ground-based spectrophotometric (nightglow emissions of hydroxyl,sodium and atomic oxygen of 557.7 nm) methods obtained during 21 and 22 cycles of solar activity, the distributions with height of mean monthly temperature of an atmosphere for region of altitudes Z from 60 to 100 km have been constructed. The periods of maxima and minima of solar activity (1980 and 1991, F10.7=198 and 208; 1976 and 1986, F10.7=73 and 75) were considered. On the basis of these distributions with height of the seasonal variations of dependence of temperature from solar activity S = deltaT(Z)/deltaF, K/100 sfu have been analyzed. It was revealed, that character of seasonal variations essentially changes with growth of height. Mean annual solar response S at heights lower than 70 km is negative, and at higher heights is positive. This solar response S in mesopause region reaches 3 (sigma=1). Such character of influence of solar activity on temperature of the upper atmosphere is caused by features of mean annual and seasonal variations of its distributions with height. The distributions with height of amplitudes and phases of three harmonics of seasonal variations S are presented. This work was supported by the Grant N 2274 of ISTC.
Relative effects of posture and activity on human height estimation from surveillance footage.
Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter
2011-10-10
Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Pierson, T.C.
2007-01-01
Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes - Mount Rainier, Mount St. Helens and Mount Hood - in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ??5 years. If the trees are cored at about 1.4 m above the round surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ??7 years).
Froum, Stuart J; Wallace, Stephen; Cho, Sang-Choon; Khouly, Ismael; Rosenberg, Edwin; Corby, Patricia; Froum, Scott; Mascarenhas, Patrick; Tarnow, Dennis P
2014-01-01
The purpose of this study was to radiographically evaluate, then analyze, bone height, volume, and density with reference to percentage of vital bone after maxillary sinuses were grafted using two different doses of recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ACS) combined with mineralized cancellous bone allograft (MCBA) and a control sinus grafted with MCBA only. A total of 18 patients (36 sinuses) were used for analysis of height and volume measurements, having two of three graft combinations (one in each sinus): (1) control, MCBA only; (2) test 1, MCBA + 5.6 mL of rhBMP-2/ACS (containing 8.4 mg of rhBMP-2); and (3) test 2, MCBA + 2.8 mL of rhBMP-2/ACS (containing 4.2 mg of rhBMP-2). The study was completed with 16 patients who also had bilateral cores removed 6 to 9 months following sinus augmentation. A computer software system was used to evaluate 36 computed tomography scans. Two time points where selected for measurements of height: The results indicated that height of the grafted sinus was significantly greater in the treatment groups compared with the control. However, by the second time point, there were no statistically significant differences. Three weeks post-surgery bone volume measurements showed similar statistically significant differences between test and controls. However, prior to core removal, test group 1 with the greater dose of rhBMP-2 showed a statistically significant greater increase compared with test group 2 and the control. There was no statistically significant difference between the latter two groups. All three groups had similar volume and shrinkage. Density measurements varied from the above results, with the control showing statistically significant greater density at both time points. By contrast, the density increase over time in both rhBMP groups was similar and statistically higher than in the control group. There were strong associations between height and volume in all groups and between volume and new vital bone only in the control group. There were no statistically significant relationships observed between height and bone density or between volume and bone density for any parameter measured. More cases and monitoring of the future survival of implants placed in these augmented sinuses are needed to verify these results.
NASA Technical Reports Server (NTRS)
Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio
2011-01-01
A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height of this column will change as the amount of air passing through the fans change as the propulsion system is throttled, and since the mass-average Pt and MN varies by height, this capture height must be recalculated as the airflow through the propulsor is varied as the off-design performance point is converged.
Shin, Seung-Je; Yoo, Won-Gyu
2015-06-05
Although overhead work is closely related to musculoskeletal disorders, it is difficult to avoid these postures in daily working conditions. In industrial tasks that require elevated arm postures above shoulder height, flexibility in the location of the task is necessary. This study investigated the sternocleidomastoid, upper trapezius, lower trapezius, and anterior deltoid, serratus anterior muscle activities during overhead work involving four different height and distance locations performed by healthy adult participants. Eighteen young male right-hand-dominant workers were recruited. The right upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and sternocleidomastoid muscle activities were measured under for overhead work condition (Location 1: overhead work with a height of 10 cm above the head of each subject and distance of 15 cm, Location 2: overhead work with a height of 10 cm above the head of each subject and distance of 30 cm, Location 3: overhead work with a height of 20 cm above the head of each subject and distance of 15 cm, Location 4: overhead work with a height of 20 cm above the head of each subject and distance of 30 cm). In Location 3, there was significantly higher neck extension range of motion compared to Location 1, Location 2 and Location 4. In Location 1, the activities of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and sternocleidomastoid muscles were significantly lower than those in Location 3 (p<0.05). In Location 2, the activities of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and sternocleidomastoid muscles were significantly lower than those in Location 4 (p<0.05). In Location 1, there were significantly lower upper trapezius, lower trapezius, serratus anterior, and anterior deltoid muscle activities than in Location 2 (p<0.05). In Location 3, there were significantly lower upper trapezius, lower trapezius, serratus anterior, and anterior deltoid muscle activities than in Location 4 (p<0.05). In Location 1, there was significantly higher sternocleidomastoid muscle activity than in Location 2 (p<0.05). Finally, In Location 3, there was significantly higher sternocleidomastoid muscle activity than in Location 4 (p<0.05). Overhead workers should engage in work that involves a low height and near distance. Height appears to be a stronger risk factor than distance in overhead work.
Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H
2012-01-01
Unexpected sudden (un)loading of the trunk may induce inadequate responses of trunk muscles and uncontrolled trunk motion. These unexpected perturbations may occur in pushing tasks, when the cart suddenly starts moving (unloading) or is blocked by an obstacle (loading). In pushing, handle height affects the user's working posture, which may influence trunk muscle activity and trunk movement in response to the perturbation. Eleven healthy male subjects pushed a 200 kg cart with handles at shoulder and hip height in a start condition (sudden release of brakes) and a stop condition (bumping into an obstacle). Before the perturbation, the baseline of the trunk inclination, internal moment and trunk extensor muscle activity were significantly higher when pushing at hip height than at shoulder height. After the perturbation, the changes in trunk inclination and internal moment were significantly larger when pushing at shoulder height than at hip height in both conditions. The opposite directions of changes in trunk inclination and internal moment suggest that the unexpected perturbations caused uncontrolled trunk motion. Pushing at shoulder height may impose a high risk of low-back injury due to the low trunk stiffness and large involuntary trunk motion occurring after carts suddenly move or stop.
Examining Text Complexity in the Early Grades
ERIC Educational Resources Information Center
Fitzgerald, Jill; Elmore, Jeff; Hiebert, Elfrieda H.; Koons, Heather H.; Bowen, Kimberly; Sanford-Moore, Eleanor E.; Stenner, A. Jackson
2016-01-01
The Common Core raises the stature of texts to new heights, creating a hubbub. The fuss is especially messy at the early grades, where children are expected to read more complex texts than in the past. But early-grades teachers have been given little actionable guidance about text complexity. The authors recently examined early-grades texts to…
Krause, William J
2010-01-01
The echidna and platypus have a crural/femoral gland that is linked by a large duct to a canalized, keratinous spur located on the medial side of the ankle. The echidna crural gland, like the femoral gland of the platypus, exhibits cyclic activity, being prominent in both monotremes when they are sexually active. In the present study, we compared the structure and histochemistry of these glands. During the active phase, the secretory epithelium forming the respective glands of both species increased in height and became packed with secretory granules that differed markedly in structure. Secretory granules of the echidna crural gland were electron dense and characterized by cores or areas of increased electron density. Those of the platypus were initially electron dense, but then became less dense and coalesced into irregular complexes of secretory material. Large cytoplasmic blebs extended from epithelial cell apices and appeared to be shed into the lumen, resulting in an apocrine mode of secretion. Exocytosis was also observed. A similar form of release of secretory product was not observed in the echidna. Secretory granules of both species were periodic acid-Schiff positive and stained for protein, suggesting that much of the secretory product was glycoprotein. Myoepithelial cells enveloped the secretory tubules of the platypus femoral gland, whereas they were not observed surrounding tubules comprising the echidna crural gland. During the quiescent phase, the epithelial cells of both species lost their secretory granules and decreased in height. As a result, the secretory tubules became smaller, intralobular connective tissue increased and the glands decreased in overall size.
Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C
2006-11-01
Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.
12 CFR 1265.3 - Core mission activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Core mission activities. 1265.3 Section 1265.3 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS CORE MISSION ACTIVITIES § 1265.3 Core mission activities. The following Bank activities qualify as core mission activities: (a...
12 CFR 940.3 - Core mission activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Core mission activities. 940.3 Section 940.3 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.3 Core mission activities. The following Bank activities qualify as core mission activities: (a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, T.; Sugura, K.; Enokida, Y.
2015-03-15
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less
NASA Technical Reports Server (NTRS)
Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.
1986-01-01
The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.
Chlorinated ethenes from groundwater in tree trunks
Vroblesky, Don A.; Nietch, C.T.; Morris, J.T.
1999-01-01
The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lesser amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30−70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site.
Three Types of Earth's Inner Core Boundary
NASA Astrophysics Data System (ADS)
Tian, D.; Wen, L.
2017-12-01
The Earth's inner core boundary (ICB) is the site where the liquid outer core solidifies and the solid inner core grows. Thus, the fine-scale structure of the ICB is important for our understanding of the thermo-compositional state of the Earth's core. In this study, we collect a large set of seismic records with high-quality pre-critical PKiKP and PcP phase pairs, recorded by two dense seismic arrays, Hi-net in Japan and USArray in US. This dataset samples the ICB regions beneath East Asia, Mexico and the Bering Sea. We use differential travel times, amplitude ratios and waveform differences between PKiKP and PcP phases to constrain fine-scale structure of the ICB. The sampled ICB can be grouped into three types based on their seismic characteristics: (1) a simple ICB with a flat and sharp boundary, (2) a bumpy ICB with topographic height changes of 10 km, and (3) a localized mushy ICB with laterally varying thicknesses of 4-8 km. The laterally varying fine-scale structure of the ICB indicates existence of complex small-scale forces at the surface and a laterally varying solidification process of the inner core due to lateral variation of thermo-compositional condition near the ICB.
Sato, Kimitake; Mokha, Monique
2009-01-01
Although strong core muscles are believed to help athletic performance, few scientific studies have been conducted to identify the effectiveness of core strength training (CST) on improving athletic performance. The aim of this study was to determine the effects of 6 weeks of CST on ground reaction forces (GRFs), stability of the lower extremity, and overall running performance in recreational and competitive runners. After a screening process, 28 healthy adults (age, 36.9 +/- 9.4 years; height, 168.4 +/- 9.6 cm; mass, 70.1 +/- 15.3 kg) volunteered and were divided randomly into 2 groups (n = 14 in each group). A test-retest design was used to assess the differences between CST (experimental) and no CST (control) on GRF measures, lower-extremity stability scores, and running performance. The GRF variables were determined by calculating peak impact, active vertical GRFs (vGRFs), and duration of the 2 horizontal GRFs (hGRFs), as measured while running across a force plate. Lower-extremity stability was assessed using the Star Excursion Balance Test. Running performance was determined by 5000-m run time measured on outdoor tracks. Six 2 (pre, post) x 2 (CST, control) mixed-design analyses of variance were used to determine the influence of CST on each dependent variable, p < 0.05. Twenty subjects completed the study (nexp = 12 and ncon = 8). A significant interaction occurred, with the CST group showing faster times in the 5000-m run after 6 weeks. However, CST did not significantly influence GRF variables and lower-leg stability. Core strength training may be an effective training method for improving performance in runners.
NASA Astrophysics Data System (ADS)
Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.
2015-12-01
Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions. Previous observation results showed that positive charge regions sometimes moved upward in short time (about 5 minutes or so) in vigorous convective cells. Our observation results support the previous observation results and show that the rapid charge structure change was caused by strong updraft at upper levels in the convective cell.
Rezende, Bruna Aparecida; Silveira, Michele L.; Vieira, Luciano M. G.; Abrão, Alexandre M.; de Faria, Paulo Eustáquio; Rubio, Juan C. Campos
2016-01-01
Composite materials are widely employed in the naval, aerospace and transportation industries owing to the combination of being lightweight and having a high modulus of elasticity, strength and stiffness. Drilling is an operation generally used in composite materials to assemble the final product. Damages such as the burr at the drill entrance and exit, geometric deviations and delamination are typically found in composites subjected to drilling. Drills with special geometries and pilot holes are alternatives used to improve hole quality as well as to increase tool life. The present study is focused on the drilling of a sandwich composite material (two external aluminum plates bound to a polyethylene core). In order to minimize thrust force and burr height, the influence of drill geometry, the pilot hole and the cutting parameters was assessed. Thrust force and burr height values were collected and used to perform an analysis of variance. The results indicated that the tool and the cutting speed were the parameters with more weight on the thrust force and for burr height they were the tool and the interaction between tool and feed. The results indicated that drilling with a pilot hole of Ø4 mm exhibited the best performance with regard to thrust force but facilitated plastic deformation, thus leading to the elevation of burr height, while the lowest burr height was obtained using the Brad and Spur drill geometry. PMID:28773895
Rezende, Bruna Aparecida; Silveira, Michele L; Vieira, Luciano M G; Abrão, Alexandre M; Faria, Paulo Eustáquio de; Rubio, Juan C Campos
2016-09-13
Composite materials are widely employed in the naval, aerospace and transportation industries owing to the combination of being lightweight and having a high modulus of elasticity, strength and stiffness. Drilling is an operation generally used in composite materials to assemble the final product. Damages such as the burr at the drill entrance and exit, geometric deviations and delamination are typically found in composites subjected to drilling. Drills with special geometries and pilot holes are alternatives used to improve hole quality as well as to increase tool life. The present study is focused on the drilling of a sandwich composite material (two external aluminum plates bound to a polyethylene core). In order to minimize thrust force and burr height, the influence of drill geometry, the pilot hole and the cutting parameters was assessed. Thrust force and burr height values were collected and used to perform an analysis of variance. The results indicated that the tool and the cutting speed were the parameters with more weight on the thrust force and for burr height they were the tool and the interaction between tool and feed. The results indicated that drilling with a pilot hole of Ø4 mm exhibited the best performance with regard to thrust force but facilitated plastic deformation, thus leading to the elevation of burr height, while the lowest burr height was obtained using the Brad and Spur drill geometry.
The radial gradients and collisional properties of solar wind electrons
NASA Technical Reports Server (NTRS)
Ogilvie, K. W.; Scudder, J. D.
1978-01-01
The plasma electron detector on Mariner 10 is used to obtain measurements of electron density and temperature in the interplanetary medium between heliocentric distances of 0.85 and 0.45 AU. The observations show quantitatively that the core of the electron distribution function can be described as collisional at least for radial distances within 1 AU, since with a very few well-marked exceptions associated with high-speed streams, the Coulomb collisional momentum relaxation length is less than the density scale height at all times and all radial distances at which data were obtained. It is found that the Coulomb energy exchange collisions between the core and the (test) halo population are negligible. The power law exponent of the core temperature is about -0.3, whereas the halo temperature is almost independent of heliocentric distance.
NASA Technical Reports Server (NTRS)
Wahr, J. M.; Sasao, T.
1981-01-01
The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.
NASA Astrophysics Data System (ADS)
Yu, James; Bergman, Michael I.; Huguet, Ludovic; Alboussiere, Thierry
2015-09-01
Superimposed on the radial solidification of Earth's inner core may be hemispherical and/or regional patches of melting at the inner-outer core boundary. Little work has been carried out on partial melting of a dendritic mushy layer due to heating from above. Here we study directional solidification, annealing, and partial melting from above of Pb-rich Sn alloy ingots. We find that partial melting from above results in convection in the mushy layer, with dense, melted Pb sinking and resolidifying at a lower height, yielding a different density profile than for those ingots that are just directionally solidified, irrespective of annealing. Partial melting from above causes a greater density deeper down and a corresponding steeper density decrease nearer the top. There is also a change in microstructure. These observations may be in accordance with inferences of east-west and perhaps smaller-scale variations in seismic properties near the top of the inner core.
Bertolaccini, Guilherme da Silva; Nakajima, Rafael Kendi; Filho, Idinei Francisco Pires de Carvalho; Paschoarelli, Luis Carlos; Medola, Fausto Orsi
2016-01-01
[Purpose] This study was aimed at investigating the influence of seat height and body posture on the activity of the superior trapezius and longissimus muscles. [Subjects and Methods] Twenty two healthy subjects were instructed to perform a total of eight different body postures, varying according three main factors: seat height (low and high seat); trunk inclination (upright and leaning forward at 45°); and the hips in abduction and adduction. Electromyography of the superior trapezius and longissimus was collected bilaterally, and the average values were obtained and compared across all the postures. [Results] The activity of the superior trapezius and longissimus significantly changes according to the seat height and trunk inclination. For both seat heights, sitting with trunk leaning forward resulted in a significant increase in the activity of both muscles. When sitting in a high seat and the trunk leaning forward, the superior trapezius activity was significantly reduced when compared to the same posture in a low seat. [Conclusion] This study contributes to the knowledge on the influence of the body posture and seat configuration on the activity of postural muscles. Reducing the biomechanical loads on the postural muscles must be targeted in order to improve users’ comfort and safety. PMID:27313381
Quality control of measurements made on fixed-area sample plots
Ola Lindgren
2000-01-01
The paper describes results from a large program for quality control of forest measurements. The performance of 87 surveyors was evaluated. Tree heights were usually measured well, whereas the counting of tree-rings on increment cores was a source of considerable bias for many surveyors. During tree count on sample plots, many surveyors had a tendency to forget trees,...
Tree/Wood Quality in Slash Pine Following Longterm Cattle Grazing
B.E. Cutter; K. Hunt; J.D. Haywood
1999-01-01
Abstract. Tree height, diameter, and grade were measured on 14 cattle grazing trial plots located on the Palustris Experimental Forest in Louisianaâs Kisatchie National Forest. These plots had been established in the early 1960s. Mensurational data was gathered on 28 trees from grazed sites and another 28 from ungrazed plots. Increment cores were...
Michael R. Saunders; Justin E. Arseneault
2013-01-01
In long-term, large-scale forest management studies, documentation of pre-treatment differences among and variability within experimental units is critical for drawing the proper inferences from imposed treatments. We compared pre-treatment overstory and large shrub communities (diameters at breast height >1.5 cm) for the 9 research cores with the Hardwood Ecosystem...
NASA Astrophysics Data System (ADS)
Vemareddy, P.; Demóulin, P.
2018-04-01
We study the magnetic structure of a successively erupting sigmoid in active region 12371 by modeling the quasi-static coronal field evolution with nonlinear force-free field (NLFFF) equilibria. Helioseismic and Magnetic Imager/Solar Dynamic Observatory vector magnetograms are used as input to the NLFFF model. In all eruption events, the modeled structure resembles the observed pre-eruptive coronal sigmoid and the NLFFF core field is a combination of double inverse-J-shaped and inverse-S field lines with dips touching the photosphere. Such field lines are formed by the flux cancellation reconnection of opposite-J field lines at bald-patch locations, which in turn implies the formation of a weakly twisted flux-rope (FR) from large-scale sheared arcade field lines. Later on, this FR undergoes coronal tether-cutting reconnection until a coronal mass ejection is triggered. The modeled structure captured these major features of sigmoid-to-arcade-to-sigmoid transformation, which is reoccuring under continuous photospheric flux motions. Calculations of the field line twist reveal a fractional increase followed by a decrease of the number of pixels having a range of twist. This traces the buildup process of a twisted core field by slow photospheric motions and the relaxation after eruption, respectively. Our study infers that the large eruptivity of this AR is due to a steep decrease of the background coronal field meeting the torus instability criteria at a low height (≈40 Mm) in contrast to noneruptive ARs.
Day, M.A.; Dowthwaite, J.N.; Rosenbaum, P.F.; Roedel, G.G.; Brocker, A.A.; Scerpella, T.A.
2015-01-01
Objectives: Youth exercise is associated with improved body composition, but details regarding timing and persistence are limited. We examined pre- and circum-menarcheal organized physical activity exposure (PA) as a factor in development of early post-menarcheal lean mass, fat mass and muscle strength. Methods: Participants in a longitudinal study of musculoskeletal growth using dual energy X-ray absorptiometry (DXA) were included based on: 1) Whole body DXA scans: 0.5-1.5 years pre-menarche, 0.5-1.5 years post-menarche; 2) PA records for ≥6 months preceding the first DXA (PREPA) and for the inter-DXA interval (CIRCUMPA). Dominant arm grip strength and sit-ups tests coincided with DXA scans; PA, height and maturity were recorded semi-annually. Regressions correlated PA with lean mass/fat mass/strength, accounting for maturity, body size, and baseline values. Results Seventy girls [baseline: 11.8 yrs (sd 1.0), follow-up: 13.9 years (sd 1.0)] demonstrated circum-menarcheal gains of 25-29% for lean and fat mass and 33% for grip strength. PREPA correlated with pre- and post-menarcheal lean mass, sit-ups and pre-menarcheal fat mass (p<0.05), but not grip strength. CIRCUMPA correlated with only post-menarcheal sub-head lean mass (p=0.03). Conclusions: Lean mass and core strength at 1-year post-menarche were more strongly predicted by pre-menarcheal organized PA than by recent circum-menarcheal PA. PMID:26636280
Straker, L; Pollock, C; Burgess-Limerick, R; Skoss, R; Coleman, J
2008-08-01
Computer display height and desk design are believed to be important workstation features and are included in international standards and guidelines. However, the evidence base for these guidelines is lacking a comparison of neck/shoulder muscle activity during computer and paper tasks and whether forearm support can be provided by desk design. This study measured the spinal and upper limb muscle activity in 36 young adults whilst they worked in different computer display, book and desk conditions. Display height affected spinal muscle activity with paper tasks resulting in greater mean spinal and upper limb muscle activity. A curved desk resulted in increased proximal muscle activity. There was no substantial interaction between display and desk.
Atmospheric Science Data Center
2018-06-07
... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...
Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly
NASA Technical Reports Server (NTRS)
Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.
1972-01-01
A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The range of the previous experimental investigations has been expanded to include the reactivity effects of:(1) surrounding the reactor with 15.24 cm (6 in.) of polyethylene, (2) reducing the heights of a portion of the upper and lower axial reflectors by factors of 2 and 4, (3) adding 45 kg of W to the core uniformly in two steps, (4) adding 9.54 kg of Ta to the core uniformly, and (5) inserting 2.3 kg of polyethylene into the core proper and determining the effect of a Ta addition on the polyethylene worth.
Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure
NASA Astrophysics Data System (ADS)
Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar
2017-05-01
This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material and has more strength. By the power press used as forming method we fabricate the honey comb core and stacking the sheets with adhesive as epoxy resin or laser beam welding and sandwich structure will form with two face sheets. Then the specimen is taken to be tested to know the flexural behaviour by the flexural test as 3 point and 4 pont bend test. After testing of two different tests then we get the force vs displacement curve by this we can know the maximum force and by loading configurations and its displacement or deflection then we can calculate flexural stiffness and core shear modulus by the variation of three parameters. Our ultimate aim is to achieve maximum strength by minimum weight.
Meteorological Automatic Weather Station (MAWS) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdridge, Donna J; Kyrouac, Jenni A
The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variablesmore » are mounted at the standard heights defined for each variable.« less
Comparing basal area growth models, consistency of parameters, and accuracy of prediction
J.J. Colbert; Michael Schuckers; Desta Fekedulegn
2002-01-01
We fit alternative sigmoid growth models to sample tree basal area historical data derived from increment cores and disks taken at breast height. We examine and compare the estimated parameters for these models across a range of sample sites. Models are rated on consistency of parameters and on their ability to fit growth data from four sites that are located across a...
Individual tree basal-area growth parameter estimates for four models
J.J. Colbert; Michael Schuckers; Desta Fekedulegn; James Rentch; Mairtin MacSiurtain; Kurt Gottschalk
2004-01-01
Four sigmoid growth models are fit to basal-area data derived from increment cores and disks taken at breast height from oak trees. Models are rated on their ability to fit growth data from five datasets that are obtained from 10 locations along a longitudinal gradient across the states of Delaware, Pennsylvania, West Virginia, and Ohio in the USA. We examine and...
Wood density-moisture profiles in old-growth Douglas-fir and western hemlock.
W.Y. Pong; Dale R. Waddell; Lambert Michael B.
1986-01-01
Accurate estimation of the weight of each load of logs is necessary for safe and efficient aerial logging operations. The prediction of green density (lb/ft3) as a function of height is a critical element in the accurate estimation of tree bole and log weights. Two sampling methods, disk and increment core (Bergstrom xylodensimeter), were used to measure the density-...
Cloudsat tropical cyclone database
NASA Astrophysics Data System (ADS)
Tourville, Natalie D.
CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.
Stripping Away the Forest; Sweden's Glacially Streamlined Landscape Evaluated through Lidar
NASA Astrophysics Data System (ADS)
Dowling, T.; Spagnolo, M.; Moller, P.
2014-12-01
The newly available Swedish National Height Model (SNHM) is a 2.0 m horizontal, and 0.1 m vertical resolution digital elevation model (DEM) that is free at the point of use for researchers based at Swedish institutions. With coverage currently at ~80% of the country and due to be completed by 2015 this spatially extensive, high resolution dataset has opened up new avenues of research for Quaternary geology in the country. The work presented here utilises the SNHM to map and evaluate more than 10,000 glacially streamlined landforms in the south-east of Sweden. The subsequently extracted morphological variables of length, width and height are then used to investiagte three areas; to test recent conclusions drawn from the glacially streamlined landscapes of Great Britain and North America/Canada, to assess the impact of different core types on the morphological expression of said features and to attempt to calculate which morphological variable best accounts for the variability seen in the dataset. It is found that in common with drumlins found in the British Isles, and elsewhere, their characteristics can be described by a log-normal distribution. However the long tail of the features characteristic distributions can cause problems for many of the commonly applied statistical methods of evaluation. Furthermore a re-appraisal of some conclusions drawn by previous works as to the presence of a fundamental scaling law in streamlined feature elongation is necessary due to evidence gathered here. Additionally; based on a limited sample size it has been found that it is not possible to differentiate a streamlined landform's core type based on their morphological characteristics alone. Larger 'known'-core data sets may be able to do so, based upon the length of a feature for example, however the sample size here was not sufficient to allow significant differences to come to the fore should they exist. And lastly, the extracted variable 'height' was found to account for the vast majoirty of the variance seen in the dataset when subject to a principle component analysis (PCA).
Wilhelm, Edward P; Boulton, Margaret I; Al-Kaff, Nadia; Balfourier, Francois; Bordes, Jacques; Greenland, Andy J; Powell, Wayne; Mackay, Ian J
2013-09-01
Reduced height (Rht)-1 and Photoperiod (Ppd) have major effects on the adaptability of bread wheat (Triticum aestivum) to specific environments. Ppd-D1a is a photoperiod insensitive allele that reduces time to flowering. The gibberellin (GA) insensitive alleles Rht-B1b and Rht-D1b shorten plant stature and were important components of the 'green revolution'. Two additional Rht-B1 alleles were recently identified that contain a 160 or 197 bp insertion upstream of the coding region and may affect plant height or GA sensitivity Wilhelm et al. (Theor Appl Gen doi: 10.1007/s00122-013-2088-7 , 2013b). We determined the frequency of the five alleles in a worldwide core collection of 372 wheat accessions (372CC) and estimated their effects on height, days to heading, and GA sensitivity when the collection was grown in pots outdoors or in the glasshouse. This revealed that each allele was widespread geographically with frequencies ranging from 0.12 to 0.25. Ppd-D1a was associated with significant (p ≤ 0.05) reductions in days to heading and height relative to photoperiod sensitive Ppd-D1b. Relative to wild type, Rht-B1b and Rht-D1b each resulted in significant reductions in height (approximately 30 %) and GA sensitivity. The 160 and 197 bp alleles were associated with significant height reductions of 18 and 12 %, respectively, and with non-significant reductions in GA sensitivity relative to wild type. Two statistical methods were developed and used to estimate GA sensitivity of the 372CC accessions, but novel GA insensitive alleles were not identified. Further characterization of the Rht-B1 insertion alleles is required, but our results suggest these may enable fine adjustments in plant height.
Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.
Chlorinated ethenes from groundwater in tree trunks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vroblesky, D.A.; Nietch, C.T.; Morris, J.T.
1999-02-01
The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lessermore » amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30--70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site.« less
Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani
2013-11-30
This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealingmore » capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO{sub 2} retention column height. Also, increasing bulk density is positive-ly correlated with the supercritical CO{sub 2} retention column height. One of the most im-portant factors affecting sealing capacity and consequently the height of supercritical CO{sub 2} column is sorting of the pore throats. We observed a strong positive correlation be-tween pore throat sorting and height of CO{sub 2} retention column, especially in shales. This correlation could not be observed in limestone samples. It suggests that the pore throat sorting is more controlling the sealing capacity in shales and shales with well sorted pore throats are the most reliable lithology as seal. We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO{sub 2} retention column height in limestone samples while BET surface area did not display significant correlation in shales. Pore structure based on SEM mi-crographs exhibits strong correlation with CO{sub 2} retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranu-lar texture has positive correlation in limestone with respect to CO{sub 2} retention column height. Textural effects observed on SEM micrographs did not show statistically signifi-cant correlation with supercritical CO{sub 2} retention column height in shale samples. Finally, we showed that increasing hard/soft mineral index is strongly correlated with the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury satu-ration in shale samples.« less
Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong
2018-02-13
A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.
Balance control and anti‐gravity muscle activity during the experience of fear at heights
Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas
2014-01-01
Abstract Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI‐related changes in postural control were assessed by center‐of‐pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open‐ and closed‐loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open‐loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed‐loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co‐contraction of leg muscles. Body sway and leg and neck muscle co‐contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open‐ and closed‐loop postural control strategy and (2) co‐contraction of anti‐gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights. PMID:24744901
Balance control and anti-gravity muscle activity during the experience of fear at heights.
Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas
2014-02-01
Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed-loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co-contraction of leg muscles. Body sway and leg and neck muscle co-contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open- and closed-loop postural control strategy and (2) co-contraction of anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights.
Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.
2005-07-01
A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.
Optical fiber sensor having an active core
NASA Technical Reports Server (NTRS)
Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)
1993-01-01
An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.
Chin, Kok-Yong; Soelaiman, Ima-Nirwana; Mohamed, Isa Naina; Ibrahim, Suraya; Wan Ngah, Wan Zurinah
2012-01-01
The influences of age, physical activity, and body anthropometry on calcaneal speed of sound are different among young adults, middle-aged, and elderly men. Quantitative ultrasound assessment of bone health status is much needed for developing countries in the screening of osteoporosis, but further studies on the factors that influence the quantitative ultrasound indices are required. The present study examined the influence of age, lifestyle factors, and body anthropometry on calcaneal speed of sound (SOS) in a group of Malaysian men of diverse age range. A cross-sectional study was conducted, and data from 687 eligible males were used for analysis. They answered a detailed questionnaire on their physical activity status, and their anthropometric measurements were taken. Their calcaneal SOS values were evaluated using the CM-200 sonometer (Furuno, Nishinomiya City, Japan). Subjects with higher body mass index (BMI) had higher calcaneal SOS values albeit significant difference was only found in the elderly subjects (p < 0.05). Sedentary subjects had lower calcaneal SOS values than physically active subjects, but significant difference was only found in the middle-aged subjects (p < 0.05). Calcaneal SOS was significantly (p < 0.05) correlated with age in young men; height, BMI, and physical activity score in middle-aged men; height and physical activity score in elderly men; and age and physical activity score for overall subjects. In a multivariate regression model, significant (p < 0.05) predictors for calcaneal SOS included age for young men; physical activity, BMI, body fat percentage, and height for middle-aged men; height for elderly men; and age, height, physical activity, weight, and body fat percentage for overall subjects. Age, body anthropometry, and physical activity level have significant effects on the calcaneal SOS value in men.
Mapping Forest Edge Using Aerial Lidar
NASA Astrophysics Data System (ADS)
MacLean, M. G.
2014-12-01
Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.
Towards a geology training and outreach centre in western Ireland
NASA Astrophysics Data System (ADS)
Lacchia, Anthea; Haughton, Peter; Shannon, Patrick
2017-04-01
An outreach and education centre is in the initial phases of development for the coastal area of County Clare, western Ireland. The high Carboniferous sea cliffs of the Loop Head area provide a rich training ground for geoscientists from industry and academia. The cliffs offer a unique, margin-scale perspective of a sedimentary basin fill succession that developed during the height of the Late Palaeozoic glaciation. The rocks, about which there is a long legacy of research, record several glacial cycles, associated with significant eustatic changes in sea level. For geoscientists working with or in industry, the value of the area lies in its analogy with hydrocarbon-bearing, deltaic to deep-water sedimentary successions on several continental margins, such as Miocene and Pliocene successions in the Gulf of Mexico. A programme of behind-outcrop drilling involving UCD and Statoil has acquired over 1350 m of core from 12 boreholes behind the sea cliffs. This core is already being used in training and research both in UCD and at Statoil. The coastal cliffs are also visited by tourists and special interest groups, such as birdwatchers. It is envisioned that the centre will involve the local community and wider public, facilitating links between geoscience, energy and environment. Transport of cores and training materials to the centre, where they will be made available to visiting field parties, is planned for this year. Progress to date, including public engagement activities with schools and at conferences as well as audience research and public consultation, and future plans will be outlined.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-10-17
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-01-01
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827
Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA
Frailey, S.M.; Damico, J.; Leetaru, H.E.
2011-01-01
The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection rate (CO2 velocity). Assigning a specific value of vertical permeability to model cells is dependent on the vertical height of the model cell. Measured vertical permeability on core is scale dependent, such that lower vertical permeability is expected over longer core lengths compared to smaller lengths. Consequently, a series of vertical permeability tests were conducted on whole core varying in lengths of samples from 7 cm to 30 cm that showed vertical perm could change by an order of magnitude over a 30 cm height. For one well, the results from a series of pressure transient tests over a perforated interval much smaller than the gross thickness (<2%) confirmed the core-log based geologic model for vertical and horizontal permeability. A partial penetration model was used to estimate the horizontal and vertical permeability over a portion of the modeled area using series and parallel flow averaging techniques. ?? 2011 Published by Elsevier Ltd.
Excess growing-season water limits lowland black spruce productivity
NASA Astrophysics Data System (ADS)
Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.
2015-12-01
The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.
NASA Technical Reports Server (NTRS)
Gerber, Hermann E.
2004-01-01
Cloud Integrating Nephelometers (CIN) were flown on the U. North Dakota Citation aircraft and the NASA WB-57 aircraft for the purpose of measuring in-situ the optical extinction coefficient and the asymmetry parameter (g) at a wavelength of 635 nm of primarily ice particles encountered during the NASA CRYSTAL-FACE study of large cumulus clouds (Cu) and their anvils found in the southern Florida region. The probes performance was largely successful and produced archived data for vertical profiles of extinction, asymmetry parameter, and effective radius (Re), the latter being obtained by combining CIN and CVI (total water; Oregon State U.) measurements. Composites of the CIN and CVI data describing the average microphysical and optical behavior of the Cu and their anvils showed the following: The extinction increases with height as a result of the size of the particles also decreasing with height as shown by the Re measurements; near the top of anvils the size of the primary ice particles is about 10-um radius; and the value of g does not vary significantly with height and has a mean value of about 0.73 consistent with the idea that ambient ice crystals are primarily of complex shape and reflect solar radiation more efficiently than particles of pristine crystal shape. Other observations include: The g measurements were found to be an indicator of the phase of the cloud permitting identification of the clouds with water droplets, rain, and ice; visual ranges as small as several tens of meters were occasionally found in "extinction cores" that coincided with strong updraft cores; and comparison of the cloud probes on the Citation showed significant disagreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.
Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less
Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.; ...
2016-10-21
Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less
Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions.
Szabó, István; Czakó, Gábor
2015-03-26
The double-inversion and front-side attack transition states as well as the proton-abstraction channels of the X(-) + CH3Y [X,Y = F, Cl, Br, I] reactions are characterized by the explicitly correlated CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory using small-core relativistic effective core potentials and the corresponding aug-cc-pVTZ-PP bases for Br and I. In the X = F case the double-inversion classical(adiabatic) barrier heights are 28.7(25.6), 15.8(13.4), 13.2(11.0), and 8.6(6.6) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, whereas the barrier heights are in the 40-90 kcal mol(-1) range for the other 12 reactions. The abstraction channels are always above the double-inversion saddle points. For X = F, the front-side attack classical(adiabatic) barrier heights, 45.8(44.8), 31.0(30.3), 24.7(24.2), and 19.5(19.3) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, are higher than the corresponding double-inversion ones, whereas for the other systems the front-side attack saddle points are in the 35-70 kcal mol(-1) range. The double-inversion transition states have XH···CH2Y(-) structures with Cs point-group symmetry, and the front-side attack saddle points have either Cs (X = F or X = Y) or C1 symmetry with XCY angles in the 78-88° range. On the basis of the previous reaction dynamics simulations and the minimum energy path computations along the inversion coordinate of selected XH···CH2Y(-) systems, we suggest that the double inversion may be a general mechanism for SN2 reactions.
Update on Simulating Ice-Cliff Failure
NASA Astrophysics Data System (ADS)
Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.
2017-12-01
Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).
Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A
2014-04-11
Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.
Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin
2015-06-23
A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.
[Core muscle chains activation during core exercises determined by EMG-a systematic review].
Rogan, Slavko; Riesen, Jan; Taeymans, Jan
2014-10-15
Good core muscles strength is essential for daily life and sports activities. However, the mechanism how core muscles may be effectively triggered by exercises is not yet precisely described in the literature. The aim of this systematic review was to evaluate the rate of activation as measured by electromyography of the ventral, lateral and dorsal core muscle chains during core (trunk) muscle exercises. A total of 16 studies were included. Exercises with a vertical starting position, such as the deadlift or squat activated significantly more core muscles than exercises in the horizontal initial position.
Label-free density difference amplification-based cell sorting.
Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P
2014-11-01
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.
ERIC Educational Resources Information Center
Asl, Moussa Pourya
2014-01-01
The study attempts to indicate how the manifest content of a text is in essence the projection of the obsessional thoughts of the neurotic author. The research approach adopted in this study is what is referred to as psychobiography or the Freudian psychoanalytic criticism. Freud's ideas have been employed due to the increasing shift to him in the…
Exploring the Physical Conditions in Millisecond Pulsar Emission Regions
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations despite having radically different magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar fluxtube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.
Upper transition height at European mid-latitudes for the years of 2010 and 2016: surprising changes
NASA Astrophysics Data System (ADS)
Kotov, Dmytro; Truhlík, Vladimír; Richards, Philip; Podolská, Kateřina; Bogomaz, Oleksandr; Chernogor, Leonid; Siusiuk, Maryna; Shulha, Maryna; Domnin, Igor
2017-04-01
Our previous studies with the Kharkiv incoherent scatter radar (49.6 N, 36.3 E) data in 2006-2010 revealed that the upper (O+ to H++He+) transition height at mid-latitudes is much more sensitive to the changes in solar and geomagnetic activity than was previously thought [1]. In 2016, solar activity was decreasing and both daily and average F10.7 indices were approaching those in 2010. Solar activity was 12% higher in June and 6% higher in September 2016. Geomagnetic activity was low for the measurements in both 2010 and 2016. Given the difference in solar activity, the 2016 nighttime upper transition heights would be expected to be 55 km higher in June and 30 km higher in September. On the contrary, the observed nighttime minimum of the upper transition heights were 18 km higher in June 2016 and 28 km lower in September 2016. This is a surprising result given that the measured ion temperatures indicate that the exospheric temperature in 2010 and 2016 were similar. The unexpectedly low values of the upper transition height in 2016 may be caused by reduced thermospheric hydrogen escape during the 2012-2014 solar maximum, which was notably weaker than previous maxima. We also show results of the upper transition height obtained from processing of the COSMIC electron density vertical profiles. A comparison with the latest version of the IRI ion composition model (TBT) is also presented. [1] Kotov, D. V., V. Truhlík, P. G. Richards, S. Stankov, O. V. Bogomaz, L. F. Chernogor, and I. F. Domnin (2015), Night-time light ion transition height behaviour over the Kharkiv (50°N, 36°E) IS radar during the equinoxes of 2006-2010, J. Atmos. Sol. Terr. Phys., 132, 1-12, doi:10.1016/j.jastp.2015.06.004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xudong; Hoeksema, J. Todd; Liu, Yang
We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less
Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra
NASA Astrophysics Data System (ADS)
Felipe, T.; Khomenko, E.; Collados, M.
2011-07-01
We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.
NASA Astrophysics Data System (ADS)
Lukianova, Renata; Kozlovsky, Alexander; Lester, Mark
2018-06-01
The inter-annual variability, climatological mean wind and tide fields in the northern polar mesosphere/lower thermosphere region of 82-98 km height are studied using observations by the meteor radar which has operated continuously during solar cycle 24 (from December 2008 onward) at the Sodankylä Geophysical Observatory (67N, 26E). Summer mean zonal winds are characterized by westward flow, up to 25 m/s, at lower heights and eastward flow, up to 30 m/s, at upper heights. In the winter an eastward flow, up to 10 m/s, dominates at all heights. The meridional winds are characterized by a relatively weak poleward flow (few m/s) in the winter and equatorward flow in the summer, with a jet core (∼15 m/s) located slightly below 90 km. These systematically varying winds are dominated by the semidiurnal tides. The largest amplitudes, up to 30 m/s, are observed at higher altitudes in winter and a secondary maximum is seen in August-September. The diurnal tides are almost a factor of two weaker and peak in summer. The variability of individual years is dominated by the winter perturbations. During the period of observations major sudden stratospheric warmings (SSW) occurred in January 2009 and 2013. During these events the wind fields were strongly modified. The lowest altitude eastward winds maximized up to 25 m/s, that is by more twice that of the non-SSW years. The poleward flow considerably increases (up 10 m/s) and extends from the lower heights throughout the whole altitude range. The annual pattern in temperature at ∼90 km height over Sodankyla consists of warm winters (up to 200 K) and cold summers (∼120 K).
Dynamics of axial torsional libration under the mantle-inner core gravitational interaction
NASA Astrophysics Data System (ADS)
Chao, B. F.
2017-01-01
The aims of this paper are (i) formulating the dynamics of the mantle-inner core gravitational (MICG) interaction in terms of the spherical-harmonic multipoles of mass density. The modeled MICG system is composed of two concentric rigid bodies (mantle and inner core) of near-spherical but otherwise heterogeneous configuration, with a fluid outer core in between playing a passive role. We derive the general equation of motion for the vector rotation but only focus on the polar component that describes the MICG axial torsional libration. The torsion constant and hence the square of the natural frequency of the libration is proportional to the product of the equatorial ellipticities of the mantle and inner-core geoid embodied in their multipoles (of two different types) of degree 2 and order 2 (such as the Large Low-Shear-Velocity Provinces above the core-mantle boundary) and (ii) studying the geophysical implications upon equating the said MICG libration to the steady 6 year oscillation that are observed in the Earth's spin rate or the length-of-day variation (ΔLOD). In particular, the MICG torsion constant is found to be Γ>˜z = CIC σz2 ≈ 6.5 × 1019 N m, while the inner core's (BIC - AIC) ≈ 1.08 × 1031 kg m2 gives the inner core triaxiality (BIC - AIC)/CIC ≈ 1.8 × 10-4, about 8 times the whole-Earth value. It is also asserted that the required inner-core ellipticity amounts to no more than 140 m in geoid height, much smaller than the sensitivity required for the seismic wave travel time to resolve the variation of the inner core.
Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina
Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John w. Edwards; Gary F. McCracken
2005-01-01
We conipared bat activity levels in the Coaslal Plain of South Carolina atnong 5 habitat types: forested riparian areas, clearcuts, young pine plantations, ature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 mj in each habitat type. Variation in...
Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh
2017-07-21
Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.
Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles
NASA Astrophysics Data System (ADS)
Lindhoud, Saskia; Stuart, Martien A. Cohen; Norde, Willem; Leermakers, Frans A. M.
2009-11-01
Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins χ parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT ’s) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT ) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CMI.
Optical absorption of carbon-gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping
2018-01-01
In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.
CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Hu, R.
2015-01-01
Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves overmore » the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.« less
NASA Astrophysics Data System (ADS)
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.
Reflex effects on components of synchronized renal sympathetic nerve activity.
DiBona, G F; Jones, S Y
1998-09-01
The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.
NASA Astrophysics Data System (ADS)
Carling, P. A.; Radecki-Pawlik, A.; Williams, J. J.; Rumble, B.; Meshkova, L.; Bell, P.; Breakspear, R.
2006-01-01
In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m - 2 , sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m - 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s - 1 . Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary 'caps' overlie a more stable dune 'core'. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.
NASA Astrophysics Data System (ADS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark
2011-01-01
Growth and wood properties were measured on breast height cores collected from two stands, New Bern and Bertie, located in the lower Coastal Plain of North Carolina. The New Bern site was thinned before fertilizer application, and the Bertie site was not. The study was laid out in a randomized complete block design with each treatment replicated in four blocks at New...
Conformational changes accompany activation of reovirus RNA-dependent RNA transcription
Mendez, Israel I.; Weiner, Scott G.; She, Yi-Min; Yeager, Mark; Coombs, Kevin M.
2009-01-01
Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known 3-dimensional structures of major core proteins. PMID:18321727
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less
Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.
2014-07-01
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
32 CFR 169a.9 - Reviews: Existing in-house commercial activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... skill levels. (ii) Core logistics activities. The core logistics capability reported to Congress, March... either government or contractor personnel, whichever is more cost effective. Core logistics activities... submitted to the ASD (P&L). DoD Components may propose to the ASD (P&L) additional core logistics capability...
Core-shell homojunction silicon vertical nanowire tunneling field-effect transistors.
Yoon, Jun-Sik; Kim, Kihyun; Baek, Chang-Ki
2017-01-23
We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density.
Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan
2016-12-01
In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.
Wang, Bo; Stanton, Bonita; Lunn, Sonja; Rolle, Glenda; Poitier, Maxwell; Adderley, Richard; Li, Xiaoming; Koci, Veronica; Deveaux, Lynette
2015-01-01
The degree to which evidence-based program outcomes are affected by modifications is a significant concern in the implementation of interventions. The ongoing national implementation of an evidence-based HIV prevention program targeting grade six students in The Bahamas [Focus on Youth in The Caribbean (FOYC)] offers an opportunity to explore factors associated with teachers’ modification of FOYC lessons and to examine the impact of types and degrees of modifications on student outcomes. Data were collected in 2012 from 155 teachers and 3646 students in 77 government elementary schools. Results indicate that teachers taught 16 of 30 core activities, 24.5 of 46 total activities and 4.7 of 8 sessions. Over one-half of the teachers made modifications to FOYC core activities; one-fourth of the teachers modified 25% or more core activities that they taught (heavily modified FOYC). Omitting core activities was the most common content modification, followed by lengthening FOYC lessons with reading, writing assignments or role-play games, shortening core activities or adding educational videos. Mixed-effects modeling revealed that omitting core activities had negative impacts on all four student outcomes. Shortening core activities and adding videos into lessons had negative impacts on HIV/AIDS knowledge and/or intention to use condom protection. Heavy modifications (>1/4 core activities) were associated with diminished program effectiveness. Heavy modifications and omitting or shortening core activities were negatively related to teachers’ level of implementation. We conclude that poorer student outcomes were associated with heavy modifications. PMID:26297497
Wang, Bo; Stanton, Bonita; Lunn, Sonja; Rolle, Glenda; Poitier, Maxwell; Adderley, Richard; Li, Xiaoming; Koci, Veronica; Deveaux, Lynette
2016-01-01
The degree to which evidence-based program outcomes are affected by modifications is a significant concern in the implementation of interventions. The ongoing national implementation of an evidence-based HIV prevention program targeting grade 6 students in The Bahamas [Focus on Youth in The Caribbean (FOYC)] offers an opportunity to explore factors associated with teachers' modification of FOYC lessons and to examine the impact of types and degrees of modifications on student outcomes. Data were collected in 2012 from 155 teachers and 3646 students in 77 government elementary schools. Results indicate that teachers taught 16 of 30 core activities, 24.5 of 46 total activities and 4.7 of 8 sessions. Over one-half of the teachers made modifications to FOYC core activities; one-fourth of the teachers modified 25 % or more core activities that they taught (heavily modified FOYC). Omitting core activities was the most common content modification, followed by lengthening FOYC lessons with reading, writing assignments or role-play games, and shortening core activities or adding educational videos. Mixed-effects modeling revealed that omitting core activities had negative impacts on all four student outcomes. Shortening core activities and adding videos into lessons had negative impacts on HIV/AIDS knowledge and/or intention to use condom protection. Heavy modifications (>1/4 core activities) were associated with diminished program effectiveness. Heavy modifications and omitting or shortening core activities were negatively related to teachers' level of implementation. We conclude that poorer student outcomes were associated with heavy modifications.
Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks
NASA Astrophysics Data System (ADS)
Srinivasan K, Venkatesh
As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.
Borreani, Sebastien; Calatayud, Joaquin; Colado, Juan C; Tella, Victor; Moya-Nájera, Diego; Martin, Fernando; Rogers, Michael E
2015-08-01
To analyze shoulder muscle activation when performing push-ups under different stability conditions and heights. Comparative study by repeated measures. Valencia University laboratory. 29 healthy males participated. Subjects performed 3 push-ups each with their hands at 2 different heights (10 vs. 65 cm) under stable conditions and using a suspension device. Push-up speed was controlled and the testing order was randomized. The average amplitudes of the electromyographic root mean square of the long head of the triceps brachii (TRICEP), upper trapezius (TRAPS), anterior deltoid (DELT) and clavicular pectoralis (PEC) were recorded. The electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Suspended push-ups at 10 cm resulted in greater activation in the TRICEP (17.14 ± 1.31 %MVIC vs. 37.03 ± 1.80 %MVIC) and TRAPS (5.83 ± 0.58 %MVIC vs. 14.69 ± 1.91 %MVIC) than those performed on the floor. For DELT and PEC similar or higher activation was found performing the push-ups on the floor, respectively. Height determines different muscle activation patterns. Stable push-ups elicit similar PEC and higher DELT muscle activation, being greater at 10 cm; whereas suspended push-ups elicit greater TRAPS and TRICEP muscle activation, being greater at 65 cm. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo
2017-05-01
The Zackenberg River delta is located in northeast Greenland (74°30' N, 20°30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.
Validity of field expedient devices to assess core temperature during exercise in the cold.
Bagley, James R; Judelson, Daniel A; Spiering, Barry A; Beam, William C; Bartolini, J Albert; Washburn, Brian V; Carney, Keven R; Muñoz, Colleen X; Yeargin, Susan W; Casa, Douglas J
2011-12-01
Exposure to cold environments affects human performance and physiological function. Major medical organizations recommend rectal temperature (TREC) to evaluate core body temperature (TcORE) during exercise in the cold; however, other field expedient devices claim to measure TCORE. The purpose of this study was to determine if field expedient devices provide valid measures of TcRE during rest and exercise in the cold. Participants included 13 men and 12 women (age = 24 +/- 3 yr, height = 170.7 +/- 10.6 cm, mass = 73.4 +/- 16.7 kg, body fat = 18 +/- 7%) who reported being healthy and at least recreationally active. During 150 min of cold exposure, subjects sequentially rested for 30 min, cycled for 90 min (heart rate = 120-140 bpm), and rested for an additional 30 min. Investigators compared aural (T(AUR)), expensive axillary (T(AXLe)), inexpensive axillary (T(AXLi)), forehead (T(FOR)), gastrointestinal (T(GI)), expensive oral (T(ORLe)), inexpensive oral (T(ORLi)), and temporal (T(TEM)) temperatures to T(REc) every 15 min. Researchers used mean difference between each device and T(REC) (i.e., mean bias) as the primary criterion for validity. T(AUR), T(AXLe), T(AXLi), T(FOR), TORLe, T(ORLi), and TTEM provided significantly lower measures compared to T(REC) and fell below our validity criterion. T(GI) significantly exceeded T(REC) at three of eleven time points, but no significant difference existed between mean T(REC) and T(GI) across time. Only T(GI) achieved our validity criterion and compared favorably to T(REC). T(GI) offers a valid measurement with which to assess T(CORE) during rest and exercise in the cold; athletic trainers, mountain rescuers, and military medical personnel should avoid other field expedient devices in similar conditions.
Optimizing performance by improving core stability and core strength.
Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain
2008-01-01
Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.
Description of core samples returned by Apollo 12
NASA Technical Reports Server (NTRS)
Lindsay, J. F.; Fryxell, R.
1971-01-01
Three core samples were collected by the Apollo 12 astronauts. Two are single cores, one of which (sample 12026) was collected close to the lunar module during the first extravehicular activity period and is 19.3 centimeters long. The second core (sample 12027) was collected at Sharp Crater during the second extravehicular activity period and is 17.4 centimeters long. The third sample is a double core (samples 12025 and 12028), which was collected near Halo Crater during the second extravehicular activity period. Unlike the other cores, the double-drive-tube core sample has complex layering with at least 10 clearly defined stratigraphic units. This core sample is approximately 41 centimeters long.
Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol
2018-01-01
The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsukimura, Wataru; Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Matsuda, Akio; Takegawa, Kaoru; Furukawa, Kiyoshi; Shirai, Takashi
2017-12-01
Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.
HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin
2007-04-20
Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfectedmore » with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.« less
Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces
NASA Astrophysics Data System (ADS)
Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.
2017-12-01
Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for such surfaces. This analysis yielded a continuum of contact angles (real above, and imaginary below, zero degrees) that can be used to investigate relationships with properties such surface roughness and porosity. It should be noted these are preliminary, unreplicated results and further research will be needed to verify them and refine the approach.
From precipitation to ice cores: an isotopic comparison at Summit, Greenland
NASA Astrophysics Data System (ADS)
Kopec, B. G.; Feng, X.; Adolph, A. C.; Virginia, R. A.; Posmentier, E. S.
2015-12-01
The observed deuterium excess (d-excess) in ice cores from Summit, Greenland has high summer values and low winter values, which is opposite of the seasonal variations of most northern hemisphere locations. The interpretation of this d-excess seasonality in the context of moisture source changes is made more complicated by possible post-depositional modifications. We investigate potential post-depositional modifications within 3-4 years after precipitation events by collecting precipitation samples and comparing them with snow pit profiles at Summit. Precipitation was sampled on a storm-by-storm basis from July 2011 to September 2014. To assess the effect of wind blown snow on cross-storm contamination, we sampled at three heights (1, 2, and 4 m). Snow pits were sampled in the summers of 2013 and 2015 to span the entirety of our precipitation record. All samples were analyzed for δD and δ18O and d-excess was calculated. Mixing of snow between different storms was identified only for samples collected at the lowest height. We thus use the samples collected at the top height for interpretation. The annual cycle of precipitation isotopes follow the established seasonal relationship with the average summer enrichment of -217 and -29‰, and winter depletion of -317 and -40‰ for δD and δ18O, respectively. The d-excess shows an average summer maximum of 16‰ and winter minimum of 3‰. In the snow pit, the seasonal amplitude and phase of both oxygen and hydrogen isotopic ratios as well as the d-excess compare remarkably well with those of the precipitation. The profile appeared to be devoid of major post depositional effects except for a thin layer that changed during a melt event in 2012. However, this type of event is extremely rare at Summit, and should not significantly compromise the interpretation of precipitation isotopes in ice cores, except perhaps during climatic warm period summers. The precipitation d-excess seasonality is typically interpreted as resulting from changing moisture sources, but this does not explain the positive relationship between d-excess and d18O at Summit, Greenland. We propose that moisture sublimated from the snow surface, which typically has high d-excess values, may be an important moisture source captured in the isotope record.
NASA Astrophysics Data System (ADS)
Kliem, B.
In recent years evidence has accumulated showing that flares and CMEs are different observational manifestations of a single process -- the destabilization and reorganization of magnetic fields at active region spatial scales. Neupert et al. (2001) and Zhang et al. (2001) have clearly shown the connection between the two in a couple of events. I will present a further well-observed example showing the same connection, the 2002 April 21 solar X flare. Combined data from the TRACE, SUMER, RHESSI, NoRH, UVCS, and LASCO instruments show erupting core flux, associated with nonthermal and thermal flare emissions and evolving into one of the fastest CMEs ever observed. Although the observations are very detailed, they still do not seem to permit a firm conclusion regarding the destabilization mechanism, but they point to an instability of a complex flux rope structure, with some elements of the tether cutting and magnetic breakout models possibly being included. The evolution of unstable magnetic flux from the impulsive rise phase of flare emissions to a fully developed CME typically happens in the inner and middle corona, a region too sparsely sampled by current instrumentation. It is therefore still largely ambiguous which height-time characteristic should be fitted to the data and whether a distinct acceleration phase of the ejecta occurs during the impulsive flare phase. Guidance by theoretical models is needed. I will briefly discuss a few height-time characteristics suggested in the literature, including the one implied by a recently proposed destabilization mechanism which is based on the kink instability of a flux rope.
NASA Astrophysics Data System (ADS)
Sangwal, K.; Torrent-Burgués, J.; Sanz, F.; Servat, J.
1997-03-01
The results of an atomic force microscopy study of the nature of cleavage steps, observation of slip traces and formation of hollow cores at the centres of dislocations on the {100} faces of L-arginine phosphate monohydrate (LAP) single crystals grown from aqueous solutions are described and discussed. It was observed that: (1) most of the cleavage steps and all the slip traces are of elementary height, a = 1.085 nm; (2) the origin of a cleavage step may or may not have a hollow core; and (3) close to its origin, the curvature of a cleavage step may be positive or negative or may change from positive to negative. The results suggest that slip traces observed on the cleaved surfaces of LAP are formed during the cleavage process while the rounding and the rearrangement of elementary cleavage steps take place immediately after the occurrence of cleavage. Analysis of the results also shows that the dislocations responsible for the origin of hollow cores always represent a stress field state corresponding to a trapped solution of different local interface supersaturations.
Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza
2010-11-01
The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
NASA Technical Reports Server (NTRS)
Szanca, E. M.; Behning, F. P.; Schum, H. J.
1974-01-01
A 25.4-cm (10-in) tip diameter turbine was tested to determine the effect of rotor radial tip clearance on turbine overall performance. The test turbine was a half-scale model of a 50.8-cm-(20-in.-) diameter research turbine designed for high-temperature core engine application. The test turbine was fabricated with solid vanes and blades with no provision for cooling air and tested at much reduced inlet conditions. The tests were run at design speed over a range of pressure ratios for three different rotor clearances ranging from 2.3 to 6.7 percent of the annular blade passage height. The results obtained are compared to the results obtained with three other turbines of varying amounts of reaction.
Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R
2016-01-01
The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.
Wu, Hua-hong; Li, Hui; Gao, Qian
2013-05-30
The quality of life in children with short stature was rarely studied in China, so we explore these children's quality of life and psychometric properties of the Chinese version of the Pediatric Quality of Life Inventory 4.0(PedsQL4.0) Generic Core Scales among children with short stature. A total of 201 children aged 8 ~ 18 years from the short stature clinic and other clinics of capital institute of pediatrics attended this study. The questionnaires include demographic information and PedsQL4.0 generic core scales. According to children's height, we divided them into three groups: short stature, normal short and normal group, then compared the score of scales by the height category. Moreover, we analyzed the reliability and validity of PedsQL4.0 generic core scales in these 201 children. The child self-report total PedsQL mean score, for the short stature, normal short and normal groups were 77.77 ± 9.69, 83.50 ± 8.56 and 87.36 ± 7.23; the parent-proxy total PedsQL mean score were 77.62 ± 10.50, 82.69 ± 8.35 and 84.91 ± 9.96 respectively. Both for children self- and parent proxy-reports, the Cronbach's α coefficients of total scale, psychosocial health and social functioning ranged between 0.74 and 0.80, it ranged between 0.51 and 0.66 in other dimensions. For child self-reports, the correlation coefficients of 17 items' scores (total 23 items) with the scores of dimensions they belong to were above 0.5, with the highest 0.759; the other 6 items' correlation coefficients were below 0.5, with the lowest 0.280. For parent proxy-reports, the correlation coefficients of 19 items' scores with the scores of dimension they belong to were above 0.5, with the highest 0.793, the other 4 items' below 0.5 with the lowest 0.243. The quality of life in children with short stature is worse than their normal peers by Peds QL4.0 generic core scales, the statues of their quality of life was positively related to their stature.
Holick, Crystal N; Giovannucci, Edward L; Stampfer, Meir J; Michaud, Dominique S
2007-01-01
We evaluated prospectively the association between body mass index (BMI), height, recreational physical activity and the risk of bladder cancer among US adults. Data were used from 2 ongoing cohorts, the Health Professionals Follow-up Study and the Nurses' Health Study, with 3,542,012 years of follow-up and 866 incident bladder cancer cases (men = 507; women = 359) for the anthropometric analysis and 1,890,476 years of follow-up and 706 incident bladder cancer cases (men = 502; women = 204) for the physical activity analysis. Cox proportional hazard models were used to estimate incidence rate ratios (RR) and 95% confidence intervals (CI) between BMI, height, physical activity and bladder cancer risk adjusting for age, pack-years of cigarette smoking and current smoking. Estimates from each cohort were pooled using a random-effects model. We observed no association between baseline BMI and bladder cancer risk, even when we compared a BMI of > or =30 kg/m(2) to a BMI of 18-22.9 kg/m(2) [pooled multivariate (MV) RR, 1.16; 95% CI: 0.89-1.52]. A weak, but statistically significant, association was observed for the same comparison after excluding bladder cancer cases diagnosed within the first 4 years of follow-up (pooled MV RR, 1.33; 95% CI: 1.01-1.76). Height was not related to bladder cancer risk (pooled MV RR, 0.82; 95% CI: 0.65-1.03, top vs. bottom quintile). Total recreational physical activity also was not associated with the risk of bladder cancer (pooled MV RR, 0.97; 95% CI: 0.77-1.24, top vs. bottom quintile). Our findings do not support a role for BMI, height or physical activity in bladder carcinogenesis.
NASA Astrophysics Data System (ADS)
Barkin, Yury
2010-05-01
The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be conditionally corresponded to the geocenter of the Earth approximately determined by position of stations of satellite observations, as the center of certain mantle systems of coordinates Oxyz. For an explanation of such significant drift of the center of mass of the Earth the mechanism of the unidirectional displacement of the core of the Earth (and its center of mass) relatively to a viscoelastic mantle [1, 2] has been offered. The next years attempts of determination of velocity of secular drift of the center of mass in the mantle reference frame by methods of a space geodesy on the basis of precision satellite observations were repeatedly undertaken. In our work [3] for determination of a trend of the center of mass the data of the International Service of Rotation of the Earth (IERS) for satellite observations of system DORIS have been used. For components of velocity of drift in geocentric Greenwich system of coordinates for period 1999-2007 estimations have been obtained: on coordinate x) -1.46 mm/yr, y) 0.79 mm/yr and z) 5.29 mm/yr (errors of the specified estimations make 5-10 %). The velocity of trend of the center of mass of the Earth and its direction are characterized by values: 5.54 mm/yr; latitude 72°6 N and a longitude 118°4 E. The direction of displacement of the center of mass will well be coordinated with a direction predicted earlier theoretically [2]: latitude 70° N and a longitude 104° E. We shall emphasize, that observable redistributions of superficial masses of the Earth explain only small part of observable displacement of the center of mass. It testifies in favour of a reality of secular relative displacement of the core and the mantle of the Earth. 2 Secular drift of the core to the North and variations of a gravity on the Earth surface. The displaced core of the Earth is characterized by the large superfluous mass approximately in 16.7 masses of the Moon. The superfluous mass is ditermined by contrast values of average densities of the core and the mantle and makes 19.32 % of mass of full the Earth. At displacement of the core relatively to the viscous-elastic mantle its superfluous mass causes observable drift of the center of mass, and also leads to changes of a gravity on the surface of the planet. Except for it the gravitational attraction of a displaced core causes deformations of all layers of the mantle, including a superficial layer. The deformed mantle produses some additional gravitational potential which gives the additional contribution to value of a gravity. Thus, noted factors lead to a secular variation of a gravity which is described by the simple formula [2]: dot g = 2gμmc-(1- h-2- 0.5k-2)ρdot-sin?, μmc = 0.1932m ⊙, g = 9.82022 m -s2 m ⊙ r⊙ (1) Here μmc = 0.1932m⊙ is a superflous mass of the Earth core in the masses of the Earth m⊙. g is an acceleration of free falling. k-2 and h-2 are Love numbers of the order (-2). ρdot is a velocity of the secular drift of the center of mass of the core relatively to the center of mass of the mantle. ?is an angle between dirtection to the pole P (in a direction to which the core of the Earth or its center of mass drifts), and direction to gravimetric station. For rough estimates of gravimetric effects as pole P the North Pole of the Earth has been accepted. Thus ? = ?-2 - φis a co-latitude. At more exact description of the core drift (or the center of mass drift) an angle? is determined by formula: cos? = cosφP cosφcos(λP - λ) + sinφP sinφ, where φP and λP is a latitude and longitude of pole P; φ and λ is a latitude and longitude of station. The Love numbers of the order (-2) in first have been evaluated in the paper [4] and have small values: k-2=-0.005004 and h-2=0.0062154. Approximately we can put ρdot m⊙ = μmcá¹C, where á¹C is a velocity of the drift of the center of mass of the Earth. Then, neglecting small effects, for a variation of gravity (1) we obtain a following expression: ? r = 2á¹Cg cos?-r⊙. Leaning on results of works [2], [3], we shall accept the following values of parameters of drift of the center of mass: á¹C=5.54 mm/yr, φP=70°0 N, λP=104°3 E. On the other hand a displacement of the center of mass of the Earth leads to effect of slow change of heights of gravimetric station: ḣ = -?dotC cos? = -5.54 × cos? mm/yr. Errors in determination of the specified characteristics in the given work we shall neglect. Besides the gravitational attraction of a displaced core leads also to effect of increase of horizontal component of gravitational force of an attraction of the Earth on its surface directed to the North along the corresponding meridian with pole P. For any point of a surface of the Earth this component of force is determined by the formula ?φ = á¹Cg sin?-r⊙ and has positive values. And the maximal values ?φ are reached on equator, which plane is orthogonal to axes of drift of the core OP. Thus, final working formulas for studying of secular variations of components of force of a gravitational attraction of the Earth and for a variation of the heights caused by a drift of the center of mass of the Earth become: ?r = 1.74cos?-r⊙ ?Gal/yr, ?φ = 0.87sin?-r⊙ ?Gal/yr, ḣ = -5.54cos?-r⊙ mm/yr. Calculated values of mentioned gravimetric characteristics (2) for the wide list of gravimetry stations are resulted in work [5] and used in the given work. 3 Explanation of observable secular variations of a gravity and heights on gravimetric stations. We have been analysed observed variations of a gravity and heights available and accessible to us, namely their secular changes, for 8 known gravimetry stations. The periods of observations at mentioned stations make the order of 5-10 years, i.e. are not greater, but nevertheless the obtained results unequivocally testify in favour of that the basic contribution to secular variations of a gravity gives the drifting core of the Earth (by means of direct gravitational influence and due to a contribution to corresponding variations of heights). In the given work we did not consider other factors influencing on gravimetric measurements (superficial redistributions of fluid masses, variations of coefficients of the second and higher harmonics of a geopotential, etc.). As an example here we shall analyse secular variations of a gravity and heights at Ny-Alesund station (geographical coordinates: 78°93 N, 11°87 E, ? =23°16). Linear trends of a gravity and height observable at this station make -2.5±0.9 ?Gal/yr and + (6.9±0.9) mm/yr, accordingly, during 1998-2002 (Sato et.al., 2006). On our model a slow closing of the core to the Ny-Alesund station causes a positive variation of a gravity in 1.60 ?Gal/yr and a negative variation of height of station in -5.09 mm/yr [5]. These data testify a deformation of a surface of the Earth in area of station with a velocity +11.99±0.9 mm/yr owing to which the gravity tests a negative variation -3.74±0.28 ?Gal/yr. Putting effects of a variation of a gravity because of displacement of the core and from deformation of a surface, we obtain negative value for secular trend of gravity in - (2.14±0.28) ?Gal/yr, that within the limits of errors it will be coordinated with observable value - (2.5±0.9) ?Gal/yr. Similar results we have obtained for 7 another's gravimetric stations. All results are summarized in the table 1. Here we have used known data about observable secular trends of gravity and GPS heights at considered here stations of the following authors: Ny-Alesund (Sato et al., 2006); Churchill (Larson et al., 2000); Medicine (Zerbini et al., 2001); Syowa (Fukuda et.al., 2007); Strastburg (Almavict et. al., 2004); Membach (Francis et al., 2004); Wuhan (Xu et al., 2008); Metsahovi (Gitlein et. al., 2009). Table 1. Theoretical and observable values of secular variations of a gravity. Stations Core attractionSurface deformation Theory Observations Ny-Alesund+1.60 ?Gal/yr -(3.77±0.09) ?Gal/yr -(2.17±0.03) ?Gal/yr -(2.5±0.9) ?Gal/yr Churchill +1.11 ?Gal/yr -(3.38±0.28) ?Gal/yr -(2.22±0.28) ?Gal/yr -(2.13±0.23) ?Gal/yr Medicina +1.13 ?Gal/yr +(1.07±0.20) ?Gal/yr+(2.20±0.20) ?Gal/yr+(1.90±0.20) ?Gal/yr Syowa -1.44 ?Gal/yr +(0.63±0.08) ?Gal/yr-(0.81±0.08) ?Gal/yr -0.56 ?Gal/yr Strastburg +1.18 ?Gal/yr +(0.71±0.02) ?Gal/yr+(1.89±0.02) ?Gal/yr+(1.90±0.20) ?Gal/yr Membach +1.21 ?Gal/yr -(1.98±0.16) ?Gal/yr -(0.77±0.16) ?Gal/yr -(0.6±0.1) ?Gal/yr Wuhan +1.34 ?Gal/yr -(0.17±0.05) ?Gal/yr +(1.17±0.05) ?Gal/yr+(1.39±0.02) ?Gal/yr Metsahovi +1.47 ?Gal/yr -(2.82±0.06) ?Gal/yr +(1.35±0.06) ?Gal/yr-(0.88±0.52) ?Gal/yr
Dynamic ocean-tide effects on Earth's rotation
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1993-01-01
This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne
The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above themore » polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.« less
Dynamic postural stability for double-leg drop landing.
Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping
2013-01-01
Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.
Characterization of the HSiN HNSi system in its electronic ground state
NASA Astrophysics Data System (ADS)
Lind, Maria C.; Pickard, Frank C.; Ingels, Justin B.; Paul, Ankan; Yamaguchi, Yukio; Schaefer, Henry F.
2009-03-01
The electronic ground states (X˜Σ+1) of HSiN, HNSi, and the transition state connecting the two isomers were systematically studied using configuration interaction with single and double (CISD) excitations, coupled cluster with single and double (CCSD) excitations, CCSD with perturbative triple corrections [CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods. The correlation-consistent polarized valence (cc-pVXZ), augmented correlation-consistent polarized valence (aug-cc-pVXZ) (X=T,Q,5), correlation-consistent polarized core-valence (cc-pCVYZ), and augmented correlation-consistent polarized core-valence (aug-cc-pCVYZ) (Y=T,Q) basis sets were used. Via focal point analyses, we confirmed the HNSi isomer as the global minimum on the ground state HSiN HNSi zero-point vibrational energy corrected surface and is predicted to lie 64.7kcalmol-1 (22640cm-1, 2.81eV) below the HSiN isomer. The barrier height for the forward isomerization reaction (HSiN→HNSi) is predicted to be 9.7kcalmol-1, while the barrier height for the reverse process (HNSi→HSiN) is determined to be 74.4kcalmol-1. The dipole moments of the HSiN and HNSi isomers are predicted to be 4.36 and 0.26D, respectively. The theoretical vibrational isotopic shifts for the HSiN/DSiN and HNSi/DNSi isotopomers are in strong agreement with the available experimental values. The dissociation energy for HSiN [HSiN(X˜Σ+1)→H(S2)+SiN(XΣ+2)] is predicted to be D0=59.6kcalmol-1, whereas the dissociation energy for HNSi [HNSi(X˜Σ+1)→H(S2)+NSi(XΣ+2)] is predicted to be D0=125.0kcalmol-1 at the CCSD(T)/aug-cc-pCVQZ level of theory. Anharmonic vibrational frequencies computed using second order vibrational perturbation theory are in good agreement with available matrix isolation experimental data for both HSiN and HNSi isomers root mean squared derivation (RMSD=9cm-1).
Parent- and child-reported parenting. Associations with child weight-related outcomes.
Taylor, Amanda; Wilson, Carlene; Slater, Amy; Mohr, Philip
2011-12-01
The present study aimed to investigate associations of both parent-reported and child-perceived parenting styles and parent-reported parenting practices with child weight and weight-related behaviours. Participants were 175 children (56% female) aged between 7 and 11, and their primary caregivers (91% female), recruited through South Australian primary schools. Children completed measures of parenting style, attitude toward fruit, vegetables, and non-core food, and attraction to physical activity. Parents completed measures of parenting style and domain-specific parenting practices (feeding and activity-related practices) and reported on child dietary intake, physical activity, and sedentary behaviour. Objective height and weight measurements were taken from children, from which body mass index (BMI) was calculated. Child-reported parenting style and parent-reported parenting practices were uniquely associated with child weight-related outcomes, but styles and practices did not interact in their association with child outcomes. Child-reported parenting style was associated with child food and activity attitudes, whereas parent-reported parenting style was not associated with child outcomes. The findings of the present study generally support the recommendation of a parenting style high in demandingness and responsiveness for supporting healthy child weight-related behaviours, along with appropriate domain-specific practices. The child's perspective should be incorporated into research involving child outcomes wherever possible. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Acute effects of firefighting on cardiac performance.
Fernhall, Bo; Fahs, Christopher A; Horn, Gavin; Rowland, Thomas; Smith, Denise
2012-02-01
This study examined standard echocardiographic measures of cardiac size and performance in response to a 3-h firefighting training exercise. Forty experienced male personnel completed a standardized 3 h live firefighting exercise. Before and after the firefighting activities, participants were weighed, height, heart rate, blood pressure and blood samples were obtained, and echocardiographic measurements were made. Firefighting produced significant decreases in left ventricular diastolic dimension, stroke volume, fractional shortening, and mitral E velocity, tachycardia, a rise in core temperature, and a reduction in calculated plasma volume. On tissue Doppler imaging, there were no changes in systolic contractile function, but a decreased lateral wall diastolic velocity was observed. These findings show that 3 h of live firefighting produced cardiac changes consistent with cardiac fatigue, coupled with a decrease in systemic arterial compliance. These data show that live firefighting produces significant cardiovascular changes and future work is needed to evaluate if these changes are related to the increase in cardiovascular risk during live firefighting.
Moran, Kevin
2014-01-01
In high-income countries, death as a consequence of recreational jumping into water from height has not been well investigated partly because it traditionally has been a covert activity within youth culture. An observational study of video recordings posted on the YouTube web site was used to gather data on the nature of jumping activity in New Zealand and Australia. An analytical framework was developed to identify site- participant- social characteristics (10 variables) and online feedback (4 variables). Of the 389 videos recorded in New Zealand (n = 210) and Australia (n = 179), 929 jumpers were observed, and rivers were the most frequently reported site of jumping activity (New Zealand 47%; Australia 35%). One fifth (20%) of the jumps in New Zealand and one third (33%) in Australia were from heights estimated to be more than 12 m. The YouTube website portraying jumps from height were visited almost half a million times (495,686 hits). Ways of reducing recreational jumping risk via targeted education interventions may be best directed at young male adults. Use of social network sites to foster safe behaviours may be an effective way to educate young people of the inherent risks of jumping from height into water.
van Deutekom, Arend W; Chinapaw, Mai Jm; Gademan, Maaike Gj; Twisk, Jos Wr; Gemke, Reinoud Jbj; Vrijkotte, Tanja Gm
2016-08-01
The purpose of this study was to examine the association of birth weight and infant growth with childhood autonomic nervous system (ANS) activity and to assess whether ANS activity mediates the associations of birth weight and infant growth with energy-balance-related behaviours, including energy intake, satiety response, physical activity and screen time. In 2089 children, we prospectively collected birth weight, infant growth defined as conditional weight and height gain between birth and 12 months and-at 5 years-indices of cardiac ANS activity and parent-reported energy-balance-related behaviours. A mediation analysis was conducted, based on MacKinnon's multivariate extension of the product-of-coefficients strategy. Birth weight and infant height gain were inversely associated with sympathetic, but not parasympathetic, activity at age 5. Infant weight gain was not associated with childhood ANS activity. Infant weight gain was predictive of increased childhood screen time and infant height gain of diminished childhood energy intake, but sympathetic activity did not mediate these associations. Low-birth-weight children have higher sympathetic activity, which is considered a risk factor for cardiovascular disease. Height gain in infancy seems to be beneficial for childhood sympathetic activity. However, sympathetic activity was no mediator of the associations of infant growth with childhood energy-balance-related behaviours. As individual differences in ANS activity predict increased risk of cardiovascular disease, these differences may offer insight into the early-life origins of chronic diseases and provide further basis for public health strategies to optimize birth weight and infant growth. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Johnson, Caleb D; Whitehead, Paul N; Pletcher, Erin R; Faherty, Mallory S; Lovalekar, Mita T; Eagle, Shawn R; Keenan, Karen A
2018-04-01
Johnson, CD, Whitehead, PN, Pletcher, ER, Faherty, MS, Lovalekar, MT, Eagle, SR, and Keenan, KA. The relationship of core strength and activation and performance on three functional movement screens. J Strength Cond Res 32(4): 1166-1173, 2018-Current measures of core stability used by clinicians and researchers suffer from several shortcomings. Three functional movement screens appear, at face-value, to be dependent on the ability to activate and control core musculature. These 3 screens may present a viable alternative to current measures of core stability. Thirty-nine subjects completed a deep squat, trunk stability push-up, and rotary stability screen. Scores on the 3 screens were summed to calculate a composite score (COMP). During the screens, muscle activity was collected to determine the length of time that the bilateral erector spinae, rectus abdominis, external oblique, and gluteus medius muscles were active. Strength was assessed for core muscles (trunk flexion and extension, trunk rotation, and hip abduction and adduction) and accessory muscles (knee flexion and extension and pectoralis major). Two ordinal logistic regression equations were calculated with COMP as the outcome variable, and: (a) core strength and accessory strength, (b) only core strength. The first model was significant in predicting COMP (p = 0.004) (Pearson's Chi-Square = 149.132, p = 0.435; Nagelkerke's R-Squared = 0.369). The second model was significant in predicting COMP (p = 0.001) (Pearson's Chi-Square = 148.837, p = 0.488; Nagelkerke's R-Squared = 0.362). The core muscles were found to be active for most screens, with percentages of "time active" for each muscle ranging from 54-86%. In conclusion, performance on the 3 screens is predicted by core strength, even when accounting for "accessory" strength variables. Furthermore, it seems the screens elicit wide-ranging activation of core muscles. Although more investigation is needed, these screens, collectively, seem to be a good assessment of core strength.
The Damage To The Armour Layer Due To Extreme Waves
NASA Astrophysics Data System (ADS)
Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka
2010-05-01
The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah et.al. 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal Engineering With Emphasis On Random Wave Approach', Coastal Engineering Journal, vol.40, No:1, pp. 1-21, World Scientific Pub. and JSCE Tuah, H, Hudspeth, RT (1982).'Comparisons of Numerical Random Sea Simulations,' Jour. Waterway, Port, Coastal and Ocean Engineering, Vol. 108, pp 569-584. Van der Meer, J.W,(1988). Rock Slopes and gravel beaches under wave attack. Ph.D thesis, Netherland.
NASA Astrophysics Data System (ADS)
Ma, Xin-Xin; Lin, Zhan; Jin, Hong-Lin; Chen, Hua-Ran; Jiao, Li-Guo
2017-11-01
In this study, the distribution characteristics of scale height at various solar activity levels were statistically analyzed using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation data for 2007-2013. The results show that: (1) in the mid-high latitude region, the daytime (06-17LT) scale height exhibits annual variations in the form of a single peak structure with the crest appearing in summer. At the high latitude region, an annual variation is also observed for nighttime (18-05LT) scale height; (2) changes in the spatial distribution of the scale height occur. The crests are deflected towards the north during daytime (12-14LT) at a geomagnetic longitude of 60°W-180°W, and they are distributed roughly along the geomagnetic equator at 60°W-180°E. In the approximate region of 120°W-150°E and 50°S-80°S, the scale height values are significantly higher than those in other mid-latitude areas. This region enlarges with increased solar activity, and shows an approximately symmetric distribution about 0° geomagnetic longitude. Nighttime (00-02LT) scale height values in the high-latitude region are larger than those in the low-mid latitude region. These results could serve as reference for the study of ionosphere distribution and construction of the corresponding profile model.
Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi
2014-01-01
We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.
An assessment of West African seahorses in fisheries catch and trade.
Cisneros-Montemayor, A M; West, K; Boiro, I S; Vincent, A C J
2016-02-01
This study provides the first assessment of a heavily traded West African seahorse species, Hippocampus algiricus, and the first information on short-snouted seahorse Hippocampus hippocampus biology in Africa. A total of 219 seahorses were sampled from fisher catch in Senegal and The Gambia, with estimated height at reproductive activity for H. algiricus (161 mm) larger than mean ± S.D. catch height (150 ± 31 mm). Catch composition, height at reproductive activity and potential biases in fishery retention are discussed with regard to the current Convention on International Trade of Endangered Species (CITES) guidelines. © 2015 The Fisheries Society of the British Isles.
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Vonglahn, U.
1980-01-01
An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.
Bioinspired optical sensors for unmanned aerial systems
NASA Astrophysics Data System (ADS)
Chahl, Javaan; Rosser, Kent; Mizutani, Akiko
2011-04-01
Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.
Alecu, I M; Truhlar, Donald G
2011-04-07
The reactions of CH(3)OH with the HO(2) and CH(3) radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2)(Q)), core-valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGA density functionals can achieve sub-kcal mol(-1) agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.
Access to a new plasma edge state with high density and pressures using the quiescent H mode
Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...
2014-09-24
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
Jesus, Gilmar Mercês de; Assis, Maria Alice Altenburg de; Kupek, Emil; Dias, Lizziane Andrade
2017-01-01
The quality control of data entry in computerized questionnaires is an important step in the validation of new instruments. The study assessed the consistency of recorded weight and height on the Food Intake and Physical Activity of School Children (Web-CAAFE) between repeated measures and against directly measured data. Students from the 2nd to the 5th grade (n = 390) had their weight and height directly measured and then filled out the Web-CAAFE. A subsample (n = 92) filled out the Web-CAAFE twice, three hours apart. The analysis included hierarchical linear regression, mixed linear regression model, to evaluate the bias, and intraclass correlation coefficient (ICC), to assess consistency. Univariate linear regression assessed the effect of gender, reading/writing performance, and computer/internet use and possession on residuals of fixed and random effects. The Web-CAAFE showed high values of ICC between repeated measures (body weight = 0.996, height = 0.937, body mass index - BMI = 0.972), and regarding the checked measures (body weight = 0.962, height = 0.882, BMI = 0.828). The difference between means of body weight, height, and BMI directly measured and recorded was 208 g, -2 mm, and 0.238 kg/m², respectively, indicating slight BMI underestimation due to underestimation of weight and overestimation of height. This trend was related to body weight and age. Height and weight data entered in the Web-CAAFE by children were highly correlated with direct measurements and with the repeated entry. The bias found was similar to validation studies of self-reported weight and height in comparison to direct measurements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... included in the core indicators of performance? 666.140 Section 666.140 Employees' Benefits EMPLOYMENT AND... the core indicators of performance? (a)(1) The core indicators of performance apply to all individuals... informational activities. (WIA sec. 136(b)(2)(A).) (2) Self-service and informational activities are those core...
NASA Astrophysics Data System (ADS)
Neff, P. D.; Steig, E. J.; Clark, D. H.; McConnell, J. R.; Pettit, E. C.; Menounos, B.
2011-12-01
We recovered a 141 m ice core from Combatant Col (51.39°N, 125.22°W, 3000 m asl) on the flank of Mt. Waddington, southern Coast Mountains, British Columbia, Canada. Aerosols and other impurities in the ice show unambiguous seasonal variations, allowing for annual dating of the core. Clustered melt layers, originating from summer surface heating, also aid in the dating of the core. Seasonality in water stable isotopes is preserved throughout the record, showing little evidence of diffusion at depth, and serves as an independent verification of the timescale. The annual signal of deuterium excess is especially well preserved. The record of lead deposition in the core agrees with those of ice cores from Mt. Logan and from Greenland, with a sharp drop-off in concentration in the 1970s and early 1980s, further validating the timescales. Despite significant summertime melt at this mid-latitude site, these data collectively reveal a continuous and annually resolved 36-year record of snow accumulation. We derived an accumulation time series from the Mt. Waddington ice core, after correcting for ice flow. Years of anomalously high or low snow accumulation in the core correspond with extremes in precipitation data and geopotential height anomalies from reanalysis data that make physical sense. Specifically, anomalously high accumulation years at Mt. Waddington correlate with years where "Pineapple Express" atmospheric river events bring large amounts of moisture from the tropical Pacific to western North America. The Mt. Waddington accumulation record thus reflects regional-scale climate. These results demonstrate the potential of ice core records from temperate glaciers to provide meaningful paleoclimate information. A longer core to bedrock (250-300 m) at the Mt. Waddington site could yield ice with an age of several hundred to 1000 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
Coplen, Tyler B.
2016-01-01
Moseley et al.’s (Reports, 8 January 2016, p. 165) preferred-Termination-II age is subjective, as evidenced by variation in their Termination-II ages of 2500 years per meter. Termination-II-age bias decreases to zero at ~1.5 meters below the present-day water table, if one assumes linear variation with core-sample height. Maintaining the required gradient of thorium isotope 230Th over 3.6 meters for 1000 years, much less 10,000 years, seems exceedingly unlikely.
Composite casting/bonding construction of an air-cooled, high temperature radial turbine wheel
NASA Technical Reports Server (NTRS)
Hammer, A. N.; Aigret, G.; Rodgers, C.; Metcalfe, A. G.
1983-01-01
A composite casting/bonding technique has been developed for the fabrication of a unique air-cooled, high temperature radial inflow turbine wheel design applicable to auxilliary power units with small rotor diameters and blade entry heights. The 'split blade' manufacturing procedure employed is an alternative to complex internal ceramic coring. Attention is given to both aerothermodynamic and structural design, of which the latter made advantageous use of the exploration of alternative cooling passage configurations through CAD/CAM system software modification.
2013-06-01
Weapons Propulsion Group where his work initially focussed on R&D relating to cast- composite rocket motors. The emphasis of his work then shifted to gun...Relative humidity RHS Rectangular Hollow Section t Time (s) T1 Ambient room temperature, ceiling-height (K) T2 Ambient room temperature...propellant and a centre- core igniter train. The BCM and UNCLASSIFIED DSTO-RR-0393 UNCLASSIFIED 2 TCM contain the same propellant formulation and
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
NASA Astrophysics Data System (ADS)
Coplen, Tyler B.
2016-10-01
Moseley et al.’s (Reports, 8 January 2016, p. 165) preferred-Termination-II age is subjective, as evidenced by variation in their Termination-II ages of 2500 years per meter. Termination-II-age bias decreases to zero at ~1.5 meters below the present-day water table, if one assumes linear variation with core-sample height. Maintaining the required gradient of thorium isotope 230Th over 3.6 meters for 1000 years, much less 10,000 years, seems exceedingly unlikely.
Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhengliang L., E-mail: Leon.wu@bio-techne.com; Zhou, Hui; Ethen, Cheryl M.
The 1918 H1N1 influenza virus was responsible for one of the most deadly pandemics in human history. Yet to date, the structure component responsible for its virulence is still a mystery. In order to search for such a component, the neuraminidase (NA) antigen of the virus was expressed, which led to the discovery of an active form (tetramer) and an inactive form (dimer and monomer) of the protein due to different glycosylation. In this report, the N-glycans from both forms were released and characterized by mass spectrometry. It was found that the glycans from the active form had 26% core-6more » fucosylated, while the glycans from the inactive form had 82% core-6 fucosylated. Even more surprisingly, the stalk region of the active form was almost completely devoid of core-6-linked fucose. These findings were further supported by the results obtained from in vitro incorporation of azido fucose and {sup 3}H-labeled fucose using core-6 fucosyltransferase, FUT8. In addition, the incorporation of fucose did not change the enzymatic activity of the active form, implying that core-6 fucose is not directly involved in the enzymatic activity. It is postulated that core-6 fucose prohibits the oligomerization and subsequent activation of the enzyme. - Graphical abstract: Proposed mechanism for how core-fucose prohibits the tetramerization of the 1918 pandemic viral neuraminidase. Only the cross section of the stalk region with two N-linked glycans are depicted for clarity. (A) Carbohydrate–carbohydrate interaction on non-fucosylated monomer allows tetramerization. (B) Core-fucosylation disrupts the interaction and prevents the tetramerization. - Highlights: • Expressed 1918 pandemic influenza viral neuraminidase has inactive and active forms. • The inactive form contains high level of core-6 fucose, while the active form lacks such modification. • Core fucose could interfere the oligomerization of the neuraminidase and thus its activation. • This discovery may explain why 1918 pandemic influenza caused higher death rate among young population.« less
Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, G. R., E-mail: girjesh@iucaa.in
We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm linesmore » in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacchiani, M.; Medich, C.; Rigamonti, M.
1995-09-01
The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less
40 CFR 35.6225 - Activities eligible for funding under Core Program Cooperative Agreements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Core Program Cooperative Agreements. 35.6225 Section 35.6225 Protection of Environment ENVIRONMENTAL... Superfund State Contracts for Superfund Response Actions Core Program Cooperative Agreements § 35.6225 Activities eligible for funding under Core Program Cooperative Agreements. (a) To be eligible for funding...
40 CFR 35.6225 - Activities eligible for funding under Core Program Cooperative Agreements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Core Program Cooperative Agreements. 35.6225 Section 35.6225 Protection of Environment ENVIRONMENTAL... Superfund State Contracts for Superfund Response Actions Core Program Cooperative Agreements § 35.6225 Activities eligible for funding under Core Program Cooperative Agreements. (a) To be eligible for funding...
Vertical velocity in oceanic convection off tropical Australia
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m/sec for at least 500 m. A downdraft core is defined analogously. Over 19,000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset. Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory. Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in the Global Atmospheric Research Program (GATE) but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project. The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, it is suggested that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
Mann, Elizabeth A; Stanford, Sandra; Sherman, Kenneth E
2006-10-01
The hepatitis C virus (HCV) core protein is a key structural element of the virion but also affects a number of cellular pathways, including nuclear factor kappaB (NF-kappaB) signaling. NF-kappaB is a transcription factor that regulates both anti-apoptotic and pro-inflammatory genes and its activation may contribute to HCV-mediated pathogenesis. Amino acid sequence divergence in core is seen at the genotype level as well as within patient isolates. Recent work has implicated amino acids 9-11 of core in the modulation of NF-kappaB activation. We report that the sequence RKT is highly conserved (93%) at this position across all HCV genotypes, based on sequences collected in the Los Alamos HCV database. Of the 13 types of variants present in the database, the two most prevalent substitutions are RQT and RKP. We further show that core encoding RKP fails to activate NF-kappaB signaling in vitro while NF-kappaB activation by core encoding RQT does not differ from control RKT core. The effect of RKP core is specific to NF-kappaB signaling as activator protein 1 (AP-1) activity is not altered. Further studies are needed to assess potential associations between specific amino acid substitutions at positions 9-11 and liver disease progression and/or response to treatment in individual patients.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron
2011-01-01
Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.
2013-01-01
Background The primary strategy to interrupt transmission of wild poliovirus in India is to improve supplemental immunization activities (SIAs) and routine immunization coverage in priority districts. The CORE Group, part of the Social Mobilization Network (SM Net), has been successful in improving SIA coverage in high-risk areas of Uttar Pradesh (UP). The SM Net works through community level mobilisers (from the CORE Group and UNICEF) and covers more than 2 million children under the age of five. In this paper, we examine the reasons the CORE Group had been successful through exploration of which social mobilization activities of the CORE Group predicted better performance of SIAs. Methods We carried out a secondary data analysis of routine monitoring information collected by the CORE Group and the Government of India for SIAs. These data included information about vaccination outcomes of SIAs in CORE Group areas and non-CORE Group areas within the districts where the CORE Group operates, along with information about the number of various social mobilization activities carried out for each SIA. We employed Generalized Linear Latent and Mixed Model (GLLAMM) statistical analysis methods to identify which social mobilization activities predicted SIA performance, and to account for the intra-class correlation (ICC) between multiple observations within the same geographic areas over time. Results The number of mosque announcements carried out was the most consistent determinant of improved SIA performance across various performance measures. The number of Bullawa Tollies carried out also appeared to be an important determinant of improved SIA performance. The number of times other social mobilization activities were carried out did not appear to determine better SIA performance. Conclusions Social mobilization activities can improve the performance of mass vaccination campaigns. In the CORE Group areas, the number of mosque announcements and Bullawa Tollies carried out were important determinants of desired SIA outcomes. The CORE Group and SM Net should conduct sufficient numbers of these activities in support of each SIA. It is likely, however, that the quality of social mobilization activities (not studied here) is as or more important than the quantity of activities; quality measures of social mobilization activities should be investigated in the future as to how they determine vaccination performance. PMID:23327427
Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong
2018-05-14
Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar
2015-07-10
Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-12
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-01
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.
Gurau, D; Boden, S; Sima, O; Stanga, D
2018-04-01
This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Active numerical model of human body for reconstruction of falls from height.
Milanowicz, Marcin; Kędzior, Krzysztof
2017-01-01
Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated injuries overlap with the real injuries sustained by the casualty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sriwarno, Andar Bagus; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo
2007-06-01
Work requiring extremely body flexion is strongly associated with a high incidence of musculoskeletal injuries often reported during adopting squatting. In this study, the influence of different lower seat heights on the muscular stress in squatting on a stool (SS) were examined in comparison with fully squatting (FS). Fourteen healthy Indonesian males were recruited in the experiment. Two-dimensional body kinematics, ground reaction force (GRF) and electromyography (EMG) data were collected as subjects performed forward movement under four squatting height conditions which were FS and SS at 10 cm, 15 cm and 20 cm seat height. The results demonstrated that the change from FS to SS primarily affected the segmental angular flexions and muscular activities in the upper and lower limbs. GRF data showed that the SS conditions delivered 24% body weight onto the seat. The change of FS to SS showed significantly decrease in muscular load of the rectus femoris and tibialis anterior. In contrast, the soleus and gastrocnemius increased the activities as the seat height increased. The type of task that required the hand to handle the object on the ground level affected the trunk to be more flexed as the seat height increased. The findings of this study suggest that the use of a lower seat stool of a proper height seems to be a sub-optimal solution considering the change of muscular load associated with the discomfort in a squatting posture.
Spectroscopic study of a dark lane and a cool loop in a solar limb active region by Hinode/EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.
2014-01-10
We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Femore » XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.« less
Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong
2014-04-22
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
NASA Astrophysics Data System (ADS)
Zagrebaev, A. M.; Ramazanov, R. N.; Lunegova, E. A.
2017-01-01
In this paper we consider the optimization problem minimize of the energy loss of nuclear power plants in case of partial in-core monitoring system failure. It is possible to continuation of reactor operation at reduced power or total replacement of the channel neutron measurements, requiring shutdown of the reactor and the stock of detectors. This article examines the reconstruction of the energy release in the core of a nuclear reactor on the basis of the indications of height sensors. The missing measurement information can be reconstructed by mathematical methods, and replacement of the failed sensors can be avoided. It is suggested that a set of ‘natural’ functions determined by means of statistical estimates obtained from archival data be constructed. The procedure proposed makes it possible to reconstruct the field even with a significant loss of measurement information. Improving the accuracy of the restoration of the neutron flux density in partial loss of measurement information to minimize the stock of necessary components and the associated losses.
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Lozier, M.
2011-12-01
Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
Chtourou, Hamdi; Aloui, Asma; Hammouda, Omar; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar
2013-01-01
Purpose The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. Methods Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]). Results The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. Conclusion Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height. PMID:23940589
ERIC Educational Resources Information Center
Magnusson, Bengt; Tiemann, Bruce
1989-01-01
Explores the basic physical laws of the juggling activity. Derives some equations involving height, angle, time, and distance for common juggling objects. Describes the relationships among height, length, mass, number of clubs, number of spins, angular velocity, time, and angle in club juggling. (YP)
Validation of a coupled core-transport, pedestal-structure, current-profile and equilibrium model
NASA Astrophysics Data System (ADS)
Meneghini, O.
2015-11-01
The first workflow capable of predicting the self-consistent solution to the coupled core-transport, pedestal structure, and equilibrium problems from first-principles and its experimental tests are presented. Validation with DIII-D discharges in high confinement regimes shows that the workflow is capable of robustly predicting the kinetic profiles from on axis to the separatrix and matching the experimental measurements to within their uncertainty, with no prior knowledge of the pedestal height nor of any measurement of the temperature or pressure. Self-consistent coupling has proven to be essential to match the experimental results, and capture the non-linear physics that governs the core and pedestal solutions. In particular, clear stabilization of the pedestal peeling ballooning instabilities by the global Shafranov shift and destabilization by additional edge bootstrap current, and subsequent effect on the core plasma profiles, have been clearly observed and documented. In our model, self-consistency is achieved by iterating between the TGYRO core transport solver (with NEO and TGLF for neoclassical and turbulent flux), and the pedestal structure predicted by the EPED model. A self-consistent equilibrium is calculated by EFIT, while the ONETWO transport package evolves the current profile and calculates the particle and energy sources. The capabilities of such workflow are shown to be critical for the design of future experiments such as ITER and FNSF, which operate in a regime where the equilibrium, the pedestal, and the core transport problems are strongly coupled, and for which none of these quantities can be assumed to be known. Self-consistent core-pedestal predictions for ITER, as well as initial optimizations, will be presented. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0012652.
Kim, Do Hyun; Lee, Jae Jin; You, Sung Joshua Hyun
2018-03-23
To investigate the effects of conscious (ADIM) and subconscious (DNS) core stabilization exercises on cortical changes in adults with core instability. Five non-symptomatic participants with core instability. A novel core stabilization task switching paradigm was designed to separate cortical or subcortical neural substrates during a series of DNS or ADIM core stabilization tasks. fMRI blood BOLD analysis revealed a distinctive subcortical activation pattern during the performance of the DNS, whereas the cortical motor network was primarily activated during an ADIM. Peak voxel volume values showed significantly greater DNS (11.08 ± 1.51) compared with the ADIM (8.81 ± 0.21) (p= 0.043). The ADIM exercise activated the cortical PMC-SMC-SMA motor network, whereas the DNS exercise activated both these same cortical areas and the subcortical cerebellum-BG-thalamus-cingulate cortex network.
Shin, Chul-ho; Kim, Minjeong; Park, Gi Duck
2015-01-01
[Purpose] This study examined spinal shape in professional golfers with chronic back pain, and analyzed the effects of a 4-week regimen of semi-weekly manipulation and corrective core exercises on spinal shape. [Subjects] Two golfers with chronic back pain. [Methods] The pelvis and spinal vertebrae were corrected using the Thompson “drop” technique. Angle and force were adjusted to place the pelvis, lumbar spine, and thoracic vertebrae in neutral position. The technique was applied twice weekly after muscle massage in the back and pelvic areas. The golfers performed corrective, warmup stretching exercises, followed by squats on an unstable surface using the Togu ball. They then used a gym ball for repetitions of hip rotation, upper trunk extension, sit-ups, and pelvic anterior-posterior, pelvic left-right, and trunk flexion-extension exercises. The session ended with cycling as a cool-down exercise. Each session lasted 60 minutes. [Results] The difference in height was measured on the left and right sides of the pelvic bone. The pelvic tilt changed significantly in both participants after the 4-week program. [Conclusion] In golfers, core muscles are critical and are closely related to spinal deformation. Core strengthening and spinal correction play a pivotal role in the correction of spinal deformation. PMID:26504350
Extending the maximum operation time of the MNSR reactor.
Dawahra, S; Khattab, K; Saba, G
2016-09-01
An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.
2010-12-01
We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.
Burnable absorber arrangement for fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Townsend, D.B.
1986-12-16
This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less
Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core
NASA Astrophysics Data System (ADS)
Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid
2012-06-01
Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.
In-situ observation of bubble trapping in polar firn
NASA Astrophysics Data System (ADS)
Florian Schaller, Christoph; Freitag, Johannes; Sowers, Todd; Vinther, Bo; Weinhart, Alexander; Eisen, Olaf
2017-04-01
The air trapped in polar ice cores is not a direct record of past atmospheric composition but is strongly influenced by the process of firnification as bubbles are only sealed at a certain point, when the respective horizontal layer reaches a so called "critical" porosity. In order to investigate this process, we performed high-resolution (approximately 25 μm) 3D-XCT measurements of the complete lock-in zone for two polar ice cores representing opposite extremes of the temperature and accumulation rate range: B53, close to Dome Fuji, East Antarctica and RECAP_S2, Renland, Greenland. For every 1m core segment, we scanned a minimum number of five sections of approximately 3.5cm height of the full core diameter with a focus on homogenous layers. This allows us to non-destructively deduce detailed profiles of open and closed porosity on a solid statistical basis. For each of the cores individually, we find that the trapping of bubbles in a single layer is solely determined by its total porosity and thereby independent of depth. We can confirm the existence of a distinct Schwander-type relation of closed and total porosity. Even though the two cores deviate from each other significantly in critical porosity, 0.0907 for B53 compared to 0.1025 for RECAP_S2, we observe many similarities. We hypothesize, that the determining factors of bubble trapping are the average size and variability of pore space structures. This could potentially allow the reconstruction of past close-off porosities from the remaining pore structures in deep ice, e.g. from bubble number densities.
End user evaluation of a Kneeling Wheelchair with "on the fly" adjustable seating functions.
Mattie, Johanne; Wong, Angie; Leland, Danny; Borisoff, Jaimie
2018-04-18
A "kneeling" ultralight wheelchair prototype has been developed that allows users to adjust seat position "on the fly" for different activities throughout the day. The wheelchair includes independent adjustment functions for rear seat height, front seat height ("kneeling") and backrest angle. Aim: This work aimed to gather feedback about the wheelchair's functionality and performance through end user evaluation trials. Methods: Eight manual wheelchair users evaluated the prototype Kneeling Wheelchair for a range of activities. User perspectives on parameters such as usability, comfort, stability and effectiveness were obtained through both open-ended and Likert-scale rating questions. Results: Results indicate several potential benefits of the adjustment functions of the Kneeling Wheelchair. Rear seat height adjustment may facilitate a number of activities of daily living, as well as provide benefits for comfort and social interactions. Back rest adjustment may increase comfort and stability on slopes. Front seat height adjustment may be beneficial for transfers and conducting sustained low-to-the-ground activities. While benefits of this adjustment function were described by many participants, some struggled with usability of the kneeling mechanism and rated this function less favourably than the other two. Conclusion: The findings of this study will inform future iterations of the Kneeling Wheelchair design and may spur future developments in wheeled mobility. In the long-term, it is anticipated that novel wheelchair solutions, such as the one described in this paper, may support improved health, quality of life and community participation for people with mobility impairments. Implications for rehabilitation Wheelchairs that allow users to easily adjust seat and backrest position "on the fly" to better suit different tasks throughout the day may provide benefits such as facilitating activities of daily living. A front seat height adjustment feature on a new wheelchair prototype may be beneficial for transfers and conducting sustained low-to-the ground activities. End user evaluations can provide valuable insight to direct future design modifications and innovation.
Bamberger, Sarah; Martinez Vinson, Christine; Mohamed, Damir; Viala, Jérôme; Carel, Jean-Claude; Hugot, Jean-Pierre; Simon, Dominique
2016-01-01
Inflammation contributes to growth failure associated with inflammatory bowel diseases. Anti-TNFα therapy induces sustained remission and short-term improvements in height velocity and/or height standard deviation score (H-SDS) patients with Crohn's disease. The purpose of this study was to evaluate growth and adult height in patients with Crohn's disease taking maintenance infliximab or adalimumab therapy.This university-hospital based retrospective study included 61 patients, with a median follow-up of 2.6 years (2.0; 3.3). 38 patients (62%) reached their adult height. H-SDS was collected at diagnosis and together with disease activity markers (Harvey-Bradshaw Index, albumin, and C-reactive protein) at treatment initiation (baseline), and follow-up completion. Wilcoxon's signed-rank test was chosen for comparisons. Median H-SDS decreased from diagnosis to baseline (-0.08 [-0.73; +0.77] to -0.94 [-1.44; +0.11], p<0.0001) and then increased to follow-up completion (-0.63 [-1.08; 0.49], p = 0.003 versus baseline), concomitantly with an improvement in disease activity. Median adult H-SDS was within the normal range (-0.72 [-1.25; +0.42]) but did not differ from baseline H-SDS and was significantly lower than the target H-SDS (-0.09 [-0.67; +0.42], p = 0.01). Only 2 (6%) males had adult heights significantly below their target heights (10.5 and -13.5 cm [-1.75 and -2.25 SD]). In conclusion, anti-tumor necrosis factor α (TNF) therapy prevented loss of height without fully restoring the genetic growth potential in this group of patients with CD. Earlier treatment initiation might improve growth outcomes in these patients.
NASA Astrophysics Data System (ADS)
Lee, K.; Imada, S.; Moon, Y.; Lee, J.
2013-12-01
We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.
S/sub n/ analysis of the TRX metal lattices with ENDF/B version III data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, F.J.; Pearlstein, S.
1975-03-01
Two critical assemblies, designated as thermal-reactor benchmarks TRX-1 and TRX-2 for ENDF/B data testing, were analyzed using the one-dimensional S/sub n/-theory code SCAMP. The two assemblies were simple lattices of aluminum-clad, uranium-metal fuel rods in triangular arrays with D$sub 2$O as moderator and reflector. The fuel was low-enriched (1.3 percent $sup 235$U), 0.387-inch in diameter and had an active height of 48 inches. The volume ratio of water to uranium was 2.35 for the TRX-1 lattice and 4.02 for TRX-2. Full-core S/sub n/ calculations based on Version III data were performed for these assemblies and the results obtained were comparedmore » with the measured values of the multiplication factors, the ratio of epithermal-to-thermal neutron capture in $sup 238$U, the ratio of epithermal-to-thermal fission in $sup 235$U, the ratio of $sup 238$U fission to $sup 235$U fission, and the ratio of capture in $sup 238$U to fission in $sup 235$U. Reaction rates were obtained from a central region of the full- core problems. Multigroup cross sections for the reactor calculation were obtained from S/sub n/ cell calculations with resonance self-shielding calculated using the RABBLE treatment. The results of the analyses are generally consistent with results obtained by other investigators. (auth)« less
Signatures of quiet Sun reconnection events in Ca II, Hα and Fe I
NASA Astrophysics Data System (ADS)
Shetye, J.; Shelyag, S.; Reid, A. L.; Scullion, E.; Doyle, J. G.; Arber, T. D.
2018-06-01
We use observations of quiet Sun (QS) regions in the Hα 6563 Å, Ca II 8542 Å and Fe I 6302 Å lines. We observe brightenings in the wings of the Hα and Ca II combined with observations of the interacting magnetic concentrations observed in the Stokes signals of Fe I. These brightenings are similar to Ellerman bombs (EBs), i.e. impulsive bursts in the wings of the Balmer lines which leave the line cores unaffected. Such enhancements suggest that these events have similar formation mechanisms to the classical EBs found in active regions, with the reduced intensity enhancements found in the QS regions due to a weaker feeding magnetic flux. The observations also show that the quiet Sun Ellerman bombs (QSEBs) are formed at a higher height in the upper photosphere than the photospheric continuum level. Using simulations, we investigate the formation mechanism associated with the events and suggest that these events are driven by the interaction of magnetic field-lines in the upper photospheric regions. The results of the simulation are in agreement with observations when comparing the light-curves, and in most cases we found that the peak in the Ca II 8542 Å wing occurred before the peak in Hα wing. Moreover, in some cases, the line profiles observed in Ca II are asymmetrical with a raised core profile. The source of heating in these events is shown by the MURaM simulations and is suggested to occur 430 km above the photosphere.
NASA Astrophysics Data System (ADS)
Spaeth, Lynsey; Campbell-Stone, Erin; Lynds, Ranie; Frost, Carol; McLaughlin, J. Fred
2013-04-01
Carbon capture and storage locations are being investigated throughout the state of Wyoming, USA, in preparation for sequestration of greenhouse gases. At potential storage sites, confining units must be identified that are capable of ensuring stored carbon dioxide remains in place at depth. Previous fluid inclusion volatile work indicates that Triassic formations in southwestern Wyoming act as a confining system on the Rock Springs uplift (RSU). An investigation of the Triassic Dinwoody Formation using mercury capillary entry pressure was conducted to calculate column height potential for CO2 sequestration on the RSU. A stratigraphic test well drilled on the RSU recovered 27.4 meters of core from the Dinwoody Formation. It is dominantly a brownish-red, very fine-grained sandy and micaceous siltstone with minor layers of thin mudstone and minor amounts of anhydrite. Four samples were taken from this core for mercury injection capillary pressure (MICP) analysis. During MICP analysis, mercury is injected into the sample over a range of pressures increased in steps. Only when sufficient pressure is applied will the mercury penetrate into the pore system and at this pressure a confining system will begin to leak. The mercury entry pressures for the Dinwoody samples range from 6.58 to18.85 megapascals and were converted to entry pressures for brine/CO2 systems. Previous simulations indicate that sequestering commercial quantities of CO2 (5-15 megatons CO2/year) over the course of 50 years can be accommodated at the RSU. Determination of the total possible capacity requires knowledge of the column height, i.e. the vertical thickness of CO2 that can be safely injected without caprock failure. Using converted pressures for brine/CO2 systems, the interfacial tensions of CO2, water, and substrate, as well as the densities of CO2 and brine, column heights were calculated for the RSU. It has been suggested by other research that supercritical CO2 and brine may behave as a single wetting phase at elevated pressures and temperatures, resulting in an interfacial tension of 0 milliNewton/meter. Under these conditions the pore throat radius of sealing units is assumed to be the principle inhibitor to flow through the seal. Experimental data indicate pore throat radii range from 39.2 to 113.5 nanometers in the confining system, and preliminary column height calculations indicate that, depending on the size of the plume, reservoir thickness will most likely be the limiting factor to the amount of CO2 that can be sequestered rather than the column height.
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.
2000-01-01
Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.
Managing for Climate Change Adaptation in Forests: a Case Study from the U.S. Southwest
NASA Astrophysics Data System (ADS)
Kerhoulas, L. P.; Kolb, T.; Koch, G. W.; Hurteau, M. D.
2016-12-01
Forest mortality related to climate change is an increasingly common global phenomenon. We provide a case study of the U.S. Southwest to investigate the interactions among forest restoration treatments that alter stand density, tree growth, and drought resistance in trees of different size classes. Using cores taken from five positions in large trees (coarse roots, breast height, base of live crown, mid-crown branch, and treetop) and breast height in small trees, we investigated how radial growth response to thinning and precipitation availability varied in 72 ponderosa pines Pinus ponderosa Dougl. in northern Arizona. Ten years after thinning, growth of small trees did not respond significantly to thinning whereas growth of large trees increased following moderate and heaving thinning, and this response was similar across within-tree core sample positions. The intensity of thinning treatment did not significantly affect dry-year growth in small trees. In large trees, dry-year growth after thinning was maintained at pre-thinning levels in moderate and heavy thinning treatments but decreased in the light thinning and control treatments. Our findings indicate that more aggressive thinning treatments used for forest restoration stimulate growth throughout large residual trees from coarse roots to branches and also improve drought resistance, providing a greater resilience to future climate-related stress. These responses to treatment are more pronounced in large trees than small trees. Forest thinning is therefore recommended in systems that are likely to experience increased temperature and decreased precipitation as a result of climate change.
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Leppert, Kenneth D.; Cecil, Daniel J.
2018-01-01
Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745
Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity
Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing
2013-01-01
To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645
Higuchi, Yukito
2016-01-01
Studies on growth hormone therapy in children have shown that height velocity is greater in summer than in winter and that this difference increases with latitude. It is hypothesized that summer daylight is a causative factor and that geographical distribution of body height will approximate the distribution of summer day length over time. This is an ecological analysis of prefecture-level data on the height of Japanese youth. Mesh climatic data of effective day length were collated. While height velocity was greatest during the summer, the height of Japanese youth was strongly and negatively correlated with the distribution of winter effective day length. Therefore, it is anticipated that summer height velocity is greater according to winter day length (dark period). This may be due to epigenetic modifications, involving reversible DNA methylation and thyroid hormone regulation found in the reproductive system of seasonal breeding vertebrates. If the function is applicable to humans, summer height growth may quantitatively increase with winter day length, and height growth seasonality can be explained by thyroid hormone activities that-induced by DNA methylation-change depending on the seasonal difference in day length. Moreover, geographical differences in body height may be caused by geographical differences in effective day length, which could influence melatonin secretion among subjects who spend a significant time indoors.
Storey, K E; McCargar, L J
2012-02-01
Web-based surveys are becoming increasing popular. The present study aimed to assess the reliability and validity of the Web-Survey of Physical Activity and Nutrition (Web-SPAN) for self-report of height and weight, diet and physical activity by youth. School children aged 11-15years (grades 7-9; n=459) participated in the school-based research (boys, n=225; girls, n=233; mean age, 12.8years). Students completed Web-SPAN (self-administered) twice and participated in on-site school assessments [height, weight, 3-day food/pedometer record, Physical Activity Questionnaire for Older Children (PAQ-C), shuttle run]. Intraclass (ICC) and Pearson's correlation coefficients and paired samples t-tests were used to assess the test-retest reliability of Web-SPAN and to compare Web-SPAN with the on-site assessments. Test-retest reliability for height (ICC=0.90), weight (ICC=0.98) and the PAQ-C (ICC=0.79) were highly correlated, whereas correlations for nutrients were not as strong (ICC=0.37-0.64). There were no differences between Web-SPAN times 1 and 2 for height and weight, although there were differences for the PAQ-C and most nutrients. Web-SPAN was strongly correlated with the on-site assessments, including height (ICC=0.88), weight (ICC=0.93) and the PAQ-C (ICC=0.70). Mean differences for height and the PAQ-C were not significant, whereas mean differences for weight were significant resulting in an underestimation of being overweight/obesity prevalence (84% agreement). Correlations for nutrients were in the range 0.24-0.40; mean differences were small but generally significantly different. Correlations were weak between the web-based PAQ-C and 3-day pedometer record (r=0.28) and 20-m shuttle run (r=0.28). Web-SPAN is a time- and cost-effective method that can be used to assess the diet and physical activity status of youth in large cross-sectional studies and to assess group trends (weight status). © 2011 The Authors. Journal of Human Nutrition and Dietetics © 2011 The British Dietetic Association Ltd.
Madrid, Hector P; Patterson, Malcolm G; Leiva, Pedro I
2015-11-01
Employees can help to improve organizational performance by sharing ideas, suggestions, or concerns about practices, but sometimes they keep silent because of the experience of negative affect. Drawing and expanding on this stream of research, this article builds a theoretical rationale based on core affect and cognitive appraisal theories to describe how differences in affect activation and boundary conditions associated with cognitive rumination and cognitive problem-solving demands can explain employee silence. Results of a diary study conducted with professionals from diverse organizations indicated that within-person low-activated negative core affect increased employee silence when, as an invariant factor, cognitive rumination was high. Furthermore, within-person high-activated negative core affect decreased employee silence when, as an invariant factor, cognitive problem-solving demand was high. Thus, organizations should manage conditions to reduce experiences of low-activated negative core affect because these feelings increase silence in individuals high in rumination. In turn, effective management of experiences of high-activated negative core affect can reduce silence for individuals working under high problem-solving demand situations. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kushnarenko, G. P.; Yakovleva, O. E.; Kuznetsova, G. M.
2018-03-01
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003-2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° E) is examined. Variations of Ne at heights of 150-190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal-autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003-2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150-190 km.
Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander
2018-03-05
The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Semenov, A.; Shefov, N.; Fadel, Kh.
The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.
Beck, Jeffrey L.; Kirol, Christopher P.; Pratt, Aaron C.; Conover, Michael R.
2016-01-01
The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming’s Core Area Policy. Wyoming’s Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008–2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4–45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming’s Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas. PMID:27002531
Influence of lumbar spine extension on vertical jump height during maximal squat jumping.
Blache, Yoann; Monteil, Karine
2014-01-01
The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.
Liu, Lihong; Xu, Xiaoying; Liu, Yanhui; Zhang, Xuanxuan; Li, Lin; Jia, Zhimin
2016-02-20
In this paper, we design a microreactor based on electrophoretically mediated microanalysis (EMMA) with capillary electrophoresis (CE) for screening HIV-1 inhibitors that bind to the N-terminal heptad repeat (NHR, N36) region. Initially, a test sample plug is loaded into a capillary filled with buffer solution followed by N36 peptide solution, and the two solutions simultaneously mix by diffusion. Then, voltage is applied, and the sample molecules pass through the N36 peptide zone. The active compounds combine with N36, leading to a loss in the peak height of the active compound. More than 100 traditional Chinese medicine extracts (TCME) were screened, and an extract of Pheretima aspergillum (E. Perrier) (L5) was identified as having potent inhibitory activity. The results showed that L5 could significantly inhibit the HIV-1JR-FL pseudotyped virus infection; the 50% effective concentration (EC50) of L5 was approximately 32.1±1.2μg/mL, and the 50% cytotoxicity concentration (CC50) value of L5 was 146.9±4.4μg/mL, suggesting that L5 had low in vitro cytotoxicity on U87-CD4-CCR5 cells. The new method is simple and rapid, is free of antibodies, and does not require tedious processes. Copyright © 2015 Elsevier B.V. All rights reserved.
CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Zhang, Jun; Yang, Shuhong
2015-07-20
Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associatedmore » coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.« less
Who Can You Turn to? Tie Activation within Core Business Discussion Networks
ERIC Educational Resources Information Center
Renzulli, Linda A.; Aldrich, Howard
2005-01-01
We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…
Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation
Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan
2013-01-01
Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402
Tectonic and Diapiric Forcing of Western Puerto Rico Landscape
NASA Astrophysics Data System (ADS)
Rogers, R. D.; Macinnes, S.; Hibbert, A.
2008-12-01
Puerto Rico's divide bifurcates in the west into a southern higher-elevation divide and a lower-elevation northern divide. The southern divide trends along exposures of weak, low density serpentinized ocean basement of the Monte de Estado Range forming the highest elevations in western Puerto Rico. Evidence of long-term active uplift along the serpentinite-cored divide is abundant. Streams draining Monte de Estado (MdE) radiate outward from an ellipse centered on the serpentinite exposure. The Rio Anasco draining the north flank of MdE is highly asymmetric, displaying a large scale tilt to the north while the Rio Guanajibo draining its south flank is highly asymmetric with tilt to the south. Subbasins of these rivers are asymmetric, tilted away from the core of the serpentinite exposures. Hypsometric integrals of the Anasco and Guanajibo basins are higher than basins of central and eastern Puerto Rico indicating an inequilibrium condition. The concurrence of morphologic indicators of active uplift (stream patterns and basin asymmetry and hypsometry) with the distribution of topographically elevated low-density serpentinite exposures indicates that MdE is experiencing active diapiric uplift. Northwestern Puerto Rico differs morphologically from the rest of the island. Underlain by island arc crust with exposed igneous and sedimentary strata similar to that of the eastern two-thirds of the island, the Atlantic shore has sea cliffs at the base of a coastal plateau west of the Rio Manati. Rivers draining western Puerto Rico have strikingly lower ratio to valley floor widths to valley height than the rivers to the east indicating incision in response to uplift is greater to the west. Western-most rivers have closer outlet spacing, lower distances from outlets to divide and their watershed have higher hypsometric intergrals all indicating that northwest Puerto Rico is actively uplifting at a rate greater than the eastern two-thirds of the island. North and south flowing tributaries to the Rio Culibrinas display drainage asymmetry reflecting an eastward tilt to northwestern Puerto Rico. This tilt and the uplift of northwest Puerto Rico is consistent with its position on the east flank of the Mona Rift footwall uplift.
Spectropolarimetric Observations of a Small Active Region with IBIS
NASA Astrophysics Data System (ADS)
Tarr, Lucas; Judge, Philip G.
2014-06-01
We have used the Interferometric BI--dimensional Spectrograph (IBIS) instrument at the Dunn Solar Telescope to measure the polarimetric Stokes IQUV signals for the small active region, NOAA 11304. We used three lines generally corresponding to three atmospheric heights ranging from the photosphere to low corona: Fe I 6302Å, NaI 5896Å, and CaII 8542Å. Each set of profiles has been inverted using the NICOLE code to determine the vector magnetic field at the three heights throughout the field of view, or the line--of--sight field, as allowed by the level of polarization signal. Comparisons are made between the magnetic and thermal structures with the goal of constraining chromospheric models with the information obtained at multiple heights.
Study of Anticyclogenesis Affecting the Mediterranean
NASA Astrophysics Data System (ADS)
Hatzaki, M.; Flocas, H. A.; Simmonds, I.; Kouroutzoglou, J.; Garde, L.; Keay, K.; Bitsa, E.
2014-12-01
A comprehensive climatology of migratory anticyclones affecting the Mediterranean was generated by the University of Melbourne finding and tracking algorithm (MS algorithm), applied to 34 years (1979-2012) of ERA-Interim MSLP on a 1.5°x1.5° resolution. The algorithm was employed for the first time for anticyclones in this region, thus, its robustness and reliability in efficiently capturing the individual characteristics of the anticyclonic tracks in such a closed basin with complex topography were checked and verified. Then, the tracks and the statistical properties of the migratory systems were calculated and analyzed. Considering that cold-core anticyclones are shallow and weaken with height contrary to the warm-core that exhibit a vertically well-organized structure, the vertical thermal extend of the systems was studied with an algorithm developed as an extension module of the MS algorithm using ERA-Interim temperatures on several isobaric levels from 1000hPa to 100hPa on an 1.5°x1.5° resolution. The results verified that during both cold and warm period, cold-core anticyclones mainly affect the northern parts of the Mediterranean basin, with their behavior to be strongly regulated by cyclonic activity from the main storm track areas of the North Atlantic and Europe. On the other hand, warm-core anticyclones were found mainly in the southern Mediterranean and North African areas. Here, in order to get a perspective on the dynamic and thermodynamic processes in anticyclonic formation, a dynamical analysis at several vertical levels is performed. The study of mean fields of potential vorticity, temperature advection, vorticity advection at various levels can elucidate the role of upper and low levels during anticyclogenesis and system evolvement and help to further understand the dynamic mechanisms which are responsible for the anticyclogenesis over the Mediterranean region. Acknowledgement: This research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the Greek State. Some funding from the Australian Research Council is also acknowledged.
A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations
NASA Astrophysics Data System (ADS)
Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.
2018-01-01
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.
Core stability training for injury prevention.
Huxel Bliven, Kellie C; Anderson, Barton E
2013-11-01
Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. PUBMED WAS SEARCHED FOR EPIDEMIOLOGIC, BIOMECHANIC, AND CLINICAL STUDIES OF CORE STABILITY FOR INJURY PREVENTION (KEYWORDS: "core OR trunk" AND "training OR prevention OR exercise OR rehabilitation" AND "risk OR prevalence") published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport.
Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.
O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason
2016-01-01
Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.
Agiovlasitis, Stamatis; Sandroff, Brian M; Motl, Robert W
2016-02-15
Evaluating the relationship between step-rate and rate of oxygen uptake (VO2) may allow for practical physical activity assessment in patients with multiple sclerosis (MS) of differing disability levels. To examine whether the VO2 to step-rate relationship during over-ground walking differs across varying disability levels among patients with MS and to develop step-rate thresholds for moderate- and vigorous-intensity physical activity. Adults with MS (N=58; age: 51 ± 9 years; 48 women) completed one over-ground walking trial at comfortable speed, one at 0.22 m · s(-1) slower, and one at 0.22 m · s(-1) faster. Each trial lasted 6 min. VO2 was measured with portable spirometry and steps with hand-tally. Disability status was classified as mild, moderate, or severe based on Expanded Disability Status Scale scores. Multi-level regression indicated that step-rate, disability status, and height significantly predicted VO2 (p<0.05). Based on this model, we developed step-rate thresholds for activity intensity that vary by disability status and height. A separate regression without height allowed for development of step-rate thresholds that vary only by disability status. The VO2 during over-ground walking differs among ambulatory patients with MS based on disability level and height, yielding different step-rate thresholds for physical activity intensity. Copyright © 2015 Elsevier B.V. All rights reserved.
Physical activity as measured by accelerometry in children receiving growth hormone.
Hoos, M B; Westerterp, K R; Kuipers, H; Schuwirth, L; Gerver, W J M
2004-10-01
Parents of children treated with growth hormone (GH) frequently report to the paediatrician that their children have become more physically active. In the present study, activity patterns of GH-treated children were measured and compared to those of healthy controls. Subjects were 25 children at the start of GH treatment (age 8.4 +/- 2.6 y) and 19 age- and gender-matched controls (age 8.8 +/- 3.2 y). Physical activity was assessed with a tri-axial accelerometer for movement registration over two separate 2-wk intervals, one before the start of GH treatment and one 2 wk after the start of treatment. GH-treated subjects were categorized as poor responders (change in height over 1 y <0.7 SDS, n = 15) or good responders (change in height over 1 y >0.7 SDS, n = 10). Before therapy, good responders showed a significantly lower physical activity compared to healthy controls, spending significantly less time on high-intensity activities. This difference disappeared 2 wk after the start of therapy. Physical activity in poor responders was not significantly different from controls before and after 2 wk of GH therapy. Children who respond well to GH therapy (change in height >0.7 SDS) showed a reduced amount of physical activity before therapy, which was normalized after 2 wk of GH therapy.
Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
Cheng, Kuangyou B; Hubbard, Mont
2005-09-01
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.
ON THE ROLE OF THE BACKGROUND OVERLYING MAGNETIC FIELD IN SOLAR ERUPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nindos, A.; Patsourakos, S.; Wiegelmann, T., E-mail: anindos@cc.uoi.gr
2012-03-20
The primary constraining force that inhibits global solar eruptions is provided by the overlying background magnetic field. Using magnetic field data from both the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory and the spectropolarimeter of the Solar Optical Telescope aboard Hinode, we study the long-term evolution of the background field in active region AR11158 that produced three major coronal mass ejections (CMEs). The CME formation heights were determined using EUV data. We calculated the decay index -(z/B)({partial_derivative}B/{partial_derivative}z) of the magnetic field B (i.e., how fast the field decreases with height, z) related to each event from the timemore » of the active region emergence until well after the CMEs. At the heights of CME formation, the decay indices were 1.1-2.1. Prior to two of the events, there were extended periods (of more than 23 hr) where the related decay indices at heights above the CME formation heights either decreased (up to -15%) or exhibited small changes. The decay index related to the third event increased (up to 118%) at heights above 20 Mm within an interval that started 64 hr prior to the CME. The magnetic free energy and the accumulated helicity into the corona contributed the most to the eruptions by their increase throughout the flux emergence phase (by factors of more than five and more than two orders of magnitude, respectively). Our results indicate that the initiation of eruptions does not depend critically on the temporal evolution of the variation of the background field with height.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabi, S.K.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Ghafourian, S.
Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated againstmore » gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.« less
Maximum height and minimum time vertical jumping.
Domire, Zachary J; Challis, John H
2015-08-20
The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brosch, Tobias; Coppin, Géraldine; Schwartz, Sophie; Sander, David
2012-06-01
Neuroeconomic research has delineated neural regions involved in the computation of value, referring to a currency for concrete choices and decisions ('economic value'). Research in psychology and sociology, on the other hand, uses the term 'value' to describe motivational constructs that guide choices and behaviors across situations ('core value'). As a first step towards an integration of these literatures, we compared the neural regions computing economic value and core value. Replicating previous work, economic value computations activated a network centered on medial orbitofrontal cortex. Core value computations activated medial prefrontal cortex, a region involved in the processing of self-relevant information and dorsal striatum, involved in action selection. Core value ratings correlated with activity in precuneus and anterior prefrontal cortex, potentially reflecting the degree to which a core value is perceived as internalized part of one's self-concept. Distributed activation pattern in insula and ACC allowed differentiating individual core value types. These patterns may represent evaluation profiles reflecting prototypical fundamental concerns expressed in the core value types. Our findings suggest mechanisms by which core values, as motivationally important long-term goals anchored in the self-schema, may have the behavioral power to drive decisions and behaviors in the absence of immediately rewarding behavioral options.
Alumina-zirconia machinable abutments for implant-supported single-tooth anterior crowns.
Sadoun, M; Perelmuter, S
1997-01-01
Innovative materials and application techniques are constantly being developed in the ongoing search for improved restorations. This article describes a new material and the fabrication process of aesthetic machinable ceramic anterior implant abutments. The ceramic material utilized is a mixture of alumina (aluminum oxide) and ceria (cerium oxide) with partially stabilized zirconia (zirconium oxide). The initial core material is a cylinder with a 9-mm diameter and a 15-mm height, obtained by ceramic injection and presintering processes. The resultant alumina-zirconia core is porous and readily machinable. It is secured to the analog, and its design is customized by machining the abutment to suit the particular clinical circumstances. The machining is followed by glass infiltration, and the crown is finalized. The learning objective of this article is to gain a basic knowledge of the fabrication and clinical application of the custom machinable abutments.
Performance Calculations for the ITER Core Imaging X-Ray Spectrometer (CIXS)
NASA Astrophysics Data System (ADS)
Hill, K. W.; Delgado-Aparicio, L.; Pablant, N.; Johnson, D.; Feder, R.; Klabacha, J.; Stratton, B.; Bitter, M.; Beiersdorfer, P.; Barnsley, R.; Bertschinger, G.; O'Mullane, M.; Lee, S. G.
2013-10-01
The US is providing a 1D imaging x-ray crystal spectrometer system as a primary diagnostic for measuring profiles of ion temperature (Ti) and toroidal flow velocity (v) in the ITER plasma core (r/a = 0-0.85). The diagnostic must provide high spectral resolution (E/ ΔE > 5,000), spatial resolution of 10 cm, and time resolution of 10-100 ms, and must operate and survive in an environment having high neutron and gamma-ray fluxes. This work presents spectral simulations and tomographic inversions for obtaining local Ti and v, comparisons of the expected count rate profiles to the requirements, the degradation of performance due to the nuclear radiation background, and measurements of the rejection of nuclear background by detector pulse-height discrimination. This work was performed under the auspices of the DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Extended core for motor/generator
Shoykhet, Boris A.
2005-05-10
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Extended core for motor/generator
Shoykhet, Boris A.
2006-08-22
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Aksoy, Gokhan; Cotert, H Serdar; Korkut, Levent
2005-05-01
A dowel-and-core restoration may fail due to failure at either the dowel-tooth or dowel head-core material interface. Long-term clinical success of a dowel-and-core restoration depends on retention of both the dowel to the tooth and the dowel head to the core material. Thus, strengthening of the dowel head-core interface is important. This study evaluated the retention between a prefabricated dowel and 3 different core materials with or without a dual-polymerized adhesive resin luting agent. Sixty prefabricated dowels (Gold Plated Anchorage Post) were divided into 3 groups (n=20) consisting of 1 of 3 core materials, amalgam (Standalloy F), light-polymerized resin composite (Clearfil Ray), or glass ionomer (Chelon-Silver). Each core group was divided into 2 subgroups (n=10), and a dual-polymerized adhesive resin luting agent (Panavia F) was applied to the dowel heads of 1 of these subgroups before application of the core material. The manufacturing procedure was standardized by using a plastic index (4.5-mm internal diameter and 5-mm height) and a custom-made dowel holder, which held the dowel head. Prepared specimens were stored in water at room temperature for 3 months and then loaded to fracture in a universal testing machine with a crosshead speed of 0.05 mm/min until failure. Bond strengths were recorded (MPa). Data were analyzed with 2-way analysis of variance (ANOVA) in a 2 x 3 factorial randomized design (alpha=.05). Afterward, core material differences were computed with 1-way ANOVA for both of the bonded and nonbonded groups. Post hoc multiple comparisons were made with the Dunnett C multiple range test. Dowel-head retention values (MPa) of the tested core materials (mean +/- SD) from the highest to the lowest were as follows: bonded amalgam core, 296.1 +/- 108; bonded composite core, 284.3 +/- 38.3; nonbonded composite core, 177.0 +/- 53.7; nonbonded amalgam core, 128.5 +/- 35.0; bonded glass-ionomer core (GIC), 128.0 +/- 24.5; nonbonded GIC, 61.8 +/- 13.3. Two-way ANOVA revealed significant differences between the core material groups and between the bonded and nonbonded groups (P <.001). The interaction between the core material and bond variables was also significant (P =.018). One-way ANOVA revealed statistically significant differences between the bonded (P <.001) and also between the nonbonded core material groups (P <.001). Post hoc multiple comparisons showed that the dowel-head retention of the GIC was significantly weaker than the post-head retention for amalgam and resin composite, whether bonded or not. Within the limitations of this study, the adhesive resin luting agent tested appeared to have a significant strengthening effect on the dowel-head retention of the core materials.
Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test
NASA Astrophysics Data System (ADS)
Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi
2017-09-01
An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.
77 FR 47069 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... currently approved information collection known as ``Federal Home Loan Bank Acquired Member Assets, Core...; Comment Request: Federal Home Loan Bank Acquired Member Assets, Core Mission Activities, Investments and... Collection; Comment Request: Federal Home Loan Bank Acquired Member Assets, Core Mission Activities...
Geochronology of Mudflow Deposits on the Mississippi River Delta Front, Louisiana, USA
NASA Astrophysics Data System (ADS)
Keller, G. P.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.; Obelcz, J.; Maloney, J. M.
2016-02-01
Short multicores (<50cm) and longer gravity cores (up to 3m) were collected seaward of the Southwest Pass of the Mississippi River Delta (Gulf of Mexico) and were analyzed to assess the frequency, extent, and potential causes of submarine mass wasting events. Cores were analyzed for radionuclide activity, grain size, and density at 2cm resolution, with x-radiography for the whole core. Short-term sedimentation rates calculated from 7Be are 2-12cm/y, while longer-term accumulation from 210Pb are only 1.3-5.5cm/y. In most cores, 210Pb activity steadily decreases downcore without displaying a "stairstep" nature. However, six cores have layers of low 210Pb activity stratigraphically above layers with higher activity. In one long core from a mudflow gully, 210Pb steadily decreases for the upper 90cm before stabilizing for the remaining 130cm. Clay content generally ranges between 25-40% and sand ranges between 5-15% with silt making up the rest of each sample. Sedimentation rates derived from 210Pb in the short cores indicate that proximity to the river mouth has stronger influence than depositional environment (mudflow gully, depositional lobe, prodelta). This finding may be explained by rapid sedimentation rates coupled with a reduced tropical cyclone activity over the delta in the last seven years (2006-2013). The regions of decreased 210Pb activity may be evidence of scavenging effects of plume sedimentation because they do not correspond with decreases in clay fraction. The zone of homogenized activity below 90cm in the gully core occurs at a depth equivalent to 18 years, indicating mixing on a decadal scale, potentially from mudflows. These results may be explained by a lack of recent mass failures corresponding with lulls in tropical cyclone activity over the delta, preceded by a period of more active hurricane-driven mudflow activity.
A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam
NASA Astrophysics Data System (ADS)
Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun
2018-04-01
The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.
Xu, Z R; Hu, C H; Xia, M S; Zhan, X A; Wang, M Q
2003-06-01
Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.
2018-01-01
Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.
1999-01-01
We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is approximately 0.1, and (4) to release enough magnetic energy for a typical microflare (10^27 - 10^28 erg), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most. Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network. The low-lysing exploding core fields in the network drive microflares, spicules, global coronal heating, and ,consequently, the solar wind.
The implementation of binding blocks in the classroom
NASA Astrophysics Data System (ADS)
Wright, A. J.; Willett, H. V.; Beanland, S. R.; Carson, M.; Davies, R. A.; Duffett, G.; Pastore, A.
2017-09-01
We discuss a series of activities for A-level students which can be carried out using the binding blocks three dimensional chart of nuclides. The planned activities cover four main sections which can be linked to the A-level curriculum; nuclear decays (as seen through the different colours on the chart), medical physics (medical isotopes highlighted on the chart), fusion on Earth (binding energy demonstrated through tower heights) and stellar fusion (which has a limit at 56Fe, illustrated by the decreasing tower heights).
Surface-Active Agents for Isolation of the Core Component of Avian Myeloblastosis Virus 1
Stromberg, Kurt
1972-01-01
Sixty-one surface-active agents were evaluated in a procedure designed to assess their ability to remove the envelope from the core component of avian myeloblastosis virus (AMV). The procedure consisted of centrifugation of intact AMV through a series of sucrose gradients each containing an upper layer of agent at one of eight concentrations between 0.01 and 10%. The effectiveness of an agent in producing AMV cores was indicated by (i) the appearance of light-scattering bands in the region of core buoyant density in gradient tubes; (ii) the range of surfactant concentration over which these bands appeared; and (iii) an electron microscopy assessment by the negative-staining technique of the relative proportion of core to non-core material in each of these bands. Six nonionic surfactants were selected by this screening method for comparison in regard to recovery of core protein and endogenous ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase activity, as well as further morphologic evaluation by electron microscopy. The nonionic surfactants of the polyoxyethylene alcohol class (particularly, Sterox SL) were most effective. Nonionic surfactants of the polyoxyethylene alkylphenol class (particularly, Nonidet P-40) were also effective. Sterox SL and Nonidet P-40 each gave a more than fivefold increase in specific activity of endogenous RNA-dependent DNA polymerase, and each gave a low recovery of core protein. Sterox SL did not interfere to the extent that Nonidet P-40 did in procedures which involved spectrophotometric assay at 260 nm. The use of Sterox SL resulted in the least envelope contamination of core preparations by electron microscopy examination, the most recovery of protein and endogenous RNA-dependent DNA polymerase activity, and a core buoyant density in sucrose of 1.27 g/ml. Images PMID:4112071
NASA Astrophysics Data System (ADS)
Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee
2017-02-01
Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.
Wetz, Anna J; Perl, Thorsten; Brandes, Ivo F; Harden, Markus; Bauer, Martin; Bräuer, Anselm
2016-11-01
Perioperative hypothermia is a frequently observed phenomenon of general anesthesia and is associated with adverse patient outcome. Recently, a significant influence of core temperature before induction of anesthesia has been reported. However, there are still little existing data on core temperature before induction of anesthesia and no data regarding potential risk factors for developing preoperative hypothermia. The purpose of this investigation was to estimate the incidence of hypothermia before anesthesia and to determine if certain factors predict its incidence. Data from 7 prospective studies investigating core temperature previously initiated at our department were analyzed. Patients undergoing a variety of elective surgical procedures were included. Core temperature was measured before induction of anesthesia with an oral (314 patients), infrared tympanic (143 patients), or tympanic contact thermometer (36 patients). Available potential predictors included American Society of Anesthesiologists status, sex, age, weight, height, body mass index, adipose ratio, and lean body weight. Association with preoperative hypothermia was assessed separately for each predictor using logistic regression. Independent predictors were identified using multivariable logistic regression. A total of 493 patients were included in the study. Hypothermia was found in 105 patients (21.3%; 95% confidence interval, 17.8%-25.2%). The median core temperature was 36.3°C (25th-75th percentiles, 36.0°C-36.7°C). Two independent factors for preoperative hypothermia were identified: male sex and age (>52years). As a consequence of the high incidence of hypothermia before anesthesia, measuring core temperature should be mandatory 60 to 120minutes before induction to identify and provide adequate treatment to hypothermic patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.
2005-01-01
Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Current advances in precious metal core-shell catalyst design.
Wang, Xiaohong; He, Beibei; Hu, Zhiyu; Zeng, Zhigang; Han, Sheng
2014-08-01
Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core-shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core-shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core-shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core-shell nanoparticles in this paper. The current research trends of these core-shell catalysts are also highlighted.
Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*
Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar
2014-01-01
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215
IRIS Observations of Spicules and Structures Near the Solar Limb
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Vial, J.-C.; Koukras, A.; Buchlin, E.; Chane-Yook, M.
2018-02-01
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2''. We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O i and fast-moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d' Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of {˜} 8000 K at small heights to {˜} 20 000 K at large heights, electron densities from 1.1× 10^{11} to 4× 10^{10} cm^{-3} and a turbulent velocity of {˜} 24 km s^{-1}.
NASA Astrophysics Data System (ADS)
Drexler, J. Z.; Fuller, C.
2017-12-01
137Cesium is an anthropogenic radionuclide whose maximum fallout occurred in 1963/4 at the height of above-ground nuclear weapons testing. The presence of this fallout peak in core profiles has been used widely to estimate vertical accretion and carbon accumulation rates in wetlands. 137Cs dating has long been applied with little attention to uncertainty of peak position or measurement error. Initially, this caused few problems as activities were high and peaks were generally clear; however recently the clarity of peaks has deteriorated, raising questions of method efficacy. We quantified uncertainty in 137Cs dating in 52 wetland sediment/peat cores collected from 2005 - 2015 in Maine, California, Virginia, North Carolina, South Carolina, and Washington and compared the position of each peak to the date obtained with 210Pb. We found that the two dating methods matched within 5 years for only 20% of cores with a distinct 137Cs peak. We attribute this to a decline in 137Cs efficacy for three main reasons: (1) mobility of 137Cs resulting from diffusion independent of sediments, downwashing, and/or physical/biotic perturbation, (2) on-going decay of the original 137Cs in situ (half-life = 30.17 years), which manifests in lower signal to noise ratios, and (3) 137Cs inputs from watershed/tidal sources, which have confounded the 137Cs pattern in sediments. Such reduced efficacy is of concern because carbon accumulation rates determined with 137Cs are used for informing national-scale carbon assessments and for determining the carbon storage potential of wetlands restored as offsets for the carbon market. We conclude that 137Cs dating alone has sufficient uncertainty that it should be disallowed for carbon accounting and that any use of 137Cs should be accompanied by an uncertainty analysis of peak position. Our results suggest that soon the common practice of using 137Cs to corroborate 210Pb dating will likely be obsolete in much of North America.
40 CFR 35.6235 - Cost sharing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Core Program... indirect costs of all activities covered by the Core Program Cooperative Agreement. Indian Tribes are not required to share in the cost of Core Program activities. The State must provide its cost share with non...
NASA Astrophysics Data System (ADS)
Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo
In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.
Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui
2016-06-01
The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, James; Comstock, Jack C.
Phenotyping Methods: The accessions (which includes 21 taxa and 1,177 accessions) in the World Collection of Sugarcane and Related Grasses (WCSRG) was evaluated for the following traits: arenchyma, internode length and diameter, pubescence, pith, Brix, stalk number and fiber. A core of 300 accessions that included each species in the World Collection was selected by using the Maximization Strategy in MStrat software. Results: The core had a higher diversity rating than random selections of 300 accessions. The Shannon–Weaver Diversity Index scores of the core and whole collection were similar indicating that the majority of the diversity was captured by themore » core collection. The ranges and medians between the core and WCSRG were similar; only two of the trait medians were not significant at P = 0.05 using the non-parametric Wilcoxon method and the coincidence rate (CR % = 96.2) was high (>80) indicating that extreme values were retained. Thus, the phenotypic diversity of these traits in the WCSRG was well represented by the core collection. Associations Methods: Genotypic and phenotypic data were collected for 1002 accessions of the WCSRG including 209 SSR markers. Association analysis was performed using both General Linear (GLM) and Maximum Likelihood (MLM) models. Different core collections with 300 accessions each were selected based on genotypic, phenotypic and combined data based on the Maximization Strategy in MStrat software. Results: A major portion of the genotyping involving SNPs is being conducted by Dr. Jianping Wang of the University of Florida under the DOE award DE-FG 02-11ER 65214 and the genotypic and phenotypic associations will be reported separately next year. In the current, study forty one and seventeen markers were found to be associated with traits using the GLM and MLM methods respectively including associations with arenchyma, internode length and diameter, pubescence, pith, and Sugar Cane Yellow Leaf Virus. The data indicates that each of the cores and the World Collection are similar to each other genotypically and phenotypically, but the core that was selected using only genotypic data was significantly different phenotypically. This indicates that there is not enough association between the genotypic and phenotypic diversity as to select using only genotypic diversity and get the full phenotypic diversity. Core Collection: Creation and Phenotyping Methods: To evaluate this germplasm for breeding purposes, a representative diversity panel selected from the WCSRG of approximately 300 accessions was planted at Canal Point, FL in three replications. These accessions were measured for stalk height and stalk number multiple times throughout the growing season and Brix and fresh biomass during harvest in 2013 and, stalk height, stalk number, stalk diameter, internode length, Brix and fresh and dry biomass was determined in the ratoon crop harvest in 2014. Results: In correlations of multiple measurements, there were higher correlations for early measurements of stalk number and stalk height with harvest traits like Brix and fresh weight. Hybrids had higher fresh mass and Brix while Saccharum spontaneum had higher stalk number and dry mass. The heritability of hybrid mass traits was lower in the ratoon crop. According to the principal component analysis, the diversity panel was divided into two groups. One group had accessions with high stalk number and high dry biomass like S. spontaneum and the other groups contained accessions with higher Brix and fresh biomass like S. officinarum. Mass traits correlated with each other as expected but hybrids had lower correlations between fresh and dry mass. Stalk number and the mass traits correlated with each other except in S. spontaneum and hybrids in the first ratoon. There were 110 accessions not significantly different in Brix from the commercial sugarcane checks including 10 S. spontaneum accessions. There were 27 dry and 6 fresh mass accessions significantly higher than the commercial sugarcane checks. Core Collection: Fiber analysis Methods: A biomass sample was taken from each accession then shredded and dried. Fiber analysis was then performed on each sample. The acetyl groups, acid insoluble lignin, acid soluble lignin, arabinan, glucan, holocellulose, total lignin, structural ash, and xylan were quantified on a % fiber basis and nonstructural ash on a % total basis. Results: There were significant, but not large differences between species for holocellulose, lignin, acetyl, acid soluble lignin, nonstructural ash, and glucan. For each trait, S. spontaneum had significantly more holocellulose, glucan, lignin, and nonstructural ash and less acetyl and acid soluble lignin than the other species. In all populations, glucan and was positively correlated with holocellulose were positively correlated and glucan and and holocellulose were negatively correlated with lignin. In hybrids, internode length correlated positively with holocellulose and nonstructural ash and negatively with lignin. The heritability estimates for each of the fiber component traits is low indicating that environment is an important factor in fiber composition. Principal component analysis indicated that a large amount of diversity exists within each of the species.« less
Height, Body Mass Index, and Physical Activity in Relation to Glioma Risk
Moore, Steven C.; Rajaraman, Preetha; Dubrow, Robert; Darefsky, Amy S.; Koebnick, Corinna; Hollenbeck, Albert; Schatzkin, Arthur; Leitzmann, Michael F.
2009-01-01
Whether energy balance during early life and/or adulthood is related to glioma risk is unknown. We therefore investigated height, body mass index (BMI), and physical activity in relation to glioma risk in the prospective NIH-AARP Diet and Health Study. Participants completed a baseline questionnaire (sent in 1995) inquiring about height, weight, and potential confounders. A second questionnaire (sent in 1996) inquired about physical activity during ages 15-18, 19-29, 35-39 years, and the past 10 years and body weight at ages 18, 35, and 50 years. During follow-up from 1995/1996 to 2003, we documented 480 cases of glioma among 499,437 respondents to the baseline questionnaire and 257 cases among 305,681 respondents to the second questionnaire. Glioma risk among tall persons (1.90+ meters) was twice that of short persons (< 1.60 meters) (multivariate relative risk [RR]=2.12; 95% confidence interval [CI]= 1.18-3.81; Ptrend =0.006). Risk among participants who were obese (BMI 30.0-34.9 kg/m2) at age 18 was nearly 4 times that of persons of normal weight (BMI of 18.5-24.9) at age 18 (RR=3.74; 95% CI= 2.03-6.90; Ptrend =0.003); 11 cases were obese at age 18. Risk among participants who were active during ages 15-18 was 36% lower than that of persons who were inactive during ages 15-18 (RR=0.64; 95% CI= 0.44-0.93; Ptrend =0.02). BMI and physical activity after age 18 was unrelated to glioma risk. Adult height, BMI during adolescence, and physical activity during adolescence were each associated with glioma risk, supporting a role for early life energy balance in glioma carcinogenesis. PMID:19808953
Effects of different shear rates on the attachment and detachment of platelet thrombi.
Shi, Xiaofeng; Yang, Jichun; Huang, Jiansong; Long, Zhangbiao; Ruan, Zheng; Xiao, Bing; Xi, Xiaodong
2016-03-01
Thrombosis and hemostasis take place in flowing blood, which generates shear forces. The effect of different shear rates, particularly pathological forces, on platelet thrombus formation remains to be fully elucidated. The present study observed the morphological characteristics and hierarchical structure of thrombi on the collagen surface at a wide range of wall shear rates (WSRs) and examined the underlying mechanisms. Calcein AM‑labeled whole blood was perfused over a collagen‑coated surface at different shear rates set by a Bioflux 200 microfluidic device and the thrombi formed were assessed for area coverage, the height and the hierarchical structure defined by the extent of platelet activation and packing density. The factors that affect thrombus formation were also investigated. Platelet thrombus formation varied under different WSRs, for example, dispersed platelet adhesion mixed with erythrocytes was observed at 125‑250 s(‑1), extensive and thin platelet thrombi were observed at 500‑1,500 s(‑1), and sporadic, thick thrombi were observed at pathological WSRs of 2,500‑5,000 s(‑1), which showed a tendency to be shed. With increasing WSRs, the height of the thrombi showed an increasing linear trend, whereas the total fluorescence intensity and area of the thrombi exhibited a parabolic curve‑like change, with a turning point at a WSR of 2,500 s(‑1). The number of thrombi, the average fluorescence intensity and the area per thrombus showed similar trends, with an initial upwards incline followed by a decline. The thrombi formed at higher WSRs had a thicker shell, which led to a more densely packed core. Platelet thrombus formation under shear‑flow was regulated by the adhesive strength, which was mediated by receptor‑ligand interaction, the platelet deposition induced by shear rates and the detachment by the dynamic force of flow. This resulted in a balance between thrombus attachment, including adhesion and aggregation, and detachment. Collectively, compared with physiological low WSRs, pathological high WSRs caused thicker and more easily shed thrombi with more condensed cores, which was regulated by an attachment‑detachment balance. These results provide novel insights into the properties of thrombus formation on collagen at different WSRs, and offers possible explanations for certain clinical physiopathological phenomena, including physical hemostasis and pathological thrombosis.
On the Long-term Stability of the Lofoten Basin Eddy
NASA Astrophysics Data System (ADS)
Rossby, H. T. T.; Søiland, H.; Chafik, L.
2016-02-01
In recent years several studies have identified an area of intense anticyclonic activity about 500 km straight west of the Lofoten Islands at 70°N in the northern Norwegian Sea; it is now recognized as the coherent Lofoten Basin Eddy (LBE). While we normally think of coherent eddies as short-lived (months to a few years), we infer here that the eddy may have been in existence for hundreds of years if not longer. First, we show from five acoustic Doppler current profiler surveys that it is quite stable with a rotating solid body core 1000 m deep and 8 km radius with relative vorticity close to its theoretical limit -f. The surveys also show the LBE typically has a >60 km radius with maximum swirl velocities at about 17-20 km radius. From the velocity field we estimate the dynamic height amplitude at the surface to be about 0.21±0.03 dyn. Second, and as others have noted from both hydrography and altimetry, the LBE is maintained by a supply of anticyclonic eddies that break away from the Norwegian Atlantic Current where it appears to go unstable over the steep Lofoten Escarpment. Third, altimetry from the last 20 years shows the extremum in sea surface height relative to the surrounding waters to be about the same over time, 0.2 dyn. m. Altimetric analysis also shows the LBE to undergo a cyclonic wandering over the deepest (>3000 m) part of the Lofoten Basin. Lastly, three hydrographic sections from the 1960s show the dynamic height signal to be virtually the same then as it is now. From these observations we conclude that the LBE is a permanent feature of the Nordic Seas and plays a central role in maintaining the pool of warm water in the western Lofoten Basin. The fact that it is fed and maintained by a continual and plentiful supply of pinched-off eddies from the warm Norwegian Atlantic Current at the Lofoten Escarpment leads us to suggest that the LBE has been in existence for hundreds of years if not longer.
Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.
2011-01-01
We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.
Effect of table top slope and height on body posture and muscular activity pattern.
Hassaïne, M; Hamaoui, A; Zanone, P-G
2015-04-01
The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Konow, Nicolai; Roberts, Thomas J
2015-04-07
During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Majkráková, Miroslava; Papčo, Juraj; Zahorec, Pavol; Droščák, Branislav; Mikuška, Ján; Marušiak, Ivan
2016-09-01
The vertical reference system in the Slovak Republic is realized by the National Levelling Network (NLN). The normal heights according to Molodensky have been introduced as reference heights in the NLN in 1957. Since then, the gravity correction, which is necessary to determine the reference heights in the NLN, has been obtained by an interpolation either from the simple or complete Bouguer anomalies. We refer to this method as the "original". Currently, the method based on geopotential numbers is the preferred way to unify the European levelling networks. The core of this article is an analysis of different ways to the gravity determination and their application for the calculation of geopotential numbers at the points of the NLN. The first method is based on the calculation of gravity at levelling points from the interpolated values of the complete Bouguer anomaly using the CBA2G_SK software. The second method is based on the global geopotential model EGM2008 improved by the Residual Terrain Model (RTM) approach. The calculated gravity is used to determine the normal heights according to Molodensky along parts of the levelling lines around the EVRF2007 datum point EH-V. Pitelová (UELN-1905325) and the levelling line of the 2nd order NLN to Kráľova hoľa Mountain (the highest point measured by levelling). The results from our analysis illustrate that the method based on the interpolated value of gravity is a better method for gravity determination when we do not know the measured gravity. It was shown that this method is suitable for the determination of geopotential numbers and reference heights in the Slovak national levelling network at the points in which the gravity is not observed directly. We also demonstrated the necessity of using the precise RTM for the refinement of the results derived solely from the EGM2008.
Sand transportation and reverse patterns over leeward face of sand dune
NASA Astrophysics Data System (ADS)
Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning
2017-04-01
Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux decreases with height in the reversed direction. The height of 0.5 H is the height of vortex core in the reversed flow region. The vortex core is a critical point in the flow region where few particles are transited. In the reversed region, the reversed mass flux of sand particles is 25% of the mass flux in the flow direction. This research may contribute to scientific understanding of the mechanisms of sand motion and wind flow over leeward of dune and it is likely to be significant in desertification control.
Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.
Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo
2017-08-15
The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhou, Junwei; Chen, Shuangjing; Zhang, Hui
2018-06-01
To reduce the use of precious metals and maintain the catalytic activity for NH3 decomposition reaction, it is an effective way to construct bimetallic nanoparticles with special structures. In this paper, by using density functional theory methods, we investigated NH3 decomposition reaction on three types of core-shell nanoparticles M@Ni (M = Fe, Ru, Ir) with 13 core M atoms and 42 shell Ni atoms. The size of these three particles is about 1 nm. Benefit from alloying with Ru in this nanocluster, Ru@Ni core-shell nanoparticles exhibit catalytic activity comparable to that of single metal Ru, based on the analysis of the adsorption energy and potential energy diagram of NH3 decomposition, as well as N2 desorption processes. However, as for Fe@Ni and Ir@Ni core-shell nanoparticles, their catalytic activities are still unsatisfactory compared to the active metal Ru. In addition, in order to further explain the synergistic effect of bimetallic core-shell nanoparticles, the partial density of states were also calculated. The results show that d-band electrons provided by the core metal are the main factors affecting the entire catalytic process.
Potential microbial contamination during sampling of permafrost soil assessed by tracers
NASA Astrophysics Data System (ADS)
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.
2017-02-01
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Potential microbial contamination during sampling of permafrost soil assessed by tracers.
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S
2017-02-23
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Potential microbial contamination during sampling of permafrost soil assessed by tracers
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.
2017-01-01
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151
Precession effects on a liquid planetary core
NASA Astrophysics Data System (ADS)
Liu, Min; Li, Li-Gang
2018-02-01
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
Choy, Andrew Tsz Hang; Chan, Barbara Pui
2015-01-01
Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332
Verhoog, Roelof; Precigout, Claude; Stewart, Donald
1996-05-21
The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.
A Computational Methodology to Screen Activities of Enzyme Variants
Hediger, Martin R.; De Vico, Luca; Svendsen, Allan; Besenmatter, Werner; Jensen, Jan H.
2012-01-01
We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing. PMID:23284627
The Role of the Stratosphere in Explosive Deepening of Extratropical Cyclones
NASA Astrophysics Data System (ADS)
Knippertz, Peter; Wilbraham, Robert; Trzeciak, Tomek; Owen, Jenny; Odell, Luke; Fink, Andreas H.; Pinto, Joaquim G.
2014-05-01
Using a combination of an automatic cyclone tracking method and a special version of the classical pressure tendency equation (PTE), changes in surface core pressure of extra-tropical cyclones can be related to contributions from horizontal temperature advection, vertical motion and diabatic processes, i.e. mainly latent heat release in clouds. Here, the PTE is evaluated in 3°x3° boxes located over the cyclone positions at 6-hourly basis, thus following the movement of a given storm at each time step. PTE calculations are performed from the surface to 100 hPa. Previous work has shown that this approach can be used to quantify the contribution of diabatic processes to cyclone deepening in an automated way, and can easily be applied to large gridded datasets, in this case ERA-Interim reanalyses. In order to close the mass budget in the PTE, geopotential height tendencies at the upper integration boundary (usually 100 hPa) need to be taken into account. Older studies have assumed this term to be negligible, and this has been confirmed with modern re-analysis data for many explosively deepening storms. However, some historical storms show a remarkable contribution from this term, indicating a substantial warming of the levels above 100hPa. An outstanding example is the Braer Storm of January 1993, which reached a record minimum core pressure of 914 hPa near Iceland. A stepwise increase of the upper integration boundary reveals that substantial geopotential height tendencies reach above 1 hPa. This unusual behaviour appears to be related to the propagation of a deep planetary wave trough from North America towards the North Atlantic basin. A similar but somewhat less dramatic behaviour was found for cyclone Wiebke. Another interesting example is storm Emma, which managed to sustain substantial deepening rates despite adverse positive geopotential height tendencies at 100 hPa. Future work will include a more robust statistical analysis of this problem and a better understanding of the nature and physical mechanism of the stratospheric influence on explosive cyclogenesis.
[Nutritional status of school children from different socioeconomic levels].
Amigo, H; Bustos, P; Radrigán, M E; Ureta, E
1995-09-01
The aim of this work was to compare the nutritional status of children from low and high socioeconomic levels. Weight, height, mid arm circumference and tricipital skinfold thickness were measured in 1,842 children of low and 2,770 of high socioeconomic status. Mean weight, height, and mid arm muscular circumference were higher in children of high socioeconomic status. Also, growth failure and overweight had a higher frequency among children of low socioeconomic status. Mean weight, height and mid arm circumference were higher in males of both groups. Among children of low socioeconomic status, height/age ratios were lower in men and weight/height ratios were higher in women. These differences were not observed in children of high socioeconomic level. We conclude that adverse environmental conditions, lower physical activity and indigenous ancestors may alter the nutritional status of children of low socioeconomic levels.
Synthesis and metrology of conducting carbon nanotube assemblies
NASA Astrophysics Data System (ADS)
Longson, Timothy Jay
Since its discovery, the carbon nanotube (CNT) has been proposed as one of the ultimate materials for its electrical, thermal and mechanical properties due to its incredibly strong sp2 bonds, low defect density, and large aspect ratio. Many experimental results on individual CNTs have confirmed these outstanding theoretically predicted properties. However, scaling these properties to the macroscopic regime has proved to be challenging. This work focused on the synthesis and measurement of highly conducting, macroscopic, CNT assemblies. Scaling up the synthesis of vertically aligned multiwalled CNT (MWNT) forests was investigated through the development of a large, 100mm, wafer scale, cold wall chemical vapor deposition chamber. In addition to the synthesis, two distinct CNT assemblies have been investigated. A linear morphology where CNTs are strung in series for electrical transport (CNT wires) and a massively parallel 2D array of vertically aligned CNTs for Thermal Interface Material (TIM) applications. Poymer-CNT wire composites have been fabricated by developing a coaxial CNT core-polymer shell electrospinning technique. The core-shell interactions in this system have been studied by way of Hansen's solubility parameters. The most well defined CNT core was achieved using a core solvent that is semi-immiscible with the shell solution, yet still a solvent of the shell polymer. Electrical characterization of the resulting CNT core has shown a two orders of magnitude increase in conductivity over traditional, homogeneously mixed, electrospun CNT wires. A number of vertically aligned MWNT assemblies were studied for their thermal interface properties. Double-sided Silicon substrate (MWNT-Si-MWNT) TIM assemblies were characterized using a DC, 1D reference bar, thermal measurement technique. While attempts to control MWNT density via a micelle template technique produced only 'spaghetti like' CNTs, sputter deposited catalyst provided stark variations in array density. Relevant array morphologies such as density, height, and crystallinity were studied in conjunction with their thermal performance. A Euler buckling model was used to identify the transition between increasing and decreasing resistance with density over array height, these two regimes are explained by way of contact analysis. Self catalyzing Fecralloy substrate MWNT TIMs were studied in a similar vein to the Silicon based assemblies. This substrate was investigated because of its malleability, ease of CNT synthesis and increased CNT adhesion. The growth behavior was studied with respect to the array morphologies, i.e. array height, density, crystallinity, and diameter, while the contact resistance was evaluated using a DC, 1D reference bar technique. The best performing samples were found to have a factor of two increase over their Si counterparts. Temperature dependent thermal measurements offer insight into the interfacial phonon conduction physics and are found to agree with other temperature dependent studies, suggesting inelastic scattering at the MWNT-Cu interface. Due to the challenges associated with deliberately controlling a single array morphology, a statistical approach was used for identifying the influences of the multivariate array morphology on contact resistance. Showing the strongest correlation with array height, following a R ~ L-0.5. Several models were investigated to help explain this behavior, although little insight is gained over the empirical relations. To better characterize these MWNT TIM assemblies two experimental techniques were developed. A transient 3o thermal measurement technique was adapted to characterize the thermal performance of CNT TIMs, offering insight into the limiting resistance in a mulilayer material stack. The MWNT-growth substrate interface was found to dominate in the Si samples while the MWNT-opposing substrate interface dominated in the Fecralloy samples. These measurements strongly supported the DC thermal measurements and the qualitative observations of substrate adhesion. Additionally, a new technique for observing nano sized contacts was established by viewing contact loading through an electron transparent membrane, imaged under an SEM. The contrast mechanism is explained by a voltage contrast phenomenon developed by trapped charges at the interface. The resolution limits have been studied by way of electron beam interactions and the use of Monte Carlo simulations, showing nanometer resolution with appropriate experimental conditions. The real MWNT contact area was found to be less than 1/100th the apparent contact area even at moderate pressures and the number of contacting CNTs is approximately 1/10th the total number of CNTs. These results confirm experimental measurement values for van der Waals adhesion strengths and thermal interface resistance.
Deriving Temporal Height Information for Maize Breeding
NASA Astrophysics Data System (ADS)
Malambo, L.; Popescu, S. C.; Murray, S.; Sheridan, R.; Richardson, G.; Putman, E.
2016-12-01
Phenotypic data such as height provide useful information to crop breeders to better understand their field experiments and associated field variability. However, the measurement of crop height in many breeding programs is done manually which demands significant effort and time and does not scale well when large field experiments are involved. Through structure from motion (SfM) techniques, small unmanned aerial vehicles (sUAV) or drones offer tremendous potential for generating crop height data and other morphological data such as canopy area and biomass in cost-effective and efficient way. We present results of an on-going UAV application project aimed at generating temporal height metrics for maize breeding at the Texas A&M AgriLife Research farm in Burleson County, Texas. We outline the activities involved from the drone aerial surveys, image processing and generation of crop height metrics. The experimental period ran from April (planting) through August (harvest) 2016 and involved 36 maize hybrids replicated over 288 plots ( 1.7 Ha). During the time, crop heights were manually measured per plot at weekly intervals. Corresponding aerial flights were carried out using a DJI Phantom 3 Professional UAV at each interval and images captured processed into point clouds and image mosaics using Pix4D (Pix4D SA; Lausanne, Switzerland) software. LiDAR data was also captured at two intervals (05/06 and 07/29) to provide another source of height information. To obtain height data per plot from SfM point clouds and LiDAR data, percentile height metrics were then generated using FUSION software. Results of the comparison between SfM and field measurement height show high correlation (R2 > 0.7), showing that use of sUAV can replace laborious manual height measurement and enhance plant breeding programs. Similar results were also obtained from the comparison of SfM and LiDAR heights. Outputs of this project are helping plant breeders at Texas A&M automate routine height measurements in maize and quickly make actionable decisions and discover new hybrids.
NASA Astrophysics Data System (ADS)
Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg
2016-09-01
The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.
Three-point bending of honeycomb sandwich beams with facesheet perforations
NASA Astrophysics Data System (ADS)
Su, Pengbo; Han, Bin; Zhao, Zhongnan; Zhang, Qiancheng; Lu, Tian Jian
2017-12-01
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under three-point bending, both analytically and numerically. Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet (perforation ratio). While for large-scale engineering applications like the decks of cargo vehicles and transportation ships, the perforations are needed to facilitate the fabrication process (e.g., laser welding) as well as service maintenance, it is demonstrated that these perforations, when properly designed, can also enhance the resistance of the sandwich to bending. For illustration, fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs. Further, the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes: (1) bending failure, i.e., yielding of beam cross-section and buckling of top facesheet caused by bending moment; (2) shear failure, i.e., yielding and buckling of core webs due to shear forcing. The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios. As the perforation ratio is increased, the load of shear failure increases due to thickening core webs, while that of bending failure decreases due to the weakening bottom facesheet. Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal, leading to significantly enhanced failure load (up to 60% increase) relative to that of a non-perforated sandwich beam with equal mass.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying
2014-01-03
The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.
A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament
NASA Astrophysics Data System (ADS)
Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.
2014-12-01
We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan
2011-01-01
Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure. PMID:22125607
Comparison of dust-layer heights from active and passive satellite sensors
NASA Astrophysics Data System (ADS)
Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn
2018-05-01
Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data are lower by -1.097 km (-0.961 km) compared to the CALIOP geometric mean (cumulative extinction) height, and GOME-2 data are lower by -1.393 km (-0.818 km).
Designing Class Activities to Meet Specific Core Training Competencies: A Developmental Approach
ERIC Educational Resources Information Center
Guth, Lorraine J.; McDonnell, Kelly A.
2004-01-01
This article presents a developmental model for designing and utilizing class activities to meet specific Association for Specialists in Group Work (ASGW) core training competencies for group workers. A review of the relevant literature about teaching group work and meeting core training standards is provided. The authors suggest a process by…
Li, Tiansheng; Li, Mengjie; Hou, Linlin; Guo, Yameng; Wang, Lei; Sun, Guiqin; Chen, Li
2018-01-26
All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuya, Ray S.; Kitamura, Yoshimi; Shinnaga, Hiroko, E-mail: rsf@tokushima-u.ac.jp, E-mail: kitamura@isas.jaxa.jp, E-mail: hiroko.shinnaga@nao.ac.jp
2014-10-01
To study physical properties of the natal filament gas around the cloud core harboring an exceptionally young low-mass protostar GF 9-2, we carried out J = 1-0 line observations of {sup 12}CO, {sup 13}CO, and C{sup 18}O molecules using the Nobeyama 45 m telescope. The mapping area covers ∼ one-fifth of the whole filament. Our {sup 13}CO and C{sup 18}O maps clearly demonstrate that the core formed at the local density maxima of the filament, and the internal motions of the filament gas are totally governed by turbulence with Mach number of ∼2. We estimated the scale height of themore » filament to be H = 0.3-0.7 pc, yielding the central density of n {sub c} = 800-4200 cm{sup –3}. Our analysis adopting an isothermal cylinder model shows that the filament is supported by the turbulent and magnetic pressures against the radial and axial collapse due to self-gravity. Since both the dissipation timescales of the turbulence and the transverse magnetic fields can be comparable to the free-fall time of the filament gas of 10{sup 6} yr, we conclude that the local decay of the supersonic turbulence and magnetic fields made the filament gas locally unstable, hence making the core collapse. Furthermore, we newly detected a gas condensation with velocity width enhancement to ∼0.3 pc southwest of the GF 9-2 core. The condensation has a radius of ∼0.15 pc and an LTE mass of ∼5 M {sub ☉}. Its internal motion is turbulent with Mach number of ∼3, suggesting a gravitationally unbound state. Considering the uncertainties in our estimates, however, we propose that the condensation is a precursor of a cloud core, which would have been produced by the collision of the two gas components identified in the filament.« less
Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.; ...
2017-02-12
Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less
Windprofiler optimization using digital deconvolution procedures
NASA Astrophysics Data System (ADS)
Hocking, W. K.; Hocking, A.; Hocking, D. G.; Garbanzo-Salas, M.
2014-10-01
Digital improvements to data acquisition procedures used for windprofiler radars have the potential for improving the height coverage at optimum resolution, and permit improved height resolution. A few newer systems already use this capability. Real-time deconvolution procedures offer even further optimization, and this has not been effectively employed in recent years. In this paper we demonstrate the advantages of combining these features, with particular emphasis on the advantages of real-time deconvolution. Using several multi-core CPUs, we have been able to achieve speeds of up to 40 GHz from a standard commercial motherboard, allowing data to be digitized and processed without the need for any type of hardware except for a transmitter (and associated drivers), a receiver and a digitizer. No Digital Signal Processor chips are needed, allowing great flexibility with analysis algorithms. By using deconvolution procedures, we have then been able to not only optimize height resolution, but also have been able to make advances in dealing with spectral contaminants like ground echoes and other near-zero-Hz spectral contamination. Our results also demonstrate the ability to produce fine-resolution measurements, revealing small-scale structures within the backscattered echoes that were previously not possible to see. Resolutions of 30 m are possible for VHF radars. Furthermore, our deconvolution technique allows the removal of range-aliasing effects in real time, a major bonus in many instances. Results are shown using new radars in Canada and Costa Rica.
On the design and feasibility of a pneumatically supported actively guided space tower
NASA Astrophysics Data System (ADS)
Seth, Raj Kumar
2010-07-01
Space tethers have been investigated widely as a means to provide easy access to space. However, the design and construction of such a device presents significant unsolved technological challenges. An alternative approach is proposed to the construction of a space elevator that utilises a free-standing core structure to provide access to near space regions and to reduce the cost of space launch. The theoretical and experimental investigation of the bending of inflatable cylindrical cantilevered beams made of modem fabric materials provides the basis for the design of an inflatable space tower. Experimental model structures were deployed and tested in order to determine design guidelines for the core structure. The feasibility of the construction of a thin walled inflatable space tower of 20 km vertical extent comprised of pneumatically inflated sections that are actively controlled and stabilised to balance external disturbances and support the structure is discussed. The response of the structure under wind loads is analyzed and taken into account for determining design guidelines. Such an approach avoids problems associated with a space tether including material strength constraints, the need for in-space construction, the fabrication of a cable at least 50,000 km in length, and the ageing and meteorite damage effects associated with a thin tether or cable in Low Earth Orbit. A suborbital tower of 20 km height would provide an ideal mounting point where a geostationary orbital space tether could be attached without experiencing atmospheric turbulence and weathering in the lower atmosphere. The tower can be utilized as a platform for various scientific and space missions or as an elevator to carry payloads and tourists. In addition, space towers can significantly be utilized to generate electrical power by harvesting high altitude renewable energy sources. Keywords: Space Elevator, Inflatable Space Tower, Inflatable Structure, Inflatable Beam, Inflatable Multiple-beam Structure, Cantilevered Beam, Pneumatic Structures.
Modeling the transport of nitrogen in an NPP-2006 reactor circuit
NASA Astrophysics Data System (ADS)
Stepanov, O. E.; Galkin, I. Yu.; Sledkov, R. M.; Melekh, S. S.; Strebnev, N. A.
2016-07-01
Efficient radiation protection of the public and personnel requires detecting an accident-initiating event quickly. Specifically, if a heat-exchange tube in a steam generator is ruptured, the 16N radioactive nitrogen isotope, which contributes to a sharp increase in the steam activity before the turbine, may serve as the signaling component. This isotope is produced in the core coolant and is transported along the circulation circuit. The aim of the present study was to model the transport of 16N in the primary and the secondary circuits of a VVER-1000 reactor facility (RF) under nominal operation conditions. KORSAR/GP and RELAP5/Mod.3.2 codes were used to perform the calculations. Computational models incorporating the major components of the primary and the secondary circuits of an NPP-2006 RF were constructed. These computational models were subjected to cross-verification, and the calculation results were compared to the experimental data on the distribution of the void fraction over the steam generator height. The models were proven to be valid. It was found that the time of nitrogen transport from the core to the heat-exchange tube leak was no longer than 1 s under RF operation at a power level of 100% N nom with all primary circuit pumps activated. The time of nitrogen transport from the leak to the γ-radiation detection unit under the same operating conditions was no longer than 9 s, and the nitrogen concentration in steam was no less than 1.4% (by mass) of its concentration at the reactor outlet. These values were obtained using conservative approaches to estimating the leak flow and the transport time, but the radioactive decay of nitrogen was not taken into account. Further research concerned with the calculation of thermohydraulic processes should be focused on modeling the transport of nitrogen under RF operation with some primary circuit pumps deactivated.
Chaushu, Gavriel; Vered, Marilena; Mardinger, Ofer; Nissan, Joseph
2010-08-01
Cancellous bone-block allografts may contribute to improved initial implant stability during sinus augmentation in cases with posterior atrophic maxillary ridge height < or =4 mm. The present study histologically and histomorphometrically evaluates the application of cancellous bone-block allografts for maxillary sinus-floor augmentation. Thirty-one consecutive patients, 16 females and 15 males (age range, 25 to 65 years; mean age: 54 +/- 9 years) underwent sinus augmentation with simultaneous implant placement with cancellous bone-block allografts. After 9 months, a second-stage surgery was performed. The previous window location was determined. A cylindrical sample core was collected. All specimens were prepared for histologic and histomorphometric examinations. Seventy-two of 76 implants were clinically osseointegrated (94.7%). All patients received a fixed implant-supported prosthesis. The mean t values of newly formed bone, residual cancellous bone-block allograft, marrow and connective tissue were 26.1% +/- 15% (range: 10% to 58%); 24.7% +/- 19.4% (range: 0.6% to 71%), and 49.2% +/- 20.4% (range: 14.9% to 78.9%), respectively. No statistically significant histomorphometric differences regarding newly formed bone were found between genders (27.02% in males versus 25.68% in females; P = 0.446), ages (29.82% in subjects < or =40 years old versus 24.43% in subjects >40 years old; P = 0.293), presence of membrane perforations (25.5% in non-perforated sinuses versus 27.3% in perforated sinuses; P = 0.427), and residual alveolar bone height (25.85% for residual alveolar bone height <2 mm versus 26.48% for residual alveolar bone height of 2 to 4 mm; P = 0.473). The cancellous bone-block allograft is biocompatible and osteoconductive and permits new bone formation in sinus augmentations with simultaneous implant-placement procedures in extremely atrophic posterior maxillae.
Associations between height and blood pressure in the United States population
Bourgeois, Brianna; Watts, Krista; Thomas, Diana M.; Carmichael, Owen; Hu, Frank B.; Heo, Moonseong; Hall, John E.; Heymsfield, Steven B.
2017-01-01
Abstract The mechanisms linking short stature with an increase in cardiovascular and cerebrovascular disease risk remain elusive. This study tested the hypothesis that significant associations are present between height and blood pressure in a representative sample of the US adult population. Participants were 12,988 men and women from a multiethnic sample (age ≥ 18 years) evaluated in the 1999 to 2006 National Health and Nutrition Examination Survey who were not taking antihypertensive medications and who had complete height, weight, % body fat, and systolic and diastolic arterial blood pressure (SBP and DBP) measurements; mean arterial blood pressure and pulse pressure (MBP and PP) were calculated. Multiple regression models for men and women were developed with each blood pressure as dependent variable and height, age, race/ethnicity, body mass index, % body fat, socioeconomic status, activity level, and smoking history as potential independent variables. Greater height was associated with significantly lower SBP and PP, and higher DBP (all P < .001) in combined race/ethnic–sex group models beginning in the 4th decade. Predicted blood pressure differences between people who are short and tall increased thereafter with greater age except for MBP. Socioeconomic status, activity level, and smoking history did not consistently contribute to blood pressure prediction models. Height-associated blood pressure effects were present in US adults who appeared in the 4th decade and increased in magnitude with greater age thereafter. These observations, in the largest and most diverse population sample evaluated to date, provide support for postulated mechanisms linking adult stature with cardiovascular and cerebrovascular disease risk. PMID:29390353
Monna, F; Petit, C; Guillaumet, J P; Jouffroy-Bapicot, I; Blanchot, C; Dominik, J; Losno, R; Richard, H; Lévêque, J; Chateau, C
2004-02-01
The present study aims to document historical mining and smelting activities by means of geochemical and pollen analyses performed in a peat bog core collected around the Bibracte oppidum (Morvan, France), the largest settlement of the great Aeduan Celtic tribe (ca. 180 B.C. to 25 A.D.). The anthropogenic Pb profile indicates local mining operations starting from the Late Bronze Age, ca. cal. 1300 B.C. Lead inputs peaked at the height of Aeduan civilization and then decreased after the Roman conquest of Gaul, when the site was abandoned. Other phases of mining are recognized from the 11th century to modern times. They have all led to modifications in plant cover, probably related in part to forest clearances necessary to supply energy for mining and smelting. Zn, Sb, Cd, and Cu distributions may result from diffusional and biological processes or from the influence of groundwater and underlying mineral soil, precluding their interpretation for historical reconstruction. The abundance of mineral resources, in addition to the strategic location, might explain why early settlers founded the city of Bibracte at that particular place. About 20% of the anthropogenic lead record was accumulated before our era and about 50% before the 18th century, which constitutes a troublesome heritage. Any attempts to develop control strategies in accumulating environments should take into account past human activities in order to not overestimate the impact of contemporary pollution.
Vertical Jump and Leg Power Norms for Young Adults
ERIC Educational Resources Information Center
Patterson, David D.; Peterson, D. Fred
2004-01-01
Medical students and their spouses (N = 724) served as participants to create norm-referenced vertical jump values for active, healthy people ages 21-30. All tests were conducted and measured by the same individual during a campus fitness evaluation using a Vertec[TM] apparatus. Jump height was measured to the nearest 0.5 in. Mean jump height was…
Height, weight and body mass index of girls and boys in a rural school in Punjab India
USDA-ARS?s Scientific Manuscript database
All the students at this Bhagat Puran Singh Memorial School in Punjab, India were educated about the importance of caloric intake and physical activity. Body weight and height were recorded once a month for 12 consecutive months for 632 students, age 8-23 years (7584 observations). For US and Euro...
A UAV-based active AirCore system for measurements of greenhouse gases
NASA Astrophysics Data System (ADS)
Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin
2018-05-01
We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides this, we furthermore detected a CH4 hotspot in the coastal wetlands from a horizontal flight north to the dike, which demonstrates the potential of this new active AirCore method to measure at locations where other techniques have no practical access.
The effect of short-term isometric training on core/torso stiffness.
Lee, Benjamin; McGill, Stuart
2017-09-01
"Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
Body composition in childhood inflammatory bowel disease.
Wiskin, Anthony E; Wootton, Stephen A; Hunt, Toby M; Cornelius, Victoria R; Afzal, Nadeem A; Jackson, Alan A; Beattie, R Mark
2011-02-01
Little is known about the impact of disease and treatment on the pattern of growth in children with Inflammatory Bowel Disease (IBD). Significant deficits in height and weight in children with Crohn's disease have been reported but changes in fat and fat free mass are less well defined. This study aims to describe the height, weight and body composition of a cohort of children with IBD. Height, weight, skinfold thicknesses and bioelectrical impedance analysis was performed. Disease activity was assessed with clinical scoring systems. 55 children, median age 13.7 years (range 6.5-17.7) were studied. Median (25th, 75th percentile) Standard Deviation Score for BMI, Height and Weight were - 0.3 (- 0.97, 0.65), - 0.56 (- 1.42, 0.06), - 0.62 (- 1.43, 0.19). In Crohn's disease, using multiple regression analysis disease activity measured by PCDAI was significantly inversely related to fat free mass (β - 0.2, 95% CI -0.17, -0.03, p 0.005). Children with IBD were both under and overweight. Nutritional deficits were more common in Crohn's disease. Fat free mass was related to disease activity in children with Crohn's disease regardless of changes in weight. Weight or BMI may mask deficits in lean tissue in the presence of normal or increased proportions of body fat. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Tai-Yin
2018-06-01
Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.
Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel
2018-09-01
The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.
Scale Height variations with solar cycle in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis
2015-04-01
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species
2016-01-01
Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5′ untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool. PMID:27973777
Yoon, Hyun S; You, Joshua Sung H
2017-07-20
Postural core instability is associated with poor dynamic balance and a high risk of serious falls. Both neurodevelopmental treatment (NDT) and dynamic neuromuscular stabilization (DNS) core stabilization exercises have been used to improve core stability, but the outcomes of these treatments remain unclear. This study was undertaken to examine the therapeutic effects of NDT and DNS core stabilization exercises on muscular activity, core stability, and core muscle thickness. Ten participants (5 healthy adults; 5 hemiparetic stroke patients) were recruited. Surface electromyography (EMG) was used to determine core muscle activity of the transversus abdominis/internal oblique (TrA/IO), external oblique (EO), and rectus abdominis (RA) muscles. Ultrasound imaging was used to measure transversus abdominals/internal oblique (TrA/IO) thickness, and a pressure biofeedback unit (PBU) was used to measure core stability during the DNS and NDT core exercise conditions. Data are reported as median and range and were compared using nonparametric Mann - Whitney U test and Wilcoxon signed rank test at p< 0.05. Both healthy and hemiparetic stroke groups showed greater median EMG amplitude in the TrA/IO muscles, core stability, and muscle thickness values during the DNS exercise condition than during the NDT core exercise condition, respectively (p< 0.05). However, the relative changes in the EMG amplitude, core stability, and muscle thickness values were greater during the DNS exercise condition than during the NDT core exercise condition in the hemiparetic stroke patient group (p< 0.05). Our novel results provide the first clinical evidence that DNS is more effective than NDT in both healthy and hemiparetic stroke subjects to provide superior deep core muscle activation, core stabilization, and muscle thickness. Moreover, such advantageous therapeutic benefits of the DNS core stabilization exercise over the NDT exercise were more apparent in the hemiparetis stroke patients than normal controls.
Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992
NASA Technical Reports Server (NTRS)
Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.
2000-01-01
Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.
Experimental investigation of terahertz quantum cascade laser with variable barrier heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu
2014-04-28
We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less
Overshooting top behavior of three tornado-producing thunderstorms
NASA Technical Reports Server (NTRS)
Umenhofer, T. A.
1975-01-01
The behavior of overshooting tops and jumping cirrus observed in three tornado-producing thunderstorms during the 1974 Learjet Cloud-Truth experiment is discussed. An investigation of temporal changes in the heights of overshooting domes (conglomerations of overshooting tops with diameters less than 1 km) reveals several distinctive features associated with tornadic events. There is a gradual decrease in dome height prior to tornado touchdown. Minimum dome activity occurred 5 min after, 5.5 min before, and at approximately the same time as the tornadic event in the storms observed. In all cases, dramatic dome growth at a rate of 17 to 23 m/sec immediately followed the occurrence of the minimum dome heights. There is evidence that tornado production is insensitive to the pre-touchdown maximum dome heights between 1 and 3 km.
Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib
2017-01-01
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743
Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity
NASA Astrophysics Data System (ADS)
Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.
2016-12-01
Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.
Lewis, Sandra; Holmes, Paul; Woby, Steve; Hindle, Jackie; Fowler, Neil
2014-06-01
Patients with low back pain often demonstrate elevated paraspinal muscle activity compared to asymptomatic controls. This hyperactivity has been associated with a delayed rate of stature recovery following spinal loading tasks. The aim of this study was to investigate the changes in muscle activity and stature recovery in patients with chronic low back pain following an active rehabilitation programme. The body height recovery over a 40-min unloading period was assessed via stadiometry and surface electromyograms were recorded from the paraspinal muscles during standing. The measurements were repeated after patients had attended the rehabilitation programme and again at a six-month follow-up. Analysis was based on 17 patients who completed the post-treatment analysis and 12 of these who also participated in the follow-up. By the end of the six months, patients recovered significantly more height during the unloading session than at their initial visit (ES = 1.18; P < 0.01). Greater stature recovery immediately following the programme was associated with decreased pain (r = -0.55; P = 0.01). The increased height gain after six months suggests that delayed rates of recovery are not primarily caused by disc degeneration. Muscle activity did not decrease after treatment, perhaps reflecting a period of adaptation or altered patterns of motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yin, Yanting; de Waal, Parker W.; He, Yuanzheng; Zhao, Li-Hua; Yang, Dehua; Cai, Xiaoqing; Jiang, Yi; Melcher, Karsten; Wang, Ming-Wei; Xu, H. Eric
2017-01-01
The glucagon receptor (GCGR) belongs to the secretin-like (class B) family of G protein-coupled receptors (GPCRs) and is activated by the peptide hormone glucagon. The structures of an activated class B GPCR have remained unsolved, preventing a mechanistic understanding of how these receptors are activated. Using a combination of structural modeling and mutagenesis studies, we present here two modes of ligand-independent activation of GCGR. First, we identified a GCGR-specific hydrophobic lock comprising Met-338 and Phe-345 within the IC3 loop and transmembrane helix 6 (TM6) and found that this lock stabilizes the TM6 helix in the inactive conformation. Disruption of this hydrophobic lock led to constitutive G protein and arrestin signaling. Second, we discovered a polar core comprising conserved residues in TM2, TM3, TM6, and TM7, and mutations that disrupt this polar core led to constitutive GCGR activity. On the basis of these results, we propose a mechanistic model of GCGR activation in which TM6 is held in an inactive conformation by the conserved polar core and the hydrophobic lock. Mutations that disrupt these inhibitory elements allow TM6 to swing outward to adopt an active TM6 conformation similar to that of the canonical β2-adrenergic receptor complexed with G protein and to that of rhodopsin complexed with arrestin. Importantly, mutations in the corresponding polar core of several other members of class B GPCRs, including PTH1R, PAC1R, VIP1R, and CRFR1, also induce constitutive G protein signaling, suggesting that the rearrangement of the polar core is a conserved mechanism for class B GPCR activation. PMID:28356352
Yin, Yanting; de Waal, Parker W; He, Yuanzheng; Zhao, Li-Hua; Yang, Dehua; Cai, Xiaoqing; Jiang, Yi; Melcher, Karsten; Wang, Ming-Wei; Xu, H Eric
2017-06-16
The glucagon receptor (GCGR) belongs to the secretin-like (class B) family of G protein-coupled receptors (GPCRs) and is activated by the peptide hormone glucagon. The structures of an activated class B GPCR have remained unsolved, preventing a mechanistic understanding of how these receptors are activated. Using a combination of structural modeling and mutagenesis studies, we present here two modes of ligand-independent activation of GCGR. First, we identified a GCGR-specific hydrophobic lock comprising Met-338 and Phe-345 within the IC3 loop and transmembrane helix 6 (TM6) and found that this lock stabilizes the TM6 helix in the inactive conformation. Disruption of this hydrophobic lock led to constitutive G protein and arrestin signaling. Second, we discovered a polar core comprising conserved residues in TM2, TM3, TM6, and TM7, and mutations that disrupt this polar core led to constitutive GCGR activity. On the basis of these results, we propose a mechanistic model of GCGR activation in which TM6 is held in an inactive conformation by the conserved polar core and the hydrophobic lock. Mutations that disrupt these inhibitory elements allow TM6 to swing outward to adopt an active TM6 conformation similar to that of the canonical β 2 -adrenergic receptor complexed with G protein and to that of rhodopsin complexed with arrestin. Importantly, mutations in the corresponding polar core of several other members of class B GPCRs, including PTH1R, PAC1R, VIP1R, and CRFR1, also induce constitutive G protein signaling, suggesting that the rearrangement of the polar core is a conserved mechanism for class B GPCR activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Brorsson, Annelie; Willy, Richard W; Tranberg, Roy; Grävare Silbernagel, Karin
2017-11-01
It is unknown whether the height of a heel-rise performed in the single-leg standing heel-rise test 1 year after an Achilles tendon rupture (ATR) correlates with ankle biomechanics during walking, jogging, and jumping in the long-term. To explore the differences in ankle biomechanics, tendon length, calf muscle recovery, and patient-reported outcomes at a mean of 6 years after ATR between 2 groups that, at 1-year follow-up, had less than 15% versus greater than 30% differences in heel-rise height. Cohort study; Level of evidence, 3. Seventeen patients with less than 15% (<15% group) and 17 patients with greater than 30% (>30% group) side-to-side difference in heel-rise height at 1 year after ATR were evaluated at a mean (SD) 6.1 (2.0) years after their ATR. Ankle kinematics and kinetics were sampled via standard motion capture procedures during walking, jogging, and jumping. Patient-reported outcome was evaluated with Achilles tendon Total Rupture Score (ATRS), Physical Activity Scale (PAS), and Foot and Ankle Outcome Score (FAOS). Tendon length was evaluated by ultrasonography. The Limb Symmetry Index (LSI = [Injured Side ÷ Healthy Side] × 100) was calculated for side differences. The >30% group had significantly more deficits in ankle kinetics during all activities compared with patients in the <15% group at a mean of 6 years after ATR (LSI, 70%-149% and 84%-106%, respectively; P = .010-.024). The >30% group, compared with the <15% group, also had significantly lower values in heel-rise height (LSI, 72% and 95%, respectively; P < .001) and heel-rise work (LSI, 58% and 91%, respectively; P < .001) and significantly larger side-to-side difference in tendon length (114% and 106%, respectively; P = .012). Achilles tendon length correlated with ankle kinematic variables ( r = 0.38-0.44; P = .015-.027) whereas heel-rise work correlated with kinetic variables ( r = -0.57 to 0.56; P = .001-.047). LSI tendon length correlated negatively with LSI heel-rise height ( r = -0.41; P = .018). No differences were found between groups in patient-reported outcome ( P = .143-.852). Height obtained during the single-leg standing heel-rise test performed 1 year after ATR related to the long-term ability to regain normal ankle biomechanics. Minimizing tendon elongation and regaining heel-rise height may be important for the long-term recovery of ankle biomechanics, particularly during more demanding activities such as jumping.
Sturludóttir, Kristjana; Gestsdóttir, Sunna; Rafnsson, Rafn Haraldur; Jóhannsson, Erlingur
2015-11-01
Due to an unhealthy lifestyle, individuals with schizophrenia are at higher risk of morbidity compared to the general population. Studies have shown that physical activity can have positive effects on physical and mental health in these patients. The aim of the study was to evaluate the effects of a physical activity intervention on symptoms of schizophrenia, as well as on a number of physical and mental health variables. The aim was also to gain more understanding of the participants´ experience of the intervention with interviews. Seventeen individuals between the ages of 21-31, diagnosed with schizophrenia participated in the study. They exercised under professional supervision for a minimum of two sessions per week for 20 weeks and attended weekly lectures on a healthy lifestyle. The participants answered standardized questionnaires (PANSS, DASS, Rosenberg, CORE-OM, BHS, QOLS), and physical measurements (weight, height, body mass index, resting blood pressure, waist circumference and resting heart rate) were taken before and after the intervention. Six participants were interviewed after the intervention and asked about their experience. Negative and general psychiatric symptoms, depression, anxiety and stress scores decreased significantly whereas well-being, quality of life and physical activity increased (p<0.05). Apart from resting heart rate that decreased (p<0.05), physical measurements remained unchanged at the end of the intervention. The participants´ physical activity increased, their mental well-being improved, and they did not gain weight during the intervention period. Regular exercise under supervision and education about a healthy lifestyle are a beneficial adjunct to the primary treatment of people with schizophrenia.
Leadership skills are associated with health behaviours among Canadian children.
Ferland, Adam; Chu, Yen Li; Gleddie, Doug; Storey, Kate; Veugelers, Paul
2015-03-01
Life skills development is a core area for action in the Ottawa Charter for Health Promotion. The role of life skills in influencing health behaviours among children has received little attention in research. The purpose of this cross-sectional study was to investigate the relationship between self-leadership, as a model of life skills, and diet quality, physical activity, sleep duration and body weight. A provincially representative sample of 2328 grade 5 students (aged 10-11 years) was surveyed in Alberta, Canada. Self-leadership skills were assessed based on student responses indicating frequency of performing various leadership traits. Diet quality was based on responses to the Harvard Youth/Adolescent Food Frequency Questionnaire and physical activity on responses to the Physical Activity Questionnaire for Children. Sleep duration was assessed based on parent survey responses, and body mass index determined based on measured height and weight. Random effects regression models with children nested within schools were used to determine the associations. Higher self-leadership was associated with better diet quality (P < 0.01) and more physical activity (P < 0.01). Although not statistically significant, higher self-leadership was suggestive of healthier body weight status (OR = 0.91, 95% CI = 0.66, 1.27). No association of self-leadership with sleep duration was found. The incorporation of leadership skill development may enhance the effectiveness of school-based health promotion programs. This study reinforces the importance of leadership skill promotion in the promotion of healthy eating and active living, which may help curb the obesity epidemic in the short term, and prevention of chronic diseases and mounting healthcare costs in the long term. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.
2010-01-01
Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.
NASA Technical Reports Server (NTRS)
Schutz, Bob E.; Baker, Gregory A.
1997-01-01
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model
NASA Technical Reports Server (NTRS)
Gross, Richard S.
1993-01-01
The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.
2016-05-15
The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO{sub 2} (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti{sub 2}O{submore » 3} (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.« less
NASA Astrophysics Data System (ADS)
Baker, Gregory Allen
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
Development of the Joint NASA/NCAR General Circulation Model
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Rood, R. B.
1999-01-01
The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying
2014-01-01
The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285
Krupat, Edward
2018-03-01
The Core Entrustable Professional Activities for Entering Residency (Core EPAs) have taken a strong hold on undergraduate medical education (UME). This Perspective questions their value added and considers the utility of the Core EPAs along two separate dimensions: (1) the ways they change the content and focus of the goals of UME; and (2) the extent to which entrustable professional activity (EPA)-based assessment conforms to basic principles of measurement theory as practiced in the social sciences. Concerning content and focus, the author asks whether the 13 Core EPAs frame UME too narrowly, putting competencies into the background and overlooking certain aspirational, but important and measurable, objectives of UME. The author also discusses the unevenness of EPAs in terms of their breadth and their developmental status as core activities. Regarding measurement and assessment, the author raises concerns that the EPA metric introduces layers of inference that may cause distortions and hinder accuracy and rater agreement. In addition, the use of weak anchors and multidimensional scales is also of concern. The author concludes with a proposal for reframing the Core EPAs and Accreditation Council for Graduate Medical Education competencies into broadly defined sets of behaviors, referred to as "Tasks of Medicine," and calls for the development of a systematic and longitudinal research agenda. The author asserts that "slowing down when you should" applies to medical education as well as patient care, and calls for a reevaluation of the Core EPAs before further commitment to them.
Zhang, Yi; Ng, Huck-Hui; Erdjument-Bromage, Hediye; Tempst, Paul; Bird, Adrian; Reinberg, Danny
1999-01-01
ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation. PMID:10444591
The Last Interglacial sea level change: new evidence from the Abrolhos islands, West Australia
NASA Astrophysics Data System (ADS)
Eisenhauer, A.; Zhu, Z. R.; Collins, L. B.; Wyrwoll, K. H.; Eichstätter, R.
U-series ages measured by thermal ionisation mass spectrometry (TIMS) are reported for a Last Interglacial (LI) fossil coral core from the Turtle Bay, Houtman Abrolhos islands, western Australia. The core is 33.4m long the top of which is approximately 5ma.p.s.l. (above present sea level). From the 232Th concentrations and the reliability of the U-series ages, two sections in the core can be distinguished. Calculated U/Th ages in core sectionI (3.3ma.p.s.l to 11mb.p.s.l) vary between 124+/-1.7kaBP (3.3ma.p.s.l.) and 132.5+/-1.8ka (4mb.p.s.l., i.e. below present sea level), and those of sectionII (11-23mb.p.s.l.) between 140+/-3 and 214+/-5kaBP, respectively. The ages of core sectionI are in almost perfect chronological order, whereas for sectionII no clear age-depth relationship of the samples can be recognised. Further assessments based on the ∂234U(T) criteria reveal that none of the samples of core sectionII give reliable ages, whereas for core sectionI several samples can be considered to be moderately reliable within 2ka. The data of the Turtle Bay core complement and extend our previous work from the Houtman Abrolhos showing that the sea level reached a height of approximately 4mb.p.s.l at approximately 134kaBP and a sea level highstand of at least 3.3ma.p.s.l. at approximately 124kaBP. Sea level dropped below its present position at approximately 116kaBP. Although the new data are in general accord with the Milankovitch theory of climate change, a detailed comparison reveals considerable differences between the Holocenand LI sea level rise as monitored relative to the Houtman Abrolhos islands. These observation apparently add further evidence to the growing set of data that the LI sea level rise started earlier than recognised by SPECMAP chronology. A reconciliation of these contradictionary observations following the line of arguments presented by Crowley (1994) are discussed with respect to the Milankovitch theory.
The structure of melting mushy zones, with implications for Earth's inner core (Invited)
NASA Astrophysics Data System (ADS)
Bergman, M. I.; Huguet, L.; Alboussiere, T.
2013-12-01
Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting may also change the propagation of chimney convection. It remains unclear whether these changes will be observable seismically.
Establishing the Baseline Height and Weight Status of New Hampshire Head Start Children, 2007-2008
ERIC Educational Resources Information Center
Blaney, David D.; Flynn, Regina T.; Martin, Nancy R.; Anderson, Ludmila
2010-01-01
We report on a standardized survey of height and weight status of children attending the New Hampshire Head Start Program during the 2007-2008 school year. Baseline prevalence estimates of overweight and obesity are needed for obesity prevention activities and intervention. We selected a random one-stage cluster sample and screened 629 children…
Moradi, Maedeh; Maracy, Mohammad R; Esmaillzadeh, Ahmad; Surkan, Pamela J; Azadbakht, Leila
2018-05-31
Despite the overwhelming impact of dietary energy density on the quality of the entire diet, no research has investigated dietary energy density among lactating mothers. Hence, the present study was undertaken to assess the influence of maternal dietary energy density during lactation on infant growth. Three hundred healthy lactating mother-infant pairs were enrolled in the study. Detailed demographic information and dietary intake data were collected from the lactating mothers. Anthropometric features such as infant weight, height, and head circumference at birth and 2 and 4 months and mother's pregnancy and postpartum weight and height were derived from health center records. Data on physical activity were reported using the International Physical Activity Questionnaire. After adjusting for confounding variables, infant weight, length, weight-for-height, and head circumference at birth, 2 months, and 4 months did not show significant differences among four dietary energy density categories (all p values > 0.01). Our study showed no association among quartiles of dietary energy density among lactating mothers and infant weight, length, weight-for-height, and head circumference growth by 2 and 4 months of age.
Height-related growth declines in ponderosa pine are not due to carbon limitation.
Sala, Anna; Hoch, Günter
2009-01-01
Decreased gas exchange as trees grow tall has been proposed to explain age-related growth declines in trees. We examined changes of mobile carbon stores (starch, sugars and lipids) with tree height in ponderosa pine (Pinus ponderosa) at two sites differing in water availability, and tested the following hypotheses: (1) carbon supply does not become increasingly limited as trees grow tall; rather, the concentration of mobile carbon compounds increases with tree height reflecting greater reductions of carbon sink activities relative to carbon assimilation; and (2) increases of stored mobile carbon compounds with tree height are greater in drier sites. Height-related growth reductions were associated with significant increases of non-structural carbohydrates (NSC) and lipid concentrations in all tissues in the upper canopy and of NSC in the bole. Lipid concentrations in the bole decreased with tree height, but such decrease is not necessarily inconsistent with non-limiting carbon supply in tall trees. Furthermore, we found stronger increases of mobile carbon stores with tree height at the dry site relative to the moist site. Our results provide first direct evidence that carbon supply does not limit growth in tall trees and that decreases of water availability might negatively impact growth processes more than net-photosynthesis.
Effect of inhaled glucocorticoids in childhood on adult height.
Kelly, H William; Sternberg, Alice L; Lescher, Rachel; Fuhlbrigge, Anne L; Williams, Paul; Zeiger, Robert S; Raissy, Hengameh H; Van Natta, Mark L; Tonascia, James; Strunk, Robert C
2012-09-06
The use of inhaled glucocorticoids for persistent asthma causes a temporary reduction in growth velocity in prepubertal children. The resulting decrease in attained height 1 to 4 years after the initiation of inhaled glucocorticoids is thought not to decrease attained adult height. We measured adult height in 943 of 1041 participants (90.6%) in the Childhood Asthma Management Program; adult height was determined at a mean (±SD) age of 24.9±2.7 years. Starting at the age of 5 to 13 years, the participants had been randomly assigned to receive 400 μg of budesonide, 16 mg of nedocromil, or placebo daily for 4 to 6 years. We calculated differences in adult height for each active treatment group, as compared with placebo, using multiple linear regression with adjustment for demographic characteristics, asthma features, and height at trial entry. Mean adult height was 1.2 cm lower (95% confidence interval [CI], -1.9 to -0.5) in the budesonide group than in the placebo group (P=0.001) and was 0.2 cm lower (95% CI, -0.9 to 0.5) in the nedocromil group than in the placebo group (P=0.61). A larger daily dose of inhaled glucocorticoid in the first 2 years was associated with a lower adult height (-0.1 cm for each microgram per kilogram of body weight) (P=0.007). The reduction in adult height in the budesonide group as compared with the placebo group was similar to that seen after 2 years of treatment (-1.3 cm; 95% CI, -1.7 to -0.9). During the first 2 years, decreased growth velocity in the budesonide group occurred primarily in prepubertal participants. The initial decrease in attained height associated with the use of inhaled glucocorticoids in prepubertal children persisted as a reduction in adult height, although the decrease was not progressive or cumulative. (Funded by the National Heart, Lung, and Blood Institute and the National Center for Research Resources; CAMP ClinicalTrials.gov number, NCT00000575.).
Effects of ambient temperature on mechanomyography of resting quadriceps muscle.
McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L
2013-03-01
It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordeeva, K.V.
1963-11-01
A study was made of the concentration of blood plasma fibrinogen in relation to the changes of fibrinogenase activity. Dogs with radiation sickness (severe, moderately severe, and mild) served as experimental animals. A rise of the blood plasma fibrinogen content was observed in dogs with severe and moderately severe radiation sickness. This phenomenon is especially pronounced at the height of radiation sickness. The activity of fibrinogenase in severe radiation sickness was considerably decreased at the initial period and at the height of the disease. The rise of fibrinogen content in severe and moderately severe radiation sickness should be regarded asmore » an adaptive reaction directed to control hemorrhages, not as the sequence of raduced fibrinogenase activity. (auth)« less
Gulyás, Balázs; Tóth, Miklós; Schain, Martin; Airaksinen, Anu; Vas, Adám; Kostulas, Konstantinos; Lindström, Per; Hillert, Jan; Halldin, Christer
2012-09-15
Although there is increasing evidence for microglial activation after an ischaemic stroke in the infarct core and the peri-infarct region, the "evolution" of the process in stroke patients is poorly known. Using PET and [((11))C]vinpocetine, we measured the regional changes of TSPO in the brain of nine ischaemic stroke patients up to 14weeks after the insult. Already a week after stroke there was an increased radioligand uptake, indicating the up-regulation of TSPO and the presence of activated microglia, in both the ischaemic core and the peri-infarct zone. This increased activation showed a steady decrease with post stroke time. The proportion between %SUV values in the peri-infarct zone and the ischaemic core increased with time. There were no time-dependent TSPO activity changes in other regions, not affected directly by the stroke. The present observations demonstrate that increased regional microglia activation, as a consequence of stroke, can be visualised with PET, using the TSPO molecular imaging biomarker [((11))C]vinpocetine. The evolution of this microglial activation shows a time dependent decrease the gradient of which is different between the peri-infarct zone and the ischaemic core. The findings indicate an increased microglial activation in the peri-stroke region for several weeks after the insult. Copyright © 2012 Elsevier B.V. All rights reserved.
Guo, Michael; Liu, Zun; Willen, Jessie; Shaw, Cameron P; Richard, Daniel; Jagoda, Evelyn; Doxey, Andrew C; Hirschhorn, Joel; Capellini, Terence D
2017-12-05
GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1 , we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.
NASA Technical Reports Server (NTRS)
Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.
1995-01-01
The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
Chuo, Yu-Jung
2014-01-01
Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048
Compliance control for a hydraulic bouncing system.
Chen, Guangrong; Wang, Junzheng; Wang, Shoukun; Zhao, Jiangbo; Shen, Wei
2018-05-17
This paper is to reduce the contact impact, control the leg stiffness and bouncing height. Firstly, the combining position/force active compliance control was involved in the deceleration phase to decrease the impact force and improve the leg compliance capacity. Then a reasonable velocity control of cylinder was addressed to control the bouncing height to the given value in the acceleration phase. Due to the model uncertainties and disturbances in the deceleration and acceleration phase, a near inverse like controller with a proportional and differential control (PD) was added into the velocity control of acceleration phase to compensate the bouncing height control error. Finally, the effectiveness of proposed controller was validated by experiments. Experimental results showed the impact force could be reduced effectively and a significant bouncing height control performance could be achieved. The influences of initial energy, preload of spring and velocity of cylinder on the bouncing height were addressed as well. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Mattie, Johanne; Borisoff, Jaimie; Miller, William C; Noureddin, Borna
2017-01-01
An ultralight manual wheelchair that allows users to independently adjust rear seat height and backrest angle during normal everyday usage was recently commercialized. Prior research has been performed on wheelchair tilt, recline, and seat elevation use in the community, however no such research has been done on this new class of manual ultralight wheelchair with "on the fly" adjustments. The objective of this pilot study was to investigate and characterize the use of the two adjustable seating functions available on the Elevation™ ultralight dynamic wheelchair during its use in the community. Eight participants had data loggers installed onto their own wheelchair for seven days to measure rear seat height, backrest angle position, occupied sitting time, and distance traveled. Analysis of rear seat height and backrest adjustment data revealed considerable variability in the frequency of use and positions used by participants. There was a wide spread of mean daily rear seat heights among participants, from 34.1 cm to 46.7 cm. Two sub-groups of users were further identified: those who sat habitually at a single typical rear seat height, and those who varied their rear seat height more continuously. Findings also showed that participants used the rear seat height adjustment feature significantly more often than the backrest adjustment feature. This obvious contrast in feature use may indicate that new users of this class of wheelchair may benefit from specific training. While the small sample size and exploratory nature of this study limit the generalizability of our results, our findings offer a first look at how active wheelchairs users are using a new class of ultralight wheelchair with "on the fly" seating adjustments in their communities. Further studies are recommended to better understand the impact of dynamic seating and positioning on activity, participation and quality of life.
Mattie, Johanne; Borisoff, Jaimie; Miller, William C.; Noureddin, Borna
2017-01-01
An ultralight manual wheelchair that allows users to independently adjust rear seat height and backrest angle during normal everyday usage was recently commercialized. Prior research has been performed on wheelchair tilt, recline, and seat elevation use in the community, however no such research has been done on this new class of manual ultralight wheelchair with “on the fly” adjustments. The objective of this pilot study was to investigate and characterize the use of the two adjustable seating functions available on the Elevation™ ultralight dynamic wheelchair during its use in the community. Eight participants had data loggers installed onto their own wheelchair for seven days to measure rear seat height, backrest angle position, occupied sitting time, and distance traveled. Analysis of rear seat height and backrest adjustment data revealed considerable variability in the frequency of use and positions used by participants. There was a wide spread of mean daily rear seat heights among participants, from 34.1 cm to 46.7 cm. Two sub-groups of users were further identified: those who sat habitually at a single typical rear seat height, and those who varied their rear seat height more continuously. Findings also showed that participants used the rear seat height adjustment feature significantly more often than the backrest adjustment feature. This obvious contrast in feature use may indicate that new users of this class of wheelchair may benefit from specific training. While the small sample size and exploratory nature of this study limit the generalizability of our results, our findings offer a first look at how active wheelchairs users are using a new class of ultralight wheelchair with “on the fly” seating adjustments in their communities. Further studies are recommended to better understand the impact of dynamic seating and positioning on activity, participation and quality of life. PMID:28278254
Development of SiO2@TiO2 core-shell nanospheres for catalytic applications
NASA Astrophysics Data System (ADS)
Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.
2018-05-01
Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.
Arch-Taping Techniques for Altering Navicular Height and Plantar Pressures During Activity
Newell, Tim; Simon, Janet; Docherty, Carrie L.
2015-01-01
Context Arch tapings have been used to support the arch by increasing navicular height. Few researchers have studied navicular height and plantar pressures after physical activity. Objective To determine if taping techniques effectively support the arch during exercise. Design Crossover study. Setting Athletic training research laboratory. Patients or Other Participants Twenty-five individuals (13 men, 12 women; age = 20.0 ± 1.0 years, height = 172.3 ± 6.6 cm, mass = 70.1 ± 10.2 kg) with a navicular drop of more than 8 mm (12.9 ± 3.3 mm) volunteered. Intervention(s) All individuals participated in 3 days of testing, with 1 day for each tape condition: no tape, low dye, and navicular sling. On each testing day, navicular height and plantar pressures were measured at 5 intervals: baseline; posttape; and after 5, 10, and 15 minutes of running. The order of tape condition was counterbalanced. Main Outcome Measure(s) The dependent variables were navicular height in millimeters and plantar pressures in kilopascals. Plantar pressures were divided into 5 regions: medial forefoot, lateral forefoot, lateral midfoot, lateral rearfoot, and medial rearfoot. Separate repeated-measures analyses of variance were conducted for each dependent variable. Results Navicular height was higher immediately after application of the navicular-sling condition (P = .004) but was reduced after 5 minutes of treadmill running (P = .12). We observed no differences from baseline to posttape for navicular height for the low-dye (P = .30) and no-tape conditions (P = .25). Both the low-dye and navicular-sling conditions increased plantar pressures in the lateral midfoot region compared with the no-tape condition. The low-dye condition created decreased pressure in the medial and lateral forefoot regions compared with the no-tape condition. All changes were identified immediately after application and were maintained during running. No changes were noted in plantar pressures for the no-tape condition (P > .05). Conclusions Both taping techniques effectively changed plantar pressures in the lateral midfoot, and these changes were sustained throughout the 15 minutes of exercise. PMID:26098272
40 CFR 35.6230 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Response Actions Core Program Cooperative Agreements § 35.6230 Application requirements. To receive a Core... number of products to be completed, and a schedule for implementation. Eligible activities under Core... to sustain and increase recipient involvement in CERCLA implementation, and the impact of Core...
40 CFR 35.6230 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Response Actions Core Program Cooperative Agreements § 35.6230 Application requirements. To receive a Core... number of products to be completed, and a schedule for implementation. Eligible activities under Core... to sustain and increase recipient involvement in CERCLA implementation, and the impact of Core...
Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang
2013-01-01
IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127
NASA Astrophysics Data System (ADS)
Pruna, A.; Shao, Q.; Kamruzzaman, M.; Li, Y. Y.; Zapien, J. A.; Pullini, D.; Busquets Mataix, D.; Ruotolo, A.
2017-01-01
Novel hybrid core-shell nanoarchitectures were fabricated by a simple two-step electrochemical approach: first ZnO nanorod core was electrodeposited from Zn(NO3)2 solution; further, the core nanoarray was coated with a shell based on polypyrrole hybridized with graphene oxide by electropolymerization. The properties of the core/shell nanoarchitectures were studied as a function of the core properties induced by electrodeposition parameters. The ZnO nanostructures showed improved crystallinity and c-axis preferred orientation with increasing cathodic deposition potential while the increased deposition duration resulted in a morphology transition from nanorod to pyramidal shape. The electrochemical activity of the core/shell arrays was found to increase with the deposition potential of ZnO core but decreased when morphology changed from nanorod to pyramid shape. The photocatalytic results showed improved activity for the core/hybrid shell nanoarrays with respect to ZnO and ZnO/PPy ones. The degradation rate for methylene blue decreased with prolonged deposition duration of the core. The obtained results highlight the importance of electrochemical tuning of ZnO-based core/shell nanoarrays for improved performance in electrochemical and photocatalytic applications.
Numerical simulations and observations of surface wave fields under an extreme tropical cyclone
Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.
2009-01-01
The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.
Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice.
Wang, Xueyan; Jia, Melissa H; Ghai, Pooja; Lee, Fleet N; Jia, Yulin
2015-12-01
Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a United States Department of Agriculture rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene, Pi-ta, marker and was genotyped with 156 simple sequence repeat (SSR) markers. Disease reactions to Magnaporthe oryzae, the causal agent of rice blast disease, were evaluated under greenhouse and field conditions, and heading date, plant height, paddy and brown seed weight in two field environments were analyzed, using an association mapping approach. A total of 21 SSR markers distributed among rice chromosomes 2 to 12 were associated with blast resistance, and 16 SSR markers were associated with seed weight, heading date, and plant height. Most noticeably, shorter plants were significantly correlated with resistance to blast, rice genomes with Pi-ta were associated with lighter seed weights, and the susceptible alleles of RM171 and RM6544 were associated with heavier seed weight. These findings unraveled a complex relationship between disease resistance and yield-related components.
Alrajih, Shuaa; Ward, Jamie
2014-05-01
The relative proportion of the internal features of a face (the facial width-to-height ratio, FWH) has been shown to be related to individual differences in behaviour in males, specifically competitiveness and aggressiveness. In this study, we show that the Chief Executive Officers (CEOs) of the leading UK businesses have greater FWHs than age- and sex-matched controls. We demonstrate that perceivers, naive as to the nature of the stimuli, rate the faces of CEOs as higher in dominance or success, and that ratings of dominance or success are themselves correlated with the FWH ratio. We find no association with other inferred traits such as trustworthiness, attraction or aggression. The latter is surprising given previous research demonstrating a link between FWH and ratings of aggression. We speculate that the core association may be between FWH and drive for dominance or power, but this can be interpreted as aggression only in particular circumstances (e.g., when the stimuli are comprised of faces of young, as opposed to middle-aged, men). © 2013 The British Psychological Society.
Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen
2018-03-09
Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.
Associations between height and blood pressure in the United States population.
Bourgeois, Brianna; Watts, Krista; Thomas, Diana M; Carmichael, Owen; Hu, Frank B; Heo, Moonseong; Hall, John E; Heymsfield, Steven B
2017-12-01
The mechanisms linking short stature with an increase in cardiovascular and cerebrovascular disease risk remain elusive. This study tested the hypothesis that significant associations are present between height and blood pressure in a representative sample of the US adult population.Participants were 12,988 men and women from a multiethnic sample (age ≥ 18 years) evaluated in the 1999 to 2006 National Health and Nutrition Examination Survey who were not taking antihypertensive medications and who had complete height, weight, % body fat, and systolic and diastolic arterial blood pressure (SBP and DBP) measurements; mean arterial blood pressure and pulse pressure (MBP and PP) were calculated. Multiple regression models for men and women were developed with each blood pressure as dependent variable and height, age, race/ethnicity, body mass index, % body fat, socioeconomic status, activity level, and smoking history as potential independent variables.Greater height was associated with significantly lower SBP and PP, and higher DBP (all P < .001) in combined race/ethnic-sex group models beginning in the 4th decade. Predicted blood pressure differences between people who are short and tall increased thereafter with greater age except for MBP. Socioeconomic status, activity level, and smoking history did not consistently contribute to blood pressure prediction models.Height-associated blood pressure effects were present in US adults who appeared in the 4th decade and increased in magnitude with greater age thereafter. These observations, in the largest and most diverse population sample evaluated to date, provide support for postulated mechanisms linking adult stature with cardiovascular and cerebrovascular disease risk. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Wang, Yang; Zhou, Ying; Zuo, Jian
2018-01-01
Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495
Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.
2015-01-01
Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.
Comparative analysis of linear motor geometries for Stirling coolers
NASA Astrophysics Data System (ADS)
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Weathering process in Sør Rondane Mountains, East Antarctica
NASA Astrophysics Data System (ADS)
Kanamaru, T.; Suganuma, Y.; Oiwane, H.; Miura, M.; Okuno, J.; Hayakawa, H.
2016-12-01
Weathering process under the hyper-arid and hypothermal environment is a key to understand the geomorphogic process and landscape evolution in Antarctica and on Mars. A nunber of studies have focused on weathering process of basaltic rocks in Antarctica, however, the nature of the weathering process of plutonic type rock, a common rock type on the Earth, have been less focused and remain unclear. Here, we report the physical/chemical weathering process of the granitic rocks obtained from Dronning Maud Land in East Antarctica based on a multiplicity of petrological approaches. Loss on Ignition (LOI) and major element composition of the crust and core of the rock samples indicate that chemical weathering process in this area seems to be very limited. The microscopic observations and laser-Raman micro spectroscopy for thin sections from the crust and core indicate that goethite grains are formed mainly in the vein around the crust, which is consistent with the higher Fe3+/Fe2+ contrast from the core to crust. A negative correlation between the rock hardness and color strength index (CSI) values also indicate that crust of rock samples tend to less hard than core due to cracking of the rock samples and following goethite formation. On the other hand, EPMA analysis indicates that original Fe-Ti oxide grains in the core of rock samples are damaged by weathering, and altered to hematite, and to non-stoichiometric Fe-Ti compound associated with ilmenite grans in case of the higher relative height samples. These reveal that the weathering process of the plutonic rocks under the hyper-cold and hypothermal environment are mainly controlled by oxidation, including iron hydroxide formation in the veins formed by mechanical distraction, and Fe-Ti oxide alteration in rock interior.
Lockhart, Tamara L; Jamieson, Christopher P; Steinman, Alan M; Giesbrecht, Gordon G
2005-10-01
Personal floatation devices (PFDs) differ in whether they maintain the head out of the water or allow the dorsum of the head to be immersed. Partial head submersion may hasten systemic cooling, incapacitation, and death in cold water. Six healthy male volunteers (mean age = 26.8 yr; height = 184 cm; weight = 81 kg; body fat = 20%) were immersed in 10 degrees C water for 65 min, or until core temperature = 34 degrees C, under three conditions: PFD#1 maintained the head and upper chest out of the water; PFD#2 allowed the dorsal head and whole body to be immersed; and an insulated drysuit (control) allowed the dorsal head to be immersed. Mental performance tests included: logic reasoning test; Stroop word-color test; digit symbol coding; backward digit span; and paced auditory serial addition test (PASAT). Core cooling was significantly faster for PFD#2 (2.8 +/- 1.6 degrees C x h(-1)) than for PFD#1 (1.5 +/- 0.7 degrees C x h(-1)) or for the drysuit (0.4 +/- 0.2 degrees C x h(-1)). Although no statistically significant effects on cognitive performance were noted for the individual PFDs and drysuit, when analyzed as a group, four of the tests of cognitive performance (Stroop word-color, digit symbol coding, backward digit span, and PASAT) showed significant correlations between decreasing core temperature to 34 degrees C and diminished cognitive performance. Performance in more complicated mental tasks was adversely affected as core temperature decreased to 34 degrees C. The PFD that kept the head and upper chest out of the water preserved body heat and mental performance better than the PFD that produced horizontal flotation.
Freitag, Sonja
2014-01-01
Objectives: To examine the influence of the two following factors on the proportion of time that nurses spend in a forward-bending trunk posture: (i) the bed height during basic care activities at the bedside and (ii) the work method during basic care activities in the bathroom. A further aim was to examine the connection between the proportion of time spent in a forward-bending posture and the perceived exertion. Methods: Twelve nurses in a geriatric nursing home each performed a standardized care routine at the bedside and in the bathroom. The CUELA (German abbreviation for ‘computer-assisted recording and long-term analysis of musculoskeletal loads’) measuring system was used to record all trunk inclinations. Each participant conducted three tests with the bed at different heights (knee height, thigh height, and hip height) and in the bathroom, three tests were performed with different work methods (standing, kneeling, and sitting). After each test, participants rated their perceived exertion on the 15-point Borg scale (6 = no exertion at all and 20 = exhaustion). Results: If the bed was raised from knee to thigh level, the proportion of time spent in an upright position increased by 8.2% points. However, the effect was not significant (P = 0.193). Only when the bed was raised to hip height, there was a significant increase of 19.8% points (reference: thigh level; P = 0.003) and 28.0% points (reference: knee height; P < 0.001). Bathroom tests: compared with the standing work method, the kneeling and sitting work methods led to a significant increase in the proportion of time spent in an upright posture, by 19.4% points (P = 0.003) and 25.7% points (P < 0.001), respectively. The greater the proportion of time spent in an upright position, the lower the Borg rating (P < 0.001) awarded. Conclusions: The higher the proportion of time that nursing personnel work in an upright position, the less strenuous they perceive the work to be. Raising the bed to hip height and using a stool in the bathroom significantly increase the proportion of time that nursing personnel work in an upright position. Nursing staff can spend a considerably greater proportion of their time in an ergonomic posture if stools and height-adjustable beds are provided in healthcare institutions. PMID:24371043
Freitag, Sonja; Seddouki, Rachida; Dulon, Madeleine; Kersten, Jan Felix; Larsson, Tore J; Nienhaus, Albert
2014-04-01
To examine the influence of the two following factors on the proportion of time that nurses spend in a forward-bending trunk posture: (i) the bed height during basic care activities at the bedside and (ii) the work method during basic care activities in the bathroom. A further aim was to examine the connection between the proportion of time spent in a forward-bending posture and the perceived exertion. Twelve nurses in a geriatric nursing home each performed a standardized care routine at the bedside and in the bathroom. The CUELA (German abbreviation for 'computer-assisted recording and long-term analysis of musculoskeletal loads') measuring system was used to record all trunk inclinations. Each participant conducted three tests with the bed at different heights (knee height, thigh height, and hip height) and in the bathroom, three tests were performed with different work methods (standing, kneeling, and sitting). After each test, participants rated their perceived exertion on the 15-point Borg scale (6 = no exertion at all and 20 = exhaustion). If the bed was raised from knee to thigh level, the proportion of time spent in an upright position increased by 8.2% points. However, the effect was not significant (P = 0.193). Only when the bed was raised to hip height, there was a significant increase of 19.8% points (reference: thigh level; P = 0.003) and 28.0% points (reference: knee height; P < 0.001). Bathroom tests: compared with the standing work method, the kneeling and sitting work methods led to a significant increase in the proportion of time spent in an upright posture, by 19.4% points (P = 0.003) and 25.7% points (P < 0.001), respectively. The greater the proportion of time spent in an upright position, the lower the Borg rating (P < 0.001) awarded. The higher the proportion of time that nursing personnel work in an upright position, the less strenuous they perceive the work to be. Raising the bed to hip height and using a stool in the bathroom significantly increase the proportion of time that nursing personnel work in an upright position. Nursing staff can spend a considerably greater proportion of their time in an ergonomic posture if stools and height-adjustable beds are provided in healthcare institutions.
Magnetic Roots and the Driving of Extended Coronal Heating
NASA Technical Reports Server (NTRS)
Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.; Harvey, Karen L.; Rabin, Douglas M.; Shimizu, T.
1998-01-01
We report results from a continuation of a previous study, in which we found large bright coronal loops within active regions and extending from active regions that have one end rooted near an island of included magnetic polarity that is a site of enhanced coronal heating and microflares. This suggested that magnetic activity such as microflaring results in enhanced heating in both the compact core field around the island and in the large loops extending from it. We might expect that the intensity variations due to enhanced heating in the compact and extended structures would be correlated. However, although some ex- tended loops do respond to the largest events taking place in the core fields near their feet, they do not show a clear response to most smaller individual events nor to the overall envelope of coronal heating activity in the core fields at their feet as determined from longer-term observations. Thus, while it is clear that the extended loops' heating is being driven from their ends at the magnetic islands, much of this heating is apparently by some form of footpoint activity that is not strongly coupled to the heating in the footpoint core fields. One possibility is that the remote heating in the extended loops is driven by reconnection at the magnetic null over the island, and that this reconnection is driven mainly by core-field activity that produces little coronal heating within the core field itself, perhaps in the manner of the numerical simulations by Karpen, Antiochos, and DeVore.
NASA Astrophysics Data System (ADS)
Xiao, Jian-Hua; Huang, Wei-Qing; Hu, Yong-sheng; Zeng, Fan; Huang, Qin-Yi; Zhou, Bing-Xin; Pan, Anlian; Li, Kai; Huang, Gui-Fang
2018-02-01
High photocatalytic activity and photostability are the pursuit of the goal for designing promising photocatalysts. Herein, using ZnO to encapsulate ZnS nanoparticles is proposed as an effective strategy to enhance photocatalytic activity and anti-photocorrosion. The ZnS/ZnO core/shell heterostructures are obtained via an annealing treatment of ZnS nanoparticles produced by a facile wet chemical approach. Due to its small size, the nascent cubic sphalerite ZnS (s-ZnS) converts into a hexagonal wurtzite ZnS (w-ZnS)/ZnO core/shell structure after annealing treatment. In situ oxidation leads to increasing ZnO, simultaneously decreasing the w-ZnS content in the resultant w-ZnS/ZnO with thermal annealing time. The w-ZnS/ZnO core/shell heterostructures show high photocatalytic activity, demonstrated by the photodegradation rate of methylene blue being up to ten-fold and seven-fold higher than that of s-ZnS under UV and visible light irradiation, respectively, and the high capability of degrading rhodamine B. The enhanced photocatalytic activity may be attributed to the large specific surface and improved charge carrier separation at the core/shell interface. Moreover, it displays high photostability owing to the protection of the ZnO shell, greatly inhibiting the photocorrosion of ZnS. This facile in situ oxidation is effective and easily scalable, providing opportunities for developing novel core/shell structure photocatalysts with high activity and photostability.
River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front
NASA Astrophysics Data System (ADS)
Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui
2017-06-01
To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.
Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.
Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta
2018-06-22
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.
Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; ...
2016-01-06
A near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. We achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb 3+ ) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We also demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogeneticmore » neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.« less
Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery
NASA Astrophysics Data System (ADS)
Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan
2013-11-01
A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.
NASA Astrophysics Data System (ADS)
Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman
2016-09-01
In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.
ERIC Educational Resources Information Center
Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.
2015-01-01
Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…
Mesoporous activated carbon from corn stalk core for lithium ion batteries
NASA Astrophysics Data System (ADS)
Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce
2018-04-01
A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.
Araujo, Simone; Cohen, Daniel; Hayes, Lawrence
2015-03-29
Core stability training (CST) has increased in popularity among athletes and the general fitness population despite limited evidence CST programmes alone lead to improved athletic performance. In female athletes, neuromuscular training combining balance training and trunk and hip/pelvis dominant CST is suggested to reduce injury risk, and specifically peak vertical ground reaction forces (vGRF) in a drop jump landing task. However, the isolated effect of trunk dominant core stability training on vGRF during landing in female athletes had not been evaluated. Therefore, the objective of this study was to evaluate landing kinetics during a drop jump test following a CST intervention in female capoeira athletes. After giving their informed written consent, sixteen female capoeira athletes (mean ± SD age, stature, and body mass of 27.3 ± 3.7 years, 165.0 ± 4.0 cm, and 59.7 ± 6.3 kg, respectively) volunteered to participate in the training program which consisted of static and dynamic CST sessions, three times per week for six weeks. The repeated measures T-test revealed participants significantly reduced relative vGRF from pre- to post-intervention for the first (3.40 ± 0.78 vs. 2.85 ± 0.52 N·NBW-1, respectively [p<0.05, effect size = 0.60]), and second landing phase (5.09 ± 1.17 vs. 3.02 ± 0.41 N·NBW-1, respectively [p<0.001, effect size = 0.87]). The average loading rate was reduced from pre- to post-intervention during the second landing phase (30.96 ± 18.84 vs. 12.06 ± 9.83 N·NBW·s-1, respectively [p<0.01, effect size = 0.68]). The peak loading rate was reduced from pre- to post-intervention during the first (220.26 ± 111.51 vs. 120.27 ± 64.57 N·NBW·s-1 respectively [p<0.01, effect size = 0.64]), and second (99.52 ± 54.98 vs. 44.71 ± 30.34 N·NBW·s-1 respectively [p<0.01, effect size = 0.70]) landing phase. Body weight, average loading rate during the first landing phase, and jump height were not significantly different between week 0 and week 6 (p=0.528, p=0.261, and p=0.877, respectively). This study provides evidence that trunk dominant core stability training improves landing kinetics without improving jump height, and may reduce lower extremity injury risk in female athletes.
Seasonal variation of the stratospheric circulation
NASA Technical Reports Server (NTRS)
Hirota, I.; Shiotani, M.
1985-01-01
An extensive analysis is made of the extratropical stratospheric circulation in terms of the seasonal variation of large-scale motion fields, with the aid of height and temperature data obtained from the TIROS satellite. Special attention is paid to a comparison of climatological aspects between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In order to see the general picture of the annual mach of the upper stratosphere, the zonal mean values of geopotential height of the 1 mb level at 70 deg N and 70 deg S were plotted on the daily basis throughout a year. It is observed that, during the winter, the zonal mean 1 mb height in the NH is much more variable than that in the SH. It is also notable that the SH height is rather oscillatory throughout the longer period from midwinter to early summer. Since the zonal mean height in the polar latitude is a rough measure of the mean zonal flow in extratropical latitudes, the difference of the seasonal variation between the two hemispheres mentioned above is considered to be due mainly to the planetary wave-mean flow interaction in the middle atmosphere. The wave activity in the middle atmosphere is represented more rigorously by the Eliassen-Palm flux associated with vertically propagating planetary waves forced from below. The day-to-day variation of the EP flux in the upper stratosphere shows that the wave activity varies intermittently with a characteristic time scale of about two weeks.
Visual and non-visual control of landing movements in humans
Santello, Marco; McDonagh, Martin J N; Challis, John H
2001-01-01
The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583
2015-05-27
irregular threats. Unconventional Warfare (UW), traditionally a Special Operations Forces core activity, has served U.S. strategic interests in a variety...Special Operations Forces core activity, has served U.S. strategic interests in a variety of operational environments. Throughout the Cold War, the
NASA Astrophysics Data System (ADS)
Schminder, R.; Kurschner, D.
1984-05-01
When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.
NASA Technical Reports Server (NTRS)
Schminder, R.; Kurschner, D.
1984-01-01
When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.
Group B Strep Infection in Newborns
... Active Bacterial Core surveillance (ABCs) CDC Streptococcus Laboratory Sepsis Group B Strep Disease in Newborns Language: English ( ... Active Bacterial Core surveillance (ABCs) CDC Streptococcus Laboratory Sepsis Language: English (US) Español (Spanish) File Formats Help: ...
Rapid Eye Movement Sleep in Relation to Overweight in Children and Adolescents
Liu, Xianchen; Forbes, Erika E.; Ryan, Neal D.; Rofey, Dana; Hannon, Tamara S.; Dahl, Ronald E.
2009-01-01
Context Short sleep duration is associated with obesity, but few studies have examined the relationship between obesity and specific physiological stages of sleep. Objective To examine specific sleep stages, including rapid eye movement (REM) sleep and stages 1 through 4 of non-REM sleep, in relation to overweight in children and adolescents. Design, Setting, and Participants A total of 335 children and adolescents (55.2% male; aged 7-17 years) underwent 3 consecutive nights of standard polysomnography and weight and height assessments as part of a study on the development of internalizing disorders (depression and anxiety). Main Outcome Measures Body mass index (calculated as weight in kilograms divided by height in meters squared) z score and weight status (normal, at risk for overweight, overweight) according to the body mass index percentile for age and sex. Results The body mass index z score was significantly related to total sleep time (β=-0.174), sleep efficiency (β=-0.027), and REM density (β=-0.256). Compared with normal-weight children, overweight children slept about 22 minutes less and had lower sleep efficiency, shorter REM sleep, lower REM activity and density, and longer latency to the first REM period. After adjustment for demographics, pubertal status, and psychiatric diagnosis, 1 hour less of total sleep was associated with approximately 2-fold increased odds of overweight (odds ratio=1.85), 1 hour less of REM sleep was associated with about 3-fold increased odds (odds ratio=2.91), and REM density and activity below the median increased the odds of overweight by 2-fold (odds ratio=2.18) and 3-fold (odds ratio=3.32), respectively. Conclusions Our results confirm previous epidemiological observations that short sleep time is associated with overweight in children and adolescents. A core aspect of the association between short sleep duration and overweight may be attributed to reduced REM sleep. Further studies are needed to investigate possible mechanisms underpinning the association between diminished REM sleep and endocrine and metabolic changes that may contribute to obesity. PMID:18678797
Unravelling the limits to tree height: a major role for water and nutrient trade-offs.
Cramer, Michael D
2012-05-01
Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.
ERIC Educational Resources Information Center
Amrani, D.
2010-01-01
This pedagogical activity is aimed at students using a computer-learning environment with advanced tools for data analysis. It investigates the relationship between the coefficient of restitution and the way the heights of different bouncing balls decrease in a number of bounces with time. The time between successive ball bounces, or…
Toxicity of herbicides on three northwestern conifers.
H. Gratkowski
1961-01-01
Vigorous natural reproduction of Douglas-fir, sugar pine, and ponderosa pine in southwestern Oregon was sprayed with 1/2-pound aehg solutions of low volatile esters of 2, 4-D and 2,4, 5-T during 1956. When treated, the trees averaged 4 to 8 feet in height. Treatments were applied during the period of active growth in midsummer and repeated in early autumn after height...
Scapular kinematics and muscle activities during pushing tasks.
Huang, Chun-Kai; Siu, Ka-Chun; Lien, Hen-Yu; Lee, Yun-Ju; Lin, Yang-Hua
2013-01-01
Pushing tasks are functional activities of daily living. However, shoulder complaints exist among workers exposed to regular pushing conditions. It is crucial to investigate the control of shoulder girdles during pushing tasks. The objective of the study was to demonstrate scapular muscle activities and motions on the dominant side during pushing tasks and the relationship between scapular kinematics and muscle activities in different pushing conditions. Thirty healthy adults were recruited to push a four-wheel cart in six pushing conditions. The electromyographic signals of the upper trapezius (UT) and serratus anterior (SA) muscles were recorded. A video-based system was used for measuring the movement of the shoulder girdle and scapular kinematics. Differences in scapular kinematics and muscle activities due to the effects of handle heights and weights of the cart were analyzed using two-way ANOVA with repeated measures. The relationships between scapular kinematics and muscle activities were examined by Pearson's correlation coefficients. The changes in upper trapezius and serratus anterior muscle activities increased significantly with increased pushing weights in the one-step pushing phase. The UT/SA ratio on the dominant side decreases significantly with increased handle heights in the one-step pushing phase. The changes in upward rotation, lateral slide and elevation of the scapula decreased with increased pushing loads in the trunk-forward pushing phase. This study indicated that increased pushing loads result in decreased motions of upward rotation, lateral slide and elevation of the scapula; decreased handle heights result in relatively increased activities of the serratus anterior muscles during pushing tasks.
Egg Drop: An Invention Workshop
ERIC Educational Resources Information Center
McCormack, Alan J.
1973-01-01
Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, Stuti; Srikanth Vallabani, N. V.; Shutthanandan, Vaithiyalingam
Catalytically active individual gold (Au) and cerium oxide (CeO2) nanoparticles are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. These activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. A functional nanozyme depicting multienzyme like properties that functions as a synthetic super enzyme has eluded the researchers in the nanoscience community for past decade. In current report, we have designed a functional multienzyme in the form of Gold (core)-CeO2 (shell) nanoparticles (Au@CeO2 CSNPs) exhibiting excellent peroxidase, catalase andmore » superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core shell nanozyme is comparable to natural HRP enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au@CeO2 CSNPs showed decrease in hydroxyl radical formation, suggesting that the bio catalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core shell nanoparticles. Au@CeO2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
Sensitivity of storm wave modeling to wind stress evaluation methods
NASA Astrophysics Data System (ADS)
Chen, Yingjian; Yu, Xiping
2017-06-01
The application of the wave boundary layer model (WBLM) for wind stress evaluation to storm wave modeling is studied using Hurricane Katrina (2005) as an example, which is chosen due to its great intensity and good availability of field data. The WBLM is based on the momentum and energy conservation equations and takes into account the physical details of air-sea interaction processes as well as energy dissipation due to the presence of sea spray. Four widely-used bulk-type formulas are also used for comparison. Simulated significant wave heights with WBLM are shown to agree well with the observed data over deep water. The WBLM yields a smaller wind stress coefficient on the left hand side of the hurricane track, which is reasonable considering the effect of the sea state on momentum transfer. Quantitative results show that large differences of the significant wave height are observed in the hurricane core among five wind stress evaluation methods and the differences are up to 12 m, which is in agreement with the general knowlege that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. However, it is the depth-induced energy dissipation, rather than the wind energy input, that dominates the wave height in the shallow water region. A larger value of depth-induced breaking parameter in the wave model results in better agreement with the measurements over shallow water.
Pires, Liliane Viana; Siviero-Miachon, Adriana Aparecida; Spinola-Castro, Angela Maria; Pimentel, José Alexandre Coelho; Nishimura, Luciana Sigueta; Maia, Carla Soraya Costa; Cozzolino, Silvia Maria Franciscato
2017-04-01
Studies about selenium status in patients with Turner syndrome (TS) are non-existent in the literature. The aim of this study was to evaluate selenium status in patients with TS, while considering the different ages of the studied population and the relation with body composition. In total, 33 patients with TS were evaluated and grouped according to their developmental stages (children, adolescents, and adults). Selenium concentrations in their plasma, erythrocytes, urine, and nails were determined by using hydride generation atomic absorption spectrometry and erythrocyte glutathione peroxidase activity were measured by using Randox commercial kits. Additionally, height, weight, body fat percentage, waist circumference, and waist-height ratio were measured to characterize the patients. No differences in the selenium concentrations in the plasma, erythrocyte, urine, and nails or in the glutathione peroxidase activity were observed among the age groups (p > 0.05). The evaluated selenium levels were less than the established normal ones. The patients with larger waist circumference, body fat percentage, body mass index, and waist-height ratio showed lower glutathione peroxidase enzyme activity (p = 0.023). The present study shows that most patients with TS are deficient in selenium and that those with a greater accumulation of body fat have a lower GPx activity.
Solomon, A. W.; Akudibillah, J.; Abugri, P.; Hagan, M.; Foster, A.; Bailey, R. L.; Mabey, D. C.
2001-01-01
OBJECTIVE: To assess the skills of community health volunteers in diagnosing active trachoma and distributing azithromycin in the Northern Region of Ghana. METHODS: Six community health volunteers from Daboya were trained to diagnose trachoma and to treat the disease using azithromycin. They were also informed of the drug's possible side-effects. Under supervision, each volunteer then examined, and if necessary treated, 15 households. The dose of azithromycin was determined by weight; height was also measured. Tablets were given in preference to suspension when possible. RESULTS: The volunteers' diagnostic sensitivity for active trachoma was 63%; their specificity was 96%. At the household level, their "decision to treat" was correct in 83% of households. In 344 treatment episodes, volunteers planned a dose of azithromycin outside the range 15-30 mg/kg on only seven occasions (2.0% of all planned treatments). The volunteers' drug management skills were good, the response of the community was excellent, and adverse reactions were infrequent. Diagnosis of active trachoma, record-keeping skills, and knowledge of side-effects were found to need greater emphasis in any future education programme. Most people aged four years or older were able to swallow tablets. For those taking tablets, the correlation between the data gathered for height and weight shows that calculating azithromycin doses by height is a valid alternative to calculating it by weight. CONCLUSION: Trained community health volunteers have a potential role in identifying active trachoma and distributing azithromycin. To simplify training and logistics, it may be better to base dosage schedules on height rather than weight for those taking tablets, which included most people aged four years or more in the population studied. PMID:11217675
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang
2018-03-01
Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef will reduce a maximum of 0.44 m of the SWHr. According to analysis of drilled core, corymbose Acropora corals will be key to reducing the risks, and 2.6-5.8 kg CaCO3 m-2 yr-1, equivalent to > 8 % of coral cover, will be required to keep a healthy reef by 2100. This study highlights that the maintaining reef growth (as a function of coral cover) in the future is effective in reducing the risk of coastal damage arising from wave action. Although the present study focuses on Melekeok fringing reef, many coral reefs are in the same situation under conditions of intensified TCs and SLR, and therefore the results of this study are applicable to other reefs. These researches are critical in guiding policy development directed at disaster prevention for small island nations and for developing and developed countries.
Post-test analysis of PIPER-ONE PO-IC-2 experiment by RELAP5/MOD3 codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovalini, R.; D`Auria, F.; Galassi, G.M.
1996-11-01
RELAP5/MOD3.1 was applied to the PO-IC-2 experiment performed in PIPER-ONE facility, which has been modified to reproduce typical isolation condenser thermal-hydraulic conditions. RELAP5 is a well known code widely used at the University of Pisa during the past seven years. RELAP5/MOD3.1 was the latest version of the code made available by the Idaho National Engineering Laboratory at the time of the reported study. PIPER-ONE is an experimental facility simulating a General Electric BWR-6 with volume and height scaling ratios of 1/2,200 and 1./1, respectively. In the frame of the present activity a once-through heat exchanger immersed in a pool ofmore » ambient temperature water, installed approximately 10 m above the core, was utilized to reproduce qualitatively the phenomenologies expected for the Isolation Condenser in the simplified BWR (SBWR). The PO-IC-2 experiment is the flood up of the PO-SD-8 and has been designed to solve some of the problems encountered in the analysis of the PO-SD-8 experiment. A very wide analysis is presented hereafter including the use of different code versions.« less
MULTIWAVELENGTH OBSERVATIONS OF A SLOW-RISE, MULTISTEP X1.6 FLARE AND THE ASSOCIATED ERUPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurchyshyn, V.; Kumar, P.; Cho, K.-S.
Using multiwavelength observations, we studied a slow-rise, multistep X1.6 flare that began on 2014 November 7 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region (AR). This flare event was associated with formation of two systems of post-eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory and IRIS spacecraft, along with the ground-based data from the New Solar Telescope, present evidence that (i) themore » flare and the eruption were directly triggered by a flux emergence that occurred inside a δ-sunspot at the boundary between two umbrae; (ii) this event represented an example of the formation of an unstable flux rope observed only in hot AIA channels (131 and 94 Å) and LASCO C2 coronagraph images; (iii) the global PEA spanned the entire AR and was due to global-scale reconnection occurring at heights of about one solar radius, indicating the global spatial and temporal scale of the eruption.« less
Physiological Responses to Thermal Stress and Exercise
NASA Astrophysics Data System (ADS)
Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi
The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.
Zhang, Sen; Hao, Yizhou; Su, Dong; ...
2014-10-28
We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less
ERIC Educational Resources Information Center
VanCleave, Janice
1994-01-01
Presents an activity that explores how gravity affects human height. Uses threaded spools suspended in a soda bottle filled with water to simulate the effects of gravity on the human skeletal system. Suggests extension activities and related explorations. (LZ)
BODY DISSATISFACTION, PHYSICAL ACTIVITY, AND SEDENTARY BEHAVIOR IN FEMALE ADOLESCENTS.
Miranda, Valter Paulo Neves; Morais, Núbia Sousa de; Faria, Eliane Rodrigues de; Amorim, Paulo Roberto Dos Santos; Marins, João Carlos Bouzas; Franceschini, Sylvia do Carmo Castro; Teixeira, Paula Costa; Priore, Silvia Eloiza
2018-05-21
To evaluate the association of body image with physical activity level, body composition, and sedentary behavior (SB) of female adolescents. Exploratory cross-sectional study conducted with 120 female adolescents aged between 14-19 years, from the city of Viçosa, Minas Gerais, Southeast Brazil. Body image was evaluated with a Body Silhouette Scale (BSS) and a Body Shape Questionnaire (BSQ). Weight, height, and waist circumference values were analyzed, as well as the waist-to-height ratio and body fat percentage. The physical activity level (PAL) was assessed by 24-hour Physical Activity Recall and SB by screen time, that is, time spent in front of a TV, playing video game, on the computer and using tablets, and, separately, the cell phone time. Mean age was 16.5±1.5 years, and most adolescents were eutrophic (77.6%), sedentary/low PAL (84.2%), with high screen time (85.2%) and cell phone time (58.7%). Body dissatisfaction was stated in 40.6% of BSQ and 45.8% of BSS evaluations. Body distortion was identified in 52.9% of participants. All body composition measures, along with cell phone time and PAL, were associated with body dissatisfaction, the more active adolescents presenting higher levels of dissatisfaction. This study concluded that female adolescents with higher cell phone time also present higher body dissatisfaction, as well as the most physically active ones. All body composition measurements were associated with body dissatisfaction, mainly body mass index, waist circumference, and waist-to-height ratio.
NASA Astrophysics Data System (ADS)
Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.
2015-12-01
Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative vertical and horizontal distribution of plant materials. TLS data are providing a step change in satellite image based vegetation mapping, and refining our knowledge of vegetation structure and its phenological variability. Open access plot scale TLS measurements are available through the TERN Auscover data portal.
Awadalla, Philip; Boileau, Catherine; Craig, Camille; Fortier, Isabel; Goel, Vivek; Hicks, Jason M.T.; Jacquemont, Sébastien; Knoppers, Bartha Maria; Le, Nhu; McDonald, Treena; McLaughlin, John; Mes-Masson, Anne-Marie; Nuyt, Anne-Monique; Palmer, Lyle J.; Parker, Louise; Purdue, Mark; Robson, Paula J.; Spinelli, John J.; Thompson, David; Vena, Jennifer; Zawati, Ma’n
2018-01-01
BACKGROUND: Understanding the complex interaction of risk factors that increase the likelihood of developing common diseases is challenging. The Canadian Partnership for Tomorrow Project (CPTP) is a prospective cohort study created as a population-health research platform for assessing the effect of genetics, behaviour, family health history and environment (among other factors) on chronic diseases. METHODS: Volunteer participants were recruited from the general Canadian population for a confederation of 5 regional cohorts. Participants were enrolled in the study and core information obtained using 2 approaches: attendance at a study assessment centre for all study measures (questionnaire, venous blood sample and physical measurements) or completion of the core questionnaire (online or paper), with later collection of other study measures where possible. Physical measurements included height, weight, percentage body fat and blood pressure. Participants consented to passive follow-up through linkage with administrative health databases and active follow-up through recontact. All participant data across the 5 regional cohorts were harmonized. RESULTS: A total of 307 017 participants aged 30–74 from 8 provinces were recruited. More than half provided a venous blood sample and/or other biological sample, and 33% completed physical measurements. A total of 709 harmonized variables were created; almost 25% are available for all participants and 60% for at least 220 000 participants. INTERPRETATION: Primary recruitment for the CPTP is complete, and data and biosamples are available to Canadian and international researchers through a data-access process. The CPTP will support research into how modifiable risk factors, genetics and the environment interact to affect the development of cancer and other chronic diseases, ultimately contributing evidence to reduce the global burden of chronic disease. PMID:29891475
Dummer, Trevor J B; Awadalla, Philip; Boileau, Catherine; Craig, Camille; Fortier, Isabel; Goel, Vivek; Hicks, Jason M T; Jacquemont, Sébastien; Knoppers, Bartha Maria; Le, Nhu; McDonald, Treena; McLaughlin, John; Mes-Masson, Anne-Marie; Nuyt, Anne-Monique; Palmer, Lyle J; Parker, Louise; Purdue, Mark; Robson, Paula J; Spinelli, John J; Thompson, David; Vena, Jennifer; Zawati, Ma'n
2018-06-11
Understanding the complex interaction of risk factors that increase the likelihood of developing common diseases is challenging. The Canadian Partnership for Tomorrow Project (CPTP) is a prospective cohort study created as a population-health research platform for assessing the effect of genetics, behaviour, family health history and environment (among other factors) on chronic diseases. Volunteer participants were recruited from the general Canadian population for a confederation of 5 regional cohorts. Participants were enrolled in the study and core information obtained using 2 approaches: attendance at a study assessment centre for all study measures (questionnaire, venous blood sample and physical measurements) or completion of the core questionnaire (online or paper), with later collection of other study measures where possible. Physical measurements included height, weight, percentage body fat and blood pressure. Participants consented to passive follow-up through linkage with administrative health databases and active follow-up through recontact. All participant data across the 5 regional cohorts were harmonized. A total of 307 017 participants aged 30-74 from 8 provinces were recruited. More than half provided a venous blood sample and/or other biological sample, and 33% completed physical measurements. A total of 709 harmonized variables were created; almost 25% are available for all participants and 60% for at least 220 000 participants. Primary recruitment for the CPTP is complete, and data and biosamples are available to Canadian and international researchers through a data-access process. The CPTP will support research into how modifiable risk factors, genetics and the environment interact to affect the development of cancer and other chronic diseases, ultimately contributing evidence to reduce the global burden of chronic disease. © 2018 Joule Inc. or its licensors.
Inhibition of Hepatitis C Virus Production by Aptamers against the Core Protein
Shi, Shali; Yu, Xiaoyan; Gao, Yimin; Xue, Binbin; Wu, Xinjiao; Wang, Xiaohong; Yang, Darong
2014-01-01
Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-β) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C. PMID:24307579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junqi, E-mail: sfmlab@163.com; Sun, Long; Yan, Ying
2016-08-15
Highlights: • The Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell crystals maintained the same morphology with template. • The crystals exhibit enhanced photocatalytic activity than the pure Cu{sub 2}O crystals. • The photocatalytic activity of different R crystals is diverse from each other. • A possible formation mechanism has been proposed. - Abstract: Uniform and monodispersed Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals have been synthesized successfully at room temperature via a simple chemical etching reaction, using Cu{sub 2}O as sacrificial template. The structure and properties of the crystals were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM),more » X-ray photoelectron spectra (XPS). The photocatalytic activity of the Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals was evaluated by photocatalytic decolorization of MeO (methyl orange) aqueous solution at ambient temperature under visible-light irradiation. The results show that the as-prepared Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals revealed core-shell structure, which maintained the same morphology with corresponding template and were composed of cuboctahedron Cu{sub 7}S{sub 4} shell and active Cu{sub 2}O core. Due to the unique Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell structure, the crystals exhibit enhanced photocatalytic activity than that of the pure Cu{sub 2}O crystals, and the photocatalytic activity of different R crystals is diverse from each other. A possible formation mechanism has been proposed.« less
Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D; Calatayud, Joaquin; Andersen, Lars L
2015-01-01
Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26-67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36-64] versus 32% [95% CI 18-46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64-90] versus 54% [95% CI 40-67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88-6.72]) and elastic exercise (5.7 [95% CI 4.81-6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.
RALPH: An online computer program for acquisition and reduction of pulse height data
NASA Technical Reports Server (NTRS)
Davies, R. C.; Clark, R. S.; Keith, J. E.
1973-01-01
A background/foreground data acquisition and analysis system incorporating a high level control language was developed for acquiring both singles and dual parameter coincidence data from scintillation detectors at the Radiation Counting Laboratory at the NASA Manned Spacecraft Center in Houston, Texas. The system supports acquisition of gamma ray spectra in a 256 x 256 coincidence matrix (utilizing disk storage) and simultaneous operation of any of several background support and data analysis functions. In addition to special instruments and interfaces, the hardware consists of a PDP-9 with 24K core memory, 256K words of disk storage, and Dectape and Magtape bulk storage.
Density functional theory study of ethylene partial oxidation on Ag 7 clusters
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2006-11-01
The partial oxidation reaction of ethylene on neutral and anionic Ag 7 clusters has been studied using the BPW91 hybrid DFT method with the Stuttgart RSC97 relativistic pseudopotential for the 28-electron ionic core of Ag. The atomic oxygen reaction mechanism is mainly addressed. Results show that the reaction occurs via a stable oxametallacycle intermediate ( AgOCH4p, p = 0 or -1), but it involves small reaction barriers along the reaction path. The ZPE-corrected barrier heights are obtained as 0.7-6.5 kcal/mole. In addition, the structure and anionic effects of Ag 7 clusters are also discussed.
NASA Astrophysics Data System (ADS)
Jule, Leta; Dejene, Francis; Roro, Kittessa
2016-12-01
In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less
Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.
Glatthorn, Julia F; Gouge, Sylvain; Nussbaumer, Silvio; Stauffacher, Simone; Impellizzeri, Franco M; Maffiuletti, Nicola A
2011-02-01
Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.
Estrus- and steroid-induced changes in circadian rhythms in a diurnal rodent, Octodon degus.
Labyak, S E; Lee, T M
1995-09-01
Diurnal Octodon degus exhibited marked alterations in activity and temperature in conjunction with the 3 wk estrous cycle when housed in LD12:12 light cycle. On the day of estrus, mean daily activity increases 109%, mean core temperature rises .4 degree C, activity onset is advanced 2 h, and amplitudes of both rhythms decline compared with the 3 days prior to estrus. On the day following estrus, activity onset was delayed 4.9 h, and mean activity and core temperature fell below that of the preestrus period. Ovariectomy significantly reduced mean temperature (.98 degree C) but did not significantly alter mean activity, and eliminated cyclic effects of estrus. Estrogen replacement led to a nonsignificant elevation in mean activity and core temperature with no change in the phase angle of entrainment. Progesterone replacement significantly reduced mean core temperature and mean activity, while only the phase angle difference between temperature minimum and activity onset was significantly altered. Intact degus maintained in constant darkness displayed only transient fluctuations in activity onset and temperature minimum during and after estrus. Estrogen or progesterone treatment of ovariectomized, free-running degus altered mean temperature and activity levels, but did not influence tau. Changes in phase angle of entrainment during estrus are not the result of hormone effects on the circadian clock but likely reflect increased or decreased levels of activity.
Zhu, Yun; Yang, Zezhou; Chi, Maoqiang; Li, Meixuan; Wang, Ce; Lu, Xiaofeng
2018-05-01
Fabrication of core-shell nanostructured catalyst is a promising way for tuning its catalytic performance due to the highly active interface and rich redox properties. In this work, hierarchical Co 3 O 4 @NiO core-shell nanotubes are fabricated by the deposition of NiO shells via a chemical bath treatment using electrospun Co-C composite nanofibers as templates, followed by a calcination process in air. The as-prepared Co 3 O 4 @NiO core-shell nanotubes exhibit a uniform and novel hollow structure with Co 3 O 4 nanoparticles attached to the inner wall of NiO nanotubes and excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 . Due to the synergistic effect, the peroxidase-like activity of the Co 3 O 4 @NiO core-shell nanotubes is much higher than that of individual Co 3 O 4 and NiO components. Owing to the superior peroxidase-like activity, a simple and rapid colorimetric approach for the detection of dopamine with a detection limit of 1.21µM and excellent selectivity has been developed. It is anticipated that the prepared Co 3 O 4 @NiO core-shell nanotubes are promising materials applied for biomedical analysis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.
Thakral, Preston P.; Benoit, Roland G.; Schacter, Daniel L.
2017-01-01
Neuroimaging data indicate that episodic memory (i.e., remembering specific past experiences) and episodic simulation (i.e., imagining specific future experiences) are associated with enhanced activity in a common set of neural regions, often referred to as the core network. This network comprises the hippocampus, parahippocampal cortex, lateral and medial parietal cortex, lateral temporal cortex, and medial prefrontal cortex. Evidence for a core network has been taken as support for the idea that episodic memory and episodic simulation are supported by common processes. Much remains to be learned about how specific core network regions contribute to specific aspects of episodic simulation. Prior neuroimaging studies of episodic memory indicate that certain regions within the core network are differentially sensitive to the amount of information recollected (e.g., the left lateral parietal cortex). In addition, certain core network regions dissociate as a function of their timecourse of engagement during episodic memory (e.g., transient activity in the posterior hippocampus and sustained activity in the left lateral parietal cortex). In the current study, we assessed whether similar dissociations could be observed during episodic simulation. We found that the left lateral parietal cortex modulates as a function of the amount of simulated details. Of particular interest, while the hippocampus was insensitive to the amount of simulated details, we observed a temporal dissociation within the hippocampus: transient activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. Because the posterior hippocampal and lateral parietal findings parallel those observed previously during episodic memory, the present results add to the evidence that episodic memory and episodic simulation are supported by common processes. Critically, the present study also provides evidence that regions within the core network support dissociable processes. PMID:28324695
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.
Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective
Naik, Ganesh R.; Al-Ani, Ahmed; Gobbo, Massimiliano; Nguyen, Hung T.
2017-01-01
The purpose of this study was to determine whether electromyography (EMG) muscle activities around the knee differ during sit-to-stand (STS) and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2) participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM) and vastus lateralis (VL) that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG) data were acquired during STS and stand-to-sit-returning (STSR) tasks. The data was filtered using a fourth order Butterworth (band pass) filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF) and root mean square (RMS) features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values) indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS) in women. PMID:28894422
The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar
2010-01-01
The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
Internal Stratigraphy of the Palisades Sill Olivine Zone: An Olivine Slurry Emplaced in a Hot Sill
NASA Astrophysics Data System (ADS)
Haddad, J. R.; Naslund, H. R.
2017-12-01
The Palisades Sill is a 300 m thick Jurassic-Triassic sill-like sheet formed from a quartz-normative tholeiitic magma. Three geochemical reversals within the sill are the result of magma chamber recharges. This study focuses on the reversal at 10 m height, widely considered to be the result of the emplacement of an olivine-rich slurry (Husch 1990, Gorring 1995). Major and trace elements were determined for 35 samples from the olivine layer and adjacent sill spanning 10 m of stratigraphic height. Samples were collected from outcrops near the Ross Dock Picnic Area in Fort Lee, NJ. Mineral compositions were determined for 21 thin sections using an electron microprobe (EMP). Bulk rock chemistry shows that the base of the olivine layer is between 2.5 and 3.25 m above the base of sampling. This is indicated by a marked reversal in Mg#, which jumped from 64.2 to 68.6; Al2O3, Co, Ni, Sc, Cs, Dy, and La also show clear reversals at the same interval. This is further collaborated by the formation of a ledge in the outcrop. Bulk chemistry and olivine composition show no systematic changes within the olivine layer. EMP analyses of augites reveals that below the 2.5 m height, crystals are typically strongly zoned, average rim Mg#= 67, core Mg#= 82. Above the 2.5 m layer, core Mg# are similar, but average rim Mg#=75. The plagioclase/augite ratio remains relatively constant through the olivine layer, but the ratio of olivine to plagioclase+augite is quite variable, suggesting that the olivine-slurry was emplaced as an inhomogeneous mixture of olivine + magma. Similar tholeiitic sills on Victoria Island, Canada, contain olivine-rich basal layers in which the olivine to plagioclase+augite ratio systematically increases, and the olivine composition becomes systematically more Fe-rich, from the base to the top of the layer. Comparisons between these otherwise similar basal olivine-rich layers, suggests that sills like the Palisades, which represents the injection of an olivine-rich slurry, can be distinguished from sills like the Victoria Island sills, which represent the initial emplacement of an olivine-phyric magma, followed by post-emplacement crystal settling.
Qualitative Analysis of Common Definitions for Core Advanced Pharmacy Practice Experiences
Danielson, Jennifer; Weber, Stanley S.
2014-01-01
Objective. To determine how colleges and schools of pharmacy interpreted the Accreditation Council for Pharmacy Education’s (ACPE’s) Standards 2007 definitions for core advanced pharmacy practice experiences (APPEs), and how they differentiated community and institutional practice activities for introductory pharmacy practice experiences (IPPEs) and APPEs. Methods. A cross-sectional, qualitative, thematic analysis was done of survey data obtained from experiential education directors in US colleges and schools of pharmacy. Open-ended responses to invited descriptions of the 4 core APPEs were analyzed using grounded theory to determine common themes. Type of college or school of pharmacy (private vs public) and size of program were compared. Results. Seventy-one schools (72%) with active APPE programs at the time of the survey responded. Lack of strong frequent themes describing specific activities for the acute care/general medicine core APPE indicated that most respondents agreed on the setting (hospital or inpatient) but the student experience remained highly variable. Themes were relatively consistent between public and private institutions, but there were differences across programs of varying size. Conclusion. Inconsistencies existed in how colleges and schools of pharmacy defined the core APPEs as required by ACPE. More specific descriptions of core APPEs would help to standardize the core practice experiences across institutions and provide an opportunity for quality benchmarking. PMID:24954931
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-28
The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
Fu, Weijie; Wang, Xi; Liu, Yu
2015-01-01
Previous studies have not used neurophysiological methodology to explore the damping effects on induced soft-tissue vibrations and muscle responses. This study aimed to investigate the changes in activation of the musculoskeletal system in response to soft-tissue vibrations with different applied compression conditions in a drop-jump landing task. Twelve trained male participants were instructed to perform drop-jump landings in compression shorts (CS) and regular shorts without compression (control condition, CC). Soft-tissue vibrations and EMG amplitudes of the leg within 50 ms before and after touchdown were collected synchronously. Peak acceleration of the thigh muscles was significantly lower in CS than in CC during landings from 45 or 60 cm and 30 cm heights (p < 0.05), respectively. However, the damping coefficient was higher in CS than in CC at the thigh muscles during landings from 60 cm height (p < 0.05). Significant decrease in EMG amplitude of the rectus femoris and biceps femoris muscles was also observed in CS (p < 0.05). Externally induced soft-tissue vibration damping was associated with a decrease in muscular activity of the rectus femoris and biceps femoris muscles during drop-jump landings from different heights.
NASA Astrophysics Data System (ADS)
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-01
The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
[Adherence to the Mediterranean diet of future teachers].
Egeda Manzanera, José Manuel; Rodrigo Vega, Maximiliano
2014-08-01
The Spanish university population is vulnerable in their eating habits for various reasons. This would in many cases the abandonment of a traditional Mediterranean diet. To determine the adherence to the Mediterranean diet (adm) of a university population of future Teachers and analyze various factos that may condition its nutritional quality. Distribution Kidmed test to a sample of 212 university aged between 21 and 24. The Kidmed index (0-12) indicate whether the ADM was low (0 to 3), medium (4-7) or high (8 to 12). Each respondent was recorded age, weight, height and body mass index, and weekly physical activity. For comparison of the data was used Chi square test, the Mann Whitney test and ANOVA factor using SPSS 15. 15.1% had a low Kidmed index, 60.4% intermediate and 24.5% higher. The difference between the different levels of ADM is due to the consumption of fruits and vegetables (p < 0.05) mainly. Among the degrees of ADM and nutritional status (BMI) were not significantly different. The differences between those students who perform physical activity (66%) and no (34%) over the Kidmed index (< 0.05), were due primarily to breakfast consumed more cereals and cereal and pastries least). 75.5% of future Teachers needed improved ADM. In general, enhance a quality breakfast and minimum daily physical activity would be two core aspects in improving habits. It would be appropriate to provide nutritional education campaigns for this population and especially considering their future social role as educators. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core
ERIC Educational Resources Information Center
McKeone, Alyssa; Caruso, Lenora; Bettle, Kailyn; Chase, Ashley; Bryson, Bridget; Schneider, Jean S.; Rule, Audrey C.
2015-01-01
Gifted learners need opportunities for critical and creative thinking to stretch their minds and imaginations. Strategies for increasing complexity in the four core areas of language arts, mathematics, science, and social studies were addressed using the Common Core and Iowa Core Standards through several methods. Descriptive adjective object…
Lu, Juan; Shin, Yongyun; Yen, Miao-Shan; Sun, Shumei S.
2014-01-01
The literature has not reached a consensus on the age when peak bone mass is achieved. This study examines growth patterns of TBMC and TBMD, peak bone mass, effect of concurrent anthropometry measures and physical activity on growth patterns in a sample of 312 white males and 343 females aged eight to 30 years. We analyzed data from participants enrolled in Fels Longitudinal Study. Descriptive analysis was used to ascertain characteristics of participants and growth patterns of TBMC and TBMD. Mixed effects models were applied to predict ages at attainment of peak TBMC and TBMD and assess effects of height, weight, BMI and habitual physical activity on the attainment. Significant differences between sexes were observed for measures of TBMC and TBMD, and differences varied with age. For females, predicted median ages at peak TBMC and TBMD attainments are 21.96 (IQR: 21.81–22.21) and 22.31 (IQR: 21.95–22.59) years, respectively. For males, predicted median ages are 23.34 (IQR: 24.34–26.19) and 26.86 (IQR: 25.14–27.98) respectively. For females, height, weight and BMI, but not physical activity, had significant influences on attainment of TBMC and TBMD (P <0.01). For males, weight and BMI, but not height and physical activity, exerted significant influence on attainment of TBMC and TBMD (P<0.01), and also modified correlations between age and peak TBMC and TBMD. Our results suggest that (1) for both sexes, trajectories of TBMC and TBMD follow a curvilinear pattern between ages eight and 30 years; (2) predicted ages at peak TBMC and TBMD are from early to late 20s for both white males and females, with females reaching their peaks significantly earlier than males; and (3) concurrent height, weight and BMI, but not habitual physical activity, exert significant effects on trajectories of TBMC and TBMD. PMID:25440183
Structure of a mushy layer at the inner core boundary
NASA Astrophysics Data System (ADS)
Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.
2015-12-01
We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.
Kim, Tae Hoon; Kim, Eun-Hye; Cho, Hwi-young
2015-07-01
To investigate the effects of the CORE programme on pain at rest, movement-induced pain, secondary pain, active range of motion, and proprioception deficits in female office workers with chronic low back pain. Randomized controlled trial. Rehabilitation clinics. A total of 53 participants with chronic low back pain were randomized into the CORE group and the control group. CORE group participants underwent the 30-minute CORE programme, five times per week, for eight weeks, with additional use of hot-packs and transcutaneous electrical nerve stimulation, while the control group used only hot-packs and transcutaneous electrical nerve stimulation. Participants were evaluated pretest, posttest, and two months after the intervention period to measure resting and movement-induced pain, pressure pain as secondary pain, active range of pain-free motion, and trunk proprioception. Pain intensity at rest (35.6 ±5.9 mm) and during movement (39.4 ±9.1 mm) was significantly decreased in the CORE group following intervention compared with the control group. There were significant improvements in pressure pain thresholds (quadratus lumborum: 2.2 ±0.7 kg/cm(2); sacroiliac joint: 2.0 ±0.7 kg/cm(2)), active range of motion (flexion: 30.8 ±14.3°; extension: 6.6 ±2.5°), and proprioception (20° flexion: 4.3 ±2.4°; 10° extension: 3.1 ±2.0°) in the CORE group following intervention (all p < 0.05). These improvements were maintained at the two-month follow-up. The control group did not show significant improvements in any measured parameter. The CORE programme is an effective intervention for reducing pain at rest and movement-induced pain, and for improving the active range of motion and trunk proprioception in female office workers with chronic low back pain. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polster, S.; Jank, M. P. M.; Frey, L.
2016-01-14
The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less
McGahan, Anita M
2004-10-01
It's fairly obvious: To make intelligent investments within your organization, you need to understand how your whole industry is changing. But such knowledge is not always easy to come by. Companies misread clues and arrive at false conclusions all the time. To truly understand where your industry is headed, you have to take a long-term, high-level look at the context in which you do business, says Boston University professor Anita McGahan. She studied a variety of businesses from a cross section of industries over a ten-year period, examining how industry structure affects business profitability and investor returns. Her research suggests that industries evolve along one of four distinct trajectories--radical, progressive, creative, and intermediating--that set boundaries on what will generate profits in a business. These four trajectories are defined by two types of threats. The first is when new, outside alternatives threaten to weaken or make obsolete core activities that have historically generated profits for an industry. The second is when an industry's core assets--its resources, knowledge, and brand capital--fail to generate value as they once did. Industries undergo radical change when core assets and core activities are both threatened with obsolescence; they experience progressive change when neither are jeopardized. Creative change occurs when core assets are under threat but core activities are stable, and intermediating change happens when core activities are threatened while core assets retain their capacity to create value. If your company's innovation strategy is not aligned with your industry's change trajectory, your plan for achieving returns on invested capital cannot succeed, McGahan says. But if you understand which path you're on, you can determine which strategies will succeed and which will backfire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Bin; Hübner, René; Sasaki, Kotaro
The development of core–shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd xAu-Pt core–shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd xAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core–shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2,more » which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core–shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core–shell electrocatalysts.« less
Cai, Bin; Hübner, René; Sasaki, Kotaro; ...
2018-02-08
The development of core–shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd xAu-Pt core–shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd xAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core–shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2,more » which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core–shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core–shell electrocatalysts.« less
Central core disease. A correlated genetic, histochemical, ultramicroscopic, and biochemical study.
Isaacs, H; Heffron, J J; Badenhorst, M
1975-01-01
Two patients suffering from central core disease are presented. The condition is associated with musculoskeletal abnormalities which have been traced back over five generations. In addition to the typical histochemical findings, electronmicroscopic study has revealed the presence of both structured and non-structured cores in adjacent areas. The calcium uptake by the sarcoplasmic reticulum was reduced to one-third of normal. Phosphorylase activity was normal in the one case and reduced to 63% in the other. Actomyosin Mg2+-activated ATPase activity was decreased, as was the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Images PMID:130467
Depositional environment of near-surface sediments, King George Basin, Bransfield Strait, Antarctica
NASA Astrophysics Data System (ADS)
Yoon, H. I.; Park, B. K.; Chang, S. K.; Han, M. W.; Oh, J. K.
1994-03-01
Four sediment cores were collected to determine the depositional environments of the King George Basin northeast of Bransfield Strait, Antarctica. The cored section revealed three distinct lithofacies: laminated siliceous ooze derived from an increased paleoproductivity near the receding sea-ice edges, massive muds that resulted from hemipelagic sedimentation in open water, and graded sediments that originated from nearby local seamounts by turbidity currents. Clay mineral data of the cores indicate a decreasing importance of volcanic activity through time. Active volcanism and hydrothermal activity appear to be responsible for the enrichment of smectite near the Penguin and Bridgeman Islands.
McNabb, Scott J N; Chungong, Stella; Ryan, Mike; Wuhib, Tadesse; Nsubuga, Peter; Alemu, Wondi; Carande-Kulis, Vilma; Rodier, Guenael
2002-01-01
Because both public health surveillance and action are crucial, the authors initiated meetings at regional and national levels to assess and reform surveillance and action systems. These meetings emphasized improved epidemic preparedness, epidemic response, and highlighted standardized assessment and reform. To standardize assessments, the authors designed a conceptual framework for surveillance and action that categorized the framework into eight core and four support activities, measured with indicators. In application, country-level reformers measure both the presence and performance of the six core activities comprising public health surveillance (detection, registration, reporting, confirmation, analyses, and feedback) and acute (epidemic-type) and planned (management-type) responses composing the two core activities of public health action. Four support activities - communications, supervision, training, and resource provision - enable these eight core processes. National, multiple systems can then be concurrently assessed at each level for effectiveness, technical efficiency, and cost. This approach permits a cost analysis, highlights areas amenable to integration, and provides focused intervention. The final public health model becomes a district-focused, action-oriented integration of core and support activities with enhanced effectiveness, technical efficiency, and cost savings. This reform approach leads to sustained capacity development by an empowerment strategy defined as facilitated, process-oriented action steps transforming staff and the system.
Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng
2015-01-01
Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0–17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958
Longitudinal Growth, Diet, and Physical Activity in Young Children With Cerebral Palsy.
Oftedal, Stina; Davies, Peter S W; Boyd, Roslyn N; Stevenson, Richard D; Ware, Robert S; Keawutan, Piyapa; Benfer, Katherine A; Bell, Kristie L
2016-10-01
To describe the longitudinal relationship between height-for-age z score (HZ), growth velocity z score, energy intake, habitual physical activity (HPA), and sedentary time across Gross Motor Function Classification System (GMFCS) levels I to V in preschoolers with cerebral palsy (CP). Children with CP (n = 175 [109 (62.2%) boys]; mean recruitment age 2 years, 10 months [SD 11 months]; GMFCS I = 83 [47.2%], II = 21 [11.9%], III = 28 [15.9%], IV = 19 [10.8%], V = 25 [14.2%]) were assessed 440 times between the age of 18 months and 5 years. Height/length ratio was measured or estimated via knee height. Population-based standards were used to calculate HZ and growth velocity z-score by age and sex categories. Feeding method (oral or tube) and gestational age at birth (GA) were collected from parents. Three-day ActiGraph and food diary data were used to measure HPA/sedentary time ratio and energy intake, respectively. Oropharyngeal dysphagia was rated with the Dysphagia Disorder Survey (part 2, Pediatric). Analysis was undertaken with mixed-effects regression models. For GMFCS level I, height and growth velocity did not differ from population-level growth standards. Children in levels II to V were significantly shorter, and those in levels III to V grew significantly more slowly than those in level I. There was a significant positive association between HZ and GA at all GMFCS levels. Energy intake, HPA, sedentary time, Dysphagia Disorder Survey score, and feeding method were not significantly associated with either height or growth velocity once GMFCS level was accounted for. Functional status and GA should be considered when assessing the growth of a child with CP. Research into interventions aimed at increasing active movement in GMFCS levels III to V and their efficacy in improving growth and health outcomes is warranted. Copyright © 2016 by the American Academy of Pediatrics.
González-Ravé, José M; Delgado, Manuel; Vaquero, Manuel; Juarez, Daniel; Newton, Robert U
2011-07-01
The purpose of this study was to determine the effects of 16 weeks of contrast training (CT) on older adults (with different levels of physical conditioning) in vertical jump performance (squat jump [SJ], countermovement jump [CMJ], CMJ during 15 seconds [CMJ15], depth jump [DJ]), body weight, fat percentage, muscle mass (MM), muscle cross-sectional area ([CSA] of the arm and thigh) and biochemical parameters (creatine kinase [CK], creatinine, and urea). Sixteen older (63.55 ± 6.89 years) recreational master runners (A) and 16 physically active older people (60.30 ± 5.18 years) though not athletes (NA), participated in the CT using a combination of heavy-resistance and explosive exercise. The dependent variables were measured pretraining and posttraining. The CT resulted in significant improvements (α = 0.05) for both groups in jump performance. The SJ height improved in NA by 21.68% and in A by 21.81%, the CMJ height increased in NA by 21.51% and in A by 14.81%, the DJ height increased in NA by 26.45% and in A by 7.43%, and CMJ15 increased in NA by 6.20% and in A by 6.17%). Significant improvements in MM (16.44% in NA and 14.78% in A), thigh CSA (19.68% in NA and 21.67% in A), and arm CSA (7.43% in NA and 5.52% in A), and significant decreases in creatinine (8.65%) and CK (25.49%) in A were observed. In conclusion, CT improved vertical jump performance and MM in both groups, regardless of the training history and current physical activity of each group. These improvements were accompanied by a slight decrease in body fat but no changes in total body weight. These findings suggest that CT can have a significant effect on maximal jump height and MM in NA and A.
[Is there an essence of caring? A core of Nursing? Criticism of Katie Erikssons' "Vårdandets ide"].
Nielsen, G; Larsen, B
1989-01-01
In her book "Vårdandets Ide" the Finnish nurse, Katie Eriksson puts forward the thesis, that all kind af caring activities do have a common core. To establish this thesis professor Eriksson introduces the Aristotelian notion of an essence: Different kinds of caring activities do have a common set of essential properties constituting the act of caring. In this article we submit a thesis to the contrary: There may exist no set of essential properties common to all kind of caring activities: The belief is induced in us, that there may exist some common core to all caring activities, because the same term, namely "caring", is being used as a general term to cover a wide field of very different kinds of activities. Instead of the traditional Aristotelian craving for generality issuing in the notion of an essence, we suggest the use of the more modern Wittgensteinian concept of a family resemblance: There may be no common core but a set of family resemblances among the different kinds of caring activities. Instead of an abstract philosophical search for the common core of caring activities, we propose nurses to look at the actual use of the term "to care", thereby circumscribing the subject matter of caring. It goes without saying, that this article contains a good deal of philosophical arguments including, of course, an introduction to some basic Aristotelian notions, fundamental distinctions in the theory of definition, and finally the Wittgensteinian concept of family resemblance.
Socio-economic determinants of nutritional status of children in rural peninsular Malaysia.
Marjan, Z M; Taib, M N; Lin, K G; Siong, T E
1998-12-01
The data presented is part of the findings from a four-year collaborative research project between Universiti Putra Malaysia, the Institute for Medical Research and the Ministry of Health Malaysia. The project assessed the nutritional status of the major functional groups in Peninsular Malaysia. Mukim Sayong and Pulau Kemiri in the District of Kuala Kangsar, Perak were two of the subdistricts selected to represent small rubber holdings in Peninsular Malaysia. This paper attempts to analyse the socio-economic profile of the households and the nutritional status of children below 9 years of age. A total of 307 households were studied. Approximately 63% of the households were involved in rubber activities and the majority of them were hired tappers. The average monthly income of the households was RM467 and the income ranged between RM30 to RM2120. Based on the per capita poverty line income of RM84.38, it was found that 14.1% of the households earned less than RM42.19, which can be considered as hard-core poor, while 32.7% were poor (monthly per capita income between RM42.19 and RM84.38). Slightly more than half (52.7%) earned income above the poverty line. The average family size was 4.5, ranging from 1 through to 16. The majority of the heads of households (56.6%) had between 3 and 6 years of education, and 14.5% did not receive any formal education. The prevalence of stunting among children 0-5 years of age was 26%, while 31.5% were underweight and 3.8% wasted. Among children aged between 5 and 9 years, almost the same pattern of nutritional status was noted. The overall percentages of stunting, underweight and wasting among these children were 29.2%, 26.1% and 0.62%, respectively. Analysis on nutritional status according to income level showed a noticeable difference in the prevalence of malnutrition in children above and below the poverty line income. The Student's t-test indicated significant differences in weight-for-age and weight-for-height between the two poverty line income for children below 5 years of age. Pearson's correlation coefficient showed a significant correlation between height-for-age with household size (r = -0.26, p<0.05), and monthly per capita income with weight-for-height (r = 0.25, p<0.05). There was a highly significant correlation between acreage of land cultivated and weight-for-height (r = 0.42, p<0.01), and weight-for-age (r = 0.25, p<0.05). The findings indicated the influence of socio-economic factors on the nutritional status of children.
NASA Astrophysics Data System (ADS)
Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing
2017-10-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.
NASA Astrophysics Data System (ADS)
Zhao, Biqiang
2017-04-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an a-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E×B) drift in the equatorial ionosphere.
Influence of real and virtual heights on standing balance.
Cleworth, Taylor W; Horslen, Brian C; Carpenter, Mark G
2012-06-01
Fear and anxiety induced by threatening scenarios, such as standing on elevated surfaces, have been shown to influence postural control in young adults. There is also a need to understand how postural threat influences postural control in populations with balance deficits and risk of falls. However, safety and feasibility issues limit opportunities to place such populations in physically threatening scenarios. Virtual reality (VR) has successfully been used to simulate threatening environments, although it is unclear whether the same postural changes can be elicited by changes in virtual and real threat conditions. Therefore, the purpose of this study was to compare the effects of real and virtual heights on changes to standing postural control, electrodermal activity (EDA) and psycho-social state. Seventeen subjects stood at low and high heights in both real and virtual environments matched in scale and visual detail. A repeated measures ANOVA revealed increases with height, independent of visual environment, in EDA, anxiety, fear, and center of pressure (COP) frequency, and decreases with height in perceived stability, balance confidence and COP amplitude. Interaction effects were seen for fear and COP mean position; where real elicited larger changes with height than VR. This study demonstrates the utility of VR, as simulated heights resulted in changes to postural, autonomic and psycho-social measures similar to those seen at real heights. As a result, VR may be a useful tool for studying threat related changes in postural control in populations at risk of falls, and to screen and rehabilitate balance deficits associated with fear and anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.
Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao
Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made itmore » more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less
Carroll, R.D.; Lacomb, J.W.
1993-01-01
The location of the subsurface top of the chimney formed by the collapse of the cavity resulting from an underground nuclear explosion is examined at five sites at the Nevada Test Site. The chimneys were investigated by drilling, coring, geophysical logging (density, gamma-ray, caliper), and seismic velocity surveys. The identification of the top of the chimney can be complicated by chimney termination in friable volcanic rock of relatively high porosity. The presence of an apical void in three of the five cases is confirmed as the chimney horizon by coincidence with anomalies observed in coring, caliper and gamma-ray logging (two cases), seismic velocity, and drilling. In the two cases where an apical void is not present, several of these techniques yield anomalies at identical horizons, however, the exact depth of chimney penetration is subject to some degree of uncertainty. This is due chiefly to the extent to which core recovery and seismic velocity may be affected by perturbations in the tuff above the chimney due to the explosion and collapse. The data suggest, however, that the depth uncertainty may be only of the order of 10 m if several indicators are available. Of all indicators, core recovery and seismic velocity indicate anomalous horizons in every case. Because radiation products associated with the explosion are contained within the immediate vicinity of the cavity, gamma-ray logs are generally not diagnostic of chimney penetration. In no case is the denisty log indicative of the presence of the chimney. ?? 1993.
NASA Astrophysics Data System (ADS)
Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.
2017-12-01
Antarctic temperature variations during Heinrich events, as recorded by δ18Oice, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.
Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.)
You, Frank M.; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D.; Rashid, Khalid Y.; Booker, Helen M.; Cloutier, Sylvie
2017-01-01
Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m−2, oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding. PMID:28993783
Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.).
You, Frank M; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D; Rashid, Khalid Y; Booker, Helen M; Cloutier, Sylvie
2017-01-01
Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m -2 , oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.
Effects of hepatitis C virus core protein and nonstructural protein 4B on the Wnt/β-catenin pathway.
Jiang, Xiao-Hua; Xie, Yu-Tao; Cai, Ya-Ping; Ren, Jing; Ma, Tao
2017-05-25
Hepatitis C virus (HCV) core protein and nonstructural protein 4B (NS4B) are potentially oncogenic. Aberrant activation of the Wnt/β-catenin signaling pathway is closely associated with hepatocarcinogenesis. We investigated the effects of HCV type 1b core protein and NS4B on Wnt/β-catenin signaling in various liver cells, and explored the molecular mechanism underlying HCV-related hepatocarcinogenesis. Compared with the empty vector control, HCV core protein and NS4B demonstrated the following characteristics in the Huh7 cells: significantly enhanced β-catenin/Tcf-dependent transcriptional activity (F = 40.87, P < 0.01); increased nuclear translocation of β-catenin (F = 165.26, P < 0.01); upregulated nuclear β-catenin, cytoplasmic β-catenin, Wnt1, c-myc, and cyclin D1 protein expression (P < 0.01); and promoted proliferation of Huh7 cells (P < 0.01 or P < 0.05). Neither protein enhanced β-catenin/Tcf-dependent transcriptional activity in the LO2 cells (F = 0.65, P > 0.05), but they did significantly enhance Wnt3a-induced β-catenin/Tcf-dependent transcriptional activity (F = 64.25, P < 0.01), and promoted the nuclear translocation of β-catenin (F = 66.54, P < 0.01) and the Wnt3a-induced proliferation of LO2 cells (P < 0.01 or P < 0.05). Moreover, activation of the Wnt/β-catenin signaling pathway was greater with the core protein than with NS4B (P < 0.01 or P < 0.05). HCV core protein and NS4B directly activate the Wnt/β-catenin signaling pathway in Huh7 cells and LO2 cells induced by Wnt3a. These data suggest that HCV core protein and NS4B contribute to HCV-associated hepatocellular carcinogenesis.