Science.gov

Sample records for active core rewarming

  1. Active core rewarming avoids bioelectrical impedance changes in postanesthetic patients

    PubMed Central

    2011-01-01

    Background Postoperative hypothermia is a common cause of complications in patients who underwent laparoscopic cholecystectomy. Hypothermia is known to elicit electrophysiological, biochemical, and cellular alterations thus leading to changes in the active and passive membrane properties. These changes might influence the bioelectrical impedance (BI). Our aim was to determine whether the BI depends on the core temperature. Methods We studied 60 patients (52 female and 8 male) age 40 to 80 years with an ASA I-II classification that had undergone laparoscopic cholecystectomy under balanced inhalation anesthesia. The experimental group (n = 30) received active core rewarming during the transanesthetic and postanesthesic periods. The control group (n = 30) received passive external rewarming. The BI was recorded by using a 4-contact electrode system to collect dual sets of measurements in the deltoid muscle. The body temperature, hemodynamic variables, respiratory rate, blood-gas levels, biochemical parameters, and shivering were also measured. The Mann-Whitney unpaired t-test was used to determine the differences in shivering between each group at each measurement period. Measurements of body temperature, hemodynamics variables, respiratory rate, and BI were analyzed using the two-way repeated-measures ANOVA. Results The gradual decrease in the body temperature was followed by the BI increase over time. The highest BI values (95 ± 11 Ω) appeared when the lowest values of the temperature (35.5 ± 0.5°C) were reached. The active core rewarming kept the body temperature within the physiological range (over 36.5°C). This effect was accompanied by low stable values (68 ± 3 Ω) of BI. A significant decrease over time in the hemodynamic values, respiratory rate, and shivering was seen in the active core-rewarming group when compared with the controls. The temporal course of shivering was different from those of body temperatue and BI. The control patients showed a

  2. Respiratory failure and spontaneous hypoglycemia during noninvasive rewarming from 24.7°C (76.5°F) core body temperature after prolonged avalanche burial.

    PubMed

    Strapazzon, Giacomo; Nardin, Michele; Zanon, Peter; Kaufmann, Marc; Kritzinger, Meinhard; Brugger, Hermann

    2012-08-01

    Clinical reports on management and rewarming complications after prolonged avalanche burial are not common. We present a case of an unreported combination of respiratory failure and unexpected spontaneous hypoglycemia during noninvasive rewarming from severe hypothermia. We collected anecdotal observations in a 42-year-old, previously healthy, male backcountry skier admitted to the ICU at a tertiary care center after 2 hours 7 minutes of complete avalanche burial, who presented with a patent airway and a core body temperature of 25.0°C (77.0°F) on extrication. There was no decrease in core body temperature during transport (from 25.0°C [77.0°F] to 24.7°C [76.5°F]). Atrial fibrillation occurred during active noninvasive external rewarming (to 37.0°C [98.6°F] during 5 hours), followed by pulmonary edema and respiratory failure (SaO(2) 73% and PaO(2)/FIO(2) 161 mm Hg), which resolved with endotracheal intubation and continuous positive end-respiratory pressure. Moreover, a marked spontaneous glycemic imbalance (from 22.2 to 1.4 mmol/L) was observed. Despite a possible favorable outcome, clinicians should be prepared to identify and treat severe respiratory problems and spontaneous hypoglycemia during noninvasive rewarming of severely hypothermic avalanche victims.

  3. Oxidative Stress and Antioxidant Activity in Hypothermia and Rewarming: Can RONS Modulate the Beneficial Effects of Therapeutic Hypothermia?

    PubMed Central

    Alva, Norma; Palomeque, Jesús

    2013-01-01

    Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. The lack of oxygen can induce the generation of reactive oxygen and nitrogen free radicals (RONS), followed by oxidative stress, and finally, apoptosis and/or necrosis. Furthermore, since the hypothermia is inevitably followed by a rewarming process, we should also consider its effects. Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia. PMID:24363826

  4. Prevention of cold ischemia/rewarming-induced ERK 1/2, p38 kinase and HO-1 activation by trophic factor supplementation of UW solution.

    PubMed

    Kwon, Young Sam; Foley, John D; Russell, Paul; McAnulty, Jonathan F; Murphy, Christopher J

    2008-08-01

    We have previously shown that trophic factor supplementation (TFS) of University of Wisconsin (UW) solution reduced early apoptotic changes in vascular endothelial cells. Here, we examine the effect of TFS on cell signaling pathways related to cell growth, differentiation, and apoptosis after cold ischemic storage. In this study, the effect of TFS on the phosphorylation of signaling molecules ERK (extracellular regulated-signaling kinase) 1/2 and p38 MAPK (mitogen activated protein kinases) and of HO-1 (hemeoxygenase-1), relative to changes seen in unmodified UW solution, were determined by Western blot in cells stored under cold ischemic conditions. Primary cultures of canine kidney proximal tubule cells (CKPTC) and human umbilical vein endothelial cells (HUVEC) were used in this study. There was a significant decrease, relative to UW solution, after 1 min rewarming in ERK 1 and 2 activity in CKPTCs. For p38 MAPK, a significant decrease after 5 min rewarming was seen in CKPTC (p<0.05) while significant reductions relative to UW solution were seen in HUVECs after both 1 and 5 min rewarming (p<0.05). Phosphorylated HO-1 was also decreased by 43% and 50% in HUVECs, relative to UW solution, after 1 and 5 min rewarming (p<0.05 at each time point). Collectively, TFS not only limits ERK 1/2 and p38 MAPK activity induced by cold ischemic injury and subsequent rewarming, but also substantially restricted increases in HO-1 phosphorylation.

  5. A proposed methodology to control body temperature in patients at risk of hypothermia by means of active rewarming systems.

    PubMed

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5-1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  6. Tissue-specific extravasation of albumin-bound Evans blue in hypothermic and rewarmed rats.

    PubMed

    Matthew, Candace B; Sils, Ingrid V; Bastille, Amy M

    2002-03-01

    The effects of hypothermia and rewarming on endothelial integrity were examined in intestines, kidney, heart, gastrocnemius muscle, liver, spleen, and brain by measuring albumin-bound Evans blue loss from the vasculature. Ten groups of twelve rats, normothermic with no pentobarbital, normothermic sampled at 2, 3, or 4 h after pentobarbital, hypothermic to 20, 25, or 30 degrees C, and rewarmed from 20, 25, or 30 degrees C, were cooled in copper coils through which water circulated. Hypothermic rats were cooled to the desired core temperature and maintained there for 1 h; rewarmed rats were cooled to the same core temperatures, maintained there for 1 h, and then rewarmed. Following Evans blue administration, animals were euthanized with methoxyflurane, tissues removed, and Evans blue extracted. Because hypothermia and rewarming significantly decrease blood flow, organ-specific flow rates for hypothermic and rewarmed tissues were used to predict extravasation. Hypothermia decreased extravasation in tissues with continuous endothelium (brain, muscle) and increased it in tissues with discontinuous endothelium (liver, lung, spleen). All tissues exhibited significant (p < 0.05) differences from normothermic controls. These differences are attributed to a combination of anesthesia, flow, and (or) change in endothelial permeability, suggesting that appropriate choice of organ and temperature would facilitate testing pharmacological means of promoting return to normal perfusion.

  7. Postoperative ventilatory and circulatory effects of extended rewarming during cardiopulmonary bypass.

    PubMed

    Joachimsson, P O; Nyström, S O; Tydén, H

    1989-01-01

    Postoperative effects of extended rewarming (ECR) after hypothermic cardiopulmonary bypass (CPB) were studied. All (n = 28) patients were rewarmed to a nasopharyngeal temperature exceeding 38 degrees C before terminating CPB. In 12 patients (control group) the rectal temperature (Tre) was 33.8 +/- 1.7 degrees C (mean +/- sd) at termination of CPB. In sixteen patients (ECR group) rewarming during CPB was continued to a Tre of 36.8 +/- 0.5 degrees C. Postoperative body temperatures, heat content, shivering, oxygen uptake, CO2 production and haemodynamic variables were measured. ECR reduced the heat gain required to complete core rewarming to 665 +/- 260 kJ, compared with 1037 +/- 374 kJ in the control group (p less than 0.01). The incidence of shivering was reduced (p less than 0.05) as well as shivering intensity and duration. In seven non-shivering ECR group patients this coincided with significantly reduced metabolic and ventilatory demands but these improvements were not valid for the group as a whole. The required ventilation temporarily during postoperative rewarming in both groups increased to 250 per cent of the basal need. Extending CPB rewarming (to at least 36 degrees C Tre) was inefficient when used as the sole measure to reduce the untoward effects of residual hypothermia during recovery after cardiac surgery with hypothermic CPB.

  8. Serum chemical values in hypothermic and rewarmed young calves.

    PubMed

    Olson, D P; South, P J; Hendrix, K

    1983-04-01

    Serum chemical values were determined in cold-stressed Holstein bull calves ranging from 1 to 7 days of age. The animals were anesthetized and cold-stressed until their core body temperature (colonic) was lowered 10 C. Animals were then rewarmed in warm water, with heat pads or heat lamps, or were allowed to recover naturally (unassisted) at room temperature. Blood samples were collected at selected intervals during cooling and recovery. Increases (P less than 0.05) were observed in the concentrations of glucose, calcium, phosphorus, iron, alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, total protein, albumin, total globulin, serum urea nitrogen, uric acid, total bilirubin, indirect bilirubin, and cholesterol in the cold-stressed calves during cooling. Concentrations of chloride and insulin decreased (P less than 0.05) during the same period. Changes observed in many of the serum chemical values during rewarming were generally the reverse of the respective changes that occurred during cooling, although insulin values became exceedingly high in some cases midway or near the end of recovery. Serum enzyme values also remained high during most of recovery. Data did not indicate a clear advantage of one method of rewarming over the other methods used in terms of return of the serum chemical values to normal.

  9. Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands.

    PubMed

    Currie, Shannon E; Noy, Kodie; Geiser, Fritz

    2015-01-01

    Endothermic arousal from torpor is an energetically costly process and imposes enormous demands on the cardiovascular system, particularly during early stage arousal from low body temperature (Tb). To minimize these costs many bats and other heterothermic endotherms rewarm passively from torpor using solar radiation or fluctuating ambient temperature (Ta). Because the heart plays a critical role in the arousal process in terms of blood distribution and as a source of heat production, it is desirable to understand how the function of this organ responds to passive rewarming and how this relates to changes in metabolism and Tb. We investigated heart rate (HR) in hibernating long-eared bats (Nyctophilus gouldi) and its relationship to oxygen consumption (V̇o₂) and subcutaneous temperature (Tsub) during exposure to increasing Ta compared with endogenous arousals at constant low Ta. During passive rewarming, HR and V̇o₂ remained low over a large Tsub range and increased concurrently with increasing Ta (Q₁₀ 2.4 and 2.5, respectively). Absolute values were higher than during steady-state torpor but below those measured during torpor entry. During active arousals, mean HR and V̇o₂ were substantially higher than during passive rewarming at corresponding Tsub. In addition, partial passive rewarming reduced the cost of arousal from torpor by 53% compared with entirely active arousal. Our data show that passive rewarming considerably reduces arousal costs and arousal time; we suggest this may also contribute to minimizing exposure to oxidative stresses as well as demands on the cardiovascular system.

  10. Heart rate variability and electrocardiogram waveform as predictors of morbidity during hypothermia and rewarming in rats.

    PubMed

    Matthew, C B; Bastille, A M; Gonzalez, R R; Sils, I V

    2002-09-01

    This study examined electrocardiogram (ECG) waveform, heart rate (HR), mean blood pressure (BP), and HR variability as potential autonomic signatures of hypothermia and rewarming. Adult male Sprague-Dawley rats had telemetry transmitters surgically implanted, and 2 weeks were allowed for recovery prior to induction of hypothermia. Rats were lightly anesthetized (sodium pentobarbital, 35 mg/kg i.p.) and placed in a coil of copper tubing through which temperature-controlled water was circulated. Animals were cooled to a core temperature (Tc) of 20 degrees C, maintained there for 30 min, and then rewarmed. Data (Tc, BP, HR from ECG, and 10-s strips of ECG waveforms) were collected every 5 min throughout hypothermia and rewarming. Both HR and BP declined after initial increases with the drop in HR starting at a higher Tc than the drop in BP (29.6 +/- 2.4 degrees C vs. 27.1 +/- 3.3 degrees C, p < 0.05). Animals that were not successfully rewarmed exhibited a significant (p < 0.05) increase in the normalized standard deviation of interbeat intervals (IBI) throughout cooling compared with animals that were successfully rewarmed. The T wave of the ECG increased in amplitude and area with decreasing Tc. T-wave amplitude and IBI variability show potential as predictors of survival in hypothermic victims.

  11. Influence of hypothermia and subsequent rewarming upon leukocyte-endothelial interactions and expression of Junctional-Adhesion-Molecules A and B

    PubMed Central

    Bogert, Nicolai V.; Werner, Isabella; Kornberger, Angela; Meybohm, Patrick; Moritz, Anton; Keller, Till; Stock, Ulrich A.; Beiras-Fernandez, Andres

    2016-01-01

    Patients with risks of ischemic injury, e.g. during circulatory arrest in cardiac surgery, or after resuscitation are subjected to therapeutic hypothermia. For aortic surgery, the body is traditionally cooled down to 18 °C and then rewarmed to body temperature. The role of hypothermia and the subsequent rewarming process on leukocyte-endothelial interactions and expression of junctional-adhesion-molecules is not clarified yet. Thus, we investigated in an in-vitro model the influence of temperature modulation during activation and transendothelial migration of leukocytes through human endothelial cells. Additionally, we investigated the expression of JAMs in the rewarming phase. Exposure to low temperatures alone during transmigration scarcely affects leukocyte extravasation, whereas hypothermia during treatment and transendothelial migration improves leukocyte-endothelial interactions. Rewarming causes a significant up-regulation of transmigration with falling temperatures. JAM-A is significantly modulated during rewarming. Our data suggest that transendothelial migration of leukocytes is not only modulated by cell-activation itself. Activation temperatures and the rewarming process are essential. Continued hypothermia significantly inhibits transendothelial migration, whereas the rewarming process enhances transmigration strongly. The expression of JAMs, especially JAM-A, is strongly modulated during the rewarming process. Endothelial protection prior to warm reperfusion and mild hypothermic conditions reducing the difference between hypothermia and rewarming temperatures should be considered. PMID:26912257

  12. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.

    PubMed

    Geiser, F; Drury, R L

    2003-02-01

    The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and

  13. Brief Rewarming Blunts Hypothermia-Induced Alterations in Sensation, Motor Drive and Cognition

    PubMed Central

    Brazaitis, Marius; Paulauskas, Henrikas; Skurvydas, Albertas; Budde, Henning; Daniuseviciute, Laura; Eimantas, Nerijus

    2016-01-01

    Background: It is well known that cold exposure experienced during occupational or recreational activities may adversely affect motor, cognitive performance, and health. Most research has used prolonged passive external rewarming modalities and focused on the direct effects on the kinetics of physiological and psychological responses in hypothermic subjects. However, the brief whole body rewarming effects on physiological and psychological responses in parallel with functional consequences on cognitive and neurophysiological functions have not been investigated. This study explores these effects in 12 healthy young men. Methods: Subjects (20 ± 1 years) participated in 4 randomized trials, which were designed to compare the effects of whole-body brief (5-min) rewarming in 37°C water with rewarming for the same duration in 24°C (air) thermoneutral environment in mildly hypothermic subjects. After each rewarming, indicators of neuromuscular function (reflexes, central activation ratio, electromyography of exercising muscle, and contractile properties of calf muscles) and cognitive function (attention, simple motor speed, and information processing speed) were assessed. Results: Compared to rewarming in thermoneutral environment, after brief rewarming in 37°C water, significantly lower metabolic heat production (MHP) (206 ± 33.4 vs. 121.9 ± 24.3 W·m2, P < 0.01), heart rate (76 ± 16 vs. 60 ± 12 b·min−1, P < 0.01), cold strain (6.4 ± 3.1 vs. 5.3 ± 2.7, P < 0.01), improved thermal comfort and induced cessation of shivering were found. Electrically induced maximum torque amplitudes increased (P100, 102.8 ± 21.3 vs. 109.2 ± 17.5 Nm and PTT100, 83.1 ± 17.1 vs. 92.7 ± 16.0 Nm, P < 0.05), contraction half-relaxation time decreased (599.0 ± 53.8 vs. 589.0 ± 56.3 ms, P < 0.05), and Mmax-wave latency shortened (17.5 ± 2.2 vs. 15.6 ± 2.0 ms, P < 0.05) after 37°C water rewarming. Unlike rewarming in thermoneutral environment, 37°C water rewarming blunted the

  14. Comparison of Effects of Propofol and Isosorbide Dinitrate during Rewarming on Cardiopulmonary Bypass

    PubMed Central

    Furqan, Aamir; Ahmad, Sohail; Ali, Liaqat; Akhtar, Rahat; Baig, Mr. Mirza Ahmad Raza; Altaf, Rana

    2016-01-01

    Objectives: Comparison of effects of propofol and isosorbide dinitrate during rewarming on cardiopulmonary bypass in patients undergoing coronary artery bypasses grafting. Methods: It was randomized prospective clinical trial. One hundred and twenty patient (120) undergoing CABG surgery were included in this study. Group-I (Study group, n=60): in which only propofol infusion used during rewarming and Group-II (control Group, n=60) in which isosorbide dinitrate and propofol infusion combination was used during rewarming. The data was entered and analyzed through SPSS Version 19. Independent sample T-test and chi-square test were used for data analysis. P value of ≤ 0.05 was taken as significant. Results: Mean arterial pressures during rewarming were 63.41±3.61 mmHg in propofol group versus 60.80±4.86 mmHg in control group (p-value 0.001). Core temperature on weaning from cardiopulmonary bypass was 37.11±0.49 °C in propofol group and 37.00±0.18 °C in control group. After drop in core temperature was little more in propofol group (1.02±0.36 °C) versus 0.96±0.37 °C in control group but this difference was not statistically significant (p-value 0.41). Mean Ventilation time after surgery in propofol group was 4.65±0.65 hours versus 5.03±0.81 hours in control group (p-value 0.006). Conclusion: Propofol alone is capable of fulfilling the requirements of adequate rewarming during Cardiopulmonary bypass and can produce more hemodynamic stability and early post-operative recovery. PMID:27648018

  15. Is extracorporeal rewarming indicated in avalanche victims with unwitnessed hypothermic cardiorespiratory arrest?

    PubMed

    Mair, Peter; Brugger, Hermann; Mair, Birgit; Moroder, Luca; Ruttmann, Elfriede

    2014-12-01

    International guidelines recommend using extracorporeal rewarming in all hypothermic avalanche victims with prolonged cardiac arrest if they have patent airways and a plasma potassium level≤12 mmol/L. The aim of this study was to evaluate outcome data to determine if available experience with extracorporeal rewarming of avalanche victims supports this recommendation. At Innsbruck Medical University Hospital, 28 patients with hypothermic cardiac arrest following an avalanche accident were resuscitated using extracorporeal circulation. Of these patients, 25 were extricated from the snow masses with no vital signs and did not survive to hospital discharge. Three patients had witnessed cardiac arrest after extrication and a core temperature of 21.7°C, 22°C, and 24.0°C, two of whom survived long-term with full neurological recovery. A search of the literature revealed only one asystolic avalanche victim with unwitnessed hypothermic cardiac arrest (core temperature 19°C) surviving long-term. All other avalanche victims in the medical literature surviving prolonged hypothermic cardiac arrest suffered witnessed arrest after extrication with a core temperature below 24°C. Our results suggest that prognosis of hypothermic avalanche victims with unwitnessed asystolic cardiac arrest and a core temperature>24°C is extremely poor. Available outcome data do not support the use of extracorporeal rewarming in these patients.

  16. Analysis of rewarming curves in Raynaud's phenomenon of various aetiologies.

    PubMed

    Salem, K M; Baker, M; Hilliam, R M; Davies, S; Deighton, C; Bainbridge, L C; Manning, G

    2009-10-01

    This study investigated whether a modified Cold Provocation Test could distinguish between 86 normal subjects and 31 patients with Raynaud's phenomenon or 59 with hand arm vibration syndrome (HAVS). Of the HAVS subjects, 56 were seen for medical reports as they were involved in litigation. Their assessments were done in a different location but the same protocol was used. A standardised cold stress was used to reduce the finger temperature to 15 degrees C or less without inducing reflex hyperaemia. This test had acceptable repeatability for subjects without HAVS with an intra-class correlation of 0.7. Baseline temperature, temperature rise in the first 30 seconds and the time taken to rewarm by 5 degrees C were measured. Patients with Raynaud's phenomenon and HAVS had cooler hands than controls. HAVS patients rewarmed most in the first 30 seconds. Patients with Raynaud's phenomenon take longer to rewarm by 5 degrees C than controls or those with HAVS (P<0.001). A baseline difference of >7.5 degrees C between the temperature of the digit and that of the room is unlikely to occur in patients with Raynaud's phenomenon or HAVS. A temperature gain of > or =2.2 degrees C in the first 30 seconds on rewarming combined with a low baseline temperature strongly suggests HAVS. This modified cold provocation test may differentiate between patients with Raynaud's phenomenon, HAVS and controls but this observation requires independent verification in subjects not involved in litigation and tested in the same facility.

  17. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  18. Efficiency of a new radiant heater for postoperative rewarming.

    PubMed

    Weyland, W; Weyland, A; Hellige, G; Fritz, U; Neumann, H; Martens, S; Crozier, T; Braun, U

    1994-08-01

    Effective rewarming devices have only become available recently. This investigation compares the efficiency of an new overhead radiant heater (ARAGONA Thermal Ceilings TM, CTCX, 1000 W) with that of an electric blanket (50 W) or a standard hospital blanket. 35 patients undergoing postoperative assisted ventilation and continued sedation were randomly assigned to one of the treatments. Shivering, oxygen uptake, heart rate and invasive blood pressure were measured and the increase in total body heat minus body heat production was calculated as heat balance. Results are given as medians (range). Subcutaneous temperatures were taken to calculate the mean skin temperature. The evaluation was undertaken for an oesophageal temperature interval of 35 degrees to 37 degrees C. All groups exhibited a similar mean oxygen uptake i.e. thermogenesis (3.5 (2.7-4.0) ml.kg-1.min-1, 3.3 (2.7-4.9) ml.kg-1.min-1;3.2 (2.4-5.1) ml.kg-1. min-1) which correspond to a resting energy expenditure. The time of rewarming of the radiant heat treated group (n = 12) (100 (76-143) min) for this interval was significantly reduced in comparison to both other groups (183 (116-320) min; 231 (115-340) min). A slightly positive heat balance was only achieved in the group treated by radiant heat, indicating that all metabolic heat was conserved or heat losses were compensated by transfer of external heat. Shivering was significantly reduced in the radiant heater group whereas the rate pressure product was insignificantly higher. We did not find any significant effect for the electric heating blanket in comparison to the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. 12 CFR 940.3 - Core mission activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Core mission activities. 940.3 Section 940.3 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.3 Core mission activities. The following Bank activities qualify as core mission activities:...

  20. Cardiac condition during cooling and rewarming periods of therapeutic hypothermia after cardiopulmonary resuscitation

    PubMed Central

    2014-01-01

    Background Hypothermia has been used in cardiac surgery for many years for neuroprotection. Mild hypothermia (MH) [body temperature (BT) kept at 32–35°C] has been shown to reduce both mortality and poor neurological outcome in patients after cardiopulmonary resuscitation (CPR). This study investigated whether patients who were expected to benefit neurologically from therapeutic hypothermia (TH) also had improved cardiac function. Methods The study included 30 patients who developed in-hospital cardiac arrest between September 17, 2012, and September 20, 2013, and had return of spontaneous circulation (ROSC) following successful CPR. Patient BTs were cooled to 33°C using intravascular heat change. Basal BT, systolic artery pressure (SAP), diastolic artery pressure (DAP), mean arterial pressure (MAP), heart rate, central venous pressure, cardiac output (CO), cardiac index (CI), global end-diastolic volume index (GEDI), extravascular lung water index (ELWI), and systemic vascular resistance index (SVRI) were measured at 36°C, 35°C, 34°C and 33°C during cooling. BT was held at 33°C for 24 hours prior to rewarming. Rewarming was conducted 0.25°C/h. During rewarming, measurements were repeated at 33°C, 34°C, 35°C and 36°C. A final measurement was performed once patients spontaneously returned to basal BT. We compared cooling and rewarming cardiac measurements at the same BTs. Results SAP values during rewarming (34°C, 35°C and 36°C) were lower than during cooling (P < 0.05). DAP values during rewarming (basal temperature, 34°C, 35°C and 36°C) were lower than during cooling. MAP values during rewarming (34°C, 35°C and 36°C) were lower than during cooling (P < 0.05). CO and CI values were higher during rewarming than during cooling. GEDI and ELWI did not differ during cooling and rewarming. SVRI values during rewarming (34°C, 35°C, 36°C and basal temperature) were lower than during cooling (P < 0.05). Conclusions To our knowledge

  1. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy.

    PubMed

    Wang, B; Armstrong, J S; Reyes, M; Kulikowicz, E; Lee, J-H; Spicer, D; Bhalala, U; Yang, Z-J; Koehler, R C; Martin, L J; Lee, J K

    2016-03-01

    Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are

  2. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy

    PubMed Central

    Wang, Bing; Armstrong, Jillian S.; Reyes, Michael; Kulikowicz, Ewa; Lee, Jeong-Hoo; Spicer, Dawn; Bhalala, Utpal; Yang, Zeng-Jin; Koehler, Raymond C.; Martin, Lee J.; Lee, Jennifer K.

    2016-01-01

    Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2 h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29 h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by TUNEL assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating

  3. Hypothermia and rewarming induce gene expression and multiplication of cells in healthy rat prostate tissue.

    PubMed

    Kaija, Helena; Pakanen, Lasse; Kortelainen, Marja-Leena; Porvari, Katja

    2015-01-01

    Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway.

  4. Effect of Head Insulation on the Total Time Required to Rewarm Postoperative Cardiac Surgery Patients.

    DTIC Science & Technology

    1992-05-01

    perioperative or postoperative period. Urinary bladder temperatures of 33 male and 3 female patients between the ages of 42 and 75 years old undergoing... Perioperative head insulation .......... 17 d. Postoperative head insulation .......... 18 2. Temperature monitoring site ............... 21 3. Drugs that...60 Table 3 Perioperative Rewarming Data on Group I (Experimental) ......................... 61 Table 4 Perioperative

  5. Gradual Rewarming with Gradual Increase in Pressure during Machine Perfusion after Cold Static Preservation Reduces Kidney Ischemia Reperfusion Injury

    PubMed Central

    Mahboub, Paria; Ottens, Petra; Seelen, Marc; t Hart, Nails; Van Goor, Harry; Ploeg, Rutger; Martins, Paulo; Leuvenink, Henri

    2015-01-01

    In this study we evaluated whether gradual rewarming after the period of cold ischemia would improve organ quality in an Isolated Perfused Kidney Model. Left rat kidneys were statically cold stored in University of Wisconsin solution for 24 hours at 4°C. After cold storage kidneys were rewarmed in one of three ways: perfusion at body temperature (38°C), or rewarmed gradually from 10°C to 38°C with stabilization at 10°C for 30 min and rewarmed gradually from 10°C to 38°C with stabilization at 25°C for 30 min. In the gradual rewarming groups the pressure was increased stepwise to 40 mmHg at 10°C and 70 mmHg at 25°C to counteract for vasodilatation leading to low perfusate flows. Renal function parameters and injury biomarkers were measured in perfusate and urine samples. Increases in injury biomarkers such as aspartate transaminase and lactate dehydrogenase in the perfusate were lower in the gradual rewarming groups versus the control group. Sodium re-absorption was improved in the gradual rewarming groups and reached significance in the 25°C group after ninety minutes of perfusion. HSP-70, ICAM-1, VCAM-1 mRNA expressions were decreased in the 10°C and 25°C groups. Based on the data kidneys that underwent gradual rewarming suffered less renal parenchymal, tubular injury and showed better endothelial preservation. Renal function improved in the gradual rewarming groups versus the control group. PMID:26630031

  6. Systematic review of core muscle activity during physical fitness exercises.

    PubMed

    Martuscello, Jason M; Nuzzo, James L; Ashley, Candi D; Campbell, Bill I; Orriola, John J; Mayer, John M

    2013-06-01

    A consensus has not been reached among strength and conditioning specialists regarding what physical fitness exercises are most effective to stimulate activity of the core muscles. Thus, the purpose of this article was to systematically review the literature on the electromyographic (EMG) activity of 3 core muscles (lumbar multifidus, transverse abdominis, quadratus lumborum) during physical fitness exercises in healthy adults. CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, PubMed, SPORTdiscus, and Web of Science databases were searched for relevant articles using a search strategy designed by the investigators. Seventeen studies enrolling 252 participants met the review's inclusion/exclusion criteria. Physical fitness exercises were partitioned into 5 major types: traditional core, core stability, ball/device, free weight, and noncore free weight. Strength of evidence was assessed and summarized for comparisons among exercise types. The major findings of this review with moderate levels of evidence indicate that lumbar multifidus EMG activity is greater during free weight exercises compared with ball/device exercises and is similar during core stability and ball/device exercises. Transverse abdominis EMG activity is similar during core stability and ball/device exercises. No studies were uncovered for quadratus lumborum EMG activity during physical fitness exercises. The available evidence suggests that strength and conditioning specialists should focus on implementing multijoint free weight exercises, rather than core-specific exercises, to adequately train the core muscles in their athletes and clients.

  7. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor.

    PubMed

    Geiser, Fritz; Gasch, Kristina; Bieber, Claudia; Stalder, Gabrielle L; Gerritsmann, Hanno; Ruf, Thomas

    2016-07-15

    Basking can substantially reduce thermoregulatory energy expenditure of mammals. We tested the hypothesis that the largely white winter fur of hamsters (Phodopus sungorus), originating from Asian steppes, may be related to camouflage to permit sun basking on or near snow. Winter-acclimated hamsters in our study were largely white and had a high proclivity to bask when resting and torpid. Resting hamsters reduced metabolic rate (MR) significantly (>30%) when basking at ambient temperatures (Ta) of ∼15 and 0°C. Interestingly, body temperature (Tb) also was significantly reduced from 34.7±0.6°C (Ta 15°C, not basking) to 30.4±2.0°C (Ta 0°C, basking), which resulted in an extremely low (<50% of predicted) apparent thermal conductance. Induced torpor (food withheld) during respirometry at Ta 15°C occurred on 83.3±36.0% of days and the minimum torpor MR was 36% of basal MR at an average Tb of 22.0±2.6°C; movement to the basking lamp occurred at Tb<20.0°C. Energy expenditure for rewarming was significantly reduced (by >50%) during radiant heat-assisted rewarming; however, radiant heat per se without an endogenous contribution by animals did not strongly affect metabolism and Tb during torpor. Our data show that basking substantially modifies thermal energetics in hamsters, with a drop of resting Tb and MR not previously observed and a reduction of rewarming costs. The energy savings afforded by basking in hamsters suggest that this behaviour is of energetic significance not only for mammals living in deserts, where basking is common, but also for P. sungorus and probably other cold-climate mammals.

  8. Slow and stepped re-warming after acute low temperature exposure do not improve survival of Drosophila melanogaster larvae.

    PubMed

    Sinclair, Brent J; Rajamohan, Arun

    2008-01-01

    We tested that hypothesis that slow re-warming rates would improve the ability of Drosophila melanogaster Meigen larvae to survive acute low temperature exposure. Four larval stages (1(st), 2(nd), 3(rd) instars and wandering stage 3(rd) instars) of four wild-type strains were exposed to -7 degrees C for periods of time expected to result in 90 % mortality. Larvae were then either directly transferred to their rearing temperature (21 degrees C), or returned to this temperature in a stepwise fashion (pausing at 0 and 15 degrees C) or by slow warming at 1 or 0.1 degrees C/min. We observed a reduced rapid cold-hardening effect and no general increase in survival of acute chilling in larvae re-warmed in a stepwise or slow fashion, and hypothesise that slow re-warming may result in accumulation of further chill injuries.

  9. Late Holocene fire activity recorded in a Greenland ice core

    NASA Astrophysics Data System (ADS)

    Zennaro, P.; Barbante, C.; Kehrwald, N.; Zangrando, R.; Gambaro, A.; Gabrieli, J.

    2012-04-01

    The pyrolysis compounds from the thermal decomposition of cellulose during burning events are the dominant smoke tracers in continental airsheds. Important compounds from biomass burning include monosaccharide anhydrides (MAs). Levoglucosan is a MA produced by combusing cellulose at a temperatures of 300°C or greater. Ice cores contain these specific molecular markers and other pyrochemical evidence that provides much-needed information on the role of fire in regions with no existing data of past fire activity. Here, we use atmospheric and snow levoglucosan concentrations to trace fire emissions from a boreal forest fire source in the Canadian Shield through transport and deposition at Summit, Greenland (72°35'N 38°25' W, 3048 masl). Atmospheric and surface samples suggest that levoglucosan in snow can record biomass burning events up to 1000s of kilometers away. Levoglucosan does degrade by interacting with hydroxyl radicals in the atmosphere, but it is emitted in large quantities, allowing the use as a biomass burning tracer. These quantified atmospheric biomass burning emissions and associated parallel oxalate and levoglucosan peaks in snow pit samples validates levoglucosan as a proxy for past biomass burning in snow records and by extension in ice cores. The temporal and spatial resolution of chemical markers in ice cores matches the core in which they are measured. The spatial resolution of chemical markers in ice cores depends on the core location where low-latitude ice cores primarily reflect regional climate parameters, and polar ice cores integrate hemispheric signals. We present levoglucosan flux, and hence past fire activity, measured during the late Holocene in the NEEM, Greenland (77°27' N; 51°3'W, 2454 masl) ice core. We compare the NEEM results with multiple major Northern Hemisphere climate and cultural parameters.

  10. Muscle temperature gradients in humans during cold water immersion hypothermia and rewarming

    SciTech Connect

    Bristow, G.K.; Giesbrecht, G.G. Univ. of Calgary, Alberta )

    1991-03-11

    Muscle temperature gradients have not been measured in hypothermic man. Thigh and calf muscle temperatures were measured by indwelling multisensor thermocouples (deep (D) 4.5 cm, and superficial (S) 1.5 cm beneath the skin) on five healthy male subjects immersed in 8C water for 70 minutes on two occasions. Measurements continued during 55 minutes of rewarming by two methods; either treadmill exercise (EX) or shivering (SH). Esophageal temperature (T{sub es}) was also measured. Prior to immersion, deep thigh and calf temperatures were 36.1 and 34.8C respectively and temperature gradients were similar in both thigh and calf. At the end of cooling deep thigh temperature fell 3.0C and the gradient increased to 8.1C. Corresponding values for the calf were 10.3 and 6.4C respectively. Both rewarming methods were terminated at a T{sub es} of 35.7C. EX and SH caused similar changes in thigh temperatures; deep temperature increased 2.1 and 1.9C and gradients decreased to 2.7 and 2.6C respectively. However, an increase in deep calf temperature during EX was absent during SH. During cooling, muscle blood flow would appear to be better maintained in the thigh than the calf. Thigh blood flow increases similarly during EX and SH. However, in calf, blood flow increases during EX but not SH.

  11. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  12. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  13. Core Muscle Activity, Exercise Preference, and Perceived Exertion during Core Exercise with Elastic Resistance versus Machine.

    PubMed

    Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D; Calatayud, Joaquin; Andersen, Lars L

    2015-01-01

    Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26-67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36-64] versus 32% [95% CI 18-46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64-90] versus 54% [95% CI 40-67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88-6.72]) and elastic exercise (5.7 [95% CI 4.81-6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.

  14. Core Muscle Activity, Exercise Preference, and Perceived Exertion during Core Exercise with Elastic Resistance versus Machine

    PubMed Central

    Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D.; Calatayud, Joaquin; Andersen, Lars L.

    2015-01-01

    Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26–67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36–64] versus 32% [95% CI 18–46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64–90] versus 54% [95% CI 40–67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88–6.72]) and elastic exercise (5.7 [95% CI 4.81–6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance. PMID:26557405

  15. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    PubMed

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  16. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus.

    PubMed

    Kirov, S A; Petrak, L J; Fiala, J C; Harris, K M

    2004-01-01

    More dendritic spine synapses occur on mature neurons in hippocampal slices by 2 h of incubation in vitro, than in perfusion-fixed hippocampus. What conditions initiate this spinogenesis and how rapidly do the spines begin to proliferate on mature neurons? To address these questions, CA1 field of the hippocampus neurons expressing green fluorescent protein in living slices from mature mice were imaged with two-photon microscopy. Spines disappeared and dendrites were varicose immediately after slice preparation in ice-cold artificial cerebrospinal fluid (ACSF). Electron microscopy (EM) revealed disrupted dendritic cytoplasm, enlarged or free-floating postsynaptic densities, and excessive axonal endocytosis. Upon warming dendritic varicosities shrank and spines rapidly reappeared within a few minutes illustrating the remarkable resilience of mature hippocampal neurons in slices. When membrane impermeant sucrose was substituted for NaCl in ACSF dendrites remained spiny at ice-cold temperatures and EM revealed less disruption. Nevertheless, spine number and length increased within 30 min in warm ACSF even when the extracellular calcium concentration was zero and synaptic transmission was blocked. When slices were first recovered for several hours and then chilled in 6 degrees C ACSF many spines disappeared and the dendrites became varicose. Upon re-warming varicosities shrank and spines reemerged in the same position from which they disappeared. In addition, new spines formed and spines were longer suggesting that chilling, not the initial injury from slicing, caused the spines to disappear while re-warming triggered the spine proliferation on mature neurons. The new spines might be a substrate for neuronal recovery of function, when neurons have been chilled or exposed to other traumatic conditions that disrupt ionic homeostasis.

  17. Body heat transfer during hip surgery using active core warming.

    PubMed

    Kulkarni, P; Webster, J; Carli, F

    1995-07-01

    The purpose of this study was to evaluate the effect of core warming on heat redistribution from the core to the periphery as manifested by changes in core, mean skin temperature and mean body heat, investigated in a group of 30 patients undergoing total hip replacement. The control group (n = 10) had no active warming. Core warming was achieved in the humidifier group (n = 10) by using humidified and warmed gases at 40 degrees C, whilst in the oesophageal group (n = 10), an oesophageal heat exchanger was used to achieve active warming. Operating room temperature and relative humidity was standardised. Aural canal and skin temperatures (15 sites) were measured before induction of anaesthesia, at the end of surgery and one hour of recovery after anaesthesia. Mean skin temperatures were calculated for a weighted four and unweighted 15 points, and mean body heat were calculated to quantify the distribution of body heat. Core temperature decreased in the control and the oesophageal groups, but not in the humidifier group at the end of surgery; by mean values +/- SD of 1.9 degrees C +/- 0.6, 1.2 degrees C +/- 0.6 and 0.4 degree C +/- 0.2 degree C, respectively (P < 0.01). Mean skin temperature (MST15) decreased in the control group by 1.0 degree C +/- 1.0, but not in the actively warmed groups where the mean increased by 0.1 degree C +/- 1.4 and 0.2 degree C +/- 0.2 in the oesophageal and humidifier groups, respectively (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  19. Robustness of nuclear core activity reconstruction by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-02-01

    We apply a data assimilation technique, inspired from meteorological applications, to perform an optimal reconstruction of the neutronic activity field in a nuclear core. Both measurements and information coming from a numerical model are used. We first study the robustness of the method when the amount of measured information decreases. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction.

  20. Neurologic Injury Associated with Rewarming from Hypothermia: Is Mild Hypothermia on Bypass Better than Deep Hypothermic Circulatory Arrest?

    PubMed Central

    Bhalala, Utpal S.; Appachi, Elumalai; Mumtaz, Muhammad Ali

    2016-01-01

    Many known risk factors for adverse cardiovascular and neurological outcomes in children with congenital heart defects (CHD) are not modifiable; however, the temperature and blood flow during cardiopulmonary bypass (CPB), are two risk factors, which may be altered in an attempt to improve long-term neurological outcomes. Deep hypothermic circulatory arrest, traditionally used for aortic arch repair, has been associated with short-term and long-term neurologic sequelae. Therefore, there is a rising interest in using moderate hypothermia with selective antegrade cerebral blood flow on CPB during aortic arch repair. Rewarming from moderate-to-deep hypothermia has been shown to be associated with neuronal injury, neuroinflammation, and loss of cerebrovascular autoregulation. A significantly lesser degree of rewarming is required following mild (33–35°C) hypothermia as compared with moderate (28–32°C), deep (21–27°C), and profound (less than 20°C) hypothermia. Therefore, we believe that mild hypothermia is associated with a lower risk of rewarming-induced neurologic injury. We hypothesize that mild hypothermia with selective antegrade cerebral perfusion during CPB for neonatal aortic arch repair would be associated with improved neurologic outcome. PMID:27734011

  1. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  2. Clinical severity, rather than body temperature, during the rewarming phase of therapeutic hypothermia affect quantitative EEG in neonates with hypoxic ischemic encephalopathy.

    PubMed

    Burnsed, Jennifer; Quigg, Mark; Zanelli, Santina; Goodkin, Howard P

    2011-02-01

    EEG is important in monitoring neonates with hypoxic-ischemic encephalopathy (HIE) during hypothermia therapy (HT). Although EEG is used to evaluate the severity of HIE and predict outcome, HT itself may affect EEG parameters. The goal of this study is to evaluate whether core body temperature (CBT) during the rewarming phase of HT in neonates with HIE changes quantified EEG parameters. Quantified EEG parameters were reviewed in 10 neonates with HIE treated with HT. Total power, 90% spectral edge frequency, the mean and lower border of amplitude-integrated EEG (aEEG), and approximate entropy of the aEEG were calculated from 10-minute samples centered on CBT measurements. Patients were classified by clinical HIE severity and length of stay. Two-way analysis of variance was used to test interactions among CBT and EEG data. CBT had no significant effects on the quantified EEG parameters. The aEEG-average and lower border amplitudes were significantly lower in severe HIE. The aEEG-average was significantly more orderly in patients with longer length of stay, regardless of CBT. HIE severity and length of stay but not CBT affect quantified EEG. Findings suggest quantified EEG is reliable during HT. In addition, EEG may aid in predicting short-term outcome of neonates with HIE.

  3. Therapeutic activity of modified U1 core spliceosomal particles

    PubMed Central

    Rogalska, Malgorzata Ewa; Tajnik, Mojca; Licastro, Danilo; Bussani, Erica; Camparini, Luca; Mattioli, Chiara; Pagani, Franco

    2016-01-01

    Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. PMID:27041075

  4. Seven-core active fibre for application in telecommunication satellites

    NASA Astrophysics Data System (ADS)

    Filipowicz, Marta; Napierała, Marek; Murawski, Michał; Ostrowski, Łukasz; Szostkiewicz, Łukasz; Szymański, Michał; Tenderenda, Tadeusz; Anders, Krzysztof; Piramidowicz, Ryszard; Wójcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Paweł; Nasiłowski, Tomasz

    2015-12-01

    The use of optical elements and other photonic components makes it possible to overcome telecommunication satellite's bottleneck problems such as size and weight reduction. Despite the unquestionable potential of such elements, nowadays they are not widely used in systems operating in space. This is due to many factors, including the fact that space radiation has disruptive influence on optical fibre. Namely it introduces additional radiation induced attenuation (RIA) that significantly lowers efficiency of optical fibre based systems. However, there is a possibility to produce radiation-hardened (rad-hard) components. One of them is seven core erbium-doped active fibre (MC-EDF) for fibre amplifiers in satellites that we have been developing. In this paper we present a detailed description of seven core structure design as well as experimental results. We report that average gain of 20 dB in C-band with noise figure of 5.8 dB was obtained. We also confirmed that low crosstalk value for a multicore fibre amplifier based on our fibre can be achieved.

  5. Active Heave-Compensated Coring On The New Jersey Shelf

    NASA Astrophysics Data System (ADS)

    Nielson, D. L.; Pardey, M.; Austin, J. A.; Goff, J. A.; Alexander, C.; Christensen, B. A.; Gulick, S. P.; Fulthorpe, C. S.; Nordfjord, S.; Sommerfield, C.; Venherm, C.

    2003-12-01

    The continental shelves are of obvious scientific and strategic importance. However, the ability to cost-effectively collect core samples of continental shelf sediments has been limited by technical difficulties. Many sites of scientific interest are too shallow to be drilled by large drill ships, and they are too deep to be drilled economically from jack-up platforms. DOSECC has developed an Active Heave Compensated (AHC800) drilling system under sponsorship of the Office of Naval Research to overcome these obstacles by building a small active heave compensated drilling rig that can be used to collect high-quality core from selected vessels of opportunity. The AHC800 drilling rig is designed to collect continuous core to a total drill string length of 800 m. Water depths of 200 m and less are optimal; however, with some modification operation in deeper water is possible. The AHC800 senses vessel heave using a constantly tensioned low-stretch taut line attached to a seafloor weight. A linear position transducer is attached to this taut line and through the data acquisition system, the ship's distance from the bottom is communicated to the heave compensation computer running Labview RT operating system and object-based software language. This real-time control system is used to achieve a 10-ms control loop for both data gathering and output functions. The Labview RT system continuously controls two hydraulic cylinders that keep the heave carriage and the drill string at the same reference distance from the bottom. The AHC800 system was used on the R/V Knorr on the New Jersey continental shelf in water depths from 74 to 130 m from 25 Sep to 15 Oct 2002. The AHC800 system performed up to and beyond its design specifications. The rig was designed to compensate for 2.44 m of heave with an 8 s period. However, the Knorr's response was a 6 s period resulting in a significant increase in the required acceleration as well as a faster response time for the system as a whole

  6. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2010-11-01

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  7. Who Can You Turn to? Tie Activation within Core Business Discussion Networks

    ERIC Educational Resources Information Center

    Renzulli, Linda A.; Aldrich, Howard

    2005-01-01

    We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…

  8. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes.

    PubMed

    Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H

    2015-12-15

    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S.

  9. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  10. Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFκB activation.

    PubMed

    Suzuki, Ryosuke; Saito, Kenji; Matsuda, Mami; Sato, Mitsuru; Kanegae, Yumi; Shi, Guoli; Watashi, Koichi; Aizaki, Hideki; Chiba, Joe; Saito, Izumu; Wakita, Takaji; Suzuki, Tetsuro

    2016-04-01

    Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis.

  11. Core promoter specificities of the Sp1 and VP16 transcriptional activation domains.

    PubMed Central

    Emami, K H; Navarre, W W; Smale, S T

    1995-01-01

    The core promoter compositions of mammalian protein-coding genes are highly variable; some contain TATA boxes, some contain initiator (Inr) elements, and others contain both or neither of these basal elements. The underlying reason for this heterogeneity remains a mystery, as recent studies have suggested that TATA-containing and Inr-containing core promoters direct transcription initiation by similar mechanisms and respond similarly to a wide variety of upstream activators. To analyze in greater detail the influence of core promoter structure on transcriptional activation, we compared activation by GAL4-VP16 and Sp1 through synthetic core promoters containing a TATA box, an Inr, or both TATA and Inr. Striking differences were found between the two activators, most notably in the relative strengths of the TATA/Inr and Inr core promoters: the TATA/Inr promoter was much stronger than the Inr promoter when transcription was activated by GAL4-VP16, but the strengths of the two promoters were more comparable when transcription was activated by Sp1. To define the domains of Sp1 responsible for efficient activation through an Inr, several Sp1 deletion mutants were tested as GAL4 fusion proteins. The results reveal that the glutamine-rich activation domains, which previously were found to interact with Drosophila TAF110, preferentially stimulate Inr-containing core promoters. In contrast, efficient activation through TATA appears to require additional domains of Sp1. These results demonstrate that activation domains differ in their abilities to function with specific core promoters, suggesting that the core promoter structure found in a given gene may reflect a preference of the regulators of that gene. Furthermore, the core promoter preference of an activation domain may be related to a specific mechanism of action, which may provide a functional criterion for grouping activation domains into distinct classes. PMID:7565743

  12. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  13. Robustness of Nuclear Core Activity Reconstruction by Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    Inspired from meteorological applications, data assimilation techniques can be used to perform an optimal reconstruction of the neutronic field in a nuclear reactor core. Measurements and simulation information, coming from a numerical model, are merged together to build a better estimation of the whole field. In this paper, we first study the robustness of the method when the amount of measured information varies. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction. This study also highlights the instruments providing most information within a data assimilation procedure. The study of various network configurations of instruments in the nuclear core establishes that the influence of each instrument depends both on the individual instrumentation location as well as on the chosen network.

  14. Teaching the Common Core Math Standards with Hands-On Activities, Grades 6-8

    ERIC Educational Resources Information Center

    Muschla, Judith A.; Muschla, Gary Robert; Muschla, Erin

    2012-01-01

    The new Common Core State Standards for Mathematics have been formulated to provide students with instruction that will help them acquire a thorough knowledge of math at their grade level, which will in turn enable them to move on to higher mathematics with competence and confidence. "Hands-on Activities for Teaching the Common Core Math…

  15. Activation mechanism of the nuclear chaperone nucleoplasmin: role of the core domain.

    PubMed

    Bañuelos, Sonia; Hierro, Aitor; Arizmendi, Jesús M; Montoya, Guillermo; Prado, Adelina; Muga, Arturo

    2003-11-28

    Nucleoplasmin (NP) mediates nucleosome assembly by removing basic proteins from sperm chromatin and exchanging them with histones. This function is modulated by phosphorylation of NP at multiple sites. NP is pentameric, each monomer consisting of two domains: a core, which forms a stable ring-like pentamer, and a tail, that holds a polyglutamic tract and the nuclear localization signal. In the present study, we have explored the role of the core domain in the functionality of NP. Despite lacking the poly-Glu region, a putative binding site for basic proteins, the isolated core domain of the hyperphosphorylated protein isolated from eggs of Xenopus laevis is able to bind sperm basic proteins and decondense chromatin, in contrast to the inactive, non-phosphorylated recombinant core. This activity can be reproduced artificially in the recombinant core domain through mutation of putative phosphorylation sites to aspartate, thus mimicking the charge effect of phosphorylation. The mutated residues locate in flexible or loop regions exposed on the "distal face" of the core pentamer, where a short acidic region is also found, indicating that phosphorylation might activate the core domain of NP by generating a strong localized negative potential. Our results show that the phosphorylated core domain of NP is active in chromatin decondensation, thus it could contribute together with the poly-Glu containing tail in displaying a binding surface for sperm basic proteins on the NP pentamer.

  16. Differential influence of instruments in nuclear core activity evaluation by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-01-01

    The global neutronic activity fields of a nuclear core can be reconstructed using data assimilation. Indeed, data assimilation allows to combine both measurements from instruments and information from a model, to evaluate the best possible neutronic activity within the core. We present and apply a specific procedure which evaluates the influence of measures by adding or removing instruments in a given measurement network (possibly empty). The study of various network configurations for the instruments in the nuclear core establishes that the influence of the instruments depends both on the independent instrumentation location and on the chosen network.

  17. Effect of a short period of abstinence from smoking on rewarming patterns of the hands following local cooling.

    PubMed

    Miland, Ashild O; Mercer, James B

    2006-09-01

    The purpose of the study was to examine the effect of a 12 h period of abstinence from smoking in young and old habitual smokers, on skin rewarming patterns of a hand following local cooling. This was done by comparing changes in peripheral circulation, measured indirectly by monitoring changes in skin surface temperatures of the hand with both infrared (IR) thermography and thermocouples before, during and after immersing the right hand for 2 min in water at 10 degrees C. Included in the study were young male non-smokers (n = 14) and smokers (n = 13), and elderly non-smokers (n = 12) and smokers (n = 14). The results showed no statistically significant difference between young non-smokers and smokers when comparing their response to the local cold challenge. The elderly smokers had a significantly higher hand skin temperature prior to cooling (34.0 +/- 0.2 degrees C) and after 80% rewarming (32.1 +/- 0.2 degrees C) (i.e. when the skin temperature in the "cooled" hand has regained 80% of the cold induced drop in temperature), compared to elderly non-smokers (33.3 +/- 0.2 and 31.3 +/- 0.2 degrees C, respectively). The elderly smoking subjects also had a faster recovery after cooling (9.7 +/- 0.8 min) than the elderly non-smoking subjects (16.7 +/- 2.6 min). A follow-up study with seven elderly smokers, who had smoked as usual until 2 h before the experiment, showed responses lying between the non-smokers and smokers who had had a longer period of abstinence (12 h) from smoking. In conclusion, we have demonstrated using IR-thermal imaging that elderly subjects who have smoked for many years have slightly warmer hand skin temperature when they abstain from smoking. Even a period of abstinence from smoking of a few hours can affect the way in which elderly subjects respond to a local cold challenge, recovering more rapidly then their non-smoking counterparts.

  18. Thermal analysis of HTS air-core transformer used in voltage compensation type active SFCL

    NASA Astrophysics Data System (ADS)

    Song, M.; Tang, Y.; Li, J.; Zhou, Y.; Chen, L.; Ren, L.

    2010-11-01

    The three-phase voltage compensation type active superconducting fault current limiter (SFCL) is composed of three HTS air-core transformers and a three-phase four-wire Pulse Width Modulation (PWM) converter. The primary winding of the each phase HTS air-core transformer is in series with the main system, and the second winding is connected with the PWM converter. The single-phase conduction-cooled HTS air-core transformer is consisting of four double-pancakes wound by the Bi2223/Ag tape. In this paper, according to the electromagnetic analysis on the single-phase HTS air-core transformer, its AC loss corresponding to different operation modes is calculated. Furthermore, the thermal behaviors are studied by the time-stepping numerical simulations. On the basis of the simulation results, the related problems with the HTS air-core transformer's thermal stability are discussed.

  19. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  20. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    PubMed

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  1. Postoperative ventilatory and circulatory effects of heating after aortocoronary bypass surgery. Extended rewarming during cardiopulmonary bypass and postoperative radiant heat supply.

    PubMed

    Joachimsson, P O; Nyström, S O; Tydén, H

    1987-08-01

    Twenty-four patients with stable angina pectoris were studied after aortocoronary bypass surgery with hypothermic cardiopulmonary bypass (CPB). Twelve patients (radiant heat supply group) were rewarmed during CPB to a nasopharyngeal temperature of at least 38 degrees C and a mean rectal temperature of 34.4 degrees C. Postoperatively they received radiant heat supply from a thermal ceiling. In addition, a heating water mattress was used during the end of the operation and heated, humidified inspired gases were administered intra- and postoperatively. The other 12 patients (combination heat supply group) had the rewarming during CPB extended until the rectal temperature exceeded 36 degrees C, but otherwise received the same treatment as the radiant heat supply group. The combination of extended rewarming during CPB and postoperative radiant heat supply significantly reduced oxygen uptake, carbon dioxide production and the required ventilation volumes during early recovery as compared with the values in the radiant heat supply group. The reduced metabolic demands were accompanied by lower cardiac index and oxygen delivery, which, however, were sufficient for adequate tissue perfusion as judged by the similarity in oxygen extraction and arterial base excess values in the two groups. The metabolic demands and ventilatory requirements were reduced to a level at which safe early extubation is possible.

  2. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  3. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  4. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  5. Rewarming Rate of the Myocardium During the Aortic Cross-Clamp Time: Variations with Different Levels of Body Hypothermia

    PubMed Central

    Juffé, Alberto; Burgos, Raul; Montero, Carlos Garcia; Tellez, Gaberiel; Prades, Gonzalo; Lloves, Eduardo; Figuera, Diego

    1985-01-01

    Twenty patients underwent elective cardiac valve replacement at 20° C of body hypothermia. Temperatures of the ventricles of both walls were monitored on 12 different sites. Distribution of myocardial temperature ranged between 24.3 and 29.3° C for patients of Group I before cardioplegia delivery and 13.2° C in the septum after cardioplegic infusion. Average temperatures for the anterior and posterior wall were 13.6 C and 15° C in the left ventricle and 14.7 and 15° C in the right ventricle. Myocardial temperatures ranged from 26 to 28.7° C for patients of Group II. After cardioplegic arrest, septal temperatures averaged 14.9° C. The recorded sites of the anterior and posterior left ventricle were 14.1 and 13.1° C. The effects of rewarming on the different myocardial areas occurred according to a logarithmic equation, which is faster in the first 10 minutes. The data suggest that the myocardium can be adequately protected with 25° C hypothermia when the cross-clamp period is shorter than 60 minutes. When longer ischemic periods are expected, myocardial protection is best accomplished with 20° C hypothermia. PMID:15227003

  6. Fcgamma receptor-like activity of hepatitis C virus core protein.

    PubMed

    Maillard, Patrick; Lavergne, Jean-Pierre; Sibéril, Sophie; Faure, Grazyna; Roohvand, Farzin; Petres, Stephane; Teillaud, Jean Luc; Budkowska, Agata

    2004-01-23

    We have previously demonstrated that viral particles with the properties of nonenveloped hepatitis C virus (HCV) nucleocapsids occur in the serum of HCV-infected individuals (1). We show here that nucleocapsids purified directly from serum or isolated from HCV virions have FcgammaR-like activity and bind "nonimmune" IgG via its Fcgamma domain. HCV core proteins produced in Escherichia coli and in the baculovirus expression system also bound "nonimmune" IgG and their Fcgamma fragments. Folded conformation was required for IgG binding because the FcgammaR-like site of the core protein was inactive in denaturing conditions. Studies with synthetic core peptides showed that the region spanning amino acids 3-75 was essential for formation of the IgG-binding site. The interaction between the HCV core and human IgG is more efficient in acidic (pH 6.0) than in neutral conditions. The core protein-binding site on the IgG molecule differs from those for C1q, FcgammaRII (CD32), and FcgammaRIII (CD16) but overlaps with that for soluble protein A from Staphylococcus aureus (SpA), which is located in the CH2-CH3 interface of IgG. These characteristics of the core-IgG interaction are very similar to those of the neonatal FcRn. Surface plasmon resonance studies suggested that the binding of an anti-core antibody to HCV core protein might be "bipolar" through its paratope to the corresponding epitope and by its Fcgamma region to the FcgammaR-like motif on this protein. These features of HCV nucleocapsids and HCV core protein may confer an advantage for HCV in terms of survival by interfering with host defense mechanisms mediated by the Fcgamma part of IgG.

  7. Systematic mining of analog series with related core structures in multi-target activity space.

    PubMed

    Gupta-Ostermann, Disha; Hu, Ye; Bajorath, Jürgen

    2013-08-01

    We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.

  8. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea.

    PubMed

    Abers, Geoffrey A; Ferris, Aaron; Craig, Mitchell; Davies, Hugh; Lerner-Lam, Arthur L; Mutter, John C; Taylor, Brian

    2002-08-22

    In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.

  9. Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients.

    PubMed

    Ludvigsson, Jufang Wu; Karlsson, Anders; Kjellberg, Viktor

    2016-12-01

    In the last decade, core-shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub-2 μm particles and their significantly lower back pressure. Core-shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core-shell column market and use these columns in pharmaceutical analytical applications, 17 core-shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6-2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core-shell columns of particle size 2.6-2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6-2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core-shell particles as sub-2 μm fully porous particles, column performances of the selected core-shell columns were compared with BEH C18 , 1.7 μm, a fully porous column material as well.

  10. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    PubMed

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-04

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B.

  11. Effect of optical pumping on the refractive index and temperature in the core of active fibre

    SciTech Connect

    Gainov, V V; Ryabushkin, Oleg A

    2011-09-30

    This paper examines the refractive index change (RIC) induced in the core of Yb{sup 3+}-doped active silica fibres by pulsed pumping. RIC kinetic measurements with a Mach - Zehnder interferometer make it possible to separately assess the contributions of the electronic and thermal mechanisms to the RIC and evaluate temperature nonuniformities in the fibre.

  12. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009

    PubMed Central

    Blain, Amy E.; Mandal, Sema; Wu, Henry; MacNeil, Jessica R.; Harrison, Lee H.; Farley, Monica M.; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M.; Anderson, Raydel; Harcourt, Brian H.; Mayer, Leonard W.; Clark, Thomas A.; Cohn, Amanda C.

    2016-01-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. PMID:27704009

  13. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009.

    PubMed

    Blain, Amy E; Mandal, Sema; Wu, Henry; MacNeil, Jessica R; Harrison, Lee H; Farley, Monica M; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M; Anderson, Raydel; Harcourt, Brian H; Mayer, Leonard W; Clark, Thomas A; Cohn, Amanda C

    2016-09-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines.

  14. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  15. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  16. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    SciTech Connect

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M.; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.

  17. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    SciTech Connect

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  18. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction.

    PubMed

    Wang, Xue; Choi, Sang-Il; Roling, Luke T; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A; Mavrikakis, Manos; Xia, Younan

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  19. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.

    PubMed

    Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi

    2015-05-01

    Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment.

  20. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives.

    PubMed

    Windbergs, Maike; Zhao, Yuanjin; Heyman, John; Weitz, David A

    2013-05-29

    Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.

  1. Insights into microstructure and chemistry of active fiber core material produced by the granulated silica method

    NASA Astrophysics Data System (ADS)

    Najafi, H.; Etissa, D.; Romano, V.

    2014-05-01

    The production of special fibers relies on new methods and materials to incorporate new functionalities into optical fibers by virtues of dopants and structure. In particular, the granulated silica method allows to rapidly produce active fibers with high dopant content and with virtually any microstructure. The implementation of this production method requires a multitude of process steps at various temperatures and temperature gradients that can significantly influence the optical properties of the produced preforms and fibers. To better understand and optimize the processes of active material production and fiber drawing parameters we have done a thorough analysis of microstructure, phase development, crystallinity and chemical mapping of active fiber cores produced by a combination of sol-gel process and granulated silica method with and without employment of a CO2 laser treatment. The microstructure of fibers have been analyzed with a diverse suite of techniques in Transmission Electron Microscopy (TEM), revealing formation of various silica polymorphs and distribution of active elements (i.e. Yb and P) into the core structure. Our results show the presence of another polymorph of silica with low crystallinity dispersed in the main amorphous polymorph (i.e. quartz). We conclude that in spite of importance of homogeneous distribution of Yb and P into the core, the formation of various silica polymorphs resulting from materials processing has to be considered.

  2. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  3. Influence Of Scapular Position On The Core Musculature Activation In The Prone Plank Exercise.

    PubMed

    Cortell-Tormo, Juan M; García-Jaén, Miguel; Chulvi-Medrano, Iván; Hernández-Sánchez, Sergio; Lucas-Cuevas, Ángel G; Tortosa-Martínez, Juan

    2016-10-26

    Prone plank is a widely used exercise in core stability training. Research has shown that pelvic tilt plays an important role on the electromyographical (EMG) activation of core musculature. However, the influence of scapular position on EMG activation is currently unknown. Therefore, this study evaluated the influence of scapular position on the core muscles during a prone plank. Surface electromyography of the rectus abdominis (RA), external oblique (EO), internal oblique (IO) and erector spinae (ES) was collected in fifteen participants (10 men, 5 women). Four variations of the prone plank were evaluated: scapular abduction with anterior (ABANT) and posterior (ABRET) pelvic tilt; and scapular adduction with anterior (ADANT) and posterior (ADRET) pelvic tilt. Individual muscle EMG and overall EMG for each plank exercise was analyzed. Joint positions were controlled with a 2D kinematic analysis. Ratings of perceived effort (RPE) were also registered. ADRET resulted in higher overall EMG activity compared to ABANT (p=0.04) and ADANT (p=0.04). Moreover, ADRET resulted in greater EMG activity compared to ADANT, ABANT, and ABRET for EO (p=0.000; p=0.000; p=0.035), IO (p=0.000; p=0.000; p=0.005) and ES (p=0.019; p=0.001; p=0.014). Regarding RA, ADRET was significantly higher compared to ADANT (p=0.002) and ABANT (p=0.005). Finally, ADRET provoked a higher RPE compared to ABANT (p=0.000), ABRET (p=0.001) and ADANT (p=0.015). These findings demonstrate the influence of the scapular and pelvic position on the EMG response of the core muscle groups analyzed in this study, and highlight the greater contribution of these muscles to the postural stabilizing demands during posterior pelvic tilt positions, particularly when the scapulae are in adduction.

  4. Core muscle activity in a series of balance exercises with different stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces).

  5. The activated sludge ecosystem contains a core community of abundant organisms.

    PubMed

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal.

  6. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  7. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Ramirez-Caballero, Gustavo E.; Hirunsit, Pussana; Balbuena, Perla B.

    2010-10-01

    Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M2C (M=Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.

  8. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  9. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas.

  10. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  11. Human and climate impacts on Holocene fire activity recorded in polar and mountain ice cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie; Zennaro, Piero; Kirchgeorg, Torben; Li, Quanlian; Wang, Ninglian; Power, Mitchell; Zangrando, Roberta; Gabrielli, Paolo; Thompson, Lonnie; Gambaro, Andrea; Barbante, Carlo

    2014-05-01

    Fire is one of the major influences of biogeochemical change on local to hemispheric scales through emitting greenhouse gases, altering atmospheric chemistry, and changing primary productivity. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is a specific molecular that can only be produced by cellulose burning at temperatures > 300°C, comprises a major component of smoke plumes, and can be transported across > 1000 km distances. Levoglucosan is deposited on and archived in glaciers over glacial interglacial cycles resulting in pyrochemical evidence for exploring interactions between fire, climate and human activity. Ice core records provide records of past biomass burning from regions of the world with limited paleofire data including polar and low-latitude, high-altitude regions. Here, we present Holocene fire activity records from the NEEM, Greenland (77° 27'N; 51° 3'W; 2454 masl), EPICA Dome C, Antarctica (75° 06'S; 123° 21'E; 3233 masl), Kilimanjaro, Tanzania (3° 05'S, 21.2° E, 5893 masl) and the Muztagh, China (87.17° E; 36.35° N; 5780 masl ice cores. The NEEM ice core reflects boreal fire activity from both North American and Eurasian sources. Temperature is the dominant control of NEEM levoglucosan flux over decadal to millennial time scales, while droughts influence fire activity over sub-decadal timescales. Our results demonstrate the prominence of Siberian fire sources during intense multiannual droughts. Unlike the NEEM core, which incorporates the largest land masses in the world as potential fire sources, EPICA Dome C is located far from any possible fire source. However, EPICA Dome C levoglucosan concentrations are consistently above detection limits and demonstrate a substantial 1000-fold increase in fire activity beginning approximately 800 years ago. This significant and sustained increase coincides with Maori arrival and dispersal in New Zealand augmented by later European arrival in Australia. The EPICA Dome C levoglucosan profile is

  12. Cereblon inhibits proteasome activity by binding to the 20S core proteasome subunit beta type 4.

    PubMed

    Lee, Kwang Min; Lee, Jongwon; Park, Chul-Seung

    2012-10-26

    In humans, mutations in the gene encoding cereblon (CRBN) are associated with mental retardation. Although CRBN has been investigated in several cellular contexts, its function remains unclear. Here, we demonstrate that CRBN plays a role in regulating the ubiquitin-proteasome system (UPS). Heterologous expression of CRBN inhibited proteasome activity in a human neuroblastoma cell line. Furthermore, proteasome subunit beta type 4 (PSMB4), the β7 subunit of the 20S core complex, was identified as a direct binding partner of CRBN. These findings suggest that CRBN may modulate proteasome activity by directly interacting with the β7 subunit.

  13. Cometary cores with multiple structure from the oort cloud and the general scheme of origin of unusually active comets

    SciTech Connect

    Davydov, V.D.

    1986-03-01

    A newly conceived scheme is constructed which synthesizes consistent solutions to several principal problems concerning multiple-core comets: a power mechanism, a place and epoch of formation of the multiple core structure, the qualitative differences between current structure and younger structure, the origin of two types of cometary orbits, and a trigger mechanism for recent ignition of cometary activity of a multiple core. This scheme uses a new explanation of the ejection of dust (including icy dust) from various cometary cores as evidence that the material of multiple-core comets may be collisionally ablated at the expense of the comet-centered orbital energy of a multitude of massive boulders (see Kosm. Issled., No. 6 (1984)). Natural mechanisms are shown which preserve this important feature of multiple cores. The concept consists of the following elements: evolution of a system of satellites of the core toward a colli sionless structure; preservation of internal kinetic energy in the collisionless system over astro nomically lengthy time scales; tidal initiation of a collisional mechanism with the first revolution of the ancient multiple core in the zone of visibility. It is possible that such revoltions correspond to the existence of especially active comets in nearly parabolic orbits. Multiple structure in the core of active short-period comets might be descended from a nearly parabolic comet (if the theory holds on perturbational multistage transformation of near-parabolic orbits into contemporary short-period orbits).

  14. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  15. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts.

    PubMed

    Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli; Greeley, Jeff; More, Karren; Yu, Chengfei; Liu, Zengcai; Kaya, Sarp; Nordlund, Dennis; Ogasawara, Hirohito; Toney, Michael F; Nilsson, Anders

    2010-06-01

    Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

  16. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

    PubMed

    Kayaci, Fatma; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2012-11-01

    Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.

  17. Felodipine β-cyclodextrin complex as an active core for time delayed chronotherapeutic treatment of hypertension.

    PubMed

    Pagar, Kunal P; Vavia, Pradeep R

    2012-11-01

    The present research work deals with the development of a time delayed chronotherapeutic formulation of felodipine (FD) aimed at rapid drug release after a desired lag time in the management of hypertension. The developed system comprises a drug core embedded within a swellable layer and coated with an insoluble, water permeable polymeric system. FD cyclodextrin complex was used as an active core while ethyl cellulose was used as an effective coating layer. Dissolution studies of the complex revealed that there was a 3-fold increase in dissolution of the complex compared to plain FD. This dissolution enhancement and rapid drug release resulted from FD amorphisation, as confirmed by XRD, DSC and SEM studies. FTIR and ¹H NMR studies confirmed the complex formation between FD and cyclodextrin based on the observed hydrogen bond interactions. FD release was adequately adjusted by using a pH independent polymer, i.e., ethyl cellulose, along with dibutyl phthalate as plasticizer. Influence of formulation variables like polymer viscosity, plasticizer concentration, super disintegrant concentration in the swellable layer and percent coating weight gain was investigated to characterize the lag time. Upon permeation of water, the core tablet swelled, resulting in the rupture of the coating layer, followed by rapid drug release. The developed formulation of FD showed a lag time of 5-7 h, which is desirable for chronotherapeutic application.

  18. The stability and catalytic activity of W13@Pt42 core-shell structure

    PubMed Central

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  19. Early Human Activity (pre-332 BC) in Alexandria, Egypt: New findings in Eastern Harbor Cores

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Landau, E. A.

    2005-12-01

    Historians have long postulated that a settlement called Rhakotis was present on Egypt's Mediterranean coast in the area subsequently occupied by the city of Alexandria. To date, however, the precise position of that site has not been located in the immediate area of the city founded by Alexander the Great. Also undefined are the earliest phases of occupation that pre-date Alexandria on Pharos Island and in the harbour area. A geoarchaeological project emphasizing sediment cores in Alexandria's Eastern Harbour now provides evidence of human occupation adjacent to these settings prior to establishment of Greece's great port in 332 BC. A radiocarbon-dated stratigraphic unit, defined as Middle Sand (III) and older than the 4th century BC, includes locally produced ceramics, along with rock fragments of non-local origin, and increased content of sand-sized heavy mineral and organic matter. Together, these date at least to Egypt's Late Dynastic Period (712-332 BC). Moreover, the geographic positions of core sites containing these markers indicate that early habitation occurred both at Pharos Island and on the mainland where the future Alexandria would be built. New findings in cores recovered in this marine environment are adding to knowledge of both natural processes and effects of human activity in early Alexandria.

  20. The stability and catalytic activity of W13@Pt42 core-shell structure

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  1. The stability and catalytic activity of W13@Pt42 core-shell structure.

    PubMed

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  2. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  3. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences

    PubMed Central

    Madore, Kevin P.; Szpunar, Karl K.; Addis, Donna Rose; Schacter, Daniel L.

    2016-01-01

    Recent behavioral work suggests that an episodic specificity induction—brief training in recollecting the details of a past experience—enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus. PMID:27601666

  4. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences.

    PubMed

    Madore, Kevin P; Szpunar, Karl K; Addis, Donna Rose; Schacter, Daniel L

    2016-09-20

    Recent behavioral work suggests that an episodic specificity induction-brief training in recollecting the details of a past experience-enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus.

  5. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    DOE PAGES

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less

  6. Hot Plasma from Solar Active Region Cores: a Test of AC and DC Coronal Heating Models?

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Asgari-Targhi, M.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.

    2015-06-01

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be_thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  7. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    PubMed Central

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-01-01

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability. PMID:26133469

  8. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain.

    PubMed

    Cheke, Lucy G; Bonnici, Heidi M; Clayton, Nicola S; Simons, Jon S

    2017-02-01

    Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity-related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What-Where-When episodic memory test (the "Treasure-Hunt Task") that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure-Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association.

  9. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    SciTech Connect

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.; Asgari-Targhi, M.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  10. Risperidone alters food intake, core body temperature, and locomotor activity in mice.

    PubMed

    Cope, Mark B; Li, Xingsheng; Jumbo-Lucioni, Patricia; DiCostanzo, Catherine A; Jamison, Wendi G; Kesterson, Robert A; Allison, David B; Nagy, Tim R

    2009-03-02

    Risperidone induces significant weight gain in female mice; however, the underlying mechanisms related to this effect are unknown. We investigated the effects of risperidone on locomotor activity, core body temperature, and uncoupling protein (UCP) and hypothalamic orexin mRNA expression. Female C57BL/6J mice were acclimated to individual housing and randomly assigned to either risperidone (4 mg/kg BW day) or placebo (PLA). Activity and body temperature were measured over 48-hour periods twice a week for 3 weeks. Food intake and body weights were measured weekly. UCP1 (BAT), UCP3 (gastrocnemius), and orexin (hypothalamus) mRNA expressions were measured using RT-PCR. Risperidone-treated mice consumed more food (p=0.050) and gained more weight (p=0.0001) than PLA-treated mice after 3 weeks. During the initial 2 days of treatment, there was an acute effect of treatment on activity (p=0.046), but not body temperature (p=0.290). During 3 weeks of treatment, average core body temperatures were higher in risperidone-treated mice compared to controls during the light phase (p=0.0001), and tended to be higher during the dark phase (p=0.057). Risperidone-treated mice exhibited lower activity levels than controls during the dark phase (p=0.006); there were no differences in activity during the light phase (p=0.47). UCP1 (p<0.01) and UCP3 (p<0.05) mRNA expressions were greater in risperidone-treated mice compared to controls, whereas, orexin mRNA expression was lower in risperidone-treated mice (p<0.01). These results suggest that risperidone-induced weight gain in mice is a consequence of increased energy intake and reduced activity, while the elevation in body temperature may be a result of thermogenic effect of food intake and elevated UCP1, UCP3, and a reduced hypothalamic orexin expression.

  11. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  12. The effect of active core exercise on fitness and foot pressure in Taekwondo club students

    PubMed Central

    Yoon, Seong-Deok; Sung, Dong-Hun; Park, Gi Duck

    2015-01-01

    [Purpose] The effects of core training using slings and Togus on the improvement of posture control in Taekwondo club students, that is, balance ability, were investigated. To that end, changes in the Taekwondo players’ balance ability resulting from active core training for eight weeks were examined through fitness and foot pressure. [Subjects] The present study was conducted with 13 male Taekwondo players of K University in Deagu, South Korea. Once the experiment process was explained, consent was obtained from those who participated voluntarily. [Methods] Air cushions (Germany), Jumpers (Germany), and Aero-Steps (Germany) were used as lumbar stabilization exercise tools. As a method of training proprioceptive senses by stimulating somatesthesia in standing postures, the subjects performed balance squats, supine pelvic lifts, and push-up plus exercise using slings while standing on an Aero-Step and performed hip extension parallel squats (Wall Gym Ball), and standing press-ups on a Togu using their own weight. The subjects performed four sets of these isometric exercises while maintaining an exercise time per set at 30 seconds in each session and repeated this session three times per week. [Result] Left grip strength significantly increased and number of sit-ups, which indicates muscle endurance, also significantly increased after the eight weeks exercise compared with before the exercise. The values measured during the sit and reach test, which indicate flexibility, also significantly increase after the eight weeks of exercise compared with before the exercise but only in the left foot. [Conclusion] The result of present study suggest that active core exercise using Slings and Togus can be applied as a very effective exercise program for enhancing balance, which is an important physical factor for Taekwondo club students. PMID:25729204

  13. The effect of active core exercise on fitness and foot pressure in Taekwondo club students.

    PubMed

    Yoon, Seong-Deok; Sung, Dong-Hun; Park, Gi Duck

    2015-02-01

    [Purpose] The effects of core training using slings and Togus on the improvement of posture control in Taekwondo club students, that is, balance ability, were investigated. To that end, changes in the Taekwondo players' balance ability resulting from active core training for eight weeks were examined through fitness and foot pressure. [Subjects] The present study was conducted with 13 male Taekwondo players of K University in Deagu, South Korea. Once the experiment process was explained, consent was obtained from those who participated voluntarily. [Methods] Air cushions (Germany), Jumpers (Germany), and Aero-Steps (Germany) were used as lumbar stabilization exercise tools. As a method of training proprioceptive senses by stimulating somatesthesia in standing postures, the subjects performed balance squats, supine pelvic lifts, and push-up plus exercise using slings while standing on an Aero-Step and performed hip extension parallel squats (Wall Gym Ball), and standing press-ups on a Togu using their own weight. The subjects performed four sets of these isometric exercises while maintaining an exercise time per set at 30 seconds in each session and repeated this session three times per week. [Result] Left grip strength significantly increased and number of sit-ups, which indicates muscle endurance, also significantly increased after the eight weeks exercise compared with before the exercise. The values measured during the sit and reach test, which indicate flexibility, also significantly increase after the eight weeks of exercise compared with before the exercise but only in the left foot. [Conclusion] The result of present study suggest that active core exercise using Slings and Togus can be applied as a very effective exercise program for enhancing balance, which is an important physical factor for Taekwondo club students.

  14. Activity of core-modified 10-23 DNAzymes against HCV.

    PubMed

    Robaldo, Laura; Berzal-Herranz, Alfredo; Montserrat, Javier M; Iribarren, Adolfo M

    2014-09-01

    The highly conserved untranslated regions of the hepatitis C virus (HCV) play a fundamental role in viral translation and replication and are therefore attractive targets for drug development. A set of modified DNAzymes carrying (2'R)-, (2'S)-2'-deoxy-2'-C-methyl- and -2'-O-methylnucleosides at various positions of the catalytic core were assayed against the 5'-internal ribosome entry site element (5'-IRES) region of HCV. Intracellular stability studies showed that the highest stabilization effects were obtained when the DNAzymes' cores were jointly modified with 2'-C-methyl- and 2'-O-methylnucleosides, yielding an increase by up to fivefold in the total DNAzyme accumulation within the cell milieu within 48 h of transfection. Different regions of the HCV IRES were explored with unmodified 10-23 DNAzymes for accessibility. A subset of these positions was tested for DNAzyme activity using an HCV IRES-firefly luciferase translation-dependent RNA (IRES-FLuc) transcript, in the rabbit reticulocyte lysate system and in the Huh-7 human hepatocarcinoma cell line. Inhibition of IRES-dependent translation by up to 65 % was observed for DNAzymes targeting its 285 position, and it was also shown that the modified DNAzymes are as active as the unmodified one.

  15. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  16. CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?

    SciTech Connect

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Warren, Harry P.

    2011-11-20

    All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

  17. Improved Methods for Estimating Microbial Activity and Moisture Characteristic Curves in Intact Unsaturated Soil Cores

    NASA Astrophysics Data System (ADS)

    Thompson, D. N.; Baker, K. E.

    2001-12-01

    Estimation of microbial activity in soils is a complex and often difficult process. In this work, we describe several new and innovative methods we have developed to measure microbial respiration in intact cores of unsaturated soils. The ultimate goal of this work is to predict the effect of microbial activity on contaminant mobility via CO2 generation in variably saturated vadose zone soils. This goal requires estimation of the effect of available water (i.e. in pores accessible to the microbes) on the microbial activity, and thus a homogeneous distribution of substrate throughout the soil water. Prior studies have added substrate solution drop wise to the soil, and then distributed the substrate throughout the soil by mixing. While this method distributes the substrate well, it alters the in situ pore volume distribution and has been shown to result in an anomalously high degree of microbial activity shortly after mixing. Traditional methods for uniformly distributing substrate in intact unsaturated soils require days to weeks to reach equilibrium. Since the substrate would be completely consumed in this time frame, an innovative approach is being used in this study to drain intact soil cores to the desired moisture contents in a matter of hours. This approach involves the use of the Unsaturated Flow Apparatus (UFAT). In the method, the samples are vacuum saturated under refrigeration to uniformly distribute a 14C-labeled substrate throughout the soil water, drained to various pressures in the UFA, and transferred to a sealed container and incubated. The labeled 14CO2 is then trapped and counted after incubation to determine microbial activity. Since the soil used in this study contains a high percentage of swelling clays, the cores tend to compact in the UFA, altering the macropore volume distribution. To address this alteration, we developed a correction function to correct the UFA-measured pore volume distribution at each rotational speed. Finally, the high

  18. Active learning: effects of core training design elements on self-regulatory processes, learning, and adaptability.

    PubMed

    Bell, Bradford S; Kozlowski, Steve W J

    2008-03-01

    This article describes a comprehensive examination of the cognitive, motivational, and emotional processes underlying active learning approaches; their effects on learning and transfer; and the core training design elements (exploration, training frame, emotion control) and individual differences (cognitive ability, trait goal orientation, trait anxiety) that shape these processes. Participants (N = 350) were trained to operate a complex, computer-based simulation. Exploratory learning and error-encouragement framing had a positive effect on adaptive transfer performance and interacted with cognitive ability and dispositional goal orientation to influence trainees' metacognition and state goal orientation. Trainees who received the emotion-control strategy had lower levels of state anxiety. Implications for development of an integrated theory of active learning, learner-centered design, and research extensions are discussed.

  19. Preservice Secondary Teachers' Conceptions from a Mathematical Modeling Activity and Connections to the Common Core State Standards

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.

    2015-01-01

    Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…

  20. The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients.

    PubMed

    Yu, Seong-Hun; Park, Seong-Doo

    2013-01-01

    The purpose of this study was to examine the effects of core stability-enhancing exercises on the lower trunk and muscle activity of stroke patients. The control group (n = 10) underwent standard exercise therapy, while the experiment group (n =10) underwent both the core stability-enhancing exercise and standard exercise therapy simultaneously. The standard exercise therapy applied to the two groups included weight bearing and weight shifts and joint movements to improve flexibility and the range of motion. The core stability-enhancing exercise was performed 5 times a week for 30 min over a period of 4 weeks in the room where the patients were treated. For all 20 subject, the items measured before the exercise were measured after the therapeutic intervention, and changes in muscle activity of the lower trunk were evaluated. The activity and stability of the core muscles were measured using surface electromyography and the trunk impairment scale (TIS). The mean TIS score and muscle activity of the lower trunk increased in the experiment group significantly after performing the core stability-enhancing exercise (P<0.05). The results of this study show that the core stability-enhancing exercise is effective in improving muscle activity of the lower trunk, which is affected by hemiplegia.

  1. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  2. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2010-03-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small-scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluctuation level of approximately 15% in an individual pixel. Short-lived impulsive heating events are observed, but they appear to be unrelated to the steady emission that dominates the active region. Furthermore, we find no evidence for warm emission that is spatially correlated with the hot emission, as would be expected if the high temperature loops are the result of impulsive heating. Finally, we also find that intensities in the "moss," the footpoints of high temperature loops, are consistent with steady heating models provided that we account for the local expansion of the loop from the base of the transition region to the corona. In combination, these results provide strong evidence that the heating in the core of an active region is effectively steady, that is, the time between heating events is short relative to the relevant radiative and conductive cooling times.

  3. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Klimchuk, J. A. E-mail: stephen.bradshaw@rice.edu

    2013-02-20

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  4. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  5. Nanodisco Balls: Control over Surface versus Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles

    PubMed Central

    2015-01-01

    Nanoparticles of complex architectures can have unique properties. Self-assembly of spherical nanocrystals is a high yielding route to such systems. In this study, we report the self-assembly of a polymer and nanocrystals into aggregates, where the location of the nanocrystals can be controlled to be either at the surface or in the core. These nanospheres, when surface decorated with nanocrystals, resemble disco balls, thus the term nanodisco balls. We studied the mechanism of this surface loading phenomenon and found it to be Ca2+ dependent. We also investigated whether excess phospholipids could prevent nanocrystal adherence. We found surface loading to occur with a variety of nanocrystal types including iron oxide nanoparticles, quantum dots, and nanophosphors, as well as sizes (10–30 nm) and shapes. Additionally, surface loading occurred over a range of polymer molecular weights (∼30–3000 kDa) and phospholipid carbon tail length. We also show that nanocrystals remain diagnostically active after loading onto the polymer nanospheres, i.e., providing contrast in the case of magnetic resonance imaging for iron oxide nanoparticles and fluorescence for quantum dots. Last, we demonstrated that a fluorescently labeled protein model drug can be delivered by surface loaded nanospheres. We present a platform for contrast media delivery, with the unusual feature that the payload can be controllably localized to the core or the surface. PMID:25188401

  6. Radiocarbon Evidence of Active Endolithic Microbial Communities in the Hyperarid Core of the Atacama Desert

    PubMed Central

    Wierzchos, Jacek; Davila, Alfonso F.; Slater, Gregory F.

    2013-01-01

    Abstract The hyperarid core of the Atacama Desert is one of the driest and most inhospitable places on Earth, where life is most commonly found in the interior of rocks (i.e., endolithic habitats). Due to the extreme dryness, microbial activity in these habitats is expected to be low; however, the rate of carbon cycling within these microbial communities remains unknown. We address this issue by characterizing the isotopic composition (13C and 14C) of phospholipid fatty acids (PLFA) and glycolipid fatty acids (GLFA) in colonized rocks from four different sites inside the hyperarid core. δ13C results suggest that autotrophy and/or quantitative conversion of organic matter to CO2 are the dominant processes occurring with the rock. Most Δ14C signatures of PLFA and GLFA were consistent with modern atmospheric CO2, indicating that endoliths are using atmospheric carbon as a primary carbon source and are also cycling carbon quickly. However, at one site the PLFA contained 14C from atmospheric nuclear weapons testing that occurred during the 1950s and 1960s, indicating a decadal rate of carbon cycling. At the driest site (Yungay), based on the relative abundance and 14C content of GLFA and PLFA, there was evidence of possible preservation. Hence, in low-moisture conditions, glycolipids may persist while phospholipids are preferentially hydrolyzed. Key Words: Endoliths—Extremophile—Carbon isotopes—Radiocarbon—Lipids. Astrobiology 13, 607–616. PMID:23848470

  7. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  8. Microbial population, activity, and phylogenetic diversity in the subseafloor core sediment from the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Suzuki, M.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    Subseafloor environments has already been recognized as the largest biosphere on the planet Earth, however, the microbial diversity and activity has been still poorly understood, even in their impacts on biogeochemical processes, tectonic settings, and paleoenvironmental events. We demonstrate here the evaluation of microbial community structure and active habitats in deeply buried cold marine sediments collected from the Sea of Okhotsk by a combined use of molecular ecological surveys and culturing assays. The piston core sediment (MD01-2412) was collected by IMAGES (International Marine Global Change Study) Project from the southeastern Okhotsk Sea, June 2001. The total recovered length was about 58m. The lithology of the core sediment was mainly constructed from pelagic clay (PC) and volcanic ash layers (Ash). We collected aseptically the most inside core parts from 16 sections at different depths for microbiological study. The direct count of DAPI-stained cells revealed that the cells in Ash samples were present 1.2 to 2.2 times higher than in PC samples. The quantitative-PCR of 16S rDNA between bacterial and archaeal rDNA suggested that the increased population density in Ash layers was caused by the bacterial components. We studied approximately 650 and 550 sequences from bacterial and archaeal rDNA clone libraries, respectively. The similarity and phylogenetic analyses revealed that the microbial community structures were apparently different between in Ash layers and PC samples. From bacterial rDNA clone libraries, the members within gamma-Proteobacteria such as genera Halomonas, Shewanella, Psychromonas and Methylosinus were predominantly detected in Ash layers whereas the Dehalococcoides group and delta-Proteobacteria were major bacterial components in PC samples. From archaeal libraries, the sequences from Ash and PC samples were affiliated into the clusters represented by the environmental sequences obtained from terrestrial and deep-sea environments

  9. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Xiaodong; Tian, Lihong; Chen, Xiaobo

    2015-12-01

    Novel crystalline/amorphous core/shell Ni/NiO nanosheets have shown a high electrocatalytic activity in hydrogen evolution reaction (HER). In 1 M KOH, they display an HER current of 5 mA cm-2 at an overpotential of 110 mV with a good stability. It is proposed that their excellent HER performance is achieved through the synergistic effect between the Ni core and the amorphous NiO shell, where the Ni core can reduce the resistance and the amorphous NiO shell can accelerate both Volmer and Heyrovsky processes to drive HER at low overpotentials.

  10. Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins*

    PubMed Central

    Trinidad, Jonathan C.; Thalhammer, Agnes; Burlingame, Alma L.; Schoepfer, Ralf

    2013-01-01

    Synapses are highly dynamic structures that mediate cell–cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied. To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact. Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity. PMID:23035237

  11. Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint.

    PubMed

    Gabryelska, Marta Magdalena; Wyszko, Eliza; Szymański, Maciej; Popenda, Mariusz; Barciszewski, Jan

    2013-05-01

    Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure-function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate-ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.

  12. Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core

    ERIC Educational Resources Information Center

    McKeone, Alyssa; Caruso, Lenora; Bettle, Kailyn; Chase, Ashley; Bryson, Bridget; Schneider, Jean S.; Rule, Audrey C.

    2015-01-01

    Gifted learners need opportunities for critical and creative thinking to stretch their minds and imaginations. Strategies for increasing complexity in the four core areas of language arts, mathematics, science, and social studies were addressed using the Common Core and Iowa Core Standards through several methods. Descriptive adjective object…

  13. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  14. [Hydrolytic enzyme activities in the bottom sediment cores from Norwegian Sea and statistical analysis of their distribution].

    PubMed

    Korneeva, G A; Gordeeva, E L

    2004-01-01

    Proteinase and amylase enzyme activities were evaluated in bottom sediment cores from the Norwegian Sea collected along a transect from the summit plane of the Voring Plateau on the east to fault uplifts of the Yan-Mayen transform zone perpendicular to the present-day Norwegian Current. Spotted vertical distribution of hydrolytic enzyme activities by the location and depth of the cores and specific distribution of proteinase and amylase activities have been revealed in four bottom sediment cores (up to 300 cm; 5 cm resolution). Specific activity distribution has been revealed for different types of enzyme-sorbing bottom sediments. Current methods of statistical analysis and mathematical modeling were applied to reveal the relationship between enzymatic degradation of protein and polysaccharide organic compounds and the content of carbonates and organic matter in bottom sediments.

  15. Phosphate glass core/silica clad fibres with a high concentration of active rare-earth ions

    NASA Astrophysics Data System (ADS)

    Egorova, O. N.; Galagan, B. I.; Denker, B. I.; Sverchkov, S. E.; Semjonov, S. L.

    2016-12-01

    We report a study of silica-clad composite optical fibres having a phosphate glass core doped with active rare-earth elements. The phosphate glass core allows a high concentration of active rare-earth ions to be obtained, and the silica cladding ensures high mechanical strength and facilitates fusion splicing of such fibres to silica fibres. Owing to the high concentration of active rare-earth ions, this type of fibre is potentially attractive for applications where a small cavity length and high lasing efficiency are needed.

  16. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  17. Negative core affect and employee silence: How differences in activation, cognitive rumination, and problem-solving demands matter.

    PubMed

    Madrid, Hector P; Patterson, Malcolm G; Leiva, Pedro I

    2015-11-01

    Employees can help to improve organizational performance by sharing ideas, suggestions, or concerns about practices, but sometimes they keep silent because of the experience of negative affect. Drawing and expanding on this stream of research, this article builds a theoretical rationale based on core affect and cognitive appraisal theories to describe how differences in affect activation and boundary conditions associated with cognitive rumination and cognitive problem-solving demands can explain employee silence. Results of a diary study conducted with professionals from diverse organizations indicated that within-person low-activated negative core affect increased employee silence when, as an invariant factor, cognitive rumination was high. Furthermore, within-person high-activated negative core affect decreased employee silence when, as an invariant factor, cognitive problem-solving demand was high. Thus, organizations should manage conditions to reduce experiences of low-activated negative core affect because these feelings increase silence in individuals high in rumination. In turn, effective management of experiences of high-activated negative core affect can reduce silence for individuals working under high problem-solving demand situations.

  18. Similar electromyographic activities of lower limbs between squatting on a reebok core board and ground.

    PubMed

    Li, Yongming; Cao, Chunmei; Chen, Xiaoping

    2013-05-01

    Reebok Core Boards (RCB) used as a platform in training provide an unstable environment for resistance training. The objective of this study was to examine the effect of unstable surface on muscle electromyographic (EMG) activities during a deep squat task. Thirteen male subjects participated in the study. Electromyographic activities of soleus (SO), vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), gluteus maximus (GMa), gluteus medius (GMe), and upper lumbar erector spinae (ULES) muscles were collected when subjects were performing a deep squat task on a RCB and ground with different weight loads (body weight, 30%RM (repetition maximum) and 60%RM). No significant difference was observed for all muscle EMG between unstable and stable surface during all weight load conditions (p > 0.05). Muscle EMG significantly increased when the weight load increased (p < 0.05). Similar muscle activities were observed when subjects performed a deep squat task on a stable and unstable surface. Simply applying unstable surface might not provide extra stimulation to the superficial muscles during squatting in resistance-trained students.

  19. Copper-doped inverted core/shell nanocrystals with "permanent" optically active holes.

    PubMed

    Viswanatha, Ranjani; Brovelli, Sergio; Pandey, Anshu; Crooker, Scott A; Klimov, Victor I

    2011-11-09

    We have developed a new class of colloidal nanocrystals composed of Cu-doped ZnSe cores overcoated with CdSe shells. Via spectroscopic and magneto-optical studies, we conclusively demonstrate that Cu impurities represent paramagnetic +2 species and serve as a source of permanent optically active holes. This implies that the Fermi level is located below the Cu(2+)/Cu(1+) state, that is, in the lower half of the forbidden gap, which is a signature of a p-doped material. It further suggests that the activation of optical emission due to the Cu level requires injection of only an electron without a need for a valence-band hole. This peculiar electron-only emission mechanism is confirmed by experiments in which the titration of the nanocrystals with hole-withdrawing molecules leads to enhancement of Cu-related photoluminescence while simultaneously suppressing the intrinsic, band-edge exciton emission. In addition to containing permanent optically active holes, these newly developed materials show unprecedented emission tunability from near-infrared (1.2 eV) to the blue (3.1 eV) and reduced losses from reabsorption due to a large Stokes shift (up to 0.7 eV). These properties make them very attractive for applications in light-emission and lasing technologies and especially for the realization of novel device concepts such as "zero-threshold" optical gain.

  20. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.

  1. Preparation and photocatalytic activity of eccentric Au-titania core-shell nanoparticles by block copolymer templates.

    PubMed

    Li, Xue; Fu, Xiaoning; Yang, Hui

    2011-02-21

    A novel route for a preparation of eccentric Au-titania core-shell nanoparticles using gold nanoparticles (AuNPs) with block copolymer shells as a template is reported. AuNPs with poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) block copolymer shells are first prepared by UV irradiation of the solution of PVP-b-PEO/HAuCl(4) complexes. Then the sol-gel reaction of titanium tetra-isopropoxide (TTIP) selectively on the surfaces of AuNPs leads to Au-titania core-shell composite nanoparticles. The eccentric Au-titania core-shell nanoparticles are obtained from the Au-titania core-shell composite nanoparticles by removal of organic interlayer by UV treatment. Photocatalytic activities of the resulting eccentric core-shell nanoparticles are investigated in terms of the degradation of methylene blue (MB). The results show that the eccentric core-shell structures endow the catalyst with greatly enhanced photocatalytic activity.

  2. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  3. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.

    PubMed

    Qu, Yongquan; Cheng, Rui; Su, Qiao; Duan, Xiangfeng

    2011-10-26

    We report the plasmonic enhancement of the photocatalytic properties of Pt/n-Si/Ag photodiode photocatalysts using Au/Ag core/shell nanorods. We show that Au/Ag core/shell nanorods can be synthesized with tunable plasmon resonance frequencies and then conjugated onto Pt/n-Si/Ag photodiodes using well-defined chemistry. Photocatalytic studies showed that the conjugation with Au/Ag core/shell nanorods can significantly enhance the photocatalytic activity by more than a factor of 3. Spectral dependence studies further revealed that the photocatalytic enhancement is strongly correlated with the plasmonic absorption spectra of the Au/Ag core/shell nanorods, unambiguously demonstrating the plasmonic enhancement effect.

  4. Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy R.; Schmelz, Joan T.; Warren, Harry P.; Saar, Steve H.; Kashyap, Vinay L.

    2011-10-01

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  5. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    NASA Astrophysics Data System (ADS)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  6. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    PubMed Central

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-01-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy. PMID:27278751

  7. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chen, Yuh-ling Lee; Chen, Houng-Yung; Jan, Sen; Lin, Yen-Huei; Kuo, Tien-Hsia; Hung, Jia-Jang

    2015-12-01

    Our investigations in the northern South China Sea (SCS) have revealed warm-core anticyclonic eddies that had a depressed pycnocline and a high biological productivity and phytoplankton abundance. With an elliptical shape of 420-430 km in major axis and 240-260 km in minor axis, these eddies were formed in the winter as the Kuroshio Current intruded through the Luzon Strait into the SCS under the prevailing northeast monsoon. They were characterized by a deep mixed layer up to 140-180 m, in which nitrate was relatively abundant. Although chlorophyll a concentration per volume of seawater was not always higher inside than outside the eddies, water-column (0-200 m) integrated chlorophyll a concentration and abundances of Synechococcus, coccolithophores, and diatoms were higher inside than outside the eddies. Primary productivity and nitrate-uptake new production inside the eddies were higher than or equal to those outside the eddies. Unlike the mode-water anticyclonic eddy that is biologically productive with a domed shallow seasonal pycnocline, the eddies we investigated had high surface temperatures and depressed pycnoclines in the upper water column. Possible explanations for these biological aspects were that the eddies were at their decaying stage, the eddies re-incorporated intermittently with an intruding Kuroshio branch, or the passage of the prevalent high amplitude internal tides introduced nutrients to the eddies. Frequent occurrences of eddies in oceanic regimes, especially cold eddies, are associated with high biological activity. Some warm eddies, such as these investigated in the present study, also have high biological activities, indicating that more rigorous in situ studies relating to eddy biological activity are needed in ocean regimes such as the SCS, where a half of the eddies are warm eddies.

  8. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dong, Alideertu; Huang, Jinfeng; Lan, Shi; Wang, Tao; Xiao, Linghan; Wang, Weiwei; Zhao, Tianyi; Zheng, Xin; Liu, Fengqi; Gao, Ge; Chen, Yuxin

    2011-07-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  9. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  10. Enhance the Er3+ Upconversion Luminescence by Constructing NaGdF4:Er3+@NaGdF4:Er3+ Active-Core/Active-Shell Nanocrystals

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Wang, Xiangfu; Meng, Lan; Bu, Yanyan; Yan, Xiaohong

    2017-03-01

    NaGdF4:12%Er3+@NaGdF4: x%Er3+ ( x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core-shell NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er3+ active shell around the NaGdF4:12%Er3+ core NPs, a maximum luminescent enhancement of about 336 times higher than the NaGdF4:12%Er3+ core-only NPs was observed under the 1540 nm excitation. The intensity ratio of green to red was adjusted through the construction of the core-shell structure and the change of Er3+ concentration in the shell. By analyzing the lifetimes of emission bands and exploring the energy transition mechanism, the giant luminescence enhancement is mainly attributed to the significant increase in the near-infrared absorption at 1540 nm and efficient energy migration from the shell to core.

  11. Enhance the Er(3+) Upconversion Luminescence by Constructing NaGdF4:Er(3+)@NaGdF4:Er(3+) Active-Core/Active-Shell Nanocrystals.

    PubMed

    Du, Xiaoyu; Wang, Xiangfu; Meng, Lan; Bu, Yanyan; Yan, Xiaohong

    2017-12-01

    NaGdF4:12%Er(3+)@NaGdF4:x%Er(3+) (x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core-shell NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er(3+) active shell around the NaGdF4:12%Er(3+) core NPs, a maximum luminescent enhancement of about 336 times higher than the NaGdF4:12%Er(3+) core-only NPs was observed under the 1540 nm excitation. The intensity ratio of green to red was adjusted through the construction of the core-shell structure and the change of Er(3+) concentration in the shell. By analyzing the lifetimes of emission bands and exploring the energy transition mechanism, the giant luminescence enhancement is mainly attributed to the significant increase in the near-infrared absorption at 1540 nm and efficient energy migration from the shell to core.

  12. An active magnetic bearing with high T(sub c) superconducting coils and ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-07-01

    A proof-of-feasibility demonstration showed that high-T(sub c) superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN2. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured non-rotatings) and supported a shaft to 14,000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN2. The bias coil, wound with non-twisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads.

  13. Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    SciTech Connect

    Strasser, Peter

    2011-08-19

    We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

  14. Development of Osmotically Controlled Mucoadhesive Cup-Core (OCMC) Tablet for The Anti-Inflammatory Activity.

    PubMed

    Ranchhodbhai Patel, Hitesh; Manordas Patel, Madhabhai

    2010-01-01

    The aim of the present study was to prepare and evaluate an osmotically controlled mucoadhesive cup-core (OCMC) containing aceclofenac. A special technique was used while preparing an OCMC. Stability of OCMC was determined in natural human saliva, and it was found that both pH and device are stable in human saliva. OCMC was evaluated by weight uniformity, thickness, hardness, friability, swelling, mucoadhesive strength and in vitro drug release. Swelling index was higher with formulations containing hydroxypropyl methylcellulose (HPMC) K4M alone, and it decreases with its decreasing concentration in the OCMC. The in vitro drug release studies showed a release with the composition of formulation up to 12 h. The mechanism of drug release was found to be zero order kinetics with diffusion controlled drug release. It has shown significant anti-inflammatory activity (P<0.001) and no hypersensitive reaction. It can be concluded that by changing the content of OCMC system, a desire effect is generated and it overcomes the drawback associated with the conventional buccal adhesive tablet.

  15. An active magnetic bearing with high T(sub c) superconducting coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high-T(sub c) superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN2. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured non-rotatings) and supported a shaft to 14,000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN2. The bias coil, wound with non-twisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads.

  16. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  17. Teaching Core Content Embedded in a Functional Activity to Students with Moderate Intellectual Disability Using a Simultaneous Prompting Procedure

    ERIC Educational Resources Information Center

    Karl, Jennifer; Collins, Belva C.; Hager, Karen D.; Ault, Melinda Jones

    2013-01-01

    The purpose of this study was to investigate the effects of a simultaneous prompting procedure in teaching four secondary students with moderate intellectual disability to acquire and generalize core content embedded in a functional activity. Data gathered within the context of a multiple probe design revealed that all participants learned the…

  18. 76 FR 6839 - ActiveCore Technologies, Inc., Battery Technologies, Inc., China Media1 Corp., Dura Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION ActiveCore Technologies, Inc., Battery Technologies, Inc., China Media1 Corp., Dura Products... concerning the securities of Battery Technologies, Inc. because it has not filed any periodic reports...

  19. New Pt-NNSO core anticancer agents: Structural optimization and investigation of their anticancer activity.

    PubMed

    Chong, Shu Xian; Jin, Yinxue; Au-Yeung, Steve Chik Fun; To, Kenneth Kin Wah

    2017-02-12

    A series of new platinum Pt(II) compounds possessing a bidentate leaving ligand modified from oxaliplatin has been synthesized, with one of the oxygen ligating atom substituted for a sulphur atom (resulting in a Pt-NNSO coordination core structure). The general structures are R,R-diaminocyclohexane (DACH)-Pt-(methylthio)acetic acid (K4) and DACH-Pt-(thiophenylacetic acid) (K4 derivatives). Substitution of an electron donating or withdrawing group at the ortho or para position on the phenyl ring of K4 derivatives was found to affect the complexes' stability, reactivity with the biological molecules (5'-guanosine monophosphate (5'-GMP) and L-methionine (L-Met)) and anticancer activity. (1)H NMR experiments demonstrated that Pt-NNSO complexes formed a mixture of mono- and diadduct with 5'-GMP in various ratios, which are different from the classical Pt drugs (forming mainly diadduct). In addition, all of the K4 derivatives with improved lipophilicity are less deactivated by L-Met in comparison to cisplatin (CDDP) and oxaliplatin. Biological assessments showed that all Pt-NNSO complexes are less toxic than CDDP in normal porcine kidney cells and are minimally affected by drug resistance. Some of the new compounds also displayed comparable anticancer activity to CDDP or better than carboplatin in a few cancer cell lines. The lower reactivity of the Pt-NNSO compounds than CDDP towards thiol molecules, presumably leading to less efflux in resistant cancer cells, and the ability to inhibit autophagy were believed to allow the new compounds to be less affected by Pt resistance.

  20. Preparation of AgBr@SiO2 core@shell hybrid nanoparticles and their bactericidal activity.

    PubMed

    Li, Yuanyuan; Yang, Lisu; Zhao, Yanbao; Li, Binjie; Sun, Lei; Luo, Huajuan

    2013-04-01

    AgBr@SiO2 core@shell hybrid nanoparticles (NPs) were successfully prepared by sol-gel method. Their morphology and structure were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The hybrid NPs are predominantly spherical in shape, with an average diameter of 180-200 nm, and each NP contains one inorganic core. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the hybrid NPs were examined against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), respectively. Results indicated that the AgBr@SiO2 NPs had excellent antibacterial activity.

  1. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.

    PubMed

    Steven, Blaire; Pollard, Wayne H; Greer, Charles W; Whyte, Lyle G

    2008-12-01

    Culture-dependent and culture-independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1-(14)C] acetic acid and [2-(14)C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (-15 degrees C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.

  2. LUC7L3/CROP inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter activity

    PubMed Central

    Li, Yuan; Ito, Masahiko; Sun, Suofeng; Chida, Takeshi; Nakashima, Kenji; Suzuki, Tetsuro

    2016-01-01

    The core promoter of hepatitis B virus (HBV) genome is a critical region for transcriptional initiation of 3.5 kb, pregenome and precore RNAs and for the viral replication. Although a number of host-cell factors that potentially regulate the viral promoter activities have been identified, the molecular mechanisms of the viral gene expression, in particular, regulatory mechanisms of the transcriptional repression remain elusive. In this study, we identified LUC7 like 3 pre-mRNA splicing factor (LUC7L3, also known as hLuc7A or CROP) as a novel interacting partner of HBV enhancer II and basal core promoter (ENII/BCP), key elements within the core promoter, through the proteomic screening and found that LUC7L3 functions as a negative regulator of ENII/BCP. Gene silencing of LUC7L3 significantly increased expression of the viral genes and antigens as well as the activities of ENII/BCP and core promoter. In contrast, overexpression of LUC7L3 inhibited their activities and HBV replication. In addition, LUC7L3 possibly contributes to promotion of the splicing of 3.5 kb RNA, which may also be involved in negative regulation of the pregenome RNA level. This is the first to demonstrate the involvement of LUC7L3 in regulation of gene transcription and in viral replication. PMID:27857158

  3. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  4. FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING

    SciTech Connect

    Brooks, David H.; Warren, Harry P.

    2009-09-20

    We present new measurements of the time variability of intensity, Doppler, and nonthermal velocities in moss in an active region core observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The measurements are derived from spectral profiles of the Fe XII 195 A line. Using the 2'' slit, we repeatedly scanned 150'' by 150'' in a few minutes. This is the first time it has been possible to make such velocity measurements in the moss, and the data presented are the highest cadence spatially resolved maps of moss Doppler and nonthermal velocities ever obtained in the corona. The observed region produced numerous C- and M-class flares with several occurring in the core close to the moss. The magnetic field was therefore clearly changing in the active region core, so we ought to be able to detect dynamic signatures in the moss if they exist. Our measurements of moss intensities agree with previous studies in that a less than 15% variability is seen over a period of 16 hr. Our new measurements of Doppler and nonthermal velocities reveal no strong flows or motions in the moss, nor any significant variability in these quantities. The results confirm that moss at the bases of high temperature coronal loops is heated quasi-steadily. They also show that quasi-steady heating can contribute significantly even in the core of a flare productive active region. Such heating may be impulsive at high frequency, but if so it does not give rise to large flows or motions.

  5. Isolation and Characterization of the DNA and Protein Binding Activities of Adenovirus Core Protein V

    PubMed Central

    Pérez-Vargas, Jimena; Vaughan, Robert C.; Houser, Carolyn; Hastie, Kathryn M.; Kao, C. Cheng

    2014-01-01

    ABSTRACT The structure of adenovirus outer capsid was revealed recently at 3- to 4-Å resolution (V. Reddy, S. Natchiar, P. Stewart, and G. Nemerow, Science 329:1071–1075, 2010, http://dx.doi.org/10.1126/science.1187292); however, precise details on the function and biochemical and structural features for the inner core still are lacking. Protein V is one the most important components of the adenovirus core, as it links the outer capsid via association with protein VI with the inner DNA core. Protein V is a highly basic protein that strongly binds to DNA in a nonspecific manner. We report the expression of a soluble protein V that exists in monomer-dimer equilibrium. Using reversible cross-linking affinity purification in combination with mass spectrometry, we found that protein V contains multiple DNA binding sites. The binding sites from protein V mediate heat-stable nucleic acid associations, with some of the binding sites possibly masked in the virus by other core proteins. We also demonstrate direct interaction between soluble proteins V and VI, thereby revealing the bridging of the inner DNA core with the outer capsid proteins. These findings are consistent with a model of nucleosome-like structures proposed for the adenovirus core and encapsidated DNA. They also suggest an additional role for protein V in linking the inner nucleic acid core with protein VI on the inner capsid shell. IMPORTANCE Scant knowledge exists of how the inner core of adenovirus containing its double-stranded DNA (dsDNA) genome and associated proteins is organized. Here, we report a purification scheme for a recombinant form of protein V that allowed analysis of its interactions with the nucleic acid core region. We demonstrate that protein V exhibits stable associations with dsDNA due to the presence of multiple nucleic acid binding sites identified both in the isolated recombinant protein and in virus particles. As protein V also binds to the membrane lytic protein VI molecules

  6. Effect of Silicon on Activity Coefficients of Platinum in Liquid Fe-Si, With Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.

    2017-01-01

    Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.

  7. Facile synthesis of ZnO/TiO2 core-shell nanostructures and their photocatalytic activities.

    PubMed

    Rakkesh, R Ajay; Balakumar, S

    2013-01-01

    We reveal a new strategy for synthesizing ZnO/TiO2 core-shell nanostructures with different TiO2 shell thickness by wet chemical method. This is a facile and rapid process, requires inexpensive precursors with excellent fidelity. The thickness of a typical core-shell nanostructure ranges from 20-50 nm in size with TiO2 shell thickness of 3-6 nm which were confirmed by Transmission electron microscopy (TEM). X-ray diffraction peaks intensity of TiO2 gradually increased while we increase precursor ratio which confirmed the increase of shell thickness. X-ray photoelectron spectroscopy (XPS) results indicated that zinc ions did not enter TiO, lattice and more likely to bonded with oxygen atoms to form TiO2 coupled on the surface of ZnO. However, the PL intensity gradually increased with the increase of the TiO2 shell thickness, indicating charge transfer between the two materials of the ZnO/TiO2 core-shell nanostructures. Further investigation, revealed that the core-shell nanostructures possessed significantly higher solar light photocatalytic activity which was twice than that of original 1-D ZnO nanostructures. The mechanism of the optimal TiO2 shell thickness to reach the maximum photocatalytic activity in the ZnO/TiO2 core-shell nanostructures are proposed and discussed. It is believed that this facile, rapid wet chemical process is scalable and can be applied to synthesize other (oxide/oxide) core-shell nanostructures for various applications.

  8. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-08-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  9. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  10. SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES

    SciTech Connect

    Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas E-mail: bjmuellr@mpa-garching.mpg.de E-mail: amarek@mpa-garching.mpg.de

    2013-06-10

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  11. SASI Activity in Three-dimensional Neutrino-hydrodynamics Simulations of Supernova Cores

    NASA Astrophysics Data System (ADS)

    Hanke, Florian; Müller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas

    2013-06-01

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M ⊙ progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, ±1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M ⊙ progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  12. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    SciTech Connect

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  13. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  14. The Enzyme-mimic Activity of Ferric Nano-Core Residing in Ferritin and Its Biosensing Applications

    SciTech Connect

    Tang, Zhiwen; Wu, Hong J.; Zhang, Youyu; Li, Zhaohui; Lin, Yuehe

    2011-11-15

    Ferritins are nano-scale globular protein cages encapsulating a ferric core. They widely exist in animals, plants, and microbes, playing indispensable roles in iron homeostasis. Interestingly, our study clearly demonstrates that ferritin has an enzyme-mimic activity derived from its ferric nano-core, but not the protein cage. Further study revealed that the mimic-enzyme activity of ferritin is more thermally stable and pH-tolerant compared with horseradish peroxidase. Considering the abundance of ferritin in numerous organisms, this finding may indicate a new role of ferritin in antioxidant and detoxification metabolisms. In addition, as a natural protein-caged nanoparticle with an enzyme-mimic activity, ferritin is readily conjugated with biomolecules to construct nano-biosensors, thus holds promising potential for facile and biocompatible labeling for sensitive and robust bioassays in biomedical applications.

  15. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    PubMed

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  16. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Wang, Deli; Xin, Huolin L; Hovden, Robert; Wang, Hongsen; Yu, Yingchao; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2013-01-01

    To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells.

  17. Effect of hypothermia on baroreflex control of heart rate and renal sympathetic nerve activity in anaesthetized rats

    PubMed Central

    Sabharwal, R; Coote, J H; Johns, E J; Egginton, S

    2004-01-01

    The present study investigated the effect of acute hypothermia on baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) by generating baroreflex logistic function curves, using bolus doses of phenylephrine and sodium nitroprusside, in anaesthetized male Wistar rats at a core temperature (Tb) of 37°C, during acute severe hypothermia at Tb= 25°C and on rewarming to 37°C. Comparisons were made between rats without (euthermic, n = 6) and with (acclimated, n = 7) prior exposure to lower ambient temperatures and shorter photoperiod, simulating adaptation to winter conditions. In both groups of rats, acute hypothermia to Tb= 25°C shifted the baroreflex-RSNA curve slightly leftwards and downwards with decreases in the setpoint pressure and maximal gain, whereas it markedly impaired the baroreflex-HR curve characterized by decreases in response range by ∼90% (P < 0.001), minimum response by ∼10% (P < 0.05) and maximum gain by ∼95% (P < 0.001), from that at Tb= 37°C. All parameters were restored to precooling levels on rewarming. Electrical stimulation of cardiac vagal efferents induced a voltage-related bradycardia, the magnitude of which was partially reduced during acute hypothermia, and there was a significant prolongation of the electrocardiogram intervals indicating a delay in cardiac conduction. Mild suppression of baroreflex control of RSNA could contribute to hypothermic hypotension and may primarily reflect an effect of Tb on central drive. The marked attenuation of the baroreflex control of HR during hypothermia was likely to be due to an impairment of both the central and peripheral components of the reflex arc. Baroreflex control of RSNA and HR was similar between both groups of rats, which implied that the control was non-adaptive on chronic cold exposure. PMID:14978202

  18. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing

    PubMed Central

    Burton, Harold; Firszt, Jill B.; Holden, Timothy; Agato, Alvin; Uchanski, Rosalie M.

    2012-01-01

    We studied activation magnitudes in core, belt, and parabelt auditory cortex in adults with normal hearing (NH) and unilateral hearing loss (UHL) using an interrupted, single-event design and monaural stimulation with random spectrographic sounds. NH patients had one ear blocked and received stimulation on the side matching the intact ear in UHL. The objective was to determine whether the side of deafness affected lateralization and magnitude of evoked blood oxygen level-dependent responses across different auditory cortical fields (ACFs). Regardless of ear of stimulation, NH showed larger contralateral responses in several ACFs. With right ear stimulation in UHL, ipsilateral responses were larger compared to NH in core and belt ACFs, indicating neuroplasticity in the right hemisphere. With left ear stimulation in UHL, only posterior core ACFs showed larger ipsilateral responses, suggesting that most ACFs in the left hemisphere had greater resilience against reduced crossed inputs from a deafferented right ear. Parabelt regions located posterolateral to core and belt auditory cortex showed reduced activation in UHL compared to NH irrespective of RE/LE stimulation and lateralization of inputs. Thus, the effect in UHL compared to NH differed by ACF and ear of deafness. PMID:22502976

  19. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing.

    PubMed

    Burton, Harold; Firszt, Jill B; Holden, Timothy; Agato, Alvin; Uchanski, Rosalie M

    2012-05-15

    We studied activation magnitudes in core, belt, and parabelt auditory cortex in adults with normal hearing (NH) and unilateral hearing loss (UHL) using an interrupted, single-event design and monaural stimulation with random spectrographic sounds. NH patients had one ear blocked and received stimulation on the side matching the intact ear in UHL. The objective was to determine whether the side of deafness affected lateralization and magnitude of evoked blood oxygen level-dependent responses across different auditory cortical fields (ACFs). Regardless of ear of stimulation, NH showed larger contralateral responses in several ACFs. With right ear stimulation in UHL, ipsilateral responses were larger compared to NH in core and belt ACFs, indicating neuroplasticity in the right hemisphere. With left ear stimulation in UHL, only posterior core ACFs showed larger ipsilateral responses, suggesting that most ACFs in the left hemisphere had greater resilience against reduced crossed inputs from a deafferented right ear. Parabelt regions located posterolateral to core and belt auditory cortex showed reduced activation in UHL compared to NH irrespective of RE/LE stimulation and lateralization of inputs. Thus, the effect in UHL compared to NH differed by ACF and ear of deafness.

  20. Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications.

    PubMed

    Zhang, Xin-Sheng; Wang, Jie-Xin; Xu, Ke; Le, Yuan; Chen, Jian-Feng

    2011-04-01

    Monodisperse Ag@SiO2 core-shell structured nanoparticles were firstly utilized as a novel corrosion inhibitor for marine anticorrosion applications. The related marine anticorrosion properties were evaluated with an electrochemical noise (ECN) analysis during 2 weeks of accelerated immersion tests in natural seawater with the addition of various inorganic salts and nutriments. The experimental results indicate that the corrosion activity is markedly reduced by nearly 1-3 orders of magnitude owing to the introduction of Ag@SiO2 core-shell nanoparticles into coating. The inhibition efficiency of corrosion can reach as high as about 99%. More importantly, such a coating exhibits an excellent long-term sustained marine anticorrosion effect. So it could be reasonably inferred that silver cores as active inhibitors effectively prevent the corrosion damage from microorganisms, while silica shells act as a good protection for silver nanoparticles, delay the release of silver ions, and also function as the corrosion inhibiting action for inorganic salts. Therefore, this would make monodisperse Ag@SiO2 core-shell nanoparticles a potential and promising corrosion inhibitor for developing future advanced multifunctional coatings.

  1. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    NASA Astrophysics Data System (ADS)

    Poochai, Chatwarin

    2017-02-01

    Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H2SO4 in terms of peak current density (jp), peak potential (Ep), onset potential (Eonset), diffusion coefficient (D), and charge transfer resistance (Rct) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  2. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    SciTech Connect

    Adamson, D.; Nash, C.; Mcclane, D.; McCabe, D.

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  3. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.

    PubMed

    Choi, Sang-Il; Shao, Minhua; Lu, Ning; Ruditskiy, Aleksey; Peng, Hsin-Chieh; Park, Jinho; Guerrero, Sandra; Wang, Jinguo; Kim, Moon J; Xia, Younan

    2014-10-28

    The oxygen reduction reaction (ORR) on the cathode of a polymer electrolyte fuel cell requires the use of a catalyst based on Pt, one of the most expensive metals on the earth. A number of strategies, including optimization of shape or facet, formation of alloys with other metals, and incorporation of a different metal into the core, have been investigated to enhance the activity of a Pt-based catalyst and thus reduce the loading of Pt. This article reports the synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward ORR. The octahedra with an edge length of 8 nm were obtained by directly depositing thin, conformal shells of a Pt-Ni alloy on Pd octahedra of 6 nm in edge length. The key to the success of this synthesis is the use of an amphiphilic solvent to ensure good compatibility between the solvents typically used for the syntheses of Pd and Pt-Ni nanocrystals. The core-shell structure was confirmed by a number of techniques, including scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy mapping, in situ X-ray diffraction under H2 and He, and electrochemical measurements. Relative to the state-of-the-art Pt/C catalyst, the Pd@Pt-Ni/C catalyst showed mass and specific ORR activities enhanced by 12.5- and 14-fold, respectively. The formation of a core-shell structure helped increase the electroactive surface area in terms of Pt and thus the mass activity. During an accelerated durability test, the mass activity of the Pd@Pt-Ni/C catalyst only dropped by 1.7% after 10,000 cycles.

  4. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling

    PubMed Central

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2010-01-01

    The current study aimed to further elucidate the role of endocannabinoid signaling in methamphetamine-induced psychomotor activation. Rats were treated with bilateral, intracranial microinjections of the cannabinoid CB1 receptor antagonists rimonabant (1 μg; 1 μl) or AM251 (1 μg; 1 μl), or vehicle (1 μl), followed by intravenous methamphetamine (3 mg/kg). Antagonist pretreatment in the nucleus accumbens core, but not shell, attenuated methamphetamine-induced stereotypy, while treatment in either brain region had no effect on drug-induced locomotion. In a parallel experiment, we recorded multiple single-units in the nucleus accumbens of behaving rats treated with intravenous rimonabant (0.3 mg/kg) or vehicle, followed by methamphetamine (0.01, 0.1, 1, 3 mg/kg; cumulative dosing). We observed robust, phasic changes in neuronal firing time-locked to the onset of methamphetamine-induced locomotion and stereotypy. Stereotypy encoding was observed in the core and was attenuated by CB1 receptor antagonism, while locomotor correlates were observed uniformly across the accumbens and were not affected by rimonabant. Psychomotor activation encoding was expressed predominantly by putative fast-spiking interneurons. We therefore propose that endocannabinoid modulation of psychomotor activation is preferentially driven by CB1 receptor-dependent interneuron activity in the nucleus accumbens core. PMID:20371830

  5. A new 10Be record recovered from an Antarctic ice core: validity and limitations to record the solar activity

    NASA Astrophysics Data System (ADS)

    Baroni, Mélanie; Bard, Edouard; Aster Team

    2015-04-01

    Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and ice cores, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be ice core records. We present a new 10Be record from an ice core from Dome C (Antarctica) covering the last millennium. The chronology of this new ice core has been established by matching volcanic events on the WAIS Divide ice core (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of ice cores drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and

  6. Core/shell Fe3O4/BiOI nanoparticles with high photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Wang, Shuling; Zhao, Lixin; Zhao, Shuguo

    2016-11-01

    Core/shell Fe3O4/BiOI nanoparticles with BiOI sheath have been synthesized by a solvothermal reaction method and were characterized by transmission electron microscopy (TEM) with an energy dispersive spectrum (EDS), high-resolution TEM and X-ray diffraction (XRD). Their photocatalytic activities were evaluated by methylene blue (MB) under the simulated solar light. The results indicate that the spherical Fe3O4 particles were coated with BiOI sheath when the sample were synthesized at 160 °C with ethylene glycol and deionized water, forming a core/shell structure. The degradation rate of MB assisted with the core/shell Fe3O4/BiOI catalysts reached 98 % after 40-min irradiation. The catalytic performance enhancement of the core/shell Fe3O4/BiOI catalysts mainly attributes to the band structure that can improve the generation efficiency, separation and transfer process of the photo-induced electron-hole pairs and decrease their recombination. The magnetic Fe3O4 core not only contributes to the efficient separation of electron and holes, but also helps catalysts be collected conveniently using a magnet for reuse. After five repeated trials, the degradation rate of MB still maintains over 90 % and the saturated magnetization of the catalysts remains 51.5 emu/g, which indicate that the core/shell Fe3O4/BiOI nanoparticles have excellent photocatalytic stability and are recyclable for decomposing organic pollutants under visible light irradiation.

  7. Characteristics and Evolution of the Magnetic Field and Chromospheric Emission in an Active Region Core Observed by Hinode

    DTIC Science & Technology

    2010-06-30

    Shiota, D., & Brooks, D. 2008, ApJ, 688, 669 Aschwanden, M. J. 2004, Physics of the Solar Corona . An Introduction (Springer-Verlag) Aschwanden, M. J...describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope...photosphere—Sun: chromosphere—Sun: corona 1. Introduction Significant progress in solving the decades old coronal heating problem could be made if one knew

  8. 40 CFR 35.6225 - Activities eligible for funding under Core Program Cooperative Agreements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Superfund State Contracts for Superfund Response Actions Core Program Cooperative Agreements § 35.6225... to implement CERCLA. Once the recipient has in place program functions described in paragraphs (a)(1... with EPA in CERCLA implementation as described in paragraph (a)(5) of this section. The amount...

  9. 40 CFR 35.6225 - Activities eligible for funding under Core Program Cooperative Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Superfund State Contracts for Superfund Response Actions Core Program Cooperative Agreements § 35.6225... to implement CERCLA. Once the recipient has in place program functions described in paragraphs (a)(1... with EPA in CERCLA implementation as described in paragraph (a)(5) of this section. The amount...

  10. iGardening: Integrated Activities for Teaching in the Common Core Era

    ERIC Educational Resources Information Center

    Cavin, Amanda; Elfer, Charles J.; Roberts, Scott L.

    2014-01-01

    At first glance, implementing the new Common Core Standards, with their dramatically higher learning expectations for early elementary students, may seem like a daunting task. The authors of this article think there has never been a better time for K-2 teachers to begin developing lessons that integrate all disciplines, promote higher order…

  11. 40 CFR 35.6225 - Activities eligible for funding under Core Program Cooperative Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Superfund State Contracts for Superfund Response Actions Core Program Cooperative Agreements § 35.6225... section: (1) Procedures for emergency response actions and longer-term remediation of environmental and... satisfying all requirements and assurances (including the development of a fund or other financing...

  12. Examining English Language Arts Common Core State Standards Instruction through Cultural Historical Activity Theory

    ERIC Educational Resources Information Center

    Barrett-Tatum, Jennifer

    2015-01-01

    The English Language Arts Common Core State Standards and corresponding assessments brought about many changes for educators, their literacy instruction, and the literacy learning of their students. This study examined the day-to-day literacy instruction of two primary grade teachers during their first year of full CCSS implementation. Engestr?m's…

  13. Improved microbial growth inhibition activity of bio-surfactant induced Ag-TiO2 core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Nithyadevi, D.; Kumar, P. Suresh; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.; Meena, P.

    2015-02-01

    Surfactant induced silver-titanium dioxide core shell nanoparticles within the size range of 10-50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver-titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver-titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV-vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver-titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell nanoparticles have comparatively rapid, less expensive and wider applications in modern antibacterial therapy.

  14. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalekshmi, K. I.; Meena, K. S.

    2014-07-01

    Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity.

  15. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    PubMed Central

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying

    2014-01-01

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.

  16. Swiss Ball Versus Mat Exercises For Core Activation of Transverse Abdominis in Recreational Athletes

    PubMed Central

    Nayak, Nirmala; Nair, Sudeep; Sherpa, Lobsang Bhuti; Dsouza, Diana

    2016-01-01

    Introduction Core stability is an essential component for improving athletic performance and injury prevention. Exercises on a Swiss ball and on the mat are two different ways of improving core stability. Comparison of these methods can help physiotherapists incorporate the better method for athletic training and rehabilitation. Aim To compare swiss ball and mat exercises for core stability of transverse abdominis in recreational athletes. Materials and Methods This pilot randomized control trial was performed on a total of 25 recreational athletes. Subjects were alternatively allocated into three different groups: group A performed swiss ball exercises; group B performed mat exercises; and group C was the control group. Statistical analysis Paired t-test for pre and post values within the group and one-way ANOVA for between the groups comparison was used. Results There was significant improvement in the core stability in Group A (Pre values: 3.6±2.06; Post values: 8.3±3.02; p-value: <0.05) and Group B (Pre values: 2.1±2.4; Post values: 4.3±2.5; p-value<0.05), however, improvement was more in group A compared to group B. Conclusion There was significant improvement seen in the recreational athletes performing exercises on Swiss ball as compared to athletes performing exercises on mat. Therefore, Swiss ball exercises can be included in the prehabilitation and rehabilitation stages of athletic training to prevent injury and enhanced recovery post injury, thereby, improving performance of the athletes. PMID:28208990

  17. Modifications of Bordetella bronchiseptica core lipopolysaccharide influence immune response without affecting protective activity.

    PubMed

    Sisti, Federico; Fernández, Julieta; Cordero, Andrés; Casabuono, Adriana; Couto, Alicia; Hozbor, Daniela

    2017-02-01

    Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.

  18. Mineral Physics Research on Earth's Core and UTeach Outreach Activities at UT Austin

    NASA Astrophysics Data System (ADS)

    Lin, J.; Wheat, A. J.

    2011-12-01

    Comprehension of the alloying effects of major candidate light elements on the phase diagram and elasticity of iron addresses pressing issues on the composition, thermal structures, and seismic features of the Earth's core. Integrating this mineral physics research with the educational objectives of the CAREER award was facilitated by collaboration with the University of Texas at Austin's premier teaching program, UTeach. The UTeach summer outreach program hosts three one-week summer camps every year exposing K-12th graders to university level academia, emphasizing math and science initiatives and research. Each week of the camp either focuses on math, chemistry, or geology. Many of the students were underrepresented minorities and some required simultaneous translation; this is an effect of the demographics of the region, and caused some language barrier challenges. The students' opportunity to see first-hand what it is like to be on a university campus, as well as being in a research environment, such as the mineral physics lab, helps them to visualize themselves in academia in the future. A collection of displayable materials with information about deep-Earth research were made available to participating students and teachers to disseminate accurate scientific knowledge and enthusiasm. These items included a diamond anvil cell and diagrams of the diamond crystal structure, the layers of the Earth, and the phases of carbon to show that one element can have very different physical properties purely based on differences in structure. The students learned how advanced X-ray and optical laser spectroscopies are used to study properties of planetary materials in the diamond anvil cell. Stress was greatly placed on the basic mathematical relationship between force, area, and pressure, the fundamental principle involved with diamond anvil cell research. Undergraduate researchers from the lab participated in the presentations and hands-on experiments, and answered any

  19. A 3′-5′ exonuclease activity embedded in the helicase core domain of Candida albicans Pif1 helicase

    PubMed Central

    Wei, Xiao-Bin; Zhang, Bo; Bazeille, Nicolas; Yu, Ying; Liu, Na-Nv; René, Brigitte; Mauffret, Olivier; Xi, Xu-Guang

    2017-01-01

    3′-5′ exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3′-5′ exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3′-to-5′ polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases. PMID:28216645

  20. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation.

    PubMed Central

    Bassi, G S; Murchie, A I; Lilley, D M

    1996-01-01

    The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086

  1. Platinum-monolayer Electrocatalysts: Palladium Interlayer on IrCo Alloy Core Improves Activity in Oxygen-reduction Reaction

    SciTech Connect

    Gong, K.; Chen, W.-F.; Sasaki, K.; Su, D.; Vukmirovic, M.B.; Zhou, W.; Izzo, E.L.; Perez-Acosta, C.; Hirunsit, P.; Balbuena, P.B.; Adzic, R.R.

    2010-11-15

    We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core, a Pd interlayer, and a surface Pt monolayer, emphasizing the interlayer's role in improving electrocatalytic activity for the oxygen-reduction reaction on Pt in HClO{sub 4} solution. We prepared the IrCo alloys by decomposing, at 800 C, hexacyanometalate, KCoIr(CN){sub 6}, adsorbed on the carbon surfaces. The synthesis of Ir{sub 3}Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 C. Thereafter, we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer. The electrocatalysts were characterized using structural- and electrochemical-techniques. For PtML/PdML/IrCo/C, we observed a Pt mass activity of 1.18 A/mg{sub (Pt)} and the platinum-group-metals mass of 0.16 A/mg{sub (Pt, Pd, Ir)}. In comparison, without a Pd interlayer, i.e., Pt{sub ML}/IrCo/C, the activities of 0.15 A/mg{sub (Pt)} and 0.036 A/mg{sub (Pt, Pd, Ir)} were considerably lower. We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core, so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction. A similar trend was observed for Pt{sub ML}/Pd{sub ML} and Pt{sub ML} deposited on Ir{sub 3}Co/C alloy core. We used density functional theory to interpret the observed phenomena.

  2. Using core properties and seismic reflectivity to estimate pore pressure in an active decollement fault

    SciTech Connect

    Tobin, H.J.; Moore, J.C.

    1996-12-31

    In the decollement zone of the Barbados accretionary prism, a 3-D seismic image exhibits patchy high-amplitude negative polarity reflections, which have been attributed to large overpressures confined to the fault zone. We collected laboratory P-wave velocity and porosity vs. pore pressure data, using core samples from and adjacent to the decollement zone at ODP Site 948. Logs constrain density and velocity through the decollement zone at Site 948. We use these data to calibrate the reflectivity of the fault zone to pore pressure through waveform and amplitude models of the fault plane reflections. Modeling of the positive polarity Site 948 reflection indicates that it can be explained by a lithologic boundary coincident with the decollement, without anomalous fault properties. By contrast, the dominantly-negative polarity waveform of the reflection {approx}2 km arcward (beneath Site 947) is best modeled by inserting a 16-19 m thick zone of extremely low impedance into the Site 948 impedance structure, with a gradational return to {open_quotes}normal{close_quotes} impedance just above the positive boundary. Relative amplitudes in this reflection indicate a larger impedance contrast than can be accounted for at sub-lithostatic fluid pressure, based on the core properties data. We conclude that lithostatic pore pressure with attendant hydraulic dilation of the fault zone is required to generate the negative-polarity reflections. Mapping of these reflections thus delineates zones of elevated fluid content and zero effective stress in the fault zone.

  3. Using core properties and seismic reflectivity to estimate pore pressure in an active decollement fault

    SciTech Connect

    Tobin, H.J. ); Moore, J.C. )

    1996-01-01

    In the decollement zone of the Barbados accretionary prism, a 3-D seismic image exhibits patchy high-amplitude negative polarity reflections, which have been attributed to large overpressures confined to the fault zone. We collected laboratory P-wave velocity and porosity vs. pore pressure data, using core samples from and adjacent to the decollement zone at ODP Site 948. Logs constrain density and velocity through the decollement zone at Site 948. We use these data to calibrate the reflectivity of the fault zone to pore pressure through waveform and amplitude models of the fault plane reflections. Modeling of the positive polarity Site 948 reflection indicates that it can be explained by a lithologic boundary coincident with the decollement, without anomalous fault properties. By contrast, the dominantly-negative polarity waveform of the reflection [approx]2 km arcward (beneath Site 947) is best modeled by inserting a 16-19 m thick zone of extremely low impedance into the Site 948 impedance structure, with a gradational return to [open quotes]normal[close quotes] impedance just above the positive boundary. Relative amplitudes in this reflection indicate a larger impedance contrast than can be accounted for at sub-lithostatic fluid pressure, based on the core properties data. We conclude that lithostatic pore pressure with attendant hydraulic dilation of the fault zone is required to generate the negative-polarity reflections. Mapping of these reflections thus delineates zones of elevated fluid content and zero effective stress in the fault zone.

  4. Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity.

    PubMed

    Pandikumar, Alagarsamy; Murugesan, Sepperumal; Ramaraj, Ramasamy

    2010-07-01

    The N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) derived silicate matrix supported core-shell TiO(2)-Au nanoparticles (EDAS/(TiO(2)-Au)(nps)) were prepared by NaBH(4) reduction of HAuCl(4) precursor on preformed TiO(2) nanoparticles in the presence of EDAS monomer. The core-shell (TiO(2)-Au)(nps) nanoparticles were stabilized by the amine functional group of the EDAS silicate sol-gel network. The potential application of this EDAS/(TiO(2)-Au)(nps) modified electrode toward the photoelectrochemical oxidation of methanol was explored. The EDAS/(TiO(2)-Au)(nps) modified electrode showed a 12-fold enhancement in the catalytic activity toward photoelectrooxidation of methanol when compared to TiO(2) dispersed in EDAS silicate sol-gel matrix. This improved photoelectrochemical performance is explained on the basis of beneficial promotion of interfacial charge transfer processes of the EDAS/(TiO(2)-Au)(nps) nanocomposite. A methanol oxidation peak current density of 12.3 mA cm(-2) was achieved at an optimum loading of Au(nps) on TiO(2) particles. This novel amine functionalized EDAS silicate sol-gel stabilized core-shell (TiO(2)-Au)(nps) nanomaterial could be an excellent candidate for the photocatalytic and photoelectrochemical applications.

  5. PAHs in sediment cores at main river estuaries of Chaohu Lake: implication for the change of local anthropogenic activities.

    PubMed

    Ren, Chen; Wu, Yaketon; Zhang, Shuo; Wu, Liang-Liang; Liang, Xiao-Guo; Chen, Tian-Hu; Zhu, Cheng-Zhu; Sojinu, Samuel O; Wang, Ji-Zhong

    2015-02-01

    In the present study, 28 polycyclic aromatic hydrocarbons (PAHs) were investigated in four sediment cores collected from the main river estuaries of Chaohu Lake, one of the severely polluted lakes in China. The results indicate that elevated concentrations of total PAHs (Σ28PAH) were found in the samples from the estuary of Nanfei River (ENF), considering BaP-based total toxicity equivalent (TEQ-BaP) and toxic unit (TU) results; there are potential adverse environmental implications. The total organic carbon (TOC) played an important role on the accumulation of PAHs at ENF and the estuary of Tongyang River (ETY). The predominant PAHs are high molecular weight (HMW) homologous for all samples; as a result, industrial wastewater from a steel company is expectedly the key source of PAHs in ENF, while coke consumption would be the important source of PAHs at other three sampling sites. Vertical distribution of PAHs in the sediment cores could be explained by the local social and economic activities. Furthermore, a minor variation of PAH composition in the sediment core could be justified by the stable structure of energy consumption in the Anhui Province. These results justify the need for further enhancement of industrial wastewater treatment and development of renewable energies which are the key factors on the control of PAH pollution in China.

  6. Au@Co0.4S core-shell nanoparticles: synthesis, characterization and evaluation of photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Warjri, Wandibahun; Negi, Devendra P. S.

    2016-09-01

    In the present work, Au@Co0.4S core-shell nanoparticles were synthesized and characterized by energy-dispersive x-ray spectroscopy, transmission electron microscopy, selected area electron diffraction and diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared core-shell nanoparticles was evaluated by studying the degradation of methyl orange (MO) spectrophotometerically under visible light irradiation. Under optimum experimental conditions, 68.9% of the dye was degraded during 50 min of irradiation. Control experiments showed negligible degradation of MO in the absence of the photocatalyst under visible light irradiation. A good correlation was obtained between the concentration of the dye adsorbed on the surface of the Au@Co0.4S core-shell nanoparticles and its degradation efficiency. The as-prepared nanoparticles showed good recyclability for the degradation of MO. The mechanistic studies suggested that the valence band holes of the Co0.4S nanoparticles were scavenged by the MO molecules resulting in the degradation of the dye.

  7. Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M

    SciTech Connect

    LeBlanc, B.; Bell, R.; Batha, S.

    1995-01-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large {triangledown}n{sub e}, {triangledown}T{sub e}, {triangledown}v{sub phi}, and {triangledown}T{sub i}, delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central T{sub i} results from {chi}{sub i} reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  8. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    NASA Astrophysics Data System (ADS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  9. Allosteric regulation of helicase core activities of the DEAD-box helicase YxiN by RNA binding to its RNA recognition motif.

    PubMed

    Samatanga, Brighton; Andreou, Alexandra Z; Klostermeier, Dagmar

    2017-01-23

    DEAD-box proteins share a structurally similar core of two RecA-like domains (RecA_N and RecA_C) that contain the conserved motifs for ATP-dependent RNA unwinding. In many DEAD-box proteins the helicase core is flanked by ancillary domains. To understand the regulation of the DEAD-box helicase YxiN by its C-terminal RNA recognition motif (RRM), we investigated the effect of RNA binding to the RRM on its position relative to the core, and on core activities. RRM/RNA complex formation substantially shifts the RRM from a position close to the RecA_C to the proximity of RecA_N, independent of RNA contacts with the core. RNA binding to the RRM is communicated to the core, and stimulates ATP hydrolysis and RNA unwinding. The conformational space of the core depends on the identity of the RRM-bound RNA. Allosteric regulation of core activities by RNA-induced movement of ancillary domains may constitute a general regulatory mechanism of DEAD-box protein activity.

  10. Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation.

    PubMed

    Wu, Wangjun; Ren, Zhuqing; Liu, Honglin; Wang, Linjie; Huang, Ruihua; Chen, Jie; Zhang, Lin; Li, Pinghua; Xiong, Yuanzhu

    2013-10-25

    Six1, an evolutionary conserved transcription factor, has been shown to play an important role in organogenesis and diseases. However, no reports were shown to investigate its transcriptional regulatory mechanisms. In the present study, we first identified porcine Six1 gene core promoter region (+170/-360) using luciferase reporter assay system and found that promoter activities were significantly higher in the mouse myoblast C2C12 cells than that in the mouse fibroblast C3H10T1/2 cells, implying that Six1 promoter could possess muscle-specific characteristics. Moreover, our results showed that promoter activities of Six1 were decreased as induction of differentiation of C2C12 cells, which was accompanied by the down-regulation of mRNA expression of Six1 gene. In addition, we found that the DNA methylation of Six1 promoters in vitro obviously influences the promoter activities and the DNA methylation level of Six1 promoter core region was negatively correlated to Six1 gene expression in vivo. Taken together, we preliminarily clarified transcriptional regulatory mechanisms of Six1 gene, which should be useful for investigating its subtle transcriptional regulatory mechanisms in the future. On the other hand, based on Six1 involved in tumorigenesis, our data also provide a genetic foundation to control the generation of diseases via pursuing Six1 as therapeutic target gene.

  11. Substrate Ablation of Ventricular Tachycardia: Late Potentials, Scar Dechanneling, Local Abnormal Ventricular Activities, Core Isolation, and Homogenization.

    PubMed

    Briceño, David F; Romero, Jorge; Gianni, Carola; Mohanty, Sanghamitra; Villablanca, Pedro A; Natale, Andrea; Di Biase, Luigi

    2017-03-01

    Ventricular arrhythmias are a frequent cause of mortality in patients with ischemic cardiomyopathy and nonischemic cardiomyopathy. Scar-related reentry represents the most common arrhythmia substrate in patients with recurrent episodes of sustained ventricular tachycardia (VT). Initial mapping of scar-related VT circuits is focused on identifying arrhythmogenic tissue. The substrate-based strategies include targeting late potentials, scar dechanneling, local abnormal ventricular activities, core isolation, and homogenization of the scar. Even though substrate-based strategies for VT ablation have shown promising outcomes for patients with structural heart disease related to ischemic cardiomyopathy, the data are scarce for patients with nonischemic substrates.

  12. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    SciTech Connect

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A. )

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B [bold 2], 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large [del][ital n][sub [ital e

  13. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    SciTech Connect

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S; Desnoyers, Peter; Shipman, Galen M

    2012-01-01

    In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outside the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency

  14. The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K. M.; Danielson, L. R.

    2015-01-01

    how large the effect of Si can be, these epsilon values correspond to activity coefficients (gamma) for As of 0.01 when XSi = 0, and up to gamma = 23 when XSi = 0.2. Combining these new results with previous determinations [5,6] of epsilon parameters for S and C for these elements allows us calculate activity of Ge, In, As, and Sb in Fe-Ni-Si-S-C-O metallic liquids. We apply this new model to sever-al terrestrial bodies such as Earth (Si-rich core), Mars (S-rich core), Moon (S-, C-, and Si-poor core), and Vesta, and examine the resulting core and mantle concentrations of these elements. Mantle concentrations of these four elements are well explained for Earth and Mars in models that call for mid-mantle equilibration between Si-bearing and S-bearing FeNi cores, respectively. Modeling results for the Moon and Vesta will also be presented.

  15. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity

    NASA Astrophysics Data System (ADS)

    Guo, Xia; Ye, Wei; Sun, Hongyan; Zhang, Qiao; Yang, Jian

    2013-11-01

    One-dimensional porous metallic nanomaterials have attracted much attention due to their unique shape and hollow structure. Herein, the gold nanorods in a porous shell of an AuAg alloy are synthesized via a dealloying process of the core-shell Au@AuAg nanorods at room temperature. The formation of tiny pores in the shell results in the huge red-shift, sharp decrease and drastic broadening of longitudinal surface plasmon resonance absorption. The continuous removal of silver from the porous nanorods leads to the breakage of tiny pores and leaves a rough surface on the nanorods behind. The rough surface gradually becomes smooth in the subsequent dealloying process. The surface structures of these intermediates are correlated with their absorption spectra and catalytic activities for the catalytic reduction of p-nitrophenol. The porous nanorods show a higher catalytic efficiency than the gold nanorods, the core-shell nanorods and the rough nanorods. The results indicate that the dealloying of anisotropic bimetal nanomaterials not only provides an effective pathway to carve the structures on the nanoscale but also offers numerous opportunities to observe novel optical properties and enhanced catalysis performances.One-dimensional porous metallic nanomaterials have attracted much attention due to their unique shape and hollow structure. Herein, the gold nanorods in a porous shell of an AuAg alloy are synthesized via a dealloying process of the core-shell Au@AuAg nanorods at room temperature. The formation of tiny pores in the shell results in the huge red-shift, sharp decrease and drastic broadening of longitudinal surface plasmon resonance absorption. The continuous removal of silver from the porous nanorods leads to the breakage of tiny pores and leaves a rough surface on the nanorods behind. The rough surface gradually becomes smooth in the subsequent dealloying process. The surface structures of these intermediates are correlated with their absorption spectra and

  16. Microbial activity and phylogeny in ice cores retrieved from Lake Paula, a newly detected freshwater lake in Antarctica

    NASA Astrophysics Data System (ADS)

    Sattler, Birgit I.; Waldhuber, Sebastian; Fischer, Helgard; Semmler, Hans; Sipiera, Paul P.; Psenner, Roland

    2004-11-01

    A permanent ice covered water body, called Lake Paula, was detected in Patriot Hills in the West Antarctic and sampled for the first time ever for microbial life. The ice sheet measured approximately 2,5m thickness and the water body has a depth of about 10m. The lake is situated near a moraine which partly ablates from snow and provides meltwater from the slopes to the lake during austral summer. These running waters which are kept liquid by the heating up of the dark soil are penetrating the lower ice cover and thus softening up the lakeside part if the ice core. It is inoculated by nutrients, active microbes and diatoms of terrestrial origin. A distinct gradient concerning bacterial numbers, biomass and production which is 10 fold at the ice-water interface compared to the exposed part is observable. Temperature sensitivity of the embedded microbes reflect the gradient as well: Bacteria isolated from the upper part showed growth optima at 10°C, the lower part at 25°C, phylogenetic properties done by 16s rDNA reveal distinct communities depending on their vertical position, some clones are similar to those retrieved in Lake Vostok ice cores. These results offer the conclusion that even in this harsh environment like the Antarctic continent a dynamic system like microbial ice aggregates can be sustained as long as the supply of liquid water which is essential for an active bacterial metabolism is provided at least for a small time frame.

  17. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  18. Synthesis and biological evaluation of levofloxacin core-based derivatives with potent antibacterial activity against resistant Gram-positive pathogens.

    PubMed

    Huang, Xiaoguang; Bao, Yingxia; Zhu, Shaoxuan; Zhang, Xiaona; Lan, Shilong; Wang, Ting

    2015-09-15

    A series of C10 non-basic building block-substituted, levofloxacin core-based derivatives were synthesized in 43-86% yield. The antibacterial activity of these new fluoroquinolones was evaluated using a standard broth microdilution technique. The quinolone (S)-9-fluoro-10-(4-hydroxypiperidin-1-yl)-3-methyl-7-oxo-3,7-dihydro-2H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid L-arginine tetrahydrate exhibited superior antibacterial activity against quinolone-susceptible and resistant strains compared with the clinically used fluoroquinolones ciprofloxacin, levofloxacin, moxifloxacin, penicillin, and vancomycin, especially to the methicillin-resistant Staphylococcus aureus clinical isolates, penicillin-resistant Streptococcus pneumoniae clinical isolates, and Streptococcus pyogenes.

  19. Calculations of ADS with deep subcritical uranium active cores - comparison with experiments and predictions

    NASA Astrophysics Data System (ADS)

    Zhivkov, P.; Furman, W.; Stoyanov, Ch

    2014-09-01

    The main characteristics of the neutron field formed within the massive (512 kg) natural uranium target assembly (TA) QUINTA irradiated by deuteron beam of JINR Nuclotron with energies 1,2,4, and 8 GeV as well as the spatial distributions and the integral numbers of (n,f), (n,γ) and (n,xn)- reactions were calculated and compared with experimental data [1] . The MCNPX 27e code with ISABEL/ABLA/FLUKA and INCL4/ABLA models of intra-nuclear cascade (INC) and experimental cross-sections of the corresponding reactions were used. Special attention was paid to the elucidation of the role of charged particles (protons and pions) in the fission of natural uranium of TA QUINTA. Extensive calculations have been done for quasi-infinite (with very small neutron leakage) depleted uranium TA BURAN having mass about 20 t which are intended to be used in experiments at Nuclotron in 2014-2016. As in the case of TA QUINTA which really models the central zone of TA BURAN the total numbers of fissions, produced 239Pu nuclei and total neutron multiplicities are predicted to be proportional to proton or deuteron energy up to 12 GeV. But obtained values of beam power gain are practically constant in studied incident energy range and are approximately four. These values are in contradiction with the experimental result [2] obtained for the depleted uranium core weighting three tons at incident proton energy 0.66 GeV.

  20. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    PubMed

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  1. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity.

    PubMed

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-02-07

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.

  2. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-02-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.

  3. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    PubMed Central

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-01-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation. PMID:24504084

  4. Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys.

    PubMed

    Hoffmann, Kerstin; Coolen, Alex; Schlumbohm, Christina; Meerlo, Peter; Fuchs, Eberhard

    2012-12-01

    Initial studies in the day active marmoset monkey (Callithrix jacchus) indicate that the sleep-wake cycle of these non-human primates resembles that of humans and therefore conceivably represent an appropriate model for human sleep. The methods currently employed for sleep studies in marmosets are limited. The objective of this study was to employ and validate the use of specific remote monitoring system technologies that enable accurate long-term recordings of sleep-wake rhythms and the closely related rhythms of core body temperature (CBT) and locomotor activity in unrestrained group-housed marmosets. Additionally, a pilot sleep deprivation (SD) study was performed to test the recording systems in an applied experimental setup. Our results show that marmosets typically exhibit a monophasic sleep pattern with cyclical alternations between NREM and REM sleep. CBT displays a pronounced daily rhythm and locomotor activity is primarily restricted to the light phase. SD caused an immediate increase in NREM sleep time and EEG slow-wave activity as well as a delayed REM sleep rebound that did not fully compensate for REM sleep that had been lost during SD. In conclusion, the combination of two innovative technical approaches allows for simultaneous measurements of CBT, sleep cycles and activity in multiple subjects. The employment of these systems represents a significant refinement in terms of animal welfare and will enable many future applications and longitudinal studies of circadian rhythms in marmosets.

  5. Core Muscle Activation in One-Armed and Two-Armed Kettlebell Swing.

    PubMed

    Andersen, Vidar; Fimland, Marius S; Gunnarskog, Aril; Jungård, Georg-Andrè; Slåttland, Roy-Andrè; Vraalsen, Øyvind F; Saeterbakken, Atle H

    2016-05-01

    The aim of the study was to compare the electromyographic activity of rectus abdominis, oblique external, and lower and upper erector spinae at both sides of the truncus in 1-armed and 2-armed kettlebell swing. Sixteen healthy men performed 10 repetitions of both exercises using a 16-kg kettlebell in randomized order. For the upper erector spinae, the activation of the contralateral side during 1-armed swing was 24% greater than that of the ipsilateral side during 1-armed swing (p < 0.001) and 11% greater during 2-armed swing (p = 0.026). Furthermore, the activation in 2-armed swing was 12-16% greater than for the ipsilateral side in 1-armed swing (p < 0.001). For rectus abdominis, however, 42% lower activation of the contralateral side was observed during 1-armed swing compared with ipsilateral sides during 2-armed swing (p = 0.038) and 48% compared with the ipsilateral side during 1-armed swing (p = 0.044). Comparing the different phases of the swing, most differences in the upper erector spinae were found in the lower parts of the movement, whereas for the rectus abdominis, the differences were found during the hip extension. In contrast, similar muscle activity in the lower erector spinae and external oblique between the different conditions was observed (p = 0.055-0.969). In conclusion, performing the kettlebell swing with 1 arm resulted in greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles.

  6. Evaluation of storing Shippingport Core II spent blanket fuel assemblies in the T Plant PWR Core II fuel pool without active cooling

    SciTech Connect

    Gilbert, E.R.; Lanning, D.D.; Dana, C.M.; Hedengren, D.C.

    1994-10-01

    PWR Core II fuel pool chiller-off test was conducted because it appeared possible that acceptable pool-water temperatures could be maintained without operating the chillers, thus saving hundreds of thousands of dollars in maintenance and replacement costs. Test results showed that the water-cooling capability is no longer needed to maintain pool temperature below 38{degrees}C (100{degrees}F).

  7. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  8. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    PubMed

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  9. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-05

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

  10. Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX.

    PubMed

    Stork, William; Kim, Jung-Gun; Mudgett, Mary Beth

    2015-02-01

    Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a "core" Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria-tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.

  11. Scaling and calibration of a core validation site for the soil moisture active passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation of soil moisture remote sensing products is complicated due to the logistics of installing a long term soil moisture monitoring network in an active landscape. It is more efficient to locate these stations along agricultural field boundaries, but unfortunately this oft...

  12. Health physics activities in support of the thermal shield removal/disposal and core support barrel repair at the St. Lucie Nuclear Power Plant.

    PubMed

    Maisler, J J; Buchanan, H F

    1988-02-01

    The health physics activities related to the removal and disposal of a thermal shield at a nuclear power plant and subsequent repairs to the core support barrel required increased planning relative to a normal refueling/maintenance outage. The repair of the core support barrel was a "first" in the nuclear power industry. Pre-job planning was of great concern because of extremely high radiation levels associated with the irradiated stainless steel thermal shield and core support barrel. ALARA techniques used in the preparation of the thermal shield for removal and shipment to the disposal site are discussed.

  13. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection.

    PubMed

    Dieudé, Mélanie; Bell, Christina; Turgeon, Julie; Beillevaire, Deborah; Pomerleau, Luc; Yang, Bing; Hamelin, Katia; Qi, Shijie; Pallet, Nicolas; Béland, Chanel; Dhahri, Wahiba; Cailhier, Jean-François; Rousseau, Matthieu; Duchez, Anne-Claire; Lévesque, Tania; Lau, Arthur; Rondeau, Christiane; Gingras, Diane; Muruve, Danie; Rivard, Alain; Cardinal, Héloise; Perreault, Claude; Desjardins, Michel; Boilard, Éric; Thibault, Pierre; Hébert, Marie-Josée

    2015-12-16

    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation.

  14. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning.

    PubMed

    Carmona, G N; Nishimura, T; Schindler, C W; Panlilio, L V; Notkins, A L

    2014-06-06

    The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired.

  15. Exercise performance, core temperature, and metabolism after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1992-01-01

    Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.

  16. Comparative screening of plant essential oils: phenylpropanoid moiety as basic core for antiplatelet activity.

    PubMed

    Tognolini, M; Barocelli, E; Ballabeni, V; Bruni, R; Bianchi, A; Chiavarini, M; Impicciatore, M

    2006-02-23

    Essential oils extracted from different plants (Anthemis nobilis L., Artemisia dracunculus L., Cannabis sativa L., Cupressus sempervirens L., Cymbopogon citratus (DC.) Stapf., Curcuma longa L., Foeniculum vulgare L., Hypericum perforatum L., Hyssopus officinalis L., Mentha spicata L., Monarda didyma L., Ocimum basilicum L., Ocotea quixos Kosterm., Origanum vulgare L., Pinus nigra J.F. Arnold, Pinus silvestris L., Piper crassinervium Kunth., Rosmarinus officinalis L., Salvia officinalis L., Salvia sclarea L., Santolina chamaecyparissus L., Thymus vulgaris L., Zingiber officinaie L.) were screened in guinea pig and rat plasma in order to assess antiplatelet activity and inhibition of clot retraction. The oils were chemically analysed and a relationship between components and ability to affect hemostasis was evidenced. O. quixos, F. vulgaris, and A. dracunculus showed the highest antiplatelet activity against ADP, Arachidonic Acid and the Thromboxane A2 agonist U46619 (IC50, 4-132 microg ml(-1)), and a good ability to destabilize clot retraction (IC50, 19-180 microg ml(-1)). For these oils a significant correlation between antiplatelet potency and phenylpropanoids content (54-86%) was evidenced thus suggesting a key role for this moiety in the prevention of clot formation. These findings provide the rationale to take in account the antiplatelet activity in the pharmacological screening of natural products containing phenylpropanoids.

  17. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  18. Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Luysberg, M; Révay, Z; Kudejova, P; Sanz, B; Cassinelli, N; Loidl, A; Ilicic, K; Multhoff, G; Schmid, T E

    2015-01-10

    Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core-shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core-shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma-beta ratio of γβ≈30% and a range of approximately 1mm in biological tissue for the 1.3MeV β-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension - a prerequisite for hyperthermia treatment of cancer - was observed. A rise in temperature of approximately 3°C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5mg/ml after 15min in an 831kHz high-frequency alternating magnetic field of 250Gauss field strength (25mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications.

  19. Modulation of muscle metaboreceptor activation upon sweating and cutaneous vascular responses to rising core temperature in humans.

    PubMed

    Amano, Tatsuro; Ichinose, Masashi; Inoue, Yoshimitsu; Nishiyasu, Takeshi; Koga, Shunsaku; Kondo, Narihiko

    2015-06-15

    The present study investigated the role of muscle metaboreceptor activation on human thermoregulation by measuring core temperature thresholds and slopes for sweating and cutaneous vascular responses during passive heating associated with central and peripheral mechanisms. Six male and eight female subjects inserted their lower legs into hot water (43°C) while wearing a water perfusion suit on the upper body (34°C). One minute after immersion, an isometric handgrip exercise--40% of maximum voluntary contraction-was conducted for 1.5 min in both control and experimental conditions, while postexercise occlusion was performed in the experimental condition only for 9 min. The postexercise forearm occlusion during passive heating consistently stimulated muscle metaboreceptors, as implicated by significantly elevated mean arterial blood pressure throughout the experimental period (P <0.05). Stimulation of the forearm muscle metaboreceptors increased sweating and cutaneous vascular responses during passive heating, and was associated with significant reductions in esophageal temperature threshold of sweating and cutaneous vasodilation (Δ threshold, sweating: 0.33 ± 0.05 and 0.16 ± 0.04°C, cutaneous vascular conductance: 0.38 ± 0.08 and 0.16 ± 0.05°C for control and experimental groups, respectively, P < 0.05). The slopes of these responses were not different between the conditions. These results suggest that muscle metaboreceptor activation in the forearm accelerates sweating and cutaneous vasodilation during passive heating associated with a reduction in core temperature thresholds and may be related to central mechanisms controlling heat loss responses.

  20. What Is the Core Oscillator in the Speract-Activated Pathway of the Strongylocentrotus purpuratus Sperm Flagellum?

    PubMed Central

    Aguilera, Luis U.; Galindo, Blanca E.; Sánchez, Daniel; Santillán, Moisés

    2012-01-01

    Sperm chemotaxis has an important role in fertilization. Most of our knowledge regarding this phenomenon comes from studies in organisms whose fertilization occurs externally, like sea urchins. Sea urchin spermatozoa respond to sperm-activating peptides, which diffuse from the egg jelly coat and interact with their receptor in the flagellum, triggering several physiological responses: changes in membrane potential, intracellular pH, cyclic nucleotide levels, and intracellular Ca2+ concentration ([Ca2+]). In particular, flagellar [Ca2+] has been shown to oscillate. These [Ca2+] oscillations are correlated with changes in the flagellar shape and so with the regulation of the sperm swimming paths. In this study, we demonstrate, from a mathematical modeling perspective, that the reported speract-activated signaling pathway in Strongylocentrotus purpuratus (speract being a sperm-activating peptide specific to this species) has the necessary elements to replicate the reported [Ca2+] oscillations. We further investigate which elements of this signaling pathway constitute the core oscillator. PMID:22713563

  1. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities.

    PubMed

    Martínez-Bonet, Marta; Palladino, Claudia; Briz, Veronica; Rudolph, Jochen M; Fackler, Oliver T; Relloso, Miguel; Muñoz-Fernandez, Maria Angeles; Madrid, Ricardo

    2015-01-01

    To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121-137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection.

  2. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities

    PubMed Central

    Martínez-Bonet, Marta; Palladino, Claudia; Briz, Veronica; Rudolph, Jochen M.; Fackler, Oliver T.; Relloso, Miguel; Muñoz-Fernandez, Maria Angeles; Madrid, Ricardo

    2015-01-01

    To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121–137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection. PMID:26700863

  3. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  4. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H2O2, substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H2O2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H2O2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research.

  5. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  6. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; Su, Dong; Hwang, Sun -Mi; Yim, Sung -Dae; Yang, Tae -Hyun; Park, Gu -Gon; Adzic, Radoslav R.

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of the IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.

  7. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; ...

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of themore » IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.« less

  8. Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription.

    PubMed

    Angermayr, Michaela; Oechsner, Ulrich; Gregor, Kerstin; Schroth, Gary P; Bandlow, Wolfhard

    2002-10-01

    The housekeeping gene of the major adenylate kinase in Saccharomyces cerevisiae (AKY2, ADK1) is constitutively transcribed at a moderate level. The promoter has been dissected in order to define elements that effect constitutive transcription. Initiation of mRNA synthesis at the AKY2 promoter is shown to be mediated by a non-canonic core promoter, (TA)(6). Nucleotide sequences 5' of this element only marginally affect transcription suggesting that promoter activation can dispense with transactivators and essentially involves basal transcription. We show that the core promoter of AKY2 is constitutively kept free of nucleosomes. Analyses of permutated AKY2 promoter DNA revealed the presence of bent DNA. DNA structure analysis by computer and by mutation identified two kinks flanking an interstitial stretch of 65 bp of moderately bent core promoter DNA. Kinked DNA is likely incompatible with packaging into nucleosomes and responsible for positioning nucleosomes at the flanks allowing unimpeded access of the basal transcription machinery to the core promoter. The data show that in yeast, constitutive gene expression can dispense with classical transcriptional activator proteins, if two prerequisites are met: (i) the core promoter is kept free of nucleosomes; this can be due to structural properties of the DNA as an alternative to chromatin remodeling factors; and (ii) the core promoter is pre-bent to allow a high rate of basal transcription initiation.

  9. Hot Plasma from Solar Active-Region Cores: Constraints from the Hinode X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Christian, G. M.; Matheny, P. O.

    2016-12-01

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK < T < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present, we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  10. The β-sheet core is the favored candidate of engineering SDR for enhancing thermostability but not for activity.

    PubMed

    Lou, Deshuai; Tan, Jun; Zhu, Liancai; Ji, Shunlin; Wang, Bochu

    2017-01-26

    7α-Hydroxysteroid dehydrogenases (7α-HSDHs) can stereoselectively catalyze steroids, aromatic α-ketoesters, and benzaldehyde analogues playing a critical role in the biotransformation and poor thermostability that hinders their biomedical and industrial applications. Based on the three-dimensional structure of 7α-HSDH from Clostridium absonum (CA 7α-HSDH), recently reported program MAESTRO was used to compute the ΔΔG and predict the single-point mutants that could enhance its thermostability. Four mutants were selected and verified experimentally. The results from the circular dichroism spectrum indicated that three of the mutants, N89L, N184I, and A185I, fitted a three-state model and the values for TmN→I and TmI→D increased with different ranges. In particular, the TmN→I for the N184I mutant increased maximally by 9.93°C. Meanwhile, the denaturation process of the G189I mutant fitted the two-state model and it was more stable than the wild type, judging from the denaturation curves. Nevertheless, the enzyme catalytic activity analysis suggested that only the N89L mutant held a 2.28% catalytic efficiency, compared to the wild type, CA 7α-HSDH, and the activities of the other three mutants could not be detected. Molecular dynamics (MD) simulations were performed to determine the structural changes that occurred in the mutations and the results indicated that β-sheet structures in the mutants without detectable activity had changed significantly. Judging from the locations of the mutated sites, residues in the β-sheet core were considered as the favored candidates for SDR engineering to enhance the thermostability but not for activity holding.

  11. Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells

    PubMed Central

    2014-01-01

    Background Au/CuS core/shell nanoparticles (NPs) were designed as a new type of transducer agent for photothermal therapy (PTT), with attractive features of easy preparation, low cost and small size for targeting. This paper studied for the first time the intrinsic antimicrobial activity of Au/CuS NPs to B. anthracis spores and cells in addition to its PTT effect. Results It was found that Au/CuS NPs were highly efficient in inactivating B. anthracis cells, but not effective to the spores. Treatment with NPs at ~0.83 μM for 30 min achieved a 7 log reduction in viable cells. The antimicrobial effect was both NPs concentration and treatment time dependent. SEM imaging and the efflux of DNA test demonstrated the damage of cell membrane after NPs treatment, yet further research is necessary to fully understand the precise inactivation mechanism. Conclusions The Au/CuS NPs had strong antimicrobial activity to B. anthracis cells, which showed a great potential to be an effective antimicrobial agent to bacterial cells. PMID:24963345

  12. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus.

    PubMed

    Carson, Dean S; Hunt, Glenn E; Guastella, Adam J; Barber, Lachlan; Cornish, Jennifer L; Arnold, Jonathon C; Boucher, Aurelie A; McGregor, Iain S

    2010-10-01

    Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.

  13. An α-Bi2O3/BiOBr core-shell heterojunction with high photocatalytic activity.

    PubMed

    Shan, Lianwei; Liu, Yuteng; Chen, Hongtao; Wu, Ze; Han, Zhidong

    2017-02-14

    We prepared an α-Bi2O3/BiOBr core-shell heterojunction via a facile in situ chemical transformation method. Ultrathin BiOBr nanosheets were observed and these were found to be evenly distributed on the surface of α-Bi2O3/BiOBr by SEM and TEM. The results revealed that the prepared α-Bi2O3/BiOBr photocatalysts were porous, and their specific surface areas were found to be raised on comparing with α-Bi2O3 and BiOBr. In our experiments, the photocatalytic activity of α-Bi2O3 was obviously enhanced when assembling with ultrathin BiOBr compared with α-Bi2O3/BiOBr and the individual phase. It is considered that the surface porous structure increases the specific surface areas, which improved the adsorption characteristics of α-Bi2O3/BiOBr. The suitable band alignment (between α-Bi2O3 and BiOBr) and oxygen vacancy effect can be attributed to the increased photocatalytic activity under visible irradiation.

  14. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  15. Differential activation of human core, non-core and auditory-related cortex during speech categorization tasks as revealed by intracranial recordings

    PubMed Central

    Steinschneider, Mitchell; Nourski, Kirill V.; Rhone, Ariane E.; Kawasaki, Hiroto; Oya, Hiroyuki; Howard, Matthew A.

    2014-01-01

    Speech perception requires that sounds be transformed into speech-related objects with lexical and semantic meaning. It is unclear at what level in the auditory pathways this transformation emerges. Primary auditory cortex has been implicated in both representation of acoustic sound attributes and sound objects. While non-primary auditory cortex located on the posterolateral superior temporal gyrus (PLST) is clearly involved in acoustic-to-phonetic pre-lexical representations, it is unclear what role this region plays in auditory object formation. Additional data support the importance of prefrontal cortex in the formation of auditory objects, while other data would implicate this region in auditory object selection. To help clarify the respective roles of auditory and auditory-related cortex in the formation and selection of auditory objects, we examined high gamma activity simultaneously recorded directly from Heschl's gyrus (HG), PLST and prefrontal cortex, while subjects performed auditory semantic detection tasks. Subjects were patients undergoing evaluation for treatment of medically intractable epilepsy. We found that activity in posteromedial HG and early activity on PLST was robust to sound stimuli regardless of their context, and minimally modulated by tasks. Later activity on PLST could be strongly modulated by semantic context, but not by behavioral performance. Activity within prefrontal cortex also was related to semantic context, and did co-vary with behavior. We propose that activity in posteromedial HG and early activity on PLST primarily reflect the representation of spectrotemporal sound attributes. Later activity on PLST represents a pre-lexical processing stage and is an intermediate step in the formation of word objects. Activity in prefrontal cortex appears directly involved in word object selection. The roles of other auditory and auditory-related cortical areas in the formation of word objects remain to be explored. PMID:25157216

  16. Core biological marker candidates of Alzheimer's disease - perspectives for diagnosis, prediction of outcome and reflection of biological activity.

    PubMed

    Hampel, H; Mitchell, A; Blennow, K; Frank, R A; Brettschneider, S; Weller, L; Möller, H-J

    2004-03-01

    Alzheimer's disease (AD) is a complex neurodegenerative dementing illness. Over the past few years, however, remarkable advances have taken place in understanding both the genetic and molecular biology with the intracellular processing of amyloid and tau and the changes leading to the pathologic formation of extracellular amyloid plaques and the intraneuronal aggregation of hyperphosphorylated tau into neurofibrillary tangles. This progress in our understanding of the molecular pathology has set the stage for clinically meaningful advances in the development of biomarkers. Emerging diagnostic methods that are based on biochemical and imaging biomarkers of disease specific pathology hold the potential to provide effective measures of natural history (marker of disease that is predictive of outcome), biological activity (such as magnitude and frequency of response correlating with drug potency) and markers of surrogate endpoints (single or composite marker that accounts for clinical benefit of the therapy). Markers of biological activity should be also evaluated regarding their value to reflect disease progression, heterogeneity of the clinical population, for early decision making and characterization of new treatments. We focussed on the current status of core analytes which provide reasonable evidence for association with key mechanisms of pathogenesis or neurodegeneration in AD. In addition, feasibility was important, such as availability of a validated assay for the biological measure in question, with properties that included high precision and reliability of measurement, reagents and standards well described. On this basis we reviewed the body of literature that has examined CSF total tau (t-tau) and beta-amyloid 1-42 (Abeta(1-42)), phosphorylated tau (p-tau) and beta-amyloid-antibodies as diagnostic tests for AD versus clinically representative comparison groups. Measurement of t-tau and Abeta(1-42) in the CSF seems useful to discriminate early and incipient

  17. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  18. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  19. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores.

    PubMed

    Baccolo, Giovanni; Clemenza, Massimiliano; Delmonte, Barbara; Maffezzoli, Niccolò; Nastasi, Massimiliano; Previtali, Ezio; Prata, Michele; Salvini, Andrea; Maggi, Valter

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10(-13)-10(-6) g, improving previous results of 1-3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%.

  20. States and the (Not So) New Standards--Where Are They Now? State Academic Standards: Activity around the Common Core

    ERIC Educational Resources Information Center

    Salazar, Tonette; Christie, Kathy

    2014-01-01

    States began adopting the Common Core State Standards (CCSS) in 2010 after they were launched by the Council of Chief State School Officers and the National Governors Association. Five years later, policymakers in numerous states continue to debate the Common Core and related elements, such as how to assess the standards. This brief provides a…

  1. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol

    PubMed Central

    Woertink, Julia S.; Smeets, Pieter J.; Groothaert, Marijke H.; Vance, Michael A.; Sels, Bert F.; Schoonheydt, Robert A.; Solomon, Edward I.

    2009-01-01

    Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction. PMID:19864626

  2. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  3. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  4. Experimental observations of field-dependent activation of core and surface spins in Ni-ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ceylan, A.; Hasanain, S. K.; Shah, S. Ismat

    2008-05-01

    The magnetic behavior of Ni-ferrite (NiFe2O4) nanoparticles synthesized in a solid state reaction process has been investigated. The cooling field, HCF, dependence of magnetization in a wide range of temperatures, from 5 to 300 K, has been examined for low and high field regimes. It has been observed that there is a transition region, ~3-4 T, between different mechanisms that controls the magnetization. At low fields, <3 T, classical blocking-unblocking of small particles governs the magnetization whereas spin-glass like behavior prevails at high fields, >4 T, starting below a well defined freezing temperature of 50 K. The HCF dependence of magnetic viscosity has shown that there is a significant jump in the relaxation rate of the particles around 4 T which appears as the boundary region for the temperature-dependent magnetization as well. These observations are interpreted as indicating that below the spin freezing temperature there is a boundary field (~4 T) where the strongly pinned surface spins are enabled to be thermally activated while below this field only core spins participate in the magnetic relaxation.

  5. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles

    PubMed Central

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F.; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus. PMID:26474396

  6. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    PubMed

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  7. Structure and antiviral activity of arabinogalactan with (1→6)-β-D-galactan core from Stevia rebaudiana leaves.

    PubMed

    de Oliveira, Arildo José Braz; Cordeiro, Lucimara M C; Gonçalves, Regina Aparecida Correia; Ceole, Ligia Fernanda; Ueda-Nakamura, Tania; Iacomini, Marcello

    2013-04-15

    Cell wall polysaccharides from leaves of Stevia rebaudiana were extracted successively with water and with aq. 10% KOH. After the purification steps, homogeneous fractions (SFW-10RM and SSFK-10RM) were analyzed by sugar composition, HPSEC, methylation and (13)C NMR spectroscopy analysis. The results showed that SFW-10RM is a pectic arabinogalactan with an unusual β-(1→6)-linked D-Galp residues forming the main chain. Approximately 38% of the β-D-Galp units of the backbone carry branches on position O-3, consisting of single D-Galp units or arabinan side chains. Arabinose residues were found to occupy mostly the terminal positions in both furanose and pyranose forms and as 2-, 5- and 3,5-linked residues in these side chains. Fraction SSFK-10RM is a similar arabinogalactan, differing mainly in the relative proportions of arabinans attached to the galactan core and in the content of D-GalpA residues present in the pectic domain. The crude aqueous and alkaline extracts and homogeneous SSFK-10RM showed antiviral activity against Herpes Simplex Virus type-1 (HSV-1) in vitro.

  8. SAS2H input for computing core activities of 4.5, 5.0, and 5.5 weight % {sup 235}U fuel for Sequoyah Nuclear Plant

    SciTech Connect

    Hermann, O.W.

    1994-08-01

    Sequoyah Nuclear Plant core activities at initial fuel enrichments of 4.5, 5.0, and 5.5 wt% {sup 235}U, required in nuclear safety evaluations, were computed by the SAS2H analysis sequence and the ORIGEN-S code within the SCALE-4.2 code system.

  9. 5'- and 3'-terminal nucleotides in the FGFR2 ISAR splicing element core have overlapping roles in exon IIIb activation and exon IIIc repression.

    PubMed

    Jones, R B; Carstens, R P; Luo, Y; McKeehan, W L

    2001-09-01

    The cell type-specific, mutually-exclusive alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) pre-mRNA is tightly regulated. A sequence termed ISAR (intronic splicing activator and repressor) has been implicated as an important cis regulatory element in both activation of exon IIIb and repression of exon IIIc splicing in epithelial cells. In order to better understand how this single sequence could have dual roles, we transfected minigenes containing a series of 2-bp mutations in the 18 3'-most nucleotides of ISAR that we refer to as the ISAR core. Transfection of cells with dual-exon (IIIb and IIIc) minigenes revealed that mutation of terminal sequences of the core led to decreased exon IIIb inclusion and increased exon IIIc inclusion. Transfection of cells with single-exon IIIb minigenes and single-exon IIIc minigenes revealed that mutation of terminal sequences of the ISAR core led to decreased exon IIIb inclusion and increased exon IIIc inclusion, respectively. Nucleotides of the ISAR core responsible for exon IIIb activation appear to overlap very closely with those required for exon IIIc repression. We describe a model in which ISAR and a 5' intronic sequence known as IAS2 form a stem structure required for simultaneous exon IIIb activation and exon IIIc repression.

  10. Compressive strength and the effect of duration after photo-activation among dual-cure bulk fill composite core materials

    PubMed Central

    Alkhudhairy, Fahad; Vohra, Fahim

    2016-01-01

    Objectives: To assess compressive strength and effect of duration after photoactivation on the compressive strength of different dual cure bulk fill composites. Methods: Seventy-two disc shaped (4x10mm) specimens were prepared from three dual cure bulk fill materials, ZirconCore (ZC) (n=24), MulticCore Flow (MC) (n=24) and Luxacore Dual (LC) (n=24). Half of the specimens in each material were tested for failure loads after one hour [MC1 (n=12), LC1 (n=12) & ZC1 (n=12)] and the other half in 7 days [MC7 (n=12), LC7 (n=12), ZC7 (n=12)] from photo-polymerization using the universal testing machine at a cross-head speed of 0.5 cm/minutes. Compressive strength was calculated using the formula UCS=4f/πd2. Compressive strengths among different groups were compared using analysis of variance (ANOVA) and Tukey’s multiple comparisons test. Results: Maximum and minimum compressive strengths were observed in ZC7 (344.14±19.22) and LC1 (202.80±15.52) groups. Specimens in LC1 [202.80 (15.52)] showed significantly lower compressive strength as compared to MC1 [287.06 (15.03)] (p<0.01) and ZC1 [276.82 (11.51)] (p<0.01). ZC7 [344.14 (19.22)] specimens showed significantly higher (p<0.01) compressive strengths compared to LC7 [324.56 (19.47)] and MC7 [315.26 (12.36)]. Compressive strengths among all three materials were significantly higher (p<0.01) at 7 days as compared to one hour. Conclusions: Bulk fill material with Zr nano-hybrid filler (ZC) showed high compressive strength compared to MC and LC. Increasing the post photo-activation duration (from one hour to 7 days) significantly improves the compressive strengths of dual cure bulk fill material. PMID:27882021

  11. CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN AN ACTIVE REGION CORE OBSERVED BY HINODE

    SciTech Connect

    Brooks, David H.; Warren, Harry P.; Winebarger, Amy R.

    2010-09-10

    We describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope (SOT) on Hinode. Consistent with previous studies, we find that the moss is unipolar, the spatial distribution of magnetic flux evolves slowly, and that the magnetic field is only moderately inclined. We also show that the field-line inclination and horizontal component are coherent, and that the magnetic field is mostly sheared in the inter-moss regions where the highest magnetic flux variability is seen. Using extrapolations from spectropolarimeter magnetograms, we show that the magnetic connectivity in the moss is different from that in the quiet Sun because most of the magnetic field extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic but actually show only small-scale variations in magnitude on timescales longer than the cooling times for hydrodynamic loops computed from our extrapolations, suggesting high-frequency (continuous) heating events. Some evidence is found for flux (Ca II intensity) changes on the order of 100-200 G (DN) on timescales of 20-30 minutes that could be taken as indicative of low-frequency heating. We find, however, that only a small fraction (10%) of our simulated loops would be expected to cool on these timescales, and we do not find clear evidence that the flux changes consistently produce intensity changes in the chromosphere. Using observations from the EUV Imaging Spectrometer (EIS), we also determine that the filling factor in the moss is {approx}16%, consistent with previous studies and larger than the size of an SOT pixel. The magnetic flux and chromospheric intensity in most individual SOT pixels in the moss vary by less than {approx}20% and {approx}10%, respectively, on loop cooling timescales. In view of the high energy requirements of the chromosphere, we suggest that these

  12. Dioxygen activation at a mononuclear Cu(I) center embedded in the calix[6]arene-tren core.

    PubMed

    Izzet, Guillaume; Zeitouny, Joceline; Akdas-Killig, Huriye; Frapart, Yves; Ménage, Stéphane; Douziech, Bénédicte; Jabin, Ivan; Le Mest, Yves; Reinaud, Olivia

    2008-07-23

    The reaction of a cuprous center coordinated to a calix[6]arene-based aza-cryptand with dioxygen has been studied. In this system, Cu(I) is bound to a tren unit that caps the calixarene core at the level of the small rim. As a result, although protected from the reaction medium by the macrocycle, the metal center presents a labile site accessible to small guest ligands. Indeed, in the presence of O2, it reacts in a very fast and irreversible redox process, leading, ultimately, to Cu(II) species. In the coordinating solvent MeCN, a one electron exchange occurs, yielding the corresponding [CalixtrenCu-MeCN](2+) complex with concomitant release of superoxide in the reaction medium. In a noncoordinating solvent such as CH2Cl2, the dioxygen reaction leads to oxygen insertions into the ligand itself. Both reactions are proposed to proceed through the formation of a superoxide-Cu(II) intermediate that is unstable in the Calixtren environment due to second sphere effects. The transiently formed superoxide ligand either undergoes fast substitution for a guest ligand (in MeCN) or intramolecular redox evolutions toward oxygenation of Calixtren. Interestingly, the latter process was shown to occur twice on the same ligand, thus demonstrating a possible catalytic activation of O2 at a single cuprous center. Altogether, this study illustrates the oxidizing power of a [CuO2](+) adduct and substantiates a mechanism by which copper mono-oxygenases such as DbetaH and PHM activate O2 at the Cu(M) center to produce such an intermediate capable of C-H breaking before the electron input provided by the noncoupled Cu(H) center.

  13. Footprint of roman and modern mining activities in a sediment core from the southwestern Iberian Atlantic shelf.

    PubMed

    Mil-Homens, Mário; Vale, Carlos; Naughton, Filipa; Brito, Pedro; Drago, Teresa; Anes, Bárbara; Raimundo, Joana; Schmidt, Sabine; Caetano, Miguel

    2016-11-15

    A 5-m long sediment core (VC2B), retrieved in the Southwestern Iberian Atlantic shelf, at 96m water depth, was used to assess major changes in climate and human activities during the last 9.7kyrs. Analytical measurements included sedimentological (mean grain size, and the contents of sand, silt and clay), geochemical (major, minor, trace and rare earth elements; REEs) and chronological ((210)Pb and (14)C) parameters. Two episodes of increment of fine-grained particles, occurring at 3050BCE and 1350CE, suggest the retreat of the coast line to the present level and the beginning of a wetter phase associated with the "Little Ice Age". The North American Shale Composite (NASC)-normalized REE-pattern detected in the shelf is similar to that found in the Guadiana estuarine sediments. The possibility of this estuary as a contributor to the sediment load deposited in the adjacent coastal zone was indicated. Trace elements were significantly correlated with Al until 1850CE, pointing that grain-size rules its distribution in sediments. The depth variation of As, Cu and Pb enrichment factors relative to background values shows two periods of intense human activity that can be mainly linked to mining: (i) across the Roman Period, marked by low enrichments; and (ii) starting on the second half of the 19th century until nowadays with significantly increased enrichments, especially of Pb and Cu. In addition to As, Cu and Pb, this period is also marked by high enrichments of Hg and Zn. Despite the decrease/closure of sulphide massive deposits mining exploitation (e.g., São Domingos, Las Herrerias) during the second half of the 20th century, results showed ongoing input of Pb, Cu, As, Hg and Zn to coastal sediments. Thus, the legacy of contamination by these elements, mainly from leaching of slags and tailings, and remobilization/reworking of contaminated estuarine sediments, is still recorded in marine sediments.

  14. Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Cai, Shiyu; Sun, Leilei; Chen, Tianyi

    2014-10-01

    The efficient delivery of therapeutic drugs into interested cells is a critical challenge to broad application of nonviral vector systems. In this research, emtansine (DM1)-loaded star-shaped folate-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (FA-PLA-TPGS-DM1) copolymer which demonstrated superior anticancer activity in vitro/ vivo in comparison with linear FA-PLA-TPGS nanoparticles was applied to be a vector of DM1 for FR+ breast cancer therapy. The DM1- or coumarin 6-loaded nanoparticles were fabricated, and then characterized in terms of size, morphology, drug encapsulation efficiency, and in vitro drug release. And the viability of MCF-7/HER2 cells treated with FA-DM1-nanoparticles (NPs) was assessed. Severe combined immunodeficient mice carrying MCF-7/HER2 tumor xenografts were treated in several groups including phosphate-buffered saline control, DM1, DM1-NPs, and FA-DM1-NPs. The antitumor activity was then assessed by survival time and solid tumor volume. All the specimens were prepared for formalin-fixed and paraffin-embedded tissue sections for hematoxylin-eosin staining. The data showed that the FA-DM1-NPs could efficiently deliver DM1 into MCF-7/HER2 cells. The cytotoxicity of DM1 to MCF-7/HER2 cells was significantly increased by FA-DM1-NPs when compared with the control groups. In conclusion, the FA-DM1-NPs offered a considerable potential formulation for FR+ tumor-targeting biotherapy.

  15. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    PubMed

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  16. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    PubMed

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  17. Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Meng, Guihua; Wu, Jianning; Li, Deqiang; Liu, Zhiyong

    2015-08-01

    A novel and simple approach for the fabrication of Fe3O4@C@TiO2 nanocomposites with a good core-shell structure has been successfully constructed. The as-synthesized core-shell structure is composed of a magnetic core, an interlayer of carbon, and an outer TiO2 shell. In this method, the carbon middle layer could provide negatively charged for the TiO2 coating without the surfactants. The as-obtained core-shell structure composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray photoelectron spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), N2 adsorption-desorption isotherm analyses and the magnetization measurement (SQUID). The TEM images showed that the thickness of TiO2 shell could be controlled by varying tertrabutyl titanate (TBOT) content in the ethanol/acetonitrile mixed solvents. Photocatalytic property of Fe3O4@C@TiO2 nanocomposites were evaluated by photodegradation methylene blue (MB). The results showed that the well-designed nanocomposites exhibited a higher photoactivity than Fe3O4@TiO2 nanocomposites. Moreover, this photocatalyst can be easily recovered by an external magnetic field and remain stable photocatalytic activity after five cycles. The presence of carbon interlayer can avoid the occurrence of photodissolution. Therefore, the photocatalytic activity of titania would not deteriorate seriously, which played key role for the enhanced photocatalytic activity.

  18. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  19. Magnetic Co@g-C3N4 Core-Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation.

    PubMed

    Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun

    2016-06-28

    Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials.

  20. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Ponnuvelu, Dinesh Veeran; Suriyaraj, Shanmugam Prema; Vijayaraghavan, Thiruvenkatam; Selvakumar, Rajendran; Pullithadathail, Biji

    2015-07-01

    Hybrid ZnO@Ag core-shell nanorods have been synthesized by a synthetic strategy based on seed mediated growth. Formation of core-shell nanostructures was confirmed by UV- diffused reflectance spectroscopy (UV-DRS), X-ray diffraction studies, field emission scanning electron microscopy and high resolution transmission electron microscopy. UV-DRS analysis of hybrid core-shell nanorods suggests the possibility of interfacial electron transfer between surface anchored Ag nanoclusters and ZnO nanorods. Successful decoration of Ag nanoclusters with an average diameter of ~7 ± 0.5 nm was observed forming the heterojunctions on the surface of the ZnO nanorods. An enhanced antibacterial property was observed for the ZnO@Ag core-shell nanorods against both Staphylococcus aureus and Pseudomonas aeruginosa lbacteria. The synergetic antibacterial activity of ZnO@Ag nanorods was found to be more prominent against Gram-positive bacteria than Gram-negative bacteria. The plausible reason for this enhanced antibacterial activity of the core-shell nanorods can be attributed to the physical damage caused by the interaction of the material with outer cell wall layer due to the production of reactive oxygen species by interfacial electron transfer between ZnO nanorods and plasmonic Ag nanoclusters. Overall, the ZnO@Ag core-shell nanorods were found to be promising materials that could be developed further as an effective antibacterial agent against wide range of microorganisms to control spreading and persistence of bacterial infections.

  1. Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons.

    PubMed

    Silverman, Michael A; Johnson, Scooter; Gurkins, Dmitri; Farmer, Meredith; Lochner, Janis E; Rosa, Patrizia; Scalettar, Bethe A

    2005-03-23

    Dense-core granules (DCGs) are organelles found in specialized secretory cells, including neuroendocrine cells and neurons. Neuronal DCGs facilitate many critical processes, including the transport and secretion of proteins involved in learning, and yet their transport and exocytosis are poorly understood. We have used wide-field and total internal reflection fluorescence microscopy, in conjunction with transport theory, to visualize the transport and exocytosis of DCGs containing a tissue plasminogen activator-green fluorescent protein hybrid in cell bodies, neurites, and growth cones of developing hippocampal neurons and to quantify the roles that diffusion, directed motion, and immobility play in these processes. Our results demonstrate that shorter-ranged transport of DCGs near sites of exocytosis in hippocampal neurons and neuroendocrine cells differs markedly. Specifically, the immobile fraction of DCGs within growth cones and near the plasma membrane of hippocampal neurons is small and relatively unaltered by actin disruption, unlike in neuroendocrine cells. Moreover, transport of DCGs in these domains of hippocampal neurons is unusually heterogeneous, being significantly rapid and directed as well as slow and diffusive. Our results also demonstrate that exocytosis is preceded by substantial movement and heterogeneous transport; this movement may facilitate delivery of DCG cargo in hippocampal neurons, given the relatively low abundance of neuronal DCGs. In addition, the extensive mobility of DCGs in hippocampal neurons argues strongly against the hypothesis that cortical actin is a major barrier to membrane-proximal DCGs in these cells. Instead, our results suggest that extended release of DCG cargo from hippocampal neurons arises from heterogeneity in DCG mobility.

  2. Detection of a high brightness temperature radio core in the active-galactic-nucleus-driven molecular outflow candidate NGC 1266

    SciTech Connect

    Nyland, Kristina; Young, Lisa M.; Alatalo, Katherine; Wrobel, J. M.; Morganti, Raffaella; Davis, Timothy A.; De Zeeuw, P. T.; Deustua, Susana; Bureau, Martin

    2013-12-20

    We present new high spatial resolution Karl G. Jansky Very Large Array (VLA) H I absorption and Very Long Baseline Array (VLBA) continuum observations of the active-galactic-nucleus-(AGN-)driven molecular outflow candidate NGC 1266. Although other well-known systems with molecular outflows may be driven by star formation (SF) in a central molecular disk, the molecular mass outflow rate of 13 M {sub ☉} yr{sup –1} in NGC 1266 reported by Alatalo et al. exceeds SF rate estimates from a variety of tracers. This suggests that an additional energy source, such as an AGN, may play a significant role in powering the outflow. Our high spatial resolution H I absorption data reveal compact absorption against the radio continuum core co-located with the putative AGN, and the presence of a blueshifted spectral component re-affirms that gas is indeed flowing out of the system. Our VLBA observations at 1.65 GHz reveal one continuum source within the densest portion of the molecular gas, with a diameter d < 8 mas (1.2 pc), a radio power P {sub rad} = 1.48 × 10{sup 20} W Hz{sup –1}, and a brightness temperature T {sub b} > 1.5 × 10{sup 7} K that is most consistent with an AGN origin. The radio continuum energetics implied by the compact VLBA source, as well as archival VLA continuum observations at lower spatial resolution, further support the possibility that the AGN in NGC 1266 could be driving the molecular outflow. These findings suggest that even low-level AGNs may be able to launch massive outflows in their host galaxies.

  3. Measurement of nitrophenols in rain and air by two-dimensional liquid chromatography-chemically active liquid core waveguide spectrometry.

    PubMed

    Ganranoo, Lucksagoon; Mishra, Santosh K; Azad, Abul K; Shigihara, Ado; Dasgupta, Purnendu K; Breitbach, Zachary S; Armstrong, Daniel W; Grudpan, Kate; Rappenglueck, Bernhard

    2010-07-01

    We report a novel system to analyze atmospheric nitrophenols (NPs). Rain or air sample extracts (1 mL) are preconcentrated on a narrow bore (2 mm) aliphatic anion exchanger. In the absence of strong retention of NPs exhibited by aromatic ion exchangers, retained NPs are eluted as a plug by injection of 100 microL of 0.1 M Na(2)SO(4) on to a short (2 x 50 mm) reverse phase C-18 column packed with 2.2 mum particles. The salt plug passes through the C-18 column unretained while the NPs are separated by an ammonium acetate buffered methanol-water eluent, compatible with mass spectrometry (MS). The eluted NPs are measured with a long path Teflon AF-based liquid core waveguide (0.15 x 1420 mm) illuminated by a 403 nm light emitting diode and detected by a monolithic photodiode-operational amplifier. The waveguide is rendered chemically active by suspending it over concentrated ammonia that permeates into the lumen. The NPs ionize to the yellow anion form (lambda(max) approximately 400 nm). The separation of 4-nitrophenol, 2,4-dinitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, and 2-nitrophenol (these are the dominant NPs, typically in that order, in both rain and air of Houston and Arlington, TX, confirmed by tandem MS) takes just over 5 min with respective S/N = 3 limits of detection (LODs) of 60, 12, 30, 67, and 23 pg/mL compared to MS/MS LODs of 20, 49, 11, 20, and 210 pg/mL. Illustrative air and rain data are presented.

  4. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    PubMed

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  5. Calculation of magnetic field-induced current densities for humans from EAS countertop activation/deactivation devices that use ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Gandhi, Om P.

    2005-01-01

    Compliance testing of electronic article surveillance (EAS) devices requires that induced current densities in central nervous system (CNS) tissues, i.e. brain and the spinal cord, be less than the prescribed safety limits. Even though ferromagnetic cores are mostly used for activation/deactivation of embedded magnetic tags, assumed equivalent air-core coils with guessed increased number of ampere turns have always been used to calculate the magnetic fields for the proximal region to which a customer is exposed. We show that at low frequencies up to several kilohertz, duality of electric and magnetic circuits may be exploited such that the shaped high reluctance core is modelled as though it was a higher conductivity electric circuit of the corresponding shape. The proposed procedure is tested by examples of two magnetic cores typical of countertop activation/deactivation devices. The equivalent exposure magnetic fields obtained from the dual electric fields are shown to be in excellent agreement (within ±5%) with those measured for these ferromagnetic EAS devices. The previously proposed impedance method is then used to calculate the induced current densities for a 1.974 × 1.974 × 2.93 mm resolution anatomic model of a human. For the two considered EAS systems using excitation currents of 5000 A turns at 200 Hz, the maximum 1 cm2 area-averaged induced current densities in the CNS tissues are calculated and found to be less than the ICNIRP safety limits.

  6. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  7. Novel of core-shell AlOOH/Cu nanostructures: Synthesis, characterization, antimicrobial activity and in vitro toxicity in Neuro-2a cells

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Fomenko, A. N.; Korovin, M. S.; Glazkova, E. A.; Svarovskaya, N. V.

    2016-08-01

    Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.

  8. PTEN loss and chromosome 8 alterations in Gleason grade 3 prostate cancer cores predicts the presence of un-sampled grade 4 tumor: implications for Active Surveillance

    PubMed Central

    Trock, Bruce J.; Fedor, Helen; Gurel, Bora; Jenkins, Robert B.; Knudsen, BS; Fine, Samson W.; Said, Jonathan W.; Carter, H. Ballentine; Lotan, Tamara L.; De Marzo, Angelo M.

    2016-01-01

    Men who enter active surveillance because their biopsy exhibits only Gleason grade 3 (G3) frequently have higher grade tumor missed by biopsy. Thus, biomarkers are needed that, when measured on G3 tissue, can predict the presence of higher grade tumor in the whole prostate. We evaluated whether PTEN loss, chromosome 8q gain (MYC) and/or 8p loss (LPL) measured only on G3 cores is associated with un-sampled G4 tumor. A tissue microarray was constructed of prostatectomy tissue from patients whose prostates exhibited only Gleason score 3+3, only 3+4, or only 4+3 tumor (n=50 per group). Cores sampled only from areas of G3 were evaluated for PTEN loss by immunohistochemistry, and PTEN deletion, LPL/8p loss, and MYC/8q gain by fluorescence in situ hybridization (FISH). Biomarker results were compared between Gleason score 6 vs. 7 tumors using conditional logistic regression. PTEN protein loss, odds ratio=4.99, p=.033, MYC/8q gain, odds ratio=5.36, p=.010, and LPL/8p loss, odds ratio=3.96, p=.003 were significantly more common in G3 cores derived from Gleason 7 vs. Gleason 6 tumors. PTEN gene deletion was not statistically significant. Associations were stronger comparing Gleason 4+3 vs. 6 than for Gleason 3+4 vs. 6. MYC/8q gain, LPL/8p loss, and PTEN protein loss measured in G3 tissue microarray cores strongly differentiate whether the core comes from a Gleason 6 or Gleason 7 tumor. If validated to predict upgrading from G3 biopsy to prostatectomy these biomarkers could reduce the likelihood of enrolling high risk men and facilitate safe patient selection for active surveillance. PMID:27080984

  9. The Use of Cultural Historical Activity Theory (CHAT) within a Constructivist Learning Environment to Develop Core Competencies in Social Work

    ERIC Educational Resources Information Center

    Fire, Nancy; Casstevens, W. J.

    2013-01-01

    Achieving foundation-level practice behaviors to develop social work core competencies involves integrating learning across a curriculum. This article focuses on two phases of foundation-level course redevelopment aimed to support graduate students in accomplishing this outcome. The first phase involved restructuring the course to become a…

  10. Parameter Sensitivity Study of the Unreacted-Core Shrinking Model: A Computer Activity for Chemical Reaction Engineering Courses

    ERIC Educational Resources Information Center

    Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio

    2011-01-01

    The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…

  11. Simvastatin inhibits the core promoter of the TXNRD1 gene and lowers cellular TrxR activity in HepG2 cells.

    PubMed

    Ekström, Lena; Johansson, Maria; Monostory, Katalin; Rundlöf, Anna-Klara; Arnér, Elias S J; Björkhem-Bergman, Linda

    2013-01-04

    Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing redox-active enzyme that is thought to be important during carcinogenesis. We have recently shown that treatment with statins, HMGCoA reductase inhibitors, reduces the levels of TrxR1 in liver of both rat and human. The reduced TrxR1 levels were correlated with inhibited hepatocarcinogenesis in a rat model. The aim of the present study was to investigate if statins affect the activity of the human TXNRD1 core promoter, which guides expression of TrxR1, and if the effects by statins on TrxR1 expression in liver could be reproduced in a cellular model system. We found that simvastatin and fluvastatin decreased cellular TrxR activity in cultured human liver-derived HepG2 cells with approximately 40% (p<0.05). Simvastatin, but not fluvastatin or atorvastatin, also reduced the TXNRD1 promoter activity in HepG2 cells by 20% (p<0.01). In line with this result, TrxR1 mRNA levels decreased with about 25% in non-transfected HepG2 cells upon treatment with simvastatin (p<0.01). Concomitant treatment with mevalonate could not reverse these effects of simvastatin, indicating that other mechanisms than HMGCoA reductase inhibition was involved. Also, simvastatin did not inhibit sulforaphane-derived stimulation of the TXNRD1 core promoter activity, suggesting that the inhibition by simvastatin was specific for basal and not Nrf2-activated TrxR1 expression. In contrast to simvastatin, the two other statins tested, atorvastatin or fluvastatin, did not influence the TrxR1 mRNA levels. Thus, our results reveal a simvastatin-specific reduction of cellular TrxR1 levels that at least in part involves direct inhibitory effects on the basal activity of the core promoter guiding TrxR1 expression.

  12. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.

    PubMed

    Liang, Shijing; Zhou, Zhouming; Wu, Xiuqin; Zhu, Shuying; Bi, Jinhong; Zhou, Limin; Liu, Minghua; Wu, Ling

    2016-02-15

    MoS₂ quantum dots (QDs)/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS) and N₂-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS₂ QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS₂ QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  13. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. Molybdenum-Doped PdPt@Pt Core-Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst.

    PubMed

    Cho, Kie Yong; Yeom, Yong Sik; Seo, Heun Young; Kumar, Pradip; Lee, Albert S; Baek, Kyung-Youl; Yoon, Ho Gyu

    2017-01-18

    Development of highly active and durable electrocatalysts that can effectively electrocatalyze oxygen reduction reactions (ORR) still remains one important challenge for high-performance electrochemical conversion and storage applications such as fuel cells and metal-air batteries. Herein, we propose the combination of molybdenum-doped PdPt@Pt core-shell octahedra and the pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly[(ethylene glycol) methyl ether methacrylate] ionic block copolymer-functionalized reduced graphene oxide (Mo-PdPt@Pt/IG) to effectively augment the interfacial cohesion of both components using a tunable ex situ mixing strategy. The rationally designed Mo-PdPt@Pt core-shell octahedra have unique compositional benefits, including segregation of Mo atoms on the vertexes and edges of the octahedron and 2-3 shell layers of Pt atoms on a PdPt alloy core, which can provide highly active sites to the catalyst for ORR along with enhanced electrochemical stability. In addition, the ionic block copolymer functionalized graphene can facilitate intermolecular charge transfer and good stability of metal NPs, which arises from the ionic block copolymer interfacial layer. When the beneficial features of the Mo-PdPt@Pt and IG are combined, the Mo-PdPt@Pt/IG exhibits substantially enhanced activity and durability for ORR relative to those of commercial Pt/C. Notably, the Mo-PdPt@Pt/IG shows mass activity 31-fold higher than that of Pt/C and substantially maintains high activities after 10 000 cycles of intensive durability testing. The current study highlights the crucial strategies in designing the highly active and durable Pt-based octahedra and effective combination with functional graphene supports toward the synergetic effects on ORR.

  15. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep.

    PubMed

    Studholme, Keith M; Gompf, Heinrich S; Morin, Lawrence P

    2013-03-15

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (T(c)) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and T(c) begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in T(c) is very small; 3) T(c) recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon T(c) increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated T(c) persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when T(c) or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in T(c) suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low T(c).

  16. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep

    PubMed Central

    Studholme, Keith M.; Gompf, Heinrich S.

    2013-01-01

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (Tc) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and Tc begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in Tc is very small; 3) Tc recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon Tc increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated Tc persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when Tc or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in Tc suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low Tc. PMID:23364525

  17. Development of a supramolecular ensemble of an AIEE active hexaphenylbenzene derivative and Ag@Cu2O core-shell NPs: an efficient photocatalytic system for C-H activation.

    PubMed

    Chopra, Radhika; Kumar, Manoj; Bhalla, Vandana

    2016-08-09

    A supramolecular ensemble having Ag@Cu2O core-shell nanoparticles stabilized by aggregates of a hexaphenylbenzene derivative has been developed which exhibits excellent photocatalytic efficiency in reactions involving preparation of imidazole and benzimidazole derivatives via C-H activation.

  18. Enhancing photocatalytic activity by using TiO{sub 2}-MgO core-shell-structured nanoparticles

    SciTech Connect

    Jung, Hyun Suk; Lee, Jung-Kun; Nastasi, Michael; Kim, Jeong-Ryeol; Lee, Sang-Wook; Kim, Jin Young; Park, Jong-Sung; Hong, Kug Sun; Shin, Hyunho

    2006-01-02

    Hygroscopic Mg(OH){sub 2} gel was topotactically decomposed on TiO{sub 2} particle surfaces, resulting in highly nanoporous MgO-coated TiO{sub 2} particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO{sub 2} counterpart.

  19. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  20. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    Evidence for hydrothermal activity on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of hydrothermal plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of hydrothermal plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate hydrothermal input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-active source of venting.

  1. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    2003-07-01

    Evidence for hydrothermal activity on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of hydrothermal plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of hydrothermal plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate hydrothermal input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-active source of venting.

  2. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  3. Controllable synthesis and adjustable antineoplastic activity of bovine serum albumin-conjugated PbS/Ag2S core/shell nano-composites.

    PubMed

    Wang, Hua-Jie; Yu, Xue-Hong; Cao, Ying; Zhou, Bei; Wang, Cai-Feng

    2012-08-01

    Series of mono-dispersed bovine serum albumin (BSA)-conjugated PbS/Ag(2)S core/shell nano-composites with different Pb/Ag ratios had been successfully synthesized by an ion-exchange method under the gentle conditions using BSA-conjugated PbS nano-crystals as precursors, which were prepared by a biomimetic method. Fourier transform infrared spectra analysis and transmission electron microscopy (TEM) observation demonstrated that BSA was a key factor to control the morphology and size of final products. Additionally, the real-time TEM observation, X-ray powder diffraction and atomic absorption spectroscopy analysis were applied to monitor the synthesis process. The results indicated that the shell thickness and ratio of Pb to Ag could be controlled by adjusting the ion-exchange time. Both metabolic and morphological methods revealed that the proliferation of rat pheochromocytoma (PC 12) cells could be inhibited by BSA-conjugated PbS/Ag(2)S core/shell nano-composites, and the antineoplastic activity was Pb/Ag ratio-dependent. It might be explained by a Trojan horse-type mechanism. Summarily, the present study would be helpful to find a new core/shell nano-composite with higher and controllable antineoplastic activity due to the synergistic reaction of different metal ions.

  4. The use of 1,2-epoxyhexane as a passivating agent for core-shell aluminum nanoparticles with very high active aluminum content

    NASA Astrophysics Data System (ADS)

    Jelliss, Paul A.; Buckner, Steven W.; Chung, Stephen W.; Patel, Ashish; Guliants, Elena A.; Bunker, Christopher E.

    2013-09-01

    Aluminum nanoparticles synthesized by titanium (IV) isopropoxide-initiated decomposition of alane have been passivated and capped using oligomerization of 1,2-epoxyhexane. Preliminary synthetic protocols with this capping agent, where the nanoparticle formation reaction and passivation processes were both conducted at ambient temperatures, had resulted in nanoparticles that were highly unstable and that either oxidized rapidly upon exposure to air or were pyrophoric. Use of 1,2-epoxydodecane, on the other hand, had produced stable nanoparticles that were successfully characterized and reported. A modification of the procedure whereby the epoxyhexane passivation process is carried out at 85 °C for 30 min, has afforded surprisingly stable aluminum nanoparticles. Powder X-ray analysis and transmission electron microscopy reveal nanoparticle diameters on the order of 30 nm with 19 nm crystalline aluminum cores. The passivation process yields an extraordinarily high active aluminum (Al0) content of 83%, with degradation of the core to 52% active aluminum after 9 days exposure in a dry air chamber. Differential scanning calorimetry coupled with thermogravimetric analysis reveals distinct cap combustion and metal ignition exotherms, though they are not as well-defined as those found with their epoxydodecane-capped congener. With the additional observation of a metal melting endotherm, it is suggested that while carrying out the passivation process at an elevated temperature affords a higher degree of kinetic stabilization of the aluminum core, the passivation shell is inhomogeneous, possibly as a result of the polydisperse nature of the oligomerized epoxyhexane.

  5. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation

    PubMed Central

    Fong, Shirley S. M.; Tam, Y. T.; Macfarlane, Duncan J.; Ng, Shamay S. M.; Bae, Young-Hyeon; Chan, Eleanor W. Y.; Guo, X.

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP. PMID:26185520

  6. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core.

    PubMed

    Kaci, Assia; Petit, Fabienne; Fournier, Matthieu; Cécillon, Sébastien; Boust, Dominique; Lesueur, Patrick; Berthe, Thierry

    2016-03-01

    In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary's chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.

  7. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    DOE PAGES

    Hu, J.; Wu, L.; Kuttiyiel, K.; ...

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less

  8. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    SciTech Connect

    Hu, J.; Wu, L.; Kuttiyiel, K.; Goodman, K. R.; Zhang, C.; Zhu, Y.; Vukmirovic, M. B.; White, M. G.; Sasaki, K.; Adzic, R. R.

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those of commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.

  9. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-core

  10. Chronic administration of nicotine enhances NMDA-activated currents in the prefrontal cortex and core part of the nucleus accumbens of rats.

    PubMed

    Ávila-Ruiz, Tania; Carranza, Vladimir; Gustavo, López-López; Limón, Daniel I; Martínez, Isabel; Flores, Gonzalo; Flores-Hernández, Jorge

    2014-06-01

    Nicotine is an addictive substance of tobacco. It has been suggested that nicotine acts on glutamatergic (N-methyl-d-aspartate, NMDA) neurotransmission affecting dopamine release in the mesocorticolimbic system. This effect is reflected in neuroadaptative changes that can modulate neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) core (cNAcc) and shell (sNAcc) regions. We evaluated the effect of chronic administration of nicotine (4.23 mg/kg/day for 14 days) on NMDA activated currents in dissociated neurons from the PFC, and NAcc (from core and shell regions). We assessed nicotine blood levels by mass spectrophotometry and we confirmed that nicotine increases locomotor activity. An electrophysiological study showed an increase in NMDA currents in neurons from the PFC and core part of the NAcc in animals treated with nicotine compared to those of control rats. No change was observed in neurons from the shell part of the NAcc. The enhanced glutamatergic activity observed in the neurons of rats with chronic administration of nicotine may explain the increased locomotive activity also observed in such rats. To assess one of the possible causes of increased NMDA currents, we used magnesium, to block NMDA receptor that contains the NR2B subunit. If there is a change in percent block of NMDA currents, it means that there is a possible change in expression of NMDA receptor subunits. Our results showed that there is no difference in the blocking effect of magnesium on the NMDA currents. The magnesium lacks of effect after nicotinic treatment suggests that there is no change in expression of NR2B subunit of NMDA receptors, then, the effect of nicotine treatment on amplitude of NMDA currents may be due to an increase in the quantity of receptors or to a change in the unitary conductance, rather than a change in the expression of the subunits that constitute it.

  11. INTEGRAL core programme

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Schoenfelder, V.; Ubertini, P.; Winkler, C.

    1997-01-01

    The International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission is described with emphasis on the INTEGRAL core program. The progress made in the planning activities for the core program is reported on. The INTEGRAL mission has a nominal lifetime of two years with a five year extension option. The observing time will be divided between the core program (between 30 and 35 percent during the first two years) and general observations. The core program consists of three main elements: the deep survey of the Galactic plane in the central radian of the Galaxy; frequent scans of the Galactic plane in the search for transient sources, and pointed observations of several selected sources. The allocation of the observation time is detailed and the sensitivities of the observations are outlined.

  12. Posttranslational modification of E-cadherin by core fucosylation regulates Src activation and induces epithelial-mesenchymal transition-like process in lung cancer cells.

    PubMed

    Shao, Kang; Chen, Zhong Yi; Gautam, Suraj; Deng, Nian Hui; Zhou, You; Wu, Xing Zhong

    2016-02-01

    E-cadherin is often dysregulated in aggressive lung cancer, the mechanism of which cannot always be explained at the level of transcription. In 66 patients with lung cancer, immunohistochemical staining demonstrated that co-localization of E-cadherin and core fucose by Lens culinaris agglutinin was significantly less extensive in tumor than in nontumor tissue. Through gain and loss of fucosylation experiments in the giant lung carcinoma cell lines 95C and 95D, our results revealed that E-cadherin core fucosylation in 95C cells overexpressing α-1, 6-fucosyltransferase (Fut8) inhibited Fut8-95C cell migration, whereas knockdown of Fut8 in 95D cells enhanced migration of short-interfering RNA-targeting Fut8 (siFut8)-95D cells. The level of active Src (phosphorylated Src [Y416]) was significantly reduced in Fut8-95C cells, but elevated in siFut8-95D cells. In protein complexes immunoprecipitated from Fut8-95C cell lysates with anti-E-cadherin, less phosphorylated Src (Y416) and more β-catenin were observed, but immunoprecipitates from siFut8-95D cells, containing less core fucosylated E-cadherin, contained an elevated level of phospho-Src Y416. In Fut8-95C cells, phosphorylation of Akt (Y315, Y326) and GSK-3β (S9) was significantly reduced, but β-catenin (S37) phosphorylation was enhanced. Expression of N-cadherin and Snail1 was also reduced in Fut8-95C cells, but significantly increased in siFut8-95D cells. Intriguingly, when Src kinase activity was inhibited by treatment of cells with PP2 and SU6656, regulation of N-cadherin, Snail1 and cell migration by E-cadherin core fucosylation was abrogated in both Fut8-95C and siFut8-95D cells. Therefore, posttranslational modification of E-cadherin by less core fucosylation recruited and activated Src, and induced an epithelial-mesenchymal transition-like process in lung cancer cells.

  13. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements

    PubMed Central

    Myers, Fiona A.; Lefevre, Pascal; Mantouvalou, Evangelia; Bruce, Kimberley; Lacroix, Claire; Bonifer, Constanze; Thorne, Alan W.; Crane-Robinson, Colyn

    2006-01-01

    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression. PMID:16914441

  14. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Li, Wei-qi; Chen, Guang-hui; Zhu, Hongjun

    2015-02-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  15. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  16. A 600,000-year record of Antarctic Bottom Water activity inferred from sediment textures and structures in a sediment core from the Southern Brazil Basin

    NASA Astrophysics Data System (ADS)

    Massé, Laurent; FaugèRes, Jean-Claude; Bernat, Michel; Pujos, Annick; MéZerais, Marie-Laure

    1994-12-01

    At the northern exit of the Vema Channel, in the Southern Brazil Basin, deep currents linked with Antarctic Bottom Water flow (AABW, below 4200 m) have formed contouritic accumulations along the continental rise. Lithologic and textural investigations were carried out on a Kullenberg core in order to establish a chronology of late Pleistocene-Holocene fluctuations in AABW flow. The core, spanning the last 600,000 years, was recovered from a field of sediment waves. The deposits consist of fine grained muds. Carbonate contents are very low because deposition takes place near the present-day carbonate compensation depth. The core stratigraphic framework is based on calcareous nannofossil and excess 230Th analyses. Two main types of facies can be identified: (1) yellowish brown muds, with frequent manganese enrichments forming dark laminae, and (2) homogeneous gray-green muds. Two indicators of paleocurrent activity have been considered: (1) erosional sediment features that give evidence for high amplitude and short-term current events, and (2) grain size fluctuations (percentage of panicles greater than 10 µm), indicating low amplitude and long-term variations. Two periods can be defined. The first one (circa 600 to circa 350 kyr B.P.) is characterized by an instability in current activity, with strong flow events recorded as erosional surfaces. Long-term fluctuations reveal the existence of several episodes of increased velocity occurring approximately every 50 kyr. The second period (350 kyr B.P. to present) is marked by globally weaker current activity and long-term fluctuations of lower amplitude and longer duration. Maximum velocities occur preferentially during periods of climatic cooling. These fluctuations might be correlated with the 100 kyr eccentricity cycle of the Earth's orbit.

  17. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301

  18. Magmatic and phreatomagmatic volcanic activity at Mt. Takahe, West Antarctica, based on tephra layers in the Byrd ice core and field observations at Mt. Takahe

    NASA Astrophysics Data System (ADS)

    Palais, Julie M.; Kyle, Philip R.; McIntosh, William C.; Seward, Diane

    1988-12-01

    The morphology, grain size characteristics and composition of ash particles in 30 ka to 150 ka tephra layers from the Byrd ice core were examined to characterize the eruptions which produced them and to test the suggestion that they were erupted from Mt. Takahe, a shield volcano in Marie Byrd Land, West Antarctica. Volcanic deposits at Mt. Takahe were examined for evidence of recent activity which could correlate with the tephra layers in the ice core. Coarse- and fine-ash layers have been recognized in the Byrd ice core. The coarse-ash layers have a higher mass concentration than the fine-ash layers and are characterized by fresh glass shards > 50 μm diameter, many containing elongate pipe vesicles. The fine-ash layers have a lower mass concentration and contain a greater variety of particles, typically < 20 μm diameter. Many of these particles are aggregate grains composed of glass and crystal fragments showing S and Cl surface alteration. The grain-size distributions of the coarse and fine-ash layers overlap, in part because of the aggregate nature of grains in the fine-ash layers. The coarse-ash layers are interpreted as having formed by magmatic eruption whereas the fine-ash layers are believed to be hydrovolcanic in origin. Mt. Takahe is the favored source for the tephra because: (a) chemical analyses of samples from the volcano are distinctive, being peralkaline trachyte, and similar in composition to the analyzed tephra; (b) Mt. Takahe is a young volcano (< 0.3 Ma); (c) pyroclastic deposits on Mt. Takahe indicate styles of eruption similar to that inferred for the ice core tephra; and (d) Mt. Takahe is only about 350 km from the calculated site of tephra deposition. A speculative eruptive history for Mt. Takahe is established by combining observations from Mt. Takahe and the Byrd ice core tephra. Initial eruptions at Mt. Takahe were subglacial and then graded into alternating subaerial and subglacial activity. The tephra suggest alternating subaerial

  19. Simple one-pot synthesis of solid-core@porous-shell alloyed PtAg nanocrystals for the superior catalytic activity toward hydrogen evolution and glycerol oxidation.

    PubMed

    Weng, Xuexiang; Liu, Qing; Wang, Ai-Jun; Yuan, Junhua; Feng, Jiu-Ju

    2017-05-15

    In this work, solid-core@porous-shell alloyed PtAg nanocrystals (PtAg NCs) were fabricated via a simple one-pot co-reduction wet-chemical method on a large scale. Diprophylline (DPP) was employed as the stabilizing agent and shape-directing agent, without any surfactant, polymer, seed or template. The products were mainly analyzed by a series of characterization technique. The hierarchical architectures had enhanced stability and improved electrocatalytic activity for hydrogen evolution reaction (HER) and glycerol oxidation reaction (GOR) in contrast with commercial available Pt/C and Pt black catalysts. For the prepared PtAg NCs catalyst, the Tafel slope is 40mVdec(-1) toward HER in 0.5M H2SO4, coupled with the specific activity and mass activity of 77.91mAcm(-2) and 1303mAmg(-1)Pt toward GOR, respectively.

  20. Synthesis, antioxidant and antimicrobial activity of novel vanillin derived piperidin-4-one oxime esters: preponderant role of the phenyl ester substituents on the piperidin-4-one oxime core.

    PubMed

    Harini, Salakatte Thammaiah; Kumar, Honnaiah Vijay; Rangaswamy, Javarappa; Naik, Nagaraja

    2012-12-15

    The study has been achieved the efficient synthesis of vanillin derived piperidin-4-one oxime esters (5a-m) via four step reaction involved Mannich reaction of vanillin, acetone and ammonium acetate to obtain 2,6-bis(4-hydroxy-3-methoxyphenyl)-piperidin-4-one 2 followed by N-methylation and oximation. Further, to enhance the biological activity of vanillin derived piperidin-4-one oxime core, esterification of 4 with substituted benzoyl chlorides in the presence of strong organic base t-BuOK accomplished a series of vanillin derived piperidin-4-one oxime esters (5a-m). The synthesized analogues are screened for their antioxidant and antimicrobial studies and the preponderant effect of the phenyl ester substituents on the biological activity of piperidin-4-one oxime core was demonstrated. Among the tested compounds, 5i and 5j are emerged as outperformed antioxidants than standard Butylated hydroxy anisole (BHA) whereas, compounds 5b and 5d manifested potent antibacterial and antifungal activity than standard streptomycin and fluconazole respectively.

  1. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation.

    PubMed

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-02-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm(2) and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts.

  2. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    PubMed Central

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-01-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633

  3. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-02-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts.

  4. Two Millennia of Pb Pollution Related to Altiplano Metallurgical Activities and Leaded Gasoline in South America from Illimani Ice Core

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M.

    2014-12-01

    The exploitation of the extended polymetallic deposits of the Altiplano in South America led to significant emissions of the neurotoxic Pb into the atmosphere already since pre-Colonial times. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that within the Northern Hemisphere emissions from metallurgy and coal combustion are minor compared to that from leaded gasoline during the second half of the 20th century. However, there is no equivalent data for Southern America. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on an ice core record from Illimani glacier in Bolivia. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The 2000 year ice-core based decadal Pb deposition history revealed highest Pb Enrichment Factors (EFs) during the period 1965-85. Metallurgical processing for silver production during periods of the Tiwanaku culture (400-900 AD), the Inca empire (1450-1532 AD), colonial times (1532-1900 AD), and the tin production at the beginning of the 20th century were identified as major sources for enhanced Pb EFs before the 1960s. Gasoline related Pb emissions in 1965-85, however, led to a threefold increase of the Pb EFs compared to the emission level from metal production, considerably preceding those of the past 2000 years. This finding is complementary to the local air pollution signal preserved in lake sediments and in good agreement with various studies from the Northern Hemisphere.

  5. Historical Associations of Molecular Measurements of Escherichia coli and Enterococci to Anthropogenic Activities and Climate Variables in Freshwater Sediment Cores.

    PubMed

    Brooks, Yolanda M; Baustian, Melissa M; Baskaran, Mark; Ostrom, Nathaniel E; Rose, Joan B

    2016-07-05

    This study investigated the long-term associations of anthropogenic (sedimentary P, C, and N concentrations, and human population in the watershed), and climatic variables (air temperature, and river discharge) with Escherichia coli uidA and enterococci 23S rRNA concentrations in sediment cores from Anchor Bay (AB) in Lake St. Clair, and near the mouth of the Clinton River (CR), Michigan. Calendar year was estimated from vertical abundances of (137)Cs. The AB and CR cores spanned c.1760-2012 and c.1895-2012, respectively. There were steady state concentrations of enterococci in AB during c.1760-c.1860 and c.1910-c.2003 at ∼0.1 × 10(5) and ∼2.0 × 10(5) cell equivalents (CE) per g-dry wt, respectively. Enterococci concentrations in CR increased toward present day, and ranged from ∼0.03 × 10(5) to 9.9 × 10(5) CE/g-dry wt. The E. coli concentrations in CR and AB increased toward present day, and ranged from 0.14 × 10(7) to 1.7 × 10(7) CE/g-dry wt, and 1.8 × 10(6) to 8.5 × 10(6) CE/g-dry wt, respectively. Enterococci was associated with population and river discharge, while E. coli was associated with population, air temperature, and N and C concentrations (p < 0.05). Sediments retain records of the abundance of fecal indicator bacteria, and offer a way to evaluate responses to increased population, nutrient loading, and environmental policies.

  6. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  7. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  8. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex

    PubMed Central

    Hewitt, Laura; Tighe, Anthony; Santaguida, Stefano; White, Anne M.; Jones, Clifford D.; Musacchio, Andrea; Green, Stephen

    2010-01-01

    Mps1 is an essential component of the spindle assembly checkpoint. In this study, we describe a novel Mps1 inhibitor, AZ3146, and use it to probe the role of Mps1’s catalytic activity during mitosis. When Mps1 is inhibited before mitotic entry, subsequent recruitment of Mad1 and Mad2 to kinetochores is abolished. However, if Mps1 is inhibited after mitotic entry, the Mad1–C-Mad2 core complex remains kinetochore bound, but O-Mad2 is not recruited to the core. Although inhibiting Mps1 also interferes with chromosome alignment, we see no obvious effect on aurora B activity. In contrast, kinetochore recruitment of centromere protein E (CENP-E), a kinesin-related motor protein, is severely impaired. Strikingly, inhibition of Mps1 significantly increases its own abundance at kinetochores. Furthermore, we show that Mps1 can dimerize and transphosphorylate in cells. We propose a model whereby Mps1 transphosphorylation results in its release from kinetochores, thus facilitating recruitment of O-Mad2 and CENP-E and thereby simultaneously promoting checkpoint signaling and chromosome congression. PMID:20624899

  9. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation.

    PubMed

    Ogata, K; Kanei-Ishii, C; Sasaki, M; Hatanaka, H; Nagadoi, A; Enari, M; Nakamura, H; Nishimura, Y; Ishii, S; Sarai, A

    1996-02-01

    The DNA-binding domain of Myb consists of three imperfect repeats, R1, R2 and R3, each containing a helix-turn-helix motif variation. Among these repeats, R2 has distinct characteristics with high thermal instability. The NMR structure analysis found a cavity inside the hydrophobic core of R2 but not in R1 or R3. Here, we show that R2 has slow conformational fluctuations, and that a cavity-filling mutation which stabilizes the R2 structure significantly reduces specific Myb DNA-binding activity and trans-activation. Structural observations of the free and DNA-complexed stages suggest that the implied inherent conformational flexibility of R2, associated with the presence of the cavity, could be important for DNA recognition by Myb.

  10. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

    PubMed Central

    Powell, Jonathan J.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Hondow, Nicole; Pennycook, Timothy J.; Latunde-Dada, Gladys O.; Simpson, Robert J.; Brown, Andy P.; Pereira, Dora I.A.

    2014-01-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  11. Superior photoluminescence and photocatalytic activity of CdS (core)-SiO2 (shell) nanostructures obtained by CdS photoetching and Au deposition.

    PubMed

    Gupta, Nidhi; Pal, Bonamali

    2013-07-01

    Core-shell morphology of silica (SiO2) coated CdS nanocomposites (SiO2@CdS) of different shapes have been made for better stability, luminescence and photochemical activity of CdS nanoparticles. A thin layer (thickness 1-1.4 nm) of SiO2 shell is deposited over CdS nanorods (CdS-NR) of aspect ratio = 21 and CdS nanospheres (CdS-NS) of size 6-8 nm by alkyl silane agents. Synthesized nanostructures were characterized by diffuse reflectance spectra, HR-TEM, BET surface measurement, LB surface film, and absorption and photoluminescence analysis. Photoetching (PE) of CdS core led to blue shift of the absorbance onset of SiO2@CdS-NR along with the appearance of an exciton band at 485 nm due to the quantum confinement effect. Photodissolution of CdS core shifts the band gap energy from initial 2.4 to 2.6 eV for CdS-NR and 2.5 to 2.67 eV for CdS-NS. TEM images reveal the increase in aspect ratio of NR from 21 to 31 and decrease in the spherical core to 2.5 nm from 6-8 nm after PE. Photoetched SiO2@CdS-NC displayed highly intense fluorescence emission (SiO2@CdS-NS > SiO2@CdS-NR) than unetched SiO2@CdS-NC at 488 nm corresponding to band edge position. The Au (0.5 wt.%) deposition onto photoetched SiO2@CdS-NR(PE) composites highly enhanced the fluorescence intensity in comparison to 1 wt.% of Au and Ag loading. SiO2@CdS-NC(PE) displayed improved photocatalytic activity during benzaldehyde photooxidation under UV (125 W, Hg-arc, 10.4 mW/cm2) irradiation. Silica coating onto CdS particles improves the photostability and photoactivity of CdS upon long UV irradiation.

  12. In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure.

    PubMed Central

    Schultze, M; Staehelin, C; Röhrig, H; John, M; Schmidt, J; Kondorosi, E; Schell, J; Kondorosi, A

    1995-01-01

    The Rhizobium common nod gene products NodABC are involved in the synthesis of the core lipochitooligosaccharide (Nod factor) structure, whereas the products of the host-specific nod genes are necessary for diverse structural modifications, which vary in different Rhizobium species. The sulfate group attached to the Rhizobium meliloti Nod signal is necessary for activity on the host plant alfalfa, while its absence renders the Nod factor active on the non-host plant vetch. This substituent is therefore a major determinant of host specificity. The exact biosynthetic pathway of Nod factors has not been fully elucidated. In particular, it is not known why some chemical modifications are introduced with high fidelity whereas others are inaccurate, giving rise to a family of different Nod factor structures produced by a single Rhizobium strain. Using protein extracts and partially purified recombinant NodH protein obtained from Escherichia coli expressing the R. meliloti nodH gene, we demonstrate here NodH-dependent in vitro sulfotransferase activity. Kinetic analyses with Nod factors, chitooligosaccharides, and their deacetylated derivatives revealed that Nod factors are the preferred substrate for the sulfate transfer. Moreover, the tetrameric Nod factor, NodRm-IV, was a better substrate than the trimer, NodRm-III, or the pentamer, NodRm-V. These data suggest that the core lipochitooligosaccharide structure must be synthesized prior to its host-specific modification with a sulfate group. Since in R. meliloti tetrameric Nod factors are the most abundant and the most active ones, high affinity of NodH for the appropriate tetrameric substrate guarantees its modification and thus contributes to the fidelity of host-specific behavior. Images Fig. 5 PMID:7708710

  13. Contribution of a new active faults map and sedimentary cores to the characterization of seismogenic sources in an interdisciplinary approach (Western Gulf of Corinth, Greece)

    NASA Astrophysics Data System (ADS)

    Beckers, Arnaud; Hubert-Ferrari, Aurélia; Beck, Christian; Tripsanas, Efthymios; Reyss, Jean-Louis; Albini, Paola; Rovida, Andrea; Scotti, Oona; De Batist, Marc; Sakellariou, Dimitris; Bernard, Pascal

    2014-05-01

    The Corinth rift is one of the fastest spreading rifts on Earth. 5 earthquakes of magnitude greater than 5.8 occurred during the last 40 years. The question of seismic hazard is consequently particularly relevant. Despite a long earthquake catalogue, estimations of earthquake hazard remain problematic because of the difficulty to associate each historical event to one of the many active faults mapped in the area. Consequently, combining seismology, history and paleoseismology in an interdisciplinary approach is here necessary and is the goal of the ANR-SISCOR project. In this framework, we investigated the offshore sediments in order to (1) better constraint the length of the active offshore faults, and (2) look for sedimentary signature of historical earthquakes. 600 km of high resolution seismic reflexion data have been acquired during two surveys and 12 short gravity cores have been retrieved. The latter are 0.5 to 1 m long, allowing us to analyze about 500 yrs of sedimentation. Two new faults potentially able to trigger M>5.5 earthquakes have been mapped in the northern part of the gulf based on seismic data. Sedimentary events (turbidites and mud flows) have been identified in some cores, essentially in the deep basin and in a 180m-deep sub-basin close to the northern coast. The comparison with the critically reviewed historical records shows that some of these events could have been triggered by historical earthquakes. The link between these potential earthquakes sedimentary signatures, historical events and active faults is discussed based on intensity maps and our new active fault map.

  14. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  15. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  16. Stronger enhancer II/core promoter activities of hepatitis B virus isolates of B2 subgenotype than those of C2 subgenotype

    PubMed Central

    Qin, Yanli; Zhou, Xueshi; Jia, Haodi; Chen, Chaoyang; Zhao, Weifeng; Zhang, Jiming; Tong, Shuping

    2016-01-01

    Hepatitis B virus (HBV) genotype C causes prolonged chronic infection and increased risk for liver cancer than genotype B. Our previous work revealed lower replication capacity of wild-type genotype C2 than B2 isolates. HBV DNA replication is driven by pregenomic RNA, which is controlled by core promoter (CP) and further augmented by enhancer I (ENI) and enhancer II (ENII). DNA fragments covering these regulatory elements were amplified from B2 and C2 isolates to generate luciferase reporter constructs. As ENII is fully embedded in CP, we inserted HBV DNA fragments in the sense orientation to determine their combined activities, and in the antisense orientation to measure enhancer activities alone. Genotype B2 isolates displayed higher ENI+ENII+CP, ENII+CP, and ENII activities, but not ENI or ENI+ENII activity, than C2 isolates. The higher ENII+CP activity was partly attributable to 4 positions displaying genotype-specific variability. Exchanging CP region was sufficient to revert the replication phenotypes of several B2 and C2 clones tested. These results suggest that a weaker ENII and/or CP at least partly accounts for the lower replication capacities of wild-type C2 isolates, which could drive the subsequent acquisition of CP mutations. Such mutations increase genome replication and are implicated in liver cancer development. PMID:27461034

  17. Stronger enhancer II/core promoter activities of hepatitis B virus isolates of B2 subgenotype than those of C2 subgenotype.

    PubMed

    Qin, Yanli; Zhou, Xueshi; Jia, Haodi; Chen, Chaoyang; Zhao, Weifeng; Zhang, Jiming; Tong, Shuping

    2016-07-27

    Hepatitis B virus (HBV) genotype C causes prolonged chronic infection and increased risk for liver cancer than genotype B. Our previous work revealed lower replication capacity of wild-type genotype C2 than B2 isolates. HBV DNA replication is driven by pregenomic RNA, which is controlled by core promoter (CP) and further augmented by enhancer I (ENI) and enhancer II (ENII). DNA fragments covering these regulatory elements were amplified from B2 and C2 isolates to generate luciferase reporter constructs. As ENII is fully embedded in CP, we inserted HBV DNA fragments in the sense orientation to determine their combined activities, and in the antisense orientation to measure enhancer activities alone. Genotype B2 isolates displayed higher ENI+ENII+CP, ENII+CP, and ENII activities, but not ENI or ENI+ENII activity, than C2 isolates. The higher ENII+CP activity was partly attributable to 4 positions displaying genotype-specific variability. Exchanging CP region was sufficient to revert the replication phenotypes of several B2 and C2 clones tested. These results suggest that a weaker ENII and/or CP at least partly accounts for the lower replication capacities of wild-type C2 isolates, which could drive the subsequent acquisition of CP mutations. Such mutations increase genome replication and are implicated in liver cancer development.

  18. Parasiticidal activity of a novel synthetic peptide from the core α-helical region of NK-lysin.

    PubMed

    Lee, Sung Hyen; Lillehoj, Hyun S; Tuo, Wenbin; Murphy, Charles A; Hong, Yeong H; Lillehoj, Erik P

    2013-10-18

    NK-lysin is an anti-microbial peptide that plays a critical role in innate immunity against infectious pathogens through its selective membrane disruptive property. We previously expressed and purified a full-length chicken NK-lysin (cNKL) recombinant protein, and demonstrated its in vitro anti-parasitic activity against the apicomplexan protozoan, Eimeria, the etiologic agent of avian coccidiosis. This study evaluated the in vitro and in vivo anti-parasitic properties of a synthetic peptide (cNK-2) incorporating a predicted membrane-permeating, amphipathic α-helix of the full-length cNKL protein. The cNK-2 peptide exhibited dose- and time-dependent in vitro cytotoxic activity against E. acervulina and E. tenella sporozoites. The cytotoxic activity of 1.5 μM of cNK-2 peptide against E. acervulina following 6h incubation was equal to that of 2.5 μM of melittin, the principal active component of apitoxin (bee venom) that also exhibits anti-microbial activity. Even greater activity was detected against E. tenella, where 0.3 μM of cNK-2 peptide was equivalent to 2.5 μM of melittin. Against Neospora caninum tacyzoites, however, the cytotoxic activity of cNK-2 peptide was inferior to that of melittin. Transmission electron microscopy of peptide-treated E. tenella sporozoites revealed disruption of the outer plasma membrane and loss of intracellular contents. In vivo administration of 1.5 μM of cNK-2 peptide increased protection against experimental E. acervulina infection, as measured by greater body weight gain and reduced fecal oocyst shedding, compared with saline controls. These results suggest that the cNK-2 synthetic peptide is a novel anti-infective peptide that can be used for protection against avian coccidiosis during commercial poultry production.

  19. Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years

    NASA Astrophysics Data System (ADS)

    Abrantes, F.; Lebreiro, S.; Rodrigues, T.; Gil, I.; Bartels-Jónsdóttir, H.; Oliveira, P.; Kissel, C.; Grimalt, J. O.

    2005-12-01

    Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record—most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.

  20. Local inhibition of nitrergic activity in tenotomized rats accelerates muscle regeneration by increasing fiber area and decreasing central core lesions.

    PubMed

    Seabra, A D; Moraes, S A S; Batista, E J O; Garcia, T B; Souza, M C; Oliveira, K R M; Herculano, A M

    2017-02-20

    Muscular atrophy is a progressive degeneration characterized by muscular proteolysis, loss of mass and decrease in fiber area. Tendon rupture induces muscular atrophy due to an intrinsic functional connection. Local inhibition of nitric oxide synthase (NOS) by Nω-nitro-L-arginine methyl ester (L-NAME) accelerates tendon histological recovery and induces functional improvement. Here we evaluate the effects of such local nitrergic inhibition on the pattern of soleus muscle regeneration after tenotomy. Adult male Wistar rats (240 to 280 g) were divided into four experimental groups: control (n=4), tenotomized (n=6), vehicle (n=6), and L-NAME (n=6). Muscular atrophy was induced by calcaneal tendon rupture in rats. Changes in muscle wet weight and total protein levels were determined by the Bradford method, and muscle fiber area and central core lesion (CCL) occurrence were evaluated by histochemical assays. Compared to tenotomized (69.3±22%) and vehicle groups (68.1%±17%), L-NAME treatment induced an increase in total protein level (108.3±21%) after 21 days post-injury. A reduction in fiber areas was observed in tenotomized (56.3±1.3%) and vehicle groups (53.9±3.9%). However, L-NAME treatment caused an increase in this parameter (69.3±1.6%). Such events were preceded by a remarkable reduction in the number of fibers with CCL in L-NAME-treated animals (12±2%), but not in tenotomized (21±2.5%) and vehicle groups (19.6±2.8%). Altogether, our data reveal that inhibition of tendon NOS contributed to the attenuation of atrophy and acceleration of muscle regeneration.

  1. Local inhibition of nitrergic activity in tenotomized rats accelerates muscle regeneration by increasing fiber area and decreasing central core lesions

    PubMed Central

    Seabra, A.D.; Moraes, S.A.S.; Batista, E.J.O.; Garcia, T.B.; Souza, M.C.; Oliveira, K.R.M.; Herculano, A.M.

    2017-01-01

    Muscular atrophy is a progressive degeneration characterized by muscular proteolysis, loss of mass and decrease in fiber area. Tendon rupture induces muscular atrophy due to an intrinsic functional connection. Local inhibition of nitric oxide synthase (NOS) by Nω-nitro-L-arginine methyl ester (L-NAME) accelerates tendon histological recovery and induces functional improvement. Here we evaluate the effects of such local nitrergic inhibition on the pattern of soleus muscle regeneration after tenotomy. Adult male Wistar rats (240 to 280 g) were divided into four experimental groups: control (n=4), tenotomized (n=6), vehicle (n=6), and L-NAME (n=6). Muscular atrophy was induced by calcaneal tendon rupture in rats. Changes in muscle wet weight and total protein levels were determined by the Bradford method, and muscle fiber area and central core lesion (CCL) occurrence were evaluated by histochemical assays. Compared to tenotomized (69.3±22%) and vehicle groups (68.1%±17%), L-NAME treatment induced an increase in total protein level (108.3±21%) after 21 days post-injury. A reduction in fiber areas was observed in tenotomized (56.3±1.3%) and vehicle groups (53.9±3.9%). However, L-NAME treatment caused an increase in this parameter (69.3±1.6%). Such events were preceded by a remarkable reduction in the number of fibers with CCL in L-NAME-treated animals (12±2%), but not in tenotomized (21±2.5%) and vehicle groups (19.6±2.8%). Altogether, our data reveal that inhibition of tendon NOS contributed to the attenuation of atrophy and acceleration of muscle regeneration. PMID:28225888

  2. Common Core: Victory Is Yours!

    ERIC Educational Resources Information Center

    Fink, Jennifer L. W.

    2012-01-01

    In this article, the author discusses how to implement the Common Core State Standards in the classroom. She presents examples and activities that will leave teachers feeling "rosy" about tackling the new standards. She breaks down important benchmarks and shows how other teachers are doing the Core--and loving it!

  3. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  4. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    SciTech Connect

    Wang, Xue; Vera, Madeline; Chi, Miaofang; Xia, Younan; Luo, Ming; Huang, Hongwen; Ruditskiy, Aleksey; Park, Jinho; Bao, Shixiong; Liu, Jingyue; Howe, Jane; Xie, Zhaoxiong

    2015-11-13

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm2pt) and mass (1.60 A/mg/2pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm2pt and 0.32 A/mgpt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgpt, more than twice that of the pristine Pt/C catalyst.

  5. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    DOE PAGES

    Wang, Xue; Vera, Madeline; Chi, Miaofang; ...

    2015-11-13

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity inmore » the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm2pt) and mass (1.60 A/mg/2pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm2pt and 0.32 A/mgpt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgpt, more than twice that of the pristine Pt/C catalyst.« less

  6. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers

    PubMed Central

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  7. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries.

  8. Multi-voxel pattern analysis (MVPA) reveals abnormal fMRI activity in both the "core" and "extended" face network in congenital prosopagnosia.

    PubMed

    Rivolta, Davide; Woolgar, Alexandra; Palermo, Romina; Butko, Marina; Schmalzl, Laura; Williams, Mark A

    2014-01-01

    The ability to identify faces is mediated by a network of cortical and subcortical brain regions in humans. It is still a matter of debate which regions represent the functional substrate of congenital prosopagnosia (CP), a condition characterized by a lifelong impairment in face recognition, and affecting around 2.5% of the general population. Here, we used functional Magnetic Resonance Imaging (fMRI) to measure neural responses to faces, objects, bodies, and body-parts in a group of seven CPs and ten healthy control participants. Using multi-voxel pattern analysis (MVPA) of the fMRI data we demonstrate that neural activity within the "core" (i.e., occipital face area and fusiform face area) and "extended" (i.e., anterior temporal cortex) face regions in CPs showed reduced discriminability between faces and objects. Reduced differentiation between faces and objects in CP was also seen in the right parahippocampal cortex. In contrast, discriminability between faces and bodies/body-parts and objects and bodies/body-parts across the ventral visual system was typical in CPs. In addition to MVPA analysis, we also ran traditional mass-univariate analysis, which failed to show any group differences in face and object discriminability. In sum, these findings demonstrate (i) face-object representations impairments in CP which encompass both the "core" and "extended" face regions, and (ii) superior power of MVPA in detecting group differences.

  9. The cost of cancer registry operations: Impact of volume on cost per case for core and enhanced registry activities

    PubMed Central

    Subramanian, Sujha; Tangka, Florence K.L.; Beebe, Maggie Cole; Trebino, Diana; Weir, Hannah K.; Babcock, Frances

    2016-01-01

    Background Cancer registration data is vital for creating evidence-based policies and interventions. Quantifying the resources needed for cancer registration activities and identifying potential efficiencies are critically important to ensure sustainability of cancer registry operations. Methods Using a previously validated web-based cost assessment tool, we collected activity-based cost data and report findings using 3 years of data from 40 National Program of Cancer Registry grantees. We stratified registries by volume: low-volume included fewer than 10,000 cases, medium-volume included 10,000–50,000 cases, and high-volume included >50,000 cases. Results Low-volume cancer registries incurred an average of $93.11 to report a case (without in-kind contributions) compared with $27.70 incurred by high-volume registries. Across all registries, the highest cost per case was incurred for data collection and abstraction ($8.33), management ($6.86), and administration ($4.99). Low- and medium-volume registries have higher costs than high-volume registries for all key activities. Conclusions Some cost differences by volume can be explained by the large fixed costs required for administering and performing registration activities, but other reasons may include the quality of the data initially submitted to the registries from reporting sources such as hospitals and pathology laboratories. Automation or efficiency improvements in data collection can potentially reduce overall costs. PMID:26702880

  10. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  11. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  12. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region.

    PubMed

    Murayama, Takashi; Kurebayashi, Nagomi; Yamazawa, Toshiko; Oyamada, Hideto; Suzuki, Junji; Kanemaru, Kazunori; Oguchi, Katsuji; Iino, Masamitsu; Sakurai, Takashi

    2015-01-01

    The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.

  13. Unprecedented photocatalytic activity of carbon coated/MoO3 core-shell nanoheterostructurs under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ghaffar, Iqra; Warsi, Muhammad Farooq; Shahid, Muhammad; Shakir, Imran

    2016-05-01

    We reveal that nano-scale carbon layer deposited by hydrothermal process on molybdenum oxide (MoO3) nanowires surface significantly improve the light absorption range. Furthermore, the graphene-carbon coated MoO3 nanocopmosite (rGO/C-MoO3 nanocomposite) exhibits excellent chemical stability and enhanced photocatalytic activity for methylene blue in aqueous solution under visible light irradiation compared to the bare MoO3 nanowires and carbon coated MoO3 nanowires (C-MoO3 nanowires). The enhanced photocatalytic activity of rGO/C-MoO3 nanocomposite could be attributed to the extended light absorption range, better adsorptivity of dye molecules and efficient separation of photogenerated electrons and holes. Overall, this work provides new insights that the as synthesized rGO/C-MoO3 nanocomposite can be efficiently used as high performance photocatalysts to improve the environmental protection issues under visible light irradiation.

  14. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol

    PubMed Central

    Jagannathan, Radhika; Schimizzi, Gregory V.; Zhang, Kun; Loza, Andrew J.; Yabuta, Norikazu; Nojima, Hitoshi

    2016-01-01

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. PMID:27457617

  15. Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO2 Shell) Nanocatalysts via Autoredox Reaction.

    PubMed

    Song, Shuyan; Li, Kai; Pan, Jing; Wang, Fan; Li, Junqi; Feng, Jing; Yao, Shuang; Ge, Xin; Wang, Xiao; Zhang, Hongjie

    2017-02-01

    (Asymmetrical Pd@Ag core)@(CeO2 shell) nanostructures are successfully fabricated via a clean and facile modified autoredox reaction by the preaddition of Pd seeds in the growth solution. In a subsequent catalytic test, it is found that the as-obtained bimetallic core@shell nanoparticles exhibit excellent catalytic performance in semihydrogenation of alkynes. The trade-off between selectivity and activity is well realized.

  16. A multi-proxy lake core record from Lago Lungo, Rieti Basin, Lazio, Italy and its relation to human activities in the catchment during the last century

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Tunno, Irene; Mensing, Scott; Piovesan, Gianluca

    2016-04-01

    The lakes of the Rieti Basin have experienced extensive human modification dating back to pre-Roman times, yet lake archives indicate that the most profound changes to the aquatic ecosystem have occurred during the last century. Analysis of the upper ˜120 cm segment of a sediment core from Lago Lungo, dating back to ˜1830 CE, show changes in water quality and hydrologic inflow largely attributed to 20th century reclamation and land use activities. Lago Lungo is a shallow, small, eutrophic, hard water lake situated in an intermontaine alluvial plain ˜90 km NE of Rome. It is one of several remnant lakes in a poorly drained wetland area fed by numerous springs. Reclamation activities over the last century have substantially altered the drainage network affecting water delivery to the lakes and their connectivity. There are 3 interesting signals in the core. First, small Stephanodiscus species, associated with hypereutrophic conditions, appear after 1950, peak ˜1990, and may be attributed to increased use of chemical fertilizers and intensification of local agriculture. Elemental proxies from scanning XRF data (abundances of Ti, Si/Ti, and Ca) are consistent with increased eutrophication starting ˜1950. A decline in Stephanodicsus after 1990 reflects some improvement to the water quality following the lake's incorporation into a nature preserve and creation of a narrow vegetation buffer. Intermittent water quality measurements from 1982 onward corroborate the changes in trophic status interpreted from the core record. Second, a large change in the core stratigraphy, elemental geochemistry, and diatom composition occurs ˜1940 and is associated with several major reclamation efforts, including the rerouting of the Santa Susanna channel, which redirected large volumes of artesian inflows away from the lakes and estuarine system. Upstream, dams on the Turano and Salto rivers were also constructed, further affecting hydrological inflows into the basin. From ˜1900

  17. Self-Host Blue Dendrimer Comprised of Thermally Activated Delayed Fluorescence Core and Bipolar Dendrons for Efficient Solution-Processable Nondoped Electroluminescence.

    PubMed

    Ban, Xinxin; Jiang, Wei; Sun, Kaiyong; Lin, Baoping; Sun, Yueming

    2017-03-01

    A self-host thermally activated delayed fluorescence (TADF) dendrimer POCz-DPS for solution-processed nondoped blue organic light-emitting diodes (OLEDs) was designed and synthesized, in which the bipolar phosphine oxide carbazole moiety was introduced by alkyl chain to ensure balanced charge transfer. The investigation of physical properties showed that the bipolar dendrons not only improve the morphological stability but also restrain the concentration quenching effect of the TADF emissive core. The spin-coated OLEDs featuring POCz-DPS as the host-free blue emitter achieved the highest external quantum efficiency (7.3%) and color purity compared with those of doped or nondoped devices based on the parent molecule DMOC-DPS, which indicates that incorporating the merits of encapsulation and bipolar dendron is an effective way to improve the electroluminescent performance of the TADF emitter used for a solution-processed nondoped device.

  18. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  19. Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

    SciTech Connect

    Wang, Deli; Xin, Huolin L.; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A.; Abruña, Héctor D.

    2010-11-24

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.

  20. Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light.

    PubMed

    Wang, Yang; Li, Shikuo; Xing, Xianran; Huang, Fangzhi; Shen, Yuhua; Xie, Anjian; Wang, Xiufang; Zhang, Jian

    2011-04-18

    Three-dimensional (3D) flowerlike hierarchical Fe(3)O(4)@Bi(2)O(3) core-shell architectures were synthesized by a simple and direct solvothermal route without any linker shell. The results indicated that the size of the 3D flowerlike hierarchical microspheres was about 420 nm and the shell was composed of several nanosheets with a thickness of 4-10 nm and a width of 100-140 nm. The saturation magnetization of the superparamagnetic composite microspheres was about 41 emu g(-1) at room temperature. Moreover, the Fe(3)O(4)@Bi(2)O(3) composite microspheres showed much higher (7-10 times) photocatalytic activity than commercial Bi(2)O(3) particles under visible-light irradiation. The possible formation mechanism was proposed for Ostwald ripening and the self-assembled process. This novel composite material may have potential applications in water treatment, degradation of dye pollutants, and environmental cleaning, for example.

  1. Once-daily budesonide MMX in active, mild-to-moderate ulcerative colitis: results from the randomised CORE II study

    PubMed Central

    Travis, Simon P L; Danese, Silvio; Kupcinskas, Limas; Alexeeva, Olga; D'Haens, Geert; Gibson, Peter R; Moro, Luigi; Jones, Richard; Ballard, E David; Masure, Johan; Rossini, Matteo; Sandborn, William J

    2014-01-01

    Objective Budesonide MMX is a novel oral formulation of budesonide that uses Multi-Matrix System (MMX) technology to extend release to the colon. This study compared the efficacy of budesonide MMX with placebo in patients with active, mild-to-moderate ulcerative colitis (UC). Design Patients were randomised 1:1:1:1 to receive budesonide MMX 9 mg or 6 mg, or Entocort EC 9 mg (budesonide controlled ileal-release capsules; reference arm) or placebo once daily for 8 weeks. The primary endpoint was combined clinical and endoscopic remission, defined as UC Disease Activity Index score ≤1 with a score of 0 for rectal bleeding and stool frequency, no mucosal friability on colonoscopy, and a ≥1-point reduction in endoscopic index score from baseline. Results 410 patients were evaluated for efficacy. Combined clinical and endoscopic remission rates with budesonide MMX 9 mg or 6 mg, Entocort EC and placebo were 17.4%, 8.3%, 12.6% and 4.5%, respectively. The difference between budesonide MMX 9 mg and placebo was significant (OR 4.49; 95% CI 1.47 to 13.72; p=0.0047). Budesonide MMX 9 mg was associated with numerically higher rates of clinical (42.2% vs 33.7%) and endoscopic improvement (42.2% vs 31.5%) versus placebo. The rate of histological healing (16.5% vs 6.7%; p=0.0361) and proportion of patients with symptom resolution (23.9% vs 11.2%; p=0.0220) were significantly higher for budesonide MMX 9 mg than placebo. Adverse event profiles were similar across groups. Conclusion Budesonide MMX 9 mg was safe and more effective than placebo at inducing combined clinical and endoscopic remission in patients with active, mild-to-moderate UC. PMID:23436336

  2. CANOPEN Controller IP Core

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Montagna, Mario; Furano, Gianluca; Winton, Alistair

    2010-08-01

    This paper will describe the activities performed by Thales Alenia Space Italia supported by the European Space Agency in the definition of a CAN bus interface to be used on Exomars. The final goal of this activity is the development of an IP core, to be used in a slave node, able to manage both the CAN bus Data Link and Application Layer totally in hardware. The activity has been focused on the needs of the EXOMARS mission where devices with different computational performances are all managed by the onboard computer through the CAN bus.

  3. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity.

    PubMed

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H S; Linkous, Amanda; Storaska, Andrew J; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A

    2017-03-03

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify.

  4. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity

    PubMed Central

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H. S.; Linkous, Amanda; Storaska, Andrew J.; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A.

    2017-01-01

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify. PMID:28256619

  5. HCV core protein inhibits polarization and activity of both M1 and M2 macrophages through the TLR2 signaling pathway

    PubMed Central

    Zhang, Qianqian; Wang, Yang; Zhai, Naicui; Song, Hongxiao; Li, Haijun; Yang, Yang; Li, Tianyang; Guo, Xiaolin; Chi, Baorong; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2016-01-01

    Hepatitis C virus (HCV) establishes persistent infection in most infected patients, and eventually causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma in some patients. Monocytes and macrophages provide the first line of defense against pathogens, but their roles in HCV infection remains unclear. We have reported that HCV core protein (HCVc) manipulates human blood-derived dendritic cell development. In the present study, we tested whether HCVc affects human blood-derived monocyte differentiating into macrophages. Results showed that HCVc inhibits monocyte differentiation to either M1 or M2 macrophages through TLR2, associated with impaired STATs signaling pathway. Moreover, HCVc inhibits phagocytosis activity of M1 and M2 macrophages, M1 macrophage-induced autologous and allogeneic CD4+ T cell activation, but promotes M2 macrophage-induced autologous and allogeneic CD4+ T cell activation. In conclusion, HCVc inhibits monocyte-derived macrophage polarization via TLR2 signaling, leading to dysfunctions of both M1 and M2 macrophages in chronic HCV infected patients. This may contribute to the mechanism of HCV persistent infection, and suggest that blockade of HCVc might be a novel therapeutic approach to treating HCV infection. PMID:27786268

  6. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  7. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  8. Dynamics of core accretion

    DOE PAGES

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolutionmore » on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as

  9. Dynamics of core accretion

    SciTech Connect

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling

  10. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    SciTech Connect

    McCabe, Daniel J.; Nash, Charles A.

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  11. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  12. Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities.

    PubMed

    Chen, Ming Wei; Tan, Yaw Bia; Zheng, Jie; Zhao, Yongqian; Lim, Bee Ting; Cornvik, Tobias; Lescar, Julien; Ng, Lisa Fong Poh; Luo, Dahai

    2017-04-05

    Chikungunya virus (CHIKV) is an important arboviral infectious agent in tropical and subtropical regions, often causing persistent and debilitating disease. The viral enzyme non-structural protein 4 (nsP4), as RNA-dependent RNA polymerase (RdRP), catalyzes the formation of negative-sense, genomic and subgenomic viral RNAs. Here we report a truncated nsP4 construct that is soluble, stable and purified recombinantly from Escherichia coli. Sequence analyses and homology modelling indicate that all necessary RdRP elements are included. Hydrogen/deuterium exchange with mass spectrometry was used to analyze solvent accessibility and flexibility of subdomains. Fluorophore-conjugated RNA ligands were designed and screened by using fluorescence anisotropy to select a suitable substrate for RdRP assays. Assay trials revealed that nsP4 core domain is conditionally active upon choice of detergent species, and carries out both primed extension and terminal adenylyltransferase activities. The polymerization assay can be further developed to screen for antiviral compounds in vitro.

  13. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    NASA Astrophysics Data System (ADS)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  14. Synthesis of core-shell nanostructured magnetic photocatalyst Fe3O4@SiO2@Ag3PO4 with excellent visible-light-responding photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yao, Yang Rong; Huang, Wan Zhen; Zhou, Huan; Cui, Xia; Zheng, Yi Fan; Song, Xu Chun

    2014-11-01

    A core-shell nanostructured magnetic photocatalyst Fe3O4@SiO2@Ag3PO4 with a grain size ranging from 200 to 400 nm was prepared via a facile and effective method. The as-prepared products were characterized using X-ray diffraction, high-angle annular dark field-scanning transmission electron microscopy, energy-dispersive spectroscopy, and UV-Vis diffuse reflectance spectra. The photocatalytic activity was evaluated by the degradation of 10-5 M RhB solution under visible light irradiation with a cut-off filter ( λ ≥ 420 nm). The results showed that nearly 100 % color removal efficiency was achieved in 45 min with the presence of Fe3O4@SiO2@Ag3PO4 photocatalyst. Furthermore, it can be easily recollected from the solution by magnetic separation and efficiently recycled without major loss of activity due to its superior magnetic responsibility and extremely high reusability, exhibiting highly potential applications in water purification avoiding the secondary pollution.

  15. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.

    PubMed

    Sa, Young Jin; Park, Chiyoung; Jeong, Hu Young; Park, Seok-Hee; Lee, Zonghoon; Kim, Kyoung Taek; Park, Gu-Gon; Joo, Sang Hoon

    2014-04-14

    A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

  16. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods.

    PubMed

    Hortelano, V; Martínez, O; Cuscó, R; Artús, L; Jiménez, J

    2016-03-04

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  17. Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components*

    PubMed Central

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María

    2013-01-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999

  18. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod.

    PubMed

    Gao, Zhuangqiang; Deng, Kaichao; Wang, Xu-Dong; Miró, Manuel; Tang, Dianping

    2014-10-22

    Nanostructure-based visual assay has been developed for determination of enzymatic activity, but most involve in poor visible color resolution and are not suitable for routine utilization. Herein, we designed a high-resolution colorimetric protocol based on gold/silver core/shell nanorod for visual readout of alkaline phosphatase (ALP) activity by using bare-eyes. The method relied on enzymatic reaction-assisted silver deposition on gold nanorod to generate significant color change, which was strongly dependent on ALP activity. Upon target ALP introduction into the substrate, the ascorbic acid 2-phosphate was hydrolyzed to form ascorbic acid, and then, the generated ascorbic acid reduced silver ion to metal silver and coated on the gold nanorod, thereby resulting in the blue shift of longitudinal localized surface plasmon resonance peak of gold nanorod accompanying a perceptible color change from red to orange to yellow to green to cyan to blue and to violet. Under optimal conditions, the designed method exhibited the wide linear range 5-100 mU mL(-1) ALP with a detection limit of 3.3 mU mL(-1). Moreover, it could be used for the semiquantitative detection of ALP from 20 to 500 mU mL(-1) by using the bare-eyes. The coefficients of variation for intra- and interassay were below 3.5% and 6.2%, respectively. Finally, this method was validated for the analysis of real-life serum samples, giving results matched well with those from the 4-nitrophenyl phosphate disodium salt hexahydrate (pNPP)-based standard method. In addition, the system could even be utilized in the enzyme-linked immunosorbent assay (ELISA) to detect IgG at picomol concentration. With the merits of simplification, low cost, user-friendliness, and sensitive readout, the gold nanorod-based colorimetric assay has the potential to be utilized by the public and opens a new horizon for bioassays.

  19. Long Valley Coring Project

    USGS Publications Warehouse

    Sass, John; Finger, John; McConnel, Vicki

    1998-01-01

    In December 1997, the California Energy Commission (CEC) agreed to provide funding for Phase III continued drilling of the Long Valley Exploratory Well (LVEW) near Mammoth Lakes, CA, from its present depth. The CEC contribution of $1 million completes a funding package of $2 million from a variety of sources, which will allow the well to be cored continuously to a depth of between 11,500 and 12,500 feet. The core recovered from Phase III will be crucial to understanding the origin and history of the hydrothermal systems responsible for the filling of fractures in the basement rock. The borehole may penetrate the metamorphic roof of the large magmatic complex that has fed the volcanism responsible for the caldera and subsequent activity.

  20. Monitoring Of The Magnetic Field Topology And Activity Of The Core Helium-Burning Giant Beta Ceti In The Period 2010-2013

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Svetla; Petit, Pascal; Konstantinova-Antova, Renada; Aurière, Michel; Wade, Gregg A.; Charbonnel, Corinne; Bogdanovski, Rumen; Borisova, Ana

    2016-07-01

    Beta Ceti is a slowly rotating (v sin i = 3.5 kms-1) single giant. In our previous study (Tsvetkova et al. (2013)) we showed that it is in the core He-burning phase and we reconstructed two Zeeman Doppler imaging (ZDI) maps (using data from 2010 and 2011) revealing a simple large-scale magnetic field structure. We concluded that the magnetic field of beta Ceti could have a fossil field origin. In addition, the study of Aurière et al. (2015) about the properties and origin of the magnetism of late-type giants, where beta Ceti was a member of that sample, revealed that this star did not follow the general trends for dynamo-generated magnetic fields. Now, we present a new ZDI map of beta Ceti and compare the new results with our previous study. This monitoring for several years of the magnetic field topology and line activity indicators variability supports our previous conclusion about the fossil field origin of the magnetic field of beta Ceti.

  1. Synthesis, molecular docking and evaluation of antifungal activity of Ni(II), Co(II) and Cu(II) complexes of porphyrin core macromolecular ligand.

    PubMed

    Singh, Urvashi; Malla, Ali Mohammad; Bhat, Imtiyaz Ahmad; Ahmad, Ajaz; Bukhari, Mohd Nadeem; Bhat, Sneha; Anayutullah, Syed; Hashmi, Athar Adil

    2016-04-01

    Porphyrin core dendrimeric ligand (L) was synthesized by Rothemund synthetic route in which p-hydroxy benzaldehyde and pyrrole were fused together. The prepared ligand was complexed with Ni(II), Cu(II) and Co(II) ions, separately. Both the ligand and its complexes were characterized by elemental analysis and spectroscopic studies (FT-IR, UV-Vis, (1)HNMR). Square planar geometries were proposed for Cu(II), Ni(II) and Co(II) ions in cobalt, Nickel and copper complexes, respectively on the basis of UV-Vis spectroscopic data. The ligand and its complex were screened on Candida albicans (ATCC 10231), Aspergillus fumigatus (ATCC 1022), Trichophyton mentagrophytes (ATCC 9533) and Pencillium marneffei by determining MICs and inhibition zones. The activity of the ligand and its complexes was found to be in the order: CuL ˃ CoL ≈ NiL ˃ L. Detection of DNA damage at the level of the individual eukaryotic cell was observed by commet assay. Molecular docking technique was used to understand the ligand-DNA interactions. From docking experiment, we conclude that copper complex interacts more strongly than rest two.

  2. A novel fabrication of Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals from Cu{sub 2}O temples and enhanced photocatalytic activities

    SciTech Connect

    Li, Junqi Sun, Long; Yan, Ying; Zhu, Zhenfeng

    2016-08-15

    Highlights: • The Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell crystals maintained the same morphology with template. • The crystals exhibit enhanced photocatalytic activity than the pure Cu{sub 2}O crystals. • The photocatalytic activity of different R crystals is diverse from each other. • A possible formation mechanism has been proposed. - Abstract: Uniform and monodispersed Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals have been synthesized successfully at room temperature via a simple chemical etching reaction, using Cu{sub 2}O as sacrificial template. The structure and properties of the crystals were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS). The photocatalytic activity of the Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals was evaluated by photocatalytic decolorization of MeO (methyl orange) aqueous solution at ambient temperature under visible-light irradiation. The results show that the as-prepared Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals revealed core-shell structure, which maintained the same morphology with corresponding template and were composed of cuboctahedron Cu{sub 7}S{sub 4} shell and active Cu{sub 2}O core. Due to the unique Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell structure, the crystals exhibit enhanced photocatalytic activity than that of the pure Cu{sub 2}O crystals, and the photocatalytic activity of different R crystals is diverse from each other. A possible formation mechanism has been proposed.

  3. Potato lectin activates basophils and mast cells of atopic subjects by its interaction with core chitobiose of cell-bound non-specific immunoglobulin E

    PubMed Central

    Pramod, S N; Venkatesh, Y P; Mahesh, P A

    2007-01-01

    A major factor in non-allergic food hypersensitivity could be the interaction of dietary lectins with mast cells and basophils. Because immunoglobulin E (IgE) contains 10–12% carbohydrates, lectins can activate and degranulate these cells by cross-linking the glycans of cell-bound IgE. The present objective focuses on the effect of potato lectin (Solanum tuberosum agglutinin; STA) for its ability to release histamine from basophils in vitro and mast cells in vivo from non-atopic and atopic subjects. In this study, subjects were selected randomly based on case history and skin prick test responses with food, pollen and house dust mite extracts. Skin prick test (SPT) was performed with STA at 100 µg/ml concentration. Histamine release was performed using leucocytes from non-atopic and atopic subjects and rat peritoneal exudate cells. SPT on 110 atopic subjects using STA showed 39 subjects positive (35%); however, none showed STA-specific IgE; among 20 non-atopic subjects, none were positive by SPT. Maximal histamine release was found to be 65% in atopic subjects (n = 7) compared to 28% in non-atopic subjects (n = 5); the release was inhibited specifically by oligomers of N-acetylglucosamine and correlates well with serum total IgE levels (R2 = 0·923). Binding of STA to N-linked glycoproteins (horseradish peroxidase, avidin and IgG) was positive by dot blot and binding assay. As potato lectin activates and degranulates both mast cells and basophils by interacting with the chitobiose core of IgE glycans, higher intake of potato may increase the clinical symptoms as a result of non-allergic food hypersensitivity in atopic subjects. PMID:17362264

  4. Hepatitis B Virus X-Associated Protein 2 Is a Subunit of the Unliganded Aryl Hydrocarbon Receptor Core Complex and Exhibits Transcriptional Enhancer Activity

    PubMed Central

    Meyer, Brian K.; Pray-Grant, Marilyn G.; Vanden Heuvel, John P.; Perdew, Gary H.

    1998-01-01

    Prior to ligand activation, the unactivated aryl hydrocarbon receptor (AhR) exists in a heterotetrameric 9S core complex consisting of the AhR ligand-binding subunit, a dimer of hsp90, and an unknown subunit. Here we report the purification of an ∼38-kDa protein (p38) from COS-1 cell cytosol that is a member of this complex by coprecipitation with a FLAG-tagged AhR. Internal amino acid sequence information was obtained, and p38 was identified as the hepatitis B virus X-associated protein 2 (XAP2). The simian ortholog of XAP2 was cloned from a COS-1 cDNA library; it codes for a 330-amino-acid protein containing regions of homology to the immunophilins FKBP12 and FKBP52. A tetratricopeptide repeat (TPR) domain in the carboxy-terminal region of XAP2 was similar to the third and fourth TPR domains of human FKBP52 and the Saccharomyces cerevisiae transcriptional modulator SSN6, respectively. Polyclonal antibodies raised against XAP2 recognized p38 in the unliganded AhR complex in COS-1 and Hepa 1c1c7 cells. It was ubiquitously expressed in murine tissues at the protein and mRNA levels. It was not required for the assembly of an AhR-hsp90 complex in vitro. Additionally, XAP2 did not directly associate with hsp90 upon in vitro translation, but was present in a 9S form when cotranslated in vitro with murine AhR. XAP2 enhanced the ability of endogenous murine and human AhR complexes to activate a dioxin-responsive element–luciferase reporter twofold, following transient expression of XAP2 in Hepa 1c1c7 and HeLa cells. PMID:9447995

  5. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  6. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  7. Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity.

    PubMed

    Hilmey, David G; Abe, Masako; Nelen, Marina I; Stilts, Corey E; Baker, Gary A; Baker, Sheila N; Bright, Frank V; Davies, Sherry R; Gollnick, Sandra O; Oseroff, Allan R; Gibson, Scott L; Hilf, Russell; Detty, Michael R

    2002-01-17

    Water-soluble, core-modified porphyrins were prepared and evaluated as sensitizers for photodynamic therapy (PDT). The addition of an aromatic aldehyde to 2,5-dilithiothiophene or -selenophene gave diol 3 as a nearly equimolar mixture of meso and d,l diastereomers, which gave a single diastereomer following careful recrystallization. The condensation of pyrrole with a diol 3 using catalytic BF(3)-etherate gave bispyrrolochalcogenophenes (4). Condensation of a diol 3 with 4 in the presence BF(3)-etherate gave 21,23-dichalcogenaporphyrins (5). 21-Thiaporphyrins (6) were prepared by condensation of a diol 3 with excess pyrrole and benzaldehyde in the presence of tetrachlorobenzoquinone and catalytic BF(3)-etherate. Sulfonation of 5 and 6 with concentrated sulfuric acid at 100 degrees C gave sulfonated derivatives 7-15. Bis-4-methoxy-21,23-dithiaporphyrins 5h and 5l were demethylated with BBr(3), and the resulting phenols were alkylated with ethyl bromoacetate. Saponification gave 21,23-dithiaporphyrin dicarboxylate salts 16 and 17. The 21,23-core-modified porphyrins gave band I absorption maxima (lambda(max) of 689-717 nm) at longer wavelengths than band I for the corresponding 21-core-modified porphyrins, but both classes had band I maxima at longer wavelengths than either TPPS(4) or Photofrin (lambda(max) of 630 nm for both). The core heteroatoms had little effect on either absorption maxima or quantum yields of singlet oxygen generation in 7-17. The meso substituents had a greater impact on absorption maxima. Compounds 7-17 were evaluated for phototoxicity against Colo-26 cells in culture using 4 J cm(-2) of 570-800 nm light. Compounds 8-12, 14, 16, and 17 gave a 50% cell kill in vitro at a lower concentration than Photofrin [5.7 mg (9 micromol)/kg]. Compounds 14, 16, and 17 gave a 50% cell kill with 4 J cm(-2) of light and submicromolar concentrations of sensitizer. Sensitizers 8 and 11 showed no toxicity or side effects in BALB/c mice observed for 90 days

  8. Template-free synthesis of core-shell TiO2 microspheres covered with high-energy {116}-facet-exposed N-doped nanosheets and enhanced photocatalytic activity under visible light.

    PubMed

    Chen, Qifeng; Ren, Baosheng; Zhao, Yubao; Xu, Xun; Ge, Heyi; Guan, Ruifang; Zhao, Jincai

    2014-12-15

    Core-shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high-energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core-shell structure is difficult to achieve and requires multiple-steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high-energy facet production. Therefore, it is still a significant challenge to develop low-temperature, template-free, shape-controlled, and relative green self-assembly routes for the formation of core-shell-structured TiO2 microspheres with high-energy facets. Here, we report a template- and hydrofluoric acid free solvothermal self-assembly approach to synthesize core-shell TiO2 microspheres covered with high-energy {116}-facet-exposed nanosheets, an approach in which 1,4-butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high-energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6-tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core-shell structure, {116}-plane-oriented nanosheets, in situ N doping, and large surface areas has been found.

  9. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  10. Core and Off-Core Processes in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian; Forsberg, Kevin

    2010-01-01

    An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.

  11. Synthesis of beta-cyclodextrin-modified water-dispersible Ag-TiO2 core-shell nanoparticles and their photocatalytic activity.

    PubMed

    Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko

    2011-04-01

    The beta-cyclodextrin-modified Ag-TiO2 core-shell nanoparticles were prepared by sodium borohydrate reduction of AgNO3 and the subsequent hydrolysis of the tetraisopropyl orthotitanate in an aqueous medium. Inversely in the preparation of beta-cyclodextrin-modified TiO2-Ag core-shell nanoparticles, first hydrolysis and then following reduction were carried out. The synthesized spherical core-shell nanoparticles were highly water-dispersible and had an average diameter in the range of 9 to 12 nm. A significant shifting of surface plasmon band was observed for the synthesized Ag-TiO2 and TiO2-Ag core-shell nanoparticles. On a model reaction, namely, the photodegradation of phenol by the UV light irradiation, the photocatalytic property of TiO2 nanoparticles was enhanced, when the Ag nanoparticle was embedded in the core of TiO2 nanoparticles but TiO2 nanoparticles coated by Ag shell decreased the photocatalytic property of TiO2 nanoparticles. The mechanism is ascribed to the surface plasmon characteristics of Ag in the core of the TiO2 nanoparticles under the acceleration by host-guest inclusion characteristics.

  12. Episodic ozone exposure in adult and senescent Brown Norway rats: acute and delayed effect on heart rate, core temperature and motor activity.

    PubMed

    Gordon, C J; Johnstone, A F; Aydin, C; Phillips, P M; MacPhail, R C; Kodavanti, U P; Ledbetter, A D; Jarema, K A

    2014-06-01

    Setting exposure standards for environmental pollutants may consider the aged as a susceptible population but the few published studies assessing susceptibility of the aged to air pollutants are inconsistent. Episodic ozone (O₃) is more reflective of potential exposures occurring in human populations and could be more harmful to the aged. This study used radiotelemetry to monitor heart rate (HR), core temperature (T(c)) and motor activity (MA) in adult (9-12 months) and senescent (20-24 months) male, Brown Norway rats exposed to episodic O₃ (6 h/day of 1 ppm O₃ for 2 consecutive days/week for 13 weeks). Acute O₃ initially led to marked drops in HR and T(c). As exposures progressed each week, there was diminution in the hypothermic and bradycardic effects of O₃. Senescent rats were less affected than adults. Acute responses were exacerbated on the second day of O₃ exposure with adults exhibiting greater sensitivity. During recovery following 2 d of O₃, adult and senescent rats exhibited an elevated T(c) and HR during the day but not at night, an effect that persisted for at least 48 h after O₃ exposure. MA was elevated in adults but not senescent rats during recovery from O₃. Overall, acute effects of O₃, including reductions in HR and T(c), were attenuated in senescent rats. Autonomic responses during recovery, included an elevation in T(c) with a pattern akin to that of a fever and rise in HR that were independent of age. An attenuated inflammatory response to O₃ in senescent rats may explain the relatively heightened physiological response to O₃ in younger rats.

  13. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  14. Hydroxyapatite Nanowires@Metal-Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidase-Like Activity, and Derived Flexible Recyclable Test Paper.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei

    2017-03-08

    The templated synthesis of hydroxyapatite (HAP) nanowires@metal-organic framework (MOF) core/shell nanofibers (named HAP@MIL-100(Fe) nanofibers) is demonstrated. The ultralong hydroxyapatite nanowires are adopted as a hard template for the nucleation and growth of MIL-100(Fe) (a typical MOF) through the layer-by-layer method. The Coulombic and chelation interactions between Ca(2+) ions on the surface of the HAP nanowires and the COO(-) organic linkers of MIL-100(Fe) play key roles in the formation process. The as-prepared, water-stable HAP@MIL-100(Fe) nanofibers exhibit peroxidase-like activity toward the oxidation of different peroxidase substrates in the presence of H2 O2 , accompanied by a clear color change of the solution. Furthermore, a flexible, recyclable HAP@MIL-100(Fe) test paper is prepared successfully by using HAP@MIL-100(Fe) nanofibers as building blocks. A simple, low-cost, and sensitive colorimetric method for the detection of H2 O2 and glucose is established based on the as-prepared, flexible, recyclable HAP@MIL-100(Fe) test paper. More importantly, the HAP@MIL-100(Fe) test paper can be recovered easily for reuse by simply dipping in absolute ethanol for just 30 min, thus showing excellent recyclability. With its combination of advantages such as easy transportation, easy storage and use, rapid recyclability, light weight, and high flexibility, this HAP@MIL-100(Fe) test paper is promising for wide applications in various fields.

  15. The trans-species core SELF: the emergence of active cultural and neuro-ecological agents through self-related processing within subcortical-cortical midline networks.

    PubMed

    Panksepp, Jaak; Northoff, Georg

    2009-03-01

    The nature of "the self" has been one of the central problems in philosophy and more recently in neuroscience. This raises various questions: (i) Can we attribute a self to animals? (ii) Do animals and humans share certain aspects of their core selves, yielding a trans-species concept of self? (iii) What are the neural processes that underlie a possible trans-species concept of self? (iv) What are the developmental aspects and do they result in various levels of self-representation? Drawing on recent literature from both human and animal research, we suggest a trans-species concept of self that is based upon what has been called a "core-self" which can be described by self-related processing (SRP) as a specific mode of interaction between organism and environment. When we refer to specific neural networks, we will here refer to the underlying system as the "core-SELF." The core-SELF provides primordial neural coordinates that represent organisms as living creatures-at the lowest level this elaborates interoceptive states along with raw emotional feelings (i.e., the intentions in action of a primordial core-SELF) while higher medial cortical levels facilitate affective-cognitive integration (yielding a fully-developed nomothetic core-self). Developmentally, SRP allows stimuli from the environment to be related and linked to organismic needs, signaled and processed within core-self structures within subcorical-cortical midline structures (SCMS) that provide the foundation for epigenetic emergence of ecologically framed, higher idiographic forms of selfhood across different individuals within a species. These functions ultimately operate as a coordinated network. We postulate that core SRP operates automatically, is deeply affective, and is developmentally and epigenetically connected to sensory-motor and higher cognitive abilities. This core-self is mediated by SCMS, embedded in visceral and instinctual representations of the body that are well integrated with basic

  16. Volcanic activity and its link to glaciation cycles: Single-grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND-2A core, Antarctica

    NASA Astrophysics Data System (ADS)

    Nyland, R. E.; Panter, K. S.; Rocchi, S.; Di Vincenzo, G.; Del Carlo, P.; Tiepolo, M.; Field, B.; Gorsevski, P.

    2013-01-01

    In the frame of the ANtarctic DRILLing Program, volcanic glass fragments were collected from the AND-2A core between ~ 354 and 765 m below sea floor (mbsf) as accumulations (5-70 vol.%) within sediments. Here, we present the physical characteristics, age and geochemistry of the glass, which enable us to reconstruct Early to Middle Miocene volcanic activity in southern McMurdo Sound and, for the first time, document the response of volcanism to climate change in Antarctica. Glass-rich sediments include muddy-to-fine sandstone and stratified diamictite. Glass varies in color, size, vesicularity, crystal content, angularity, and degree of alteration. The mostly fresh glass exhibits delicate cuspate forms indicating deposition as primary ash fall. 40Ar-39Ar age determinations on individual glass grains are in good agreement with the depositional age model of the sediments (ca. 15.6 to 18.6 Ma), supporting for most of them a primary origin, however, some samples do contain older fragments that indicate glass recycling during times of enhanced glacial erosion. Most glasses are mafic (MgO = 3 to 9 wt.%) and vary from hypersthene to nepheline normative with a restricted range in SiO2 (45.2 ± 0.8 wt.%, 1σ) and trace element concentrations typical of the rift-related alkaline rocks in the Erebus Volcanic Province. The glass extends known composition of early phase Mount Morning activity (ca. 11-19 Ma), the only known Early to Middle Miocene source, to a more mafic end, revealing a previously unknown explosive, strongly alkaline, basaltic phase and the most primitive forms of both strongly alkaline (basanite to phonolite) and moderately alkaline (alkali basalt to trachyte) magma associations. The glass-rich sediments occur in glacimarine sequences that record 56 cycles of glacial advance and retreat. Volcanic response to glacial cyclicity is observed both physically and geochemically in AND-2A glass. Higher glass volumes in sediments correlate with ice minimum conditions

  17. Investigating the translation of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Cormier, V. F.; Geballe, Z. M.; Lasbleis, M.; Youssof, M.; Yue, H.

    2012-12-01

    inner core, and provides an insight into the nature of hemispheres and their compatibility with our predictions for models of a translating inner core. Additionally, we investigate the structure at the base of the outer core and the inner core boundary by analyzing PKP-Cdiff waves. The search for observable PKP-Cdiff is particularly concentrated in regions that are predicted to be actively freezing and melting, and spans a range of frequencies, allowing us to fully investigate any regional differences around the inner core boundary that may result from the translation of the inner core.

  18. Residential Utility Core Wall System - ResCore

    SciTech Connect

    Boyd, G.; Lundell, C.; Wendt, R.

    1999-06-01

    This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

  19. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  20. Thermal History of an Oceanic Core Complex, Atlantis Bank, Southwest Indian Ridge: Evidence for Hydrothermal Activity 2.6 Myr Off-Axis

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Reiners, P. W.; Baines, G.

    2004-12-01

    We report 26 new (U-Th)/He zircon dates from the Atlantis Bank Oceanic Core Complex (OCC), Southwest Indian Ridge. The low (~200 °C) closure temperature of the (U-Th)/He isotopic system, together with higher temperature (850 °C) crystallization ages from U-Pb zircon dating, allow us to constrain the timescales and rates of lower crustal cooling in oceanic crust. Samples from the detachment fault surface exposed at the sea floor, indicate that the denuded crust cooled rapidly through 200 °C in <1 Myr, yielding mean cooling rates >1200 °C/Myr, consistent with existing models for cooling of oceanic crust. However, samples collected along post-detachment, N-S- and E-W-trending fault scarps record (U-Th)/He ages averaging 2.6 Myr younger than their corresponding igneous crystallization ages. These ages are inconsistent with steady-state conductive cooling models for lower oceanic crust and cannot be explained by simple monotonic cooling. Instead, they record cooling through 200 °C when the crust was well outside the rift valley, ~36 km off-axis assuming a half spreading rate of 14km/Myr. These samples display extensive post-crystallization greenschist-facies alteration and contain metamorphic mineral assemblages of chlorite + actinolite ± hornblende ± epidote ± serpentine ± clay, consistent with hydrothermal alteration. Therefore, we suggest that these anomalously young (U-Th)/He zircon ages record localized thermal heating events associated with high- temperature (>300 °C) hydrothermal fluid flow along transform-parallel and transform-normal faults that were active outside the rift valley during transtension along the bounding Atlantis II transform fault. A significant component of the heat driving hydrothermal fluid flow may have been derived from underplated mafic magmas emplaced during transtension. The young (U-Th)/He ages therefore delimit zones of hydrothermal upflow, and record evidence of protracted hydrothermal circulation up to ~3 Myr off-axis at

  1. Thermal History of an Oceanic Core Complex, Atlantis Bank, Southwest Indian Ridge: Evidence for Hydrothermal Activity 2.6 Myr Off-Axis

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Reiners, P. W.; Baines, G.

    2007-12-01

    We report 26 new (U-Th)/He zircon dates from the Atlantis Bank Oceanic Core Complex (OCC), Southwest Indian Ridge. The low (~200 °C) closure temperature of the (U-Th)/He isotopic system, together with higher temperature (850 °C) crystallization ages from U-Pb zircon dating, allow us to constrain the timescales and rates of lower crustal cooling in oceanic crust. Samples from the detachment fault surface exposed at the sea floor, indicate that the denuded crust cooled rapidly through 200 °C in <1 Myr, yielding mean cooling rates >1200 °C/Myr, consistent with existing models for cooling of oceanic crust. However, samples collected along post-detachment, N-S- and E-W-trending fault scarps record (U-Th)/He ages averaging 2.6 Myr younger than their corresponding igneous crystallization ages. These ages are inconsistent with steady-state conductive cooling models for lower oceanic crust and cannot be explained by simple monotonic cooling. Instead, they record cooling through 200 °C when the crust was well outside the rift valley, ~36 km off-axis assuming a half spreading rate of 14km/Myr. These samples display extensive post-crystallization greenschist-facies alteration and contain metamorphic mineral assemblages of chlorite + actinolite ± hornblende ± epidote ± serpentine ± clay, consistent with hydrothermal alteration. Therefore, we suggest that these anomalously young (U-Th)/He zircon ages record localized thermal heating events associated with high- temperature (>300 °C) hydrothermal fluid flow along transform-parallel and transform-normal faults that were active outside the rift valley during transtension along the bounding Atlantis II transform fault. A significant component of the heat driving hydrothermal fluid flow may have been derived from underplated mafic magmas emplaced during transtension. The young (U-Th)/He ages therefore delimit zones of hydrothermal upflow, and record evidence of protracted hydrothermal circulation up to ~3 Myr off-axis at

  2. Role of coupled cataclasis-pressure solution deformation in microearthquake activity along the creeping segment of the SAF: Inferences from studies of the SAFOD core samples

    NASA Astrophysics Data System (ADS)

    Hadizadeh, J.; Gratier, J.; Renard, F.; Mittempregher, S.; di Toro, G.

    2009-12-01

    Rocks encountered in the SAFOD drill hole represent deformation in the southern-most extent of the creeping segment of the SAF north of the Parkfield. At the site and toward the northwest the SAF is characterized by aseismic creep as well as strain release through repeating microearthquakes M<3. The activity is shown to be mostly distributed as clusters aligned in the slip direction, and occurring at depths of between 3 to 5 kilometers. It has been suggested that the events are due to frequent moment release from high strength asperities constituting only about 1% or less of the total fault surface area within an otherwise weak fault gouge. We studied samples selected from the SAFOD phase 3 cores (3142m -3296m MD) using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The observed microstructural deformation that is apparently relevant to the seismological data includes clear evidence of cyclic deformation events, cataclastic flow, and pressure solution creep with attendant vein sealing and fracture healing fabrics. Friction testing of drill cuttings and modeling by others suggest that the overall creep behavior in shale-siltstone gouge may be due to low bulk friction coefficient of 0.2-0.4 for the fault rock. Furthermore, the low resistivity zone extending to about 5km beneath the SAFOD-Middle Mountain area is believed to consist of a pod of fluid-filled fractured and porous rocks. Our microstructural data indicate that the foliated shale-siltstone cataclasites are, in a highly heterogeneous way, more porous and permeable than the host rock and therefore provide for structurally controlled enhanced fluid-rock interactions. This is consistent with the observed pressure solution deformation and the microstructural indications of transiently high fluid pressures. We hypothesize that while the friction laws defining stable sliding are prevalent in bulk deformation of the

  3. Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability.

    PubMed

    Li, Kui; Han, Min; Chen, Rong; Li, Shun-Li; Xie, Shuai-Lei; Mao, Chengyu; Bu, Xianhui; Cao, Xue-Li; Dong, Long-Zhang; Feng, Pingyun; Lan, Ya-Qian

    2016-10-01

    A highly effective, low-cost strategy for improved photocatalytic efficiency and stability of CdS is described. Based on the integration of hexagonal-cubic core-shell architecture with nanorod morphology, the concentric CdS nanorod phase junctions (NRPJs) obtained demonstrate extremely high H2 production rate and unprecedented photocatalytic stability.

  4. Core competencies in internal medicine.

    PubMed

    Porcel, José Manuel; Casademont, Jordi; Conthe, Pedro; Pinilla, Blanca; Pujol, Ramón; García-Alegría, Javier

    2012-06-01

    The working group on Competencies of Internal Medicine from the Spanish Society of Internal Medicine (SEMI) proposes a series of core competencies that we consider should be common to all European internal medicine specialists. The competencies include aspects related to patient care, clinical knowledge, technical skills, communication skills, professionalism, cost-awareness in medical care and academic activities. The proposal could be used as a working document for the Internal Medicine core curriculum in the context of the educational framework of medical specialties in Europe.

  5. Evidence for in-situ metabolic activity in ice sheets based on anomalous trace gas records from the Vostok and other ice cores

    NASA Astrophysics Data System (ADS)

    Sowers, T.

    2003-04-01

    Measurements of trace gas species in ice cores are the primary means for reconstructing the composition of the atmosphere. The longest such record comes from the Vostok core taken from the central portion of the East Antarctic ice sheet [Petit et al., 1999]. In general, the trace gas records from Vostok are utilized as the reference signal when correlating trace gas measurements from other ice cores. The underlying assumption implicit in such endeavors is that the bubbles recovered from the ice cores record the composition of the atmosphere at the time the bubbles were formed. Another implicit assumption is that the composition of the bubbles has not been compromised by the extremely long storage periods within the ice sheet. While there is ample evidence that certain trace gas records (e.g. CO2 and CH4) have probably not been compromised, anomalous nitrous oxide (N2O) measurements from the penultimate glacial termination at Vostok are consistent with in-situ (N2O) production [Sowers, 2001]. In general, trace gas measurements from high altitude tropical/temperate glaciers are higher than expected based on contemporaneous measurements from polar cores. Measurements spanning the last 25kyr from the Sajama ice core from central Bolivia (18oS, 69oW, 6542masl), for example, were 1X-5X higher than contemporaneous values recorded in polar ice cores [Campen et al., 2003]. While other physical factors (like temperature/melting) may contribute to the elevated trace gas levels at these sites, the most likely explanation involves the accumulation of in-situ metabolic trace gas byproducts. Stable isotope measurements provide independent information for assessing the origin of the elevated trace gas levels in select samples. For the penultimate glacial termination at Vostok, the anomalous (N2O) values carry high δ15Nbulk and low δ18Obulk values that would be predicted if the added (N2O) was associated with in-situ nitrification. At Sajama, low δ13CH4 values observed during

  6. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  7. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1

    NASA Astrophysics Data System (ADS)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-01

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a

  8. Catalysts of self-assembled Pt@CeO2-δ-rich core-shell nanoparticles on 3D ordered macroporous Ce1-xZrxO2 for soot oxidation: nanostructure-dependent catalytic activity.

    PubMed

    Wei, Yuechang; Jiao, Jinqing; Zhang, Xindong; Jin, Baofang; Zhao, Zhen; Xiong, Jing; Li, Yazhao; Liu, Jian; Li, Jianmei

    2017-03-30

    The catalytic performance in heterogeneous catalytic reactions consisting of solid reactants is strongly dependent on the nanostructure of the catalysts. Metal-oxides core-shell (MOCS) nanostructures have potential to enhance the catalytic activity for soot oxidation reactions as a result of optimizing the density of active sites located at the metal-oxide interface. Here, we report a facile strategy for fabricating nanocatalysts with self-assembled Pt@CeO2-δ-rich core-shell nanoparticles (NPs) supported on three-dimensionally ordered macroporous (3DOM) Ce1-xZrxO2via the in situ colloidal crystal template (CCT) method. The nanostructure-dependent activity of the catalysts for soot oxidation were investigated by means of SEM, TEM, H2-TPR, XPS, O2-isothermal chemisorption, soot-TPO and so on. A CeO2-δ-rich shell on a Pt core is preferentially separated from Ce1-xZrxO2 precursors and could self-assemble to form MOCS nanostructures. 3DOM structures can enhance the contact efficiency between catalysts and solid reactants (soot). Pt@CeO2-δ-rich core-shell nanostructures can optimize the density of oxygen vacancies (Ov) as active sites located at the interface of Pt-Ce1-xZrxO2. Remarkably, 3DOM Pt@CeO2-δ-rich/Ce1-xZrxO2 catalysts show super catalytic performance and strongly nanostructure-dependent activity for soot oxidation in the absence of NO and NO2. For example, the T50 of the 3DOM Pt@CeO2-δ-rich/Ce0.8Zr0.2O2 catalyst is lowered down to 408 °C, and the reaction rate of the 3DOM Pt@CeO2-δ-rich/Ce0.2Zr0.8O2 catalyst (0.12 μmol g(-1) s(-1)) at 300 °C is 4 times that of the 3DOM Pt/Ce0.2Zr0.8O2 catalyst (0.03 μmol g(-1) s(-1)). The structures of 3DOM Ce1-xZrxO2-supported Pt@CeO2-δ-rich core-shell NPs are decent systems for deep oxidation of solid reactants or macromolecules, and this facile technique for synthesizing catalysts has potential to be applied to other element compositions.

  9. Counterrotating cores in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Balcella, Marc Comas

    The dynamics of the merger between a high- and a low-elliptical galaxy was studied to understand how kinematically peculiar cores in elliptical galaxies might form. Numerical simulations of mergers provide rotation curves, surface density profiles, surface density contour plots and velocity maps of the merger remnants, as well as diagnostics on the dynamics such as phase-space diagrams. This type of merger can create counterrotating cores. The core of the smaller galaxy, of higher density, is not disrupted by the primary tidal field and sinks to the center of the primary as an independent dynamical subsystem. Core counterrotation occurs only when the initial merger orbit is retrograde with respect to the pin of the primary. The remnant has higher effective radius and lower mean central surface density than the primary galaxy, but a smaller core radius. The adsorption of orbital energy and angular momentum by the primary particles greatly modifies the kinematic structure of the larger galaxy. Twisted rotation axes and isophote twists appear over the whole body of the remnant. These diagnostics may be used to determine whether observed peculiar cores might have formed via an elliptical-elliptical merger. Galaxies with counterrotating cores should show a complex velocity field, isophotal irregularities, and, in general, a slow rotation in the main body of the galaxy. The present experiments are the first galaxy-satellite merger experiments involving an active, rotating secondary. They show that part of the orbital angular momentum is absorbed by the secondary, thus the secondary contributes to its own sinking: the sinking rate depends on the orientation of the secondary spin. Long-slit spectroscopic observations of NGC 3656 are reported.

  10. Enzymatic hydrolysis of organic-core microcapsules to produce aqueous-core microcapsules.

    PubMed

    Breguet, Veronique; Vojinovic, Vojislav; Von Stockar, Urs; Marison, Ian W

    2008-05-01

    This paper describes the development of a new method to obtain aqueous-core microcapsules from organic-core capsules. The direct production of microcapsules, using tripropionin as organic material, followed by the hydrolysis of the core by a lipase was investigated. The enzymatic study showed that the enzyme obeyed a Michaelis-Menten mechanism and conditions for optimal activity were pH 7.5, 25-37 degrees C and 0% NaCl. Under these conditions, incubation of tripropionin-alginate microcapsules in a buffer containing the enzyme successfully produced aqueous-core capsules with reduced accumulation of alginate in the core in approximately 3 h.

  11. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    SciTech Connect

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  12. Preparations and properties of a tunable void with shell thickness SiO2@SiO2 core-shell structures via activators generated by electron transfer for atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Ren, Yi-xian; Zhou, Guo-wei; Cao, Pei

    2016-02-01

    Core-shell structure nanoparticles are attracting considerable attention because of their applications in drug delivery, catalysis carrier, and nanomedicine. In this study, SiO2@SiO2 core-shell structure with tunable void and shell thickness was successfully prepared for the first time using SiO2-poly(buty acrylate) (PBA)-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) (SiO2-PBA-b-PDMAEMA) as the template and tetraethoxysilane (TEOS) as the silica source. An amphiphilic copolymer PBA-b-PDMAEMA was first grafted onto the SiO2 nanosphere surface through activators regenerated by electron transfer for atom transfer radical polymerization. TEOS was hydrolyzed along with the PDMAEMA chain through hydrogen bonding, and the core-shell structure of SiO2@SiO2 was obtained through calcination to remove the copolymer. The gradient hydrophilicity of the PBA-b-PDMAEMA copolymer template facilitated the hydrolysis of TEOS molecules along the PDMAEMA to PBA segments, thereby tuning the voids between the SiO2 core and SiO2 shell, as well as the SiO2 shell thickness. The voids were about 10-15 nm and the shell thicknesses were about 4-11 nm when adding different amounts of DMAEMA monomer. SiO2@SiO2 core-shell structures with tunable void and shell thickness were employed as supports for the loading and release of doxorubicin hydrochloride (DOX) in PBS (pH 4.0). The samples demonstrated good loading capacity and controlled release rate of DOX.

  13. Core Curriculum in Agriculture. Phase I Report.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Dept. of Vocational and Technical Education.

    The primary purpose of this project is to develop and field test a core curriculum in agriculture for rural secondary schools and a core curriculum in agriculture for metropolitan or urban schools in Illinois. Activities of Phase 1 of the project were reviewing literature and interviewing industry representatives to identify pertinent research and…

  14. Teaching Core Curriculum Content through the Arts.

    ERIC Educational Resources Information Center

    Jacobs, Victoria R.; Goldberg, Merryl R.; Bennett, Tom R.

    Arts in elementary schools have often been separated from the core curriculum and offered as enrichment activities that are considered beneficial but not essential. This paper highlights how teaching science through the arts can help students more deeply understand core scientific concepts. Specific examples in the paper depict lessons of…

  15. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  16. Substituent effects on core structures and heterogeneous catalytic activities of Mn(III)(μ-O)2Mn(IV) dimers with 2,2':6',2″-terpyridine derivative ligands for water oxidation.

    PubMed

    Yamazaki, Hirosato; Igarashi, Satoshi; Nagata, Toshi; Yagi, Masayuki

    2012-02-06

    [(OH(2))(R-terpy)Mn(μ-O)(2)Mn(R-terpy)(OH(2)) ](3+) (R-terpy = 4'-substituted 2,2':6',2″-terpyridine, R = butoxy (BuO), propoxy (PrO), ethoxy (EtO), methoxy (MeO), methyl (Me), methylthio (MeS), chloro (Cl)) have been synthesized as a functional oxygen-evolving complex (OEC) model and characterized by UV-vis and IR spectroscopic, X-ray crystallographic, magnetometric, and electrochemical techniques. The UV-vis spectra of derivatives in water were hardly influenced by the 4'-substituent variation. X-ray crystallographic data showed that Mn centers in the Mn(III)(μ-O)(2)Mn(IV) cores for derivatives with R = H, MeS, Me, EtO, and BuO are crystallographically indistinguishable, whereas the derivatives with R = MeO and PrO gave the significantly distinguishable Mn centers in the cores. The indistinguishable Mn centers could be caused by rapid electron exchange between the Mn centers to result in the delocalized Mn(μ-O)(2)Mn core. The exchange integral values (J = -196 to -178 cm(-1)) for delocalized cores were lower than that (J = -163 to -161 cm(-1)) for localized cores, though the Mn···Mn distances are nearly the same (2.707-2.750 Å). The half wave potential (E(1/2)) of a Mn(III)-Mn(IV)/Mn(IV)-Mn(IV) pair of the derivatives decreased with an increase of the electron-donating ability of the substituted groups for the delocalized core, but it deviated from the correlation for the localized cores. The catalytic activities of the derivatives on mica for heterogeneous water oxidation were remarkably changed by the substituted groups. The second order rate constant (k(2)/mol(-1) s(-1)) for O(2) evolution was indicated to be correlated to E(1/2) of a Mn(III)-Mn(IV)/Mn(IV)-Mn(IV) pair; k(2) increased by a factor of 29 as E(1/2) increased by 28 mV.

  17. In vitro activation and differentiation of naïve CD4+ and CD8+ T cells into HCV core- and NS3-specific armed effector cells: a new role for CD4+ T cells.

    PubMed

    Krishnadas, Deepa K; Li, Wen; Kumar, Rakesh; Tyrrell, Lorne J; Agrawal, Babita

    2009-01-01

    Viral clearance in hepatitis C virus (HCV) infection has been correlated with strong, multi-specific and sustained T cell responses. The number of functionally active effector T cells determines the outcome of infection. Only a small number of antigen-specific naïve T cells are originally present. Upon infection, they undergo activation, clonal expansion and differentiation to become effector cells. In this study, we determined the ability of dendritic cells (DCs) to prime T cells in vitro to become effector cells upon stimulation with various TLR ligands or IFNalpha. T cell priming and activation was determined by proliferation and production of effector molecules, IFN-gamma and Granzyme B (GrB). HCV Core-specific T cells showed significant increase in proliferation, and the number of HCV Core-specific CD4+ and CD8+ T cells producing IFN-gamma and GrB was higher than control or NS3-specific T cells. These in vitro-primed CD4+ and CD8+ T cells exhibit the phenotype of just-activated and/or armed effector lymphocytes confirming the transition of naïve T cells to effector cells. This is the first study demonstrating the activation of GrB+CD4+ T cells against antigen(s) derived from HCV. Our study suggests a novel role of CD4+ T cells in immunity against HCV.

  18. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  19. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  1. Counterrotating Cores in Elliptical Galaxies.

    NASA Astrophysics Data System (ADS)

    Balcells, Marc Comas

    The dynamics of the merger between a high- and a low-luminosity elliptical galaxy has been studied to understand how kinematically peculiar cores in elliptical galaxies might form. Numerical simulations of mergers provide rotation curves, surface density profiles, surface density contour plots and velocity maps of the merger remnants, as well as diagnostics on the dynamics such as phase-space diagrams. This type of merger can create counterrotating cores. The core of the smaller galaxy, of higher density, is not disrupted by the primary tidal field and sinks to the center of the primary as an independent dynamical subsystem. Core counterrotation occurs only when the initial merger orbit is retrograde with respect to the spin of the primary. The remnant has higher effective radius and lower mean central surface density than the primary galaxy, but a smaller core radius. The adsorption of orbital energy and angular momentum by the primary particles greatly modifies the kinematic structure of the larger galaxy. Twisted rotation axes and isophote twists appear over the whole body of the remnant. These diagnostics may be used to determine whether observed peculiar cores might have formed via an elliptical-elliptical merger. Galaxies with counterrotating cores should show a complex velocity field, isophotal irregularities, and, in general, a slow rotation in the main body of the galaxy. The present experiments are the first galaxy-satellite merger experiments involving an active, rotating secondary. They show that part of the orbital angular momentum is absorbed by the secondary, thus the secondary contributes to its own sinking: the sinking rate depends on the orientation of the secondary spin. Long-slit spectroscopic observations of NGC 3656 are reported. Rotation curves indicate that NGC 3656 contains a core spinning in a direction perpendicular to the rotation in the main body of the galaxy. Velocity reversals at intermediate radii are also observed. These features

  2. City Core - detecting the anthropocene in urban lake cores

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Ilsøe, P.; Andresen, C. S.; Rasmussen, P.; Andersen, T. J.; Frei, R.; Schreiber, N.; Odgaard, B.; Funder, S.; Holm, J. M.; Andersen, K.

    2011-12-01

    Here, we presents the preliminary results from lake cores taken in ditches associated with the historical fortifications enclosing the oldest - central Copenhagen to achieve new knowledge from sediment deposits related to anthropogenic activities. We have examined sediment cores with X-ray fluorescence (XRF) analyzers to correlate element patterns from urban and industrial emissions. Thus, we aim to track these patterns back in time - long before regular routines of recording of atmospheric environment began around 1978. Furthermore, we compare our data to alternative sources of information in order to constrain and expand the temporal dating limits (approximately 1890) achieved from 210Pb activity. From custom reports and statistic sources, information on imported volumes from coal, metal and oil was obtained and related contaminants from these substances to the sediment archives. Intriguingly, we find a steep increase in import of coal and metals matching the exponential increase of lead and zinc counts from XRF-recordings of the sediment cores. In this finding, we claim to have constrain the initiation of urban industrialization. In order to confirm the age resolution of the lake cores, DNA was extracted from sediments, sedaDNA. Thus we attempt to trace plantation of well documented exotic plants to, for instance, the Botanical Garden. Through extraction and sampling of sedaDNA from these floral and arboreal specimens we intend to locate their strataigraphic horizons in the sediment core. These findings may correlate data back to 1872, when the garden was established on the area of the former fortification. In this line of research, we hope to achieve important supplementary knowledge of sedaDNA-leaching frequencies within freshwater sediments.

  3. Business Planning Core Facilities

    PubMed Central

    Itzkowitz, G.N.

    2014-01-01

    Thoughtful business planning is pivotal to the success of any business/operational venture. When planned in a thoughtful and detailed manner there are very few operational or financial surprises for an institution or facility (service center) to contend with. At Stony Brook Medicine we include SWOT analysis and a detailed Market Analysis as part of the process. This is bolstered by an initiative to ensure institutional policies are met so that facilities remain in compliance throughout their lifecycle. As we operate 14 facilities we have had the opportunity to become creative in our approach to coordinate activities, virtualize services, integrate new software business-to-business partners, and finally coordinate plans for phased consolidation instead of outright termination of services when required. As the Associate Dean for Scientific Operations and Research Facilities, the shared research facilities (cores) of the Medical School are in my direct line of sight. We understand their value to the meeting our overall research mission. We have found that an active process of monitoring to predict trouble as much as possible is the best approach for facilities. Some case analysis of this type of interaction will be presented as well.

  4. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  5. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  6. Studies on the photo-catalytic activity of semiconductor nanostructures and their gold core-shell on the photodegradation of malathion

    NASA Astrophysics Data System (ADS)

    Mamdouh Fouad, Dina; Bakr Mohamed, Mona

    2011-11-01

    This work is devoted to the synthesis of different semiconductor nanoparticles and their metal core-shell nanocomposites such as TiO2, Au/TiO2, ZnO, and Au/ZnO. The morphology and crystal structures of the developed nanomaterials were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD). These materials were used as catalysts for the photodegradation of malathion, which is one of the most commonly used pesticides in developing countries. The degradation of 10 ppm malathion under ultraviolet (UV) and visible light in the presence of different synthesized nanocomposites was analyzed using high performance liquid chromatography (HPLC) and UV-visible spectra. A comprehensive study was carried out for the catalytic efficiency of the prepared nanoparticles. Moreover, the effects of different factors that could influence catalytic photodegradation, such as different light sources, surface coverage and the nature of the organic contaminants, were investigated. The results indicate that the core-shell nanocomposite of semiconductor-gold serves as a better catalytic system than the semiconductor nanoparticles themselves.

  7. Studies on the photo-catalytic activity of semiconductor nanostructures and their gold core-shell on the photodegradation of malathion.

    PubMed

    Fouad, Dina Mamdouh; Mohamed, Mona Bakr

    2011-11-11

    This work is devoted to the synthesis of different semiconductor nanoparticles and their metal core-shell nanocomposites such as TiO2, Au/TiO2, ZnO, and Au/ZnO. The morphology and crystal structures of the developed nanomaterials were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD). These materials were used as catalysts for the photodegradation of malathion, which is one of the most commonly used pesticides in developing countries. The degradation of 10 ppm malathion under ultraviolet (UV) and visible light in the presence of different synthesized nanocomposites was analyzed using high performance liquid chromatography (HPLC) and UV-visible spectra. A comprehensive study was carried out for the catalytic efficiency of the prepared nanoparticles. Moreover, the effects of different factors that could influence catalytic photodegradation, such as different light sources, surface coverage and the nature of the organic contaminants, were investigated. The results indicate that the core-shell nanocomposite of semiconductor-gold serves as a better catalytic system than the semiconductor nanoparticles themselves.

  8. Stimulus Response of Au-NPs@GMP-Tb Core-Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake.

    PubMed

    Zhang, Xiaolei; Deng, Jingjing; Xue, Yumeng; Shi, Guoyue; Zhou, Tianshu

    2016-01-19

    In this study, we demonstrate a colorimetric and fluorescent dual-mode method for alkaline phosphatase activity (APA) sensing in freshwater lake with stimuli-responsive gold nanoparticles@terbium-guanosine monophosphate (Au-NPs@GMP-Tb) core-shell nanoparticles. Initially, the core-shell nanoparticles were fabricated based on Au-NPs decorated with a fluorescent GMP-Tb shell. Upon being excited at 290 nm, the as-formed Au-NPs@GMP-Tb core-shell nanoparticles emit green fluorescence, and the decorated GMP-Tb shell causes the aggregation of Au-NPs. However, the addition of ALP destroys GMP-Tb shell, resulting in the release of Au-NPs from the shell into the solvent. As a consequence, the aggregated Au-NPs solubilizes with the changes in the UV-vis spectrum of the dispersion, and in the meantime, the fluorescence of GMP-Tb shell turns off, which constitutes a new mechanism for colorimetric and fluorescent dual-mode sensing of APA. With the method developed here, we could monitor the dynamic change of APA during an algal bloom of a freshwater lake, both by the naked eye and further confirmed by fluorometric determination. This study not only offers a new method for on-site visible detection of APA but also provides a strategy for dual-mode sensing mechanisms by the rational design of the excellent optical properties of Au-NPs and the adaptive inclusion properties of the luminescent infinite coordination polymers.

  9. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  10. Can Psychiatric Rehabilitation Be Core to CORE?

    ERIC Educational Resources Information Center

    Olney, Marjorie F.; Gill, Kenneth J.

    2016-01-01

    Purpose: In this article, we seek to determine whether psychiatric rehabilitation principles and practices have been more fully incorporated into the Council on Rehabilitation Education (CORE) standards, the extent to which they are covered in four rehabilitation counseling "foundations" textbooks, and how they are reflected in the…

  11. Dynamics of Submarine Landslides in an Active Margin from Analysis of Particle Size, Cores, and 3D Seismic Data: Site C0021, IODP Expedition 338, Offshore Japan

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Moore, Z. T.

    2013-12-01

    The deposits of submarine landslides, termed mass transport deposits (MTDs), were drilled and cored at Site C0021 in the Nankai Trough during Integrated Ocean Drilling Program (IODP) Expedition 338. Two MTDs were identified at 94-117 mbsf and 133-176 mbsf. Each MTD includes mud clasts, tilted bedding, and/or chaotic bedding, an increase in shear strength, a decrease in porosity, the occurrence of shear zones/faults, and a semi-transparent seismic facies. We conducted laser particle size analyses of sediments throughout the entire cored interval at Site C0021 (0 - 5 mbsf and 90 - 194 mbsf). Particle size distributions show that sediments shallower than 155 mbsf are composed of approximately 80% silt-sized, 15% clay-sized, and 5% sand-sized particles. Sediments deeper than 155 mbsf are predominantly composed of approximately 65% silt-sized, 15% clay-sized, and 20% sand-sized particles. MTDs have no obvious differences from non-MTD particle size distributions. We are examining the MTDs to gain insight into their dynamic behavior by mapping them in 3D seismic data. We measure slope geometry, runout distance, and characterize the depositional features preserved within the MTDs in the basal surface, top surface, and internal body. We use slope geometry to calculate regional gravitational shear stress and we use runout distance and morphology as indicators of the dynamic behavior of the landslide. Future work will focus on back-analysis estimates of shear stress and shear strength parameters. Our goal is to distinguish whether these landslides occurred as relatively rapid-moving, low-viscosity events or relatively slow-moving, high-viscosity events. This is an important distinction to make given that initial acceleration of a landslide is a critical variable that determines amplitude of slide-generated tsunami.

  12. Core Concepts of Kinesiology.

    ERIC Educational Resources Information Center

    Hudson, Jackie L.

    1995-01-01

    Core concepts of kinesiology are the basis of communication about movement that facilitate progression of skill levels. The article defines and exemplifies each of 10 core concepts: range of motion, speed of motion, number of segments, nature of segments, balance, coordination, compactness, extension at release/contact, path of projection, and…

  13. CORE - Performance Feedback System

    SciTech Connect

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  14. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  15. Modular core holder

    SciTech Connect

    Mueller, J.; Cole, C.W.; Hamid, S.; Lucas, J.K.

    1991-03-05

    This patent describes a modular core holder. It comprises: a sleeve, forming an internal cavity for receiving a core. The sleeve including segments; support means, overlying the sleeve, for supporting the sleeve; and access means, positioned between at least two of the segments of the sleeve, for allowing measurement of conditions within the internal cavity.

  16. More on the Core

    ERIC Educational Resources Information Center

    Chan, Monnica

    2013-01-01

    From a higher education perspective, new "Common Core" standards could improve student college-readiness levels, reduce institutional remediation rates, and close education gaps in and between states. As a national initiative to create common educational standards for students across multiple states, the Common Core State Standards…

  17. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  18. NFE Core Bibliographies.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Inst. for International Studies in Education.

    This collection of core bibliographies, which expands on an initial bibliography published in 1979 of the core resources housed in the Non-Formal Education Information Center at Michigan State University, comprises a basic stock of materials on nonformal education and women in development that have been contributed by development planners,…

  19. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  20. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  1. The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW.

    PubMed

    Nøhr, Anne Cathrine; Shehata, Mohamed A; Hauser, Alexander S; Isberg, Vignir; Mokrosinski, Jacek; Andersen, Kirsten B; Farooqi, I Sadaf; Pedersen, Daniel Sejer; Gloriam, David E; Bräuner-Osborne, Hans

    2017-01-01

    GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 μM and 320 μM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca(2+)-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, β-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides.

  2. Horizontal core acquisition and orientation for formation evaluation

    SciTech Connect

    Skopec, R.A. ); Mann, M.M. ); Grier, S.P. )

    1992-03-01

    The increase in horizontal drilling activity has produced a need for improved coring technology. The development of a reliable horizontal (medium-radius) coring and orientation system has greatly improved the acquisition of information necessary for formation evaluation and reservoir engineering. This paper describes newly developed hardware and methods for obtaining horizontal core sections.

  3. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. Elemental changes and alteration recorded by basaltic drill core samples recovered from in situ temperatures up to 345°C in the active, seawater-recharged Reykjanes geothermal system, Iceland

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.

    2016-11-01

    Hydrothermal activity results in element exchanges between seawater and oceanic crust that contribute to many aspects of ocean chemistry; therefore, improving knowledge of the associated chemical processes is of global significance. Hydrothermally altered basaltic drill core samples from the seawater-recharged Reykjanes geothermal system in Iceland record elemental gains and losses similar to those observed in samples of hydrothermally altered oceanic crust. At Reykjanes, rocks originally emplaced on the seafloor were buried by continued volcanism and subsided to the current depths (>2250 m below surface). These rocks integrate temperature-dependent elemental gains and losses from multiple stages of hydrothermal alteration that correspond to chemical exchanges observed in rocks from different crustal levels of submarine hydrothermal systems. Specifically, these lithologies have gained U, Mg, Zn, and Pb and have lost K, Rb, Ba, Cu, and light rare earth elements (La through Eu). Alteration and elemental gains and losses in lithologies emplaced on the seafloor can only be explained by a complex multistage hydrothermal alteration history. Reykjanes dolerite intrusions record alteration similar to that reported for the sheeted dike section of several examples of oceanic crust. Specifically, Reykjanes dolerites have lost K, Rb, Ba, and Pb, and gained Cu. The Reykjanes drill core samples provide a unique analog for seawater-oceanic crust reactions actively occurring at high temperatures (275-345°C) beneath a seafloor hydrothermal system.

  5. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  6. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa

    PubMed Central

    Galindo, Inmaculada; Hernaez, Bruno; Díaz-Gil, Gema; Escribano, Jose M.; Alonso, Covadonga

    2008-01-01

    Several large DNA viruses encode Bcl-2 protein homologues involved in the regulation of the cellular apoptosis cascade. This regulation often involves the interaction of these viral proteins with diverse cellular Bcl-2 family members. We have identified the specific interactions of A179L, an African swine fever virus (ASFV) Bcl-2 homologue, with the active forms of the porcine BH3-only Bid protein (truncated Bid p13 and p15). Transient expression of ASFV A179L gene in Vero cells prevented apoptosis induced by these active forms of Bid protein. Interestingly, A179L protein was able to interact, also with the main core Bcl-2 proapoptotic proteins Bax and Bak, and with several BH3-only proteins with selective binding restrictions for full length Bid and Noxa. These results suggest a fine regulation for A179L action in the suppression of apoptosis in infected cells which is essential for efficient virus replication. PMID:18329683

  7. Multidisciplinary Study of the Core and Computation of Core Angular Momentum

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Dehant, V.

    2002-12-01

    In 1998, the IERS established the Global Geophysical Fluids Center (GGFC), which consists of eight Special Bureaus for the different geophysical fluids. The Special Bureau for the Core (SBC) focuses on theoretical modelling and observations related to core flow, and on inner core - outer core - mantle interactions. The fluid outer core is in constant motion, and related changes in core angular momentum are known to cause length-of-day variations of a few milliseconds at decadal time scales. This poster will give an overview of the activities of the SBC. Since its creation in 1998, the SBC has created a web site (www.astro.oma.be/SBC/main.html) as the central mechanism for providing services to the geodynamic community. The web site contains documented model data on core flow and core angular momentum and an extensive bibliography. In addition, a description is given of the relevant theories and of the dynamical assumptions used for constructing the flow. Reference Core Dynamics, structure, and rotation. eds. V. Dehant, K. Creager, S. Karato, S. Zatman, AGU monograph, 2002, in press, and articles therein such as Ponsar, S., Dehant, V., Holme, R., Jault, D., Pais, A., Van Hoolst, T., The Core and fluctuations in the Earth's rotation

  8. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  9. Core shroud corner joints

    DOEpatents

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  10. Synthesis of BiVO4@C Core-Shell Structure on Reduced Graphene Oxide with Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Sun, Zhihua; Li, Chenzhe; Zhu, Shenmin; Cho, Maenghyo; Chen, Zhixin; Cho, Kyeongjae; Liao, Yongliang; Yin, Chao; Zhang, Di

    2015-08-24

    Herein, a facile strategy for the controllable synthesis of BiVO4@C core-shell nanoparticles on reduced graphene oxide (RGO) is reported. The BiVO4 particle size can be controlled in the process by adjusting the volume ratio of glycerol in the sol-gel solution. The glycerol layers adsorbed on BiVO4 (BiVO4@glycerol) made it possible to form hydrogen bonds between BiVO4@glycerol and graphene oxide with the assistance of ultrasound. After thermal treatment, glycerol adsorbed on the BiVO4 particles formed amorphous carbon shells to link the particles and RGO. As a result, the obtained RGO-BiVO4@C nanocomposite showed a five times higher rate in O2 evolution from water under visible-light irradiation. Also, it demonstrated a six times higher photocatalytic performance enhancement than that of pure BiVO4 in the degradation of Rhodamine B. The enhanced performance is attributed to the carbon shells that restrict the growth of BiVO4 , the reduced graphene oxide that improves the electronic conductivity of the composite, and importantly, the bonds formed between the carbon shells and RGO that reduce the recombination loss of photogenerated charges effectively. The strategy is simple, effective, and can be extended to other ternary oxides with controlled size and high performance.

  11. X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design

    PubMed Central

    Clasman, Jozlyn R.; Báez-Santos, Yahira M.; Mettelman, Robert C.; O’Brien, Amornrat; Baker, Susan C.; Mesecar, Andrew D.

    2017-01-01

    Ubiquitin-like domain 2 (Ubl2) is immediately adjacent to the N-terminus of the papain-like protease (PLpro) domain in coronavirus polyproteins, and it may play a critical role in protease regulation and stability as well as in viral infection. However, our recent cellular studies reveal that removing the Ubl2 domain from MERS PLpro has no effect on its ability to process the viral polyprotein or act as an interferon antagonist, which involves deubiquitinating and deISGylating cellular proteins. Here, we test the hypothesis that the Ubl2 domain is not required for the catalytic function of MERS PLpro in vitro. The X-ray structure of MERS PLpro-∆Ubl2 was determined to 1.9 Å and compared to PLpro containing the N-terminal Ubl2 domain. While the structures were nearly identical, the PLpro-∆Ubl2 enzyme revealed the intact structure of the substrate-binding loop. Moreover, PLpro-∆Ubl2 catalysis against different substrates and a purported inhibitor revealed no differences in catalytic efficiency, substrate specificity, and inhibition. Further, no changes in thermal stability were observed between enzymes. We conclude that the catalytic core of MERS PLpro, i.e. without the Ubl2 domain, is sufficient for catalysis and stability in vitro with utility to evaluate potential inhibitors as a platform for structure-based drug design. PMID:28079137

  12. Pallasite paleomagnetism: Quiescence of a core dynamo

    NASA Astrophysics Data System (ADS)

    Nichols, Claire I. O.; Bryson, James F. J.; Herrero-Albillos, Julia; Kronast, Florian; Nimmo, Francis; Harrison, Richard J.

    2016-05-01

    Recent paleomagnetic studies of two Main Group pallasites, the Imilac and Esquel, have found evidence for a strong, late-stage magnetic field on the parent body. It has been hypothesized that this magnetic field was generated by a core dynamo, driven by compositional convection during core solidification. Cooling models suggest that the onset of core solidification occurred ∼200 Ma after planetary accretion. Prior to core solidification, a core dynamo may have been generated by thermal convection; however a thermal dynamo is predicted to be short-lived, with a duration of ∼10 Ma to ∼40 Ma after planetary accretion. These models predict, therefore, a period of quiescence between the thermally driven dynamo and the compositionally driven dynamo, when no core dynamo should be active. To test this hypothesis, we have measured the magnetic remanence recorded by the Marjalahti and Brenham pallasites, which based on cooling-rate data locked in any magnetic field signals present ∼95 Ma to ∼135 Ma after planetary accretion, before core solidification began. The cloudy zone, a region of nanoscale tetrataenite islands within a Fe-rich matrix was imaged using X-ray photoemission electron microscopy. The recovered distribution of magnetisation within the cloudy zone suggests that the Marjalahti and Brenham experienced a very weak magnetic field, which may have been induced by a crustal remanence, consistent with the predicted lack of an active core dynamo at this time. We show that the transition from a quiescent period to an active, compositionally driven dynamo has a distinctive paleomagnetic signature, which may be a crucial tool for constraining the time of core solidification on differentiated bodies, including Earth.

  13. Linking Core Promoter Classes to Circadian Transcription

    PubMed Central

    Westermark, Pål O.

    2016-01-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  14. Description of core samples returned by Apollo 12

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.; Fryxell, R.

    1971-01-01

    Three core samples were collected by the Apollo 12 astronauts. Two are single cores, one of which (sample 12026) was collected close to the lunar module during the first extravehicular activity period and is 19.3 centimeters long. The second core (sample 12027) was collected at Sharp Crater during the second extravehicular activity period and is 17.4 centimeters long. The third sample is a double core (samples 12025 and 12028), which was collected near Halo Crater during the second extravehicular activity period. Unlike the other cores, the double-drive-tube core sample has complex layering with at least 10 clearly defined stratigraphic units. This core sample is approximately 41 centimeters long.

  15. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  16. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  17. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  18. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  19. A facile approach to fabrication of novel CeO2-TiO2 core-shell nanocomposite leads to excellent UV-shielding ability and lower catalytic activity

    NASA Astrophysics Data System (ADS)

    Bahadur, Newaz Mohammed; Kurayama, Fumio; Furusawa, Takeshi; Sato, Masahide; Siddiquey, Iqbal Ahmed; Hossain, Md. Mufazzal; Suzuki, Noboru

    2013-01-01

    This study reports the development of a fast and facile route for the synthesis of novel CeO2-TiO2 core-shell nanocomposite particles using microwave (MW) irradiation of the mixture of commercial CeO2, titanium-tetra- n-butoxide (TBOT) and aqueous ammonia. Solutions of TBOT in ethanol and ammonia were mixed with dispersed CeO2 nanoparticles in ethanol, and the mixture was rapidly MW irradiated at 70 °C for 2 min. The resulting nanocomposite particles were characterized in terms of phase, shell thickness, composition, surface charge, morphology, and chemical state of the elements by XRD, TEM, XPS, SEM, Zeta potential analyzer, XRF, and FT-IR. Conventional methods of the synthesis of CeO2-TiO2 nanocomposite require a long time, and TiO2 is rarely found as a coated material. In contrast, the MW method was able to synthesize CeO2-TiO2 core-shell nanocompsite particles within a very short time. CeO2-TiO2 nanocomposite particles were fairly unaggregated with an average titania layer thickness of 2-5 nm. The obtained nanocomposites retained the crystalline cubic phase of CeO2, and the phase of coated TiO2 was amorphous. The catalytic activities of uncoated and TiO2-coated CeO2 nanoparticles for the oxidation of organic compounds were evaluated by the degradation study of methylene blue in air atmosphere at 403 K. The enhanced UV-shielding ability and visible transparency of the nanocomposite obtained by UV visible spectroscopic measurements suggested that the core-shell material has novel characteristics for using as a sunscreen material.

  20. A concise synthesis of 1,4-dihydro-[1,4]diazepine-5,7-dione, a novel 7-TM receptor ligand core structure with melanocortin receptor agonist activity.

    PubMed

    Szewczyk, Jerzy R; Laudeman, Chris P; Sammond, Doug M; Villeneuve, Manon; Minick, Douglas J; Grizzle, Mary K; Daniels, Alejandro J; Andrews, John L; Ignar, Diane M

    2010-03-01

    Finding small non-peptide molecules for G protein-coupled receptors (GPCR) whose endogenous ligands are peptides, is a very important task for medicinal chemists. Over the years, compounds mimicking peptide structures have been discovered, and scaffolds emulating peptide backbones have been designed. In our work on GPCR ligands, including cholecystokinin receptor-1 (CCKR-1) agonists, we have employed benzodiazepines as a core structure. Looking for ways to reduce molecular weight and possibly improve physical properties of GPCR ligands, we embarked on the search for molecules providing similar scaffolds to the benzodiazepine with lower molecular weight. One of our target core structures was 1,4-dihydro-[1,4]diazepine-5,7-dione. There was not, however, a known synthetic route to such molecules. Here we report the discovery of a simple and concise method for synthesis of 2-[6-(1H-indazol-3-ylmethyl)-5,7-dioxo-4-phenyl-4,5,6,7-tetrahydro-[1,4]diazepin-1-yl]-N-isopropyl-N-phenyl-acetamide as an example of a compound containing the tetrahydrodiazepine-5,7-dione core. Compounds from this series were tested in numerous GPCR assays and demonstrated activity at melanocortin 1 and 4 receptors (MC1R and MC4R). Selected compounds from this series were tested in vivo in Peptide YY (PYY)-induced food intake. Compounds dosed by intracerebroventricular and oral routes reduced PYY-induced food intake and this effect was reversed by the cyclic peptide MC4R antagonist SHU9119.

  1. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  2. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  3. Micro coring apparatus

    NASA Technical Reports Server (NTRS)

    Collins, David; Brooks, Marshall; Chen, Paul; Dwelle, Paul; Fischer, Ben

    1989-01-01

    A micro-coring apparatus for lunar exploration applications, that is compatible with the other components of the Walking Mobile Platform, was designed. The primary purpose of core sampling is to gain an understanding of the geological composition and properties of the prescribed environment. This procedure has been used extensively for Earth studies and in limited applications during lunar explorations. The corer is described and analyzed for effectiveness.

  4. Core-Shell Vanadium Modified Titania@β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity.

    PubMed

    Mumtaz, Asad; Mohamed, Norani Muti; Mazhar, Muhammad; Ehsan, Muhammad Ali; Mohamed Saheed, Mohamed Shuaib

    2016-04-13

    Core-shell rutile TiO2@β-In2S3 and modified V-TiO2@β-In2S3 were synthesized to develop bilayer systems to uphold charge transport via an effective and stable interface. Morphological studies revealed that β-In2S3 was deposited homogeneously on V-TiO2 as compared to unmodified TiO2 nanorod arrays. X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrometry studies verified the presence of various oxidation states of vanadium in rutile TiO2 and the vanadium surface was utilized for broadening the charge collection centers in host substrate layer and hole quencher window. Subsequently, X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectra confirmed the rutile phases of TiO2 and modified V-TiO2 along with the phases of crystalline β-In2S3. XPS valence band study explored the interaction of valence band quazi Fermi levels of β-In2S3 with the conduction band quazi Fermi levels of modified V-TiO2 for enhanced charge collection at the interface. Photoelectrochemical studies show that the photocurrent density of V-TiO2@β-In2S3 is 1.42 mA/cm(2) (1.5AM illumination). Also, the frequency window for TiO2 was broadened by the vanadium modification in rutile TiO2 nanorod arrays, and the lifetime of the charge carrier and stability of the interface in V-TiO2@β-In2S3 were enhanced compared to the unmodified TiO2@β-In2S3. These findings highlight the significance of modifications in host substrates and interfaces, which have profound implications on interphase stability, photocatalysis and solar-fuel-based devices.

  5. Pt-content-controlled synthesis of Pd nanohollows/Pt nanorods core/shell composites with enhanced electrocatalytic activities for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Lai, Shiqin; Fu, Chenglin; Chen, Yongxiang; Yu, Xiang; Lai, Xuandi; Ye, Cui; Hu, Jianqiang

    2015-01-01

    Pd nanohollows/Pt nanorods (PdNHs/PtNRs) core/shell composites have been synthesized by a multistep crystalline growth method, in which Pt NRs grow on the exterior surface of hollow Pd nanospheres in order. Moreover, the size and quantity of the Pt NRs in the PdNHs/PtNRs can be easily tailored and thus ameliorate Pt utilization efficiency through varying H2PtCl6 concentrations. By comparing with Pt NPs and commercial Pt/C (JM), the PdNHs/PtNRs prepared using 2.50 mL 0.02 M H2PtCl6 have larger surface area, better anti-CO poisoning ability and more excellent catalytic performance. Moreover, the catalytic properties of the PdNHs/PtNRs can be well tunable by modifying the Pt contents. Our studies indicate that the PdNHs/PtNRs prepared using 2.50 mL 0.02 M H2PtCl6, in which Pd NHs are nearly completely covered with Pt NRs, have the largest surface area, best antitoxic ability and most excellent catalytic performance, indicative of high Pt utilization efficiency of the PdNHs/PtNRs relative to Pt/C (JM), Pt NPs and other PdNHs/PtNRs prepared using other H2PtCl6 concentrations. Therefore, the strategy to the size and content control of the PdNHs/PtNRs nanocomposites can facilitate optimized design of Pt-based catalysts for direct methanol fuel cells.

  6. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  7. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  8. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  9. Integrin αvβ3 mediates the synergetic regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling.

    PubMed

    Dai, Zhongquan; Guo, Feima; Wu, Feng; Xu, Hongjie; Yang, Chao; Li, Jinqiao; Liang, Peilong; Zhang, Hongyu; Qu, Lina; Tan, Yingjun; Wan, Yumin; Li, Yinghui

    2014-12-01

    Mechanical stimulation and biological factors coordinately regulate bone development and regeneration; however, the underlying mechanisms are poorly understood. Microgravity induces bone loss, which may be partly related to the development of resistance to local cytokines, including insulin-like growth factor 1 (IGF-1). Here, we report the involvement of integrin αvβ3 in microgravity-associated bone loss. An established OSE-3T3 cell model was stably transfected with a 6OSE2 (Osteoblast-Specific Element 2)-luciferase reporter and cultured under simulated microgravity (SMG) and hypergravity (HG) conditions in the presence or absence of IGF-1, the disintegrin echistatin, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, or combinations of these agents. Activity of core-binding factor α1 (Cbfa1), an essential transcription factor for osteoblastic differentiation and osteogenesis, was reflected by luciferase activity. Different gravity conditions affected the induction of IGF-1 and subsequent effects on Cbfa1 transcription activity. SMG and HG influenced the expression and activity of integrin αvβ3 and phosphorylation level of p85. LY294002 inhibited the effects of HG or IGF-1 on Cbfa1 activity, indicating that HG and IGF-1 could increase Cbfa1 activity via PI3K signaling. Inhibition of integrin αvβ3 by echistatin attenuated the induction of IGF-1 and thus its effect on Cbfa1 activity under normal and HG conditions. Co-immunoprecipitation demonstrated that integrin β3 interacted with insulin receptor substrate 1, and that this interaction was decreased under SMG and increased under HG conditions. These results suggest that integrin αvβ3 mediates the synergetic regulation of Cbfa1 transcription activity by gravity and IGF-1 via PI3K signaling.

  10. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  11. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activ