Science.gov

Sample records for active crater lake

  1. Crater Lake revealed

    USGS Publications Warehouse

    Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.

    2003-01-01

    Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades. Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.

  2. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    USGS Publications Warehouse

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon

  3. Leakage of Active Crater lake brine through the north flank at Rincón de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    NASA Astrophysics Data System (ADS)

    Kempter, K. A.; Rowe, G. L.

    2000-04-01

    The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic ( pH˜0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of

  4. Crater Lake: blue through time

    USGS Publications Warehouse

    Larson, Gary L.; Buktenica, Mark; Collier, Robert

    2003-01-01

    Blue is the color of constancy, hence the term true blue. The unearthly blueness of Crater Lake reflects its pristine character and gives scientists a focal point for studying human impacts on aquatic environments over long periods of time. Scientists with the U.S. Geological Survey (USGS), National Park Service, and Oregon State University have systematically studied the lake for the last two decades. Long-term monitoring of this lake is a priority of Crater Lake National Park and will continue far into the future.

  5. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  6. Speciation: Genomic Archipelagos in a Crater Lake.

    PubMed

    Ronco, Fabrizia; Salzburger, Walter

    2016-03-01

    The opening stages of speciation remain poorly understood, especially from a genomic perspective. The genomes of newly discovered crater-lake cichlid fish shed light on the early phases of diversification and suggest that selection acts on multiple genomic regions.

  7. Crater lake colonization by neotropical cichlid fishes.

    PubMed

    Elmer, Kathryn R; Lehtonen, Topi K; Fan, Shaohua; Meyer, Axel

    2013-01-01

    Volcanic crater lakes are isolated habitats that are particularly well suited to investigating ecological and evolutionary divergence and modes of speciation. However, the mode, frequency, and timing of colonization of crater lakes have been difficult to determine. We used a statistical comparative phylogeographic approach, based on a mitochondrialDNA dataset, to infer the colonization history of two Nicaraguan crater lakes by populations of genetically and ecologically divergent cichlid lineages: Midas (Amphilophus cf. citrinellus complex) and moga (Hypsophrys nematopus). We compared estimates of diversity among populations within the two cichlid lineages and found that Midas were the most genetically diverse. From an approximate Bayesian computation analysis, we inferred that the crater lakes were each founded by both cichlid lineages in single waves of colonization: Masaya 5800 ± 300 years ago and Xiloá 5400 ± 750 years ago. We conclude that natural events are likely to have a dominant role in colonization of the crater lakes. Further, our findings suggest that the higher species richness and more rapid evolution of the Midas species complex, relative to other lineages of fishes in the same crater lakes, cannot be explained by earlier or more numerous colonization events.

  8. Analytical laboratory comparison of major and minor constituents in an active crater lake

    NASA Astrophysics Data System (ADS)

    Takano, B.; Fazlullin, S. M.; Delmelle, P.

    2000-04-01

    The crater lake water from Maly Semiachik volcano in Kamchatka was used for the international analytical laboratory comparison of major and minor elements, and hydrogen, sulfur, and oxygen isotope data. Eight institutions participated in this program, giving analytical results of 9 major and 20 minor elements mainly by using ICP-AES for cations and IC for anions. Among the major elements, Na, Mg and Si showed coefficients of variation (CV) of 10% or more, whereas B, Al, Fe, Mn had coefficients less than 7%. The CV% of the minor elements Co, Cu, P, Cr, Pb was much greater (>30%) while the V analyses agreed well (<10%). Ti, Sr, Zn, and F were intermediate (between 10 and 20 CV%). The errors observed for these constituents are inherent to the methods applied: large dilutions and spectrometric interferences. Even the major anions such as Cl (>2000 ppm) and SO 4 (>5000 ppm) gave considerable ranges (5.1 and 8.8 CV%, respectively) as did the obtained pH values (22 CV%). The measured δ18O of the water samples and δ34S of sulfate are in excellent agreement but the δD values had CV% of 8. Technical recommendations are presented to improve the analytical results for these elements with significant deviations from the mean values.

  9. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  10. Discovery of an Active Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Lanoil, B.; Thorsteinsson, T.; Graham, A.; Skidmore, M.; Decarlo, E.; Popp, B.

    2002-12-01

    Grímsvötn, an active volcano beneath the Vatnajökull glacier in Iceland, hosts a subglacial caldera lake (Gudmundsson, Sigmundsson and Björnsson 1997 Nature 389, 954). Except for earlier geochemical measurements (Ágústsdóttir and Brantley 1994 J. Geophys. Res. 99, 9505), the lake and its possible biota have remained unexplored. In June 2002 we penetrated the 300-meter ice sheet over the lake using hot-water drilling and collected water and tephra sediment samples. The 85oC drilling water and chemical sterilization of equipment were used to minimize sample contamination. Samples of borehole water, glacial ice, and snow were also obtained. Lake water was at the freezing point and samples had no sulfidic smell indicative of anaerobic conditions. One sample from the borehole actively degassed after retrieval. Waters were slightly acidic (pH ≈ 5) and fresh ([Na] = 5 ppm) with low sulfate (2 ppm). Elevated transition metal levels measured by ICP-MS are being analyzed. Direct (DAPI stain) cell counts in water and sediment average 2 x 104 cells ml-1 and 4 x 107 cells ml-1, respectively. Counts on R2A plates incubated under aerobic conditions at 22oC and 6oC for one week were 1-2 x 104 and 5 x 103 CFU/ml, respectively. These values may reflect growth during sample shipment, however, growth at 6oC indicates the presence of psychrophilic or at least psychrotolerant organisms in the lake. Colonies from lake and post-penetration borehole samples were distinct from those of the borehole, ice and snow. Incubations of lake samples at 4oC showed incorporation of 14C (from bicarbonate). Incubations of other aliquots with a nitrogen-acetylene mixture indicated production of ethylene suggestive of nitrogenase activity. DNA will be extracted and analyzed to determine if the microbial community is distinct from that in the overlying snow and ice.

  11. Crater Lake Revealed: Using GIS to Visualize and Analyze Postcaldera Volcanoes Beneath Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Robinson, J. E.; Dartnell, P.; Bacon, C. R.; Gardner, J. V.; Mayer, L. A.; Buktenica, M. W.

    2001-12-01

    formed at ~90, 250, and 480 years after the lake began to fill. Combining volume calculations determined with GIS and age information from the lake filling model, oldest to youngest Wizard Island minimum eruption rates are 8.4x106 m3/yr, 6.5x106 m3/yr, and 3.6x106 m3/yr. These are comparable to rates calculated for the central platform volcano using the same approach. The minimum eruption rate for the entire 4 km3 of postcaldera andesite erupted from ~90 to 480 years after caldera formation is 8.4x106 m3/yr, which is comparable to historic rates of lava effusion at arc volcanoes. The cessation of postcaldera volcanic activity at Crater Lake, ~4,900 years ago, is marked by subaqueous extrusion of a 0.074 km3 rhyodacite dome on the east flank of Wizard Island.\\J.V. Gardner et. al., 2001, USGS Water Resources Investigations Report 01-4046; http://walrus.wr.usgs.gov/pacmaps\\M. Nathenson et. al., 2001, Models for the Filling of Crater Lake, Oregon (this meeting)

  12. The Lake Bosumtwi impact crater, Ghana

    USGS Publications Warehouse

    Jones, William B.; Bacon, Michael; Hastings, David A.

    1981-01-01

    Analogy with better-known craters suggests that Bosumtwi has a central uplift rising to 200 m beneath the lake floor. An aeromagnetic anomaly of amplitude 50 nanotesla (nT) over the northern half of the lake is interpreted as due to a layer of magnetized fallback breccia beneath the lake sediments. The normal polarity of the breccia shows that the crater was formed during the normal Jaramillo event of 0.97 to 0.85 m.y. ago, which agrees with the magnetic stratigraphy of the related Ivory Coast microtektites. A regional gravity survey indicates a negative Bouguer anomaly over the crater. There is some geochemical evidence that the meteorite was an iron, and its mass and energy are suggested as about 108 tons and 3 × 1019 joules or 7.3 × 103 megatons.

  13. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Elysium Basin. According to the Amazonian age of Gale's floor, and the erosion direction in the crater, a flood from Elysium Basin is the most likely event to explain the material observed in Gale, and the formation of the last lake. This last flood may have been important enough to flood the central deposit up to about 1400 m above the crater floor, leaving two islands (non stream lined features) at the center of the deposit. Terrace spacing suggests a regular drop of the lake level in time. Fractures in terraces perpendicular to the shoreline can be interpreted either as: (a) the result of the drainage systems during the waning of the lake, or (b) traces of the pressure of an ice-covered sheet associated with subglacial drainage. The presence of a lake of such volume during the Amazonian period is one more evidence that water was still active on Mars relatively recently. Gale crater offers the rare opportunity to unveil a key-period of the martian history. The Amazonian might proved not as cold and dry as previously thought. The presence of large lakes and basins (Elysium Basin is large as the Mediterranean Sea), reinforces the model of an extensive water activity during the Amazonian that has still to be understood in the context of an assumed cooling and drying planet. The sediments and rocks that were left of this period in Gale keep the record of the climatic conditions of the Amazonian and the clues that are missing to understand the climatic evolution of Mars. In addition, Gale crater presents the advantage to be located at the plateau/plain boundary, which has never been studied and contains information about the two main martian geological units. As a conclusion, we propose a table that summarizes the worthiness of a mission in Gale crater, and the expected science return relative to the objectives to be met by the Surveyor Program. Additional information contained in the original.

  14. Speciation: Genomic Archipelagos in a Crater Lake.

    PubMed

    Ronco, Fabrizia; Salzburger, Walter

    2016-03-01

    The opening stages of speciation remain poorly understood, especially from a genomic perspective. The genomes of newly discovered crater-lake cichlid fish shed light on the early phases of diversification and suggest that selection acts on multiple genomic regions. PMID:26954438

  15. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  16. Overview of the limnology of crater lake

    USGS Publications Warehouse

    Larson, G.L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the Zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions. ?? 1996 by the Northwest Scientific Association. All rights reserved.

  17. Overview of the limnology of Crater Lake

    USGS Publications Warehouse

    Larson, Gary L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions.

  18. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  19. Subaqueous geology and a filling model for Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  20. Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes

    USGS Publications Warehouse

    Phillips, Kenneth N.; Van Denburgh, A.S.

    1968-01-01

    Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent

  1. Distribution, Classification, and Ages of Martian Impact Crater Lakes

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.

    1999-11-01

    Paleolakes in impact craters on Mars are characterized at global scale using the Viking Orbiter data. We identified 179 paleolakes in impact structures formed by the influx of water and sediment derived from valley networks and channels that can be classified into three different fluviolacustrine systems: closed, open, and lake-chain systems. We show the hydrogeologic implications for each of the three systems and their significance in terms of duration of fluviolacustrine activity. This study provides a catalog of areographic, physical, and physiographic data for each of the studied impact crater lakes, associated with the description of the sedimentary structures observed. It also identifies environments where life and/or precursors to life could have found favorable conditions to evolve.

  2. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Crater Lake National Park. 7.2 Section 7.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.2 Crater Lake National Park. (a)...

  3. Representative freshwater bacterioplankton isolated from Crater Lake, Oregon.

    PubMed

    Page, Kathleen A; Connon, Stephanie A; Giovannoni, Stephen J

    2004-11-01

    High-throughput culturing (HTC) methods that rely on dilution to extinction in very-low-nutrient media were used to obtain bacterial isolates from Crater Lake, Oregon. 16S rRNA sequence determination and phylogenetic reconstruction were used to determine the potential ecological significance of isolated bacteria, both in Crater Lake and globally. Fifty-five Crater Lake isolates yielded 16 different 16S rRNA gene sequences. Thirty of 55 (55%) Crater Lake isolates had 16S rRNA gene sequences with 97% or greater similarity to sequences recovered previously from Crater Lake 16S rRNA gene clone libraries. Furthermore, 36 of 55 (65%) Crater Lake isolates were found to be members of widely distributed freshwater groups. These results confirm that HTC is a significant improvement over traditional isolation techniques that tend to enrich for microorganisms that do not predominate in their environment and rarely correlate with 16S rRNA gene clone library sequences. Although all isolates were obtained under dark, heterotrophic growth conditions, 2 of the 16 different groups showed evidence of photosynthetic capability as assessed by the presence of puf operon sequences, suggesting that photoheterotrophy may be a significant process in this oligotrophic, freshwater habitat.

  4. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  5. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  6. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  7. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  8. Warm Brine Lakes in Craters of Active Mud Volcanoes, Menes Caldera off NW Egypt: Evidence for Deep-Rooted Thermogenic Processes

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Mascle, J.; Foucher, J. P.; Woodside, J. M.; Pierre, C.

    2015-12-01

    The Menes caldera is a fault-controlled depression (~8 km in diameter) at ~3,000 m water depth in the western province of the Nile deep-sea fan off NW Egypt, comprising seven mud volcanoes (MVs) of which two are active. Based on multichannel and chirp seismic data, temperature profiles, and high-resolution bathymetric data collected during several oceanographic expeditions, the present study investigates factors controlling mud volcano morphology, the geometry of feeder channels, and the origin of emitted fluids (Dupré et al. 2014). The active Cheops and Chephren mud volcanoes are 1,500 m wide with subcircular craters at their summits, about 250 m in diameter, generally a few tens of metres deep, and filled with methane-rich muddy brines with temperatures reaching 42 °C and 57 °C respectively. Deployments of CTDs and corers with attached temperature sensors tracked these warm temperatures down to almost 0.5 km depth below the brine lake surface at the Cheops mud volcano, in a feeder channel probably only a few tens of metres wide. Thermogenic processes involve the dissolution of Messinian evaporites by warm fluids likely sourced even deeper, i.e. 1.7 and 2.6 km below the seabed at the Cheops and Chephren MVs respectively, and which ascend along listric faults. Seepage activity appears broadly persistent since the initiation of mud volcanism in the Early Pliocene, possibly accompanied by lateral migration of feeder channels.

  9. Seismic investigation of the Lake Bosumtwi impact crater: preliminary results

    NASA Astrophysics Data System (ADS)

    Karp, Tobias; Milkereit, Bernd; Janle, Peter; Danuor, Sylvester K.; Pohl, Jean; Berckhemer, Hans; Scholz, Christopher A.

    2002-06-01

    The Lake Bosumtwi impact crater in Ghana, West Africa, has a diameter of 10.5 km and is one of the youngest ( 1.07 Ma) well-preserved large craters on Earth. It has a total dynamic range of topography of more than 400 m, and it is the source crater of tektites and microtektites of the Ivory Coast strewn field. The crater was excavated in early Proterozoic rocks. According to its size, the Bosumtwi impact crater should be a complex impact structure, with a central peak. Multichannel seismic (MCS) reflection and wide angle data, using Ocean-Bottom-Hydrophones (OBHs), were acquired in order to investigate the structure's subsurface, image the presumed central uplift and determine the thickness of impact-related formations and the post-impact sediments. An integrated interpretation of the seismic data sets, and modelling and inversion of the OBH data yield an initial 2D velocity-depth model, which shows indications for a central peak feature. Due to the relatively low seismic velocity ( 3.0 km s -1) of the corresponding layer, the top of the uplifted structure is interpreted to consist of allochthonous breccia. The central peak has a width of ˜1.8 km and a maximum height of 120 m above the top of the breccia away from the center. Fracturing may be responsible for the relatively low velocity of 3.8 km s -1 in the crater floor. The post-impact sediments covering the crater structure are 180- 300 m thick. The apparent crater depth, defined as the difference between the original target surface and the top of the breccia layer, is ˜550 m and thereby slightly deeper than some other larger complex impact structures on Earth. The results indicate that the Lake Bosumtwi impact structure provides an interesting setting for scientific drilling of a young large impact crater and will be supplemented by complimentary recent geophysical (potential field) and possibly future drilling studies.

  10. Deglacial and postglacial evolution of the Pingualuit Crater Lake basin, northern Québec (Canada)

    NASA Astrophysics Data System (ADS)

    Desiage, Pierre-Arnaud; Lajeunesse, Patrick; St-Onge, Guillaume; Normandeau, Alexandre; Ledoux, Grégoire; Guyard, Hervé; Pienitz, Reinhard

    2015-11-01

    The Pingualuit Crater, located in the Ungava Peninsula (northern Québec, Canada) is a 1.4-Ma-old impact crater hosting a ~ 245-m-deep lake. The lake has a great potential to preserve unique paleoclimatic and paleoecological sedimentary records of the last glacial/interglacial cycles in the terrestrial Canadian Arctic. In order to investigate the stratigraphy in the lake and the late Quaternary glacial history of the Pingualuit Crater, this study compiles data from three expeditions carried out in May 2007 (~ 9-m-long sediment core), in August 2010 (~ 50 km of seismic lines), and in September 2012 (high-resolution terrestrial LiDAR topography of the inner slopes). Despite the weak penetration (~ 10 m) of the 3.5-kHz subbottom profiling caused by the presence of boulders in the sedimentary column, seismic data coupled with the stratigraphy established from the sediment core enabled the identification of two glaciolacustrine units deposited during the final stages of the Laurentide Ice Sheet (LIS) retreat in the crater. Two episodes of postglacial mass wasting events were also identified on the slopes and in the deep basin of the crater. The high-resolution topography of the internal slopes of the crater generated from the LiDAR data permitted the confirmation of a paleolake level at 545 m and determination of the elevation of drainage outlets. Together with the mapping of glacial and deglacial landforms from air photographs, the LiDAR data allowed the development of a new deglaciation and drainage scenario for the Pingualuit Crater Lake and surrounding area. The model proposes three main phases of lake drainage, based on the activation of seven outlets following the retreat of the LIS front toward the southwest. Finally, as opposed to other high-latitude crater lake basins such as Lake El'gygytgyn or Laguna Potrok Aike where high-resolution paleoclimatic records were obtained owing to high sediment accumulation rates, the seismic data from the Pingualuit Crater Lake

  11. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times

    PubMed Central

    2010-01-01

    .001). Conclusions This study provides empirical evidence of eco-morphological differentiation occurring very quickly after the colonization of a new and vacant habitat. Exceptionally low levels of neutral genetic diversity and inference from coalescence indicates that the Midas cichlid population in Apoyeque is much younger (ca. 100 years or generations old) than the crater itself (ca. 1 800 years old). This suggests either that the crater remained empty for many hundreds of years after its formation or that remnant volcanic activity prevented the establishment of a stable fish population during the early life of the crater lake. Based on our findings of eco-morphological variation in the Apoyeque Midas cichlids, and known patterns of adaptation in Midas cichlids in general, we suggest that this population may be in a very early stage of speciation (incipient species), promoted by disruptive selection and ecological diversification. PMID:20459869

  12. Models for the Filling of Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Bacon, C. R.; Gardner, J. V.

    2001-12-01

    Crater Lake partially fills, to a depth of 593 m, the 10-km-diameter, 1200-m-deep caldera formed by collapse of Mount Mazama volcano. The lake receives water from direct precipitation and inflow from the caldera walls and loses water by surface evaporation and leakage. No streams flow from Crater Lake. A high-resolution multibeam echo sounding survey of the lake floor conducted in 2000 (Gardner et al., 2001) revealed seven drowned beaches between 1849 and 1878 m elevation (reference lake elevation is 1883 m). The beaches are thought to reflect drier periods in the lake's history since the climactic, caldera-forming eruption of Mount Mazama, approximately 7,700 years ago. The shallowest drowned beach at 1878 m represents the deepest part of a wave-cut platform up to 100 m wide, substantially wider than any of the beaches, where erodible talus or intensely altered rocks are present. The great width of the platform compared to the width of the drowned beaches indicates that the lake has mostly been near its current level during the lake's history. Unambiguous evidence of former highstands above 1883 m has not been reported. In order to explain the occurrence of the drowned beaches and their relatively narrow depth range, leakage through the caldera walls must vary with depth and cannot occur just at the lake bottom or at the modern lake level. A reasonable model is that leakage is proportional to elevation above the bottom of the lake. Recognition that there is a thick layer of relatively permeable debris resting on glaciated lava in the northeast caldera wall above an elevation of 1845 m suggests a variant of this model where leakage is proportional to elevation above 1845 m. Climate studies indicate that Crater Lake began to fill during a dry period. Assuming that precipitation at that time was 70% of modern and that the beach at 1853 m (the deeper beach is somewhat suspect) corresponds to this amount of precipitation, a combination of the above leakage models is

  13. The Geology and Petrography of Crater Lake National Park

    USGS Publications Warehouse

    Diller, Joseph Silas; Patton, Horace Bushnell

    1902-01-01

    Origin of the name Mount Mazama - A great impetus to the spread of information concerning Crater Lake was given by the Mazamas of Portland, Oreg., who held a meeting at the lake in August, 1896, which attracted many visitors. The principal features in the history of the lake had previously been made out, and the Mazamas, recognizing the fact that the great peak which was nearly destroyed in preparing the pit for the lake had no name, gave it the name of their own society. Upon the rim of the lake are a number of small peaks, each having its own designation. The term Mount Mazama refers to the whole rim encircling the lake. It is but a mere remnant of the once lofty peak, the real Mount Mazama, which rose far into the region of eternal snow. To get a basis for reconstructing the original Mount Mazama it is necessary to study in detail the structure and composition of its foundation, now so attractively displayed in the encircling cliffs of Crater Lake.

  14. Detecting long-term hydrological patterns at Crater Lake, Oregon

    USGS Publications Warehouse

    Peterson, D.L.; Silsbee, D.G.; Redmond, Kelly T.

    1999-01-01

    Tree-ring chronologies for mountain hemlock (Tsuga mertensiana) were used to reconstruct the water level of Crater Lake, a high-elevation lake in the southern Cascade Range of Oregon. Reconstructions indicate that lake level since the late 1980s has been lower than at any point in the last 300 years except the early 1930s to mid 1940s. Lake level was consistently higher during the Little Ice Age than during the late 20th century; during the late 17th century, lake level was up to 9 m higher than recent (1980s and 1990s) low levels, which is consistent with paleoclimalic reconstructions of regional precipitation and atmospheric pressure. Furthermore, instrumental data available for the 20th century suggest that there are strong teleconnections among atmospheric circulation (e.g., Pacific Decadal Oscillation), tree growth, and hydrology in southern Oregon. Crater Lake is sensitive to interannual, interdecadal and intercentenary variation in precipitation and atmospheric circulation, and can be expected to track both short-term and longterm variation in regional climatic patterns that may occur in the future.

  15. 2005 Crater Lake Formation, Lahar, Acidic Flood, and Gas Emission From Chiginagak Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Schaefer, J. R.; Scott, W. E.; McGimsey, R. G.; Jorgenson, J.

    2005-12-01

    A 400-m-wide crater lake developed in the formerly snow-and-ice-filled crater of Mount Chiginagak volcano sometime between August 2004 and June 2005, presumably due to increased heat flux from the hydrothermal system. We are also evaluating the possible role of magma intrusion and degassing. In early summer 2005, clay-rich debris and an estimated 5.6 million cubic meters of acidic water from the crater exited through tunnels in the base of a glacier that breaches the south crater rim. Over 27 kilometers downstream, the acidic waters of the flood reached approximately 1.5 meters above current water levels and inundated an important salmon spawning drainage, acidifying at least the surface water of Mother Goose Lake (approximately 1 cubic kilometer in volume) and preventing the annual salmon run. No measurements of pH were taken until late August 2005. At that time the pH of water sampled from the Mother Goose Lake inlet, lake surface, and outlet stream (King Salmon River) was 3.2. Defoliation and leaf damage of vegetation along affected streams, in areas to heights of over 70 meters in elevation above flood level, indicates that a cloud of detrimental gas or aerosol accompanied the flood waters. Analysis of stream water, lake water, and vegetation samples is underway to better determine the agent responsible for the plant damage. This intriguing pattern of gas-damaged vegetation concentrated along and above the flood channels is cause for further investigation into potential hazards associated with Chiginagak's active crater lake. Anecdotal evidence from local lodge owners and aerial photographs from 1953 suggest that similar releases occurred in the mid-1970s and early 1950s.

  16. Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ruff, S. W.; Niles, P. B.; Alfano, F.; Clarke, A. B.

    2014-01-01

    Gusev crater was selected as the landing site for the Spirit rover because of the likelihood that it contained an ancient lake. Although outcrops rich in Mg-Fe carbonate dubbed Comanche were discovered in the Noachian-aged Columbia Hills, they were inferred to result from volcanic hydrothermal activity. Spirit encountered other mineral and chemical indicators of aqueous activity, but none was recognized as definitive evidence for a former lake in part because none was associated with obvious lacustrine sedimentary deposits. However, water discharge into Martian crater basins like Gusev may have been episodic, producing only small amounts of sediment and shallow ephemeral lakes. Evaporative precipitation from such water bodies has been suggested as a way of producing the Mg- and Fe-rich carbonates found in ALH84001 and carbonates and salts in some nakhlites a hypothesis we examine for the Comanche carbonate.

  17. Effect of glacier ablation on the Snettisham Hydroelectric Project, Long Lake and Crater Lake Basins, Alaska

    USGS Publications Warehouse

    Sloan, C.E.; Emery, P.A.; Fair, Diana

    1986-01-01

    Long Lake Basin in the Snettisham Project Area southeast of Juneau, Alaska, yields water used for the production of hydroelectric power. Development of adjacent Crater Lake is planned to increase the Project 's generating capacity. Estimates of the hydroelectric potential of the lakes are based on streamflow records which are influenced by glaciers that cover 25% of the combined basins. Analysis of streamflow records shows that the quality and extent of records in the area are sufficient to predict flow from the Crater Creek basin with a fairly high degree of confidence. Comparison of aerial photographs indicates that glacier ablation and recession have been continuous since at least 1929. Estimates of ice-volume change from photogrammetric measurements indicate that less than 2.5% of the average runoff from the basins of Long and Crater Lakes has been from reduction in glacier-ice storage. (Author 's abstract)

  18. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  19. An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars

    NASA Technical Reports Server (NTRS)

    Leverington, D. W.; Maxwell, T. A.

    2004-01-01

    The association of channels, inner terraces, and delta-like features with Martian impact craters has previously been interpreted as evidence in favor of the past existence of crater lakes on Mars. However, examination of a candidate crater-lake system in western Memnonia suggests instead that its features may have formed through igneous processes involving the flow and ponding of lava. Accumulations of material in craters and other topographic lows throughout much of the study region have characteristics consistent with those of volcanic deposits, and terraces found along the inner flanks of some of these craters are interpreted as having formed through drainage or subsidence of volcanic materials. Channels previously identified as inlets and outlets of the crater-lake system are interpreted instead as volcanic rilles. These results challenge previous interpretations of terrace and channel features in the study region and suggest that candidate crater lakes located elsewhere should be reexamined.

  20. Ultraviolet radiation and bio-optics in Crater Lake, Oregon

    USGS Publications Warehouse

    Hargreaves, B.R.; Girdner, S.F.; Buktenica, M.W.; Collier, R.W.; Urbach, E.; Larson, G.L.

    2007-01-01

    Crater Lake, Oregon, is a mid-latitude caldera lake famous for its depth (594 m) and blue color. Recent underwater spectral measurements of solar radiation (300-800 nm) support earlier observations of unusual transparency and extend these to UV-B wavelengths. New data suggest that penetration of solar UVR into Crater Lake has a significant ecological impact. Evidence includes a correlation between water column chlorophyll-a and stratospheric ozone since 1984, the scarcity of organisms in the upper water column, and apparent UV screening pigments in phytoplankton that vary with depth. The lowest UV-B diffuse attenuation coefficients (K d,320) were similar to those reported for the clearest natural waters elsewhere, and were lower than estimates for pure water published in 1981. Optical proxies for UVR attenuation were correlated with chlorophyll-a concentration (0-30 m) during typical dry summer months from 1984 to 2002. Using all proxies and measurements of UV transparency, decadal and longer cycles were apparent but no long-term trend since the first optical measurement in 1896. ?? 2007 Springer Science+Business Media B.V.

  1. Gas bursts from cameroon crater lakes: a new natural hazard.

    PubMed

    Sigurdsson, H

    1988-06-01

    Gas bursts from tropical crater lakes constitute a hitherto unrecognized natural hazard, which claimed 37 lives around Lake Monoun in 1984 and 1,746 lives in 1986 around Lake Nyos in Cameroon, west Africa. Studies of these events indicate that the lethal gas clouds were dominantly CO(2) which exsolved catastrophically from deep waters of the lakes, producing in the case of Lake Nyos a gas cloud of 1.94 times 10(6) tons CO(2) . Carbon-isotope data indicate a magmatic source of the carbon dioxide, but the geochemistry of deep water and gases does not support a sudden injection of volcanic gas from a deep source into the lakes. Rather, it is proposed that the gas bursts were preceded by gradual build-up of dissolved bicarbonate in deep waters, where anoxic conditions in enclosed and stagnant basins led to low pH and pCO(2) close to saturation. Steady input from the Earth's mantle to submerged mofettes or CO(2) -rich soda springs within the lakes is most likely the primary source of carbon dioxide. Lethal effects of the gas bursts are almost entirely due to CO(2) -induced asphyxia. A small percentage of victims awoke from coma one or two days after the event, but most died. Unusual skin lesions on about 5% of victims arose from the comatose state. It is shown that the mass of gas required to account for the lethal effects and observed gas clouds is an order of magnitude less than the potential gas yield from the lakes. In view of the lethal gas bursts from the small Cameroon lakes, the potential hazard of future gas bursts from other much larger density-stratified equatorial lakes must be seriously considered, particularly in Lake Kivu in east Africa, where methane and carbon dioxide gas content is higher by two to four orders of magnitude than that of the Cameroon lakes. A gas burst from Lake Kivu would form a carbon dioxide cloud up to 340 km(3) in volume and expansion of the exsolving gas from deep water to atmospheric pressure would correspond to an energy release

  2. Gas bursts from cameroon crater lakes: a new natural hazard.

    PubMed

    Sigurdsson, H

    1988-06-01

    Gas bursts from tropical crater lakes constitute a hitherto unrecognized natural hazard, which claimed 37 lives around Lake Monoun in 1984 and 1,746 lives in 1986 around Lake Nyos in Cameroon, west Africa. Studies of these events indicate that the lethal gas clouds were dominantly CO(2) which exsolved catastrophically from deep waters of the lakes, producing in the case of Lake Nyos a gas cloud of 1.94 times 10(6) tons CO(2) . Carbon-isotope data indicate a magmatic source of the carbon dioxide, but the geochemistry of deep water and gases does not support a sudden injection of volcanic gas from a deep source into the lakes. Rather, it is proposed that the gas bursts were preceded by gradual build-up of dissolved bicarbonate in deep waters, where anoxic conditions in enclosed and stagnant basins led to low pH and pCO(2) close to saturation. Steady input from the Earth's mantle to submerged mofettes or CO(2) -rich soda springs within the lakes is most likely the primary source of carbon dioxide. Lethal effects of the gas bursts are almost entirely due to CO(2) -induced asphyxia. A small percentage of victims awoke from coma one or two days after the event, but most died. Unusual skin lesions on about 5% of victims arose from the comatose state. It is shown that the mass of gas required to account for the lethal effects and observed gas clouds is an order of magnitude less than the potential gas yield from the lakes. In view of the lethal gas bursts from the small Cameroon lakes, the potential hazard of future gas bursts from other much larger density-stratified equatorial lakes must be seriously considered, particularly in Lake Kivu in east Africa, where methane and carbon dioxide gas content is higher by two to four orders of magnitude than that of the Cameroon lakes. A gas burst from Lake Kivu would form a carbon dioxide cloud up to 340 km(3) in volume and expansion of the exsolving gas from deep water to atmospheric pressure would correspond to an energy release

  3. Hydrochemical dynamics of the “lake spring” system in the crater of El Chichón volcano (Chiapas, Mexico)

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Taran, Y.; Inguaggiato, S.; Varley, N.; Santiago Santiago, J. A.

    2008-12-01

    El Chichón volcano (Chiapas, Mexico) erupted violently in March-April 1982, breaching through the former volcano-hydrothermal system. Since then, the 1982 crater has hosted a shallow (1-3.3 m, acidic (pH ˜ 2.2) and warm (˜ 30 °C) crater lake with a strongly varying chemistry (Cl/SO 4 = 0-79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake-spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ 18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.

  4. Seasonal variations in geochemistry of the hyperacidic Ijen Crater Lake, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sumarti, S.; Sumarti, S.; van Bergen, M. J.; Takano, B.; Sukarnen, S.

    2001-12-01

    Kawah Ijen is a typical crater lake in a tropical climate where there is a balance between the volume of atmospheric precipitation and the level of water in the lake. The crater lake has a regular oval form (600 x 1000 m2), is 180 m deep, and contains about 36 million m3 of turquoise-green colored water (pH ~ 0.2). The water contains extremely high Cl, SO4, F concentrations, the maximum values being about 2,500 mg/kg, 80,000 mg/kg and 1,300 mg/kg respectively. Twenty-four samples of lake water taken during August 1996 (dry season) show most major elements to be homogeneously distributed throughout the lake at this time to a depth of 165 m within a standard deviation of less than 10 %. Homogeneity is most likely due to thorough mixing driven by thermal convection. However, iron and sulphur do not behave in the same way showing variations up to 14 % variation. Monthly monitoring of surface water (1997-2001) shows temporal fluctuations in acidity (pH 0 ~ 0.6) and water level, concentrations of major elements, temperature (20 ~ 45° C). Between 1976-1996, the water level varied by ~ 15 m; and from 1997-2001 by ~ 10 m. The onset of the wet season may coincide with an episodical decrease, a spike, in major element concentrations up to 70 % of their dry season value. This spike occurs annually at the lowest temperature and highest degree of dilution, indicates of the influence of rainfall. However, volcanic gases entering beneath the lake bottom may have added to these temporal changes in the lake especially during phreatic eruptions. Shallow earthquake records do not indicate correlations between seismic activity and chemical changes in the lake. Temporal variations of lake surface temperature show good agreement with major element variations in surface water. Crater lake surface water collected at three points on August 1996, March 2001, May 2001 revealed that the surface water was homogenous in the dry and rainy season within a standard deviation below 7 %. The

  5. Distribution and abundance of zooplankton populations in Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; McIntire, C.D.; Buktenica, M.W.; Girdner, S.F.; Truitt, R.E.

    2007-01-01

    The zooplankton assemblages in Crater Lake exhibited consistency in species richness and general taxonomic composition, but varied in density and biomass during the period between 1988 and 2000. Collectively, the assemblages included 2 cladoceran taxa and 10 rotifer taxa (excluding rare taxa). Vertical habitat partitioning of the water column to a depth of 200 m was observed for most species with similar food habits and/or feeding mechanisms. No congeneric replacement was observed. The dominant species in the assemblages were variable, switching primarily between periods of dominance of Polyarthra-Keratella cochlearis and Daphnia. The unexpected occurrence and dominance of Asplanchna in 1991 and 1992 resulted in a major change in this typical temporal shift between Polyarthra-K. cochlearis and Daphnia. Following a collapse of the zooplankton biomass in 1993 that was probably caused by predation from Asplanchna, Kellicottia dominated the zooplankton assemblage biomass between 1994 and 1997. The decline in biomass of Kellicottia by 1998 coincided with a dramatic increase in Daphnia biomass. When Daphnia biomass declined by 2000, Keratella biomass increased again. Thus, by 1998 the assemblage returned to the typical shift between Keratella-Polyarthra and Daphnia. Although these observations provided considerable insight about the interannual variability of the zooplankton assemblages in Crater Lake, little was discovered about mechanisms behind the variability. When abundant, kokanee salmon may have played an important role in the disappearance of Daphnia in 1990 and 2000 either through predation, inducing diapause, or both. ?? 2007 Springer Science+Business Media B.V.

  6. Long-term limnological research and monitoring at Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Collier, R.; Buktenica, M.

    2007-01-01

    Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.

  7. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  8. Comparative physiographic diagrams of Mount St. Helens, Washington, and Crater Lake, Oregon

    USGS Publications Warehouse

    Alpha, Tau Rho; Morley, Jim M.

    1983-01-01

    These physiographic diagrams provide a visual comparison of two Cascade Range volcanoes which have had their tops destroyed in different ways -- Mount St. Helens in 1980, Mount Mazama (whose site is now occupied by Crater Lake) about 6,800 years ago. Both volcanoes are viewed from the north from 30 degrees above the horizon, with no vertical exaggeration. The ground area portrayed in each diagram is equal; the south edge of the Mount St. Helens drawing is lower than that of Crater Lake drawing because elevations drop away toward the south, whereas elevations are more constant at the north and south edges of the Crater Lake diagram. 

  9. Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Bani, Philipson; Oppenheimer, Clive; Varekamp, Johan C.; Quinou, Thomas; Lardy, Michel; Carn, Simon

    2009-12-01

    Ambae (also known as Aoba), is a 38 × 16 km 2 lozenge-shaped island volcano with a coastal population of around 10 000. At the summit of the volcano is lake Voui — one of the largest active crater lakes worldwide, with 40 × 10 6 m 3 of acidic water perched 1400 m a.s.l. After more than 300 years of dormancy, Ambae volcano reawakened with phreatic eruptions through Voui in 1995, and culminating in a series of surtseyan eruptions in 2005, followed by a rapid and spectacular colour change of the lake from light blue to red in 2006. Integrating lake water chemistry with new measurements of SO 2 emissions from the volcano during the 2005-2006 eruptive period helps to explain the unusual and spectacular volcanic activity of Ambae — initially, a degassed magma approached the lake bed and triggered the surtseyan eruption. Depressurization of the conduit facilitated ascent of volatile-rich magma from the deeper plumbing system. The construction of a cone during eruption and the high degassing destabilised the equilibrium of lake stratification leading to a limnic event and subsequently the spectacular colour change.

  10. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    PubMed

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  11. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    USGS Publications Warehouse

    Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; Calef, F.; Edgar, Lauren; Fischer, W.F.; Grant, J.A.; Griffes, J.L.; Kah, L.C.; Lamb, M.P.; Lewis, K.W.; Mangold, N.; Minitti, M.E.; Palucis, M.C.; Rice, M.; Williams, R.M.E.; Yingst, R.A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.A.; Dietrich, W.E.; Dromart, G.; Edgett, K.S.; Ewing, R.C.; Gellert, R.; Hurowitz, J.A.; Kocurek, G.; Mahaffy, P.G.; McBride, M.J.; McLennan, S.M.; Mischna, M.A.; Ming, D.; Milliken, R.E.; Newsom, H.; Oehler, D.; Parker, T.J.; Vaniman, D.; Wiens, R.C.; Wilson, S.A.

    2015-01-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  12. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    PubMed

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). PMID:26450214

  13. Convective heat discharge of Wood River group of springs in the vicinity of Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel; Mariner, Robert H.; Thompson, J. Michael

    1994-01-01

    Data sets for spring and stream chemistry are combined to estimate convective heat discharge and discharge anomalous amounts of sodium and chloride for the Wood River group of springs south of Crater Lake. The best estimate of heat discharge is 87 MWt based on chloride inventory; this value is 3-5 times the heat input to Crater Lake itself. Anomalous discharges of sodium and chloride are also larger that into Crater Lake. Difference between the chemical and thermal characteristics of the discharge into Crater Lake and those from the Wood River group of springs suggest that the heat sources for the two systems may be different, although both ultimately related to the volcanic system.

  14. Lonar Lake, India: An impact Crater in basalt

    USGS Publications Warehouse

    Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.

    1973-01-01

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  15. Lonar lake, India: an impact crater in basalt.

    PubMed

    Fredriksson, K; Dube, A; Milton, D J; Balasundaram, M S

    1973-05-25

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  16. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  17. Paenibacillus baekrokdamisoli sp. nov., isolated from soil of crater lake.

    PubMed

    Lee, Keun Chul; Kim, Kwang Kyu; Kim, Jong-Shik; Kim, Dae-Shin; Ko, Suk-Hyung; Yang, Seung-Hoon; Lee, Jung-Sook

    2016-05-01

    A novel bacterial strain, Back-11T, was isolated from sediment soil of a crater lake, Baekrokdam, Hallasan, Jeju, Republic of Korea. Cells of strain Back-11T were Gram-stain-positive, motile, endospore-forming, rod-shaped and oxidase- and catalase-positive. It contained anteiso-C15 : 0 as the major fatty acid, menaquinone-7 (MK-7) as the predominant isoprenoid quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified aminophospholipids as the main polar lipids, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 45.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain Back-11T was most closely related to Paenibacillus taihuensis THMBG22T (95.5 % similarity) and fell into a clade in the genus Paenibacillus. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain Back-11T represents a novel species in the genus Paenibacillus, for which the name Paenibacillus baekrokdamisoli sp. nov. is proposed. The type strain is Back-11T ( = KCTC 33723T = CECT 8890T). PMID:26868819

  18. Paenibacillus baekrokdamisoli sp. nov., isolated from soil of crater lake.

    PubMed

    Lee, Keun Chul; Kim, Kwang Kyu; Kim, Jong-Shik; Kim, Dae-Shin; Ko, Suk-Hyung; Yang, Seung-Hoon; Lee, Jung-Sook

    2016-05-01

    A novel bacterial strain, Back-11T, was isolated from sediment soil of a crater lake, Baekrokdam, Hallasan, Jeju, Republic of Korea. Cells of strain Back-11T were Gram-stain-positive, motile, endospore-forming, rod-shaped and oxidase- and catalase-positive. It contained anteiso-C15 : 0 as the major fatty acid, menaquinone-7 (MK-7) as the predominant isoprenoid quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified aminophospholipids as the main polar lipids, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 45.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain Back-11T was most closely related to Paenibacillus taihuensis THMBG22T (95.5 % similarity) and fell into a clade in the genus Paenibacillus. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain Back-11T represents a novel species in the genus Paenibacillus, for which the name Paenibacillus baekrokdamisoli sp. nov. is proposed. The type strain is Back-11T ( = KCTC 33723T = CECT 8890T).

  19. Degassing of Aso Volcano, Japan through an Acid Crater Lake: Differentiation of Volcanic Gas-Hydrothermal Fluids Deduced from Volcanic Plume Chemistry

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Yoshikawa, S.; Miyabuchi, Y.

    2010-12-01

    Yudamari crater lake at Nakadake, Aso volcano, Japan is a hot and acid crater lake of 200-m-diameter. The active degassing occurs from a fumarolic area and through the crater lake, with SO2 emission of about 500 t/d. The fumarolic area locates at the southern wall of the crater lake shore and its activity is characterized by the high-temperature gas emission indicated by the red-glowing fumaroles. Degassing and evaporation are also intense from the crater lake surface. Since the crater lake is surrounded by steep slope, we cannot reach neither to the crater lake nor the fumarolic area for direct sampling. In order to characterize the degassing activity of these sources and evaluate differentiation process at volcanic-hydrothermal system beneath the crater lake, we conducted measurements of volcanic plumes to estimate composition of gases originating from the two gas sources; the crater lake (lake gas) and the high-temperature fumaroles (fumarolic gas) by the use of the Multi-GAS and alkaline-filter technique. Compositions of the lake gas and fumarolic gas are variable depending of the observation period, but the gases from the two sources have distinct compositions; fumarolic gases have higher CO2/SO2, HCl/SO2 and lower SO2/H2S ratio than the lake gases, but they have similar H2/CO2 ratios. The low HCl and H2S contents of the lake gases indicate the lake gases are derived by evaporation of the lake water, and their HCl/H2O ratios are consistent with this model. However, the high H2 and CO2 content in the lake gases also indicate that the lake gas is a mixture of bubbling gases and evaporation. The H2/CO2 ratio, which is less likely to be changed by dissolution into the lake water, is similar for the fumarolic gas and the lake gas, suggesting that both gases are derived from a common high-temperature fluid. The RH (=log(H2/H2O)) and SO2/H2S ratio of the fumarolic gases range from -2 to -3 and from10 to 30, respectively, corresponding to the apparent equilibrium

  20. Seismic Investigation and Numerical Modeling of the Lake Bosumtwi Impact Crater

    NASA Astrophysics Data System (ADS)

    Karp, T.; Artemieva, N. A.; Milkereit, B.

    2003-02-01

    The Lake Bosumtwi impact crater, Ghana, (age 1.07 Ma, diameter 10.5 km) is one of the youngest and best-preserved complex terrestrial impact structures. It was excavated from hard crystalline target rock and is the source of the Ivory Coast tektite strewn field. It is almost entirely filled by the Lake Bosumtwi.

  1. El Chichón crater lake dynamic based on continuous physical data and mass-heat budget

    NASA Astrophysics Data System (ADS)

    Peiffer, L.; Taran, Y.

    2011-12-01

    The March-April 1982 Plinian eruption of El Chichón volcano destroyed the summit domes system and created a new 200 m deep crater. Since then, a shallow lake (~3 m) with acidic pH (~2.3), and temperature around 30°C appeared in the crater. This lake has never disappeared until now although its volume has suffered important variations from 40,000 m3 to 160,000 m3. Chemical composition of the lake is also highly variable (Cl/SO4 = 0-79 molar ratio), alternating between acid-sulfate and acid-chloride-sulfate composition. These variations can occur very fast within few weeks and are not directly correlated with precipitation. Due to its shallow depth and small volume, El Chichón crater lake is probably one of the most dynamic crater lake on earth. These rapid changes in chemistry and volume reflect the dynamic of one group of geyser-type springs ('Soap Pools springs, SP') located offshore and the input of hydrothermal steam underneath the crater. The SP springs discharge sporadically to the lake neutral waters with Cl content currently around 3000 mg/l, while the condensed steam feeds the lake with Cl-free and SO4-rich acid water. In this study, we present for the first time continuous physical data of the crater lake (temperature, depth, meteoric precipitation, wind velocity, solar radiation, air humidity). These data were registered by a meteorological station and two dataloggers installed inside and outside the lake. Using a mass and heat budget model constrained with these data, we were able to estimate the flux of 'hydrothermal' fluid entering the lake through the sub-lacustrian fumaroles and SP springs. Tracing the variations of the input flux in time can be help to understand the dynamic of the 'crater lake-SP springs-fumaroles' system but also can provide an efficient way of monitoring the volcanic activity. During the observation period, the mean mass flux entering the lake (Min) was respectively of 12 ± 2 kg/s, corresponding to a total heat flux (Ein) of

  2. Ice-Covered Lakes in Gale Crater Mars: The Cold and Wet Hypothesis

    NASA Astrophysics Data System (ADS)

    Kling, Alexandre; Haberle, Robert; McKay, Christopher P.; Bristow, Thomas

    2016-10-01

    Recent geological discoveries from the Mars Science Laboratory provide evidence that Gale crater may have intermittently hosted a fluvio-lacustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. (Grotzinger et al., Science, 350 (6257), 2015). Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars (Bristow et al., Geology, submitted), given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic Lakes as an analog. Using our best estimate for the annual mean surface temperature at Gale at this time (~230K) we computed the thickness of an ice-covered lake. These thickness range from 10-30 meters depending on the ablation rate and ice transparency and would likely inhibit sediments from entering the lake. Thus, a first conclusion is that the ice must not be too cold. Raising the mean temperature to 245K is challenging, but not quite as hard as reaching 273K. We found that a mean annual temperature of 245K ice thicknesses range from 3-10 meters. These values are comparable to the range of those for the Antarctic lakes (3-6 m), and are not implausible. And they are not so thick that sediments cannot penetrate the ice. For the ice-covered lake hypothesis to work, however, a melt water source is needed. This could come from subaqueous melting of a glacial dam in contact with the lakes (as is the case for Lake Untersee) or from seasonal melt water from nearby glaciers (as is the case for the Dry Valley lakes). More work is needed to better assess these possibilities. However, the main advantage of the ice-covered lake model (and the main reason we pursued it) is that it relaxes the requirement for a long-lived active hydrological cycle involving rainfall and runoff, which

  3. Water Quality and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott

    2007-01-01

    We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during

  4. Controls on lava lake level at Halema`uma`u Crater, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.

    2013-12-01

    Lava level is a fundamental measure of lava lake activity, but very little continuous long-term data exist worldwide to explore this aspect of lava lake behavior. The ongoing summit eruption at Kilauea Volcano began in 2008 and is characterized by an active lava lake within the eruptive vent. Lava level has been measured nearly continuously at Kilauea for several years using a combination of webcam images, laser rangefinder, and terrestrial LIDAR. Fluctuations in lava level have been a common aspect of the eruption and occur over several timescales. At the shortest timescale, the lava lake level can change over seconds to hours owing to two observed shallow gas-related processes. First, gas pistoning is common and is driven by episodic gas accumulation and release from the surface of the lava lake, causing the lava level to rise and fall by up to 20 m. Second, rockfalls into the lake trigger abrupt gas release, and lava level may drop as much as 10 m as a result. Over days, cyclic changes in lava level closely track cycles of deflation-inflation (DI) deformation events at the summit, leading to level changes up to 50 m. Rift zone intrusions have caused large (up to 140 m) drops in lava level over several days. On the timescale of weeks to months, the lava level follows the long-term inflation and deflation of the summit region, resulting in level changes up to 140 m. The remarkable correlation between lava level and deflation-inflation cycles, as well as the long-term deformation of the summit region, indicates that the lava lake acts as a reliable 'piezometer' (a measure of liquid pressure in the magma plumbing system); therefore, assessments of summit pressurization (and rift zone eruption potential) can now be carried out with the naked eye. The summit lava lake level is closely mirrored by the lava level within Pu`u `O`o crater, the vent area for the 30-year-long eruption on Kilauea's east rift zone, which is 20 km downrift of the summit. The coupling of these

  5. Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon

    USGS Publications Warehouse

    McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.

    1994-01-01

    A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.

  6. Geophysical Signature of the Lake Bosumtwi Impact Crater from Pre-drilling Site Surveys

    NASA Astrophysics Data System (ADS)

    Banour, S.; Pohl, J.; Menyeh, A.; Milkereit, B.; Boadu, F.

    2006-12-01

    The Bosumtwi impact crater located near Kumasi, Ghana was formed by a meteorite impact about one million years ago and has a diameter of about 10.5 km. Geophysical investigations involving gravity and magnetic measurements were carried out at the Bosumtwi crater to determine the geophysical signature of the crater with the aim of understanding the impact process. Gravity data was acquired on land at 163 locations around the crater area, as well as on the shore of the lake. The separation between the gravity stations was 500 m for profiles which ran radially toward the lake, and 700 1000 m along roads and footpaths which ran parallel to the shore. In addition, marine gravity and magnetic surveys were carried out along 14 north-south and 15 east- west profiles on the lake with a line spacing of 800 m using a Garmin 235 Echo Sounder/GPS as a navigational tool. Results from gravity modelling showed that the gravity signature of the crater is characterized by a negative Bouguer anomaly with an amplitude roughly equal to 18 mgal. The results also indicated a central uplift at 250 m depth below the lake, thus confirming it as a complex impact crater. Magnetic modelling yielded a model for the causative body, which is located north of the central uplift. The model has a magnetic susceptibility of 0.03 SI and extends from 200 to 610 m depth below the lake surface. The causative body has been interpreted as magnetized bodies consisting of thin sheets of suevitic impact formations. These results serve as a contribution to the understanding of the impact process of this young crater.

  7. High rate of schistosomiasis in travelers after a brief exposure to the high-altitude Nyinambuga crater lake, Uganda.

    PubMed

    Lachish, Tamar; Tandlich, Moshik; Grossman, Tamar; Schwartz, Eli

    2013-11-01

    Travel-related schistosomiasis is usually associated with prolonged freshwater exposure. Until recently, Uganda's crater lakes were considered schistosomiasis free due to their high-altitude location. We describe an outbreak of acute schistosomiasis after a brief exposure (mean, 22 ± 9.5 minutes) to a high-altitude crater lake.

  8. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  9. Boiling Lake of Dominica, West Indies: High-temperature volcanic crater lake dynamics

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Witham, F.; Moreau-Fournier, M.; Bardou, L.

    2009-02-01

    The Boiling Lake of Dominica has exhibited stable high-temperature behavior for at least 150 a. This stability is punctuated by occasional crises involving rapid filling and draining of the lake and changes in water temperature. The most recent such crisis occurred in December 2004 to April 2005. Using the results of previous theoretical and experimental work on analogue models, we present a combined thermal, hydrological, and fluid mechanical model of the Boiling Lake. This reveals that the lake appears to be suspended above the local water table by a constant supply of rising steam bubbles sourced from the boiling of groundwater near an igneous intrusion. The bubbles condense in the Boiling Lake, maintaining the temperature at ˜90°C. The geometry of the lake-conduit system provides a mechanism for instability, with a denser liquid lake overlying a bubbly fractured permeable conduit. Following a sufficiently large perturbation, the whole lake rapidly drains until the surface is at the local water table level. The persistent gas supply then reinitiates filling. We propose that local seismic activity may have caused shock nucleation of bubbles within the conduit and triggered the instability of the Boiling Lake.

  10. Analysis of the Paleoenvironment of Gale Crater on Mars: Using Ephemeral Lakes in Western Australia as Analogs to the Mineral Assemblages of Gale Crater

    NASA Astrophysics Data System (ADS)

    Cocks, C.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Aluminum and Fe/Mg-phyllosilicates, as well as sulfates, are abundant in the layered sediments of the central mound of Gale Crater on Mars. Each of these mineral types are useful indicators of depositional conditions regarding pH, where Fe/Mg-phyllosilicates form in higher pH waters, while Al-phyllosilicates and sulfates form in more acidic waters. A general succession from higher pH aquatic environments to lower pH environments is evident during the Noachian and early Hesperian (3.6~3.8 Ga). However, substantial interbedding of these mineral groups is also observed at Gale, indicating pH boundaries that existed contemporaneously at the time of deposition. This is consistent with mineral distributions that are observed in ephemeral lakes on Earth, making them useful as analogs to the geochemistry of Gale Crater. This study will analyze the surficial mineral depositional patterns at Lake Gilmore, WA, to better understand how pH gradients are represented in contemporaneous sediment deposits. This will be performed by identifying minerals based on their unique reflectance signatures in the visible to near-infrared range (0.5-2.5 mm). Reflectance data collected by the HyMap™ hyperspectral scanner will be analyzed using the ENVI software to map the predominant minerals present on the lakebed surface. We expect to see minerals associated with a pH gradient that is related to lake depth, with Fe and alkali earth phyllosilicates representing deeper, less acidic waters, and aluminous phyllosilicates and sulfates representing near surface waters that are more acidic. This is potentially due to the circulation of upwelling groundwaters, or the change in chemistry may have arisen due to microbial activity, an intriguing possibility that would have significant implications for evidence of past microbial life on the Martian surface and would provide a more detailed picture of the paleoenvironment at Gale Crater.

  11. Shifts in morphology and diet of non-native sticklebacks introduced into Japanese crater lakes

    PubMed Central

    Adachi, Tatsuya; Ishikawa, Asano; Mori, Seiichi; Makino, Wataru; Kume, Manabu; Kawata, Masakado; Kitano, Jun

    2012-01-01

    An increasing number of exotic animals are causing ecological problems. Therefore, for better ecosystem management, it is important to understand how exotic species colonize and adapt to novel environments. The threespine sticklebacks (Gasterosteus aculeatus) can be a good vertebrate model system to explore the ecological and genetic mechanisms of adaptation not only in natural populations, but also in non-native populations. Although morphological changes have been documented in several introduced populations of stickleback, little is known about the dietary changes during colonization into novel environments. Here, we investigated the morphological and dietary changes of exotic threespine stickleback populations introduced into three Japanese crater lakes (Lake Towada, Lake Kussharo, and Lake Shikotsu). Sticklebacks were introduced into the crater lakes likely along with salmonids transplanted for aquaculture. The stickleback population in Lake Kussharo had multiple mitochondrial haplotypes and had larger phenotypic variances than other crater lake stickleback populations that had only one mitochondrial haplotype. Compilation of historical data on the morphology and stomach contents of the Lake Towada stickleback population showed that substantial shifts in body size and stomach contents occurred after colonization. Some of these changes may be related to an outbreak of the Schistocephalus parasite. These results suggest that sticklebacks can change their morphology and trophic ecology when they colonize novel environments. Therefore, extreme care should be taken when salmonids are transported between watersheds for aquaculture and that long-term monitoring of exotic species is essential for ecosystem management. In addition, further genetic studies on phenotypic changes in crater lake sticklebacks would help elucidate the genetic mechanisms underlying the adaptation of exotic fishes to novel environments. PMID:22833786

  12. Shifts in morphology and diet of non-native sticklebacks introduced into Japanese crater lakes.

    PubMed

    Adachi, Tatsuya; Ishikawa, Asano; Mori, Seiichi; Makino, Wataru; Kume, Manabu; Kawata, Masakado; Kitano, Jun

    2012-06-01

    An increasing number of exotic animals are causing ecological problems. Therefore, for better ecosystem management, it is important to understand how exotic species colonize and adapt to novel environments. The threespine sticklebacks (Gasterosteus aculeatus) can be a good vertebrate model system to explore the ecological and genetic mechanisms of adaptation not only in natural populations, but also in non-native populations. Although morphological changes have been documented in several introduced populations of stickleback, little is known about the dietary changes during colonization into novel environments. Here, we investigated the morphological and dietary changes of exotic threespine stickleback populations introduced into three Japanese crater lakes (Lake Towada, Lake Kussharo, and Lake Shikotsu). Sticklebacks were introduced into the crater lakes likely along with salmonids transplanted for aquaculture. The stickleback population in Lake Kussharo had multiple mitochondrial haplotypes and had larger phenotypic variances than other crater lake stickleback populations that had only one mitochondrial haplotype. Compilation of historical data on the morphology and stomach contents of the Lake Towada stickleback population showed that substantial shifts in body size and stomach contents occurred after colonization. Some of these changes may be related to an outbreak of the Schistocephalus parasite. These results suggest that sticklebacks can change their morphology and trophic ecology when they colonize novel environments. Therefore, extreme care should be taken when salmonids are transported between watersheds for aquaculture and that long-term monitoring of exotic species is essential for ecosystem management. In addition, further genetic studies on phenotypic changes in crater lake sticklebacks would help elucidate the genetic mechanisms underlying the adaptation of exotic fishes to novel environments.

  13. Slope activity in Gale crater, Mars

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  14. Snettisham Hydroelectric Project, Alaska second stage development, Crater lake. Final foundation report. Final report

    SciTech Connect

    Not Available

    1992-09-04

    The important geologic features and methods used to construct the Crater Lake stage of the Snettisham Hydroelectric project, built between 1985 and 1989, are discussed. The project added 31 megawatts of non-polluting, renewable electric power for Juneau, Alaska and the surrounding area. Features of the report include the power tunnel and access adits, penstock excavation, surge shaft, gate shaft and lake top. Construction aspects include the general geology, design features, construction methods, geologic conditions encountered, ground support requirements, grouting, instrumentation and tunnel filling. Foundation conditions for the Crater Lake status were excellent, permitting the power and penstock tunnel and shafts to be constructed essentially unlined. The basic rock type throughout the project is a high-quality, quartz diorite gneiss with randomly spaced, subparallel basalt dikes.... Unlined rock tunnels, Power tunnel, Penstocks, Lake tap, Surge shaft.

  15. Temporal evolution of micro-eruptions within the crater lake of White Island (Whakaari) during January/February 2013

    NASA Astrophysics Data System (ADS)

    Edwards, Matt; Kennedy, Ben; Jolly, Art; Scheu, Bettina; Taddeucci, Jacopo; Jousset, Philippe; Schmid, Di

    2015-04-01

    Micro-eruptions are potentially modulated by hydrothermal systems and crater lakes but to date have not been well studied. In January/February 2013 White Island (Whakaari), New Zealand, experienced an about three week long period of atypical, frequent micro-eruptions within its crater lake. Many of these micro-eruptions were recorded by tour operators and GNS personnel monitoring the lake activity. Analysis of this video footage reveals an increasingly energetic eruption style. Deformation of the muddy lake surface by ascending bubbles begins as irregularly shaped bursts, producing liquid strings of mud ejected to heights of less than 10m at 10-15m/s. As the episode progresses, eruption frequency is maintained at semi-regular <10s intervals. Each eruption however starts with an increasingly hemispheric surface deformation ~6m in diameter, and bursts occur as "star-bursts" with ejection of less fluidal ash/mud clots. In addition, these bursts are commonly followed within 2s by a more vertical and energetic secondary ejection of material, which occasionally ejects through the deformed hemispheric surface up to >100m high, and reaches ejection velocities up to 45m/s. The period of frequent "star-bursts" is then followed by a two day phase of constant ~30-75m high ash ejection resulting in the formation of a tuff cone with a central open conduit of 6m within the former crater lake. We theorise that this behaviour is influenced by evolving bubble overpressure/volume, including the presence or absence of a trailing wake of smaller bubbles and is modulated over the eruption episode by the viscosity of the crater lake. In the early stages of the episode a lower viscosity lake provides little resistance to rising gas/ash mixtures. Bubble coalescence and/or overpressure development is therefore minimised, resulting in low energy bursts. Over the course of this episode the viscosity of the lake increases due to addition of ash from ash-carrying gas flux and fluid loss by

  16. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp

    NASA Astrophysics Data System (ADS)

    Palucis, Marisa C.; Dietrich, William E.; Williams, Rebecca M. E.; Hayes, Alexander G.; Parker, Tim; Sumner, Dawn Y.; Mangold, Nicolas; Lewis, Kevin; Newsom, Horton

    2016-03-01

    The quantification of lake levels in Gale crater is important to define the hydrologic and climatic history experienced by the sedimentary deposits found by Curiosity. We propose that there were at least three major lake stands within Gale, each persisted >1000 years, and all occurred after Mount Sharp reached close to its current topographic form. Deltaic deposits off the southern rim of Gale, derived from incision of Farah Vallis, and corresponding deposits off the southern flank of Mount Sharp define the highest lake level, which had a mean depth of 700 m. Canyons similar in form to Farah Vallis enter into craters and/or the crustal dichotomy near Gale from the south, suggesting that the highest lake was supplied by a large-scale flow system. The next lake level, established after a period of drying and rewetting, is defined by four deltaic features, three sourced from Mount Sharp and one from the western rim of Gale, as well as the termination of gullies around the northern rim of Gale. This second lake level had a mean depth of 300 m. The presence of the gullies suggests more locally sourced water. Lake levels then rose another 100 m, as evidenced by two deltaic deposits derived from the rim of Gale and the termination of a second set of gullies. Post-lake, reduced hydrologic activity continued, evidenced by a time of fan building (including Peace Vallis). The sequence of events suggests an episodic shift through time from relatively wet regional conditions to a drier environment with local runoff.

  17. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes

    PubMed Central

    2010-01-01

    Background Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. Results We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old) and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s) of each crater lake differs, although most of them occurred more (probably much more) recently than 20,000 years ago. Conclusion The genetic differentiation

  18. Groundwater transport of crater-lake brine at Poas Volcano, Costa Rica

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.; Rowe, G.L.; Brantley, S.L.

    1995-01-01

    This study analyzes the regional groundwater system at Poas and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1-30 yr, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake. -from Authors

  19. Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes

    PubMed Central

    Elmer, Kathryn R.; Kusche, Henrik; Lehtonen, Topi K.; Meyer, Axel

    2010-01-01

    The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2–23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection. PMID:20439280

  20. Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes.

    PubMed

    Elmer, Kathryn R; Kusche, Henrik; Lehtonen, Topi K; Meyer, Axel

    2010-06-12

    The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2-23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection.

  1. Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification.

    PubMed Central

    Wilson, A B; Noack-Kunnmann, K; Meyer, A

    2000-01-01

    The growing body of empirical evidence for sympatric speciation has been complemented by recent theoretical treatments that have identified evolutionary conditions conducive to speciation in sympatry. The Neotropical Midas cichlid (Amphilophus citrinellum) fits both of the key characteristics of these models, with strong assortative mating on the basis of a colour polymorphism coupled with trophic and ecological differentiation derived from a polymorphism in their pharyngeal jaws. We used microsatellite markers and a 480 bp fragment of the mitochondrial DNA control region to study four polymorphic populations of the Midas cichlid from three crater lakes and one large lake in Nicaragua in an investigation of incipient sympatric speciation. All populations were strongly genetically differentiated on the basis of geography. We identified strong genetic separation based on colour polymorphism for populations from Lake Nicaragua and one crater lake (Lake Apoyo), but failed to find significant genetic structuring based on trophic differences and ecological niche separation in any of the four populations studied. These data support the idea that sexual selection through assortative mating contributes more strongly or earlier during speciation in sympatry than ecological separation in these cichlids. The long-term persistence of divergent cichlid ecotypes (as measured by the percentage sequence divergence between populations) in Central American crater lakes, despite a lack of fixed genetic differentiation, differs strikingly from the patterns of extremely rapid speciation in the cichlids in Africa, including its crater lakes. It is unclear whether extrinsic environmental factors or intrinsic biological differences, e.g. in the degree of phenotypic plasticity, promote different mechanisms and thereby rates of speciation of cichlid fishes from the Old and New Worlds. PMID:11413624

  2. Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification.

    PubMed

    Wilson, A B; Noack-Kunnmann, K; Meyer, A

    2000-11-01

    The growing body of empirical evidence for sympatric speciation has been complemented by recent theoretical treatments that have identified evolutionary conditions conducive to speciation in sympatry. The Neotropical Midas cichlid (Amphilophus citrinellum) fits both of the key characteristics of these models, with strong assortative mating on the basis of a colour polymorphism coupled with trophic and ecological differentiation derived from a polymorphism in their pharyngeal jaws. We used microsatellite markers and a 480 bp fragment of the mitochondrial DNA control region to study four polymorphic populations of the Midas cichlid from three crater lakes and one large lake in Nicaragua in an investigation of incipient sympatric speciation. All populations were strongly genetically differentiated on the basis of geography. We identified strong genetic separation based on colour polymorphism for populations from Lake Nicaragua and one crater lake (Lake Apoyo), but failed to find significant genetic structuring based on trophic differences and ecological niche separation in any of the four populations studied. These data support the idea that sexual selection through assortative mating contributes more strongly or earlier during speciation in sympatry than ecological separation in these cichlids. The long-term persistence of divergent cichlid ecotypes (as measured by the percentage sequence divergence between populations) in Central American crater lakes, despite a lack of fixed genetic differentiation, differs strikingly from the patterns of extremely rapid speciation in the cichlids in Africa, including its crater lakes. It is unclear whether extrinsic environmental factors or intrinsic biological differences, e.g. in the degree of phenotypic plasticity, promote different mechanisms and thereby rates of speciation of cichlid fishes from the Old and New Worlds.

  3. Comparison of MTI Water Temperatures with Ground Truth Measurements at Crater Lake, OR

    SciTech Connect

    Kurzeja, R.J.

    2002-12-09

    Water surface temperatures calculated with the Los Alamos National Laboratory Robust algorithm were compared with ground truth water temperature measurements near the Oregon State University buoy in Crater Lake, OR. Bulk water measurements at the OSU buoy were corrected for the skin temperature depression and temperature gradient in the top 10 cm of the water to find the water surface temperature for 18 MTI images for June 2000 to Feb 2002. The MTI robust temperatures were found to be biased by 0.1C, with an RMS error of 1.9C compared with the ground truth water surface temperatures. When corrected for the errors in the buoy temperatures the RMS was reduced to 1.3C. This RMS difference is greater than the 1C found at the Pacific Island of Nauru because of the greater variability in the lake temperature and the atmosphere at Crater Lake and the much smaller target area used in the comparison.

  4. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  5. A new node on the SE Asian paleoclimate map: the alkaline crater lakes of central Myanmar

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk H.; Chabangborn, Akkaneewut; Thu Aung, Lin; Fritz, Sherilyn; Wohlfarth, Barbara

    2014-05-01

    SE Asia is climatically a key region where the Asian monsoon system connects with the Indo-Pacific warm pool and from where much (latent) heat gets transported to higher latitudes. We recently obtained sediment cores from four crater lakes located in Central Myanmar, with the aim to further colour the still largely white space on the SE Asian paleoclimate map. The chain of volcanic craters extending northeast to southwest in the vicinity of the lower Chindwin River in central Myanmar have been known for a long time. These craters are aligned west of the Sagaing Fault, which is a continental transform fault between the Indian and Sunda continental plates. Four of the craters still contain lakes, while several of the smaller craters are drained and used for agriculture. The region has a tropical Savannah climate, with warm temperatures throughout the year. Precipitation is almost absent during the dry season but increases to an average monthly precipitation of 100-134 mm per month during the monsoon season (May through October). Three of the four lakes, named Twin Ywa (30 m depth), Twin Taung (60 m), and Twin Pyauk (8m), are highly alkaline (pH 10-11), support extensive cyanobacterial blooms and are anoxic below a few meters water depth. Their sediments are composed of highly organic and laminated algae gyttjas. The shallower (2m), oxic and more neutral (pH 7.5) Lake Leshe contains organic-lean clays but with clear variations in colour and bulk density that likely mark changes in humidity though time. The lake levels of the relatively small crater lakes are solely regulated by precipitation and evaporation, and their limnology and water isotope compositions are therefore sensitive to changes in monsoon intensity. We will present limnological data including water isotopic compositions, and initial bulk sedimentary data as well as preliminary age determinations. These will form the basis for more extensive multi-proxy analyses that should result in an improved insight

  6. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  7. Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes.

    PubMed

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2014-07-01

    Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment, intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding why a lineage does or does not radiate. Here, we examined morphological variation in body shape for replicate flocks of Nicaraguan Midas cichlid fishes and tested its association with biological and physical characteristics of their crater lakes. We found that variability of body elongation, an adaptive trait in freshwater fishes, is mainly predicted by average lake depth (N = 6, P < 0.001, R(2) = 0.96). Other factors considered, including lake age, surface area, littoral zone area, number of co-occurring fish species, and genetic diversity of the Midas flock, did not significantly predict morphological variability. We also showed that lakes with a larger littoral zone have on average higher bodied Midas cichlids, indicating that Midas cichlid flocks are locally adapted to their crater lake habitats. In conclusion, we found that a lake's habitat predicts the magnitude and the diversity of body elongation in repeated cichlid adaptive radiations.

  8. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    USGS Publications Warehouse

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    lake has important implications for the study of hazards associated with active volcanic crater lakes. Copyright 2008 by the American Geophysical Union.

  9. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    NASA Astrophysics Data System (ADS)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen

    2008-07-01

    crater lake has important implications for the study of hazards associated with active volcanic crater lakes.

  10. Crater lake cichlids individually specialize along the benthic-limnetic axis.

    PubMed

    Kusche, Henrik; Recknagel, Hans; Elmer, Kathryn Rebecca; Meyer, Axel

    2014-04-01

    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic-as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence. A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of open water (limnetic) species and of shore (benthic) species. Individual specialization can reflect earliest stages of evolutionary and ecological divergence. We here demonstrate individual specialization along the benthic-limnetic axis in a young adaptive radiation of crater lake cichlid fishes.

  11. Crater lake cichlids individually specialize along the benthic–limnetic axis

    PubMed Central

    Kusche, Henrik; Recknagel, Hans; Elmer, Kathryn Rebecca; Meyer, Axel

    2014-01-01

    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic-as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence. A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of open water (limnetic) species and of shore (benthic) species. Individual specialization can reflect earliest stages of evolutionary and ecological divergence. We here demonstrate individual specialization along the benthic–limnetic axis in a young adaptive radiation of crater lake cichlid fishes. PMID:24772288

  12. Ground penetrating radar survey of the ice-filled active crater of Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Park, M.; Clark, D. H.; Caplan-Auerbach, J.

    2010-12-01

    Sherman Crater of ~20 Wm-2 is consistent with published calculations for active calderas (Mt. Veniaminof) and volcanic lakes. We estimate the maximum ice thickness to be ~50 m, and the ice velocity to range from ~3 to 4 m/month during the summer months. Highest surface ice velocities are found on moderate slopes above the deepest part of the crater, where the ice is thickest (inferred from GPR profiles).

  13. Crater Lake Apoyo revisited--population genetics of an emerging species flock.

    PubMed

    Geiger, Matthias F; McCrary, Jeffrey K; Schliewen, Ulrich K

    2013-01-01

    The polytypic Nicaraguan Midas cichlids (Amphilophus cf. citrinellus) have been established as a model system for studying the mechanisms of speciation and patterns of diversification in allopatry and sympatry. The species assemblage in Crater Lake Apoyo has been accepted as a textbook example for sympatric speciation. Here, we present a first comprehensive data set of population genetic (mtDNA & AFLPs) proxies of species level differentiation for a representative set of individuals of all six endemic Amphilophus species occurring in Crater Lake Apoyo. AFLP genetic differentiation was partitioned into a neutral and non-neutral component based on outlier-loci detection approaches, and patterns of species divergence were explored with Bayesian clustering methods. Substantial levels of admixture between species were detected, indicating different levels of reproductive isolation between the six species. Analysis of neutral genetic variation revealed several A. zaliosus as being introgressed by an unknown contributor, hereby rendering the sympatrically evolving L. Apoyo flock polyphyletic. This is contrasted by the mtDNA analysis delivering a clear monophyly signal with Crater Lake Apoyo private haplotypes characterising all six described species, but also demonstrating different demographic histories as inferred from pairwise mismatch distributions.

  14. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes.

    PubMed

    Elmer, K R; Fan, S; Gunter, H M; Jones, J C; Boekhoff, S; Kuraku, S; Meyer, A

    2010-03-01

    Crater lakes provide a natural laboratory to study speciation of cichlid fishes by ecological divergence. Up to now, there has been a dearth of transcriptomic and genomic information that would aid in understanding the molecular basis of the phenotypic differentiation between young species. We used next-generation sequencing (Roche 454 massively parallel pyrosequencing) to characterize the diversity of expressed sequence tags between ecologically divergent, endemic and sympatric species of cichlid fishes from crater lake Apoyo, Nicaragua: benthic Amphilophus astorquii and limnetic Amphilophus zaliosus. We obtained 24 174 A. astorquii and 21 382 A. zaliosus high-quality expressed sequence tag contigs, of which 13 106 pairs are orthologous between species. Based on the ratio of nonsynonymous to synonymous substitutions, we identified six sequences exhibiting signals of strong diversifying selection (K(a)/K(s) > 1). These included genes involved in biosynthesis, metabolic processes and development. This transcriptome sequence variation may be reflective of natural selection acting on the genomes of these young, sympatric sister species. Based on Ks ratios and p-distances between 3'-untranslated regions (UTRs) calibrated to previously published species divergence times, we estimated a neutral transcriptome-wide substitutional mutation rate of approximately 1.25 x 10(-6) per site per year. We conclude that next-generation sequencing technologies allow us to infer natural selection acting to diversify the genomes of young species, such as crater lake cichlids, with much greater scope than previously possible.

  15. Crater Lake Apoyo Revisited - Population Genetics of an Emerging Species Flock

    PubMed Central

    Geiger, Matthias F.; McCrary, Jeffrey K.; Schliewen, Ulrich K.

    2013-01-01

    The polytypic Nicaraguan Midas cichlids (Amphilophus cf. citrinellus) have been established as a model system for studying the mechanisms of speciation and patterns of diversification in allopatry and sympatry. The species assemblage in Crater Lake Apoyo has been accepted as a textbook example for sympatric speciation. Here, we present a first comprehensive data set of population genetic (mtDNA & AFLPs) proxies of species level differentiation for a representative set of individuals of all six endemic Amphilophus species occurring in Crater Lake Apoyo. AFLP genetic differentiation was partitioned into a neutral and non-neutral component based on outlier-loci detection approaches, and patterns of species divergence were explored with Bayesian clustering methods. Substantial levels of admixture between species were detected, indicating different levels of reproductive isolation between the six species. Analysis of neutral genetic variation revealed several A. zaliosus as being introgressed by an unknown contributor, hereby rendering the sympatrically evolving L. Apoyo flock polyphyletic. This is contrasted by the mtDNA analysis delivering a clear monophyly signal with Crater Lake Apoyo private haplotypes characterising all six described species, but also demonstrating different demographic histories as inferred from pairwise mismatch distributions. PMID:24086393

  16. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico.

    PubMed

    Aguirre-Garrido, José Félix; Ramírez-Saad, Hugo César; Toro, Nicolás; Martínez-Abarca, Francisco

    2016-01-01

    Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.

  17. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico.

    PubMed

    Aguirre-Garrido, José Félix; Ramírez-Saad, Hugo César; Toro, Nicolás; Martínez-Abarca, Francisco

    2016-01-01

    Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake. PMID:26391805

  18. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  19. Linking lake variability, climate, and human activity in Basotu, Tanzania.

    NASA Astrophysics Data System (ADS)

    Higgins, Lindsey; Westerberg, Lars-Ove; Risberg, Jan

    2016-04-01

    Lake Basotu (4.3697°S, 35.0728°E) is a crater lake in north-central Tanzania. This lake is an important source of freshwater for local people as no perennial rivers are present. Due to intensive agricultural methods and climatic factors, lake level has fluctuated greatly over time. A history of environmental variability of the past 1800 years was established using the diatom record, magnetic parameters, and carbon content from a three meter long sediment core. Fluctuations in modern lake extent (1973 - 2015) were calculated using archived Landsat images and compared to meteorological records and documents of activity around the lake to determine the greatest impacts and their consequences on this essential water resource. Variations in the paleo-record indicate that fluctuations in lake level are not abnormal, however human influence has likely increased the sensitivity of Lake Basotu to climatic fluctuations.

  20. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock.

    PubMed

    Paul, Dhiraj; Kumbhare, Shreyas V; Mhatre, Snehit S; Chowdhury, Somak P; Shetty, Sudarshan A; Marathe, Nachiket P; Bhute, Shrikant; Shouche, Yogesh S

    2015-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21-47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments.

  1. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock.

    PubMed

    Paul, Dhiraj; Kumbhare, Shreyas V; Mhatre, Snehit S; Chowdhury, Somak P; Shetty, Sudarshan A; Marathe, Nachiket P; Bhute, Shrikant; Shouche, Yogesh S

    2015-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21-47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  2. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  3. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    PubMed

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  4. Small Changes in Climate Can Profoundly Alter the Dynamics and Ecosystem Services of Tropical Crater Lakes

    PubMed Central

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G.; Efitre, Jackson; Nowlan, Tobias E.; Taranu, Zofia E.; Chapman, Lauren J.

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R2adj = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions. PMID:24497954

  5. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    PubMed

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions. PMID:24497954

  6. The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters

    NASA Astrophysics Data System (ADS)

    Dietrich, V. J.; Lagios, E.; Reusser, E.; Sakkas, V.; Gartzos, E.; Kyriakopoulos, K.

    2013-09-01

    Two circular permanent lakes of 150 and 250 m diameter and 6-8 m depth to an unconsolidated muddy bottom occur 250 m apart from each other in the agricultural fields SW of the town of Almiros (Thessaly, central Greece). The age of the lakes is assumed to be Late Pliocene to Early Holocene with a minimum age of approx. 7000 yr BP. The abundant polymict, quartz-rich carbonate breccia and clasts with a clay rich matrix in the shallow embankments of the lakes show weak stratification but no volcanic structures. The carbonate clasts and particles often display spheroidal shapes and consist of calcite aggregates with feathery, arborescent, variolitic to micro-sparitic textures and spheroidal fabrics, recrystallized and deformed glass-shaped fragments, calcite globules in quartz; thus indications of possible carbonate melting, quenching and devitrification. The carbonatic matrix includes small xenomorphic phases, such as chromspinel, zircon with blurred granular and skeletal textures, skeletal rutile and ilmenite, which are interpreted as relicts of partial melting and quenching under high temperatures of 1240-1800 °C. Only a few quartz fragments exhibit indistinct planar fractures. In several cases they include exotic Al-Si- and sulfur bearing Fe-phases, < 1-10 μm as globules. The modeled "Residual Gravity" profiles through the lakes indicate negative gravity anomalies of bowl-type structures down to 150 m for the eastern lake and down to 250 m for the larger western lake. Several hypotheses can be drawn upon to explain the origin of these enigmatic twin-lakes: (a) Maar-type volcanic craters; (b) hydrothermal or CO2/hydrocarbon gas explosion craters; (c) and (d) doline holes due to karstification; or (e) small meteorite impact craters, the latter being a plausible explanation due to geologic, petrologic, and geophysical evidence. The morphology and dimensions of the lakes as well as the density contrast tomography of the bedrock favor a meteorite impact hypothesis of a

  7. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years

    NASA Astrophysics Data System (ADS)

    Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.

    2014-08-01

    Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000-1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600-1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional

  8. Introduced predator elicits deficient brood defence behaviour in a crater lake fish.

    PubMed

    Lehtonen, Topi K; McCrary, Jeffrey K; Meyer, Axel

    2012-01-01

    Introduced species represent one of the most serious global threats to biodiversity. In this field-based study, we assessed behavioural responses of brood tending cichlid fish to an invasive predator of their offspring. This was achieved by comparing parental defence responses of the endangered arrow cichlid (Amphilophus zaliosus), a fish species endemic to the crater lake Apoyo in Nicaragua, towards the bigmouth sleeper (Gobiomorus dormitor), a formidable predator of cichlid fry, and all other potential fish predators of offspring. The bigmouth sleeper was recently introduced into Apoyo but naturally co-exists with cichlids in a few other Nicaraguan lakes. Arrow cichlid parents allowed bigmouth sleepers to advance much closer to their fry than other predators before initiating aggressive brood defence behaviours. Interestingly, parents of a very closely related species, A. sagittae, which has coevolved with bigmouth sleepers in crater lake Xiloá, reacted to approaching bigmouth sleepers at comparable distances as to other predators of cichlid fry. These results provide a novel demonstration of the specific mechanism (i.e. naive parental behaviour) by which invasive predators may negatively affect species that lack the adequate behavioural repertoire.

  9. Introduced Predator Elicits Deficient Brood Defence Behaviour in a Crater Lake Fish

    PubMed Central

    Lehtonen, Topi K.; McCrary, Jeffrey K.; Meyer, Axel

    2012-01-01

    Introduced species represent one of the most serious global threats to biodiversity. In this field-based study, we assessed behavioural responses of brood tending cichlid fish to an invasive predator of their offspring. This was achieved by comparing parental defence responses of the endangered arrow cichlid (Amphilophus zaliosus), a fish species endemic to the crater lake Apoyo in Nicaragua, towards the bigmouth sleeper (Gobiomorus dormitor), a formidable predator of cichlid fry, and all other potential fish predators of offspring. The bigmouth sleeper was recently introduced into Apoyo but naturally co-exists with cichlids in a few other Nicaraguan lakes. Arrow cichlid parents allowed bigmouth sleepers to advance much closer to their fry than other predators before initiating aggressive brood defence behaviours. Interestingly, parents of a very closely related species, A. sagittae, which has coevolved with bigmouth sleepers in crater lake Xiloá, reacted to approaching bigmouth sleepers at comparable distances as to other predators of cichlid fry. These results provide a novel demonstration of the specific mechanism (i.e. naive parental behaviour) by which invasive predators may negatively affect species that lack the adequate behavioural repertoire. PMID:22253881

  10. Cruise report R/V Surf Surveyor cruise S1-00-CL, mapping the bathymetry of Crater Lake, Oregon

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.; Buktenica, Mark W.

    2000-01-01

    During the Spring of 1999, the US Geological Survey (USGS) Pacific Seafloor Mapping Project (PSMP) was contacted by the US National Park Service Crater Lake National Park (CLNP) to inquire about the plausibility of producing a high-resolution multibeam bathymetric map of Crater Lake. The purpose was to generate a much higher-resolution and more geographically accurate bathymetric map than was produced in 1959, the last time the lake had been surveyed. Scientific interest in various aspects of Crater Lake (aquatic biology, geochemistry, volcanic processes, etc.) has increased during the past decade but the basemap of bathymetry was woefully inadequate. Funds were gathered during the early part of 2000 and the mapping began in late July, 2000. Crater Lake (see fig. 1 in report) is located in south central Oregon (see fig. 2 in report) within the Cascades Range, a chain of volcanoes that stretches from northern California to southern British Columbia. Crater Lake is the collapsed caldera of Mt. Mazama from a climatic eruption about 7700-yr ago (Nelson et al., 1988; Bacon and Lanphere, 1990; Bacon et al., 1997). The floor of Crater Lake has only been mapped three times since the lake was first stumbled upon by gold prospectors in the 1853. The first survey was carried by out by William G. Steel during a joint USGS-US Army expedition under the direction of Maj. Clarence E. Dutton in 1886 (Dutton, 1889). Steel�s mapping survey collected 186 soundings using a Millers lead-line sounding machine (see fig.3 in report). The resulting map (see fig.4 in report) shows only soundings and no attempts were made to generate contours. The second survey, conducted in 1959 by the US Coast and Geodetic Survey, mapped the bathymetry of Crater Lake with an acoustic echo sounder using radar navigation and collected 4000 soundings. The data were contoured by Williams (1961) and Byrne (1962) and the result is a fairly detailed map of the large-scale features of Crater Lake (see fig. 5

  11. Nitrincola nitratireducens sp. nov. isolated from a haloalkaline crater lake.

    PubMed

    Singh, Aditya; Vaidya, Bhumika; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2015-12-01

    The novel, cream coloured, Gram-negative-staining, rod-shaped, motile bacteria, designated strains AK23(T) and AK28, were isolated from sediment samples collected from Lonar Lake, Buldhana district, India. The predominant fatty acids were C18:1ω7c, C16:0, C10:0 3OH and C16:1ω7c and/or iso-C15:0 2OH (summed feature 3). Polar lipid content of strains AK23(T) and AK28 were found to be phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphotidylserine (PS), one unidentified phospholipid (PL) and two unidentified lipids (L1 and L2). The 16S rRNA gene sequence analysis indicated strains AK23(T) and AK28 as the members of the genus Nitrincola and closely related to the type strain Nitrincola lacisaponensis with pair-wise sequence similarity of 97.67% and 97.62% respectively. DNA-DNA hybridization between strain AK23(T) and AK28 showed a relatedness of 91%. Genome of strains AK23(T) and N. lacisaponensis DSM 16316(T) were sequenced. A comparative genomics approach was used to study strains AK23(T), N. lacisaponensis DSM 16316(T) and five other phylogenetic neighbours. The genome size of N. lacisaponensis DSM 16316(T) was found to be 614,784bp smaller than that of the strain AK23(T). This variation could be due to multiple reasons, gene uptake, evolution, mutation, genome reduction phenomenon and draft nature of sequencing. Based on data from the current polyphasic study, strains AK23(T) and AK28 are proposed as novel species of the genus Nitrincola, for which the name Nitrincola nitratireducens sp. nov. is proposed. The type strain of N. nitratireducens is AK23(T) (=JCM 18788(T)=MTCC 11628(T)). PMID:26481633

  12. Nitrincola nitratireducens sp. nov. isolated from a haloalkaline crater lake.

    PubMed

    Singh, Aditya; Vaidya, Bhumika; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2015-12-01

    The novel, cream coloured, Gram-negative-staining, rod-shaped, motile bacteria, designated strains AK23(T) and AK28, were isolated from sediment samples collected from Lonar Lake, Buldhana district, India. The predominant fatty acids were C18:1ω7c, C16:0, C10:0 3OH and C16:1ω7c and/or iso-C15:0 2OH (summed feature 3). Polar lipid content of strains AK23(T) and AK28 were found to be phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphotidylserine (PS), one unidentified phospholipid (PL) and two unidentified lipids (L1 and L2). The 16S rRNA gene sequence analysis indicated strains AK23(T) and AK28 as the members of the genus Nitrincola and closely related to the type strain Nitrincola lacisaponensis with pair-wise sequence similarity of 97.67% and 97.62% respectively. DNA-DNA hybridization between strain AK23(T) and AK28 showed a relatedness of 91%. Genome of strains AK23(T) and N. lacisaponensis DSM 16316(T) were sequenced. A comparative genomics approach was used to study strains AK23(T), N. lacisaponensis DSM 16316(T) and five other phylogenetic neighbours. The genome size of N. lacisaponensis DSM 16316(T) was found to be 614,784bp smaller than that of the strain AK23(T). This variation could be due to multiple reasons, gene uptake, evolution, mutation, genome reduction phenomenon and draft nature of sequencing. Based on data from the current polyphasic study, strains AK23(T) and AK28 are proposed as novel species of the genus Nitrincola, for which the name Nitrincola nitratireducens sp. nov. is proposed. The type strain of N. nitratireducens is AK23(T) (=JCM 18788(T)=MTCC 11628(T)).

  13. Investigating crater lake warming using ASTER thermal imagery: Case studies at Ruapehu, Poás, Kawah Ijen, and Copahué Volcanoes

    NASA Astrophysics Data System (ADS)

    Trunk, Laura; Bernard, Alain

    2008-12-01

    A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu-Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu-Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.

  14. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  15. A symbiotic view of the origin of life at hydrothermal impact crater-lakes.

    PubMed

    Chatterjee, Sankar

    2016-07-27

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were

  16. A symbiotic view of the origin of life at hydrothermal impact crater-lakes.

    PubMed

    Chatterjee, Sankar

    2016-07-27

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were

  17. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    NASA Astrophysics Data System (ADS)

    Bacon, Charles R.

    1983-10-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ˜ 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ˜ 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ˜ 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ˜ 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ˜ 22,000 and ˜ 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ˜ 25,000 yr old. These relatively silicic

  18. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    PubMed

    Malinsky, Milan; Challis, Richard J; Tyers, Alexandra M; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P; Miska, Eric A; Durbin, Richard; Genner, Martin J; Turner, George F

    2015-12-18

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic "islands" of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision-associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi. PMID:26680190

  19. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    PubMed

    Malinsky, Milan; Challis, Richard J; Tyers, Alexandra M; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P; Miska, Eric A; Durbin, Richard; Genner, Martin J; Turner, George F

    2015-12-18

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic "islands" of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision-associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi.

  20. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes.

    PubMed

    Elmer, Kathryn R; Fan, Shaohua; Kusche, Henrik; Spreitzer, Maria Luise; Kautt, Andreas F; Franchini, Paolo; Meyer, Axel

    2014-10-27

    Fundamental to understanding how biodiversity arises and adapts is whether evolution is predictable in the face of stochastic genetic and demographic factors. Here we show rapid parallel evolution across two closely related but geographically isolated radiations of Nicaraguan crater lake cichlid fishes. We find significant morphological, ecological and genetic differentiation between ecomorphs in sympatry, reflected primarily in elongated versus high-bodied shape, differential ecological niche use and genetic differentiation. These eco-morphological divergences are significantly parallel across radiations. Based on 442,644 genome-wide single nucleotide polymorphisms, we identify strong support for the monophyly of, and subsequent sympatric divergence within, each radiation. However, the order of speciation differs across radiations; in one lake the limnetic ecomorph diverged first while in the other a benthic ecomorph. Overall our results demonstrate that complex parallel phenotypes can evolve very rapidly and repeatedly in similar environments, probably due to natural selection, yet this evolution can proceed along different evolutionary genetic routes.

  1. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake*

    PubMed Central

    Tyers, Alexandra M.; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P.; Miska, Eric A.; Durbin, Richard; Genner, Martin J.; Turner, George F.

    2015-01-01

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here, we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700m diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet and trophic morphology. With whole genome sequences of 146 fish, we identify 98 clearly demarcated genomic ‘islands’ of high differentiation and demonstrate association of genotypes across these islands to divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight vision associated genes), hormone signaling and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi. PMID:26680190

  2. Multiparameter Monitoring Techniques for Reducing Volcanic Risk from Cuicocha Crater Lake, Ecuador

    NASA Astrophysics Data System (ADS)

    Ruiz, A. G.; Samaniego, P.; von Hillebrandt-Andrade, C.; Hall, M. L.; Ruiz, M. C.; Mothes, P. A.; Macias, C. A.

    2013-05-01

    Cuicocha, a crater-lake volcano located 50 km north of Quito, had an explosive caldera eruption 3000 yBP (Hillebrandt, 1989) that affected an important area of the northern part of the Ecuadorian Interandean valley. The first seismic station was installed at Cuicocha in 1988. Since 2010, this volcano showed an increase of their seismic activity, with several earthquakes felt by inhabitants near the volcano, as well as a subtle increase of the CO2 gas emission. After that, the Instituto Geofisico initiated a program for improving the monitoring capacity combined with a new geological field work dataset. Three broad band stations were installed, two of them outside the caldera rim and the other one, CUIC station, is located just over the Yerovi island dome. Two continuous GPS stations NetRS were installed, one 5 km east of Cuicocha and the other inside the caldera. On Yerovi dome it was deployed a permanent CO2 spectrometer. The Instituto Geofisico carries out a periodically EDM and gas measurements on the volcano in order to correlate geodesic data set and degasing CO2 flux. At the same time, we are re-evaluating the eruptive chronology and the eruptive dynamisms of the Cuicocha caldera eruptions, as well as the petrology of the paroxysmal eruptive products. Preliminary results confirm the 3000 yBP eruption age and our current work will be able to constraint the dynamisms, frequency and size of this paroxysmal eruption of Cuicocha. Finally, we plan to use all this information to re-edit the hazard map (von Hillebrandt and Hall, 1988) and guide local authorities and population to reduce the volcanic risk.

  3. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    USGS Publications Warehouse

    Bacon, C.R.

    1983-01-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ??? 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ??? 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ??? 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ??? 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ??? 22,000 and ??? 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ??? 25,000 yr old. These relatively

  4. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-01-01

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  5. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  6. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes.

    PubMed

    Franchini, Paolo; Fruciano, Carmelo; Spreitzer, Maria L; Jones, Julia C; Elmer, Kathryn R; Henning, Frederico; Meyer, Axel

    2014-04-01

    Determining the genetic bases of adaptations and their roles in speciation is a prominent issue in evolutionary biology. Cichlid fish species flocks are a prime example of recent rapid radiations, often associated with adaptive phenotypic divergence from a common ancestor within a short period of time. In several radiations of freshwater fishes, divergence in ecomorphological traits - including body shape, colour, lips and jaws - is thought to underlie their ecological differentiation, specialization and, ultimately, speciation. The Midas cichlid species complex (Amphilophus spp.) of Nicaragua provides one of the few known examples of sympatric speciation where species have rapidly evolved different but parallel morphologies in young crater lakes. This study identified significant QTL for body shape using SNPs generated via ddRAD sequencing and geometric morphometric analyses of a cross between two ecologically and morphologically divergent, sympatric cichlid species endemic to crater Lake Apoyo: an elongated limnetic species (Amphilophus zaliosus) and a high-bodied benthic species (Amphilophus astorquii). A total of 453 genome-wide informative SNPs were identified in 240 F2 hybrids. These markers were used to construct a genetic map in which 25 linkage groups were resolved. Seventy-two segregating SNPs were linked to 11 QTL. By annotating the two most highly supported QTL-linked genomic regions, genes that might contribute to divergence in body shape along the benthic-limnetic axis in Midas cichlid sympatric adaptive radiations were identified. These results suggest that few genomic regions of large effect contribute to early stage divergence in Midas cichlids.

  7. Indications of fluid immiscibility in glass from West Clearwater Lake impact crater, Quebec, Canada

    NASA Technical Reports Server (NTRS)

    Dence, M. R.; Von Engelhardt, W.; Plant, A. G.; Walter, L. S.

    1974-01-01

    Glass from the West Clearwater Lake hypervelocity impact crater contains numerous spheroids, 10 to 500 microns across, which appear to have formed at high temperatures as fluids immiscible in the enclosing melt. The spheroids are distinguished from small, normal, largely void gas vesicles, which are also present, by being completely filled in all cases; by having fillings which vary in composition from spheroid to spheroid, even between spheroids in close association; and by indications that the present fillings are representative of the contents present before the matrix melt chilled. Most of the spheroids are classified petrographically into three types. The preservation of spheroids in the West Clearwater Lake glass is attributed mainly to the position of the glass masses within the breccias lining the crater floor. It is considered that the glass in this location did not achieve free flight but, as part of a large mass, cooled relatively slowly through the high temperature regime in which the spheroids were generated, and then, when detached, chilled rapidly to preserve a record of this transient stage in their history.

  8. Connections between hyper-acid crater lakes and flank springs: new evidence from Rincón de la Vieja volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Fernández, E.; Sáenz, W.; van Bergen, M. J.; Ayres, G.; Pacheco, J. F.; Brenes, J.; Avard, G.; Malavassi, E.

    2012-04-01

    Rincón de la Vieja, a complex andesitic stratovolcano in NW Costa Rica, shows various hydrothermal surface manifestations that comprise: (1) A hyper-acid crater lake and subaerial fumaroles receiving direct input of fluids of magmatic origin, (2) Acid thermal discharges along the northeastern slopes of the volcano that feed the headwaters of the Cucaracho river, and (3) Small lakes and a geothermal field with bubbling-boiling mud pools, acid-sulfate springs, steaming ground and fumarolic emissions in a region on the western flank. Here the streams are of relatively low flow rate and their chemical signatures correspond to that of deep fluids from an extensive geothermal reservoir mixed with shallow meteoric water. Physico-chemical properties of the sulfate-chloride hyper-acid lake (T=28-58 °C; pH between 1.2 and <0, high TDS of 24,000-160,000 mg/kg) are consistent with a meteoric water body supplied by a significant input of chemical components derived from hydrolysis of magmatic volatiles and from intense rock leaching. The Cucaracho catchment receives input from warm acid brines with no free-gas phase but carrying a high load of hydrolyzed magmatic volatiles and rock-forming elements. One of these brines (Spring 4) is characterized by a sulfate-chloride chemical signature, medium temperatures of 27-38 °C, pH between 2 and 4 and TDS values between 780 and 1300 mg/L. Based on water and heat-balance considerations, chemical and stable-isotope signatures and groundwater transport modeling, it has been proposed that these acid springs represent brine water from the lake-hydrothermal system that is diluted by shallow groundwater permeating tephra layers (Kempter and Rowe, 2000). Since Rincóńs latest phreatomagmatic activity in 1983, episodes of phreatic eruptions from the crater lake have been registered in 1983-87, 1991, 1995, 1998 and 2011. Some of these eruptions (VEI 1) have expelled large quantities of lake water, triggering small to medium- sized fast

  9. Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon

    USGS Publications Warehouse

    Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter

    2008-01-01

    Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.

  10. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  11. High-resolution digital elevation dataset for Crater Lake National Park and vicinity, Oregon, based on LiDAR survey of August-September 2010 and bathymetric survey of July 2000

    USGS Publications Warehouse

    Robinson, Joel E.

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-foot volcano known as Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Because the Crater Lake region is potentially volcanically active, knowledge of past events is important to understanding hazards from future eruptions. Similarly, because the area is seismically active, documenting and evaluating geologic faults is critical to assessing hazards from earthquakes. As part of the American Recovery and Reinvestment Act (ARRA) of 2009, the U.S. Geological Survey was awarded funding for high-precision airborne LiDAR (Light Detection And Ranging) data collection at several volcanoes in the Cascade Range through the Oregon LiDAR Consortium, administered by the Oregon Department of Geology and Mineral Industries (DOGAMI). The Oregon LiDAR Consortium contracted with Watershed Sciences, Inc., to conduct the data collection surveys. Collaborating agencies participating with the Oregon LiDAR Consortium for data collection in the Crater Lake region include Crater Lake National Park (National Park Service) and the Federal Highway Administration. In the immediate vicinity of Crater Lake National Park, 798 square kilometers of LiDAR data were collected, providing a digital elevation dataset of the ground surface beneath forest cover with an average resolution of 1.6 laser returns/m2 and both vertical and horizontal accuracies of ±5 cm. The LiDAR data were mosaicked in this report with bathymetry of the lake floor of Crater Lake, collected in 2000 using high-resolution multibeam sonar in a collaborative effort between the U.S. Geological Survey, Crater Lake National Park, and the Center for Coastal and Ocean Mapping at the University of New Hampshire. The bathymetric survey

  12. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  13. Faults, Post-1720 Explosion Craters, and the Remains of a Lava Lake at Castro Bank Seamount (E Azores)

    NASA Astrophysics Data System (ADS)

    Wunderman, R.; Barriga, F. J.; Nishimura, C.; Pacheco, J. M.; Vogt, P. R.; Gaspar, J. L.; Queiroz, G.; Santos, R.

    2003-12-01

    During 25-28 July 2003 the US Navy submarine NR-1 dove on the seamount D. Joao de Castro Bank, compiling reconnaissance sonar and visual data. Castro Bank sits along strike and between the eastern Azorian islands of Terceira and S. Miguel, occupying a seismically active region ˜60 km from each of these islands and apparently controlled by the same underlying tectonics as other islands found along the Azores' northern margin. Castro Bank's last recorded eruptions built a ˜1 km diameter ephemeral island in the 1720s. The bathimetry of the uppermost 40 m or so of the Bank is rather well known via single beam sonar, scuba diving and AUV surveys (IH, DOP/UA and ISR/IST, unpublished work). Our dives compiled data in concentric rings along contours, collecting side- and forward-looking sonar along an overall track length of ˜20 km, with the deepest ring approaching ˜200 m depth. To document key features we came near the sea floor and took videos in water with typical visibility of ˜10-15 m. This is the first progress report on our work, which found the edifice morphologically complex and irregular. We noted that the seamount was often covered by aerially extensive yellow-brown hyaloclastic tuffs that were presumably products of the 1720s eruption, but also cut by faults and fissures (with offsets of ten's of meters) exposing abundant areas of older edifice. The faults typically lacked sediment cover, and in one case a very fresh, sediment-free fault trended along the base of a steep cliff. This suggested the faults were much younger than the 1720 eruption, an observation in accord with intense seismicity recorded in this area. The faults provided exposures of older rocks, which included abundant breccia and lesser clearly identified pillows or thick lava flows. The NW quadrant contains two small, shallow, elliptical craters. These lie side-by-side and crosscut inferred 1720s-age tuffs. One crater held a lava lake, the body of which apparently withdrew or subsided

  14. A year of convective vortex activity at Gale crater

    NASA Astrophysics Data System (ADS)

    Steakley, Kathryn; Murphy, James

    2016-11-01

    Atmospheric convective vortices, which become dust devils when they entrain dust from the surface, are prominent features within Mars' atmosphere which are thought to be a primary contributor to the planet's background dust opacity. Buoyantly produced in convectively unstable layers at a planet's surface, these vertically aligned vortices possess rapidly rotating and ascending near-surface warm air and are readily identified by temporal signatures of reduced atmospheric surface pressure measured within the vortex as it passes by. We investigate such signatures in surface pressure measurements acquired by the Rover Environmental Monitoring Station aboard the Mars Science Laboratory rover located within Gale crater. During the first 707 sols of the mission, 245 convective vortices are identified with pressure drops in the range of 0.30-2.86 Pa with a median value of 0.67 Pa. The cumulative distribution of their pressure drops follows a power law of slope -2.77 and we observe seasonal and diurnal trends in their activity. The vast majority of these pressure signatures lack corresponding reductions in REMS-measured UV flux, suggesting that these vortices rarely cast shadows upon the rover and therefore are most often dust-free. The relatively weak-magnitude, dustless vortices at Gale crater are consistent with predictions from mesoscale modeling indicating that the planetary boundary layer is suppressed within the crater and are also consistent with the almost complete absence of both dust devils within Mars Science Laboratory camera images and Gale crater surface dust devil streaks within orbiter images.

  15. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  16. Hydrogeochemical monitoring of El Chichón Volcano crater lake, Mexico.

    NASA Astrophysics Data System (ADS)

    Ceniceros, N.; Armienta, M. A.; Ramos, S.; Cruz, O.; Aguayo, A.

    2003-04-01

    The geochemistry of the crater lake of the El Chichón volcano has been studied since 1983. Results have been used to analyze post-eruptive processes and assessing volcanic risk. Chemical analysis has included pH, temperature, principal ions, fluoride, Iron , sulfide, boron and Silica. From 1985, all determinations have been performed at the Analytical Chemistry Laboratory of the Geophysics Institute (National University of Mexico). Such analysis were made following the standard methods, as given in APHA (1989), e.g. UV-visible, emission, and atomic absorption spectroscopy, potentiometric and volumetric techniques.. The El Chichón crater lake water showed an increasing pH from 1983 to 1986 (from 0.56 to 2.33), from then pH has fluctuated around the later value (in August 2002 pH was 1.98). Conductivity showed a high fluctuations with a general decreasing trend, ranging between 83800 uS/cm (1983, Casadevall et al., 1984) and close to 2000 uS/cm (December 1998). Water-type has changed along these years: The Chichon water could be classified as acid, calcium-chloride in 1983; in 1991 changed to Sulfate-mixed and since 1992, it has been mostly of sodium chloride type, except for a few dates when it could be classified as sulfate-mixed or calcic type. Since 1985, cation concentrations produced by environmental rock dissolution decreased in the same manner. A decreasing trend with time was observed also in anions of a potential magmatic origin like sulfate, chloride and fluoride. Molar concentrations of chloride have been mostly greater than sulfate concentrations (up to two orders of magnitude) and have varied without any observed correlation. Oxidation-reduction processes may explain the large sulfate concentration changesSulfate shows large. The geochemical modeling programs (MINTEQA2, PHREEQCE) showed saturation indices close to equilibrium for gypsum and anhydrite suggesting that sulfates also can be derived from other processes such as dissolution

  17. Subaerial and sublacustrine hydrothermal activity at Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; de Ronde, Cornel E. J.; Scott, Bradley J.; Wilson, Nathaniel J.; Walker, Sharon L.; Lupton, John E.

    2016-03-01

    Lake Rotomahana is a crater lake in the Okataina Volcanic Centre (New Zealand) that was significantly modified by the 1886 Tarawera Rift eruption. The lake is host to numerous sublacustrine hydrothermal vents. Water column studies were conducted in 2011 and 2014 along with sampling of lake shore hot springs and crater lakes in Waimangu Valley to complement magnetic, seismic, bathymetric and heat flux surveys. Helium concentrations below 50 m depth are higher in 2014 compared to 2011 and represent some of the highest concentrations measured, at 6 × 10- 7 ccSTP/g, with an end-member 3He/4He value of 7.1 RA. The high concentrations of helium, when coupled with pH anomalies due to high dissolved CO2 content, suggest the dominant chemical input to the lake is derived from magmatic degassing of an underlying magma. The lake shore hot spring waters show differences in source temperatures using a Na-K geothermometer, with inferred reservoir temperatures ranging between 197 and 232 °C. Water δ18O and δD values show isotopic enrichment due to evaporation of a steam heated pool with samples from nearby Waimangu Valley having the greatest enrichment. Results from this study confirm both pre-1886 eruption hydrothermal sites and newly created post-eruption sites are both still active.

  18. Genomic signatures of divergent selection and speciation patterns in a 'natural experiment', the young parallel radiations of Nicaraguan crater lake cichlid fishes.

    PubMed

    Kautt, Andreas F; Elmer, Kathryn R; Meyer, Axel

    2012-10-01

    Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome-wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ∼ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic-benthic axis in both radiations.

  19. Geochemical monitoring of Chichón volcano (México) trough sulfur speciation of the crater lake's water

    NASA Astrophysics Data System (ADS)

    Casas, Ana Silvia; Aurora Armienta, Maria; Guadalupe Ramos, Silvia

    2015-04-01

    Monitoring of El Chichón volcanic activity is a very important given its eruption of March 28th, 1982 that was the worst volcanic disaster of the modern era in Mexico. To help mitigation of volcanic risk, we intend the establishment of an analytical methodology for the determining various sulfur species (S2-, SO3 2-, S4O6 2-, SO4 2-) occurring in the crater lake which was formed after the 1982 eruption. These species were determined through HPL Chromatography with the aim of establishing links between their presence and concentrations, the general physical and chemical characteristics of the lake, seasonal variations and the activity of El Chichón volcano. Besides, knowledge of sulfur species behavior will contribute to have a better knowledge of the state the hydrothermal system, and the internal dynamics of the volcano, and provide more information to determine periods of increasing hazard. This paper presents advances in the development of the methodologies for the analysis of the above mentioned sulfur species. We have identified the analytical procedures for sampling and analysis of these species (preservation, operating conditions of the equipment, number of samples, dilution, etc.) according to various studies in different volcanoes with crater lakes (Volcano Poas, Costa Rica; Kusatsu-Shirane, Japan). Water samples collected at various locations of the lake on March 29th, and July 11th and October 3rd, 2014, have been analyzed for major ions and sulfur species. Results are being related to the volcanic behavior. Results obtained: Average concentrations (mg/L) at one sampling site: • Sulphide: 1.75 in March, 1.82 in July and 4.99 in October • Sulphite: 4.16 in March, 1.89 in July and 25.23 in October • Tetrathionate: 236.88 in March, 247.46 in July and 152.96 in October • Sulphate: 618.51 in March, 609.91 in July and 620.18 in October Preliminary conclusions: • The proposed Chromatographic method has been successful to separate these sulfur

  20. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish.

    PubMed

    Fruciano, Carmelo; Franchini, Paolo; Kovacova, Viera; Elmer, Kathryn R; Henning, Frederico; Meyer, Axel

    2016-09-06

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry.

  1. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish.

    PubMed

    Fruciano, Carmelo; Franchini, Paolo; Kovacova, Viera; Elmer, Kathryn R; Henning, Frederico; Meyer, Axel

    2016-01-01

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry. PMID:27597183

  2. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish

    PubMed Central

    Fruciano, Carmelo; Franchini, Paolo; Kovacova, Viera; Elmer, Kathryn R.; Henning, Frederico; Meyer, Axel

    2016-01-01

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry. PMID:27597183

  3. Multiple isotopic components in Quaternary volcanic rocks of the Cascade Arc near Crater lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gunn, S.H.; Lanphere, M.A.; Wooden, J.L.

    1994-01-01

    Quaternary lavas and pyroclastic rocks of Mount Mazama, Crater lake caldera, and the surrounding area have variable Sr, Nd, and Pb isotopic compositions. High-alumina olivine tholeiites have 87Ar/86Ar ratios of 0.70346-0.70364; basaltic andesite, 0.70349-0.70372; shoshonitic basaltic andesite, 0.70374-0.70388; and andesite, 0.70324-0.70383. Dacites of Mount Mazama have 87Sr/ 86Sr ratios of 0.70348-0.70373. Most rhyodacites converge on 0.7037. Andesitic to mafic-cumulate scoriae of the climatic eruption, and enclaves in pre-climactic rhyodacites, cluster in two groups but show nearly the entire 87Sr/86Sr range of the data set, confirming previously suggested introduction of diverse parental magmas into the growing climactic chamber. Magma evolution is described. -from Authors

  4. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  5. Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1986-01-01

    The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from

  6. Lake evolution during the Early Danian Dan-C2 hyperthermal, Boltysh impact crater, Ukraine

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.

    2016-04-01

    Lacustrine facies record complex relationships between lake evolution and environmental conditions and provide proxies for climate changes. However, lacustrine successions formed during past hyperthermals as recorded from negative carbon isotope excursions (CIEs) are of limited availability and thus less well understood. Here, we present a complete lacustrine record of the Early Danian Dan-C2 hyperthermal at c. 65.2 Ma from a core drilled in the K-Pg Boltysh impact crater, Ukraine. This borehole allows a detailed facies analysis and reconstruction of lake evolution and associated plant ecosystem in correspondence with rapid climate change. The Boltysh borehole reveals a c. 400 m thick siliciclastic and organic-rich succession overlying impact melt-breccia dated at 65.17 ± 0.64 Ma. Based on detailed core logging, 8 distinctive facies associations are identified, including 1) littoral mudstones, 2) siliciclastic shoreline deposits, 3) siliciclastic littoral to sublittoral deposits, 4) mudstone laminites, 5) organic-rich mudstones, and deposits of 6) coarse-grained, 7) fine-grained density currents, and 8) debris flows. Based on the occurrence of these facies associations 3 major phases of lake evolution are distinguished: 1) an initial pre-CIE rising clastic-dominated lake phase characterised by the presence of coarse-grained density and debris flow deposits, 2) an organic-rich fluctuating shallow lake phase during the main phase of the CIE, characterised by alternating packages of the mudstone laminites and organic-rich mudstones; and 3) a rising clastic-dominated lake during and post-CIE recovery phase, which shows a high presence of siliciclastic shoreline and littoral to sublittoral deposits. This study provides a full record of lacustrine response to climate change during the Dan-C2 hyperthermal, and subsequently allows us to infer lake formation and environmental conditions at different stages during climate warming. The high resolution sedimentary record

  7. Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy)

    NASA Astrophysics Data System (ADS)

    Carapezza, M. L.; Lelli, M.; Tarchini, L.

    2008-12-01

    Lake Albano, located 20 km to the SE of Rome, is hosted within the most recent crater of the quiescent Alban Hills volcanic complex that produced hydromagmatic eruptions in Holocene times. Stratigraphic, archaeological and historical evidence indicates that the lake level underwent important variations in the Bronze Age. Before the IV century B.C. several lahars were generated by water overflows from the lake and in the IV century B.C. Romans excavated a drainage tunnel. The lake is located above a buried carbonate horst that contains a pressurized medium-enthalpy geothermal reservoir from which fluids escape to the surface to produce many important gas manifestations of mostly CO 2. Previous studies recognized the presence of gas emissions also from the crater bottom. In 1997 the possibility of a Nyos-type event triggered by a lake rollover was considered very low, because the CO 2 water concentration at depth was found to be far from saturation. However, considering the high population density nearby, the Italian Civil Protection Department recommended that periodical monitoring be carried out. To this scope we initiated in 2001 a systematic geochemical study of the lake. Thirteen vertical profiles have been repeatedly carried out in 2001-2006, especially in the deepest part of the lake (167 m in 2006), measuring T, pH, dissolved O 2 and electrical conductivity. Water samples were collected from various depths and chemically and isotopically analysed. Two similar profiles have been measured also in the nearby Nemi crater lake. Results indicate that in the 4.5 years of monitoring the pressure of gas dissolved in the Lake Albano deep waters remained much lower than the hydrostatic pressure. A CO 2 soil survey carried out on the borders of the two lakes, indicates the presence of some zones of anomalous degassing of likely magmatic origin. A water overturn or a heavy mixing of deep and shallow waters likely occurred in winter 2003-2004, when cold rainfall cooled the

  8. Breccia Formation at a Complex Impact Crater: Slate Islands, Lake Superior, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Sharpton, V. L.

    1997-01-01

    The Slate Islands impact structure is the eroded remnant of a approximately 30-32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earliest breccias formed during the compression stage of the impact process. Coarse-grained, polymictic elastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of approximately 2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing

  9. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements

  10. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  11. Vernal Crater, SW Arabia Terra: MSL Candidate with Extensively Layered Sediments, Possible Lake Deposits, and a Long History of Subsurface Ice

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2007-01-01

    Vernal Crater is a Mars Science Laboratory (MSL) landing site candidate providing relatively easy access to extensively layered sediments as well as potential lake deposits. Sediments of Vernal Crater are 400-1200 m below those being investigated by Opportunity in Meridiani Planum, and as such would allow study of significantly older geologic units, if Vernal Crater were selected for MSL. The location of Vernal Crater in SW Arabia Terra provides exceptional scientific interest, as rampart craters and gamma-ray spectrometer (GRS) data from the region suggest a long history of ice/fluids in the subsurface. The potential value of this MSL candidate is further enhanced by reports of atmospheric methane over Arabia, as any insight into the source of that methane would significantly increase our understanding of Mars. Finally, should MSL survive beyond its prime mission, the gentle slope within Vernal Crater would provide a route out of the crater for study of the once ice/fluid-rich plains.

  12. Lava Lake Level Drop and Related Ground Subsidence in the Nyiragongo Main Crater (D.R.Congo) Measured by Close-Range Photogrammetry and InSAR Time-Series

    NASA Astrophysics Data System (ADS)

    Smets, B.; d'Oreye, N.; Samsonov, S. V.; Nobile, A.; Geirsson, H.; Kervyn, F.

    2015-12-01

    Nyiragongo volcano is the most active African volcano and among the most active volcanoes on Earth. It is also among the infrequent volcanoes that host a long-lived lava lake. The morphology of the Nyiragongo main crater is characterized by 2 levels of remnant platforms partly preserved and attached to its inner flanks, which correspond to former lava lake levels, and by a bottom "active" platform, which delimits the current active lava lake. The elevation of the bottom platform increases through time, with successive lava lake overflows. After a period of low level between late 2010 and August 2011, the lava lake next came back to its highest level. However, on September 30, 2011, it started a long and progressive fall, reaching ~70 m below the bottom platform in July 2014. This recent evolution of the lava lake, which occurred at the same time period as eruptive events at the neighboring Nyamulagira volcano, was accompanied by a ground subsidence of the bottom platform, leading to the appearance of ring fissures. This ground deformation is restricted to the bottom platform and, hence, suggests a very shallow source for the observed movement. All these changes in the Nyiragongo main crater were recorded by time-series of photographs, allowing the 3D reconstruction of the crater using close-range photogrammetric techniques and, hence, a detailed measurement of the observed changes. The ground subsidence was also recorded by time-series of RADARSAT-2 and CosmoSky-Med SAR interferograms, providing more detailed information on the velocity of deformation. Based on field data and the photogrammetric and InSAR time-series measurements, several hypotheses on the cause(s) of these changes in the Nyiragongo crater are discussed. The present work also highlights the potential of close-range photogrammetry and high-resolution InSAR to study and monitor active volcanoes in Equatorial environment.

  13. Complex explosive volcanic activity on the Moon within Oppenheimer crater

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.

    2016-07-01

    Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  14. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  15. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  16. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent

  17. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe

    USGS Publications Warehouse

    Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.

    2000-01-01

    Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.

  18. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  19. On Limnocytherina axalapasco, a new freshwater ostracod (Podocopida: Limnocytheridae) from Mexican crater lakes.

    PubMed

    Cohuo-Durán, Sergio; Pérez, Liseth; Karanovic, Ivana

    2014-03-01

    Limnocytherina is a genus conformed by 12 species; its distribution in the American continent is known to be exclusively on the North (neartics), but little is reported about its distribution from Mexico (transition zone) and Central America (Neotropics). Different sampling campaigns were undertaken in three crater lakes from the Axalapascos region in east-central Mexico, during 2008, 2009 and 2011. As a product of these campaings, the new species of Limnocytherina axalapasco was found, which displays some intraspecific variability among populations. In this study, we described the taxonomy, the habitat, the ecological preferences and the larval development of this new species. A total of 10 sediment samples (8 littoral, 2 deepest point) were collected from lakes Alchichica, La Preciosa and Quechulac. We found that L. axalapasco is closely related to two North American species: L. posterolimba and L. itasca as well as one Central American species L. royi comb. nov. With the inclusion of L. axalapasco and L. royi to the genus, the distribution of Limnocytherina is extended to Central America. The four most important distinguishing characters of this new species are: 1) valve surface and margins covered with small, spine-like projections; 2) most of the A1 setae with a highly developed setule at distal part, producing a bifurcate appearance; 3) the upper ramus on the hemipenis is elongated, and by far overpasses dorsal/distal margins, distal lobe is triangular and short, while the hook-like process is prominent, outward orientated, and overpassing the tip of the distal lobe; 4) the UR is moderately developed with seta f3 elongated and setae f1 and f2 short. Considering its ecological characteristics and larval development, L. axalapasco was preferably found in alkaline waters dominated by Cl(-) or HCO3(-) and Na+ or Mg2+, temperatures ranging between 19.1 to 20.3 degrees C, and dissolved oxygen concentrations from 5 to 6.5 mg/L. This species was abundant in deeper

  20. Digital Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Ramsey, D. W.

    2002-12-01

    Crater Lake caldera formed ~7700 cal yr B.P. by the eruption of 50 km3 of mainly rhyodacitic magma and the resulting collapse of Mount Mazama. A new 1:24,000-scale digital geologic map compiled in ArcInfo depicts the geology of this volcanic center, peripheral volcanoes, the caldera walls and floor, and superjacent pyroclastic, talus, and glacial deposits. The geology of the caldera walls was mapped in the field on photographs taken from the lake (see accompanying abstract and poster, "Geologic panoramas of the walls of Crater Lake caldera,Oregon"); the geology of the flanks of Mount Mazama and the surrounding area was mapped on aerial photographs; and features of the caldera floor were mapped on a multibeam echo-sounding bathymetric map (Gardner et al., 2001; Bacon et al., 2002). Volcanic map units are defined on the basis of chemical composition and petrographic characteristics. Map unit colors were chosen to indicate the compositions of volcanic rocks, cooler colors for mafic units and warmer colors for silicic units. Map unit color intensity indicates age, with more intense coloring for younger units. Ages of many units have been determined by K-Ar and 40Ar/39Ar dating by M.A. Lanphere. Several undated units have been correlated using paleomagnetic secular variation measurements by D.E. Champion. Crystallization facies of some of the larger lava flows are mapped separately (e.g., vitrophyre, felsite, carapace), as are breccia and lava facies of submerged postcaldera volcanoes. Also shown on the caldera floor are landslide (debris avalanche) and sediment gravity-flow deposits. A major north-south normal fault system traverses the map area west of the caldera and displaces dated late Pleistocene lava flows, allowing determination of a long-term slip rate of ~0.3 mm/yr (Bacon et al., 1999). Faults bounding large downdropped blocks of the south caldera wall are also shown. Where practical, lava flow margins are represented as intra-unit contacts. A number of small

  1. Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids.

    PubMed

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-06-01

    The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding

  2. Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids.

    PubMed

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-06-01

    The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding

  3. Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids

    PubMed Central

    Kautt, Andreas F.; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-01-01

    The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding

  4. Origin and speciation of haplochromine fishes in East African crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs.

    PubMed

    Sato, Akie; Takezaki, Naoko; Tichy, Herbert; Figueroa, Felipe; Mayer, Werner E; Klein, Jan

    2003-09-01

    The Western Branch of the East African Great Rift Valley is pocketed with craters of extinct or dormant volcanoes. Many of the craters are filled with water, and the lakes are inhabited by fishes. The objective of the present study was to determine the amount and nature of genetic variation in haplochromine fishes inhabiting two of these crater lakes, Lake Lutoto and Lake Nshere, and to use this information to infer the origin and history of the two populations. To this end, sequences of mitochondrial (mt) DNA control region, exon 2 of major histocompatibility complex (Mhc) class II B genes, and short interspersed elements (SINEs) were analyzed. The results indicate that the Lake Nshere and Lake Lutoto fishes originated from different but related large founding populations derived from the Kazinga Channel, which connects Lake Edward and Lake George. Some of the genetic polymorphism that existed in the ancestral populations was lost in the populations of the two lakes. The polymorphism that has been retained has persisted for some 50000 generations (years). During this time, new mutations arose and became fixed in each of the two populations in the mtDNA, giving rise to sets of diagnostic substitutions. Each population evolved in isolation after the colonization of the lakes less than 50000 years ago. There appears to be no population structure within the crater lake fishes, and their present effective population sizes are in the order of 104 to 105 individuals. Comparisons with the endemic haplochromine species of Lake Victoria reveal interesting parallels, as well as differences, which may help to understand the nature of the speciation process.

  5. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Lanphere, Marvin A.

    2006-01-01

    Geologic mapping, K-Ar, and 40Ar/39Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km3 k.y.−1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km3 k.y.−1, but major edifice construction episodes had rates of ∼0.8 km3 k.y.−1. The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km3 k.y.−1, but only ∼0.02 km3 k.y.−1 when the two major shields are excluded. Plutonic xenoliths and evidence for

  6. Geochemistry of Apatite in Climactic and Pre-Climactic Tephra from Mt. Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Langstaff, M.

    2007-12-01

    predict that most Mazama apatites in Cleetwood and climactic pumices should contain 0.4 wt.% or more SO3. Most apatites in Cleetwood and climactic rhyodacites contain less than 0.20 wt.% SO3 indicating crystallization from rhyodacitic melt that exsolved a sulfur-rich vapor prior to eruption that drastically reduced melt sulfur concentration. Apatites with SO3 greater than 0.60 wt.% most probably were derived from more mafic oxidized magmas with dissolved sulfur contents of 2000 ppm or more that have been measured in high-Sr andesitic scoria melt inclusions. Mole fraction fluorapatite in Mazama apatites ranges from 0.20 to 0.96 and based on comparison to recent experimental data predicts melt F concentrations of 200 to 1800 ppm that agrees with measured F in melt inclusions of 200 to 1300 ppm. Mole fraction chlorapatite ranges from 0.11 to 0.19 and based on recent experimental data predicts Cl concentrations in rhyodacitic melt of 0.3 to 0.4 wt.% in reasonable agreement with Cl concentrations in melt inclusions ranging from 0.18 to 0.39 wt.%. References Bacon C.R., and Druitt T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98:224-256. Druitt T.H., and Bacon C.R. (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 101:245-259. Peng G., Luhr J.F. and McGee J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. Am. Mineral. 82:1210-1224.

  7. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Lowenstern, J. B.

    2005-01-01

    Rhyodacite tephra and three lavas erupted ???27 ka, interpreted to be early leaks from the climactic magma chamber of Mount Mazama, contain ubiquitous resorbed crystals (antecrysts) that were recycled from young granodiorite and related plutonic rocks of the same magmatic system. The shallow composite pluton is represented by blocks ejected in the 7.7-ka climactic eruption that formed Crater Lake caldera. Plagioclase crystals in both rhyodacite and granodiorites commonly have cores with crystallographically oriented Fe-oxide needles exsolved at subsolidus conditions. At least 80% of plagioclase crystals in the rhyodacite are antecrysts derived from plutonic rocks. Other crystals in the rhyodacite, notably zircon, also were recycled. SIMS 238U- 230Th dating indicates that zircons in 4 granodiorite blocks crystallized at various times between ???20 ka and ???300 ka with concentrations of analyses near 50-70, ???110, and ???200 ka that correspond to periods of dacitic volcanism dated by K- Ar. U-Th ages of zircon from a rhyodacite sample yield similar results. No analyzed zircons from the granodiorite or rhyodacite are pre-Quaternary. Zircon minimum ages in blocks from different locations around the caldera reflect ages of nearby volcanic vents and may map the distribution of intrusions within a composite pluton. Survival of zircon in zircon-undersaturated hydrous magma and of Fe-oxide needles in plagioclase suggests that little time elapsed from entrainment of antecrysts to the ???27-ka eruption of the rhyodacite. The ???27-ka rhyodacite is an example of young silicic magma that preserved unstable antecrysts from a known source early during growth of a large high-level magma chamber. In contrast, the voluminous 7.7-ka climactic rhyodacite pumice is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the intervening period. Mineralogical evidence of assimilation may be destroyed in hot, vigorously growing silicic magma bodies such as

  8. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake

    USGS Publications Warehouse

    Fennel, K.; Collier, R.; Larson, G.; Crawford, G.; Boss, E.

    2007-01-01

    A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5-10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.'s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is

  9. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  10. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  11. Pseudorhodobacter sinensis sp. nov. and Pseudorhodobacter aquaticus sp. nov., isolated from crater lakes.

    PubMed

    Li, Ai-Hua; Liu, Hong-Can; Hou, Wei-Guo; Zhou, Yu-Guang

    2016-08-01

    Three Gram-stain negative, aerobic, non-motile, rod-shaped bacterial strains, Y1R2-4T, Y3R2-3 and DC2N1-10T, isolated from two crater lakes of the Daxinganling Mountains, northern China, were studied to determine their taxonomic position. They grew at 4-30 °C (optimally at 20-25 °C), at pH 6.0-7.5 (optimally at pH 7.0) and in the presence of 0-0.5 % (w/v) NaCl. On the basis of 16S rRNA gene sequence analysis, these strains showed 95.3-96.6 % similarity to members of the genus Pseudorhodobacter, including Pseudorhodobacter ferrugineus DSM 5888T, Pseudorhodobacter wandonensis WT-MW11T, Pseudorhodobacter antarcticus ZS3-33T and Pseudorhodobacter aquimaris HDW-19T. All strains contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The main polar lipids for strains Y1R2-4T and Y3R2-3 were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, three unidentified phospholipids and two unidentified lipids, and those for strain DC2N1-10T were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, one unidentified phospholipid and several unidentified lipids. The DNA G+C contents of strains Y1R2-4T, Y3R2-3 and DC2N1-10T were 61.9, 61.0 and 60.0 mol%, respectively. In addition, strain Y1R2-4T shared less than 50 % DNA-DNA relatedness to strain DC2N1-10T. Based on these differences in genetic, physiological and chemotaxonomic properties, strains Y1R2-4T, Y3R2-3 and DC2N1-10T were considered to represent two novel species of the genus Pseudorhodobacter, for which the names Pseudorhodobacter sinensis sp. nov. (type strain Y1R2-4T=CGMCC1.14435T=KCTC 52039T) and Pseudorhodobacter aquaticus sp. nov. (type strain DC2N1-10T=CGMCC1.14433T=KCTC 52040T) are proposed. PMID:27045957

  12. Pseudorhodobacter sinensis sp. nov. and Pseudorhodobacter aquaticus sp. nov., isolated from crater lakes.

    PubMed

    Li, Ai-Hua; Liu, Hong-Can; Hou, Wei-Guo; Zhou, Yu-Guang

    2016-08-01

    Three Gram-stain negative, aerobic, non-motile, rod-shaped bacterial strains, Y1R2-4T, Y3R2-3 and DC2N1-10T, isolated from two crater lakes of the Daxinganling Mountains, northern China, were studied to determine their taxonomic position. They grew at 4-30 °C (optimally at 20-25 °C), at pH 6.0-7.5 (optimally at pH 7.0) and in the presence of 0-0.5 % (w/v) NaCl. On the basis of 16S rRNA gene sequence analysis, these strains showed 95.3-96.6 % similarity to members of the genus Pseudorhodobacter, including Pseudorhodobacter ferrugineus DSM 5888T, Pseudorhodobacter wandonensis WT-MW11T, Pseudorhodobacter antarcticus ZS3-33T and Pseudorhodobacter aquimaris HDW-19T. All strains contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The main polar lipids for strains Y1R2-4T and Y3R2-3 were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, three unidentified phospholipids and two unidentified lipids, and those for strain DC2N1-10T were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, one unidentified phospholipid and several unidentified lipids. The DNA G+C contents of strains Y1R2-4T, Y3R2-3 and DC2N1-10T were 61.9, 61.0 and 60.0 mol%, respectively. In addition, strain Y1R2-4T shared less than 50 % DNA-DNA relatedness to strain DC2N1-10T. Based on these differences in genetic, physiological and chemotaxonomic properties, strains Y1R2-4T, Y3R2-3 and DC2N1-10T were considered to represent two novel species of the genus Pseudorhodobacter, for which the names Pseudorhodobacter sinensis sp. nov. (type strain Y1R2-4T=CGMCC1.14435T=KCTC 52039T) and Pseudorhodobacter aquaticus sp. nov. (type strain DC2N1-10T=CGMCC1.14433T=KCTC 52040T) are proposed.

  13. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by

  14. Distribution of Glycerol Diakyl Glycerol Tetraethers in Surface Soil and Crater Lake Sediments from Mount Kenya, East Africa

    NASA Astrophysics Data System (ADS)

    Omuombo, C.; Huguet, A.; Olago, D.; Williamson, D.

    2013-12-01

    Glycerol diakyl glycerol tetraethers (GDGTs), a palaeoclimate proxy based on the relative abundance of lipids produced by archaea and bacteria, is gaining wide acceptance for the determination of past temperature and pH conditions. This study looks at the spatial distribution and abundance of GDGTs in soil and sediment samples along an altitudinal transect from 3 crater lakes of Mt. Kenya (Lake Nkunga, Sacred Lake and Lake Rutundu) ranging in elevation from 1700m - 3080m above sea level. GDGTs were extracted with solvents and then analysed using high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (HPLC/APCI-MS). Mean annual air temperature and pH were estimated based on the relative abundance of the different branched GDGTs, i.e. on the MBT (Methylation index of Branched Tetraethers) and CBT (Cyclization ratio of Branched Tetraethers) indices. Substantial amount of GDGTs were detected in both soil and sediment samples. In addition, branched GDGT distribution was observed to vary with altitude. These results highlight the importance of quantifying the branched GDGTs to understand the environmental parameters controlling the distribution of these lipids. The MBT/CBT proxy is a promising tool to infer palaeotemperatures and characterize the climate events of the past millennia in equatorial east Africa.

  15. Morpho-Bathymetry of the Specchio di Venere Crater Lake, Pantelleria Island, Italy: Integration of GPS Surveys with non-GPS Data and Evidence of Sedimentary Control on Lake Bottom Topography

    NASA Astrophysics Data System (ADS)

    Madonia, P.; Cangemi, M.; Bellanca, A.; D'Alessandro, W.; Neri, R.; Failla, A.

    2009-12-01

    Pantelleria is a Pleistocene strato-volcano island located in the Sicily Channel Rift Zone, about 100 km south-west of Sicily and 70 km north-east of Tunisia. Specchio di Venere is an endorheic lake located inside a calderic depression (Caldera Cinque Denti), showing a sub-circular shape (being ca 450 m long and ca 350 m wide) and a maximum depth of 12.5 m, with steeper slopes in its north-eastern area. The south-western sector of the lake is characterized by a diffused hydrothermal activity (low temperature fumarole vents and hydrothermal springs). Several morpho-bathymetric surveys, based on both direct sounding and echo-sounding methods, have been carried out into the lake, using different techniques for the planar positioning of the measure points: takeometers, metric ropes tightened on the opposite sides of the lake and, finally, differential single frequency GPS. A comparison between the different surveys clearly indicates that the low number of bathymetric measures carried out in pre-GPS surveys, due to difficulties of a precise and fast positioning of the measure points, heavily influenced the map of the lake floor. In particular, the interpretation of the lake floor morphology was the result of the archetypal idea of a lake, with parallel, iso-spaced bathymetric curves, merely reproducing the shape of the lake shoreline. After the advent of GPS techniques, in the framework of a research project financed by the Italian Civil Defence Department, a new survey was carried out on May 2007, further integrated by another measuring campaign on May 2009. The new bathymetric map, based on 445 depth points, not aligned along transects to avoid the generation of pseudo-structures due to the geometry of the measure points, revealed a quite different structure of the low-depth (maximum 2 m) south-western sector of the lake, whose morphology is probably to be related to interaction of the hydrothermal vent field with sedimentary processes, resulting in the formation of

  16. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  17. A detailed geologic characterization of Eberswalde crater, Mars

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; BellI, J. F., III; Gupta, S.; Warner, N. H.; Goddard, K.; Anderson, R. B.

    Background: Eberswalde crater, selected as one of four finalist landing sites for the Mars Science Laboratory mission, is best known for the spectacularly preserved, inverted, fan-shaped deposit along its western margin. This feature has been interpreted as a lacustrine delta, although the timing and duration of an Eberswalde crater lake is poorly understood. The aim of this study is to place more broadly observed fluvio-lacustrine activity throughout the crater's floor within the larger context of Eberswalde's geologic history, and to infer the sequence of deposition and erosion of the observed stratigraphic and geomorphic units. Method: We have identified and mapped stratigraphic and geomorphic units within all of Eberswalde crater using orbital imagery from the HiRISE, MOC and CTX cameras, and we have calculated crater statistics to infer the relative ages of crater floor materials. Using topographic datasets derived from HiRISE, CTX and MOLA, we determine the unit associations, successions, and geometries and develop a model for the depositional and erosional history within the crater. Conclusion: We have produced maps of ten stratigraphic and seven geomorphic units identified within Eberswalde crater. Our observations of the stratigraphy, geomorphology, topography and crater densities imply a complex relationship between deposition and exhumation within Eberswalde crater, and we infer the following sequence of major events: (1) Eberswalde crater forms in the Noachian (> 3.6 Ga); (2) Holden crater forms southwest of Eberswalde crater in the late Noachian to Early Hesperian, and its associated ejecta blanket covers the floor of Eberswalde crater and heavily modifies the southern rim; (3) Extensive faulting from regional stresses creates the first-order topography within the crater, and vein-like features form in some units from fracturing, fluid circulation, and cementation; (4) Valley features are carved in the crater walls as water flows into the crater

  18. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  19. Isotope hydrology of El Chichón volcano-hydrothermal system; a coupled system of crater lake and hot springs

    NASA Astrophysics Data System (ADS)

    Peiffer, L.; Taran, Y.; Rouwet, D.

    2010-12-01

    The catastrophic 1982 eruption of El Chichón (>1.5 km3 of erupted material) opened the upper hundred meters of the existing volcano-hydrothermal system. In the new formed 200m-deep crater a large shallow crater lake and numerous hot springs were formed. The lake existence and its salinity depend on the precipitation (~4000 mm/y) as well as a group of geyser-like neutral saline springs (source of Cl and SO4) and hydrothermal steam vents discharging into the lake (source of SO4). The chemistry of these “Soap Pool” (SP) springs evolved from >13,000 ppm of Cl in 1995 to ~2000-3000 ppm of Cl in 2006. Since 2006, this Cl-concentration in SP waters is constant. Similar concentrations of Cl are observed in most flank hot springs located at altitudes of ~ 600 m asl, 2-3 km from the crater. Therefore, it can be suggested that the flank springs, crater lake and crater hot springs are manifestations of the upper, relatively shallow volcano-hydrothermal system developed beneath the crater in the volcano edifice. Water isotopic composition of all types of thermal and fresh waters including fumarolic steam condensates (>100 samples collected in 1995-2010) allow to classify and distinguish different processes of shallow mixing, boiling, evaporation and water-rock isotope exchange. All spring waters from the upper system have meteoric origin, with the isotopic composition plotting close to the meteoric water line. Crater waters are strongly evolved due to shallow boiling and loss of steam. Isotopic composition of water from the lower, deep hydrothermal system is characterized by a significant positive oxygen isotopic shift and a strong Cl-d18O linear correlation. Waters from numerous cold springs that drain pyroclastic deposits demonstrate a clear negative oxygen shift. Some problems related to water isotopic composition are still remain unresolved: (1) we cannot find any traces of the infiltrated isotopically heavy lake waters, i.e., the seepage from the lake at the volcano

  20. Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models

    NASA Technical Reports Server (NTRS)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].

  1. Water chemistry of lakes related to active and inactive Mexican volcanoes

    NASA Astrophysics Data System (ADS)

    Armienta, María Aurora; Vilaclara, Gloria; De la Cruz-Reyna, Servando; Ramos, Silvia; Ceniceros, Nora; Cruz, Olivia; Aguayo, Alejandra; Arcega-Cabrera, Flor

    2008-12-01

    Water chemistry of crater lakes, maars and water reservoirs linked to some Mexican volcanoes within and outside the Mexican Volcanic Belt has been determined for several years and examined regarding environmental and volcanic factors. All the analyzed lakes are relatively small with a maximum depth of 65 m, and are located in regions with different climates, from semi-arid to very humid, with altitudes ranging from 100 to more than 4000 m a.s.l. Crater lakes in active volcanoes (El Chichón, Popocatépetl) have very low pH, moderate to high temperatures and major ion concentrations varying with the level of volcanic unrest. Lakes in sub-arid and temperate-arid regions (like maars in Puebla and Guanajuato states) show high alkalinity and pH, with bicarbonate/carbonate, chloride, sodium and magnesium as predominant ions. Lakes located in humid climates (Central Michoacán and Veracruz state) have low mineralization and near-neutral pH values. In general, conservative dissolved ions and conductivity appear to be mostly controlled by precipitation/evaporation and by the ionic concentration of groundwater inputs. Calcium, magnesium, sulfate concentrations and pH are strongly influenced by volcanic-rock or volcanic gas interactions with water. The influence of low-level volcanic activity on crater lakes may be obscured by water-rock interactions, and climatic factors. One of the aims of this paper is to define the relative influence of these factors searching for a reference frame to recognize the early volcanic precursors in volcano-related lakes.

  2. Pyroclastic Activity at Home Plate in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Aharonson, O.; Clark, B. S.; Cohen, B.; Crumpler, L.; deSouza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Grotzinger, J. P.; Haldemann, A. F. C.; Johnson, J. R.; Klingelhoefer, G.; Lewis, K. W.; Li, R.; McCoy, T.; McEwen, A. S.; McSween, H. Y.; Ming, D. W.; Moore, J. M.; Morris, R. V.; Parker. T. J.; Rice, J. W., Jr.; Ruff, S.; Schmidt, M.

    2007-01-01

    Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.

  3. Pyroclastic activity at home plate in Gusev crater, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; de Souza, P.A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J. R.; Klingelhofer, G.; Lewis, K.W.; Li, R.; McCoy, T.; McEwen, A.S.; McSween, H.Y.; Ming, D. W.; Moore, Johnnie N.; Morris, R.V.; Parker, T.J.; Rice, J. W.; Ruff, S.; Schmidt, M.; Schroder, C.; Soderblom, L.A.; Yen, A.

    2007-01-01

    Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

  4. Present-day aeolian activity in Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Silvestro, Simone; Vaz, David A.; Michaels, Timothy; Bourke, Mary C.; Komatsu, Goro; Marinangeli, Lucia

    2016-02-01

    In this report, we show evidence for ripple and dune migration in Herschel Crater on Mars. We estimate an average dune migration of 0.8 m and a minimum ripple migration of 1.1 m in a time span of 3.7 Earth-years. These dunes and ripples are mainly shaped by prevailing winds coming from the north, however we also report the presence of secondary winds which elongate the barchans' horns. Such a complex wind scenario is likely caused by the influence of winds blowing off the western crater rim as suggested by the Mars Regional Atmospheric Modeling System (MRAMS), an atmospheric mesoscale model. A multi-directional wind regime at the local scale is also supported by the observed bimodal distribution of the ripple trends. For the first time, a survey integrating the assessment of dune and ripple migration is presented, showing how dune topography can influence the migration patterns of ripples and how underlying topography appears to control the rates of dune migration.

  5. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  6. Complex Explosive Volcanic Activity on the Moon in Oppenheimer Crater

    NASA Astrophysics Data System (ADS)

    Horgan, B. H. N.; Bennett, K. A.; Gaddis, L. R.; Greenhagen, B. T.; Allen, C.; Hayne, P. O.; Bell, J. F., III; Paige, D. A.

    2015-12-01

    Oppenheimer is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic deposits on the Moon are thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rates and Hawaiian-style fire fountaining inferred to form larger regional deposits. However, using new methods to derive iron mineralogy from Chandrayaan-1 Moon Mineralogy Mapper near-infrared spectra, we find that the mineralogy of the Oppenheimer pyroclastics is not consistent with a simple Vulcanian eruption mechanism. The Oppenheimer pyroclastic deposits are mixtures of pyroxene sourced from the crater floor, juvenile clinopyroxene (CPX), and juvenile iron-rich glass. A Vulcanian (plugged conduit) eruption should cause significant country rock to be incorporated into the pyroclastic deposit. However, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases (glass or CPX mixed with glass) and very little floor material. Thus, we propose that at least some portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption at higher effusion rates. Significant along-fracture mineralogical variations within many of the deposits suggest multiple eruptions and that eruption styles may have been variable in time and space. Diviner mid-infrared spectra also indicate that these local deposits may be much more iron-rich than regional pyroclastic deposits, and thus are valuable resource targets. These results suggest that local lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.

  7. Palos Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Palos Crater has been suggested as a future landing site for Mars Missions. This crater has a channel called Tinto Vallis, which enters from the south. This site was suggested as a landing site because it may contain lake deposits. Palos Crater is named in honor of the port city in Spain from which Christopher Columbus sailed on his way to the New World in August of 1492. The floor of Palos Crater appears to be layered in places providing further evidence that this site may in fact have been the location of an ancient lake.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Control of the geomorphic evolution of an active crater: Popocatpetl (Mexico) 1994-2003.

    NASA Astrophysics Data System (ADS)

    Andrés, N.; Zamorano, J. J.; Palacios, D.; Macias, J. L.; Sanjosé, J. J.

    2009-04-01

    Volcanic activity often causes intense and successive geomorphic changes to occur inside a crater. In terms of hazard mitigation, it is important to understand the cause of these changes whether they be exterior lava spills, sequences of explosions or massive glacier melt. Access to an active crater, however, is very difficult and dangerous, so analytical approaches involving remote study must substitute actual fieldwork. Several studies done at Popocatepetl volcano during its most recent eruptive phase that began in December 1994, use remote techniques and are described in Cruz-Reyna et al. (1998), Wright et al. (2002), Martín-Del Pozo et al. (2003), Tanarro et al. (2005), Matiella et al. (2008), and Zamorano et al. (1996,1998), among others. The compendium of results reveals that recent volcanic activity on Popocatépetl is characterized by successive dome growth and destruction inside the crater. Macias and Siebe (2005) even suggest that the walls of the crater may no longer withstand future dome growth. The purpose of this study is to understand the morphologic evolution of the interior of the crater during the most active period of the present eruptive phase on Popocatepetl from 1994 to 2003. The methodology is based on photogrammetry techniques that have been used successfully at volcanic sites by Donnadieu et al. (2003), and on a GIS to organize information, draft maps and 3-D images, and to calculate spatial variations in landforms (Procter et al., 2006; Schilling et al., 2006). Traditional aerial photo interpretation was used for 22 triplets selected from a collection of photos taken by the Mexican Highway and Transport Secretariat, from 1982 to 2003, and enabled us to draft geomorphic maps of the interior of the crater. The photos and maps were rectified and georeferenced with ArcGis software, and then the maps were digitized. The areas containing morphologic units associated with a date (exterior crater walls, colluvial ramps and recent volcanic complex

  9. Venus: further evidence of impact cratering and tectonic activity from radar observations.

    PubMed

    Campbell, D B; Burns, B A; Boriakoff, V

    1979-06-29

    Earth-based radar images at a resolution of 10 kilometers show a diverse surface terrain on Venus, probably produced by both impact events and tectonic activity. Only a small number of craters of apparent impact origin are seen. Large-scale features show lineaments and parallel ridges suggesting tectonic origins.

  10. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of threespine stickleback.

    PubMed

    Yoshida, Kohta; Miyagi, Ryutaro; Mori, Seiichi; Takahashi, Aya; Makino, Takashi; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2016-04-01

    Invasive species pose a major threat to biological diversity. Although introduced populations often experience population bottlenecks, some invasive species are thought to be originated from hybridization between multiple populations or species, which can contribute to the maintenance of high genetic diversity. Recent advances in genome sequencing enable us to trace the evolutionary history of invasive species even at whole-genome level and may help to identify the history of past hybridization that may be overlooked by traditional marker-based analysis. Here, we conducted whole-genome sequencing of eight threespine stickleback (Gasterosteus aculeatus) individuals, four from a recently introduced crater lake population and four of the putative source population. We found that both populations have several small genomic regions with high genetic diversity, which resulted from introgression from a closely related species (Gasterosteus nipponicus). The sizes of the regions were too small to be detected with traditional marker-based analysis or even some reduced-representation sequencing methods. Further amplicon sequencing revealed linkage disequilibrium around an introgression site, which suggests the possibility of selective sweep at the introgression site. Thus, interspecies introgression might predate introduction and increase genetic variation in the source population. Whole-genome sequencing of even a small number of individuals can therefore provide higher resolution inference of history of introduced populations. PMID:27069575

  11. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of threespine stickleback.

    PubMed

    Yoshida, Kohta; Miyagi, Ryutaro; Mori, Seiichi; Takahashi, Aya; Makino, Takashi; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2016-04-01

    Invasive species pose a major threat to biological diversity. Although introduced populations often experience population bottlenecks, some invasive species are thought to be originated from hybridization between multiple populations or species, which can contribute to the maintenance of high genetic diversity. Recent advances in genome sequencing enable us to trace the evolutionary history of invasive species even at whole-genome level and may help to identify the history of past hybridization that may be overlooked by traditional marker-based analysis. Here, we conducted whole-genome sequencing of eight threespine stickleback (Gasterosteus aculeatus) individuals, four from a recently introduced crater lake population and four of the putative source population. We found that both populations have several small genomic regions with high genetic diversity, which resulted from introgression from a closely related species (Gasterosteus nipponicus). The sizes of the regions were too small to be detected with traditional marker-based analysis or even some reduced-representation sequencing methods. Further amplicon sequencing revealed linkage disequilibrium around an introgression site, which suggests the possibility of selective sweep at the introgression site. Thus, interspecies introgression might predate introduction and increase genetic variation in the source population. Whole-genome sequencing of even a small number of individuals can therefore provide higher resolution inference of history of introduced populations.

  12. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  13. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  14. Subsurface geology, ancient hydrothermal systems and crater excavation processes beneath Lake Rotomahana: Evidence from lithic clasts of the 1886 AD Rotomahana Pyroclastics

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Briggs, R. M.; Bowyer, D. A.

    2016-03-01

    The craters associated with the 1886 AD phreatomagmatic Rotomahana eruption, Okataina Volcanic Centre, New Zealand, and the near-vent geology are now hidden beneath Lake Rotomahana and its post-eruptive sediment fill. Lithic clasts from the near-vent lithic lapilli ash deposits of the Rotomahana Pyroclastics are used in this study to trace geological and geothermal conditions before the eruption, as well as vent excavation dynamics. Near-vent deposit characteristics were described in the field, representative lithic clasts were documented petrographically, and unaltered clasts were analysed for major and trace element compositions. The majority of the lithic clasts were rhyolites with subordinate ignimbrites and hydrothermally altered clasts, and trace siltstone and silicified clasts. The rhyolites were classified into four petrographic groups according to phenocryst content and assemblage and were more diverse with respect to geochemical compositions. Most of the rhyolite lithics in the Rotomahana Pyroclastics did not match the rhyolite domes exposed subaerially around the lake, but did have affinities with the pre-Matahina caldera Wairua Rhyolite, and potentially other older non-exposed domes. Ignimbrites most likely correlated either to the Matahina ignimbrite or older non-exposed units. Hydrothermally altered rhyolite and ignimbrite lithic clasts are common and suggest that there has been a long-lived hydrothermal system in this sector, possibly dating back to early activity of the Okataina Volcanic Centre. The diversity in lithic types indicate a spatial variation in country rock lithology and strength, which probably contributed to the vent position and morphology along the Rotomahana fissure.

  15. The origin and timing of fluvial activity at Eberswalde crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Kite, E. S.; Kleinhans, M. G.; Newsom, H.; Ansan, V.; Hauber, E.; Kraal, E.; Quantin, C.; Tanaka, K.

    2012-08-01

    The fan deposit in Eberswalde crater has been interpreted as strong evidence for sustained liquid water on early Mars with a paleolake formed during the Noachian period (>3.7 Gy). This location became a key region for understanding the Mars paleo-environment. Eberswalde crater is located 50 km north of the rim of the 150 km diameter crater Holden. Stratigraphic relationships and chronology obtained using recent Mars Express High Resolution Stereo Camera and Mars Reconnaissance Orbiter Context Camera images show that Eberswalde fluvial activity crosscuts Holden ejecta and thus postdates Holden crater, whose formation age is estimated from crater counts as Late Hesperian (˜3.5 Gy, depending on models). Fluvial modeling shows that short term activity (over several years to hundreds of years) involving dense flows (with sediment:water ratio between 0.01 and 0.3) may be as good an explanation of the fluvial landforms as dilute flow over longer durations. Modeling of the thermal effect of the Holden impact in the Eberswalde watershed is used to evaluate its potential role in aqueous activity. The relative timing of the Holden impact and Eberswalde's fan is a constraint for future studies about the origin of these landforms. Holden ejecta form a weak and porous substrate, which may be easy to erode by fluvial incision. In a cold climate scenario, impact heating could have produced runoff by melting snow or ground ice. Any attempt to model fluvial activity at Eberswalde should take into account that it may have formed as late as in the Late Hesperian, after the great majority of valley network formation and aqueous mineralization on Mars. This suggests that hypotheses for fan formation at Eberswalde by transient and/or localized processes (i.e. impact, volcanism, unusual orbital forcing) should be considered on a par with globally warmer climate.

  16. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake.

    PubMed

    Surakasi, Venkata Prasad; Antony, Chakkiath Paul; Sharma, Sashikant; Patole, Milind S; Shouche, Yogesh S

    2010-10-01

    The phylogenetic diversity of bacterial communities in microbial mats of two different seasons from saline and hyperalkaline Lonar Lake was investigated using 16S rRNA gene library analysis. Arthrospira (Cyanobacteria) related clones (>80% of total clones) dominated libraries of both the seasons. Clear differences were found in both the seasons as the operational taxonomic units (OTUs) related to Fusibacter (LAI-1 and LAI-59) and Tindallia magadiensis (LAI-27) found in post-monsoon were not found in the pre-monsoon library. Likewise, OTUs related to Planococcus rifietensis (LAII-67), Bordetella hinzii (LAII-2) and Methylobacterium variabile (LAII-25) found in the pre-monsoon were not found in post-monsoon. The study was extended to identify methanotrophs in the surface mats. Libraries constructed with type I and type II methanotroph specific 16S rRNA gene primers showed the presence of clones (LAMI-99 and LAMII-2) closely related to Methylomicrobium buryaticum and Beijerinckiaceae family members. Denaturing gradient gel electrophoresis (DGGE) fingerprinting based on protein-coding genes (pmoA and mxaF) further confirmed the detection of Methylomicrobium sp. Hence, we report here for the first time the detection of putative methanotrophs in surface mats of Lonar Lake. The finding of clones related to organisms with interesting functional attributes such as assimilation of C(1) compounds (LAII-25, LAMI-39, LAMI-99 and LAMII-2), non-sulfur photosynthetic bacteria (LAMII-43) and clones distantly affiliated to organisms of heavily polluted environments (LAI-59 and LAMII-52), is of significant note. These preliminary results would direct future studies on the functional dynamics of microbial mat associated food web chain in the extreme environment. PMID:20586073

  17. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake.

    PubMed

    Surakasi, Venkata Prasad; Antony, Chakkiath Paul; Sharma, Sashikant; Patole, Milind S; Shouche, Yogesh S

    2010-10-01

    The phylogenetic diversity of bacterial communities in microbial mats of two different seasons from saline and hyperalkaline Lonar Lake was investigated using 16S rRNA gene library analysis. Arthrospira (Cyanobacteria) related clones (>80% of total clones) dominated libraries of both the seasons. Clear differences were found in both the seasons as the operational taxonomic units (OTUs) related to Fusibacter (LAI-1 and LAI-59) and Tindallia magadiensis (LAI-27) found in post-monsoon were not found in the pre-monsoon library. Likewise, OTUs related to Planococcus rifietensis (LAII-67), Bordetella hinzii (LAII-2) and Methylobacterium variabile (LAII-25) found in the pre-monsoon were not found in post-monsoon. The study was extended to identify methanotrophs in the surface mats. Libraries constructed with type I and type II methanotroph specific 16S rRNA gene primers showed the presence of clones (LAMI-99 and LAMII-2) closely related to Methylomicrobium buryaticum and Beijerinckiaceae family members. Denaturing gradient gel electrophoresis (DGGE) fingerprinting based on protein-coding genes (pmoA and mxaF) further confirmed the detection of Methylomicrobium sp. Hence, we report here for the first time the detection of putative methanotrophs in surface mats of Lonar Lake. The finding of clones related to organisms with interesting functional attributes such as assimilation of C(1) compounds (LAII-25, LAMI-39, LAMI-99 and LAMII-2), non-sulfur photosynthetic bacteria (LAMII-43) and clones distantly affiliated to organisms of heavily polluted environments (LAI-59 and LAMII-52), is of significant note. These preliminary results would direct future studies on the functional dynamics of microbial mat associated food web chain in the extreme environment.

  18. A fluorescein tracer release experiment in the hydrothermally active crater of Vailulu'u volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A. A. P.; Girard, A. P.

    2003-08-01

    On 3 April 2001, a 20 kg point source of fluorescein dye was released 30 m above the bottom of the active summit caldera of Vailulu'u submarine volcano, Samoa. Vailulu'u crater is 2000 m wide and at water depths of 600-1000 m, with the bottom 200 m completely enclosed; it thus provides an ideal site to study the hydrodynamics of an active hydrothermal system. The magmatically driven hydrothermal system in the crater is currently exporting massive amounts of particulates, manganese, and helium. The dispersal of the dye was tracked for 4 days with a fluorimeter in tow-yo mode from the U.S. Coast Guard icebreaker Polar Sea. Lateral dispersion of the dye ranged from 80 to 500 m d-1; vertical dispersion had two components: a diapycnal diffusivity component averaging 21 cm2 s-1, and an advective component averaging 0.025 cm s-1. These measurements constrain the mass export of water from the crater during this period to be 8-1.3+4.6 × 107 m3 d-1, which leads to a "turnover" time for water in the crater of ˜3.2 days. Coupled with temperature data from CTD profiles and Mn analyses of water samples, the power output from the crater is 610-100+350 MW, and the manganese export flux is ˜240 kg d-1. The Mn/Heat ratio of 4.7 ng J-1 is significantly lower than ratios characteristic of hot smokers and diffuse hydrothermal flows on mid-ocean ridges and points to phase separation processes in this relatively shallow hydrothermal system.

  19. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  20. Control of the geomorphic evolution of an active crater: Popocatpetl (Mexico) 1994-2003.

    NASA Astrophysics Data System (ADS)

    Andrés, N.; Zamorano, J. J.; Palacios, D.; Macias, J. L.; Sanjosé, J. J.

    2009-04-01

    Volcanic activity often causes intense and successive geomorphic changes to occur inside a crater. In terms of hazard mitigation, it is important to understand the cause of these changes whether they be exterior lava spills, sequences of explosions or massive glacier melt. Access to an active crater, however, is very difficult and dangerous, so analytical approaches involving remote study must substitute actual fieldwork. Several studies done at Popocatepetl volcano during its most recent eruptive phase that began in December 1994, use remote techniques and are described in Cruz-Reyna et al. (1998), Wright et al. (2002), Martín-Del Pozo et al. (2003), Tanarro et al. (2005), Matiella et al. (2008), and Zamorano et al. (1996,1998), among others. The compendium of results reveals that recent volcanic activity on Popocatépetl is characterized by successive dome growth and destruction inside the crater. Macias and Siebe (2005) even suggest that the walls of the crater may no longer withstand future dome growth. The purpose of this study is to understand the morphologic evolution of the interior of the crater during the most active period of the present eruptive phase on Popocatepetl from 1994 to 2003. The methodology is based on photogrammetry techniques that have been used successfully at volcanic sites by Donnadieu et al. (2003), and on a GIS to organize information, draft maps and 3-D images, and to calculate spatial variations in landforms (Procter et al., 2006; Schilling et al., 2006). Traditional aerial photo interpretation was used for 22 triplets selected from a collection of photos taken by the Mexican Highway and Transport Secretariat, from 1982 to 2003, and enabled us to draft geomorphic maps of the interior of the crater. The photos and maps were rectified and georeferenced with ArcGis software, and then the maps were digitized. The areas containing morphologic units associated with a date (exterior crater walls, colluvial ramps and recent volcanic complex

  1. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  2. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    SciTech Connect

    La Tourrette, T.Z.; Burnett, D.S. ); Bacon C.R. )

    1991-02-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO{sub 2}), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give D{sub U}{sup oxide/liq} {approx} 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are modestly well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster that the zircons were dissolving. Based on the authors measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractional during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in the authors samples. This demonstrates an actual case of nonequilibrium source retention of accessory phases, which in general could be an important trace element fractionation mechanism. Their results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites.

  3. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    USGS Publications Warehouse

    Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.

    1991-01-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.

  4. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  5. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  6. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  7. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-02-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber-dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10-30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  8. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  9. The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Neri, Marco; Pecora, Emilio; Zanon, Vittorio

    2006-09-01

    Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971 2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996 2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996 2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This

  10. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation.

    PubMed

    Martin, Christopher H; Cutler, Joseph S; Friel, John P; Dening Touokong, Cyrille; Coop, Graham; Wainwright, Peter C

    2015-06-01

    One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.

  11. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation.

    PubMed

    Martin, Christopher H; Cutler, Joseph S; Friel, John P; Dening Touokong, Cyrille; Coop, Graham; Wainwright, Peter C

    2015-06-01

    One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature. PMID:25929355

  12. Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower ??18O values (-3.4 to +4.9???) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0???). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T ??? 900??C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ??? 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have ??18O values ??? 0.5??? or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18O depletion in large, shallow silicic magma bodies. ?? 1989.

  13. Facies associations of rain-generated versus crater lake-withdrawal lahar deposits from Quaternary volcanoes, central Italy

    NASA Astrophysics Data System (ADS)

    Giordano, G.; De Rita, D.; Fabbri, M.; Rodani, S.

    2002-11-01

    volcano, grades laterally into a single, far-reaching, thick lahar deposit. The lahar deposit coarsens upward from coarse-ash, hyperconcentrated-flow deposit into a lithic-block-rich, debris-flow deposit. This lahar deposit has been interpreted to be directly derived from a pyroclastic flow and particularly related to the entrance of the pyroclastic flow into a pre-existing maar crater lake along the pyroclastic-flow path. The basal sand-size, hyperconcentrated-flow deposit is interpreted to represent early deposition from the fast frontal flood wave, whereas the coarse lithic-rich debris-flow deposit at the top may represent the rear of the lahar. The separation of the two facies can be related to processes of 'hydraulic sieving' operated by the lake water, which couples with ash particles, leaving behind the coarser fraction.

  14. Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli

    NASA Astrophysics Data System (ADS)

    Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio

    2016-05-01

    Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.

  15. Measurements of slope distances and vertical angles at Mount Baker and Mount Rainier, Washington, Mount Hood and Crater Lake, Oregon, and Mount Shasta and Lassen Peak, California, 1980-1984

    USGS Publications Warehouse

    Chadwick, W.W.

    1985-01-01

    Personnel of the U.S.Geological Survey's Cascades Volcano Observatory established trilateration networks at Mount Baker, Mount Rainier, Mount Hood, Crater Lake, Mount Shasta, and Lassen Peak in 1980-1984. These networks are capable of detecting changes in slope distance of several centimeters or more. The networks were established to provide baseline information on potentially active volcanoes and were designed along guidelines found useful at Mount St. Helens. Periodic reoccupation of the networks is planned as part of the overall monitoring program of Cascades volcanoes. Methodology, slope distance and vertical angle data, maps of the networks, and benchmark descriptions are presented in this report. Written benchmark descriptions are augmented by photographs, which we have found by experience to very useful in relocating the marks. All repeat measurements at the six volcanoes are probably within measurement error.

  16. Seismic activity noted at Medicine Lake Highlands

    SciTech Connect

    Blum, D.

    1988-12-01

    The sudden rumble of earthquakes beneath Medicine Lake Highlands this fall gave geologists an early warning that one of Northern California's volcanoes may be stirring back to life. Researchers stressed that an eruption of the volcano is not expected soon. But the flurry of underground shocks in late September, combined with new evidence of a pool of molten rock beneath the big volcano, has led them to monitor Medicine Lake with new wariness. The volcano has been dormant since 1910, when it ejected a brief flurry of ash - worrying no one. A federal team plans to take measurements of Medicine Lake, testing for changes in its shape caused by underground pressures. The work is scheduled for spring because snows have made the volcano inaccessible. But the new seismic network is an effective lookout, sensitive to very small increases in activity.

  17. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006

    USGS Publications Warehouse

    Werner, C.; Hurst, T.; Scott, B.; Sherburn, S.; Christenson, B.W.; Britten, K.; Cole-Baker, J.; Mullan, B.

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbig processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d-1 and demonstrated clear annual cycling that was consistent with numbers of earthquake detections and annual changes in sea level. The annual variability was found to be most likely related to increases in the strain on the volcano during sea level highs, temporarily causing fractures to reduce in size in the upper conduit. SO2 emissions varied from 0 to >400 t d-1 and were clearly affected by scrubbing processes within the first year of take development. Scrubbing caused increases of SO42- and Cl- in lake waters, and the ratio of carbon to total sulphur suggested that elemental sulphur deposition was also significant in the lake during the first year. Careful measurements of the lake level and chemistry allowed estimates of the rate of H2O(g) and HCl(g) input into the lake and suggested that the molar abundances of major gas species (H2O, CO2, SO2, and HCl) during this quiescent phase were similar to fumarolic ratios observed between earlier eruptive periods. The volume of magma estimated from CO2 emissions (0.0 15-0.04 km3) was validated by Cl- increases in the lake, suggesting that the gas and magma are transported from deep to shallow depths as a closed system and likely become open in the upper conduit region. The absence of surface deformation further leads to a necessity of magma convection to supply and remove magma from the degassing depths. Two models of convection configurations are discussed. Copyright 2008 by the American Geophysical Union.

  18. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus

    USGS Publications Warehouse

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.

    2016-01-01

    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  19. Craters Filling Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    In today's image the large crater retains its original bowl shaped interior and the radial surface pattern on the ejecta. Just to the south is a crater that has been infilled by ejecta from the larger crater. The overlapping of ejecta blankets can be used to get relative age relationships, in this case the smaller crater to the south formed first, and the larger crater formed sometime later.

    Image information: VIS instrument. Latitude 29.6, Longitude 96.3 East (263.7 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Possible seasonal activity of gullies on an sand dune (Russell crater, Mars)

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénaël.; Gargani, Julien; Costard, François

    2010-05-01

    Recent work has shown that gullies are among the most youthful features on Mars (Malin and Edgett, 2000; Costard et al., 2002; Reiss and Jaumann, 2003, Malin et al., 2006). Here we show that the gullies located on the Russell Crater dune are not only extremely youthful but also seem to be still actives. Various geomorphological features consistent with a seasonal activity suggest reactivated flows over the last three terrestrial years. Moreover, using an assemblage of 26 HiRISE images over a 31 month period (November 2006-May 2009) and superposed with MOLA tracks, we performed a quantitative analysis of the sinuosity and branching of the gullies on the shallow slope of the Russell crater. These geomorphologicals features suggest that debris flow have been formed by a fluid flow. As pure water generally is not thought to be stable on the surface of Mars under current conditions, these gullies could be indicative of a highly localized zone of meta-stability heretofore unidentified in the literature or by a highly mineralized water. Equally, the occurrence of the gullies on a dune may point to a near-surface source, i.e. near surface permafrost (Vedie et al. 2008), that could have been emplaced under conditions associated with late Amazonian obliquity excursions (Costard et al., 2002). Nevertheless, the precise composition of the fluid (CO2, mineralized water,…) is still unknown. Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Formation of recent martian debris flow by melting of near-surface ground ice at high obliquity. Science, 295, 110-113. Malin, M.C., Edgett, K.E., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330-2335. Malin, M.C., Edgett, K.E., Posiolova, L.V., McColley, S.M., Dobrea, E.Z., 2006. Present day impact crater rate and contemporary gully activity on Mars. Science, 314, 1573-1577. Reiss, D., Jaumann, R., 2003. Recent debris flows on Mars : Seasonal observations of the Russell Crater dune field

  1. Impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    Compared with volcanism and tectonism, impact cratering on Venus has played an overall minor role in sculpting the present-day landscape. The study of Venus impact craters is vital to help place the chronology of the geologic features on the surface in the context of the planet's geological evolution. The degradation of impact craters also provides information on surface and interior processes, particularly alteration by tectonism and volcanism. Through orbit 1422, Magellan mapped about 450 impact craters, with diameters ranging from 2 to 275 km, within an area of about 226 million sq km, or 49 percent of the planet's surface. These craters and their associated deposits show surprisingly little evidence of degradation at the 75 m/pixel resolution of the Magellan SAR. Remarkably few craters in the Magellan images appear to be in the process of being buried by volcanic deposits or destroyed by tectonic activity.

  2. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Wright, Heather M.; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-01-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and

  3. Patterned ground as an indicator of periglacial activity in and around Lomonosov Crater, Mars

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2014-05-01

    A survey of the northern plains of Mars has been conducted to catalogue the distribution of possible periglacial landforms across several large study areas in Acidalia, Utopia and Arcadia Planitiae.. Several hundred HiRISE and CTX images have been surveyed, looking for features indicative of a periglacial environment; patterned ground, solifluction features and scalloped depressions. Non-sorted patterned ground is fairly common across the Northern Plains of Mars where nets of fracture polygons are common at mid to high latitudes. These features are most likely the result of contraction cracking due to temperature changes. The occurrence of fracture polygons is in keeping with the cold, dry environment of Mars. Analogous features on Earth are found in some of the coldest and driest regions of the planet. However other types of patterned ground, such as sorted circles and stripes, tend to occur in warmer and wetter environments as sorted patterned ground is the result of the repeated freezing and thawing of the permafrost active layer. These features require the action of liquid water during the warmer months of the year and are characteristic of a periglacial environment. Such features would not be expected to be as common on Mars, where the surface temperature is only warm enough for water to exist in a liquid state for short periods of time in isolated areas which receive high levels of insolation. Prior studies (e.g. Gallagher et al., 2011, Icarus.) have observed features which appear to be morphologically similar to sorted patterned ground. It is possible that unusual sites where boulders appear organised into stripes and networks could be analogous to these terrestrial periglacial features. Determining where such features occur on Mars could have important implications for understanding the martian environment. Lomonosov Crater, located at 64.9 degrees N, 9.3 degrees W in the northern reaches of Acidalia Planitia, is a 150 km diameter crater surrounded by the

  4. Thermal structure and heat loss at the summit crater of an active lava dome

    NASA Astrophysics Data System (ADS)

    Sahetapy-Engel, Steve T.; Harris, Andrew J. L.

    2009-01-01

    Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150-400°C, an inner cold annulus of blocky lava at 40-80°C, and a warm central core at 100-200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3-1.5 × 104 s-1m-2), followed by the hot central core (0.1-0.4 × 104 J s-1m-2) and cold annulus (0.04-0.1 × 104 J s-1m-2). Overall surface power output was also dominated by the outer annulus region (31-176 MJ s-1), but the cold annulus contributed equal power (2.41-7.07 MJ s-1) as the hot central core (2.68-6.92 MJ s-1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3-2.2 and 1.5-4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.

  5. Transient liquid water and water activity at Gale crater on Mars

    NASA Astrophysics Data System (ADS)

    Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Rivera-Valentin, Edgard G.; Jun, Insoo; Wray, James; Bo Madsen, Morten; Goetz, Walter; McEwen, Alfred S.; Hardgrove, Craig; Renno, Nilton; Chevrier, Vincent F.; Mischna, Michael; Navarro-González, Rafael; Martínez-Frías, Jesús; Conrad, Pamela; McConnochie, Tim; Cockell, Charles; Berger, Gilles; R. Vasavada, Ashwin; Sumner, Dawn; Vaniman, David

    2015-05-01

    Water is a requirement for life as we know it. Indirect evidence of transient liquid water has been observed from orbiter on equatorial Mars, in contrast with expectations from large-scale climate models. The presence of perchlorate salts, which have been detected at Gale crater on equatorial Mars by the Curiosity rover, lowers the freezing temperature of water. Moreover, perchlorates can form stable hydrated compounds and liquid solutions by absorbing atmospheric water vapour through deliquescence. Here we analyse relative humidity, air temperature and ground temperature data from the Curiosity rover at Gale crater and find that the observations support the formation of night-time transient liquid brines in the uppermost 5 cm of the subsurface that then evaporate after sunrise. We also find that changes in the hydration state of salts within the uppermost 15 cm of the subsurface, as measured by Curiosity, are consistent with an active exchange of water at the atmosphere-soil interface. However, the water activity and temperature are probably too low to support terrestrial organisms. Perchlorates are widespread on the surface of Mars and we expect that liquid brines are abundant beyond equatorial regions where atmospheric humidity is higher and temperatures are lower.

  6. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  7. Pervasive aeolian activity along Curiosity's traverse in Gale Crater on Mars

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Rossi, A.; Flahaut, J.; Fenton, L. K.; Geissler, P. E.; Michaels, T. I.

    2012-12-01

    The NASA Mars Science Laboratory (MSL) has safely landed in Gale Crater (Mars). This crater has been severely modified by the action of the wind which has led to the development of several dark dune fields. One of these fields crosses the landing ellipse from the NE to the SW, and despite its fresh appearance, no evidence of sand movement has been detected until recently. Here we present evidence of current aeolian activity in the form of ripple and dune migration close to the expected traverse of the MSL rover, Curiosity. We calculate a minimum ripple displacement of 1.16 m and a dune migration rate of 0.4 meters/Earth year. Both ripples and dunes migrated toward the SW, suggesting winds above the saltation threshold from the NE. Such winds are predicted by the MRAMS atmospheric model (Fig. 1). The dunes are undergoing changes on a timescale of weeks to a few years that should be detectable by rover instruments. Using theoretical and experimental considerations, we calculate a wind gust velocity of 35 m/s at 1.5 m of height. In addition, we estimate that saltating grains would reach a distance of ~27 m and extend a maximum height of 2 m above the surface. Our constraints on the wind regime provide a unique opportunity to use ground measurements from MSL to test the accuracy of winds predicted from orbital data.RAMS modeled winds in the MSL landing site

  8. Cratering mechanics

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1986-01-01

    Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high-speed impact. Models are given for the motion of a medium during cratering. Data from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed.

  9. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes

    NASA Astrophysics Data System (ADS)

    Barr, Cameron; Tibby, John; Gell, Peter; Tyler, Jonathan; Zawadzki, Atun; Jacobsen, Geraldine E.

    2014-07-01

    Climates of the last two millennia have been the focus of numerous studies due to the availability of high-resolution palaeoclimate records and the occurrence of divergent periods of climate, commonly referred to as the ‘Medieval Climatic Anomaly' and ‘The Little Ice Age'. The majority of these studies are centred in the Northern Hemisphere and, in comparison, the Southern Hemisphere is relatively under-studied. In Australia, there are few high-resolution, palaeoclimate studies spanning a millennium or more and, consequently, knowledge of long-term natural climate variability is limited for much of the continent. South-eastern Australia, which recently experienced a severe, decade-long drought, is one such region. Results are presented of investigations from two crater lakes in the south-east of mainland Australia. Fluctuations in lake-water conductivity, a proxy for effective moisture, are reconstructed at sub-decadal resolution over the past 1500 years using a statistically robust, diatom-conductivity transfer function. These data are interpreted in conjunction with diatom autecology. The records display coherent patterns of change at centennial scale, signifying that both lakes responded to regional-scale climate forcing, though the nature of that response varied between sites due to differing lake morphometry. Both sites provide evidence for a multi-decadal drought, commencing ca 650 AD, and a period of variable climate between ca 850 and 1400 AD. From ca 1400-1880 AD, coincident with the timing of the ‘Little Ice Age', climates of the region are characterised by high effective moisture and a marked reduction in inter-decadal variability. The records provide context for climates of the historical period and reveal the potential for more extreme droughts and more variable climate than that experienced since European settlement of the region ca 170 years ago.

  10. Oxygen isotopes as tracers of tektite source rocks: An example from the Ivory Coast tektites and Lake Bosumtwi Crater

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Koeberl, Christian; Chamberlain, C. Page

    1993-01-01

    Oxygen isotope studies of tektites and impact glasses provide an important tool to help in identifying the target lithologies for terrestrial impacts, including the K-T boundary impact. However, such studies may be complicated by modification of the original oxygen isotope values of some source rocks during the tektite formation process either by vapor fractionation or incorporation of meteoric water. To further investigate the relationship between the oxygen isotopic composition of tektites and their source rocks, Ivory Coast tektites and samples of impact glasses and bedrock lithologies from the Bosumtwi Crater in Ghana--which is widely believed to be the source crater for the Ivory Coast tektites--were studied. Our preliminary results suggest that the phyllites and metagraywackes from the Bosumtwi Crater were the predominant source materials for the impact glasses and tektites and that no significant oxygen isotope modification (less than 1 percent delta(O-18)) took place during impact melting. This contrasts with previous studies of moldavites and Australasian tektites and their sedimentary source materials which suggests a 4 to 5 percent lowering of delta(O-18) due to meteoric water incorporation during impact melting.

  11. Limnologic Analysis of Gusev Crater Paleolake, Mars

    NASA Astrophysics Data System (ADS)

    Grin, Edmond A.; Cabrol, Nathalie A.

    1997-12-01

    The survey of the hydrogeologic system formed by Gusev crater and Ma'adim Vallis (Aeolis subquadrangle of Mars) points out evidence for the existence of an ice-covered lake in Gusev crater. A first lake was formed by the drainage of the aquifer in the region surrounding Gusev before the entry of Ma'adim Vallis in the crater. The existence of a former lake in Gusev is deduced from the morphology of the Ma'adim delta. Its comparison with terrestrial Antarctic analogs argues for the presence of an ice-covered lake in Gusev at the time that the southern part of the crater's rampart was breached by Ma'adim first release, and for a subice-lacustrine construction of the valley's delta. Our survey shows that Ma'adim Vallis may have entered Gusev crater as late as Late Hesperian/Early Amazonian as part of a second lake episode. The relationship between the variation of the Gusev lake water-level, the volume of the lake, and the surface of the lake bed is established by our bathymetric model. The elevation of the former lake is deduced from the elevation of the mesa-like structures in the delta of Ma'adim Vallis. Furthermore, the correlation of the crater frequency of Gusev rampart with Mars' stratigraphic age shows that lakes may have occupied Gusev crater over a period of time covering 2 Gyrs., from the formation of the crater to the last episode of water release from Ma'adim Vallis. Though it is most likely that the lake was episodical, the recurrence of abundant water in Gusev crater makes this site a high priority for missions, either for martian resource exploration, or for the search of life.

  12. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    SciTech Connect

    Mills, H.H. )

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots of this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.

  13. 5 prime -nucleotidase activity in a eutrophic lake and an oligotrophic lake

    SciTech Connect

    Cotner, J.B. Jr.; Wetzel, R.G. )

    1991-05-01

    Differences in enzymatic hydrolysis of dissolved organic phosphorus and subsequent phosphorus uptake were compared by using dual-labeled ({gamma}{sup {minus}32}P and 2{sup {minus}3}H) ATP in oligotrophic Lake Michigan and a moderately eutrophic lake in southeastern Michigan. More than 50% of the phosphate that was hydrolyzed was immediately taken up into bacterium-sized particles in the eutrophic lake and at a near-shore site in Lake Michigan. Less than 50% of the hydrolyzed phosphate was taken up into bacterium-sized particles at an offshore site in Lake Michigan. It is hypothesized that differences in size-fractionated uptake were the result of greater phosphorus utilization capacity in bacteria in habitats where loading of organic carbon is greater. Substantial isotope dilution of labeled phosphate uptake by unlabeled phosphate occurred, which implied that the phosphate was hydrolyzed extracellularly in both systems. Comparable nucleotidase activities were measured in the eutrophic lake and Lake Michigan, but the significance of the phosphate regenerated relative to particulate phosphorus pools was an order of magnitude greater in Lake Michigan. Seventy percent of the nucleotidase activity was inhibited by 100 {mu}M phosphate in the eutrophic lake, which suggest that most hydrolysis was by phosphatase. Therefore, nucleotidase activity may be more important to phosphorus regeneration in oligotrophic habitats than phosphatase activity.

  14. Craters in the Classroom.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Details an activity in which students create and study miniature impact craters in the classroom. Engages students in making detailed, meaningful observations, drawing inferences, reaching conclusions based on scientific evidence, and designing experiments to test selected variables. (DDR)

  15. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Oklay, Nilda; Marchi, Simone; Höfner, Sebastian; Sierks, Holger

    2015-03-01

    This paper reviews the observations of crater-like features on cometary nuclei. We compare potential crater sizes and morphologies, and we discuss the probability of impacts between small asteroids in the Main Belt and a comet crossing this region of the Solar System. Finally, we investigate the fate of the impactor and its chances of survival on the nucleus. We find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's mission Rosetta should be able to detect specific silicates signatures at the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular compaction of material, will affect the local activity. The increase of tensile strength can extinct the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  16. Life in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is life in the Great Lakes. Students learn about shorebird adaptations,…

  17. Great Lakes Environmental Issues. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is environmental issues in the Great Lakes. Students learn about the…

  18. Great Lakes Shipping. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes shipping. Students learn about the connections between the…

  19. Present-day impact cratering rate and contemporary gully activity on Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S; Posiolova, Liliya V; McColley, Shawn M; Dobrea, Eldar Z Noe

    2006-12-01

    The Mars Global Surveyor Mars Orbiter Camera has acquired data that establish the present-day impact cratering rate and document new deposits formed by downslope movement of material in mid-latitude gullies on Mars. Twenty impacts created craters 2 to 150 meters in diameter within an area of 21.5 x 10(6) square kilometers between May 1999 and March 2006. The values predicted by models that scale the lunar cratering rate to Mars are close to the observed rate, implying that surfaces devoid of craters are truly young and that as yet unrecognized processes of denudation must be operating. The new gully deposits, formed since August 1999, are light toned and exhibit attributes expected from emplacement aided by a fluid with the properties of liquid water: relatively long, extended, digitate distal and marginal branches, diversion around obstacles, and low relief. The observations suggest that liquid water flowed on the surface of Mars during the past decade.

  20. Present-day impact cratering rate and contemporary gully activity on Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S; Posiolova, Liliya V; McColley, Shawn M; Dobrea, Eldar Z Noe

    2006-12-01

    The Mars Global Surveyor Mars Orbiter Camera has acquired data that establish the present-day impact cratering rate and document new deposits formed by downslope movement of material in mid-latitude gullies on Mars. Twenty impacts created craters 2 to 150 meters in diameter within an area of 21.5 x 10(6) square kilometers between May 1999 and March 2006. The values predicted by models that scale the lunar cratering rate to Mars are close to the observed rate, implying that surfaces devoid of craters are truly young and that as yet unrecognized processes of denudation must be operating. The new gully deposits, formed since August 1999, are light toned and exhibit attributes expected from emplacement aided by a fluid with the properties of liquid water: relatively long, extended, digitate distal and marginal branches, diversion around obstacles, and low relief. The observations suggest that liquid water flowed on the surface of Mars during the past decade. PMID:17158321

  1. Meteorite craters

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Bazilevskiy, A. T.

    1986-01-01

    The origin and formation of various types of craters, both on the Earth and on other planetary bodies, are discussed. Various models are utilized to depict various potential causes of the types and forms of meteorite craters in our solar system, and the geological structures are also discussed.

  2. Local variations of bulk hydrogen and chlorine content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    litvak, M. L.; Mitrofanov, I. G.; Behar, A.; Boynton, W. V.; DeFlores, L.; Fedosov, F.; Golovin, D.; Hardgrove, C. J.; Harshman, K.; Kozyrev, A.; Jun, I.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Milliken, R.; Mischna, M. A.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Sanin, A.; Shvetsov, V.; Starr, R. D.; Tate, C.; Tretyakov, V.; Vostrukhin, A.; Team, M.

    2013-12-01

    The Curiosity rover successfully landed on Aug 6, 2012, at Gale crater and immediately started continuous surface observations of the surrounding environment at the landing site and then along the rover's traverse. The search for aqueous environments and study of their evolution is considered to be a high priority science activity during these observations. In this paper we have focused on the one aspect of this task related to monitoring local variations of hydrogen distribution in the subsurface at the small horizontal scale of 1-10 m based on neutron spectroscopic methods. This was accomplished using data gathered by the Dynamic Albedo of Neutron (DAN) instrument. These data were specially acquired during the rover's traverse inside a location known as Yellowknife Bay. This campaign was specially organized to test the potential variability of water bulk content across the geologic contact between Sheepbed unit mudstones (the primary target for drilling contact science) and the Gillespie Lake unit (upper unit above Sheepbed). The observation program consisted of a dedicated traverse route selected to being in a position at the drilling sites named John Klein and Cumberland, and then drive up to the contact between Sheepbed and Gillespie, making stops every 0.75-1 m to perform high SNR active neutron measurements. The end of traverse was planned several meters past the contact and the total length of the traverse is estimated to be about 20 m.

  3. Determination of the mineral stability field of evolving groundwater in the Lake Bosumtwi impact crater and surrounding areas

    NASA Astrophysics Data System (ADS)

    Loh, Yvonne Sena Akosua; Yidana, Sandow Mark; Banoeng-Yakubo, Bruce; Sakyi, Patrick Asamoah; Addai, Millicent Obeng; Asiedu, Daniel Kwadwo

    2016-09-01

    Conventional graphical techniques, mass balance geochemical modelling, and multivariate statistical methods were jointly applied to hydrogeochemical data of groundwater from the fractured rock aquifer system, and surface water in the Bosumtwi and surrounding areas to reveal evolutionary trends and the characteristics of evolving groundwater in the area. Four clusters distinguished from the Q-mode hierarchical cluster analysis (HCA) comprised three main groundwater associations and one surface water group (lake water). Although both water resources are of low mineralization (TDS < 1000 mg/l), it was observed that the groundwater from the upper catchment with hydrochemical facies dominated by Nasbnd Mgsbnd HCO3-, evolves to Casbnd Mgsbnd and mixed cations HCO3- water types at the lower reaches. The lake water on the other hand is Nasbnd HCO3- water type. Results from principal component analyses (PCA) and other geochemical interpretations distinguished three sources of variations in the hydrochemistry. Saturation indices of possible reactive mineral phases show groundwater undersaturation relative to albite, anorthite, aragonite, barite, calcite, chlorite, chrysotile, dolomite, gypsum, k-felspar and talc, and supersaturation with respect to gibbsite, kaolinite, Ca-montmorillonite and k-mica in the area. The PCA and other geochemical interpretation identify weathering of feldspars and carbonate mineral dissolution as predominantly influencing the hydrochemistry of the groundwater. Hydrolysis of the aluminosilicates causes the groundwater to reach equilibrium with kaolinite. In addition to dissolution of silicates, the chemical composition of the lake water has been influenced by evaporation and consequent carbonate saturation.

  4. Hydrogeologic Evolution of Gale Crater and Its Relevance to the Exobiological Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.; Newsom, Horton E.; Landheim, Ragnhild; McKay, Christopher P.

    1999-06-01

    The presence of an Amazonian impact crater lake in the Noachian crater Gale (located in the Aeolis northwest subquadrangle of Mars) is indicated by evidence from young floor deposits, streamlined terraces, layers, and channels observed on the central sedimentary deposit. Evidence for the filling of this lake by two processes is described: (a) the drainage of the aquifer in the Aeolis Mensae region, supported by extended mass-wasting and rim sliding in the crater at the contact with the mensae and (b) the overspilling of the northern rim by an Amazonian south transgression of the Elysium Basin. This last hypothesis is supported by hydrologic features such as channels and channel-like depressions north of the crater and by the crescent-like shape of the central sedimentary deposit. The presence of an impact melt sheet and uplifted central peak may have also generated hydrothermal activity, including an early crater lake, shortly after the formation of the crater in the Noachian period. With time, decreasing heat flux, and changing climates Gale may have experienced transitions in aqueous environments from warm and wet to cold and ice-covered water that could have provided suitable oases for various communities of microorganisms. Preservation of the biological and climatic record may have been favored in this paleolacustrine environment, which probably occured episodically over two billion years.

  5. Eastern Floor of Holden Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 15 April 2002) The Science Today's THEMIS image covers territory on the eastern floor of Holden Crater, which is located in region of the southern hemisphere called Noachis Terra. Holden Crater is 154 km in diameter and named after American Astronomer Edward Holden (1846-1914). This image shows a mottled surface with channels, hills, ridges and impact craters. The largest crater seen in this image is 5 km in diameter. This crater has gullies and what appears to be horizontal layers in its walls. The Story With its beautiful symmetry and gullies radially streaming down to the floor, the dominant crater in this image is an impressive focal point. Yet, it is really just a small crater within a much larger one named Holden Crater. Take a look at the context image to the right to see just how much bigger Holden Crater is. Then come back to the image strip that shows the mottled surface of Holden Crater's eastern floor in greater detail, and count how many hills, ridges, channels, and small impact craters can be seen. No perfectly smooth terrain abounds there, that's for sure. The textured terrain of Holden Crater has been particularly intriguing ever since the Mars Orbital Camera on the Mars Global Surveyor spacecraft found evidence of sedimentary rock layers there that might have formed in lakes or shallow seas in Mars' ancient past. This finding suggests that Mars may have been more like Earth long ago, with water on its surface. Holden Crater might even have held a lake long ago. No one knows for sure, but it's an exciting possibility. Why? If water was once on the surface of Mars long enough to form sedimentary materials, maybe it was there long enough for microbial life to have developed too. (Life as we know it just isn't possible without the long-term presence of liquid water.) The question of life on the red planet is certainly tantalizing, but scientists will need to engage in a huge amount of further investigation to begin to know the answer. That

  6. Sub-meter desiccation crack patterns imaged by Curiosity at Gale Crater on Mars shed additional light on former lakes evident from examined outcrops

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Sletten, R. S.; Mangold, N.; Oehler, D. Z.; Williams, R. M. E.; Bish, D. L.; Heydari, E.; Rubin, D. M.; Rowland, S. K.

    2015-12-01

    Small-scale desiccation crack patterns (mudcrack-like arrays of uniform ~0.1 to 1 m polygonal domains separated by linear or curving cracks in exposed bedding) imaged by Curiosity in Gale Crater, Mars complement a wealth of diverse data obtained from exposures of sedimentary rocks that point to deposition "in fluvial, deltaic, and lacustrine environments" including an "intracrater lake system likely [to have] existed intermittently for thousands to millions of years …"(e.g. Grotzinger et al., 2015, Science, submitted). We interpret these mudcrack-like patterns, found on many of the bedrock exposures imaged by Curiosity, as desiccation cracks that developed either of two ways: 1) at the soft sediment-air interface like common mudcracks, or 2) at or below the sediment-water interface by synaeresis or diastasis (involving differential compaction). In the context of recent studies of terrestrial mudcracks, and cracks formed experimentally in various wet powders as they loose moisture, these desiccation features reflect diverse aspects of the formative environment. If they formed as mudcracks, some of the lakes were shallow enough to permit the recurrent drying and wetting that can lead to the geometric regularity characteristic of several of sets of mudcracks. Moreover, the water likely contained little suspended sediment otherwise the mudcracks would be buried too rapidly for the crack pattern to persist and to mature into regular polygonal patterns. The preservation of these desiccation crack patterns does not require, but does not exclude, deep burial and exhumation. Although invisible from satellite because of their size, a multitude of Mastcam and Navcam images reveals these informative features in considerable detail. These images complement much evidence, mostly from HiRISE data from several regions, suggesting that potential desiccation polygons on larger scales may be more common on the surface of Mars than generally recognized.

  7. A cold hydrological system in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Fairén, Alberto G.; Stokes, Chris R.; Davies, Neil S.; Schulze-Makuch, Dirk; Rodríguez, J. Alexis P.; Davila, Alfonso F.; Uceda, Esther R.; Dohm, James M.; Baker, Victor R.; Clifford, Stephen M.; McKay, Christopher P.; Squyres, Steven W.

    2014-04-01

    Gale crater is a ~154-km-diameter impact crater formed during the Late Noachian/Early Hesperian at the dichotomy boundary on Mars. Here we describe potential evidence for ancient glacial, periglacial and fluvial (including glacio-fluvial) activity within Gale crater, and the former presence of ground ice and lakes. Our interpretations are derived from morphological observations using high-resolution datasets, particularly HiRISE and HRSC. We highlight a potential ancient lobate rock-glacier complex in parts of the northern central mound, with further suggestions of glacial activity in the large valley systems towards the southeast central mound. Wide expanses of ancient ground ice may be indicated by evidence for very cohesive ancient river banks and for the polygonal patterned ground common on the crater floor west of the central mound. We extend the interpretation to fluvial and lacustrine activity to the west of the central mound, as recorded by a series of interconnected canyons, channels and a possible lake basin. The emerging picture from our regional landscape analyses is the hypothesis that rock glaciers may have formerly occupied the central mound. The glaciers would have provided the liquid water required for carving the canyons and channels. Associated glaciofluvial activity could have led to liquid water running over ground ice-rich areas on the basin floor, with resultant formation of partially and/or totally ice-covered lakes in parts of the western crater floor. All this hydrologic activity is Hesperian or younger. Following this, we envisage a time of drying, with the generation of polygonal patterned ground and dune development subsequent to the disappearance of the surface liquid and frozen water.

  8. Ultra-high Resolution Mapping of the Inner Crater of the Active Kick'em Jenny Volcano

    NASA Astrophysics Data System (ADS)

    Hart, L.; Scott, C.; Tominaga, M.; Smart, C.; Vaughn, I.; Roman, C.; Carey, S.; German, C. R.; Participants, T.

    2015-12-01

    We conducted high-resolution geological characterization of a 0.015km^2 region of the inner crater of the most active submarine volcano in the Caribbean, Kick'em Jenny, located 8 km off Grenada in the Lesser Antilles Island Arc. We obtained digital still images and microbathymetery at an altitude of 3 m from the seafloor by using stereo cameras and a BlueView system mounted on Remotely Operated Vehicle (ROV) Hercules during the NA054 cruise on E/V Nautilus (Sept. - Oct. 2014). The seafloor images were processed to construct 2-D photo mosaics of the survey area using Standard Hercules Imaging Suite. We systematically classified the photographed seafloor geology based on the distribution of seafloor morphology and the observable rock fragment and outcrop sizes. The center of the crater floor shows a smooth, coherent texture with little variation in sea floor morphology. From immediately outside this area toward the crater rim, we observe an extensive area covered with outcrops, small rocks, and sediment: and within this area, (1) the north section is partially covered by uneven outcrops with elongated lineaments and a course, rugged seafloor with individual rock fragments observable; (2) the middle section contains high variability and heterogeneity in seafloor morphology in a non-systematic manner; and (3) overall, the southern most section displays subdued seafloor features both in space and variability compared to the other areas. The distributions of rock fragments were classified into four distinct sizes. We observe: (i) little variation in size distribution near the center of the crater floor; and (ii) rock fragment size increasing toward the rim of the crater. To obtain a better understanding of the link between variation in seafloor morphology, rock size distribution, and other in situ processes, we compare our observations on the digital photo mosaic to bathymetry data and ROV visuals (e.g. vents and bacterial mats).

  9. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  10. The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Aguilera, F.; Vaselli, O.; Medina, E.; Tedesco, D.; Delgado Huertas, A.; Poreda, R.; Kojima, S.

    2009-03-01

    Low-to-high temperature fumaroles discharging from the Active Crater of Lascar volcano (northern Chile) have been collected in November 2002, May 2005 and October 2006 for chemical and isotopic analysis to provide the first geochemical survey on the magmatic-hydrothermal system of this active volcano. Chemical and isotopic gas composition shows direct addition of high-temperature fluids from magmatic degassing, mainly testified by the very high contents of SO2, HCl and HF (up to 87,800, 29,500 and 2,900 μmol/mol) and the high R/Ra values (up to 7.29). Contributions from a hydrothermal source, mainly in gas discharges of the Active Crater rim, has also been detected. Significant variations in fluid chemistry, mainly consisting of a general decrease of magmatic-related compounds, i.e. SO2, have affected the fumarolic system during the period of observation, indicating an increase of the influence of the hydrothermal system surrounding the ascending deep fluids. The chemical composition of Active Crater fumaroles has been used to build up a geochemical model describing the main processes that regulate the fluid circulation system of Lascar volcano to be utilized in volcanic surveillance.

  11. Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit

    USGS Publications Warehouse

    Greeley, R.; Whelley, P.L.; Arvidson, R. E.; Cabrol, N.A.; Foley, D.J.; Franklin, B.J.; Geissler, P.G.; Golombek, M.P.; Kuzmin, R.O.; Landis, G.A.; Lemmon, M.T.; Neakrase, L.D.V.; Squyres, S. W.; Thompson, S.D.

    2006-01-01

    A full dust devil "season" was observed from Spirit from 10 March 2005 (sol 421, first active dust devil observed) to 12 December 2005 (sol 691, last dust devil seen); this corresponds to the period Ls 173.2?? to 339.5??, or the southern spring and summer on Mars. Thermal Emission Spectrometer data suggest a correlation between high surface temperatures and a positive thermal gradient with active dust devils in Gusev and that Spirit landed in the waning stages of a dust devil season as temperatures decreased. 533 active dust devils were observed, enabling new characterizations; they ranged in diameter from 2 to 276 m, with most in the range of 10-20 m in diameter, and occurred from about 0930 to 1630 hours local true solar time (with the maximum forming around 1300 hours) and a peak occurrence in southern late spring (Ls ??? 250??). Horizontal speeds of the dust devils ranged from <1 to 21 m/s, while vertical wind speeds within the dust devils ranged from 0.2 to 8.8 m/s. These data, when combined with estimates of the dust content within the dust devils, yield dust fluxes of 3.95 ?? 10-9 to 4.59-4 kg/m2/s. Analysis of the dust devil frequency distribution over the inferred dust devil zone within Gusev crater yields ???50 active dust devils/km2/sol, suggesting a dust loading into the atmosphere of ???19 kg/km2/sol. This value is less than one tenth the estimates by Cantor et al. (2001) for regional dust storms on Mars. Copyright 2006 by the American Geophysical Union.

  12. Clouds Near Mie Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-572, 12 December 2003

    Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5oN, 220.3oW. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976.

  13. Business and Education Linkage Activities. Lake County, Illinois.

    ERIC Educational Resources Information Center

    Flesher, Jeffrey W.

    A study was conducted to establish a baseline profile of business and education linkage activities in Lake County, Illinois. Data were collected through a survey questionnaire sent to 242 public and private K-12 schools in Lake County. Two rounds of mailings resulted in the return of 109 usable forms, or 45 percent of the population. Telephone…

  14. Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: cameroon crater lake cichlids.

    PubMed

    Martin, Christopher H

    2012-10-01

    Recent documentation of a few compelling examples of sympatric speciation led to a proliferation of theoretical models. Unfortunately, plausible examples from nature have rarely been used to test model predictions, such as the initial presence of strong disruptive selection. Here I estimated the form and strength of selection in two classic examples of sympatric speciation: radiations of Cameroon cichlids restricted to Lakes Barombi Mbo and Ejagham. I measured five functional traits and relative growth rates in over 500 individuals within incipient species complexes from each lake. Disruptive selection was prevalent in both groups on single and multivariate trait axes but weak relative to stabilizing selection on other traits and most published estimates of disruptive selection. Furthermore, despite genetic structure, assortative mating, and bimodal species-diagnostic coloration, trait distributions were unimodal in both species complexes, indicating the earliest stages of speciation. Long waiting times or incomplete sympatric speciation may result when disruptive selection is initially weak. Alternatively, I present evidence of additional constraints in both species complexes, including weak linkage between coloration and morphology, reduced morphological variance aligned with nonlinear selection surfaces, and minimal ecological divergence. While other species within these radiations show complete phenotypic separation, morphological and ecological divergence in these species complexes may be slow or incomplete outside optimal parameter ranges, in contrast to rapid divergence of their sexual coloration.

  15. Dust loading in Gusev crater, Mars: Results from two active dust devil seasons

    NASA Astrophysics Data System (ADS)

    Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.

    2009-12-01

    Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged

  16. Shackleton Crater

    NASA Video Gallery

    This visualization, created using Lunar Reconnaissance Orbiter laser altimeter data, offers a view of Shackleton Crater located in the south pole of the moon. Thanks to these measurements, we now h...

  17. Palaeoenvironmental Fluctuations Identified by Diatoms, Ostracode, Geochemistry and Sedimentary Facies from a Tropical Crater Lake on Western Mexico

    NASA Astrophysics Data System (ADS)

    Caballero, M.; Rodriguez, A.; Vazquez, G.; Ortega, B.; Lozano, M.; Vilaclara, G.

    2007-05-01

    A ca. 2500 cal. yr record from Santa Maria del Oro (SMO) was studied for its diatoms, ostracodes, magnetic mineralogy, geochemestry, organic matter and carbonate content to document climatic and limnological trends over western Mexico, a site sensitive to the intensity of monsoon circulation and to any latitudinal shifts of the high pressure subtropical cells as it is currently located on a transition zone between the temperate climates of central Mexico highlands and the arid climates of northern Mexico. The sediment sequence (8.8 m) has a chronology is based on 7 AMS dates. The sequence shows an irregular sequence of four distinctive facies (laminations). Data derived from the analysis of easch facies and of modern sediments supports the interpretation that sand and peaty layers are mostly alloctonous in origin while the silty layers (ochre, brown and greenish silt) are mostly autigenic. Ochre layers represent times of anoxic bottom lake conditions favoured by a warmer environment. Long term trends are also present along the sequence. Warm and relatively humid conditions change to a drier climate by ca. AD 600, with the driest and warmest stage recorded at AD 990. This dry period is consistent with records of arid phases at other sites in Mesoamerica. From AD 990 to AD 1260 there is evidence of a sudden transition to warm-humid conditions and dilution of lake water coeval with the Medieval Warm Period. From AD 1260 to AD 1480 climatic conditions were unstable and afterwards the onset of drier climates is recorded until the present. Due to its geographical position, moisture availability fluctuations are responding to atmospheric circulation changes such as latitudinal shifts of the Intertropical Convergence Zone and Subtropical High- Pressure Cells resulting in the strengthening or weakening of the summer monsoon, which is the main moisture source for western Mexico. This sequence records environmental and climatic variability for western central Mexico and

  18. Henry Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Located in Arabia Terra, the crater shown here is known as Henry Crater. Like many other craters on Mars, the interior of Henry Crater is filled with a layered deposit. These materials were brought into the crater sometime after the impact formed the crater. The fine scale of layering can be seen in the right- center portion of the image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Layered Sediments, Rampart Craters, and Potential Fluvio-Lacustrine Activity in S.W. Arabia Terra, Mars: Support for a History of Aqueous Conditions

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Allen, C. C.; Venechuk, E. M.; Paris, K. N.

    2007-01-01

    Arabia Terra is a unique area on Mars in that it is the only major, equatorial region characterized by high abundances of near-surface water (as measured by gamma ray and neutron spectroscopy). Vernal Crater is a 55 km-diameter structure in southwest Arabia Terra, centered at 6 N, 355.5 E. The crater includes layered sediments, potential remnants of fluvio-lacustrine activity, and indications of aeolian processes. Regional considerations, along with new THEMIS and MOC data, are being assessed to gain insight into the significance of the geomorphic units within Vernal Crater and the geologic history of SW Arabia Terra.

  20. A novel heat flux study of a geothermally active lake - Lake Rotomahana, New Zealand

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; de Ronde, Cornel E. J.; Tontini, Fabio Caratori; Walker, Sharon L.; Fornari, Daniel J.

    2016-03-01

    A new technique for measuring conductive heat flux in a lake was adapted from the marine environment to allow for multiple measurements to be made in areas where bottom sediment cover is sparse, or even absent. This thermal blanket technique, pioneered in the deep ocean for use in volcanic mid-ocean rift environments, was recently used in the geothermally active Lake Rotomahana, New Zealand. Heat flow from the lake floor propagates into the 0.5 m diameter blanket and establishes a thermal gradient across the known blanket thickness and thereby provides an estimate of the conductive heat flux of the underlying terrain. This approach allows conductive heat flux to be measured over a spatially dense set of stations in a relatively short period of time. We used 10 blankets and deployed them for 1 day each to complete 110 stations over an 11-day program in the 6 × 3 km lake. Results show that Lake Rotomahana has a total conductive heat flux of about 47 MW averaging 6 W/m2 over the geothermally active lake. The western half of the lake has two main areas of high heat flux; 1) a high heat flux area averaging 21.3 W/m2 along the western shoreline, which is likely the location of the pre-existing geothermal system that fed the famous Pink Terraces, mostly destroyed during the 1886 eruption 2) a region southwest of Patiti Island with a heat flux averaging 13.1 W/m2 that appears to be related to the explosive rift that formed the lake in the 1886 Tarawera eruption. A small rise in bottom water temperature over the survey period of 0.01 °C/day suggests the total thermal output of the lake is ~ 112-132 MW and when compared to the conductive heat output suggests that 18-42% of the total thermal energy is by conductive heat transfer.

  1. Layers in Terby Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-407, 30 June 2003

    Whether on Earth or Mars, sedimentary rocks provide a record of past environments. Of course, it is difficult to read that record without being able to visit the site. However, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has revealed hundreds of locales on Mars at which sedimentary rocks are exposed at the surface. Terby Crater exhibits hundreds of layers of similar thickness and physical properties--some have speculated these may be the record of an ancient lake or sea. This MOC image shows some of the layer outcrops in Terby Crater. Fans of debris have eroded from the steep, layered slopes in some places. This picture covers an area 3 km (1.9 mi) wide near 27.5oS, 285.7oW. The image is illuminated from the upper left and was obtained in June 2003.

  2. Oudemans Crater

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across.

    Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak.

    Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring.

    The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak.

    The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex.

    The lower right image shows spectral

  3. A New Two-phase Flow Model Applied to the 2007 Crater Lake Break-out Lahar, Mt. Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G.; Pitman, E.; Cronin, S. J.; Procter, J.

    2010-12-01

    The 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand, is a complex but well-characterized natural debris flow that follows an intricate course over an array of topographic features (see Manville et al., this conference). Detailed digital terrain data (DEM) and accurate flow characterization allow us to test our computational model with an unusually high level of control for such a large natural flood wave. The new two-phase flow code is imbedded within the TITAN2D framework (Patra et al. 2005) that is widely used in hazard assessment for both dry (granular) and wet (debris flow) flows (Murcia et al., 2010). Because TITAN2D is actually valid for dry flows (avalanches) we developed a new two-phase model based on balance laws for mass and momentum for each phase. The granular material is assumed to obey a Coulomb constitutive relation and the fluid is assumed to be inviscid. The Darcy-Weisbach formulation is used to account for bed friction, and a phenomenological drag coefficient mediates the momentum exchange between phases. The resulting system of 6 partial differential equations are depth averaged and correspond to the Savage and Hutter model in the limit of no fluid, and to the typical shallow water solutions (Ortiz, et al., 2005) for pure water. This model is capable of simulating particle volumetric fractions as dilute as 0.001 and as concentrated as 0.55. To confirm the usefulness of the new code for complex flows we used data from four observation stations at Ruapehu located at runout distances of 2 km, 5 km, 7 km and 9 km. The specific flow data that we compare with the model outcomes include: 1) arrival time of the flood front, 2) maximum flood depth, and 3) flow velocity. The computed values for these flow characteristics are all within about ± 10% of the observed figures. References: Manville, V., et al., 2010, Anatomy of a basin break-out flood: The 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand, this conference. Murcia, H

  4. Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater.

    PubMed

    Antony, Chakkiath Paul; Doronina, Nina V; Boden, Rich; Trotsenko, Yuri A; Shouche, Yogesh S; Murrell, J Colin

    2012-07-01

    A moderately haloalkaliphilic methylotrophic bacterium possessing the ribulose monophosphate pathway for carbon assimilation, designated MPL(T), was isolated from Lonar Lake sediment microcosms that were oxidizing methane for two weeks. The isolate utilized methanol and was an aerobic, Gram-negative, asporogenous, motile, short rod that multiplied by binary fission. The isolate required NaHCO(3) or NaCl for growth and, although not auxotrophic for vitamin B(12), had enhanced growth with vitamin B(12). Optimal growth occurred with 0.5-2% (w/v) NaCl, at 28-30 °C and at pH 9.0-10.0. The cellular fatty acid profile consisted primarily of straight-chain saturated C(16:0) and unsaturated C(16:1)ω7c and C(18:1)ω7c. The major ubiquinone was Q-8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Cells accumulated ectoine as the main compatible solute. The DNA G+C content was 50.0 mol%. The isolate exhibited 94.0-95.4% 16S rRNA gene sequence similarity with the type strains of methylotrophs belonging to the genus Methylophaga and 31% DNA-DNA relatedness with the reference strain, Methylophaga alcalica VKM B-2251(T). It is proposed that strain MPL(T) represents a novel species, Methylophaga lonarensis sp. nov. (type strain MPL(T)=VKM B-2684(T)=MCC 1002(T)).

  5. Authentication controversies and impactite petrography of the New Quebec Crater

    NASA Astrophysics Data System (ADS)

    Marvin, Ursula B.; Kring, David A.

    1992-12-01

    The literature reports that led to the current acceptance of New Quebec Crater (Chubb Crater) as an authentic impact crater are reviewed, and it is noted that, for reasons that are not entirely clear, a meteoritic origin for the New Quebec Crater achieved wider acceptance at an earlier data than for the Lake Bosumtwi Crater, for which petrographic and chemical evidence is more abundant and compelling. The petrography of two impact melt samples from the New Quebec Crater was investigated, and new evidence is obtained on the degrees of shock metamorphism affecting the accessory minerals such as apatite, sphene, magnetite, and zircon.

  6. Authentication controversies and impactite petrography of the New Quebec Crater

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.; Kring, David A.

    1992-01-01

    The literature reports that led to the current acceptance of New Quebec Crater (Chubb Crater) as an authentic impact crater are reviewed, and it is noted that, for reasons that are not entirely clear, a meteoritic origin for the New Quebec Crater achieved wider acceptance at an earlier data than for the Lake Bosumtwi Crater, for which petrographic and chemical evidence is more abundant and compelling. The petrography of two impact melt samples from the New Quebec Crater was investigated, and new evidence is obtained on the degrees of shock metamorphism affecting the accessory minerals such as apatite, sphene, magnetite, and zircon.

  7. Gamma (γ)-Ray Activity as a Tool for Identification of Hidden Ejecta Deposits Around Impact Crater on Basaltic Target: Example from Lonar Crater, India

    NASA Astrophysics Data System (ADS)

    Bose, T.; Misra, S.; Chakraborty, S.; Reddy, K.

    2013-11-01

    Geophysical techniques based on radioactivity measurements are not generally used for exploration of asteroid impact craters. Our studies on the field and laboratory measurements of radioactivity on samples from the Lonar crater, India, show that this technique could be an important method for mapping the distribution of ejecta around the deeply excavated impact craters particularly when these structures are formed on relatively old target rocks/palaeosol. The Lonar ejecta shows ~1.3 times higher γ-ray count rates in the field on average compared to the underlying palaeosol and ~1.9 times higher values over the target basalt while measured by a portable Geiger-Müller pulse counter. The absorbed γ-dose rate (D) of the Lonar samples, computed from 232Th, 238U, and 40K abundances in these samples, also show that the ejecta has distinct bulk dose rates (average ~8.42 nGy h-1) as compared to those of the palaeosol (~18.34 nGy h-1), target basalt (~11.97 nGy h-1), and the impact-melts and spherules (~14 nGy h-1). Therefore, radioactivity mapping of the terrestrial and planetary impact craters by direct methods has importance in mapping ejecta distributions around these structures.

  8. 75 FR 362 - Agency Information Collection Activities; Proposed Collection; Comment Request; Great Lakes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Great Lakes... the on-line instructions for submitting comments. Mail: Great Lakes Accountability System, Attn: Rita Cestaric, EPA, Great Lakes National Program Office, 77 W. Jackson St., Chicago, Illinois 60604....

  9. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).

    This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  10. Active and Fossil Geothermal Activity at Lake Chapala, Mexico

    NASA Astrophysics Data System (ADS)

    Zârate-del Vall, P.

    2002-12-01

    Geothermal systems are very abundant in the tectonically active zones of the earth's crust and the Citala rift, where Lake Chapala is located, is not the exception. The Lake Chapala basin is characterized by its paleo- and actual geothermal activity that includes: thermal springs, fossil sinter deposits and hydrothermal petroleum manifestations. Thermal springs occur both inside and outside the lake. The spring water in out-shore thermal springs around Lake Chapala is carbonate (Medina-Heredia A, 1986). To the NE area is San Luis Agua Caliente (69°C; ~ 240 mg L-1 [HCO3]1) in the NW at Jocotepec (36°C; ~263mg L-1 [HCO3]-); in the South we find Tuxcueca and Tizap n El Alto (30°C; 193 mg L-1 [HCO3]-). However, there is an exception, the spring water at the San Juan Cosal sector (North), which is sulfate (64-83°C; ~479 mg L-1, [SO4]-2). Examples of in-shore thermal springs are "Los Gorgos" (near South shore) and "El Fuerte" (near East shore and temporary "out-shore" because of actual severe drought); the characterisation of water of this in-shore sites is in progress. On the SE shore and five km NW from Regules village, outcrops a carbonate deposit named "La Calera". This carbonate fossil sinter outcrops 2 km in E-W direction and 600 m in N-S direction and overlays andesitic rock. With a thickness of approximately 5m and a roughly horizontal attitude, the carbonated sinter material is characterized by both massive and banded structure. When massive, it is colored in yellow brownish and grey and elsewhere it shows a pseudo-brecciated structure and when banded, alternated of yellow and dark millimetre bands can be seen; is characterized by vuggy porosity and silica (quartz and chalcedony) vein lets. Under microscope a pseudo-micritic texture is observed; vugs coated by iron oxides, are filled with calcite, and/or quartz, chalcedony and clay minerals. Six samples of carbonate of "La Calera" deposit were analysed for their stable isotopes (LODC-UParis VI). From δ 13

  11. Kuiper Crater

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mariner 10 Television-Science Team has proposed the name 'Kuiper' for this very conspicuous bright Mercury crater (top center) on the rim of a larger older crater. Prof. Gerard P. Kuiper, a pioneer in planetary astronomy and a member of the Mariner 10 TV team, died December 23, 1973, while the spacecraft was enroute to Venus and Mercury. Mariner took this picture (FDS 27304) from 88,450 kilometers (55,000 miles) some 2 1/2 hours before it passed Mercury on March 29. The bright-floored crater, 41 kilometers (25 miles) in diameter, is the center of a very large bright are which could be seen in pictures sent from Mariner 10 while Mercury was more than two million miles distant. The larger crater is 80 kilometers (50 miles) across.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  12. Crater Comparison

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    These two craters show the two types of crater interiors found on Mars -- original and modified. The crater on the right has its original bowl shape. The crater of the left has had its interior modified by an infilling of lava.

    Image information: VIS instrument. Latitude 27.6, Longitude 194.5 East (165.5 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Lake Sediment Records on Climate Change and Human Activities in the Xingyun Lake Catchment, SW China

    PubMed Central

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun′s catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60–1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun’s catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years. PMID:25033404

  14. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  15. Geomorphic constraints on the geologic history of Gale Crater (Invited)

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Hayes, A. G.; Williams, R. M.; Calef, F. J.; Sumner, D. Y.; Parker, T. J.; Bridges, N. T.; Team, M.

    2013-12-01

    On August 5, 2012, the Curiosity rover landed in Gale Crater near the Peace Vallis (PV) alluvial fan system. Gale is located on the crustal dichotomy of Mars between the heavily cratered southern highlands and the smoother northern lowlands. Recent crater counts on Gale's ejecta give an age estimate of ~3.6 Ga, corresponding to the Early Hesperian or possibly the Late Noachian (Le Deit et al., 2012). In the region to the south of Gale are similarly-sized craters (e.g. Hershel and Wien) that appear substantially more degraded, are partially to nearly buried, and have subtle rims, indicating that they likely pre-date Gale. Farah Vallis (FV), a large v-shaped channel incised into the southwestern rim of Gale, may have been part of a large regional drainage system (~270,000 km2) originating near Hershel Crater. Ejecta from Gale appear to have partly buried this valley network, implying it was active before the formation of Gale itself (Irwin et al., 2005). Gale also contains an ~5 km high central mound composed of layered material, whose age based on crater counts and superposition relationships, is ~3.6 to 3.8 Ga (Thomson et al., 2011). Here, we use crater counting and geomorphological relationships from mapped features within Gale to extend the work of others in providing a chronology of Gale's multi-stage geologic history. Using CTX imagery we have identified several large fan/delta features within Gale, in addition to those previously identified. These features, combined with topographic benches and morphologic changes from canyons to local fan deposition, suggest a series of large lakes. The largest (-2100 m) would have filled Gale entirely, and the smallest would have been a shallow lake at the distal end of the PV fan. The simplest interpretation, and the one supported by the geomorphology, is that Gale was sourced in part with water from FV and then progressively fell, creating weak shoreline features at several elevations. In addition, we performed a crater

  16. Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Mandeville, C.W.; Webster, J.D.; Tappen, C.; Taylor, B.E.; Timbal, A.; Sasaki, A.; Hauri, E.; Bacon, C.R.

    2009-01-01

    Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43??N, long. 122??W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing. Sulfur isotope analyses of climactic rhyodacitic whole rocks yield ??34S values of 2.8-14.8??? with corresponding matrix glass values of 2.4-13.2???. ??34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in ??34S from -0.4??? to 5.8??? and from -0.1??? to 3.5???, respectively. Initial ??34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0???. Hydrogen isotope (??D) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values ??f -103 to -53??? and 0.23-1.74 wt%, respectively. Values of

  17. Galle Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 June 2002) The Science This image is of part of Galle Crater, located at 51.9S, 29.5W. This image was taken far enough south and late enough into the southern hemisphere fall to catch observe water ice clouds partially obscuring the surface. The most striking aspect of the surface is the dissected layered unit to the left in the image. Other areas also appear to have layering, but they are either more obscured by clouds or are less well defined on the surface. The layers appear to be mostly flat lying and layer boundaries appear as topographic lines would on a map, but there are a few areas where it appears that these layers have been deformed to some level. Other areas of the image contain rugged, mountainous terrain as well as a separate pitted terrain where the surface appears to be a separate unit from the mountains and the layered terrain. The Story Galle Crater is officially named after a German astronomer who, in 1846, was the first to observe the planet Neptune. It is better known, however, as the 'Happy Face Crater.' The image above focuses on too small an area of the crater to see its beguiling grin, but you can catch the rocky line of a 'half-smile' in the context image to the right (to the left of the red box). While water ice clouds make some of the surface harder to see, nothing detracts from the fabulous layering at the center left-hand edge of the image. If you click on the above image, the scalloped layers almost look as if a giant knife has swirled through a landscape of cake frosting. These layers, the rugged, mountains near them, and pits on the surface (upper to middle section of the image on the right-hand side) all create varying textures on the crater floor. With such different features in the same place, geologists have a lot to study to figure out what has happened in the crater since it formed.

  18. Erosional modification and gully formation at Meteor Crater, Arizona: Insights into crater degradation processes on Mars

    NASA Astrophysics Data System (ADS)

    Kumar, P. Senthil; Head, James W.; Kring, David A.

    2010-08-01

    Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.

  19. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  20. Gusev crater: direction of active winds derived from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Gorevan, S.; Thompson, S. D.; Whelley, P.; Squyres, S.; Arvidson, R.

    2004-05-01

    The Mars Exploration Rovers (MERs) are not instrumented to measure winds directly, but might be able to give insight into wind directions using other techniques. The Rock Abrasion Tool (RAT) on the Instrument Deployment Device (IDD) on the Mars rover, Spirit, was used to remove dust and cut into a basaltic rock named Adirondack in Gusev crater on Sol 34 of mission operations. The rock abrasion operation occurred between about 1223 hr and 1518 hr in the afternoon (local solar time) and left a cavity 2.68 mm deep. An image taken after the abrasion operation showed that the rock cuttings were asymmetrically distributed around the cavity and over the rock in a direction suggesting that the cuttings were transported away from the cavity by winds. The distribution pattern (and the inferred wind) is being compared with results from wind tunnel simulations conducted prior to the mission to assess the wind-flow patterns as a function of rock, rover, and IDD positions with respect to the wind. The wind direction inferred from the RAT cuttings are also being compared with wind directions suggested by aeolian bedforms and albedo patterns seen from MER and from orbit, and with directions predicted by a model of the atmosphere for winds at mid-day in Gusev crater.

  1. Crater Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide

    This landslide occurs in an unnamed crater southeast of Millochau Crater.

    Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Cydonia Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Eroded mesas and secondary craters dot the landscape in this area of the Cydonia Mensae region. The single oval-shaped crater displays a 'butterfly' ejecta pattern, indicating that the crater formed from a low-angle impact.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 32.9, Longitude 343.8 East (16.2 West). 19 meter/pixel resolution.

  4. Lessons from studies of impact crater hydrothermal processes in terrestrial analogs and their implications for impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.

    2011-12-01

    Studying hydrothermal processes in terrestrial impact craters as martian analogs has sometimes been fraught with objections, including the Earth's greater abundance of water, the neutral instead of acidic aqueous environments and the composition of the targets. Although recent discoveries have dispelled many objections, some misconceptions remain. For example, the relevance of the Chicxulub crater as a martian analog is sometimes questioned because the target was covered with sediments, including carbonates and sulfates. However the impactites at the Yaxcopoil-1 drill site are derived from the underlying silicate basement. Comparisons can also be difficult because of scale issues, as many terrestrial craters with evidence of hydrothermal activity, e.g. Lonar, Haughton, Ries etc., are smaller than the Martian craters with phyllosilicate signatures (Ehlmann et al., 2010). Summarizing, the results of many studies of terrestrial craters show that: 1) Most terrestrial craters larger than 1.8 km diameter have at least some evidence of aqueous or hydrothermal processes in the form of alteration minerals (e.g., Naumov, 2005). 2) Impact melts in crater fill and ejecta blankets provide heat that can produce hydrothermal alteration if water is available (Newsom, 1980). 3) The uplifted geothermal gradient can be as important a heat source as shock effects. 4) Mineralogical evidence for high-temperature fluids (> 350 oC) is present in the central uplift of the Manson structure, and in the ejecta from the Chicxulub impact, where precipitation of phyllosilicates from hydrothermal fluids has also been described (Newsom et al., 2010). 5) Impact deposits begin hot, but have an extended cooling period during which alteration phases can back react to low temperature phases with corresponding stable isotope signatures. 5) Hydrothermal fluids can travel long distances from their sources (e.g., Chicxulub, Yaxcopoil site) and are often localized to faults or porous breccias (e.g. Sudbury

  5. Crater Highlands, Tanzania

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM), flown aboard Space Shuttle Endeavour in February 2000, acquired elevation measurements for nearly all of Earth's landmass between 60oN and 56oS latitudes. For many areas of the world SRTM data provide the first detailed three-dimensional observation of landforms at regional scales. SRTM data were used to generate this view of the Crater Highlands along the East African Rift in Tanzania. Landforms are depicted with colored height and shaded relief, using a vertical exaggeration of 2X and a southwestwardly look direction.

    Lake Eyasi is depicted in blue at the top of the image, and a smaller lake occurs in Ngorongoro Crater. Near the image center, elevations peak at 3648 meters (11,968 feet) at Mount Loolmalasin, which is south of Ela Naibori Crater. Kitumbeine (left) and Gelai (right) are the two broad mountains rising from the rift lowlands. Mount Longido is seen in the lower left, and the Meto Hills are in the right foreground.

    Tectonics, volcanism, landslides, erosion and deposition -- and their interactions -- are all very evident in this view. The East African Rift is a zone of spreading between the African (on the west) and Somali (on the east) crustal plates. Two branches of the rift intersect here in Tanzania, resulting in distinctive and prominent landforms. One branch trends nearly parallel the view and includes Lake Eyasi and the very wide Ngorongoro Crater. The other branch is well defined by the lowlands that trend left-right across the image (below center, in green). Volcanoes are often associated with spreading zones where magma, rising to fill the gaps, reaches the surface and builds cones. Craters form if a volcano explodes or collapses. Later spreading can fracture the volcanoes, which is especially evident on Kitumbeine and Gelai Mountains (left and right, respectively, lower center).

    The Crater Highlands rise far above the adjacent savannas, capture moisture from passing air masses

  6. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact.

    PubMed

    Antony, Chakkiath Paul; Kumaresan, Deepak; Ferrando, Lucia; Boden, Rich; Moussard, Hélène; Scavino, Ana Fernández; Shouche, Yogesh S; Murrell, J Colin

    2010-11-01

    Lonar Lake is a unique saline and alkaline ecosystem formed by meteor impact in the Deccan basalts in India around 52,000 years ago. To investigate the role of methylotrophy in the cycling of carbon in this unusual environment, stable-isotope probing (SIP) was carried out using the one-carbon compounds methane, methanol and methylamine. Denaturing gradient gel electrophoresis fingerprinting analyses performed with heavy (13)C-labelled DNA retrieved from sediment microcosms confirmed the enrichment and labelling of active methylotrophic communities. Clone libraries were constructed using PCR primers targeting 16S rRNA genes and functional genes. Methylomicrobium, Methylophaga and Bacillus spp. were identified as the predominant active methylotrophs in methane, methanol and methylamine SIP microcosms, respectively. Absence of mauA gene amplification in the methylamine SIP heavy fraction also indicated that methylamine metabolism in Lonar Lake sediments may not be mediated by the methylamine dehydrogenase enzyme pathway. Many gene sequences retrieved in this study were not affiliated with extant methanotrophs or methylotrophs. These sequences may represent hitherto uncharacterized novel methylotrophs or heterotrophic organisms that may have been cross-feeding on methylotrophic metabolites or biomass. This study represents an essential first step towards understanding the relevance of methylotrophy in the soda lake sediments of an unusual impact crater structure.

  7. Degradation of Victoria crater, Mars

    USGS Publications Warehouse

    Grant, J. A.; Wilson, S.A.; Cohen, B. A.; Golombek, M.P.; Geissler, P.E.; Sullivan, R.J.; Kirk, R.L.; Parker, T.J.

    2008-01-01

    The ???750 m diameter and ???75 m deep Victoria crater in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ???5 m raised rim consisting of 1-2 m of uplifted rocks overlain by ???3 m of ejecta at the rim crest. The rim is 120-220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500-750 m across indicates that the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by ???150 m and infilled by ???50 m of sediments. Eolian processes are responsible for most crater modification, but lesser mass wasting or gully activity contributions cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for ???50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is ???20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when ???1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped <10-20 cm of darker, regional basaltic sands. Greater relief along the rim enabled meters of erosion. Comparison between Victoria and regional craters leads to definition of a crater degradation sequence dominated by eolian erosion and infilling over time. Copyright 2008 by the American Geophysical Union.

  8. Cutting Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 November 2003

    The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.

    Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Crater Copernicus

    NASA Technical Reports Server (NTRS)

    1999-01-01

    HUBBLE SHOOTS THE MOON in a change of venue from peering at the distant universe, NASA's Hubble Space Telescope has taken a look at Earth's closest neighbor in space, the Moon. Hubble was aimed at one of the Moon's most dramatic and photogenic targets, the 58 mile-wide (93 km) impact crater Copernicus. The image was taken while the Space Telescope Imaging Spectrograph(STIS) was aimed at a different part of the moon to measure the colors of sunlight reflected off the Moon. Hubble cannot look at the Sun directly and so must use reflected light to make measurements of the Sun's spectrum. Once calibrated by measuring the Sun's spectrum, the STIS can be used to study how the planets both absorb and reflect sunlight.(upper left)The Moon is so close to Earth that Hubble would need to take a mosaic of 130 pictures to cover the entire disk. This ground-based picture from Lick Observatory shows the area covered in Hubble's photomosaic with the WideField Planetary Camera 2..(center)Hubble's crisp bird's-eye view clearly shows the ray pattern of bright dust ejected out of the crater over one billion years ago, when an asteroid larger than a mile across slammed into the Moon. Hubble can resolve features as small as 600 feet across in the terraced walls of the crater, and the hummock-like blanket of material blasted out by the meteor impact.(lower right)A close-up view of Copernicus' terraced walls. Hubble can resolve features as small as 280 feet across.

  10. Buried Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows two circular features on the plains of northern Utopia. A common sight on the martian northern plains, these rings indicate the locations of buried impact craters.

    Location near: 65.1oN, 261.2oW Image width: 2 km (1.2 mi) Illumination from: lower left Season: Northern Summer

  11. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

  12. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  13. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  14. Maunder Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 24 May 2002) The Science This image is of a portion of Maunder Crater located at about 49 S and 358 W (2 E). There are a number of interesting features in this image. The lower left portion of the image shows a series of barchan dunes that are traveling from right to left. The sand does not always form dunes as can be seen in the dark and diffuse areas surrounding the dune field. The other interesting item in this image are the gullies that can be seen streaming down from just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first seen by the MOC camera on the MGS spacecraft and it is though that they formed by groundwater leaking out of the rock layers on the walls of craters. The water runs down the slope and forms the fluvial features seen in the image. Other researchers think that these features could be formed by other fluids, such as CO2. These features are typically seen on south facing slopes in the southern hemisphere, though this image has gullies on north facing slopes as well. The Story Little black squigglies seem to worm their way down the left-hand side of this image. These land features are called barchan (crescent-shaped) dunes. Barchan dunes are found in sandy deserts on Earth, so it's no surprise the Martian wind makes them a common site on the red planet too. They were first named by a Russian scientist named Alexander von Middendorf, who studied the inland desert dunes of Turkistan. The barchan dunes in this image occur in the basin of Maunder crater on Mars, and are traveling from right to left. The sand does not always form dunes, though, as can be seen in the dark areas of scattered sand surrounding the dune field. Look for the streaming gullies that appear just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first discovered by the Mars Orbital Camera on the Mars Global Surveyor spacecraft. While most crater gullies are found on south

  15. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  16. The 2011-2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Branca, Stefano; Corsaro, Rosa Anna; De Beni, Emanuela; Miraglia, Lucia; Proietti, Cristina

    2014-01-01

    Between January 2011 and April 2012, the Southeast Crater (SEC) on Mount Etna was the site of 25 episodes of lava fountaining, which led to the construction of a new pyroclastic cone on the eastern flank of the SEC. During these episodes lava overflows reached 4.3 km in length with an area of 3.19 km2 and a volume of 28 × 106 m3. The new cone, informally called New Southeast Crater (NSEC), grew over a pre-existing subsidence depression (pit crater), which had been formed in 2007-2009. The evolution of the NSEC cone was documented from its start by repeated GPS surveys carried out both from a distance and on the cone itself, and by the acquisition of comparison photographs. These surveys reveal that after the cessation of the lava fountains in April 2012, the highest point of the NSEC stood 190 m above the pre-cone surface, while the cone volume was about 19 × 106 m3, representing 38% of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011-2012, which is 50 × 106 m3 (about 33 × 106 m3 dense-rock equivalent). Growth of the new cone took place exclusively during the paroxysmal phases of the lava fountaining episodes, which were nearly always rather brief (on the average 2 h). Overall, the paroxysmal phases of all 25 episodes represent 51 h of lava fountaining activity — the time needed to build the cone. This is the fastest documented growth of a newborn volcanic cone both in terms of volume and height. Mean effusion rates during the lava fountaining episodes on 20 August 2011 (E11), as well as 12 and 24 April 2012 (E24 and E25) exceeded 500 m3/s (with maximum rates of 980 m3/s during E11) and thus they are among the highest effusion rates ever recorded at Etna. The composition of the erupted products varies in time, reflecting different rates of magma supply into the shallow feeding system, but without notable effects on the eruptive phenomenology. This implies that the dynamics leading to the episodic lava fountaining

  17. Gale Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The eroded, layered deposit in Gale Crater is a mound of material rising 3 km above the crater floor. It has been sculpted by wind and possibly water to produce the dramatic landforms seen today. The origin of the sedimentary material that composes the mound remains a contested issue: was it produced from sedimentation in an ancient crater lake or by airfall onto dry land?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -5.1, Longitude 137.5 East (222.5 West). 19 meter/pixel resolution.

  18. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  19. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4) "Spirit Lake"; (5) "Lake Manawa"; (6)…

  20. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  1. Meteor Crater: An Analog for Using Landforms to Reconstruct Past Hydrologic Conditions

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Howard, A. D.; Nishiizumi, K.; Caffee, M. W.; Kring, D. A.

    2015-12-01

    Recent work suggests that debris flow activity has occurred on Mars in the last few million years during high orbital obliquities, but estimating the amount and frequency of liquid water needed to generate these types of flows is still poorly constrained. While it is relatively common to estimate water amounts needed to produce landforms on Mars, such as gullies or alluvial fans, this is something rarely done on Earth. Consequently, there is little field data on the linkage between climate (snowmelt or rainfall events) and the amount of runoff needed to produce specific volumes of sediment in a landform. Here, we present field and modeling data from Meteor Crater, which is a ~50,000 year old impact crater in northern Arizona (USA). Though it is very well preserved, it has developed gullies along its inner wall, similar in form to many gullies on Mars. Meteor Crater, similar to many Martian craters, has also gone through a change in a climate based on the ~30 m of lake sediments on its now dry floor, and what has eroded from its walls has deposited on its floor, making it a closed system. We show using LiDAR-derived topographic data and field observations that debris flows, likely generated by runoff entrainment into talus bordering bedrock cliffs of the crater walls, drove erosion and deposition processes at Meteor Crater. Cosmogenic dating of levee deposits indicates that debris flows ceased in the early Holocene, synchronous with regional drying. For a water-to-rock ratio of 0.3 at the time of transport, which is based on data from rotating drum experiments, it would have taken ~150,000 m3 of water to transport the estimated ~500,000 m3 of debris flow deposits found at the surface of the crater floor. This extensive erosion would require less than 0.4 m of total runoff over the 0.35 km2 upslope source area of the crater, or ~26 mm of runoff per debris flow event. Much more runoff did occur however, as evidenced by lake deposits on the crater floor and Holocene

  2. Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas

    USGS Publications Warehouse

    Kinzler, R.J.; Donnelly-Nolan, J. M.; Grove, T.L.

    2000-01-01

    This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years B.P.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ~3000 14C years B.P.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (< 0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT

  3. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  4. Geologic investigation of layered mound of Henry Crater, Mars: Implications for history of ancient hydrological activities in the region

    NASA Astrophysics Data System (ADS)

    Sarkar, Samarpita; Sinha, Rishitosh Kumar; Banerjee, Debabrata; Vijayan, S.

    2016-07-01

    Craters around the Schiaparelli Basin (sim460 km diameter; 2.71^circS 16.77^circE) on Mars are distributed in a unique combination that includes infilled craters with mound on their floors. The mounds have preserved intriguing layers in stratigraphy that has exposed pristine sets of geomorphic and geochemical signatures bearing strong implications towards understanding geological history of Mars. With a view to avail the maximum scientific benefit from this unique geological assemblage on Mars, we have carried out remote analysis of stratigraphy of layers exposed over Henry crater's (sim150 km diameter; 10.79^circN 23.45^circE) mound (rising sim2km from floor) to infer the origin and episodes of geological events occurred in the region. Henry crater is situated approximately 500 km northeast of Schiaparelli Basin. Using crater counting technique the age of the topmost surface of the crater mound is found to be sim3.64 Ga since the exposure of this strata post complete infilling. The stratigraphy of consistent and conformable layers in the crater interior acts as a proxy of the long-lived event of sediment deposition in a rather quiescent condition. Distinct layering can be traced across the crater from the mound to the crater wall across the floor. Evidence for differential erosion of deposited materials, wherein local geological setup developed in the different parts of the crater interior is preserved. Using MRO HiRISE & CTX images, distinct spatial distribution of morphological features distributed in stratigraphy is observed that reveals the dominant geological agents behind their formation, viz. temporal hydrological and eolian processes. The morphological features were aided with an understanding of the composition of the exposed sedimentary succession. MRO CRISM based mineralogical investigation reveals diagnostic signature of the hydrated sulfate mineral Kieserite. Based on the thermodynamic properties of Kieserite and apparent lack of desiccation cracks in

  5. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  6. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  7. Holden Crater/Uzboi Valles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 17 April 2002) The Science This image, located near 27.0S and 35.5W (324.5E), displays the intersection of Holden Crater with Uzboi Valles. This region of Mars contains a number of features that could be related to liquid water on the surface in the Martian past. Holden Crater contains finely layered sedimentary units that have been subsequently dissected. The hummucky terrain in the bottom half of the image is the remnants of this terrain, though the fine layers are not visible in this image at this resolution. The sedimentary units could have formed through deposition of material in a lacustrine type environment. Alternately, these layers could also be volcanic ash deposits. Uzboi Valles, which enters the crater from the southwest, is a catastrophic outflow channel that formed in the Martian past. The streamlined nature of the topographic features at the intersection of the crater with Uzboi Valles record the erosional pattern of flowing liquid water on the surface of Mars during the episodic outflow event. The Story Mars doesn't have a shortage of rugged terrain, and this area is no exception. While things look pretty quiet now, this cratered region was once the scene of some tremendous action. Long ago in Martian history, an incoming meteoroid probably smashed into the planet and produced a giant impact crater named Holden Crater, which stretches 88 miles across the Martian surface. The history of the area around Holden Crater doesn?t stop there. At some point, a catastrophic flood burst forth on the surface, forming an impressive outflow channel called Uzboi Valles. No one knows exactly how that happened, or whether the water might even have rushed into Holden Crater at some point, forming a long-ago lake. What we do know is that there is a lot of sedimentary material that could have formed in two hypothesized ways: in an ancient lake environment or as volcanic-ash deposits. Scientists are searching for the answers by studying the region where Uzboi

  8. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used

  9. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used

  10. Floor Fractured Craters around Syrtis Major, Mars

    NASA Astrophysics Data System (ADS)

    Bamberg, M.; Jaumann, R.; Asche, H.

    2012-04-01

    Craters around Syrtis Major are eroded and/or refilled. Syrtis Major is one of the large Hesperian-aged volcanic regions on Mars. Basaltic deposits originating from nearby Syrtis Major cover the floor of impact craters. In particular some craters exhibit a fractured floor. Floor Fractured Craters can be divided in types. The grade of erosion and the geologic process, which formed the crater, can be different. Type 1: Crater floor affected by pit chains or narrow crevices which are sometimes discontinuous. Type 2: More developed and dense networks of crevices as type 1. Crevices are wide and deep enough to be detected. A circular moat starts to develop as crevices concentrate along the rim. Type 3: Mainly distinguished from type 2 by the presence of a fully developed circular moat. The flat central part is divided into several blocks by crevices. Type 4: They show also a continuous moat along the rim but the central part consists of many flat-top blocks and small conical mounds. Type 5: Crater floor has many mounds of irregular sizes, but the flattop blocks are absent. It should be noted that the knobby surface shows typical characteristics of chaotic terrains and could be alternatively classified as such. Type 6: Crater without a circular moat, crevices are not fully developed, flat-top blocks are present. Fractured floor could have been reshaped through geologic processes. Floor fractured craters can be found in three different areas. The first area is located in the south-eastern part of Syrtis Major, bordering to the highlands. Volcanic features like lava flow fronts, lava flows and wrinkle ridges dominate this region. The crater floor is separated in sharp-edged plates and the interior seems to be flooded by basaltic material. The second area is in the north of Syrtis Major and transcend to the chaotic terrain further north. Near the martian dichotomy boundary fluvial activity was the decisive process. The crater rims are highly eroded, channels are cutting

  11. Holden Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Ripple bedforms fill large fractures near the southern rim of Holden Crater.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Becquerel Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds

    This interesting deposit is located on the floor of Becquerel Crater.

    Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Crater Rim

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The late afternoon sun casts a shadow over a 700 meter-high rim of Huygens Crater.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -15.2, Longitude 51.6 East (308.4 West). 19 meter/pixel resolution.

  14. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    The irregularly shaped rim of this bowl shaped impact crater is most likely due to erosion and the subsequent infilling of sediment.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Rampart Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Rampart crater in Utopia Planitia west of the Viking 2 landing site.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats?

    PubMed

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Torres-Dowdall, Julian; Meyer, Axel

    2016-08-01

    Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split-brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD-seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago. PMID:27551387

  17. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats?

    PubMed

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Torres-Dowdall, Julian; Meyer, Axel

    2016-08-01

    Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split-brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD-seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.

  18. Huygens Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 15 July 2003

    The floor of the 450 km diameter crater named after Dutch astronomer Christian Huygens (1629-1695) shows an unusual texture. Smooth-topped mesas are scattered across a more rugged surface. The mesas are testament to a former smooth layer of material that is in the process of eroding away.

    Image information: VIS instrument. Latitude -16.2, Longitude 54.5 East (305.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Martian Meteor Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fairly young meteor impact crater on Mars that is about the same size ( 1 kilometer; 0.62 miles) as the famous Meteor Crater in northern Arizona, U.S.A. Like the Arizona crater, boulders of ejected bedrock can be seen on the crater's ejecta blanket and in the crater itself. This crater is located in the Aethiopis region of Mars near 4.7oN, 224.1oW. Sunlight illuminates the scene from the lower left.

  20. Iturralde Crater, Bolivia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA scientists will venture into an isolated part of the Bolivian Amazon to try and uncover the origin of a 5 mile (8 kilometer) diameter crater there known as the Iturralde Crater. Traveling to this inhospitable forest setting, the Iturralde Crater Expedition 2002 will seek to determine if the unusual circular crater was created by a meteor or comet. Organized by Dr. Peter Wasilewski of NASA's Goddard Space Flight Center, Greenbelt, Md., the Iturralde Crater Expedition 2002 will be led by Dr. Tim Killeen of Conservation International, which is based in Bolivia. Killeen will be assisted by Dr. Compton Tucker of Goddard. The team intends to collect and analyze rocks and soil, look for glass particles that develop from meteor impacts and study magnetic properties in the area to determine if the Iturralde site was indeed created by a meteor.

    This image was acquired on June 29, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation

  1. Floor of Baldet Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 June 2002) The Science This THEMIS visible image shows a remarkable array of dunes on the floor of a large impact crater named Baldet located near 22.8o N. Many of the dunes in this region are isolated features, with large, sand-free 'interdune' surfaces between the individual dunes. These isolated dunes typically occur in regions where there is a limited supply of sand. Any sand that is present moves rapidly across the interdune surfaces, which in many cases are hardened surfaces over which the sand can easily bounce, or 'saltate.' When this loose sand lands on a dune it cannot travel as quickly and is trapped within the dune. In some areas within this sand mass the dunes have grown together to form crescent dunes and dune ridges. The dunes in this image are likely active today, slowly migrating across the crater floor. THEMIS will re-image this and other dunes throughout the Mars Odyssey mission to search for any evidence of dune motion over time. Based on the asymmetrical shape of the dunes, the wind direction over much of the dune field appears to be from the right (west) or upper right (northwest). However, the topography of the crater floor apparently produces complex wind patterns within the dune field, as can be seen by the different orientations of the dunes. For example the dunes in the lower portion of the image appear to be somewhat symmetrical and aligned east-west, suggesting that the wind in this region blows from both the north (top) and south (bottom). The Story A fuzzy 'carpet' of sand dunes covers the floor of a large impact crater, which you can see almost in full in the context image to the right. While the dunes give this area a plush, tufted look, there actually isn't a lot of sand in this area. How can you tell? Large, sand-free spaces exist in between the dunes, and those usually occur when sand particles are sparse. You can see these 'interdune spaces' better if you click on the image for the more detailed view. The sand that

  2. Comments on cladocerans of crater lakes of the Nevado de Toluca Volcano (Central Mexico), with the description of a new species, Alona manueli sp. nov.

    PubMed

    Sinev, Artem Y; Zawisza, Edyta

    2013-01-01

    Cladoceran communities of two lakes of Nevado de Toluca Volcano, Central Mexico, were studied. A new species of Aloninae, Alona manueli sp. nov., is described. It was previously confused with Palearctic Alona intermedia Sars, 1862, but clearly differs from it in the morphology of postabdomen, head shield and head pores, and thoracic limbs. Position of Alona manueli sp. nov. within the genus is unclear, it did not belong to any species-group within Alona s. lato. Other species recorded in the studied lakes are Alona ossiani Sinev, 1998, Alonella pulchella Herrick, 1884, Chydorus belonging to sphaericus-group, Eurycercus longirostris Hann, 1982 and Pleuroxus cf. denticulatus Birge, 1879.

  3. Comments on cladocerans of crater lakes of the Nevado de Toluca Volcano (Central Mexico), with the description of a new species, Alona manueli sp. nov.

    PubMed

    Sinev, Artem Y; Zawisza, Edyta

    2013-01-01

    Cladoceran communities of two lakes of Nevado de Toluca Volcano, Central Mexico, were studied. A new species of Aloninae, Alona manueli sp. nov., is described. It was previously confused with Palearctic Alona intermedia Sars, 1862, but clearly differs from it in the morphology of postabdomen, head shield and head pores, and thoracic limbs. Position of Alona manueli sp. nov. within the genus is unclear, it did not belong to any species-group within Alona s. lato. Other species recorded in the studied lakes are Alona ossiani Sinev, 1998, Alonella pulchella Herrick, 1884, Chydorus belonging to sphaericus-group, Eurycercus longirostris Hann, 1982 and Pleuroxus cf. denticulatus Birge, 1879. PMID:26295115

  4. Crater studies: Part A: lunar crater morphometry

    USGS Publications Warehouse

    Pike, Richard J.

    1973-01-01

    Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.

  5. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  6. Automated Crater Delineation

    NASA Astrophysics Data System (ADS)

    Marques, J. S.; Pina, P.

    2015-05-01

    An algorithm to delineate impact craters based on Edge Maps and Dynamic Programming is presented. The global performance obtained on 1045 craters from Mars (5 m to about 200 km in diameter), achieved 96% of correct contour delineations.

  7. Hydrothermal Occurrences in Gusev Crater

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Farmer, J. D.; Milliken, R.; Mills, V. W.; Shock, E.

    2011-12-01

    Exploration of the Gusev crater landing site by the Spirit rover has revealed for the first time, in situ evidence of hydrothermal activity on Mars. Most compelling are eroded outcrops of opaline silica found adjacent to "Home Plate" [1], an eroded stack of volcaniclastic deposits stratigraphically overlain by a vesicular basalt unit [2]. Recent work [3] demonstrates that the silica outcrops occur in a stratiform unit that possibly surrounds Home Plate. The outcrops are dominated by opal-A with no evidence for diagenesis to other silica phases. No other hydrous or alteration phases have been identified within the outcrops; most notable is a lack of sulfur phases. The outcrops have porous and in some cases, brecciated microtextures. Taken together, these observations support the interpretation that the opaline silica outcrops were produced in a hot spring or perhaps geyser environment. In this context, they are silica sinter deposits precipitated from silica-rich hydrothermal fluids, possibly related to the volcanism that produced the Home Plate volcanic rocks. On Earth, debris aprons in which sinter is brecciated, reworked, and cemented, are common features of hot springs and geysers and are good analogs for the Martian deposits. An alternative hypothesis is that the silica resulted from acid-sulfate leaching of precursor rocks by fumarolic steam condensates. But stratigraphic, textural, and chemical observations tend to diminish this possibility [3]. We are conducting extensive laboratory and field investigations of silica from both hot spring/geyser and fumarole environments to understand the full range of mineralogical, chemical, textural, and morphological variations that accompany its production, in order to shed more light on the Home Plate occurrence. The recent discovery of abundant Mg-Fe carbonate (16-34 wt%) in outcrops named Comanche provides possible evidence for additional hydrothermal activity in Gusev [4]. However, the carbonate is hosted by olivine

  8. A Rare Window Into Magmatic Conduit Processes: Time Series Observations From Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, E.; Ruprecht, P.; Patrick, M.; Oppenheimer, C.; Peters, N.; Spampinato, L.; Hernandez Perez, P. A.; Unglert, K.; Barreyre, T.

    2015-12-01

    Time-lapse thermal images of the lake surface are used to investigate the circulation and cooling patterns of three lava lakes: Kilauea's Halema'uma'u crater, Mount Erebus, and Nyiragongo. We report results for the time-dependent, two-dimensional velocity and temperature fields of the lake surface. These data sets constrain the locations of flow divergence (upwelling) and convergence (downwelling), the distribution of distinct "plates" and "rifts", the dominant time scales for changes in flow pattern at each lake, and the physical properties of the magma. Upwelling and downwelling locations are strikingly different between the three lakes. Upwelling at Nyiragongo and Erebus occurs dominantly in the interior of the lake, where it is occasionally interrupted by catastrophic downwellings. At Halema'uma'u upwelling and downwelling occur consistently along the perimeter. It remains to be seen whether these differences are dictated merely by the system's geometry or are indicative of intrinsic factors such as melt viscosity, temperature and volatile and crystal content, or of conduit processes such as gas pistoning or slug flow. The availability of high resolution data at Halema'uma'u allows as us to document the evolution of crustal plates and rifts and to investigate the physical properties of the lava and the crust. The physical properties of the lake's surface control lake cooling rates, and thus need to be included in lake circulation and thermal evolution models. We produce time-temperature cooling curves from surface temperature profiles normal to surface rifts and by tracking the cooling of intra-plate bubble bursts. By comparing observations to analytical cooling models, we estimate a porosity of > 80% during the high stand of the lake, slightly higher than estimates of 70% for the upper 120 meters based on gravity data, and close to the porosity of clasts ejected from the lake during recent minor explosions. Furthermore,we find that the number of surface plates

  9. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  10. Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): New geochemical constrains of active degassing of mantle derived fluids

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Nuccio, P. M.; Favara, R.; Grassa, F.

    2012-04-01

    Since the catastrophic releases of carbon dioxide from the African volcanic lakes Nyos and Monoun in the 1980s, the scientific community draw attention towards all those crater lakes able to accumulate massive amount of CO2, which could be catastrophically released following overturn of their deep waters. This implies a quantification of the gas accumulation rate into the lakes and the knowledge of recharge processes and their evolution in time. In fact the gaseous recharge in a lake occurs at alarming rates, when an active degassing of hazardous nature volatiles occurs into the lakes and the structure and dynamic of the lake permit the accumulation of gases into the water. The Monticchio lakes, LPM and LGM, occupies two maar craters formed during the last volcanic activity of Mt. Vulture occurred ˜ 140 000 years ago. LPM is a permanently stratified lake, with a thick deep volume of stagnant water and a shallower layer affected by seasonal overturn. On the contrary LGM is a monomittic lake with a complete overturn of the water during winter time. The major dissolved volatiles are methane and CO2. Dissolved helium is in trace amounts and its isotopic signature ranges between 6.1 and 5.3 Ra (Ra is the atmospheric 3He/4He isotopic ratio). These values are within the range of those measured in the olivine fluid inclusions (both of mantle xenoliths and dispersed in the pyroclastics) of LPM maar ejecta. During three years of investigations we observed that dissolved methane in the deep waters of LGM drastically decreases in wintertime as consequence of the complete overturn of the water. The isotopic signature of methane in the deepest portions of LGM (both sediment and water) is quite stable with time and highlights a biogenic origin, being produced both by acetate fermentation and by CO2-reduction in variable proportions. In contrast, a higher contribution of methane produced via CO2 reduction characterizes sediments at shallower depths. At LPM, there is a great

  11. Exploring Impact Crater Paleolakes in 2003

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Grin, E. A.

    2001-01-01

    Paleolakes in impact craters have been surveyed for the past 20 years and have raised considerable interest because of their potential to document many of the questions that are at the heart of the Mars exploration program, especially Astrobiology and search for life. Recent high-resolution Mars Orbiter Camera (MOC) images seem to provide another support to their existence and are giving new data to explore these past lakes that Viking had helped us unravel. They also show the importance of a continuing exploration program at increasing resolution. It is now possible to fully investigate the broad spectrum of martian Crater lakes from Noachian to Amazonian, up to very recent times, since fresh gullies have been also observed in impact craters. Before the confirmation by MOC, several studies on the subject had pointed out the importance of martian limnology as a method to understand the past climate, hydrogeology, and possibly biology of Mars. Considering the questions raised both by the Viking and MGS mission about these crater lakes and their extraordinary potential for astrobiological investigations, the next logical step is to explore them in situ, and it is possible with MER-A and MER-B in 2003.

  12. Degraded Crater Rim

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  13. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  14. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  15. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes.

    PubMed

    Biderre-Petit, Corinne; Dugat-Bony, Eric; Mege, Mickaël; Parisot, Nicolas; Adrian, Lorenz; Moné, Anne; Denonfoux, Jérémie; Peyretaillade, Eric; Debroas, Didier; Boucher, Delphine; Peyret, Pierre

    2016-01-01

    Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin. PMID:26734727

  16. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes.

    PubMed

    Biderre-Petit, Corinne; Dugat-Bony, Eric; Mege, Mickaël; Parisot, Nicolas; Adrian, Lorenz; Moné, Anne; Denonfoux, Jérémie; Peyretaillade, Eric; Debroas, Didier; Boucher, Delphine; Peyret, Pierre

    2016-01-01

    Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.

  17. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes

    PubMed Central

    Biderre-Petit, Corinne; Dugat-Bony, Eric; Mege, Mickaël; Parisot, Nicolas; Adrian, Lorenz; Moné, Anne; Denonfoux, Jérémie; Peyretaillade, Eric; Debroas, Didier; Boucher, Delphine; Peyret, Pierre

    2016-01-01

    Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin. PMID:26734727

  18. Venus - Lavinia Region Impact Craters

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Three large meteorite impact craters, with diameters that range from 37 to 50 kilometers (23 to 31 miles), are seen in this image of the Lavinia region of Venus. The image is centered at 27 degrees south latitude and 339 degrees east longitude (longitude on Venus is measured from 0 degrees to 360 degrees east), and covers an area 550 kilometers (342 miles) wide by about 500 kilometers (311 miles) long. Situated in a region of fractured plains, the craters show many features typical of meteorite impact craters, including rough (bright) material around the rim, terraced inner walls and central peaks. Numerous domes, probably caused by volcanic activity, are seen in the southeastern corner of the mosaic. The domes range in diameter from 1 to 12 kilometers (0.6 to 7 miles). Some of the domes have central pits that are typical of some types of volcanoes. North is at the top of the image.

  19. Becquerel Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 28 May 2002) The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.

  20. Marine-target craters on Mars? An assessment study

    USGS Publications Warehouse

    Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.

    2004-01-01

    Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on

  1. Large Crater Structures Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Milstein, R.; Legg, M. R.; Goldfinger, C.; Kamerling, M. J.

    2002-12-01

    Digital mosaics of swath and conventional bathymetry data reveal large, distinct near-circular crater structures in the inner California Continental Borderland offshore of southern California. Two have maximum crater diameters that exceed 30 km, and a third has a crater diameter of about 12.5 km. One of these, Catalina Crater, exhibits a well-defined crater morphology -- raised outer rim, ring moat, and elevated central peak -- that resembles an impact site. The others have a similar morphology but more disrupted by later tectonic or volcanic activity. Preliminary analyses of available seismic, gravity and magnetic data over Catalina Crater reveal similarities and differences in geometry, structure, and geophysical signature to known impacts. All three crater structures occur within the Catalina terrane, a highly extended volcanic and metamorphic province floored by Catalina Schist basement. An alternative origin may thus involve explosive volcanism, caldera collapse and resurgent magmatism, and/or possibly schist remobilization, associated with the Catalina terrane. Timing of crater formation postdates the initial rifting and rotation of the western Transverse Ranges, and predates major right-slip along the San Clemente and San Diego Trough fault systems -- or about 18 to 16 Ma. No single model for impact, caldera, or other crater forming mechanism fully accounts for all of the present observations and data regarding the morphology, internal structure, and known lithology of these near-circular features. Regardless of their origin, these complex craters represent some of the largest structures of their kind in western North America and provide a unique opportunity to better understand crater forming processes in a submarine environment.

  2. Putative crater-floor pingos, paleolakes and periglacial landscapes in north Utopia Planitia, Mars.

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Conway, S. J.; Dohm, J. M.

    2012-04-01

    Pingos are perennial ice-cored (but non-glacial) hills or mounds. They evolve and persist only in continuous and deep permafrost, i.e. ground that is frozen for periods of no less than two years. In periglacial (or cold-climate, non-glacial) regions such as the Tuktoyaktuk Coastlands of northern Canada closed-system pingos originate where thermokarst lakes either have lost or are losing their water by drainage, evaporation or sublimation. Closed-system pingos form as a result of freeze-thaw cycling, permafrost aggradation and pore-water migration. If closed-system pingos were identified on Mars, particularly on late Amazonian terrain at near-polar latitudes, this would point to boundary-conditions of pressure and temperature at or above the triple point of water having occurred much more recently and closer to the polar regions than many workers have thought possible. In 2005, we found two crater-floor landscapes in northern Utopia Planitia with mounds that seemed to share a suite of morphological characteristics and landform associations with closed-system pingos on Earth (Soare et al. 2005). Since this study the HiRISE and CTX cameras on-board the Mars Reconnaissance Orbiter have provided better coverage and higher resolution images of the area, allowing us to refine our previous work. We have identified two additional craters with similar assemblages and have verified the absence of such assemblages in other craters across a circum-global longitudinal transect spanning 20 degrees (~52°-72° N) of latitude. This allows us to evaluate the closed-system pingo hypothesis anew. Interestingly, the four principal mound-bearing craters occur within a tight latitudinal band from ~64°-71° N. This could be a marker of active albeit highly localised hydrological and freeze-thaw cycling. Conway et al. (2011) have identified perennial ice-domes on impact-crater floors at latitudes (~70° N) that are adjacent to the mound-bearing craters. They hypothesise that the ice domes

  3. DAN Active Parameters and Mastcam Hydration Survey Imaging: Comparisons Across Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Rice, M. S.; Moersch, J.; Mitrofanov, I. G.; Litvak, M.; Wellington, D. F.; Behar, A.; Bell, J. F.; Boynton, W. V.; DeFlores, L.; Drake, D.; Fedosov, F.; Golovin, D.; Jun, I.; Harshman, K.; Kozyrev, A.; Malakhov, A.; Milliken, R.; Kuzmin, R.; Mischna, M. A.; Mokrousov, M.; Nikiforov, S.; Sanin, A.; Tate, C.; Team, M.

    2013-12-01

    is a buried layer of H-rich material more strongly influencing the DAN signal. Through modeling of a variety of layer geometries and H-rich layers, we investigate whether a one- or two-layer model more accurately fits the DAN data as well as the amount of H within each layer. As of sol 269, DAN has acquired over 30 active measurements while Curiosity made her way to the location of where the first and second drill holes would be made, including measurements at those sites. Over 100 Mastcam hydration survey observations within Yellowknife Bay have been acquired, primarily at the drill sites. We will present the results of detailed mapping of the veins and nodules within the Mastcam hydration surveys in Yellowknife Bay to determine if the DAN signal can be correlated or anti-correlated to the surficial spatial distribution of these features. Where data from other instruments like APXS or ChemCam are available to constrain the H or Cl abundance at the location of a given DAN active measurement, and if those compositions are assumed to be laterally homogeneous within the DAN footprint, they can be used to constrain the modeled surface compositions to determine how deep the surface composition extends.

  4. Sulfhydrolase activity in sediments of wintergreen lake, kalamazoo county, michigan.

    PubMed

    King, G M; Klug, M J

    1980-05-01

    The hydrolysis of p-nitrophenyl sulfate, p-nitrocatechol sulfate, and [S]sodium dodecyl sulfate was examined in anoxic sediments of Wintergreen Lake, Michigan. Significant levels of sulfhydrolase activity were observed in littoral, transition, and profundal sediment samples. Rates of sulfate formation suggest that the sulfhydrolase system would represent a major source of sulfate within these sediments. Sulfate formed by ester sulfate hydrolysis can support dissimilatory sulfate reduction as shown by the incorporation of S from labeled sodium dodecyl sulfate into H(2)S. Sulfhydrolase activity varied with sediment depth, was greatest in the littoral zone, and was sensitive to the presence of oxygen. Estimations of ester sulfate concentrations in sediments revealed large quantities of ester sulfate ( approximately 30% of total sulfur). Both total sulfur and ester sulfate concentrations varied with the sediment type and were two to three orders of magnitude greater than the inorganic sulfur concentration.

  5. Gradational evolution of young, simple impact craters on the Earth

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.

  6. Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Ross, Kelly Ann; Smets, Benoît; De Batist, Marc; Hilbe, Michael; Schmid, Martin; Anselmetti, Flavio S.

    2014-09-01

    The history of Lake Kivu is strongly linked to the activity of the Virunga volcanoes. Subaerial and subaquatic volcanoes, in addition to lake-level changes, shape the subaquatic morphologic and structural features in Lake Kivu's Main Basin. Previous studies revealed that volcanic eruptions blocked the former outlet of the lake to the north in the late Pleistocene, leading to a substantial rise in the lake level and subsequently the present-day thermohaline stratification. Additional studies have speculated that volcanic and seismic activities threaten to trigger a catastrophic release of the large amount of gases dissolved in the lake. The current study presents a bathymetric mapping and seismic profiling survey that covers the volcanically active area of the Main Basin at a resolution that is unprecedented for Lake Kivu. New geomorphologic features identified on the lake floor can accurately describe related lake-floor processes for the first time. The late Pleistocene lowstand is observed at 425 m depth, and volcanic cones, tuff rings, and lava flows observed above this level indicate both subaerial and subaquatic volcanic activities during the Holocene. The geomorphologic analysis yields new implications on the geologic processes that have shaped Lake Kivu's basin, and the presence of young volcanic features can be linked to the possibility of a lake overturn.

  7. Erosion Effects of Liquid Water and Volatiles in a Former Lacustrine Environment - From Gale Crater to Death Valley

    NASA Astrophysics Data System (ADS)

    Iacob, R. H.; Bonaccorsi, R.; Iacob, C. E.

    2014-12-01

    During its first two years of exploration, Curiosity rover provided strong evidence of water activity at Gale Crater on Mars. While liquid water is not commonly present on the surface of Mars, large depressions such as Gale Crater hold evidence that water was collected in impact craters on Mars in the distant past. Specific features such as alluvial fans, inverted riverbeds, moat areas, and sedimentary formations, demonstrate strong water activity on low elevation regions of Mars. While surface water (gradually) disappeared as the climate and atmosphere of Mars changed, important water deposits formed underground, either as sub-surface ice shelves, or in the form of hydrated minerals, as demonstrated by MER and MSL. Although the presence of water ice under the ancient lake bed at the foothills of Mount Sharp is still to be determined, the area explored so far by Curiosity exhibits erosion features that can help describe the history of water activity along billions of years, e.g., river streams, lacustrine sedimentation, and later cycles of evaporation, frosting and sublimation. This presentation features a comparative study of water erosion processes at Gale Crater on Mars and Death Valley (DV) on Earth, from ancient water flows and lacustrine environments, through evaporation, dryness, and cyclic frosting and sublimation. Groundwater deposits in Death Valley offer best opportunities to study the process of minerals hydration, as well as landforms related to underground water percolation and evaporation, similar to those discovered by Curiosity at Yellowknife Bay. Furthermore, sedimentary processes in lacustrine proximal settings similar to those argued for Mount Sharp, or seen at Gale Crater's floor, have been studied in several locations of DV. These include, but are not limited to, younger dry lake beds of former lakes Manly and Panamint, carved badland formations of Furnace Creek Lake (Zabriskie Point) and older Tertiary lacustrine and fanglomeratic deposits

  8. Exploding lakes and maleficent water in Grassfields legends and myth

    NASA Astrophysics Data System (ADS)

    Shanklin, Eugenia

    1989-11-01

    In August 1984 Lake Manoun 'exploded', killing 37 people. In August 1986 Lake Nyos 'exploded', killing more than 1700 people. Both explosions occurred in the rainy season, two years and six days apart. Have there been similar explosions in the Cameroon Grassfields in the past? This paper argues that such explosions have occurred, and have been recorded in area folklore in the form of migration stories that point unmistakably to the 'maleficent' activities of lakes and other bodies of water. Two migration stories are considered and compared: an ephemeral exploding lake that destroys the Bamessi people in the Kom story, and a crater lake in the Oku story, in which the lake is said to have 'left its bed' to destroy the people of Kijem. In examining the category of 'maleficent water', several types of potentially maleficent water are considered, including indigenous classifications of lakes as 'good' or 'bad', and stories about devils or witches associated with water. All suggest that the folklore motif of dangerous, destructive water may have its basis in observed fact. While this evidence is not conclusive, it is highly suggestive and, in combination with evidence that the area around Nyos is very recently settled, it lends credence to the supposition that the crater lakes of the area may have a 'life cycle' that involves changes of sometimes stupendous, often dangerous, proportions.

  9. Using quantitative topographic analysis to understand the role of water on transport and deposition processes on crater walls

    NASA Astrophysics Data System (ADS)

    Palucis, Marisa Christina

    that crisscrossed on the lower slopes. We hypothesize that the fine material, likely generated in the impact, and deposited with the coarse debris on the lower portion of the crater wall, is key to this bulking up process as flows cut across the deposits. Fluvial processes following the debris flow gullies extended alluvial deposits to the crater floor and contributed to lake infilling. Cosmogenic dating confirms that most of the modification of the crater walls occurred before the early Holocene. To account for the 75 distinct deposits currently lying on the crater floor, debris flow frequency would be about 1 event every 17 years, assuming debris flow activity terminated ˜10,000 years ago. Assuming a water-to-rock ratio of 0.2 at the time of transport, it would have taken ˜100,000 m3 of water to transport the ˜500,000 m3 of debris flow deposits on the crater floor. Given the 4.5 km2 size of the crater, this extensive erosion would require less than 0.02 m of total runoff, or the equivalent of just 0.001 mm/year over a 40,000 year period. This insignificant amount of water was likely packaged into short-lived storm or snow-melt events when debris flows were generated. Much more runoff did occur, as evidenced by the lake and fluvial deposits, as well as the likely cool, wet conditions of the late Pleistocene. This suggests only a small fraction of the total runoff is needed to do considerable geomorphic evolution, producing strongly gully-scared crater walls. Currently, only minor fluvial modification of the gully networks occurs. (Abstract shortened by UMI.).

  10. 238U-230Th crystallization ages for the oldest domes of the Mono Craters, eastern California

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.

    2014-12-01

    The Mono Craters volcanic chain is one of the youngest areas of rhyolitic volcanism in the Mono Lake-Long Valley region of eastern California. Located just south of Mono Lake, the Mono Craters comprise at least 28 individual domes and flows (numbered 3-30, north to south); however, the timing and frequency of eruptions remain poorly resolved. The earliest signs of volcanic activity are preserved as numerous tephra layers (Ashes 1-19, top to bottom) in the late Pleistocene Wilson Creek formation of ancestral Mono Lake, which indicate that rhyolitic volcanism from Mono Craters began by at least ca. 62 ka [1]. Although the current chronology indicates that most of the Mono Craters are younger than ca. 20 ka [2-4], similar compositions of titanomagnetite from both pumice and lava potentially correlate several Wilson Creek tephras to porphyritic biotite-bearing domes 11, 24, and 19 of the Mono Craters [5], suggesting that multiple domes in the Mono Craters chain reflect volcanism older than ca. 20 ka. Ash 3 is correlated to dome 11 based on similar ca. 20 ka ages and titanomagnetite compositions [6]. More recently, we performed ion microprobe 238U-230Th dating of unpolished rims of allanite and zircon from domes 24 and 19, yielding isochron ages of ca. 38 ka and ca. 42 ka, respectively. The age of dome 24 is consistent with the ca. 38 ka age of its potential correlative tephra layers [1, 5], indicating that dome 24 is likely the extrusive equivalent of Ashes 9-10. Dome 19 has titanomagnetite crystals with similar bimodal chemistry to titanomagnetites from Ash 15 [5]. The age of dome 19 is indistinguishable from the 238U-230Th age of Ash 15 [1], which erupted during a prominent geomagnetic excursion, originally designated as the "Mono Lake" excursion. Combining geochronological and titanomagnetite compositional data confirms that Ash 15 and its extrusive equivalent, dome 19, erupted during the Laschamp excursion. [1] Vazquez, J.A. and Lidzbarski, M.I. (2012) EPSL 357

  11. Gas-emission crater in Central Yamal, West Siberia, Russia, a new permafrost feature

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Streletskaya, Irina; Gubarkov, Anatoly

    2016-04-01

    The Yamal crater is a hole funnel-shaped on top and cylinder-shaped down to the bottom, surrounded by a parapet. Field study of the crater included size measurements, photo- video-documentation of the feature and the surrounding environment, and geochemical sampling. The upper part of the geological section within the crater consisted of stratified icy sediments, underlain by almost pure stratified ice of nearly vertical orientation of the layers. The volume of discharged material (volume of the void of the crater) was 6 times larger than the volume of material in the parapet. The difference was due to a significant amount of ice exposed in the walls of the crater, emitted to the surface and melted there. Remote sensing data was processes and validated by field observations to reveal the date of crater formation, previous state of the surface, evolution of the crater and environmental conditions of the surrounding area. Crater formed between 9 October and 1 November 2013. The initial size derived from Digital Elevation Model (DEM) had diameter of the vegetated rim 25-29 m. It turned through a sharp bend into a cylinder with close to vertical sides and diameter 15-16 m. Depth of the hole was impossible to estimate from DEM because of no light reaching walls in the narrow hole. By the time of initial observation in July 2014, water was found at the depth exceeding 50 m below the rim. In November 2014 this depth was 26 m. By September 2015 almost all the crater was flooded, with water surface about 5 m below the rim. The plan dimensions of the crater increased dramatically from initial 25-29 to 47-54 m in 2015. Thus, it took two warm seasons to almost entirely fill in the crater. We suppose that during the next 1-2 years parapet will be entirely destroyed, and as a result the crater will look like an ordinary tundra lake. Excluding impossible and improbable versions of the crater's development, the authors conclude that the origin of this crater can be attributed to

  12. Simulated Craters on Venus

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The thick atmosphere of Venus prevents all but the largest impactors from cratering the surface. The number of small craters on Venus provides an interesting, and statistically significant test of models for the disruption and deceleration of impacting bodies. Here we compare Monte Carlo simulated crater distributions to the observed crater distribution on Venus. The simulation assumes: (1) a power law mass distribution for impactors of the form N(sub cum) alpha m (exp-b) where b=0.8; (2) isotropic incidence angles; (3) velocity at the top of the atmosphere of 20 kilometers per second (more realistic velocity distributions are also considered); (4) Schmidt-Housen crater scaling, modified such that only the normal component of the impact velocity contributes to cratering, and using crater slumping as parameterized (5) and modern populations (60% carbonaceous, 40% stone, 3% iron) and fluxes of asteroids. We use our previously developed model for the disruption and deceleration of large bodies striking thick planetary atmospheres to calculate the impact velocity at the surface as a function of impactor mass, incident velocity, and incident angle. We use a drag coefficient c(sub d) =1; other parameters are as described in Chyba et al. We set a low velocity cutoff of 500 meters per second on crater-forming impacts. Venus's craters are nicely matched by the simulated craters produced by 700 million years of striking asteroids. Shown for comparison are the simulated craters produced by incident comets over the same period, where for comets we have assumed b=0.7 and a flux at 10(exp 14) g 30% that of asteroids. Systematic uncertainties in crater scaling and crater slumping may make the surface age uncertain by a factor of two.

  13. Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids.

    PubMed

    Martin, Christopher H

    2013-07-01

    Models predict that sympatric speciation depends on restrictive parameter ranges, such as sufficiently strong disruptive selection and assortative mating, but compelling examples in nature have rarely been used to test these predictions. I measured the strength of assortative mating within a species complex of Tilapia in Lake Ejagham, Cameroon, a celebrated example of incipient sympatric adaptive radiation. This species complex is in the earliest stages of speciation: morphological and ecological divergence are incomplete, species differ primarily in breeding coloration, and introgression is common. I captured 27 mated pairs in situ and measured the diet, color, size, and morphology of each individual. I found strong assortative mating by color, size, head depth, and dietary source of benthic or pelagic prey along two independent dimensions of assortment. Thus, Ejagham Tilapia showed strong assortative mating most conducive to sympatric speciation. Nonetheless, in contrast to a morphologically bimodal Sarotherodon cichlid species pair in the lake, Ejagham Tilapia show more limited progress toward speciation, likely due to insufficient strength of disruptive selection on morphology estimated in a previous study (γ = 0.16). This supports the predicted dependence of sympatric speciation on strong assortment and strong disruptive selection by examining a potentially stalled example in nature.

  14. A Relationship Between Microbial Activity in Soils and Phosphate Levels in Tributaries to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Larose, R.; Lee, S.; Lane, T.

    2015-12-01

    Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.

  15. Late Holocene Sediment Study From Santa María del Oro Crater Lake, Nayarit, México, Using Environmental Magnetism

    NASA Astrophysics Data System (ADS)

    Vazquez, G.; Ortega, B.; Rodriguez, A.

    2007-05-01

    The lake is located near the Pacific coast of Mexico, at the western end of the Trans Mexican Volcanic Belt. It is a deep lake (ca. 65 m) with steep sides and only a small bay (Agua Caliente) has shallower water (ca. 12 m). Four parallel cores between 4 and 9 m long were recovered in March 2002 from this shallower area. Sediments are characterized by alternated laminations (few millimeters to 2 cm) of sand, brown silt, green silt, reddish silt, ochre silt, and peat. The 14-C dated sequence spans the last ca. 2,600 yrs. Given this age, it is possible that each set of laminations represent annual sedimentation cycles. The record is a potential high- resolution archive of environmental and climatic variability for western Mexico for late Holocene. Magnetic measurements of susceptibility along the cores show a high variability in the concentration of magnetic mineralogy. Different magnetic and non-magnetic properties show two sets of facies in relation to its magnetic mineralogy; one group composed by sand, brown silt, green silt and peat has the magnetite and Ti-magnetite as the principal magnetic phase; the second group, composed by reddish and ochre silt, has a low Ti magnetite component and siderite, as the principal paramagnetic component. The effects of climatic variations such as the drought occurred in the archeological Classic period (100 - 900 dC), the Medieval Warm Period (950 - 1350 dC), the Little Ice Age (1400 - 1800 dC), and the droughts over the last 700 years, documented in sites along central Mexico, are recognized in the magnetic mineralogy of Santa Maria del Oro.

  16. Phylogenetic and ecological characteristics associated with thiaminase activity in Laurentian Great Lakes fishes

    USGS Publications Warehouse

    Riley, S.C.; Evans, A.N.

    2008-01-01

    Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.

  17. Activity levels of some radionuclides in Mariout and Brullus lakes, Egypt.

    PubMed

    Dar, Mahmoud A; El Saharty, Abeer A

    2013-11-01

    Mariout and Brullus are two of the highly fish-productive lakes in the northern coast of Egypt along the Mediterranean Sea. They are widely used to drain industrial wastes, sewage and agriculture drainage. The activities of (238)U, (232)Th, (40)K and (137)Cs were measured in the uppermost part of the surface sediments of the two lakes, using gamma-ray spectrophotometry. Brullus Lake recorded significantly higher (238)U and (232)Th and lower (40)K (17.22±2.49, 10.03±0.56 and 299.70±17.78 Bq kg(-1)) than Mariout Lake (12.65±1.53, 7.24±0.76 and 518.75±46.24 Bq kg(-1), respectively). Cesium-137 shows nearly equal activities in both lakes (3.33±0.46 and 3.68±0.70 Bq kg(-1), respectively). Activity distributions of (238)U and (232)Th in the sediments of Mariout Lake show a significant increase to the west, southwest and northeast, (40)K activity increased westwards, while the (137)Cs level was increased to the east and northeast, indicating agriculture drainage, industrial wastes and lands reclamation around the lake. At Brullus Lake, the activity trends of (238)U, (232)Th, (40)K and(137)Cs were increasing to the west and south towards the agriculture and industrial waste-water-feeding drains. PMID:23630385

  18. Meteor Crater, AZ

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.

    This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  19. Craters Without Ejecta

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.; Holsapple, Keith A.

    2012-01-01

    A significant portion of the Solar System's population of minor bodies may be quite porous. A unique aspect of crater formation in porous bodies is that large craters may form without the ejecta deposits that are associated with craters on less porous bodies. In this paper. laboratory experiments and scaling theories are used to identify the conditions under which ejecta deposits are suppressed. The results are consistent with the interpretation that large craters on asteroid Mathilde (porosity approx. 50%) and Saturn's moon Hyperion (porosity >40%) apparently formed without producing Significant ejecta deposits. while smaller bodies do have notable regoliths.

  20. Venus - Stein Triplet Crater

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Magellan synthetic aperture radar (SAR) imaged this unique 'triplet crater,' or 'crater field' during orbits 418-421 on 21 September 1990. These craters are 14 kilometers, 11 kilometers, and 9 kilometers in diameter, respectively, and are centered at latitude -30.1 degrees south and longitude 345.5 degrees east. The Magellan Science Team has proposed the name Stein for this crater field after the American author, Gertrude Stein. This name has not yet been approved by the International Astronomical Union. The crater field was formed on highly fractured plains. The impacts generated a considerable amount of low viscosity 'flows' thought to consist largely of shock-melted target material along with fragmented debris from the crater. The three craters appear to have relatively steep walls based on the distortion in the image of the near and far walls of the craters in the Magellan radar look direction (from the left). The flow deposits from the three craters extend dominantly to the northeast (upper right).

  1. Cratering reservoir potential by impact cratering

    SciTech Connect

    Schultz, P.H.

    1996-12-31

    Impact craters are gaining increasing acceptance and value as sites for potential hydrocarbon reservoirs. Nevertheless, such structures are often difficult to interpret and assess because their physical expressions from physical data have few exposed terrestrial analogs for comparison. Observational, theoretical, and experimental studies directed - toward understanding the nature of well-preserved craters on other planets, however, establish a two-dimensional template for understanding and interpreting the three-dimensional view, critical or assessing hydrocarbon potentials. But terminology often used in describing an impact structure needs to be placed in a process context. Impact craters are not produced instantaneously but evolve through time. The process occurs in three different stages of formation corresponding to the transfer of kinetic energy: compression, excavation, and modification. The compression stage roughly corresponds to the time required for transfer of energy from impactor to target and is reflected in the formation of a central penetration zone in smaller craters and the central uplift in larger craters often called the {open_quotes}central plug, diapir, brecciated core, or distributed zone{close_quotes}. The excavation stage occurs as the cratering flow field draws material downward near the center and outward from the cavity. Traps are created stratigraphically inside (shock-disrupted rock and depositional capping) or outside (inverted stratigraphy, fractured/fault target, porous ejecta) as well as structurally inside (uplift, wall terraces) or outside (concentric listric faults or seismically triggered failure). Larger complex craters create greater potential traps. Consequently, potential reserve can be created during each stage but the most important criteria remains the realtors motto: location, location, location!

  2. Cratering reservoir potential by impact cratering

    SciTech Connect

    Schultz, P.H. )

    1996-01-01

    Impact craters are gaining increasing acceptance and value as sites for potential hydrocarbon reservoirs. Nevertheless, such structures are often difficult to interpret and assess because their physical expressions from physical data have few exposed terrestrial analogs for comparison. Observational, theoretical, and experimental studies directed - toward understanding the nature of well-preserved craters on other planets, however, establish a two-dimensional template for understanding and interpreting the three-dimensional view, critical or assessing hydrocarbon potentials. But terminology often used in describing an impact structure needs to be placed in a process context. Impact craters are not produced instantaneously but evolve through time. The process occurs in three different stages of formation corresponding to the transfer of kinetic energy: compression, excavation, and modification. The compression stage roughly corresponds to the time required for transfer of energy from impactor to target and is reflected in the formation of a central penetration zone in smaller craters and the central uplift in larger craters often called the [open quotes]central plug, diapir, brecciated core, or distributed zone[close quotes]. The excavation stage occurs as the cratering flow field draws material downward near the center and outward from the cavity. Traps are created stratigraphically inside (shock-disrupted rock and depositional capping) or outside (inverted stratigraphy, fractured/fault target, porous ejecta) as well as structurally inside (uplift, wall terraces) or outside (concentric listric faults or seismically triggered failure). Larger complex craters create greater potential traps. Consequently, potential reserve can be created during each stage but the most important criteria remains the realtors motto: location, location, location

  3. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  4. Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.

    2015-03-01

    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.

  5. The Magma Transport System of the Mono Craters, California

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Putirka, K. D.

    2013-12-01

    The Mono Craters are a series of 28 volcanic domes, coulees, and craters, just 16 km north of Long Valley. The magmatic products of the Mono Craters include mostly small magmatic bodies, sills, and dikes set in a transtensional tectonic setting. New high-density sampling of the domes reveals a wider range of magma compositions than heretofore recognized, and thus reveals what is likely a more complex magmatic system, involving a greater number of batches of magma and a more complex magma storage/delivery system. Here, we present a model for the magma plumbing system based on space-composition patterns and preliminary estimates of crystallization temperatures and pressures based on olivine-, feldspar- and clinopyroxene-liquid equilibria. Whole rock analyses show three compositionally distinct batches of magma within the Mono Craters proper: a felsic (73-78.4% SiO2), intermediate (64.4-68% SiO2) and mafic (52.7-61% SiO2) group. The Mono Lake Islands (Paoha and Negit) fall into the intermediate group, but contain distinctly lower TiO2 and Fe2O3 at a given SiO2 compared to all other Mono Craters; on this basis, we surmise that the Paoha and Negit eruptions represent a distinct episode of magmatism that is not directly related to the magmatic activity that created the Mono Craters proper. The discontinuous nature of the three groups indicates that magma mixing, while evident to some degree within and between certain domes, did not encompass the entire range of compositions at any given time. The three groups, however, do form a rough linear trend, and some subsets of domes have compositions that fall on distinctly linear (if still discontinuous) trends that cannot be reproduced by fractional crystallization, but rather are indicative of magma mixing. Our high-density sampling also reveals interesting geographical patterns: for example, felsic magmas erupt throughout the entire Mono Craters chain, erupting at a wide range of temperatures, ranging from 650-995°C, but

  6. The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka

    NASA Astrophysics Data System (ADS)

    Self, A. E.; Klimaschewski, A.; Solovieva, N.; Jones, V. J.; Andrén, E.; Andreev, A. A.; Hammarlund, D.; Brooks, S. J.

    2015-11-01

    A sediment sequence was taken from a closed, high altitude lake (informal name Olive-backed Lake) in the central mountain range of Kamchatka, in the Russian Far East. The sequence was dated by radiocarbon and tephrochronology and used for multi-proxy analyses (chironomids, pollen, diatoms). Although the evolution of Beringian climate through the Holocene is primarily driven by global forcing mechanisms, regional controls, such as volcanic activity or vegetation dynamics, lead to a spatial heterogeneous response. This study aims to reconstruct past changes in the aquatic and terrestrial ecosystems and to separate the climate-driven response from a response to regional or localised environmental change. Radiocarbon dates from plant macrophytes gave a basal date of 7800 cal yr BP. Coring terminated in a tephra layer, so sedimentation at the lake started prior to this date, possibly in the early Holocene following local glacier retreat. Initially the catchment vegetation was dominated by Betula and Alnus woodland with a mosaic of open, wet, aquatic and semi-aquatic habitats. Between 7800 and 6000 cal yr BP the diatom-inferred lake water was pH 4.4-5.3 and chironomid and diatom assemblages in the lake were initially dominated by a small number of acidophilic/acid tolerant taxa. The frequency of Pinus pumila (Siberian dwarf pine) pollen increased from 5000 cal yr BP and threshold analysis indicates that P. pumila arrived in the catchment between 4200 and 3000 cal yr BP. Its range expansion was probably mediated by strengthening of the Aleutian Low pressure system and increased winter snowfall. The diatom-inferred pH reconstructions show that after an initial period of low pH, pH gradually increased from 5500 cal yr BP to pH 5.8 at 1500 cal yr BP. This trend of increasing pH through the Holocene is unusual in lake records, but the initially low pH may have resulted directly or indirectly from intense regional volcanic activity during the mid-Holocene. The chironomid

  7. Microbial extracellular enzyme activities in HUMEX Lake Skjervatjern

    SciTech Connect

    Muenster, U. )

    1992-01-01

    Two microbial extracellular enzyme activities (MEEA) were studied in HUMEX Lake Skjervatjern: acid phosphatase (APHA) and leucine aminopeptidase (LeuAMPA). Both enzyme activities varied in the vertical and horizontal scale in both lake sites. APHA varied in the acidfied Basin A between 945-1706 nmol L[sup [minus]1] h[sup [minus]1] and LeuAMPA between 3.7-25 nmol L[sup [minus]1] h[sup [minus]1]. Both MEEA reached maxima in 0.5 m depth. In the control site (Basin B), APHA was lower by a factor of two, and varied between 156-669 nmol L[sup [minus]1] h[sup [minus]1]. LeuAMPA reached similar values as in Basin A and varied between 7.8-34.8 nmol L[sup [minus]1] h[sup [minus]1]. Maxima of APHA were found in the upper layer (0-2 m), while LeuAMPA had only one distinct maxima at 2-2.5 m depth. The number of bacteria (AFDC) varied between 4.4-8.8 10[sup 6] cells mL[sup [minus]1] and was not significantly different in either side, but both had maxima in the thermocline. Highest specific LeuAMPA activities were found in the thermocline (3.2-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1]) in both sides and varied between 0.4-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1] in both water columns. The main contributor (60-70%) to LeuAMPA was found in the microplankton fraction, retained on Nuclepore filters with pore sizes between 2.0-0.2 [mu]m. APHA was retained less even on a filter with pore size smaller than 0.2 [mu]m. About 50-70% of APHA passed through 0.2 [mu]m-0.1 [mu]m Nuclepore filters and could be found in the dissolved organic matter (DOM) fraction. APHA and bacteria counts (AFDC) showed a distinct gradient from the littoral zone to the pelagial in the surface water samples (0.2 m depth). APHA and LeuAMPA are regarded as important regulators for nutrient availabilty to microplankton. 40 refs., 6 figs.

  8. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  9. 'Endurance Crater' Overview

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overview of 'Endurance Crater' traces the path of the Mars Exploration Rover Opportunity from sol 94 (April 29, 2004) to sol 205 (August 21, 2004). The route charted to enter the crater was a bit circuitous, but well worth the extra care engineers took to ensure the rover's safety. On sol 94, Opportunity sat on the edge of this impressive, football field-sized crater while rover team members assessed the scene. After traversing around the 'Karatepe' region and past 'Burns Cliff,' the rover engineering team assessed the possibility of entering the crater. Careful analysis of the angles Opportunity would face, including testing an Earth-bound model on simulated martian terrain, led the team to decide against entering the crater at that particular place. Opportunity then backed up before finally dipping into the crater on its 130th sol (June 5, 2004). The rover has since made its way down the crater's inner slope, grinding, trenching and examining fascinating rocks and soil targets along the way. The rover nearly made it to the intriguing dunes at the bottom of the crater, but when it got close, the terrain did not look safe enough to cross.

  10. Degradation of selected terrestrial and Martian impact craters

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Schultz, P. H.

    1993-06-01

    The history of degradation of 50,000-yr-old 1.2-km-diam Meteor Crater in Arizona is defined using field mapping, and the degradation states of the progressively more degraded 68,000-yr-old 1.8-km-diam Lonar Crater in Indiana and 0.5-3.0 Myr old 1.75-km-diam Talemzane Crater in Algeria are assessed using air photos. The results on these terrestrial craters are then compared with the gradational morphology associated with craters in southern Ismenius Lacus on Mars, in order to develop first-order constraints on gradational activity. Common degradation signatures associated with craters on both planets are described. These signatures are used to assemble a first-order degradational sequence for the terrestrial craters that is then compared with the Martian degradational signatures to infer past processes and climate.

  11. BASALT 1: Extravehicular Activity Science Operations Concepts under Communication Latency and Bandwidth Constraints at Craters of the Moon, Idaho

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Beaton, Kara; Miller, Matthew J.; Lim, Darlene S. S.; Abercromby, Andrew F. J.

    2017-01-01

    An over-arching goal of the multi-year Biologic Analog Science Associated with Lava Terrains (BASALT) project is to iteratively develop, implement, and evaluate concepts of operations (ConOps) and supporting capabilities intended to enable and enhance human exploration of Mars. Geological and biological scientific fieldwork is being conducted during four total deployments at two high-fidelity Mars analogs, all within simulated Mars mission conditions that are based on current architectural assumptions for Mars exploration missions. Specific capabilities being evaluated include the use of mobile science platforms, extravehicular informatics, communication and navigation packages, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals. This paper describes the planning, execution, and results of the first field deployment, referred to as BASALT 1, which consisted of a series of 12 simulated extravehicular activities (EVAs) on the lava terrains of Craters of the Moon, Idaho. Scientific objectives of the EVAs related to determination of how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically-altered basalt environments. The concept of operations (ConOps) and capabilities deployed and tested during BASALT 1 were based on extensive data from previous NASA trade studies and analog testing, and the primary research question was whether those ConOps and capabilities would work acceptably when performing real (non-simulated) biological and geological scientific exploration under four different communication scenarios. Specifically, communication latencies of 5 and 15 minutes one-way light time (OWLT) were tested; these delays fall within the range of 4 to 22 minute OWLT delays that would be experienced during a Mars mission. Science operations were also conducted under low bandwidth conditions (0.512 Mb/s uplink, 1.54 Mb/s downlink), representing a

  12. Centrifuge Impact Cratering Experiments

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  13. Exhuming South Polar Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 February 2004 The large, circular feature in this image is an old meteor impact crater. The crater is larger than the 3 kilometers-wide (1.9 miles-wide) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, thus only part of the crater is seen. The bright mesas full of pits and holes--in some areas resembling swiss cheese--are composed of frozen carbon dioxide. In this summertime view, the mesa slopes and pit walls are darkened as sunlight causes some of the ice to sublime away. At one time in the past, the crater shown here may have been completely covered with carbon dioxide ice, but, over time, it has been exhumed as the ice sublimes a little bit more each summer. The crater is located near 86.8oS, 111.6oW. Sunlight illuminates this scene from the upper left.

  14. Buried Craters of Utopia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003

    Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  15. A lake in Uzboi Vallis and implications for Late Noachian-Early Hesperian climate on Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Irwin, R. P.; Wilson, S. A.; Buczkowski, D.; Siebach, K.

    2011-03-01

    Uzboi Vallis (centered at ∼28°S, 323°E) is ∼400 km long and comprises the southernmost segment of the northward-draining Uzboi-Ladon-Morava (ULM) meso-scale outflow system that emerges from Argyre basin. Bond and Holden craters blocked the valley to the south and north, respectively, forming a Late Noachian-to-Hesperian paleolake basin that exceeded 4000 km3. Limited CRISM data suggest lake deposits in Uzboi and underlying basin floor incorporate relatively more Mg-clays and more Fe-clays, respectively. The short-lived lake overflowed and breached Holden crater’s rim at an elevation of -350 m and rapidly drained into the crater. Fan deltas in Holden extend 25 km from the breach and incorporate meter-sized blocks, and longitudinal grooves along the Uzboi basin floor are hundreds of meters long and average 60 m wide, suggesting high-discharge drainage of the lake. Precipitation-derived runoff rather than regional groundwater or overflow from Argyre dominated contributions to the Uzboi lake, although the failure of most tributaries to respond to a lowering of base level indicates their incision largely ended when the lake drained. The Uzboi lake may have coincided with alluvial and/or lacustrine activity in Holden, Eberswalde, and other craters in southern Margaritifer Terra, where fluvial/lacustrine activity may have required widespread, synoptic precipitation (rain or snow), perhaps associated with an ephemeral, global hydrologic system during the Late Noachian into the Hesperian on Mars.

  16. A history of the Lonar crater, India: An overview

    NASA Technical Reports Server (NTRS)

    Nayak, V. K.

    1992-01-01

    The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.

  17. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  18. The Merna, Nebraska Meteorite Crater

    NASA Astrophysics Data System (ADS)

    Povenmire, H.

    1995-09-01

    significant raised rim. The nature of contour plowing would reduce any present rim by pulling the raised portion down into the crater. The crater has an average diameter of 5400 feet at the 2950 ft. elevation contour. The crater is elliptical with an eccentricity of approximately 0.71. It is oriented with the major axis at an azimuth of 45 degrees. The minimum age for this crater is approximately 3000 years as determined by one Carbon 14 sample [2]. This was probably a witnessed event as Pawnee Indian legends are rich in phenomena which may relate to this event. In the area surrounding the crater for several km are at least 12 secondary craters. Some of these have a diameter of 550 m. These are distinct from the eolian features by their circular shape and distribution from the primary crater. A 6.8 kg (H4) chondrite was found in the proximity [3]. It has a specific gravity of 3.5. Several magnetic spherules of probable extraterrestrial origin and large quantities of glass flakes have been found in the crater area. Approximately 60 quartz grains were examined by polarizing microscope and about half showed some shocking. There is an active search program for more meteorites in the area. A bore hole to search for breccia and shatter cones is planned. The "IMPACI" software was developed to simulate and model this projectile using the "average" entry velocity of Near Earth Asteroids of 21.8 km per second. The best solutions suggest an approximately 195 m diameter NEA entering the atmosphere and creating an air blast at approximately 8 km altitude. The kinetic energy would have been equivalent to 180 megatons of TNT of which approximately 50 percent would have been absorbed by the atmosphere [4] [5]. References: [1] Dort W. et al. (1992) GSA, 24, 196. [2] Dort W. (1993) personal communication. [3] Graham A. et al. (1985) Catalogue of Meteorites, 4th edition, p. 82, Univ. of Arizona. [4] Chyba C. et al. (1993) Nature, 361, 40-44. [5] Hills J. and Goda M. (1993) Astrophys. J., 105

  19. Venus - Mead Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image mosaic shows the largest (275 kilometers in diameter [170 miles]) impact crater known to exist on Venus at this point in the Magellan mission. The crater is located north of Aphrodite Terra and east of Eistla Regio at latitude 12.5 degrees north and longitude 57.4 degrees east, and was imaged during Magellan orbit 804 on November 12, 1990. The Magellan science team has proposed to name this crater Mead, after Margaret Mead, the American Anthropologist (1901- 1978). All Magellan-based names of features on Venus are, of course, only proposed until final approval is given by the International Astronomical Union-Commission on Planetary Nomenclature. Mead is classified as a multi-ring crater with its innermost, concentric scarp being interpreted as the rim of the original crater cavity. No inner peak-ring of mountain massifs is observed on Mead. The presence of hummocky, radar-bright crater ejecta crossing the radar-dark floor terrace and adjacent outer rim scarp suggests that the floor terrace is probably a giant rotated block that is concentric to, but lies outside of, the original crater cavity. The flat, somewhat brighter inner floor of Mead is interpreted to result from considerable infilling of the original crater cavity by impact melt and/or by volcanic lavas. To the southeast of the crater rim, emplacement of hummocky ejecta appears to have been impeded by the topography of preexisting ridges, thus suggesting a very low ground-hugging mode of deposition for this material. Radar illumination on this and all other Magellan image products is from the left to the right in the scene.

  20. Prolonged Ponding Episode in C-Newton Crater in Recent Geological Times on Mars

    NASA Technical Reports Server (NTRS)

    Grin, E. A.; Cabrol, N. A.; Wynn-Williams, D. D.

    2001-01-01

    We present the morphological evidence that supports the existence of a lake in a recent past in C-Newton crater. We assess the astrobiological potential of this environment. Additional information is contained in the original extended abstract.

  1. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica.

    PubMed

    Vander Schaaf, Nicole A; Cunningham, Anna M G; Cluff, Brandon P; Kraemer, CodyJo K; Reeves, Chelsea L; Riester, Carli J; Slater, Lauren K; Madigan, Michael T; Sattley, W Matthew

    2015-01-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m) are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes. PMID:27682095

  2. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    PubMed Central

    Vander Schaaf, Nicole A.; Cunningham, Anna M. G.; Cluff, Brandon P.; Kraemer, CodyJo K.; Reeves, Chelsea L.; Riester, Carli J.; Slater, Lauren K.; Madigan, Michael T.; Sattley, W. Matthew

    2015-01-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m) are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes. PMID:27682095

  3. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    PubMed Central

    Vander Schaaf, Nicole A.; Cunningham, Anna M. G.; Cluff, Brandon P.; Kraemer, CodyJo K.; Reeves, Chelsea L.; Riester, Carli J.; Slater, Lauren K.; Madigan, Michael T.; Sattley, W. Matthew

    2015-01-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m) are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  4. Venus - Crater Aurelia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Magellan image shows a complex crater, 31.9 kilometers (20 miles) in diameter with a circular rim, terraced walls, and central peaks, located at 20.3 degrees north latitude and 331.8 degrees east longitude. Several unusual features are evidenced in this image: large dark surface up range from the crater; lobate flows emanating from crater ejecta, and very radar-bright ejecta and floor. Aurelia has been proposed to the International Astronomical Union, Subcommittee of Planetary Nomenclature as a candidate name. Aurelia is the mother of Julius Caesar.

  5. Crater in Utopia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 March 2004 Craters of the martian northern plains tend to be somewhat shallow because material has filled them in. Their ejecta blankets, too, are often covered by younger materials. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example--a crater in Utopia Planitia near 43.7oN, 227.3oW. Erosion has roughened some of the surfaces of the material that filled the crater and covered its ejecta deposit. The picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  6. One View, Two Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cylindrical projection was constructed from a sequence of four images taken by the navigation camera onboard the Mars Exploration Rover Opportunity.

    The images were acquired on sol 85 of Opportunity's mission to Meridiani Planum. The camera acquired the images at approximately 14:28 local solar time, or around 6:30 a.m. Pacific Daylight Time, on April 20, 2004.

    The view is from the rover's new location, a region dubbed 'Fram Crater' located some 450 meters (.3 miles) from 'Eagle Crater' and roughly 250 meters (820 feet) from 'Endurance Crater' (upper right).

  7. Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Loizeau, D.; Mangold, N.; Le Mouélic, S.; Carter, J.; Poulet, F.; Dromart, G.; Lucas, A.; Bibring, J.-P.; Gendrin, A.; Gondet, B.; Langevin, Y.; Masson, Ph.; Murchie, S.; Mustard, J. F.; Neukum, G.

    2011-01-01

    The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km 3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km 3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently

  8. Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Lisov, D.; Behar, A.; Boynton, W. V.; Deflores, L.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Shvetsov, V. N.; Stack, K.; Starr, R.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2014-06-01

    Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75-1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2-3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8-1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.

  9. USGS Activities at Lake Roosevelt and the Upper Columbia River

    USGS Publications Warehouse

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  10. The complex filling of alae crater, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Swanson, D.A.; Duffield, W.A.; Jackson, D.B.; Peterson, D.W.

    1972-01-01

    Since February 1969 Alae Crater, a 165-m-deep pit crater on the east rift of Kilauea Volcano, has been completely filled with about 18 million m3 of lava. The filling was episodic and complex. It involved 13 major periods of addition of lava to the crater, including spectacular lava falls as high as 100 m, and three major periods of draining of lava from the crater. Alae was nearly filled by August 3, 1969, largely drained during a violent ground-cracking event on August 4, 1969, and then filled to the low point on its rim on October 10, 1969. From August 1970 to May 1971, the crater acted as a reservoir for lava that entered through subsurface tubes leading from the vent fissure 150 m away. Another tube system drained the crater and carried lava as far as the sea, 11 km to the south. Much of the lava entered Alae by invading the lava lake beneath its crust and buoying the crust upward. This process, together with the overall complexity of the filling, results in a highly complicated lava lake that would doubtless be misinterpreted if found in the fossil record. ?? 1972 Stabilimento Tipografico Francesco Giannini & Figli.

  11. Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes.

    PubMed

    Hugoni, Mylène; Domaizon, Isabelle; Taib, Najwa; Biderre-Petit, Corinne; Agogué, Hélène; Galand, Pierre E; Debroas, Didier; Mary, Isabelle

    2015-04-01

    Deep lakes are of specific interest in the study of archaeal assemblages as chemical stratification in the water column allows niche differentiation and distinct community structure. Active archaeal community and potential nitrifiers were investigated monthly over 1 year by pyrosequencing 16S rRNA transcripts and genes, and by quantification of archaeal amoA genes in two deep lakes. Our results showed that the active archaeal community patterns of spatial and temporal distribution were different between these lakes. The meromictic lake characterized by a stable redox gradient but variability in nutrient concentrations exhibited large temporal rearrangements of the dominant euryarchaeal phylotypes, suggesting a variety of ecological niches and dynamic archaeal communities in the hypolimnion of this lake. Conversely, Thaumarchaeota Marine Group I (MGI) largely dominated in the second lake where deeper water layers exhibited only short periods of complete anoxia and constant low ammonia concentrations. Investigations conducted on archaeal amoA transcripts abundance suggested that not all lacustrine Thaumarchaeota conduct the process of nitrification. A high number of 16S rRNA transcripts associated to crenarchaeal group C3 or the Miscellaneous Euryarchaeotic Group indicates the potential for these uncharacterized groups to contribute to nutrient cycling in lakes. PMID:25472601

  12. Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes.

    PubMed

    Hugoni, Mylène; Domaizon, Isabelle; Taib, Najwa; Biderre-Petit, Corinne; Agogué, Hélène; Galand, Pierre E; Debroas, Didier; Mary, Isabelle

    2015-04-01

    Deep lakes are of specific interest in the study of archaeal assemblages as chemical stratification in the water column allows niche differentiation and distinct community structure. Active archaeal community and potential nitrifiers were investigated monthly over 1 year by pyrosequencing 16S rRNA transcripts and genes, and by quantification of archaeal amoA genes in two deep lakes. Our results showed that the active archaeal community patterns of spatial and temporal distribution were different between these lakes. The meromictic lake characterized by a stable redox gradient but variability in nutrient concentrations exhibited large temporal rearrangements of the dominant euryarchaeal phylotypes, suggesting a variety of ecological niches and dynamic archaeal communities in the hypolimnion of this lake. Conversely, Thaumarchaeota Marine Group I (MGI) largely dominated in the second lake where deeper water layers exhibited only short periods of complete anoxia and constant low ammonia concentrations. Investigations conducted on archaeal amoA transcripts abundance suggested that not all lacustrine Thaumarchaeota conduct the process of nitrification. A high number of 16S rRNA transcripts associated to crenarchaeal group C3 or the Miscellaneous Euryarchaeotic Group indicates the potential for these uncharacterized groups to contribute to nutrient cycling in lakes.

  13. Fresh, Rayed Impact Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-416, 9 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fresh, young meteor impact crater on the martian surface. It is less than 400 meters (less than 400 yards) across. While there is no way to know the exact age of this or any other martian surface feature, the rays are very well preserved. On a planet where wind can modify surface features at the present time, a crater with rayed ejecta patterns must be very young indeed. Despite its apparent youth, the crater could still be many hundreds of thousands, if not several million, of years old. This impact scar is located within the much larger Crommelin Crater, near 5.6oN, 10.0oW. Sunlight illuminates the scene from the left.

  14. Shackleton Crater Illumination

    NASA Video Gallery

    Simulated illumination conditions near the lunar South Pole. The 30km x 30km region highlights the Shackleton crater. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, ...

  15. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  16. Har Crater on Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows a heavily cratered region near Callisto's equator. It was taken by the Galileo spacecraft Solid State Imaging (CCD) system on its ninth orbit around Jupiter. North is to the top of the image. The 50 kilometer (30 mile) double ring crater in the center of the image is named Har. Har displays an unusual rounded mound on its floor. The origin of the mound is unclear but probably involves uplift of ice-rich materials from below, either as a 'rebound' immediately following the impact that formed the crater or as a later process. Har is older than the prominent 20 kilometer (12 mile) crater superposed on its western rim. The large crater partially visible in the northeast corner of the image is called Tindr. Chains of secondary craters (craters formed from the impact of materials thrown out of the main crater during an impact) originating from Tindr crosscut the eastern rim of Har.

    The image, centered at 3.3 degrees south latitude and 357.9 degrees west longitude, covers an area of 120 kilometers by 115 kilometers (75 miles by 70 miles). The sun illuminates the scene from the west (left). The smallest distinguishable features in the image are about 294 meters (973 feet) across. This image was obtained on June 25, 1997, when Galileo was 14,080 kilometers (8,590 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  17. Named Venusian craters

    NASA Astrophysics Data System (ADS)

    Russell, Joel F.; Schaber, Gerald G.

    1993-03-01

    Schaber et al. compiled a database of 841 craters on Venus, based on Magellan coverage of 89 percent of the planet's surface. That database, derived from coverage of approximately 98 percent of Venus' surface, has been expanded to 912 craters, ranging in diameter from 1.5 to 280 km. About 150 of the larger craters were previously identified by Pioneer Venus and Soviet Venera projects and subsequently formally named by the International Astronomical Union (IAU). Altogether, the crater names submitted to the IAU for approval to date number about 550, a little more than half of the number of craters identified on Magellan images. The IAU will consider more names as they are submitted for approval. Anyone--planetary scientist or layman--may submit names; however, candidate names must conform to IAU rules. The person to be honored must be deceased for at least three years, must not be a religious figure or a military or political figure of the 19th or 20th century, and, for Venus, must be a woman. All formally and provisionally approved names for Venusian impact craters, along with their latitude, longitude, size, and origin of their name, will be presented at LPSC and will be available as handouts.

  18. Ancient and Recent Lakes on Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.

    The search for life on Mars is guided by our knowledge of the environments occupied by terrestrial biota. Geology and atmospheric models converge to show that Mars habitability potential was higher during the first 500 Ma of its history. Rivers and lakes, possibly an ocean, started to decline around 3.5 Ga. There is evidence that they may have occurred again in later geological periods but episodically and as lower magnitude events, their formation possibly driven by magmatic pulses and/or obliquity changes. This chapter focuses on Martian lakes and their environmental conditions through time. Paleolakes on Mars were identified first at Viking resolution in basins, impact craters, and volcanic regions. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) provided additional geological evidence to support the existence of past lakes and showed that the magnitude of the Martian lacustrine activity was much greater than unraveled by Viking. These new data allow the precise definition of watersheds, paleochannel courses and basins and show that lakes abounded on early Mars. Later in the planet's history, environmental conditions likely included: episodic water supply; increasing evaporation due to the thinning of the atmosphere leading to chemical, pH, and salinity changes in the lakes; high-UV radiation; cool temperatures with seasonal, then perennial icecover; and short to long-term hydrothermal activity for impact and volcanic crater lakes. Evidence for recent water activity through gullies and glaciers opens the possibility for modern short-term ponds as well. Understanding how these conditions could have affected putative life is of paramount importance to assess adaptation and survival potential on a changing Mars.

  19. Depth-related gradients of viral activity in Lake Pavin.

    PubMed

    Colombet, J; Sime-Ngando, T; Cauchie, H M; Fonty, G; Hoffmann, L; Demeure, G

    2006-06-01

    High-resolution vertical sampling and determination of viral and prokaryotic parameters in a deep volcanic lake shows that in the absence of thermal stratification but within light, oxygen, and chlorophyll gradients, host availability empirically is prevalent over the physical and chemical environments and favors lytic over lysogenic "viral life cycles."

  20. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  1. Reconstruction of the geology and structure of Lake Rotomahana and its hydrothermal systems from high-resolution multibeam mapping and seismic surveys: Effects of the 1886 Tarawera Rift eruption

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Walker, S. L.; LeBlanc, C.; Davy, B. W.; Fornari, D. J.; Tontini, F. Caratori; Scott, B. J.; Seebeck, H.; Stewart, T. J.; Mazot, A.; Nicol, A.; Tivey, M. A.

    2016-03-01

    Present-day Lake Rotomahana is one of the two focal points of the most destructive eruption in New Zealand's historical record, i.e., that of Mt. Tarawera on 10 June 1886, with devastating loss of life and presumed destruction of the iconic Pink and White Terraces that adorned the margins of the lake. Basaltic dikes are considered to have ascended near surface in the area, intruding into hydrothermally altered and water-saturated ground beneath the existing lake. The consequential hydrothermal and phreatomagmatic eruptions ejected 0.5325 km3 of material from the lakefloor and below, plastering the nearby landscape for several kilometers with mud and other debris. The eruption buried the natural outlet of the lake, with the bottom of the craters becoming filled by water within months and completely concealed from view within years; today Lake Rotomahana has depths up to 118 m. High-resolution (0.5 m) bathymetric mapping, when combined with a 2-D seismic reflection survey, enables us to 'see' details of the maar craters on the lakefloor, including those parts subsequently buried by sediment. The large Rotomahana Crater described by workers immediately after the eruption measures ~ 2.5 km in diameter near its southwestern end, and excavated ground to 155 m below present-day lake level. The vent system, as revealed by the present study, forms an array of right-stepping (dextral) craters, with the main crater being host to two sub-craters Rotomahana West Crater and Rotomahana East Crater today buried beneath the lakefloor, and which are in-filled by 36 and 37 m of sediment, respectively. Subordinate craters along the same 057° Tarawera Rift trace include Hochstetter Crater (11 m of infill), Waingongongongo Crater (14 m) and Rotomakariri Crater (26 m). These craters host a total 0.0268 km3 of sediment. Other features highlighted by the bathymetric data include; craters not filled by sediment, sediment fan deltas, volcanic ridges and dikes, submerged wave-cut terraces

  2. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  3. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  4. Evidences of correlation between the DAN active mode measurements variability and local surface micro-morphology diversity along the rover Curiosity traverse in the Gale crater

    NASA Astrophysics Data System (ADS)

    Kuzmin, Ruslan

    The Dynamic Albedo of Neutrons (DAN) instrument has been operational second year since almost immediately after the landing of the Mars Science Laboratory (MSL) on August 6, 2012 at the bottom of Gale Crater. In the report we present the result of the DAN measurement analysis, accumulated during 297-398 sols along the MSL rover Curiosity traverse from Yellowknife Bay (YKB) up to Darwin outcrop area (DOA). Along the part of the rover traverse the DAN instrument conducted 140 local active mode measurements of the thermal and epithermal neutrons counts in the top ~60 cm of the Martian subsurface with horizontal sensing “footprint” of about 3 m. As it well seen based on Navcam and Mastcam images, the modern dominant micro-morphology of the rover traverse area is characteristic of surface shaped by strong aeolian deflation processes. It was found that the thermal and epithermal neutron counts measured along the rover traverse show distinct variability from one rover location to another. At that, a water equivalent of H (WEH) distribution in 60-cm subsurface layer along the rover traverse are fit by a two-layers model, where the top layer (with varied thickness) has less WEH (“dry”) than the bottom layer (“wet”). It is notably that two-layer model of the water distribution in the subsurface layer corresponds well to both outcrops spots and deflated surfaces with variable top layer thickness, that is composed of finely granulated and coarse, rocky soil. This suggests that the boundary between the top and bottom layer may not represent a lithological difference but rather it is related with a level of surface regolith desiccation at the modern climatic conditions in the Gale crater area. In places where the surface regolith has been exposed for a longer period of time, the contrast in WEH between the top and bottom layers is essentially lower than in the cases of more recent surface regolith exposure by an aeolian erosion.

  5. Patterns in benthic biodiversity link lake trophic status to structure and potential function of three large, deep lakes.

    PubMed

    Hayford, Barbara L; Caires, Andrea M; Chandra, Sudeep; Girdner, Scott F

    2015-01-01

    Relative to their scarcity, large, deep lakes support a large proportion of the world's freshwater species. This biodiversity is threatened by human development and is in need of conservation. Direct comparison of biodiversity is the basis of biological monitoring for conservation but is difficult to conduct between large, insular ecosystems. The objective of our study was to conduct such a comparison of benthic biodiversity between three of the world's largest lakes: Lake Tahoe, USA; Lake Hövsgöl, Mongolia; and Crater Lake, USA. We examined biodiversity of common benthic organism, the non-biting midges (Chironomidae) and determined lake trophic status using chironomid-based lake typology, tested whether community structure was similar between the three lakes despite geographic distance; and tested whether chironomid diversity would show significant variation within and between lakes. Typology analysis indicated that Lake Hövsgöl was ultra-oligotrophic, Crater Lake was oligotrophic, and Lake Tahoe was borderline oligotrophic/mesotrophic. These results were similar to traditional pelagic measures of lake trophic status for Lake Hövsgöl and Crater Lake but differed for Lake Tahoe, which has been designated as ultra-oligotrophic by traditional pelagic measures such as transparency found in the literature. Analysis of similarity showed that Lake Tahoe and Lake Hövsgöl chironomid communities were more similar to each other than either was to Crater Lake communities. Diversity varied between the three lakes and spatially within each lake. This research shows that chironomid communities from these large lakes were sensitive to trophic conditions. Chironomid communities were similar between the deep environments of Lake Hövsgöl and Lake Tahoe, indicating that chironomid communities from these lakes may be useful in comparing trophic state changes in large lakes. Spatial variation in Lake Tahoe's diversity is indicative of differential response of chironomid

  6. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  7. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  8. Barringer Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Barringer Crater, also known as 'Meteor Crater,' is a 1,300-meter (0.8 mile) diameter, 174-meter (570-feet) deep hole in the flat-lying desert sandstones 30 kilometers (18.6 miles) west of Winslow, Arizona. Since the 1890s geologic studies here played a leading role in developing an understanding of impact processes on the Earth, the moon and elsewhere in the solar system.

    This view was acquired by the Landsat 4 satellite on December 14, 1982. It shows the crater much as a lunar crater might appear through a telescope. Morning sun illumination is from the southeast (lower right). The prominent gully meandering across the scene is known as Canyon Diablo. It drains northward toward the Little Colorado River and eventually to the Grand Canyon. The Interstate 40 highway crosses and nearly parallels the northern edge of the scene.

    The ejecta blanket around the crater appears somewhat lighter than the surrounding terrain, perhaps in part due to its altered mineralogic content. However, foot traffic at this interesting site may have scarred and lightened the terrain too. Also, the roughened surface here catches the sunlight on the southerly slopes and protects a highly reflective patchy snow cover in shaded northerly slopes, further lightening the terrain as viewed from space on this date.

  9. Uranium activity ratio in water and fish from pit lakes in Kurday, Kazakhstan and Taboshar, Tajikistan.

    PubMed

    Strømman, G; Rosseland, B O; Skipperud, L; Burkitbaev, L M; Uralbekov, B; Heier, L S; Salbu, B

    2013-09-01

    Kurday in Kazhakstan and Taboshar in Tajikistan were U mining sites operated during the 1950s and 1960s as part of the USSR nuclear weapon program. Today, they represent sources of potential U contamination of the environment. Within both mining sites, open pits from which U ore was extracted have been filled with water due to ground water inflow and precipitation. These artificial pit lakes contain fish consumed occasionally by the local people, and wild and domestic animals are using the water for drinking purposes. To assess the potential impact from U in these pit lakes, field work was performed in 2006 in Kurday and 2006 and 2008 in Taboshar. Results show that the U concentration in the lake waters were relatively high, about 1 mg/L in Kurday Pit Lake and about 3 mg/L in Taboshar Pit Lake. The influence of U-bearing materials on the lakes and downstream waters were investigated by measuring the U concentration and the (234)U/(238)U activity ratios. In both Kurday and Taboshar, the ratios increased distinctively from about 1 at the pit lakes to >1.5 far downstream the lakes. The concentrations of (238)U in gill, liver, muscle and bones in fish from the pit lakes were much higher than in the reference fish. Peak concentration of U was seen in bones (13 mg/kg w.w.), kidney (9.1 mg/kg w.w.) and gills (8.9 mg/kg w.w.) from Cyprinus auratus caught in the Taboshar Pit Lake. Bioconcentration factors (BCF) calculated for organs from fish caught in the Taboshar Pit Lake, with the same tendency seen in the Kurday Pit Lake, showed that U accumulates most in bone (BCF = 4.8 L/kg w.w.), gills (BCF = 3.6 L/kg w.w.), kidney (BCF = 3.6 L/kg w.w.), and liver (BCF = 2.5 L/kg w.w.), while least was accumulated in the muscle (BCF = 0.12 L/kg w.w.).

  10. Walker Lake, Nevada: sedimentation in an active, strike-slip related basin

    SciTech Connect

    Link, M.H.; Roberts, M.T.

    1984-04-01

    Walker Lake, Nevada, is in an active fault-controlled basin related to the right-lateral, northwest-trending Walker Lane Shear Zone on the western side of the Basin and Range province. The lake occurs in a half graben bounded on its west side by a high-angle normal fault zone along the Wassuk Range front. This fault zone may merge to the north into the Walker Lane fault system, which forms the northeast boundary of the basin. To the south of Walker Lake, the Wassuk front fault merges with an east-northeast trending left-lateral fault. The Walker Lake basin is interpreted to be a pull-apart basin formed within the triangular zone bounded by the Wassuk front, the Walker Lane, and left-lateral faults. The Walker River drainage basin occupies about 10,000 km/sup 2/ (3800 mi/sup 2/) in western Nevada and parts of California and is essentially a closed hydrologic system that drains from the crest of the Sierra Nevada in California and terminates in Walker Lake. Walker Lake trends north-northwest and is 27.4 km (17 mi) long and 8 km (5 mi) wide with water depths exceeding 30 m (100 ft). Lake Lahontan (Wisconsinian) shorelines ring Walker Lake and suggest water depths of 150 m (500 ft) above the present lake level. The lake is situated in an asymmetric basin with steep alluvial fans flanking the western shoreline (Wassuk Range) and gentle, areally more extensive fans flanking the eastern shoreline (Gillis Range). The Walker River delta enters the lake from the north and is a major sediment point source for the basin. Older dissected shoreline, alluvial fan, Gilbert delta, and beach ridge deposits were built largely of coarse-grained, locally derived materials. Stromatolites, oncolites, and tufas formed along the shorelines, whereas mud and organic sediments accumulated in the lake on the west side of the basin. Extensive submerged sand flats and local sand dunes occur on the east side of the basin.

  11. Exploration and discovery in Yellowstone Lake: Results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lovalvo, D.A.; Johnson, S.Y.; Stephenson, W.J.; Pierce, K.L.; Harlan, S.S.; Finn, C.A.; Lee, G.; Webring, M.; Schulze, B.; Duhn, J.; Sweeney, R.; Balistrieri, L.

    2003-01-01

    Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (???1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem. Published by Elsevier Science B.V.

  12. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    PubMed Central

    He, Ruo; Wooller, Matthew J; Pohlman, John W; Quensen, John; Tiedje, James M; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes. PMID:22592821

  13. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  14. Hydroclimatic and geothermal controls on the salinity of Mbaka Lakes (SW Tanzania): Limnological and paleolimnological implications

    NASA Astrophysics Data System (ADS)

    Delalande, Manuëlla; Bergonzini, Laurent; Branchu, Philippe; Filly, Annick; Williamson, David

    2008-09-01

    SummaryThe hydroclimatic and geothermal controls on the salinity of small tropical crater lakes Masoko, Katubwi, Kyambangunguru, Ilamba and Kingiri, aligned with the Mbaka fault line, north of Lake Malawi, are investigated by water stable isotopes which are used to trace evaporative processes as to establish lake water balances, and by chloride concentrations allowing to identify the main salinity sources. This region shows positive excess in the exchanges between atmosphere and lake surfaces ( P - E > 0). With the exception of Lake Ilamba, the lakes are closed surface basins and their levels are relatively stable. As catchment inflows cannot be neglected, groundwater outflows have to compensate for this excess, the isotopic budgets show that these lakes constitute a series of windows on the local shallow aquifer. In addition, the estimated losses by evaporation cannot solely account for the lake salinity observed, as the most saline lake differs from not the most evaporated. Lake salinity is then investigated from chloride concentrations and seems to be controlled by inflows, which results from the mixing between (i) fresh and (ii) hydrothermal ground waters. The contrasts in lake salinity (almost one order of magnitude) are first related to the hydrothermal contribution, which increases with the proximity of the Mbaka fault. Second, due to positive exchange with the atmosphere, the lake salinity appears systematically diluted in regard to the respective inflows. This dilution effect increases as the fraction of total inputs lost by evaporation or the lake water residence time increases. This current hydrological study shows that local wetter conditions are not inconsistent with higher lake salinity and allows to conciliate the questioned and apparent contradictory Lake Masoko wetter and salty paleoenvironmental and paleoclimatic records for the last glacial maximum and Younger Dryas time intervals. Further, in a general manner, this work addresses the case of

  15. Double Ring Craters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A faint double ring crater is seen at upper right in this picture of Mercury (FDS 166601) taken one hour and 40 minutes before Mariner 10's second rendezvous with the planet September 21. Located 35 degrees S. Lat. The outer ring is 170 kilometers (10 miles) across. Double ring craters are common features on Mercury. This particular feature and the bright rayed crater to its left were seen from a different viewing angle in pictures taken by Mariner 10 during its first Mercury flyby last March 29.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  16. Small Impact Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers.

    Location near: 3.7oN, 348.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  17. Stripped Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 February 2004 This full-resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows details on the floor of an ancient meteor crater in the northeastern part of Noachis Terra. After the crater formed, layers of material--perhaps sediment--were deposited in the crater. These materials became somewhat solidified, but later were eroded to form the patterns shown here. Many windblown ripples in the scene indicate the presence of coarse-grained sediment that was not completely stripped away by wind. The picture is located near 22.1oS, 307.0oW. Sunlight illuminates this scene from the left/upper left; the image covers an area 3 km (1.9 mi) wide.

  18. Polygons on Crater Floor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  19. Craters! A Multi-Science Approach to Cratering and Impacts.

    ERIC Educational Resources Information Center

    Hartmann, William K.; Cain, Joe

    This book provides a complete Scope Sequence and Coordination teaching module. First, craters are introduced as a generally observable phenomena. Then, by making craters and by investigating the results, students gain close-up, hands-on experience with impact events and their products. Real crater examples from the Moon and elsewhere are included…

  20. Khensu Crater on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The dark-floored crater, Khensu, is the target of this image of Ganymede. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. Khensu is located at 2 degrees latitude and 153 degrees longitude in a region of bright terrain known as Uruk Sulcus, and is about 13 kilometers (8 miles) in diameter. Like some other craters on Ganymede, it possesses an unusually dark floor and a bright ejecta blanket. The dark component may be residual material from the impactor that formed the crater. Another possibility is that the impactor may have punched through the bright surface to reveal a dark layer beneath.

    Another large crater named El is partly visible in the top-right corner of the image. This crater is 54 kilometers (34 miles) in diameter and has a small 'pit' in its center. Craters with such a 'central pit' are common across Ganymede and are especially intriguing since they may reveal secrets about the structure of the satellite's shallow subsurface.

    North is to the top-left of the picture and the sun illuminates the surface from nearly overhead. The image covers an area about 100 kilometers (62 miles) by 86 kilometers (54 miles) across at a resolution of 111 meters (370 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  1. Surface age of venus: use of the terrestrial cratering record

    SciTech Connect

    Schaber, G.G.; Shoemaker, E.M.; Kozak, R.C.

    1987-10-01

    The average crater age of Venus' northern hemisphere may be less than 250 m.y. assuming equivalence between the recent terrestrial cratering rate and that on Venus for craters greater than or equal to 20 km in diameter. For craters larger than this threshold size, below which crater production is significantly affected by the Venusian atmosphere, there are fairly strong observational grounds for concluding that such an equivalence in cratering rates on Venus and Earth may exist. However, given the uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, we conclude that the age of the observed surface in the northern hemisphere of Venus could be as great as the 450-m.y. mean age of the Earth's crust. The observed surface of Venus might be even older, but no evidence from the crater observations supports an age as great as 1 b.y. If the age of the observed Venusian surface were 1 b.y., it probably should bear the impact scars of a half dozen or more large comet nuclei that penetrated the atmosphere and formed craters well over 100 km in diameter. Venera 15/16 mapped only about 25% of Venus; the remaining 75% may tell us a completely different story.

  2. Crater Floor Yardangs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of semi-parallel ridges--yardangs--etched by wind into layered sedimentary rock on the floor of an unnamed crater in Terra Cimmeria. Many craters on Mars have been the sites of sedimentation. Over time, these sediments have become lithified. This picture is located near 31.3oS, 214.6oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the left/upper left.

  3. Concentric Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    8 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the interior of a typical crater in northern Acidalia Planitia. The floor is covered by material that forms an almost concentric pattern. In this case, the semi-concentric rings might be an expression of eroded layered material, although this interpretation is uncertain. The crater is located near 44.0oN, 27.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  4. Secrets of the Wabar craters

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Shoemaker, Eugene M.

    1997-01-01

    Focuses on the existence of craters in the Empty Quarter of Saudi Arabia created by the impact of meteors in early times. Mars Pathfinder and Mars Global Surveyor's encounter with impact craters; Elimination of craters in the Earth's surface by the action of natural elements; Impact sites' demand for careful scientific inspections; Location of the impact sites.

  5. Tritium concentrations in the active Pu'u O'o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth's interior

    USGS Publications Warehouse

    Quick, J.E.; Hinkley, T.K.; Reimer, G.M.; Hedge, C.E.

    1991-01-01

    The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior. ?? 1991.

  6. Selenographic distribution of apparent crater depth

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    If apparent crater depth is a function of crater diameter, then the frequencies of crater depth and diameter should be similar and the distribution of apparent depths of craters on the lunar surface should be random. Apparent depths of complex craters, which range from 0.2 to 4.3 km on the moon, exhibit little correlation with crater diameters. Crater frequency decreases at increasing diameters, but apparent crater depth displays a Gaussian distribution. The average crater depth for all young craters is 1.8 km. The mean depth of craters on the maria is 1.3 km, and the mean depth of craters on the highlands is 2.1 km. A contour map of apparent crater depths exhibits sufficient organization to suggest that the apparent crater depth is correlated to major lunar provinces. In general, regions of shallow craters are associated with basin interiors. Greater apparent depths are associated with highland terrains.

  7. The first five years of Kīlauea’s summit eruption in Halema‘uma‘u Crater, 2008–2013

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Sutton, A.J.; Elias, Tamar; Swanson, Donald A.

    2013-01-01

    The eruption in Halema‘uma‘u Crater that began in March 2008 is the longest summit eruption of Kīlauea Volcano, on the Island of Hawai‘i, since 1924. From the time the eruption began, the new "Overlook crater" inside Halema‘uma‘u has exhibited fluctuating lava lake activity, occasional small explosive events, and a persistent gas plume. The beautiful nighttime glow impresses and thrills visitors in Hawai‘i Volcanoes National Park, but the continuous emission of sulfur dioxide gas produces "vog" (volcanic smog) that can severely affect communities and local agriculture downwind. U.S. Geological Survey scientists continue to closely monitor the eruption and assess ongoing hazards.

  8. Vesiculation Processes During Transient and Sustained Explosive Activity at Halema'uma'u Crater, Kīlauea in 2008-2013.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Carey, R.; Del Bello, E.; Scarlato, P.; Patrick, M. R.

    2015-12-01

    The 2008-2015 summit eruption within Halema'uma'u crater, Kilauea has been characterized by alternations of passive degassing with two styles of explosive activity, both frequently triggered by rock falls that perturb the free surface of magma in the vent. In the first, larger rock falls trigger second vesiculation of magma at depths up to 100 m below the free surface ejecting juvenile bomb and lapilli populations of very variable vesicularity. The second, the topic of this presentation, consists of intervals of minutes to tens-of-minutes duration of low fountaining activity often from multiple locations. Vents may migrate with time, first across the free surface to its margins, and then around the margins, in response to convection processes in the underlying melt. Analysis of short sequences of high-speed, high-resolution video footage shows that the sustained fountaining is maintained by not by a continuous discharge but rather by closely spaced bursting of two-to-five meter-wide bubbles. Bubbles accelerate through the free surface at velocities of 10 to 40 m/s disrupting the viscoelastic crust and forming large fall-back, lacework pyroclasts and smaller highly vesicular bombs and lapilli.

  9. Rim of Henry Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 02 April 2002) This portion of the rim of Henry Crater has numerous dark streaks located on the slopes of the inner crater wall. These dark slope streaks have been suggested to have formed when the relatively bright dust that mantles the slopes slides downhill, either exposing a dust-free darker surface or creating a darker surface by increasing its roughness. The topography in this region appears muted, indicating the presence of regional dust mantling. The materials on floor of the crater (middle to lower left) are layered, with differing degrees of hardness and resistance to erosion producing cliffs (resistant layers) and ledges (easily eroded layers). These layered materials may have been originally deposited in water, although deposition by other means, such as windblown dust and sand, is also possible. Henry Crater, named after a 19th Century French astronomer, is 170 km in diameter and is located at 10.9o N, 336.7o W (23.3o E) in a region called Arabia Terra.

  10. Reading 'Endurance Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This image shows the area inside 'Endurance Crater' that the Mars Exploration Rover Opportunity has been examining. The rover is investigating the distinct layers of rock that make up this region. Each layer is defined by subtle color and texture variations and represents a separate chapter in Mars' history. The deeper the layer, the further back in time the rocks were formed. Scientists are 'reading' this history book by systematically studying each layer with the rover's scientific instruments. So far, data from the rover indicate that the top layers are sulfate-rich, like the rocks observed in 'Eagle Crater.' This implies that water processes were involved in forming the materials that make up these rocks.

    In figure 1, the layer labeled 'A' in this picture contains broken-up rocks that most closely resemble those of 'Eagle Crater.' Layers 'B,C and D' appear less broken up and more finely laminated. Layer 'E,' on the other hand, looks more like 'A.' At present, the rover is examining layer 'D.'

    So far, data from the rover indicates that the first four layers consist of sulfate-rich, jarosite-containing rocks like those observed in Eagle Crater. This implies that water processes were involved in forming the materials that make up these rocks, though the materials themselves may have been laid down by wind.

    This image was taken by Opportunity's navigation camera on sol 134 (June 9, 2004).

  11. Sediment History Preserved in Gale Crater Central Mound

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    While many of the layered outcrops in craters and chasms on Mars are seen as stair-stepped series of cliffs and benches composed of similar materials with similar thicknesses, other layer outcrops are expressed on relatively smooth, rounded slopes as alternating light and dark bands. The best example of this variety of layered sedimentary material is found in southern Holden Crater. Holden is located at 26.5oS, 33.9oW, and has a diameter of 141 km (88 mi). The context picture above, shows that a valley, Uzboi Vallis, enters the crater on its southwestern side. Not too far from where Uzboi Vallis meets Holden Crater, rounded slopes and buttes consisting of alternating light and dark bands are seen. The origin of these layers is not known, but like those found in other craters on Mars, they might have resulted from deposition of sediment in a lake that would have occupied Holden Crater. Alternatively, these are materials deposited by falling out of the air, the same way that volcanic ash is deposited on Earth. The Viking mosaic (above) images are illuminated by sunlight from the upper right. The MOC image (top left) is illuminated from the upper left. North is up.

  12. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1997-01-01

    Understanding the physical processes of impact cratering on planetary surfaces and atmospheres as well as collisions of finite-size self-gravitating objects is vitally important to planetary science. The observation has often been made that craters are the most ubiquitous landform on the solid planets and the satellites. The density of craters is used to date surfaces on planets and satellites. For large ringed basin craters (e.g. Chicxulub), the issue of identification of exactly what 'diameter' transient crater is associated with this structure is exemplified by the arguments of Sharpton et al. (1993) versus those of Hildebrand et al. (1995). The size of a transient crater, such as the K/T extinction crater at Yucatan, Mexico, which is thought to be the source of SO,-induced sulfuric acid aerosol that globally acidified surface waters as the result of massive vaporization of CASO, in the target rock, is addressed by our present project. The impact process excavates samples of planetary interiors. The degree to which this occurs (e.g. how deeply does excavation occur for a given crater diameter) has been of interest, both with regard to exposing mantle rocks in crater floors, as well as launching samples into space which become part of the terrestrial meteorite collection (e.g. lunar meteorites, SNC's from Mars). Only in the case of the Earth can we test calculations in the laboratory and field. Previous calculations predict, independent of diameter, that the depth of excavation, normalized by crater diameter, is d(sub ex)/D = 0.085 (O'Keefe and Ahrens, 1993). For Comet Shoemaker-Levy 9 (SL9) fragments impacting Jupiter, predicted excavation depths of different gas-rich layers in the atmosphere, were much larger. The trajectory and fate of highly shocked material from a large impact on the Earth, such as the K/T bolide is of interest. Melosh et al. (1990) proposed that the condensed material from the impact upon reentering the Earth's atmosphere induced. radiative

  13. Measurement and prediction of copper ion activity in Lake Orta, Italy

    SciTech Connect

    Camusso, M.; Tartari, G. ); Zirino, A. )

    1991-04-01

    A commercial Cu ion selective electrode (ISE) mounted on a field conductivity, temperature, depth probe (CTD) equipped with pH and oxygen sensors was used to measure a profile of Cu ion activity ({alpha}(Cu{sup 2+})) in Lake Orta, Italy. Lake Orta water contains approximately 32-34 {mu}g L{sup {minus}1} Cu from anthropogenic sources. Below the mixed layer, {alpha}-(Cu{sup 2+}) was directly related to the pH of the lake water. In the body of the hypolimnion, measurements of {alpha}(Cu{sup 2+}) obtained from total Cu concentrations. The pH dependence of the activity/concentration of free Cu{sup 2+} was modeled with a simple ion association model of the lake water. The results of the model were verified by a potentiometric titration of a sample of lake water using Cu, pH, and NH{sub 3} ISEs. The titration simulated a forthcoming chemical treatment now in progress.

  14. A Periglacial Analog for Landforms in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.

    2013-01-01

    Several features in a high thermal inertia (TI) unit at Gale crater can be interpreted within a periglacial framework. These features include polygonally fractured terrain (cf. ice-wedge polygons), circumferential patterns of polygonal fractures (cf. relict pingos with ice-wedge polygons on their surfaces), irregularly-shaped and clustered depressions (cf. remnants of collapsed pingos and ephemeral lakes), and a general hummocky topography (cf. thermokarst). This interpretation would imply a major history of water and ice in Gale crater, involving permafrost, freeze-thaw cycles, and perhaps ponded surface water.

  15. Discovery that secondary craters dominate Europa's small crater population

    NASA Astrophysics Data System (ADS)

    Bierhaus, Edward B.

    2004-08-01

    This thesis presents data and analysis that demonstrate secondary craters (craters formed by material ejected from a primary impactor) dominate the small-crater (<1 km) population on Europa. Of the 17,000+ impact craters I measured in high-resolution images that cover only 0.2% of Europa's surface, 90% are clustered. I applied three spatial analysis techniques, including a novel hybrid of Monte Carlo and hierarchical clustering algorithms, to identify the clustered population. Additional analysis suggests that many unclustered craters are also secondaries; the true percentage of secondary craters is at least 95%. Least-squares, non-linear power-law fits to the differential (dN = kDb dD) size-distributions demonstrate that the secondaries have “steep” exponents, typically b < -4. Because the regions examined are at least hundreds of km away from any large primary crater, this is the first robust study of far- field secondary craters (those formed by material ejected at hundreds of m/s to over 1 km/s). I also measured 7,000+ near-field (only several parent crater radii distant) secondaries around Tyre, a 44 km primary crater on Europa, and measured 1,000+ near-field secondaries in a smaller area around Pwyll, a 26 km primary. The Pwyll data indicate a peak size for the near-field secondaries; the size-distribution at diameters larger than the peak size has very steep exponents, -6.3 to -7.8. The combined measurements of near- and far-field secondaries demonstrate that primary cratering events are extraordinarily efficient in generating ejecta for both populations. This research is the first to demonstrate that, at least on Europa, distant secondary craters overwhelm the small primary craters. Among the many potential implications of my research, two are profound: (1)the population of objects (now known to be ecliptic comets) that hits Europa to form primary craters must have a shallow (b > -2) size- distribution for objects <100 m diameter; and (2)to the degree

  16. Crater Wall and Floor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    3D Projection onto MOLA data [figure removed for brevity, see original site]

    The impact crater observed in this THEMIS image taken in Terra Cimmeria suggests sediments have filled the crater due to the flat and smooth nature of the floor compared to rougher surfaces at higher elevations. The abundance of several smaller impact craters on the floor of the larger crater indicate however that the flat surface has been exposed for an extended period of time. The smooth surface of the crater floor and rougher surfaces at higher elevations are observed in the 3-D THEMIS image that is draped over MOLA topography (2X vertical exaggeration).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -22.9, Longitude 155.7 East (204.3 West). 19 meter/pixel resolution.

  17. Europa's Pwyll Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Pwyll impact crater on Jupiter's moon Europa taken by NASA's Galileo spacecraft shows the interior structure and surrounding ejecta deposits. Pwyll's location is shown in the background global view taken by Galileo's camera on December 16, 1997. Bright rays seen radiating from Pwyll in the global image indicate that this crater is geologically young. The rim of Pwyll is about 26 kilometers (16 miles) in diameter, and a halo of dark material excavated from below the surface extends a few kilometers beyond the rim. Beyond this dark halo, the surface is bright and numerous secondary craters can be seen. The closeup view of Pwyll, which combines imaging data gathered during the December flyby and the flyby of February 20, 1997, indicates that unlike most fresh impact craters, which have much deeper floors, Pwyll's crater floor is at approximately the same level as the surrounding background terrain.

    North is to the top of the picture and the sun illuminates the surface from the northeast. This closeup image, centered at approximately 26 degrees south latitude and 271 degrees west longitude, covers an area approximately 125 by 75 kilometers (75 by 45 miles). The finest details that can be discerned in this picture are about 250 meters (800 feet) across. This image was taken on at a range of 12,400 kilometers (7,400 miles), with the green filter of Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  18. An analogue experimental model of depth fluctuations in lava lakes

    NASA Astrophysics Data System (ADS)

    Witham, Fred; Woods, Andrew W.; Gladstone, Charlotte

    2006-07-01

    Lava lakes, consisting of molten degassing lava in summit craters of active basaltic volcanoes, sometimes exhibit complex cycles of filling and emptying on time-scales of hours to weeks such as recorded at Pu’u’O’o in Hawaii and Oldoinyo Lengai in Tanzania. Here we report on a new series of analogue laboratory experiments of two-phase flow in a reservoir-conduit-lava lake system which spontaneously generates oscillations in the depth of liquid within the lake. During the recharge phase, gas supplied from a subsurface reservoir of degassing magma drives liquid magma up the conduit, causing the lake to fill. As the magmastatic pressure in the lake increases, the upward supply of magma, driven by the gas bubbles, falls. Eventually the upflow becomes unstable, and liquid drains downwards from the lake, driven by the magmastatic pressure of the overlying lake, suppressing the ascent of any more bubbles from the chamber. At a later stage, once the lake has drained sufficiently, the descent speed of liquid through the conduit decreases below the ascent speed of the bubbles, and the recharge cycle resumes. Application of a quantitative model of the experiments to the natural system is broadly consistent with field data.

  19. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  20. Enceladus' extreme heat flux as revealed by its relaxed craters

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2012-09-01

    Enceladus' cratered terrains contain large numbers of unusually shallow craters consistent with deformation by viscous relaxation of water ice under conditions of elevated heat flow. Here we use high-resolution topography to measure the relaxation fraction of craters on Enceladus far from the active South Pole. We find that many craters are shallower than expected, with craters as small as