Science.gov

Sample records for active crustal deformation

  1. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  2. Crustal deformation and volcanic earthquakes associated with the recent volcanic activity of Iwojima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Fujita, E.; Tanada, T.

    2013-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The seismometer and GPS network of National Research Institute for Earth Science and Disaster Prevention (NIED) in Iwojima has observed a repeating island wide uplift more than 1 m associated with large number of volcanic earthquakes every several years. During 2006-2012, we observed more than 20000 volcanic earthquakes and an uplift of about 3 m, and precursory volcanic earthquakes and rapid crustal deformation just before the small submarine eruption near the northern coast of Iwojima in April 2012. In a restless volcano such as Iwojima, it is important issue to distinguish whether rapid crustal deformation and intense earthquake activity lead to an eruption or not. According to a long period geodetic observation by Ukawa et al. (2006), the crustal deformation of Iwojima can be classify into 2 phases. The first is an island wide large uplift centering on Motoyama area (the eastern part of the island, the center of the caldera), and the second is contraction and subsidence at local area centering on Motoyama and uplift around that area. They are interpreted by superposition of crustal deformations by a shallow contraction source and a deep seated inflation source beneath Motoyama. The earthquake activity of Iwojima highly correlates with the island wide large uplift, suggesting the earthquakes are almost controlled by a magma accumulation into a deep seated magma chamber. In contrast to the activity, the precursory activity of the eruption in 2012 is deviated from the correlation. The rapid crustal deformation just before and after the eruption in 2012 can be interpreted by rapid inflation and deflation of a shallow sill source about 1km deep, respectively, suggesting that it was caused by a shallow hydrothermal activity. The result shows that we can probably distinguish an abnormal activity related with a volcanic eruption when we observe

  3. Earthquake relocations, crustal rheology, and active deformation in the central-eastern Alps (N Italy)

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Scafidi, Davide; Ranalli, Giorgio; Martin, Silvana; Della Vedova, Bruno; Spallarossa, Daniele

    2015-10-01

    A revised seismic catalogue (1994-2007) for the central-eastern Alps (N Italy) is presented. 396 earthquake relocations, for local magnitudes in the 1.2-5.3 range, are performed using a 3D crustal velocity structure and probabilistic locations. The location procedure is validated by computing a set of 41 quarry shot solutions and all the results, both about shots and seismic events, are compared with those obtained using the routine location procedure. Results are shown for five contiguous seismotectonic domains, as supported by geological and geophysical evidence (e.g., fault systems, crustal tomography, focal mechanisms types). Earthquake hypocentres are mostly located in the upper crust (0-15 km of depth), in good agreement with thermo-rheological models about the brittle-ductile transitions (8-9 km of depth) and total crustal strengths (1.0-2.0 TN m- 1). Epicentres are clustered and/or aligned along present-day active geological structures. The proposed seismotectonic model shows dominant compression along the Giudicarie and Belluno-Bassano-Montello thrusts, with strain partitioning along the dominant right-lateral strike-slip faults of the Schio-Vicenza domain. The present-day deformation of the Southern Alps and the internal Alpine chain is compatible with Adria indentation and the related crustal stress distribution.

  4. The three-dimensional pattern of crustal deformation associated with active normal fault systems observed using continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Hreinsdottir, S.

    2009-12-01

    Geological examples of shallow dipping normal faults with large displacements are exposed at numerous locations throughout the world and it is widely recognized that extensional deformation at brittle crustal levels is most efficiently accomplished by slip across such structures. It has previously been shown that lower dip angles reduce the regional stresses required to drive large horizontal displacements. Nevertheless, the traditional theory of fault mechanics—based on Anderson’s classification of stress regimes, the Coulomb failure criterion, and Byerlee’s friction law—precludes such faults from slipping at low angle. Observational support for this traditional theory includes the absence of large unequivocally low-angle normal fault earthquakes in the global catalog; all well-determined normal fault earthquakes appear to have occurred on moderate to steeply dipping planes. However, precise measurements of 3D crustal motions based on continuous GPS in central Italy and Utah reveal deformation patterns across active normal fault systems that are inconsistent with active slip across steeply dipping planes. Instead, the combination of observed horizontal and vertical surface motions are consistent with slip across low angle surfaces independently imaged in the subsurface by seismic reflection and other geophysical data. For the Alto Tiberina fault in central Italy, active aseismic creep occurs at shallow crustal levels, most likely within the brittle-frictional regime at which Andersonian-Byerlee fault mechanics should be applicable. The actively creeping portion of the fault inferred using GPS geodesy correlates well with the observed pattern of micro-seismicity, which concentrates along the inferred subsurface fault plane. GPS measurements across the greater Wasatch fault zone in the vicinity of Salt Lake City, Utah, reveal crustal motions consistent with aseismic displacement across a shallow dipping fault or sub-horizontal shear zone at mid-crustal

  5. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  6. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  7. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  8. Recent plate motions and crustal deformation

    SciTech Connect

    Lisowski, M. )

    1991-01-01

    Reports by U.S. workers on geodetic measurements of recent plate motions or crustal deformation published in 1987-1990 are reviewed. The review begins with global plate motions, proceeds through plate boundaries in California, Alaska, and the Pacific Northwest, and finishes with volcanic phenomena, monument stability and longevity, and GPS relative position measurements. 184 refs.

  9. Reports on crustal movements and deformations. [bibliography

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  10. Crustal deformation in Great California Earthquake cycles

    NASA Technical Reports Server (NTRS)

    Li, Victor C.; Rice, James R.

    1987-01-01

    A model in which coupling is described approximately through a generalized Elsasser model is proposed for computation of the periodic crustal deformation associated with repeated strike-slip earthquakes. The model is found to provide a more realistic physical description of tectonic loading than do simpler kinematic models. Parameters are chosen to model the 1857 and 1906 San Andreas ruptures, and predictions are found to be consistent with data on variations of contemporary surface strain and displacement rates as a function of distance from the 1857 and 1906 rupture traces. Results indicate that the asthenosphere appropriate to describe crustal deformation on the earthquake cycle time scale lies in the lower crust and perhaps the crust-mantle transition zone.

  11. An algorithmic approach to crustal deformation analysis

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin Baki

    1987-01-01

    In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.

  12. Crustal deformation measurements in Guerrero, Mexico

    USGS Publications Warehouse

    Larson, K.M.; Lowry, A.R.; Kostoglodov, V.; Hutton, W.; Sanchez, O.; Hudnut, K.; Suarez, G.

    2004-01-01

    GPS measurements of crustal deformation in Guerrero, southern Mexico, include surveys collected between 1992 and 2001 as well as continuous GPS measurements at a few sites. These geodetic observations are used to calculate interseismic deformation rates and assess the presence and possible location of transient deformation during the period encompassing 1992.25 to 2001.75. The data are used to examine transient deformation in 1998 previously described from data at a single site by Lowry et al. [2001]. Survey measurements and continuous data from a site near Popocate??petl volcano confirm the 1998 transient, and survey data also suggest another transient occurred following the 14 September 1995 (Mw = 7.3) Copala earthquake. All of the available GPS position estimates have been inverted for a combined model of slip during each event plus the steady state slip on the plate interface. Modeling of the steady state deformation rates confirms that the Guerrero seismic gap is partially frictionally locked at depths shallower than about 25 km and accumulating strain that may eventually be released in a great earthquake. The data also suggest that there is frictional coupling to much greater (>40 km) depths, which releases more frequently in aseismic slip events. The locations and sizes of the transient events are only partially constrained by the available data. However, the transient models which best fit the GPS coordinate time series suggest that aseismic slip was centered downdip of the seismogenic portion of the plate-bounding thrust in both events, and the moment release had equivalent magnitudes Mw = 7.1 + 1.3/-1.0 in 1995-1996 and 7.1 + 0.4/-0.1 in 1998. Copyright 2004 by the American Geophysical Union.

  13. Reports on block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.

  14. Crustal deformation in great California earthquake cycles

    NASA Technical Reports Server (NTRS)

    Li, Victor C.; Rice, James R.

    1986-01-01

    Periodic crustal deformation associated with repeated strike slip earthquakes is computed for the following model: A depth L (less than or similiar to H) extending downward from the Earth's surface at a transform boundary between uniform elastic lithospheric plates of thickness H is locked between earthquakes. It slips an amount consistent with remote plate velocity V sub pl after each lapse of earthquake cycle time T sub cy. Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress. The plates are coupled at their base to a Maxwellian viscoelastic asthenosphere through which steady deep seated mantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is described approximately through a generalized Elsasser model. It is argued that the model gives a more realistic physical description of tectonic loading, including the time dependence of deep slip and crustal stress build up throughout the earthquake cycle, than do simpler kinematic models in which loading is represented as imposed uniform dislocation slip on the fault below the locked zone.

  15. Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: a case study of the Enako fault in central Japan

    NASA Astrophysics Data System (ADS)

    Kimura, Haruo; Itoh, Yasuto; Tsutsumi, Hiroyuki

    2004-10-01

    To evaluate cumulative strike-slip deformation around an active fault, we carried out tectonic geomorphic investigations of the active right-lateral strike-slip Enako fault in central Japan and paleomagnetic investigations of the Kamitakara pyroclastic flow deposit (KPFD; 0.6 Ma welded tuff) distributed around the fault. Tectonic geomorphic study revealed that the strike-slip displacement on the fault is ca. 150 m during the past 600 ka. We carried out measurements of paleomagnetic directions and anisotropy of magnetic susceptibility (AMS) within the pyroclastic flow deposit. Stable primary magnetic directions at each sampling site are well clustered and the AMS fabric is very oblate. We then applied tilt correction of paleomagnetic directions at 15 sites using tilting data obtained by the AMS property and orientations of eutaxitic structures. Within a distance of about 500 m from the fault trace, differential clockwise rotations were detected; the rotation angle is larger for zones closer to the fault. Because of this relation and absence of block boundary faults, a continuous deformation model explains the crustal deformation in the study area. The calculated minimum value of strike-slip displacement associated with this deformation detected within the shear zone is 210 m. The sum of this and offset on the Enako fault is 360 m and the slip rate is estimated at 0.6 mm/year.

  16. Crustal deformation induced by volcanic activity measured by InSAR time series analysis (Volcan de Colima-Mexico)

    NASA Astrophysics Data System (ADS)

    Brunori, Carlo Alberto; Norini, Gianluca; Stramondo, Salvatore; Capra, Lucia; Zucca, Francesco; Groppelli, Gianluca; Bignami, Christian; Chini, Marco; Manea, Marina; Manea, Vlad

    2010-05-01

    The Volcán de Colima (CV) is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. This work is focused on the detection of surface deformation with centimetre or sub-centimeter accuracy of the Volcán de Colima and surrounding areas. We try to assess the amount and the spatial extension of surface movements of the CV and to get insights into the causes of the surface deformation by using Interferometric Synthetic Aperture Radar (InSAR), a powerful tool ensuring measurements at high-accuracy over large areas. The image dataset acquired by ESA ENVISAT ASAR (C band) sensor, has been processed using Advanced interferometric techniques (A-InSAR) to overcome the really challenging sources of decorrelation related to the setting context, mainly vegetation and atmosphere, in order to give us the opportunity to detect also very low rates of deformations. The main objectives of the interferometric analysis is the measurement of deformations in the CV in relation with active tectonics and gravity induced spreading, the identification of magma migration below the surface in the last decade, the detection of the incipient movements of volcanic landslides and large scale volcano instability, and the kinematics of the Colima rift. We present preliminary results of the A-InSAR processing, in the framework of the interdisciplinary Colima Deformation project (ColDef).

  17. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  18. On radon emanation as a possible indicator of crustal deformation

    USGS Publications Warehouse

    King, C.-Y.

    1979-01-01

    Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.

  19. Crustal deformation around the Gulf of California

    NASA Astrophysics Data System (ADS)

    Dunn, P. J.; Robbins, J. W.; Bosworth, J. M.; Kolenkiewicz, R.

    A number of Satellite Laser Ranging (SLR) sites in the southwest United States and Mexico, in operation for over ten years, have been supporting the global laser network measuring tectonic plate motion and providing information for studies of regional crustal deformation. Observations of the Laser Geodetic Satellite (LAGEOS) collected in 1994 by the transportable satellite laser ranging system, TLRS-4, at two sites on the Baja peninsula now provide the means to extend the network of fixed stations at Monument Peak and Otay Mountain in southern California and Mazatlan on mainland Mexico. After the third SLR occupation of Ensenada, it's estimated site motion exhibits nearly the full plate rate predicted by the NNR-NUVEL1A model for a location on the Pacific plate. At the southern tip of the Baja, the motion of Cabo San Lucas has an azimuth that is more westerly than that expected from Pacific modeled motion. This discrepancy in azimuth, in conjunction with the slower SLR recovered velocity for Mazatlan, results in an apparent 6 mm/yr faster spreading rate across the mouth of the Gulf of California than that predicted by the NUVEL-1A model. The velocities of the Monument Peak and Otay Mountain sites show the expected long-term difference from Pacific plate motion, due to their proximity to the San Andreas Fault system.

  20. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  1. dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Cervelli, Peter F.; Murray, Jessica R.

    2013-03-01

    We have developed a MATLAB software package for the most common models used to interpret deformation measurements near faults and active volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS), InSAR, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal and sill-like magma chambers in an elastic, homogeneous, flat half-space. Dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the expressions have been checked for typographical errors that might have been present in the original literature, extended to include deformation and strain within the Earth's crust (as opposed to only the Earth's surface) and verified against finite element models. A set of GPS measurements from the 2006 eruption at Augustine Volcano (Alaska) is used to test the software package. The results show that the best fit source to the GPS data is a spherical intrusion (ΔV=5×10 km3), about 880 m beneath the volcano's summit.

  2. Active crustal deformation in the Jalisco block, Mexico: evidence for a great historical earthquake in the 16th century

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; García-Acosta, Virginia; Gaulon, Roland

    1994-06-01

    On December 27th, 1568, a large earthquake occurred to the southwest of Guadalajara, Mexico, near the northeastern corner of the Jalisco block, in an area where no great earthquakes have been reported before. It caused heavy damage in the region where the Colima and Tepic-Zacoalco grabens intersect. Many churches, houses and convents in the neighboring towns collapsed and severe deformation of the ground was observed in the area. Landslides apparently dammed the Ameca River for several days and the opening of large cracks was reported in the lowlands. The flow of natural springs and the level of Lake Zacoalco changed dramatically after the earthquake. All of these reports strongly suggest that a local fault was the source of this large and destructive earthquake. Based on the intensity data inferred from the historical reports, the 1568 event is perhaps the largest earthquake to date in the Trans-Mexican Volcanic Belt. Compared to other well documented, large earthquakes that occurred in the volcanic belt in 1875, 1912 and 1920, the magnitude appears to be greater than 7.0 ( MW). The Jalisco block is presumed to be rifting away from the North American plate. The Colima and Tepic-Zacoalco grabens, which bound the Jalisco block to the east and north, respectively, are apparently the boundaries where rifting is taking place in a complex and highly faulted environment. Based on the data available, it is impossible to identify the specific fault ruptured during the earthquake unequivocally. However, the occurrence of this large event in 1568 confirms that active deformation is still taking place in the Jalisco block. The apparently long recurrence times of these large events suggest that tectonic deformation is slow.

  3. Mechanisms of crustal deformation in the western US

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1986-01-01

    The deformation processes in the western United States were studied, considering both deterministic models and random or statistical models. The role of the intracrustal delamination and mechanisms of crustal thinning were also examined. The application of fractal techniques to understand how the crust is deforming was studied in complex regions. Work continued on the development of a fractal based model for deformation in the western United States. Fractal studies were also extended to the study of topography and the geoid.

  4. Faults Activities And Crustal Deformation Along The Arc-Continent Collision Boundary, Eastern Taiwan - Observed From Persistent Scatterer SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Yen, Jiun-Yee; Chang, Chung-Pai; Hooper, Andrew; Chang, Yo-Ho; Liang, Wen-Tzong; Chang, Tsui-Yu

    2010-05-01

    Located in the southeastern periphery of the Eurasian plate, eastern Taiwan marks the collional boundary between the Eurasian plate and the Philippine Sea plate. These two plates converge at about 8 cm/yr near Taiwan and nearly half of the shortening is consumed in eastern Taiwan. There have been many studies in this area about the dynamics of the plate convergence, however, most of the geodetic studies focused on small area (strainmeter), with very few data points (GPS), or only gather data along a specific profile (leveling). We applied the Persistent Scatterer SAR Interferometry in the Longitudinal Valley of eastern Taiwan to observe temporally-variable processes using both ERS and Envisat data. At the same time, leveling and GPS data were measured for the auxiliary tool to verify the deformation rate in this area. Our result indicated that although the area is under active collision, faults do not move in the same fashion along the boundary. In the very northern part of the collided arc, small subsidence has been detected, while in the north-central part very few activity is observed. In the central and southern part of the collisional boundary, patches of faults are moving as rapidly as 15 mm/yr along radar line-of-sight. In addition. between late 2004 and middle 2005 there had been an earthquake swarm consists of shallow earthquakes, which coincided with PSI observation of a large vertical displacement. The comparison between our leveling data and PS results indicated PSI is a reliable tool even in the highly vegetated area in eastern Taiwan.

  5. Deformed Neogene basins, active faulting and topography in Westland: Distributed crustal mobility west of the Alpine Fault transpressive plate boundary (South Island, New Zealand)

    NASA Astrophysics Data System (ADS)

    Ghisetti, Francesca; Sibson, Richard H.; Hamling, Ian

    2016-12-01

    Tectonic activity in the South Island of New Zealand is dominated by the Alpine Fault component of the Australia-Pacific plate boundary. West of the Alpine Fault deformation is recorded by Paleogene-Neogene basins coeval with the evolution of the right-lateral/transpressive plate margin. Initial tectonic setting was controlled by N-S normal faults developed during Late Cretaceous and Eocene-early Miocene rifting. Following inception of the Alpine Fault (c. 25 Ma) reverse reactivation of the normal faults controlled tectonic segmentation that became apparent in the cover sequences at c. 22 Ma. Based on restored transects tied to stratigraphic sections, seismic lines and wells, we reconstruct the vertical mobility of the Top Basement Unconformity west of Alpine Fault. From c. 37-35 Ma to 22 Ma subsidence was controlled by extensional faulting. After 22 Ma the region was affected by differential subsidence, resulting from eastward crustal flexure towards the Alpine Fault boundary and/or components of transtension. Transition from subsidence to uplift started at c. 17 Ma within a belt of basement pop-ups, separated by subsiding basins localised in the common footwall of oppositely-dipping reverse faults. From 17 to 7-3 Ma reverse fault reactivation and uplift migrated to the WSW. Persistent reverse reactivation of the inherited faults in the present stress field is reflected by the close match between tectonic block segmentation and topography filtered at a wavelength of 25 km, i.e. at a scale comparable to crustal thickness in the region. However, topography filtered at wavelength of 75 km shows marked contrasts between the elevated Tasman Ranges region relative to regions to the south. Variations in thickness and rigidity of the Australian lithosphere possibly control N-S longitudinal changes, consistent with our estimates of increase in linear shortening from the Tasman Ranges to the regions located west of the Alpine Fault bend.

  6. Crustal deformation across the Southern Patagonian Icefield observed by GNSS

    NASA Astrophysics Data System (ADS)

    Richter, A.; Ivins, E.; Lange, H.; Mendoza, L.; Schröder, L.; Hormaechea, J. L.; Casassa, G.; Marderwald, E.; Fritsche, M.; Perdomo, R.; Horwath, M.; Dietrich, R.

    2016-10-01

    Geodetic GNSS observations at 43 sites well distributed over the Southern Patagonian Icefield region yield site velocities with a mean accuracy of 1 mm/a and 6 mm/a for the horizontal and vertical components, respectively. These velocities are analyzed to reveal the magnitudes and patterns of vertical and horizontal present-day crustal deformation as well as their primary driving processes. The observed vertical velocities confirm a rapid uplift, with rates peaking at 41 mm/a, causally related to glacial-isostatic adjustment (GIA). They yield now an unambiguous preference between two competing GIA models. Remaining discrepancies between the preferred model and our observations point toward an effective upper mantle viscosity even lower than 1.6 ṡ1018 Pas and effects of lateral rheological heterogeneities. An analysis of the horizontal strain and strain-rate fields reveals some complex superposition, with compression dominating in the west and extension in the east. This deformation field suggests significant contributions from three processes: GIA, a western interseismic tectonic deformation field related to plate subduction, and an extensional strain-rate field related to active Patagonian slab window tectonics.

  7. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Hauksson, E.; Plesch, A.

    2012-12-01

    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  8. Crustal thickening during Proterozoic metamorphism and deformation in New Mexico

    NASA Astrophysics Data System (ADS)

    Grambling, Jeffrey A.

    1986-02-01

    Proterozoic rocks in northern and central New Mexico underwent simultaneous metamorphism and deformation, tentatively dated at 1410 Ma. Structural relationships record a minimum of 20% 30% shortening during the latter part of deformation, and chemical zoning in garnet and plagioclase indicates a 20% increase in depth of burial during the same interval. Locally, deformation thickened the upper continental crust by at least 20%. This crustal thickening was distributed over a broad area and caused rocks across 75 000 km2 to recrystallize at peak metamorphic conditions near 525 °C and 4 kbar. The metamorphic terrane cooled isobarically, at rates less than 5 °C/m.y. Such slow cooling may be normal at middle crustal depths. Preservation of the regionally uniform peak metamorphic conditions reflects an unusual tectonic history: heat from the metamorphic event outlasted deformation, and the terrane was not subjected to rapid uplift following its thermal peak.

  9. Measured crustal deformation in Imperial Valley, California

    USGS Publications Warehouse

    Lofgren, B.E.

    1979-01-01

    Precise geodetic surveys since 1972 indicate that significant vertical deformation of the land surface continues in Imperial Valley, California. Measured vertical changes as great as 3-5 cm per year indicate that two types of tectonic movement are occurring: (1) a downward regional tilt of the valley surface from the Mexican border northward toward Salton Sea, and (2) a deepening of the structural trough presently occupied by Salton Sea. A comparison of 1972ndash;1977 change contours with 1927 topographic contours shows gross parallelism, suggesting that the recent deformation is a continuation of the tectonism that formed the Salton trough. Ground movement since 1972 has tended to steepen slightly the gradients of streams, canals, and drains on the valley floor and to increase the capacity of Salton Sea. A usable record of eight years of background measurements of tectonic change are available prior to the impact of geothermal production in Imperial Valley. ?? 1979.

  10. Repeated Observation of Seafloor Crustal Deformation at the Nankai Margin, Japan

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Ando, M.; Okuda, T.; Sugimoto, S.; Aizawa, Y.; Watanabe, T.; Yasuda, J.; Muto, D.; Kuno, M.

    2006-12-01

    The Nankai Trough is one of the active plate boundaries where the major subduction earthquakes, Nankai and Tonankai earthquakes, repeatedly occur. The source regions of the earthquakes are located beneath the see bottom, and it is necessary to monitor the crustal activities, such as seismicity and crustal deformation, for the sake of earthquake prediction and disaster prevention. One of the useful tools to monitor seafloor crustal deformation is the observation system composed of the acoustic ranging and kinematic GPS positioning techniques. We install seafloor benchmark composed of three sea bottom transponders for acoustic ranging. We have installed the seafloor benchmarks at three sites close to the Nankai Trough. We repeatedly observed at the two sites among them ten and six times from 2004. The result of the repeated observation shows that the repeatability of the measurement is +/-3 cm for each horizontal component. The coseismic crustal deformation due to M7 class earthquakes was also detected at the sea bottom benchmark. Our next target is continuous monitoring of seafloor crustal deformation associated with plate convergence. This study is promoted by Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural Science and Technology Promotion Center, Japan.

  11. Surface Deformation and Lower Crustal Flow in Eastern Tibet

    PubMed

    Royden; Burchfiel; King; Wang; Chen; Shen; Liu

    1997-05-02

    Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.

  12. Measuring crustal deformation in the American West

    SciTech Connect

    Jordan, T.H.; Minster, J.B.

    1988-08-01

    The crust of the western US is deforming as the Pacific and North American plates slide past each other along the San Andreas Fault, the Great Basin is spreading apart, and mountains are being thrust up along the California coast. Monitoring of these processes over the years has resulted in the San Andreas discrepancy, the mismatch between the rate and direction of horizontal slippage along the fault and the relative motion of the Pacific and North American plates.This process will soon be measured directly using the new developed technique of space geodesy, which uses radio waves from quasars or satellites to measure between fixed stations with an accuracy of a few centimeters.

  13. System for near real-time crustal deformation monitoring

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1979-01-01

    A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.

  14. The role of crustal quartz in controlling Cordilleran deformation.

    PubMed

    Lowry, Anthony R; Pérez-Gussinyé, Marta

    2011-03-17

    Large-scale deformation of continents remains poorly understood more than 40 years after the plate tectonic revolution. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend (somewhat nebulously) on rock type, temperature and whether or not unbound water is present. Hence, it is unclear precisely how Earth material properties translate to continental deformation zones ranging from tens to thousands of kilometres in width, why deforming zones are sometimes interspersed with non-deforming blocks and why large earthquakes occasionally rupture in otherwise stable continental interiors. An important clue comes from observations that mountain belts and rift zones cyclically form at the same locations despite separation across vast gulfs of time (dubbed the Wilson tectonic cycle), accompanied by inversion of extensional basins and reactivation of faults and other structures formed in previous deformation events. Here we show that the abundance of crustal quartz, the weakest mineral in continental rocks, may strongly condition continental temperature and deformation. We use EarthScope seismic receiver functions, gravity and surface heat flow measurements to estimate thickness and seismic velocity ratio, v(P)/v(S), of continental crust in the western United States. The ratio v(P)/v(S) is relatively insensitive to temperature but very sensitive to quartz abundance. Our results demonstrate a surprising correlation of low crustal v(P)/v(S) with both higher lithospheric temperature and deformation of the Cordillera, the mountainous region of the western United States. The most plausible explanation for the relationship to temperature is a robust dynamical feedback, in which ductile strain first localizes in relatively weak, quartz-rich crust, and then initiates processes that promote advective warming, hydration and further weakening. The feedback mechanism proposed here would not only explain

  15. Implications of very long baseline interferometry measurements on North American intra-plate crustal deformation

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1979-01-01

    Very Long Baseline Interferometry experiments over the last 1-3/4 years between Owens Valley, CA and Haystack, MA Radio Observatories suggest an upper limit of east-west crustal deformation between the two sites of about 1 cm/yr. In view of the fact that the baseline between the two sites traverses most of the major geological provinces of the United States, this low rate of crustal deformation has direct relevance to intra-plate crustal tectonics. The most active region traversed by this baseline is the Basin and Range province, which was estimated by various researchers to be expanding in an east-west direction at rates of .3 to 1.5 cm/yr. The Colorado Plateau and Rocky Mountain system also appear to be expanding, but at a somewhat lower rate, while east of the Rocky Mountains, the predominant stress appears to be compressional, nearly horizontal, and east to northeast trending.

  16. Seismotectonics and crustal deformation in Africa

    NASA Astrophysics Data System (ADS)

    Ayadi, Abdelhakim

    2016-04-01

    We present the Seismotectonic Map of Africa based on a geological, geophysical and geodetic database including the instrumental seismicity and re-appraisal of large historical events, and harmonization and homogenization of earthquake parameters in catalogues. Although the seismotectonic framework of the African continent is a difficult task, several previous and ongoing projects provide a wealth of data and outstanding results. The database of large and moderate earthquakes in different geological domains includes the coseismic and Quaternary faulting that reveals the complex nature of the active tectonics in Africa. The map benefits from previous works on local and regional seismotectonic maps that needed to be integrated with the lithospheric and upper mantle structures, seismic anisotropy tomography and gravity anomaly, into a continental framework. The synthesis of earthquake and volcanic studies obtained from the analysis of late Quaternary faulting and geodetic data will serve as a basis for hazard calculations and the reduction of seismic risks. The map will be useful for the seismic hazard assessment and earthquake risk mitigation for significant infrastructures and their socio-economic implications in Africa. The constant population increase and infrastructure growth in the continent that exacerbate the earthquake risk justify the necessity for a continuous updating of this map. The database and related map are prepared in the framework of the IGC Project-601 "Seismotectonics and Seismic Hazards in Africa" of UNESCO-IUGS, funded by the Swedish International Development Agency and UNESCO-Nairobi for a period of 4 years (2011 - 2014, now extended to 2016).

  17. Crustal Deformation Analysis at CGPS Sites Spanning Mexico

    NASA Astrophysics Data System (ADS)

    Vazquez, G. E.; Bennett, R. A.; Spinler, J. C.; Grejner-Brzezinska, D. A.

    2014-12-01

    We conducted a study using data from continuous Global Positioning System (CGPS) stations throughout Mexico to understand a variety of factors that may have an impact on crustal deformation of Mexico—a research topic investigated for many years. This arises from the fact that Mexico is directly influenced by the interactions between the North American, Pacific, Cocos, Caribbean and Rivera tectonic plates. We analyzed CGPS data originating from several networks covering Mexico. These stations have been installed to serve diverse purposes and applications, and are administered by diverse organizations that include government agencies and public universities. We evaluated a total of 80 CGPS stations operating in Mexico; where dual-frequency geodetic-grade GPS receivers collected data continuously during periods between 1994 and 2014.5, in order to provide a synoptic view of the crustal velocity field of Mexico. The CGPS sites located in the Mexican territory were processed with respect to 133 sites outside of Mexico (i.e., Caribbean, Pacific, South and North American plates) in order to evaluate crustal deformation in Mexico in the context of the relative motions among these tectonic plates. Given the heterogeneous nature of the available GPS networks, we performed an analysis of time-series in terms of their duration and precision, finding generally high precision. From the estimated crustal velocities, we observe that these are very comparable (± 1 mm) with respect to previously derived values for stations located at the Baja Peninsula and the Oaxaca—Guerrero region. In general, the behavior of the northern CGPS spanning Mexico are very consistent with North American plate motion.

  18. Gravitational radiation from neutron stars deformed by crustal Hall drift

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  19. Crustal Deformation Field Around Rift Zone In Southeastern Afar Derived From Jers-1/in-sar

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Nogi, Y.; Shibuya, K.

    Afar is one of the major active rift zones recognized on the ground and located around the triple junction of Arabia, Somalia and Nubian plates. Afar is one of the major rift zones recognized on the ground. The crustal deformation of Afar has been deduced from paleomagnetism, geology and seismology by many scientists. The current crustal deformation must be detected by geodetic measurements. Ruegg et al. (J. Geophys. Res., 1984) showed the crustal deformation across the Asal-Ghoubbet rift with rate of about 60 mm/yr extension derived from triangulation and trilateration. Walpersdorf et al. (J. Geodyn., 1999) show the opening between South Djibouti and Yemen with rate of 16 mm/yr by GPS surveys. Denser observations are required for detailed crustal deformation, however it is difficult to construct such observation network because of harsh environment. The geodetic application of remote sensing is useful in this region, and we apply JERS-1 SAR interferometry in southeastern Afar, which is one of the most active deformation area. In this study, we use six SAR scenes observed from 1996/5/20 to 1997/5/7, and generate five interferograms; these repeat cycles are 88 (2 pairs), 176, 264, 352 days. First, we generate the digital elevation model (DEM) from two 88 repeat cycle pairs applying the multiple pass SAR interferometry method by Kwok and Fahnestock (IEEE Trans. Geosci. Remote Sensing, 1996). Next, the topographic fringes of all pairs are removed using the DEM. The crustal deformation derived from SAR interferometry increases with expanding repeat cycle. Finally, the velocity field is estimated by fitting to linear trend for each pixel. The spreading rate of Asal-Ghoubbet rift derived from SAR interferometry is good agreement with that by Ruegg et al. (J. Geophys. Res., 1984). We can see the crustal deformation with the subsidence sense in the west of Asal-Ghoubbet rift. This suggests that the extension is distinguished in this area. The subsidence sense deformation

  20. Detection, Measurement, Visualization, and Analysis of Seismic Crustal Deformation

    NASA Technical Reports Server (NTRS)

    Crippen, R.; Blom, R.

    1995-01-01

    Remote sensing plays a key role in the analysis of seismic crustal deformation. Recently radar interferometry has been used to measure one dimension of the strain fields of earthquakes at a resolution of centimeters. Optical imagery is useful in measuring the strain fields in both geographic dimensions of the strain field down to 1/20 of pixel size, and soon will be capable of high resolution. Visual observation of fault motion from space can also be used to detect fault motion from aerial photographs.

  1. Crust-mantle interactions and crustal deformations, some geological observations

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Clerc, Camille; Sternai, Pietro; Bellahsen, Nicolas; Faccenna, Claudio; Ringenbach, Jean-Claude; Gorini, Christian; Leroy, Sylvie; Pik, Raphaël

    2015-04-01

    Crustal deformations at plate boundaries or intracontinental are governed by the relative movements of plates, and most published models consider the lithosphere as the main stress guide in extensional or compressional contexts. The possible contribution of the underlying asthenospheric flow to crustal deformation through viscous coupling is often neglected. Since the early days of plate tectonics, and even earlier, two schools of thought have been developed in parallel whether mantle convection is considered or not. This reflects nowadays in the difficulty of reconciling lithospheric-scale models and global-scale convection models to explain tectonic features observed at the surface. Still, recent studies reemphasized the role of mantle convection in shaping mountain belts or rifts and the consequences of different styles of convection on the geometry and kinematics of mountain belts. We present here a number of geological observations in convergent or divergent contexts that may suggest a strong coupling between asthenospheric flow and crustal deformation. Several of these examples, especially in extensional contexts, show a deformation distributed over wide zones, accommodated by shallow-dipping shear zones and with a constant asymmetry over large distances. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea or the Alboran domain, where extension is taken up by shallow-dipping extensional shear zones and normal faults with a constant asymmetry. A similar image is also observed across the Gulf of Lion passive margin that also belongs to the Mediterranean back-arc basins. Such is also the case of some of the Atlantic passive margins where shallow-dipping normal faults and extensional shear zones control the extraction of the lower crust and the mantle with a constant asymmetry across the entire margin. Finally, the distribution and geometry of normal faults across the Afar region also show a constant

  2. Application of Space Geodetic Techniques and GIS for Crustal Deformation Monitoring in Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Garagon Dogru, A.; Turgut, B.; Sabuncu, A.

    2011-12-01

    There are number of geodetic techniques for detecting crustal movements. Space-based InSAR technique measures the phase change between two phase measurements of the same ground pixel of the Earth's surface and provides a method to determine crustal deformation. The results are verified by ground-based data obtained from GPS and other seismological studies. The North Anatolian Fault (NAF), particularly western segment of it, has been investigated over two decades by means of GPS technique. It is one of the most seismically active structures in the eastern Mediterranean with a slip rate of 22 mm/year. In this study, current displacement rates obtained from sparse micro-geodetic networks at western part of NAF are presented and then we investigate the potential of InSAR to monitor crustal movements at our study regions. GPS results validate the information coming from InSAR observations. On the other hand,we have some errors due to discrepancy between the GPS and interferometric observations since they are not defining crustal deformation at the same time intervals. After quality control and processing, all datasets integrated into GIS for mapping and analysis.

  3. Monitoring of Seafloor Crustal Deformation Along the Suruga-Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Okuda, T.; Ikuta, R.; Eto, S.; Yasuda, K.; Sakata, T.; Sayanagi, K.

    2011-12-01

    \\ \\ \\ The Suruga-Nankai Trough is one of the active plate boundaries in the world. The Philippine Sea plate subducts beneath the Amurian (Eurasian) plate along the Suruga-Nankai Trough, causing major subduction earthquakes. The subduction earthquakes, Nankai and Tonankai earthquakes, have repeatedly occurred with intervals of about 100-150 years. Headquarters for Earthquake Research Promotion, Japanese Government [2011] estimates the 30-years probabilities of the next major earthquakes at 60-70 %. It is necessary to monitor crustal deformation above the source regions of the major earthquakes. The source regions are located beneath the seafloor, and we developed a system for monitoring seafloor crustal deformation [Tadokoro et al., 2006, GRL; Ikuta et al., 2008, JGR]. The system is composed of the precise acoustic ranging with ultrasonic waves and kinematic GPS positioning techniques. \\ \\ \\ We monitor seafloor crustal deformation at five sites altogether along the Suruga-Nankai Trough, three in the Kumano region and two in the Suruga region, with the use of this system. We have repeatedly measured the coordinate of seafloor benchmark installed beforehand every about 2-3 months on the average. The monitoring results, the horizontal site velocities with relative to the Amurian Plate, as of 2010 are approximately 3-4 cm/yr in the direction of N70W at the three sites in the Kumano region, and approximately 2-4 cm/yr in the direction of N85-100W at the two sites in the Suruga region. The observed horizontal seafloor crustal deformations are consistent to the plate convergence along the Suruga-Nankai Trough, showing strain accumulation before the next major subduction earthquakes. Acknowledgments: We are grateful to the captain and crews of R/Vs "Hokuto," Tokai University and "Asama," Mie Prefecture Fisheries Research Institute, Japan. This study has been promoted by Ministry of Education, Culture, Sports, Science and Technology, Japanese Government.

  4. Measuring Crustal Deformation in Europe by High Precision Geodetic VLBI

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Nothnagel, A.; Vennebusch, M.

    2002-06-01

    At the western tip of the Eurasian plate, the European continent is besieged by thrusting and receding neighbour plates causing deformations and ruptures of the Earth's crust evidenced by earthquakes and volcanic outbursts. Measuring the extent and progress of crustal deformation has become one of the primary tasks of geodesists and geophysicists. Realizing that Europe enjoys one of the densest networks of radio telescopes especially equipped for high precision, geodetic VLBI has provided the incentive to organise a campaign of regular geodetic VLBI observations in the European network of fixed radio telescopes. The measurements have been carried out since the late eighties at an average rate of six sessions per year. From these data, site coordinates, baseline length changes and station velocity vectors have been derived with steadily increasing accuracy. The overall picture of the observed present-day site motions emulates quite well the pattern of tectonic motions inferred from the geotectonic setting of central Europe and the western Mediterranean. Interesting details are emerging for horizontal motions of the three stations in Italy, which are strongly affected by the complex interactions between the different tectonic regimes in this area. The accuracy of the vertical components is also improving with increasing length of the observational record, allowing to detect significant trends among the relative vertical motions of the sites. The geodetic VLBI network operations have received supportive funding by the European Union under the 2nd and 4th Framework Programmes.

  5. Active morphotectonics related to the upper crustal shortening in the back-arc of the Northeast Japan arc, based on geomorphic terrace deformation and elastic dislocation models for reverse faults

    NASA Astrophysics Data System (ADS)

    Soeda, Y.; Miyauchi, T.

    2009-04-01

    Knowledge of active morphotectonics, the relationship between active faults and morphological evolution, is important for understanding on-going active tectonic processes in the trench-arc system and evaluating the activity of faults. Especially in regions where the main active faults are concealed, such as in the back-arc of the Northeast Japan arc. The Dewa Hills in the back-arc of the Northeast Japan arc is a tectonic uplifted zone parallel to the main direction of the arc, bounded by Kitayuri thrust system (KTS) at western margin. The activity of reverse faults as a result of upper crustal shortening related to the subduction of the Pacific plate beneath the Eurasian plate has affected the morpho-tectonogenesis in the back-arc. This study examines the deep geometry and net slip rate of faults at seismogenic depth in the back-arc, and presents active morphotectonic models related to upper crustal shortening, by analyzing the deformation patterns of topography and geology, and through an examination of elastic dislocation models for reverse faults. The Pleistocene fluvial terraces, a practical geomorphic marker for quantifying crustal movement in the late Quaternary, are developed along some antecedent valleys that truncate the Dewa Hills. Through an investigation of the chronology and correlation of Pleistocene marine and fluvial terraces based on geomorphological and tephrochronological investigations, M terraces correlated with MIS 5 have been widely identified in the back-arc. The maximum uplift rates in the back-arc in the late Quaternary are estimated as 1.0 mm/yr in the Oga Peninsula (Imaizumi 1977; Miyauchi, 1988), and 1.4 mm/yr in the Dewa Hills. The height distribution of geomorphic terraces shows two types of surface deformation patterns in the late Quaternary, and these are produced by the activity of reverse faults: a major deformation unit with a half wavelength of 20-40 km or more, and a secondary deformation unit with a half wavelength of less

  6. GPS Crustal deformation in the Eastern Betics and the Lorca earthquake of 2011

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; Echeverria, Anna; Asensio, Eva; Gárate, Jorge; Suriñach, Emma

    2013-04-01

    We present an updated crustal deformation field in the Eastern Betics, based on GPS observations of the CuaTeNeo network. This non-permanent network was established in 1996 to quantify the current tectonic deformation of the SE Betics. The network consists of 15 stable monuments distributed between Murcia and Almeria, which were observed five times (1997, 2002, 2006, 2009 and 2011). In general, the results show a velocity field lower than 2 mm/yr with a dominant trend oriented parallel to the Eurasia and Nubia relative plate convergence. Stations located farther inland exhibit lower velocity vectors. The calculated crustal deformation field presents clear evidence that the tectonic faults forming the Eastern Betic Shear Zone remain active. As it was evidenced by the May 11th 2011 Lorca earthquake of magnitude Mw5.2, which was caused by a reverse and sinistral slip of the Alhama de Murcia Fault. Our GPS observations, preceding the occurrence of the earthquake, are in agreement with this type of focal mechanism. Co-seismic deformation related to the earthquake was relatively small: offset of ~5mm to the North was detected at the continuous GPS station LORC located within the city.

  7. The behavior of a convergent plate boundary - Crustal deformation in the South Kanto district, Japan

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Kato, T.

    1978-01-01

    The northwesternmost part of the Sagami trough, a part of the Philippine Sea-Eurasian plate boundary, was ruptured during the great South Kanto earthquake in 1923. Very extensive and frequent geodetic measurements of crustal deformation have been made in the South Kanto district since the 1890's, and these constitute the most complete data set on crustal movements in the world. These data were reanalyzed and interpreted and according to our interpretation indicate the following sequence of events. The coseismic movements were due to oblique thrust and right lateral slip of about 8 m on a fault outcropping at the base of the Sagami trough. This was followed by postseismic deformation resulting from reversed afterslip of 20-60 cm that occurred at an exponentially decaying rate in time. The interseismic deformation is produced by steady subduction at a rate of about 1.8 cm/yr. During subduction the top 10-15 km of the plate boundary is apparently locked, while deeper parts slip aseismically at an irregular rate. No significant precursory deformation was observed. The recurrence time for 1923 type earthquakes is 200-300 years. The Boso and Miura peninsulas are broken into a series of fault-bound blocks that move semi-independently of the surrounding region. The subduction zone itself, where it is exposed on land, is shown to be a wide zone encompassing several faults that are active at different times.

  8. Sensing the earth crustal deformation with nano-strain resolution fiber-optic sensors.

    PubMed

    Liu, Qingwen; He, Zuyuan; Tokunaga, Tomochika

    2015-06-01

    Crustal deformation measurement with a high resolution on the order of nano-strains in static to low frequency region is required for geophysical research. Optical fiber sensors are very attractive in this research field due to their unique advantages including high resolution, small size and easy deployment. In this paper, a fiber optic strain sensor with nano-strain-resolution and large measurement range for sensing the earth crustal deformation is reported. With this sensor the tide induced crustal deformation and the seismic wave were successfully recorded in field experiments.

  9. Seismic Crustal and Mantle Deformation Indicators Along the Himalayan Arc

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Levin, V. L.

    2015-12-01

    We compare two seismological indicators of lithospheric deformation along the Himalayan arc from the foothills to the Tibetan plateau, from the eastern to the western syntaxis. The first method is shear wave splitting of core phases such as SKS, which has poor depth resolution but is typically presumed to be primarily sensitive to mantle anisotropy. The data come from a network in western Tibet as well as a worldwide compilation database of results from temporary and permanent networks. The second method is an azimuthal harmonic analysis of receiver functions. Azimuthally varying arrivals in radial and transverse component receiver functions are generated by dipping isotropic contrasts as well as by contrasts in dipping foliation with anisotropy. Both show a two-lobed pattern with backazimuth that identifies the strike of the dipping isotropic contrast or of the foliation. If dipping isotropic contrasts and dipping foliation are formed in the same deformation regime, their strikes are expected to be parallel to one another. The method is different from splitting of P-to-S converted phases. We analyze receiver function data from temporary deployments and permanent stations extending from West Tibet to the eastern syntaxis. SKS results show considerable variation across the arc, including variation in splitting times as well as fast axes on a short spatial scale of ~ 50 km. The scatter is larger within the Himalaya and towards the syntaxes than in the plateau interior. The foliation and dip signal in receiver functions is dominated by crustal arrivals. The mapped strikes are parallel to along-arc faults and to known strike-slip systems and show high regional coherence. We show maps of statistical correlations between splitting fast axes and receiver function strikes and show models of expected orientations seen by the two methods in crust and mantle for different deformation models and compositions. We compare the results to different orogens such as Taiwan, where

  10. JERS-1 Synthetic Aperture Radar Interferometry Applications: Mapping of Rain Forest Environments and Crustal Deformation Studies

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Hensley, S.; Peltzer, G.; Rignot, E.; Werner, C.

    1999-01-01

    This research using JERS-1 SAR data has been very fruitful, resulting in a strong collaboration with geodesists and geophysicists in Japan, and several important papers characterizing crustal deformation, and the capabilities and limitations of JERS data for these studies.

  11. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Sallarès, Valentí; Ranero, César R.; Gerya, Taras

    2016-09-01

    Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood, and several end-member scenarios of seamount-crust interaction are proposed. Here we use high-resolution 3-D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate that characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting subvertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern shows areas of large overpressure above the rearward and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.

  12. Do crustal deformations observed by GPS in Tierra del Fuego (Argentina) reflect glacial-isostatic adjustment?

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Richter, A.; Hormaechea, J. L.; Perdomo, R.; Del Cogliano, D.; Dietrich, R.; Fritsche, M.

    2010-09-01

    Vertical site velocities determined by geodetic GPS observations in the Lago Fagnano area, Tierra del Fuego main island, are interpreted with respect to their potential relation with the glacial-isostatic crustal response to ice mass changes. The spatial pattern of the uplift rates, in combination with the horizontal crustal deformation pattern, point towards a fault-tectonic rather than glacial-isostatic origin of the determined vertical crustal deformations. This implies rather small GIA effects pointing towards relatively small Holocene ice-mass changes in Tierra del Fuego. However, these findings are considered to be preliminary. They should be confirmed by additional observations covering an extended area with GPS sites.

  13. The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning

    NASA Astrophysics Data System (ADS)

    Koulali, A.; McClusky, S.; Susilo, S.; Leonard, Y.; Cummins, P.; Tregoning, P.; Meilano, I.; Efendi, J.; Wijanarto, A. B.

    2017-01-01

    Our understanding of seismic risk in Java has been focused primarily on the subduction zone, where the seismic records during the last century have shown the occurrence of a number of tsunami earthquakes. However, the potential of the existence of active crustal structures within the island of Java itself is less well known. Historical archives show the occurrence of several devastating earthquake ruptures north of the volcanic arc in west Java during the 18th and the 19th centuries, suggesting the existence of active faults that need to be identified in order to guide seismic hazard assessment. Here we use geodetic constraints from the Global Positioning System (GPS) to quantify the present day crustal deformation in Java. The GPS velocities reveal a homogeneous counterclockwise rotation of the Java Block independent of Sunda Block, consistent with a NE-SW convergence between the Australian Plate and southeast Asia. Continuous GPS observations show a time-dependent change in the linear rate of surface motion in west Java, which we interpret as an ongoing long-term post-seismic deformation following the 2006 Mw 7.7 Java earthquake. We use an elastic block model in combination with a viscoelastic model to correct for this post-seismic transient and derive the long-term inter-seismic velocity, which we interpret as a combination of tectonic block motions and crustal faults strain related deformation. There is a north-south gradient in the resulting velocity field with a decrease in the magnitude towards the North across the Kendeng Thrust in the east and the Baribis Thrust in the west. We suggest that the Baribis Thrust is active and accommodating a slow relative motion between Java and the Sunda Block at about 5 ± 0.2 mm /yr. We propose a kinematic model of convergence of the Australian Plate and the Sunda Block, involving a slip partitioning between the Java Trench and a left-lateral structure extending E-W along Java with most of the convergence being

  14. Crustal Seismic Anisotropy Produced by Rock Fabric Terranes in the Taiwan Central Range Deformational Orogen: Integrative Study Combining Rock Physics, Structural Geology, and Passive/Active-Source Seismology

    NASA Astrophysics Data System (ADS)

    Okaya, D. A.; Ross, Z.; Christensen, N. I.; Wu, F. T.; Byrne, T. B.

    2014-12-01

    The island of Taiwan is currently under construction due to the collision of the northwestern corner of the Philippine Sea plate and the embedded Luzon island arc with the larger continental Eurasian plate. This collision is responsible for the current growth of the Central Range that dominates the eastern half of the island. An international collaboration involving several USA and Taiwan universities and academic institutions was formed to study how the orogen evolves through time and to understand the role of a colliding island arc in mountain building. The project, Taiwan Integrated Geodynamics Research (TAIGER), was funded by NSF-Continental Dynamics and Taiwan National Science Council. The Central Range grows at one of the most rapid rates of uplift in the world, exposing metamorphic rocks that were once at least 10 km deep. The range offers unique opportunities for studies of crustal seismic anisotropy for two major reasons: (1) its geological makeup is conducive for producing crustal seismic anisotropy; that is, the rocks are highly foliated; and (2) a seismological data volume of significant breadth offers extensive coverage of sources and recording stations throughout the region. We carried out a crustal shear wave splitting study by data mining 3300 local earthquakes collected in the TAIGER 2009 sea-land experiment. We used an automated P and S wave arrival time picking method (Ross and Ben-Zion, 2014) applied to over 100,000 event-station pairs. These data were analyzed for shear-wave splitting using the MFAST automated package (Savage et al., 2010), producing 3300 quality shear wave split measurements. The splitting results were then station-averaged. The results show NNE to NE orientation trends that are consistent with regional cleavage strikes. Average crustal shear wave split time is 0.244 sec. These measurements are consistent with rock physics measurements of Central Range slate and metamorphic acoustic velocities. The splits exhibit orientations

  15. New GPS Constrains on Crustal Deformation within the Puerto Rico-Virgin Islands Microplate

    NASA Astrophysics Data System (ADS)

    Solares, M. M.; Lopez, A. M.; Jansma, P. E.; Mattioli, G. S.

    2015-12-01

    Over twenty years of Global Positioning System (GPS) observations along the northeastern region of the Caribbean plate boundary zone have been used to evaluate crustal deformation in the Puerto Rico and Virgin Islands (PRVI) microplate, which generally translates westward relative to the Caribbean plate. New data from continuous GPS stations (cGPS) and re-occupied campaign GPS stations (eGPS) obtained between 2014 and 2015 allowed us to update the velocity field of the PRVI GPS Network and redefine the existing plate kinematics model of the PRVI microplate from previous measurements (Jansma et al., 2000; Jansma & Mattioli, 2005). Geodetic datasets for this epoch were processed with GIPSY/OASIS II (v.6.2) using an absolute point positioning strategy with final, precise orbits and clocks from JPL (IGS08). Results of sites velocity in the PRVI block are presented with respect to North America and Caribbean reference frames in ITRF08. The horizontal velocity components were used to calculate baseline lengths changes between selected GPS stations that span on-land faults and microplate boundaries, thus allowing quantification of internal deformation within the PRVI block. This enables us to locate zones of active deformation and faulting in order to understand how the relative motion between geological structures is accommodated. Our updated velocity field constrains intraplate deformation to 1-3 mm/yr across the PRVI microplate and active extension of 1-2 mm/yr in the Anegada passage eastern boundary. In addition, counterclockwise rotation has been observed and may be related to the deformation in southwestern Puerto Rico continuing offshore to the Muertos Trough along PRVI's southern boundary. Despite the PRVI microplate slow motion and small deformation, increasing velocities from east to west coincides with the most active microseismic zone and ongoing deformation in southwestern Puerto Rico suggesting independent motion along this segment of the PRVI block.

  16. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  17. Seismic evidence for widespread western-US deep-crustal deformation caused by extension

    USGS Publications Warehouse

    Moschetti, M.P.; Ritzwoller, M.H.; Lin, F.; Yang, Y.

    2010-01-01

    Laboratory experiments have established that many of the materials comprising the Earth are strongly anisotropic in terms of seismic-wave speeds. Observations of azimuthal and radial anisotropy in the upper mantle are attributed to the lattice-preferred orientation of olivine caused by the shear strains associated with deformation, and provide some of the most direct evidence for deformation and flow within the Earths interior. Although observations of crustal radial anisotropy would improve our understanding of crustal deformation and flow patterns resulting from tectonic processes, large-scale observations have been limited to regions of particularly thick crust. Here we show that observations from ambient noise tomography in the western United States reveal strong deep (middle to lower)-crustal radial anisotropy that is confined mainly to the geological provinces that have undergone significant extension during the Cenozoic Era (since 65 Myr ago). The coincidence of crustal radial anisotropy with the extensional provinces of the western United States suggests that the radial anisotropy results from the lattice-preferred orientation of anisotropic crustal minerals caused by extensional deformation. These observations also provide support for the hypothesis that the deep crust within these regions has undergone widespread and relatively uniform strain in response to crustal thinning and extension. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  18. Seismic evidence for widespread western-US deep-crustal deformation caused by extension.

    PubMed

    Moschetti, M P; Ritzwoller, M H; Lin, F; Yang, Y

    2010-04-08

    Laboratory experiments have established that many of the materials comprising the Earth are strongly anisotropic in terms of seismic-wave speeds. Observations of azimuthal and radial anisotropy in the upper mantle are attributed to the lattice-preferred orientation of olivine caused by the shear strains associated with deformation, and provide some of the most direct evidence for deformation and flow within the Earth's interior. Although observations of crustal radial anisotropy would improve our understanding of crustal deformation and flow patterns resulting from tectonic processes, large-scale observations have been limited to regions of particularly thick crust. Here we show that observations from ambient noise tomography in the western United States reveal strong deep (middle to lower)-crustal radial anisotropy that is confined mainly to the geological provinces that have undergone significant extension during the Cenozoic Era (since approximately 65 Myr ago). The coincidence of crustal radial anisotropy with the extensional provinces of the western United States suggests that the radial anisotropy results from the lattice-preferred orientation of anisotropic crustal minerals caused by extensional deformation. These observations also provide support for the hypothesis that the deep crust within these regions has undergone widespread and relatively uniform strain in response to crustal thinning and extension.

  19. Geodetic Network For Crustal Deformation Control of Northernvictoria Land (antarctica)

    NASA Astrophysics Data System (ADS)

    Capra, A.; Bitelli, G.; Gandolfi, S.; Mancini, F.; Sarti, P.; Vittuari, L.

    VLNDEF (Victoria Land Network for DEFormation control) project started in 1999 with the aim to measure a network for the study of regional geodynamics of northern Victoria Land. In 1999-2000 and 2000-01 italian expeditions, a network of 25 stations with an average distance of 70 km covering the area from Terra Nova Bay, italian sta- tion in Antarctica, to the northern Oates Coast on Pacific ocean, about 700 km long and about 300 km large, was established and surveyed. The network design and stations location were based on principal faults of the area pointed out by most recent tecton- ics studies. The research activity is made within GIANT (Geodetic Infrastructure of ANTarctica) program and ANTEC (ANtarctic neoTECtonics) Group of Specialists of SCAR (Scientific Committee on Antarctic Research).The network coordinates are de- fined in most recent ITRF 2000 system through the emanation from GPS permanent station TNB1. TNB1 was included in SCAR GPS Epoch measurements campaigns and, consequently, connected to IGS network in 2000. VLNDEF includes the first italian reference network about 5000 square km around Terra Nova Bay, and a small network for Mt.Melbourne volcano monitoring. The reference network was surveyed three time, while the detail network was surveyed five time. The data were processed with different software, more recently with Bernese and Gipsy. The processing results and a preliminary approach for deformation analysis are presented.

  20. Current regional stress field and the resultant crustal deformation in SE Korea and their tectonic implication

    NASA Astrophysics Data System (ADS)

    Kim, M. C.; Cho, H.; Son, M.

    2014-12-01

    To determine current regional stress field and to characterize the resultant crustal deformation in SE Korea, Quaternary fault, focal mechanism, and geotechnical in-situ stress data were synthetically analyzed. The Quaternary faults are extensively observed along major inherited fault zones and show compatible orientations with general trends of the inherited faults. Most of the Quaternary faults have a top-to-the-west thrust geometry and kinematics and show a tendency of upward-decreasing dip angle and upward-narrowing gouge zone. Slip-sense indicators and paleo-stress field reconstructions indicate that the faults resulted from reverse or transpressional faulting under an E-W compression. All the magnetic fabrics (AMS) of the fault gouges also indicate the prevailing reverse-slip faulting under an ENE-WNW compression. The dominant oblate magnetic fabrics parallel to fault plane and the degrees of anisotropy increasing in proportion to their oblatenesses indicate that the fabrics have formed by a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. The focal mechanism study in and around the Korean Peninsula show the horizontally clustered P-axes in ENE-WSW direction and the girdle-distributed T-axes in NNW trend. The geotechnical in-situ stress data in south Korea also show NE- or ENE-trending maximum horizontal stress. The current crustal deformation in Korea thus can be characterized by contractional structures produced under a regional E-W or ENE-WSW compression stress field, and most of the Quaternary faults resulted from the local re-activation of appropriately oriented inherited major faults. Considering the tectonic setting and structural features in Asia during the Neogene, the current stress regime is interpreted to have been caused by the cooperation of westward shallow subduction of Pacific Plate and collision of Indian and Eurasian continents since about 5-3.5 Ma.

  1. Short-lived polyphase deformation during crustal thickening and exhumation of a collisional orogen (Ribeira Belt, Brazil)

    NASA Astrophysics Data System (ADS)

    Faleiros, F. M.; Campanha, G. A. C.; Pavan, M.; Almeida, V. V.; Rodrigues, S. W. O.; Araújo, B. P.

    2016-12-01

    The Ribeira Belt (Brazil) is a Neoproterozoic collisional-related feature that was located in a south-central position in West Gondwana. We present quantitative data on finite strain, flow vorticity and deformation temperatures for the Curitiba Terrane, a major segment of the southern Ribeira Belt. Six deformation phases (D1-D6) related with crustal thickening and exhumation were recognized. D1 and D2-related microstructures are preserved exclusively within porphyroblasts, in part grown during stages of high-pressure (∼9-12 kbar) isobaric heating after crustal thickening. D3 phase was active from peak metamorphism attained in contrasting crustal levels (810-400 °C), to the early stage of exhumation (500-400 °C), as indicated by petrological, microstructural and quartz c-axis fabric evidence. Kinematic vorticity results indicate that the SL3 mylonitic fabric resulted from a simple shear-dominated deformation related with westward thrusting. North-verging overturned D4 folds with E-W-trending subhorizontal axes derived from a pure shear-dominated deformation. Regional D5 open folds with subvertical axes and NNE-SSW-trending traces were produced by indentation tectonics. D6 phase comprises retrograde orogen-parallel transcurrent shear zones related with scape tectonics. Geochronological data indicate that D3-D6 phases occurred between 584 and 580 Ma, suggesting a fast exhumation rate of ∼8 mm/year for the deepest rocks from the southern Ribeira Belt.

  2. The Terceira island (Azores) crustal deformations from GPS data

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Catalão, J.; Fernandes, R.; Miranda, M.; Bastos, L.

    2003-04-01

    Several GPS campaigns performed, for the last few years, in the Azores region have proved the utility of GPS data in the evaluation of the relative motion among the Eurasian, North-American and African plates. The study here presented was developed in the scope of the STAMINA project. This project main intention is the study of the deformation pattern of the area along the Terceira Axis, which is considered nowadays as the most active tectonic area of the Azores region. To achieve that, a dense GPS network was implemented on the Terceira Island in October 2000. The network has 23 stations spread uniformly throughout the island, ten of which had already been implemented on 1999 (1 in 1988) in the scope of the TANGO project. These 10 stations were observed for the first time in 1999 and re-observed in 2000 and 2001. The complete network was observed for the first time in March/April of 2001. GPS data from 2 epochs, 1999 and 2001, were used to evaluate the horizontal deformation of the Island for a period of one and a half year. Both campaigns last for 9 days, each station being observed for at least 3 sessions of 12 to 24 hours. One of the stations, located at the Terceira Astronomic Observatory (TERC), was continuously measured during both campaigns. The data processing was performed using the GAMIT and FONDA software. Data from six IGS/EUREF permanent stations were considered to link the local network to the ITRF97 reference system. Precise orbits from the IGS were used in the GPS data processing. The results exhibit repeatabilities of about 3 mm and 2 mm for both components of the horizontal position, respectively for 1999 and 2001. The resulting estimation of the main strain rates for the Island indicates N, NNE and NE directions for the extension of the Island. However, these results are not yet conclusive due to the poor geometry of the 10 stations network and to the short interval of observation. To establish a more reliable deformation pattern for the Island

  3. InSAR and GPS measurements of crustal deformation due to seasonal loading of Tehri reservoir in Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Gahalaut, V. K.; Yadav, Rajeev K.; Sreejith, K. M.; Gahalaut, Kalpna; Bürgmann, Roland; Agrawal, Ritesh; Sati, S. P.; Kumar, Amit

    2017-01-01

    We report unique observations of crustal deformation caused by the seasonal water level changes of Tehri reservoir in the Garhwal region of NW Himalaya from GPS measurements and Interferometric Synthetic Aperture Radar (InSAR) analysis. All GPS sites along the Himalaya are strongly influenced by seasonal hydrological and atmospheric loading. However, the GPS site KUNR located near the reservoir additionally exhibits anomalous variations due to seasonal water loading and unloading by the reservoir. Our InSAR analysis confirms that the seasonal filling of the reservoir causes measurable subsidence in its neighbourhood. In addition to the elastic deformation caused by the seasonal reservoir loading and the negligible poroelastic deformation caused by associated fluid pressure changes, there is an unaccounted for biannual deformation in the east component of the GPS time series which we suspect to be caused by altered hydrological conditions due to the reservoir operations. Understanding crustal deformation processes due to such anthropogenic sources helps in separating deformation caused by tectonic, hydrological and atmospheric effects from that caused by these activities.

  4. Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; González-Escobar, Mario; Navarro, Miguel; Valdez, Tito; Mayer, Sergio; Aguirre, Alfredo; Wong, Victor; Luna, Manuel

    2016-10-01

    earthquakes can occur along the coastline of Baja California, at 60 km east of the Tosco-Abreojos fault system. We conclude that transtensional deformation is taking place across a wide zone of the Pacific margin of Baja California. Finally, we point out that although the studied earthquakes were of small magnitude, they might serve as a reminder of the danger that future larger events pose to San Carlos.

  5. Frednet: a continuous gps geodetic network to monitoring crustal deformation in ne Italy

    NASA Astrophysics Data System (ADS)

    Zuliani, D.; Battaglia, M.; Pascutti, D.; Murray, M.; Burgmann, R.; Michelini, A.; Marson, I.

    2003-04-01

    The Friuli Regional Deformation network (FReDNet) of continuously operating Global Positioning System (GPS) receivers monitors crustal deformation in the Friuli area and the northeast boundary of the Adriatic microplate. The Friuli area, located within the active collision zone between Eurasia and the Adriatic block, is characterized by one of the strongest clusters of seismic activity in the Adriatic microplate. Relative motions of the Adriatic block and deformation across the Friuli region are on the order of 5 mm/yr. The principal goals of the FReDNet program are to determine the distribution of deformation in this region and to estimate interseismic strain accumulation on its active faults to better assess seismic hazards. FReDNet is operated by the Centro Ricerche Sismologiche (CRS) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (INOGS). We began to install the initial 7 stations of FReDNet in the summer of 2002. To integrate geodetic and seismic data, we plan to co-locate some GPS stations with broadband seismometers maintained by the INOGS. FReDNet is part of a larger program of geodetic monitoring of the Adriatic microplate that includes repeating episodic measurements of geodetic points. The data and experience acquired through the FReDNet program will allow the OGS to monitor hazardous faults for emergency response management, and provide infrastructures for geodetic data management and processing.The raw and RINEX data are imported into the data archive mantained by the INOGS and immediately accessible to members of the GPS community through Internet, both by anonymous FTP and by the World Wide Web (www.crs.inogs.it/frednet).

  6. Crustal deformation in southern California using SAR interferometry

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1997-01-01

    By combining pairs of ERS-1/2 SAR images of Southern California spanning long time intervals (1-4 years), we were able to measure the rate of slow deformation processes along faults activated during the Landers 1992 earthquake. Interferograms revealed several centimeters of post-seismic rebound in step-overs of the 1992 break, with a characteristic decay rate of -280 days. We interpreted this process as due to pore fluid flow as pore pressure gradients caused by coseismic stress changes dissipate. The data also revealed evidence of after-slip on different sections of the fault. The southern branches of the 1992 break experienced surface creep producing sharp phase cuts hi the interferometric maps. The same approach was used in the Los Angeles basin, which is currently undergoing NS shortening at a rate of ???8 mm/yr. The tectonic signal in imerferograms of the Los Angeles basin is intermingled with signals due to other sources such as ground subsidence caused by oil and water withdrawal.

  7. Crustal deformation in the central California coast region inferred from Global Positioning System data

    NASA Astrophysics Data System (ADS)

    Murray-Moraleda, J. R.; Thatcher, W. R.; Onishi, C. T.; Svarc, J. L.

    2011-12-01

    The Central California Coast Region (CCCR), defined here as the area from north of Point Piedras Blancas (36°N) south to Point Arguello (34.6°N) and west of the Rinconada and East Huasna faults, is a structurally complex region cut by several subparallel, late Quaternary faults. Despite relatively low rates of deformation inferred from geologic studies of the CCCR, the occurrence of the 2003 Mw 6.5 San Simeon earthquake southeast of Point Piedras Blancas highlights the need to better understand the ongoing patterns of deformation here as a means for assessing the seismic hazard. Geological and geophysical data from this region have been interpreted as evidence for ongoing transpression due to the clockwise rotation of the Transverse Ranges which would predict crustal contraction normal to the plate boundary. However an alternative interpretation concludes that the region instead experiences the active westward transfer of right-lateral strike-slip motion in a left-stepping fashion which would result in northwest-southeast contraction. Geodetic data can be used to elucidate how strain is currently partitioned between shear parallel to the San Andreas Fault (SAF) and contraction within the CCCR and to identify actively deforming structures. We use a newly compiled Global Positioning System (GPS) secular velocity field for the CCCR as well as GPS velocities for the greater southern California region from the SCEC Crustal Motion Map v.4 and the EarthScope Plate Boundary Observatory velocity solution to constrain block models of deformation. We solve for the rotation of fault-bounded blocks, fault slip rates, and internal strain within blocks. Results thus far indicate that the data do not require substantial slip on the Rinconada fault (for which the estimated slip rate is ~2 mm/yr) or on the Oceanic and West Huasna faults that bound the eastern edge of the CCCR in an alternative block configuration (for which the estimated slip rate is <1 mm/yr). The data also do

  8. A dynamical basis for crustal deformation and seismotectonic block movements in central Europe

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1983-01-01

    The stress field in the earth's crust as inferred from satellite gravity data causes crustal deformation and seismotectonic block movements in central Europe. The satellite-determined stresses in the crust of central Europe are consistent with earthquake focal mechanisms, joint-orientation and in situ stress measurements.

  9. Crustal Deformation in the Southwestern Gulf of Mexico: Underthrusting of the Gulf of Mexico beneath Tehuantepec

    NASA Astrophysics Data System (ADS)

    Suarez, Gerardo; Aguilar, Sergio

    2016-04-01

    An array of 45 broad band sensors were installed along the Isthmus of Tehuantepec in southeastern. This experiment, called VEOX, was implemented on August 2007 to March 2009. Data were registered continuously during the whole period. In order to search in the seismic records of the data obtained for crustal events in the Isthmus of Tehuantepec, To this purpose, an STA/LTA algorithm was designed to detect earthquakes with S-P times indicating they occurred close the seismic stations, at crustal or upper mantle depths. During the 18 months that the experiment lasted, about 40 crustal earthquakes were recorded in more than three stations, allowing us to determine a hypo central location. All earthquakes occurring at depths greater than 120 km, within the subjected slab, were discarded. The majority of this crustal or upper mantle activity occurred in the northern part of the Isthmus, along the coast of the Gulf of Mexico or just inland from it. No velocity model exists in the area. Therefore, we tested three different velocity models, including one obtained in an adjacent region and based on seismic refraction data. One of these three models rendered the more stable solutions and smaller errors in the hypocentral locations and was used as the local seismic velocity model. In order to improve the quality of the locations, we experimented using a double difference hypocentral algorithm (HYPODD). There was no noticeable improvement in the quality of the hypocenters using this technique. The best located events suggest a southwestern-dipping zone of seismic seismicity, deepening from the Gulf of Mexico towards the interior of the Isthmus of Tehuantepec. The focal mechanisms of the earthquakes indicate the maximum axis of compresion (P axis) is oriented nearly horizontally and in a southwest-northeast direction. These mechanisms are similar to those observed for earthquakes previously studied in the region on the basis of teleseismic data, such as the Mw 6.9, 29 August

  10. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Sun, Ya; Liu, Jianxin; Zhou, Keping; Chen, Bo; Guo, Rongwen

    2015-07-01

    The convergence of India and Eurasia and the obstruction from the rigid Sichuan Basin cause the Longmenshan (LMS) to have the steepest topographic gradient at the eastern margin of the Tibetan Plateau. However, the mechanisms of surface uplift are still controversial. In this paper, we estimate the crustal structure and deformation under the LMS and its surroundings by analyzing a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration. We apply a comprehensive splitting measurement technique on Ps conversion phase at the Moho (Moho Ps splitting) to calculate crustal anisotropy from azimuthal variations of receiver functions. Our results show that most of the seismic stations beneath the LMS area exhibit significant seismic anisotropy with the splitting time of 0.22-0.94 s and a fast polarization direction of NW-SE, while less or even no crustal anisotropy has been observed under the Sichuan Basin. Comparing the fast polarization directions of Moho Ps splitting with the indicators of lithospheric deformation (such as shear wave splitting, absolute plate motion, and global positioning system) imply a consistent tendency of deformation between the lower crust and upper mantle, but decoupling deformation in the crust beneath the LMS area. We further compare Moho Ps splitting time to that estimated from previous SKS splitting, indicating that crustal anisotropy is an important source of the SKS splitting time in this study area. In addition, a thick crust (>50 km) with high Vp/Vs values (1.74-1.86) is also observed using the H-κ stacking method. These seismic observations are consistent with the scenario that the LMS area has been built by the lower crustal flow. Combined with the seismic reflection/refraction profile and geology studies, we further suggest that the lower crustal flow may extrude upward into the upper crust along the steeply dipping strike faults under the LMS area, resulting in the surface

  11. Contrasted terrace systems of the lower Moulouya valley as indicator of crustal deformation in NE Morocco

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Bartz, Melanie; El Ouahabi, Meriam; Szemkus, Nina; Brueckner, Helmut

    2016-04-01

    The Moulouya river has the largest catchment in Morocco and drains an area which is characterized by active crustal deformation during the Late Cenozoic due to the convergence between the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly documented. Our study focuses on the lowermost reach of the river in NE Morocco, which drains the Triffa sedimentary basin directly upstream of the estuary. New field observations, measurements and sedimentological data reveal contrasted fluvial environments on either side of a newly identified thrust zone, which disrupts the whole sedimentary basin and is associated with N-S compressive shortening in this region (Barcos et al., 2014). Long-lasting fluvial aggradation, materialized by ≥37 m-thick stacked fill terraces, and the development of a well-preserved terrace staircase, with (at least) three Pleistocene terrace levels, occur in the footwall and the hanging wall of the thrust, respectively. Same as for the Pleistocene terrace sediments of the middle Moulouya, a recurrent sedimentary pattern, characterized by fining-upward sequences was observed in the studied terrace profiles. Assessing the rates of crustal deformation along this main thrust zone requires age estimations for these Pleistocene terrace deposits of the lower Moulouya on each side of the thrust. Samples for luminescence (OSL/IRSL), electron spin resonance (ESR, on quartz) and cosmogenic nuclide dating (26Al/10Be, burial dating) were collected in terrace deposits located both in the foot- and hanging walls. Sample preparation and analysis as well as age determination are in progress. The preliminary data mentioned above, soon to be completed by chronological data, agree well with morphometric indicators stating that the whole Moulouya catchment is at disequilibrium state (Barcos et al., 2014). This is confirmed by several knickpoints in its longitudinal profile. Late Cenozoic uplift associated with crustal shortening, which

  12. Models for rupture mechanics of plate boundaries and crustal deformation

    NASA Astrophysics Data System (ADS)

    Nur, A.

    1983-02-01

    The role of pull aparts and pushups in transcurrent systems, the rotation of faults and blocks within transcurrent fault systems, the role of accretion tectonics in plate boundary deformation, and power law creep behavior and the yielding at plate boundaries were investigated.

  13. Models for rupture mechanics of plate boundaries and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.

    1983-01-01

    The role of pull aparts and pushups in transcurrent systems, the rotation of faults and blocks within transcurrent fault systems, the role of accretion tectonics in plate boundary deformation, and power law creep behavior and the yielding at plate boundaries were investigated.

  14. Upper crustal control of deformation and hydrocarbon traps along Upper Magdalena Valley, Colombia

    SciTech Connect

    Butler, K.; Schamel, S.

    1989-03-01

    The compressive tectonic history of the Upper Magdalena Valley (UMV) is dominated by three Tertiary cratonward-verging deformation phases: (1) an early to middle Eocene uplift of the Central Cordillera, (2) a late Oligocene climax to this uplift and emplacement of crustal-rooted thrusts along the eastern flank of the Central Cordillera, and (3) the Miocene-Pliocene development of the Eastern Cordillera. Uniquely, each of these distinct deformation episodes displays similar structural trends despite exhibiting varying convergences and emplacement along strike. Previously, interpretations of this region focused on a single, possibly transpressional, Andean-age deformation. Based on this reexamination, two distinct climatic events are seen in the Central and Eastern Cordillera structures, which are similar because Eocene-Pliocene compressive deformation was controlled by an older regional upper crustal fabric. These multiple episodes match deformation phases seen elsewhere in the northern Andes and thus may lend evidence for a regional tectonic relationship to the Andean deformed belts. These deformational phases and their associated depositional packages indicate that the UMV has undergone as least two periods of oil generation and migration. This history is similar to that of the structures seen in the Middle Magdalena Valley and draws an additional parallel in the pre-Andean structural development of this area of Colombia.

  15. Crustal deformation associated with the 2011 eruption of the Nabro volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Baer, Gidon

    2016-11-01

    We investigate the crustal deformation associated with the 2011 eruption of the Nabro volcano, Afar, Eritrea. The Nabro volcano erupted on the night of 12 June 2011. A seismic sequence started 5 h before the onset of the volcanic eruption. It included 25 M > 3 earthquakes, of which one Mw 5.6 normal fault earthquake occurred on 12 June at about the same time as the onset of the eruption, and one Mw 5.6 strike-slip earthquake occurred at the end of the main sequence on 17 June. The deformation associated with the eruption and the seismic activity was resolved by Interferometric Synthetic Aperture Radar (InSAR) measurements of the TerraSAR-X and ENVISAT satellites. Interferograms were generated using ascending and descending track pairs. The Nabro caldera and the associated channel of magma flow are characterized by significant loss of coherence which limited our InSAR observations at the near field of the volcano. Therefore, detailed assessment of co- and post-eruptive seismicity and monitoring of post-eruptive deformation using continued InSAR observations were added to the co-eruptive analysis in order to better constrain the different magmatic and tectonic components and determine the final source model. We carried out tens of different inversion models. Our best-fit model includes a dike, a normal fault and a strike-slip fault, consistent with the mechanisms of the major earthquakes. Coulomb stress calculations based on our model are found to be in agreement with post-eruptive seismicity. Finally, the source mechanism and geometry of our model are found to be in accord with the major tectonic structures in this area.

  16. Seismic Noise Auto-Correlation Function Changes Correlate with the Crustal Deformation for off-Izu Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Ueno, T.; Saito, T.; Shiomi, K.; Enescu, B.; Hirose, H.

    2010-12-01

    . The higher coherency shown around the seismic swarm periods were rare case, spanning less than 5% of the total observation time. It is difficult to pinpoint the causes for the individual temporal changes of ACFs amplitude and tilt. However, the temporal changes of ACFs have been seldom correlated with the tilt records except for the seismic swarm periods. Magma intrusion could explain both the crustal deformations and changes of crustal properties at which ACFs are particularly sensitive. It can be also the triggering factor for the swarm activity itself, as discussed in previous research. These observations stress out the importance of continuous monitoring of crustal deformations, and may produce important information for the prediction of seismic swarm occurrence.

  17. Measuring Crustal Deformation Caused by the Nepal (Gorkha) Earthquake Using ALOS-2 SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Morishita, Y.; Kobayashi, T.; Yarai, H.

    2015-12-01

    A huge earthquake (Mw 7.8, USGS) occurred on 25 April, 2015 in Nepal, followed by the largest aftershock (Mw 7.3, USGS) on 12 May. We applied an InSAR technique to detect crustal deformation caused by the earthquakes using L-band SAR data acquired by ALOS-2. One of the advantages of ALOS-2 over ALOS is ScanSAR interferometry. Beam synchronization, which is a critical factor for ScanSAR interferometry, is always tuned among ALOS-2 observations. While a width of 350 km is covered by a ScanSAR acquisition, the provided data is divided into five swaths with each width of 70 km. Adjacent swaths have an overlapping area with a width of several kilometers, where interferometric phases for two swaths are basically comparable. We processed each swath independently. Preliminary interferograms are contaminated by noises with long wavelength, which makes it difficult to measure the amount of the crustal deformation accurately. We reduce the noises by following steps. First, pseudo reference points with no displacement are put at intervals of 40-100 km outside of the possible deforming area. The differential phase at the points are assumed to be due to the noises. The curved surface of the noises is estimated by smoothly interpolating the differential phase at the points. Note that the pseudo reference points should be located in a high coherence area where the phases can be unwrapped. Furthermore the points in the overlapping area between adjacent swaths allow to preserve consistency of the phases between adjacent swaths. The interferograms show the clear and detailed crustal deformation (published on http://www.gsi.go.jp/cais/topic150429-index-e.html). The maximum of a quasi up-down component of the deformation estimated from the interferograms with different beam directions reaches over 1.4 m uplift at 20 km northeast from Kathmandu and 0.6 m subsidence at a northern part of the deforming area.

  18. Strength anisotropy of shales deformed under uppermost crustal conditions

    NASA Astrophysics Data System (ADS)

    Bonnelye, Audrey; Schubnel, Alexandre; David, Christian; Henry, Pierre; Guglielmi, Yves; Gout, Claude; Fauchille, Anne-Laure; Dick, Pierre

    2017-01-01

    Conventional triaxial tests were performed on three sets of samples of Tournemire shale along different orientations relative to bedding (0°, 45°, and 90°). Experiments were carried out up to failure at increasing confining pressures ranging from 2.5 to 160 MPa, at strain rates ranging between 3 × 10-7s-1 and 3 × 10-5s-1. This allowed us to determine the entire anisotropic elastic compliance matrix as a function of confining pressure. Results show that the orientation of principal stress relative to bedding plays an important role on the brittle strength, with 45° orientation being the weakest. We fit our results with a wing crack micromechanical model and an anisotropic fracture toughness. We found low values of internal friction coefficient and apparent friction coefficient in agreement with friction coefficient of clay minerals (between 0.2 and 0.3) and values of KIc comparable to that already published in the literature. We also showed that strain rate has a strong impact on peak stress and that dilatancy appears right before failure and hence highlighting the importance of plasticity mechanisms. Although brittle failure was systematically observed, stress drops and associated slips were slow and deformation always remained aseismic (no acoustic emission were detected). This confirms that shales are good lithological candidates for shallow crust aseismic creep and slow slip events.

  19. Comparing tiltmeters for crustal deformation measurement--a preliminary report.

    PubMed

    Wyatt, F; Bilham, R; Beavan, J; Sylvester, A G; Owen, T; Harvey, A; Macdonald, C; Jackson, D D; Agnew, D C

    1984-10-01

    A collection of high-precision tiltmeters is being operated at Pinon Flat Observatory, southern California, both to compare instruments and to measure tectonic deformation. We report on 1.2 years of data from four of these: two Michelson-Gale long fluid tiltmeters, one long center-pressure tiltmeter, and a shallow borehole tiltmeter. The three long-base instruments are all located on the same baseline, with a precise leveling line running between their end-monuments. At nontidal frequencies, only the two Michelson-Gale instruments show some coherence (gamma 2 = .3 for periods of 2 to 4 days), while the center-pressure instrument is correlated with air temperature at periods from a few days to a few weeks. The most stable tilt record shows a secular rate of 0.28 mu rad/a, which may be real. Over much longer times, leveling to specially stabilized bench-marks should confirm this. Comparing instruments has identified more and less successful measurement techniques; it appears that low-noise data will most probably be produced only by relatively complex and expensive instruments, though even for these, the operating costs over any reasonable lifetime will exceed the capital cost. Even the best existing sensors must be improved to measure continuous tectonic motions.

  20. Recent Observational Results of Seafloor Crustal Deformation Along the Suruga-Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Sugimoto, S.; Watanabe, T.; Muto, D.; Kimoto, A.; Okuda, T.; Ikuta, R.; Sayanagi, K.; Kuno, M.

    2008-12-01

    The Suruga-Nankai Trough is one of the active plate boundaries in the world. The Philippine Sea plate is subducting beneath the Amurian (Eurasian) plate along the tough, and major subduction earthquakes, Nankai and Tonankai earthquakes, have repeatedly occurred with intervals of about 100-150 years. The 1944 Tonankai and 1946 Nankai earthquakes are the most recent significant earthquakes along the trough. Therefore, the 50-years probabilities of the next major earthquakes are estimated at 80-90% by Headquarters for Earthquake Research Promotion, Japanese Government. It is, therefore, necessary to start monitoring crustal deformation above the source regions of the major earthquakes where in the ocean area. We developed a new system composed of the precise acoustic ranging and kinematic GPS positioning techniques for monitoring of seafloor crustal deformation [Tadokoro et al., 2006, GRL; Ikuta et al., 2008, JGR]. We had installed seven seafloor benchmarks for acoustic ranging at the Suruga-Nankai Trough region between 2002 and 2004. The water depths at the benchmarks are about 800 to 2000 m. We installed a new seafloor benchmark at the eastern margin of the Kumano Basin on June 23, 2008. Three seafloor benchmarks had been aligned perpendicular to the trough axis. In contrast, the new benchmark was installed eastward relative to the pre-installed benchmarks, and we can monitor lateral variations in crustal deformation at the region. We started the repeated measurements at four benchmarkes (two at the Kumano Basin named KMN and KMS, and the other two at the Suruga Bay named SNW and SNE) in 2005. The number of times we have measured are seven, eleven, three and nine times at KMN, KMS, SNW and SNE, respectively. Recent results of the repeated measurements show the following horizontal velocities with relative to the Amurian Plate: 6.4 cm/yr, N86W at KMN; 5.3 cm/yr, N71W at KMS; 3.3 cm/yr, N57W at SNE. The errors of the horizontal velocities are 1-3 cm/yr. Unfortunately

  1. Contrasting terrace systems of the lower Moulouya river as indicator of crustal deformation in NE Morocco

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Bartz, Melanie; El Ouahabi, Meriam; Szemkus, Nina; Brückner, Helmut

    2017-02-01

    The Moulouya river has the largest catchment in Morocco and drains an area characterized by active crustal deformation during the Late Cenozoic due to the N-S convergence between the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly documented. Our study focuses on the lowermost reach of the river in north-eastern Morocco, which drains the Zebra-Triffa sedimentary basin directly upstream of the estuary. New field observations, measurements and sedimentological data reveal contrasting fluvial environments on each side of a newly identified, W-E striking thrust zone disrupting the sedimentary basin. On the one hand, long-lasting fluvial aggradation, materialized by 37 m-thick stacked terraces, has occurred in the footwall of the thrust. On the other hand, the hanging wall is characterized by a well-preserved terrace staircase, with three Pleistocene terrace levels. Whilst the identification of this thrust zone question some previous interpretations about the local (hydro-)geology, it is consistent with the statement that most of the Plio-Quaternary deformation in the eastern Rif mountains has concentrated in this region of Morocco. Our new data and interpretations also agree with morphometric indicators showing that the whole Moulouya catchment is at desequilibrium state (i.e. several knickzones in its longitudinal profile), showing several knickzones in its longitudinal profile, is at disequilibrium state. We also suggest that the knickzone in the Beni Snassen gorge, located directly upstream of the Zebra-Triffa sedimentary basin, could (partly) result from a transient fluvial reaction to Late Cenozoic thrusting activity and correlated uplift in the hanging wall.

  2. Bulk crustal properties in NE Tibet and its implication for deformation model

    NASA Astrophysics Data System (ADS)

    Tian, Xiaobo

    2014-05-01

    The crust beneath the northeastern (NE) Tibetan Plateau records far field effects of collision and convergence occurring between the Indian and Eurasian plates. A better structural understanding of the crust beneath NE Tibet can improve our understanding of Cenozoic deformation resulting from the India-Eurasia collision. Taking advantage of the relatively dense coverage in most areas in NE Tibet except for the Qaidam basin by regional seismic networks of Gansu and Qinghai Provinces, we isolate receiver functions from the teleseismic P wave data recorded from 2007 to 2009 and resolve the spatial distribution of crustal thickness and Vp/Vs ratio beneath NE Tibet from H-K scanning. Our results can be summarized as: (1) NE Tibet is characterized by ~ 60-km-thick crust beneath the Nan Shan, Qilian Shan thrust belts and the Anyemaqen Shan, and 45-50 km-thick crust beneath the Tarim basin, the Alashan depression and the Ordos basin; the crust thins gradually from west to east in addition to the previously observed pronounced thinning from south to north; (2) the crust of NE Tibet exhibits a relatively lower Vp/Vs ratio of 1.72 than the north China block and a decrease in average crustal Vp/Vs ratio with increasing crustal thickness; and (3) the crustal thicknesses are less than the values predicted by the simple isostatic model of throughout Tibetan plateau in where the elevation is larger than 3.0 km. Our observations can be explained by the hypothesis that deformation occurring in NE Tibet is predominated by upper-crustal thickening or lower-crust extrusion.

  3. Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS

    NASA Astrophysics Data System (ADS)

    Ueda, Hideki; Kozono, Tomofumi; Fujita, Eisuke; Kohno, Yuhki; Nagai, Masashi; Miyagi, Yousuke; Tanada, Toshikazu

    2013-06-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) developed volcano observation stations at the Kirishima volcanic group in 2010. The stations observed remarkable crustal deformation and seismic tremors associated with the Shinmoe-dake eruption in 2011. The major eruptive activity began with sub-Plinian eruptions (January 26) before changing to explosive eruptions and continuous lava effusion into the summit crater (from January 28). The observation data combined with GEONET data of GSI indicated a magma chamber located about 7 km to the northwest of Shinmoe-dake at about 10 km depth. The tiltmeter data also quantified detailed temporal volumetric changes of the magma chamber due to the continuous eruptions. The synchronized tilt changes with the eruptions clearly show that the erupted magma was supplied from the magma chamber; nevertheless, the stations did not detect clear precursory tilt changes and earthquakes showing ascent of magma from the magma chamber just before the major eruptions. The lack of clear precursors suggests that magma had been stored in a conduit connecting the crater and the magma chamber prior to the beginning of the sub-Plinian eruptions.

  4. Block rotations, fault domains and crustal deformation in the western US

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.

  5. The 10 April 2014 Earthquake in Central Nicaragua: Evidence of Complex Crustal Deformation in Central America

    NASA Astrophysics Data System (ADS)

    Suarez, G.; Muñoz, A.; Talavera, E.; Tenorio, V.; Farraz, I.; Novelo-Casanova, D. A.; Sánchez, A.

    2014-12-01

    On 10 April 2014 a magnitude Mw 6.1 struck central Nicaragua. The main event and the aftershocks were clearly recorded by the Nicaraguan seismic network. These crustal earthquakes were strongly felt but caused relatively little damage to the city of Managua and to the surrounding cities and towns. This is in sharp contrast to the destructive effects of the 1972 earthquake in the capital city of Managua. The differences in damage stem from the fact that in 1972, the earthquake occurred on a fault beneath the city; in contrast, the 2014 event lies offshore, under Lake Managua. The distribution of aftershocks shows two clusters of seismic activity. In the northwestern part of Lake Managua, an alignment of aftershocks suggests a southeast trending fault. The reported source mechanism suggests right-lateral strike slip motion on a plane with the same azimuth as the aftershock sequence. A second cluster of seismic activity occurred simultaneously, but spatially separated, beneath Apoyeque volcano. There is no clear alignment of the epicenters in this cluster. Seismic scaling relations between magnitude and the fault length predict a length of approximately 10 km for an earthquake of this magnitude. This is in agreement with the extent of the fault defined by the aftershock sequence. The northeast - southwest trending Tiscapa and Ciudad Jardín faults that broke during the 1972 and 1931 Managua earthquakes are orthogonal to the fault where the 10 April earthquake occurred. This set of conjugate faults confirms that Central Nicaragua is being deformed in a complex tectonic style of deformation. The forearc sliver between the trench and the volcanic arc moves to the northwest relative to the Caribbean plate. This deformation, however, does not take place on a single set of faults. The motion is apparently accommodated by a system of conjugate faults: right lateral, strike-slip faults oriented parallel to the volcanic arc and another set of faults trending northeast

  6. A Study on Investigation of Crustal Deformation and Block Kinematics Along the Eastern Sector of the NAF by GPS Measurements

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Kagawa, D.; Gulen, L.; Arpat, E.; Yilmaz, O.; Dogru, A. G.; Ogutcu, Z.; Yilmazer, M.; Gunes, Y.; Sanli, U.; Cakmak, R.; Turgut, B.

    2003-12-01

    This study constitutes part of an integrated project that have been carried out jointly by the Kandilli Observatory and Earthquake Research Institute (KOERI) and the TUBITAK-MAM to investigate crustal deformation and block kinematics by Global Positioning System (GPS) measurements in and around the eastern sector of the North Anatolian Fault (NAF) Zone. The integrated project is also include investigation of seismicity and earthquake potential. Additionally the Radon gas emissions will also be monitored on-line, near real-time along active fault zones in an attempt to predict earthquakes. The region is an ideal choice to carry out the above mentioned investigations, because due to the northward movement of the Arabian Plate, the Erzincan-Karliova region is squeezed, crushed, and expelled westward along the NAF and East Anatolian Fault Zones. The active fault pattern indicates that maximum crustal shortening and crustal deformation in Turkey takes place in this region. Despite this, the Yedisu segment of the NAF was identifed as a seismic gap and it has not been broken entirely since the 1784 earthquake. This region is the most tectonically active region in Turkey as far as the major earthquake occurences are concerned and it is capable of generating major earthquakes in every 3-4 years. It is quite obvious that following the 1992 Erzincan and 2003 Pulumur Earthquakes the Coulomb stress loading on the Yedisu segment of the NAF have been increased significantly and the region needs to be monitored vigilantly with the full armament of geophysical techniques such as seismic (network), geodetic (GPS, InSAR), and geochemical (Radon emissions) techniques. First period GPS measurements were performed at twelve GPS stations in the area. This study reports the evaluation of this GPS data.

  7. Crustal Deformation During the 2011 Volanic Crisis of El Hierro, Canary Islands, Revealed by Continuous GPS Observation

    NASA Astrophysics Data System (ADS)

    Sagiya, T.; Barrancos Martinez, J.; Calvo, D.; Padron, E.; Hernandez, G. H.; Hernández, P. A.; Perez Rodriguez, N.; Suárez, J. M. P.

    2012-04-01

    Seismo-volcnic activity of El Hierro started in the middle of July of 2011 and resulted in the active submarine eruption after October 12 south off La Restinga, the southern tip of the island. We have been operating one continuous GPS site on the island since 2004. Responding to the activity, we quickly installed 5 more GPS sites. Including another site operated by the Canary Islands Cartograhical Service (GRAFCAN) for a cartographic purpose, we have been monitoring 7 GPS sites equipped with dual-frequency receivers. We present the result of our crustal deformation monitoring and the magmatic activity inferred from the deformation data. In accordance with the deformation pattern, we divide the volcanic activity in 2011 into 4 stages. The first stage is from the middle of July to middle of September, during which steady magmatic inflation is estimated at the center of the island. The inflated volume of the first stage is estimated to be about 1.3 X 107 m3 at the depth of about 5km. The second stage, which continued until the first submarine eruption on October 12, is characterized by the accelerated deformation due to the upward as well as southward migration of magma. Additional inflation of about 2.1 X 107 m3 occurred in the depth range of 1-2km. The third stage continued for about 3 weeks after the first submarine eruption. During this stage, submarine eruption continues while no significant surface deformation is observed. It is considered magma supply from a deeper magma chamber continued during this 3 weeks period. Therefore, the total inflation volume during the first two stages gives the minimum estimate for the total magma volume. Since the beginning of November 2011, many GPS sites started subsiding. However, this deflation pattern is quite different from those in the shallow inflation stages. Horizontal deformation during this 4th stage is not significant, implying that deflation is occurring below the moho.

  8. Crustal structure along the active Costa Rican volcanic arc

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Holbrook, W. S.; van Avendonk, H. J.; Mora Fernandez, M.; Alvarado, G. E.; Harder, S. H.

    2010-12-01

    We present results from an explosion-source seismic refraction transect along the entire active Costa Rican volcanic arc. The seismic data were acquired in 2005 as part of the TICO-CAVA experiment with the goals of delineating the basic crustal architecture of this relatively young volcanic arc, understanding magmatic emplacement processes, and estimating the bulk composition and growth rates of arc crust. The seismic transect extends ~280 km along the axis of the arc and consists of 16 shots (200 - 1200 kg) recorded by 710 seismometers. The active Costa Rican arc consists of two segments with distinct morphologies, the Guanacaste Cordillera (GC) in the north and Central Cordillera (CC) in the south. This segmentation is linked to the subducting Cocos ridge, which occurs beneath the CC and has a northern boundary roughly coincident with the arc segment boundary. Volcanoes of the GC rise from a plateau of ~500 m elevation to maximum heights of ~1500 m, while the CC volcanoes rise from ~1500 m to heights of 3500 m. The crustal structure beneath these segments is distinctly different. The entire arc is covered by a ~5-km-thick carapace with velocities of 4.5-5.8 km/s that probably represent volcaniclastics, flows and small plutons. Beneath the GC, a 1- to 2-km-thick “grainitic” layer (6.0-6.1 km/s) lies beneath the carapace. Velocities below this granitic layer suggest a somewhat more mafic composition, but they increase slowly with depth from 6.2-6.3 km/s between 6-15 km depth. Total crustal thickness beneath the GC is ~40 km, but analysis of crustal thickness is ongoing. The crust beneath Guanacaste thus has a velocity structure very similar to average continental crust, though with slightly slower velocities, perhaps due to high temperatures beneath the arc. As the arc has only been active in this location for <5 m.y., this suggests that either the earlier Neogene arc to the west substantially modified the oceanic-plateau crustal foundation here or that the

  9. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    PubMed Central

    Pan, Yuanjin; Shen, Wen-Bin; Hwang, Cheinway; Liao, Chaoming; Zhang, Tengxu; Zhang, Guoqing

    2016-01-01

    Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet. PMID:27490550

  10. Fault locking, block rotation and crustal deformation in the Pacific Northwest

    USGS Publications Warehouse

    McCaffrey, R.; Qamar, A.I.; King, R.W.; Wells, R.; Khazaradze, G.; Williams, C.A.; Stevens, C.W.; Vollick, J.J.; Zwick, P.C.

    2007-01-01

    We interpret Global Positioning System (GPS) measurements in the northwestern United States and adjacent parts of western Canada to describe relative motions of crustal blocks, locking on faults and permanent deformation associated with convergence between the Juan de Fuca and North American plates. To estimate angular velocities of the oceanic Juan de Fuca and Explorer plates and several continental crustal blocks, we invert the GPS velocities together with seafloor spreading rates, earthquake slip vector azimuths and fault slip azimuths and rates. We also determine the degree to which faults are either creeping aseismically or, alternatively, locked on the block-bounding faults. The Cascadia subduction thrust is locked mainly offshore, except in central Oregon, where locking extends inland. Most of Oregon and southwest Washington rotate clockwise relative to North America at rates of 0.4-1.0?? Myr-1. No shear or extension along the Cascades volcanic arc has occurred at the mm/yr level during the past decade, suggesting that the shear deformation extending northward from the Walker Lane and eastern California shear zone south of Oregon is largely accommodated by block rotation in Oregon. The general agreement of vertical axis rotation rates derived from GPS velocities with those estimated from palaeomagnetic declination anomalies suggests that the rotations have been relatively steady for 10-15 Ma. Additional permanent dextral shear is indicated within the Oregon Coast Range near the coast. Block rotations in the Pacific Northwest do not result in net westward flux of crustal material - the crust is simply spinning and not escaping. On Vancouver Island, where the convergence obliquity is less than in Oregon and Washington, the contractional strain at the coast is more aligned with Juan de Fuca-North America motion. GPS velocities are fit significantly better when Vancouver Island and the southern Coast Mountains move relative to North America in a block

  11. Post-Seismic Crustal Deformation Following The 1999 Izmit Earthquake, Western Part Of North Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Gurkan, O.; Ozener, H.

    2004-12-01

    The North Anatolian Fault is an about 1500 km long, extending from the Karliova to the North Aegean. Turkey is a natural laboratory with high tectonic activity caused by the relative motion of the Eurasian, Arabian and Anatolian plates. Western part of Turkey and its vicinity is a seismically active area. Since 1972 crustal deformation has been observed by various kinds of geodetic measurements in the area. Three GPS networks were installed in this region by Geodesy Department of Kandilli Observatory and Earthquake Research Institute( KOERI ) of Bogazici University: (1) Iznik Network, installed on the Iznik-Mekece fault zone, seismically low active part, (2) Sapanca Network, installed on the Izmit-Sapanca fault zone, seismically active part, (3) Akyazi Network, installed on their intersection area, the Mudurnu fault zone. First period observations were performed by using terrestrial methods in 1990 and these observations were repeated annually until 1993. Since 1994, GPS measurements have been carried out at the temporary and permanent points in the area and the crustal movements are being monitored. Horizontal deformations, which have not been detected by terrestrial methods, were determined from the results of GPS measurements. A M=7.4 earthquake hit Izmit, northern Turkey, on August 17, 1999. After this earthquake many investigations have been started in the region. An international project has been performed with the collaboration of Massachussets Institute of Technology, Turkish General Command of Mapping, Istanbul Technical University, TUBITAK-Marmara Research Center and Geodesy Department of KOERI. Postseismic movements have been observed by the region-wide network. A GPS network including 49 well spread points in Marmara region was observed twice a year between 1999 and 2003 years. During these surveys, another network with 6 points has been formed by using 2 points from each 3 microgeodetic networks on NAFZ with appropriate coverage and geometry. These

  12. Analysis of crustal deformation and the earthquake potential in Taiwan by block modeling and geodetic observations

    NASA Astrophysics Data System (ADS)

    Lee, Chiou-Hsien; Chang, Wu-Lung

    2016-04-01

    Taiwan locates on the boundary between the Philippline Sea plate and the passive continental margin of the Eurasian plate, where is one of the active seismogenic region in the world. We characterize the kinematics of modern crustal deformation in Taiwan and evaluate the earthquake potential for large earthquakes by computing tectonic block motions and fault slip rates of the active faults from GPS observations and geologic slip rate constraints. Our model slip rates are reconciled with the geologic rates constrained by geologic slip rates. Attempt to discuss the regional characters, we separate Taiwan into five sub-regions exhibit distinct tectonic behavior, which are southwestern, central, northern, eastern Taiwan and the Central Range. In southwestern Taiwan with an obvious southwestward extrusion, we can separate this area into two major domains from our distribution of principal strain rates of each block. One is the deforming domain with larger strain rates about 1.1 to 1.2 μstrain/yr and majorly clockwise rotation rates, another is the quasi-rigid block domain with opposite effect. This is coincided with previous geodetic analysis study. Central Taiwan is characterized by the clockwise block rotation and slip deficit estimated about 3 mm/yr. The higher slip rates estimated by 10 to 20 mm/yr are located in the foothills region of central and southwestern Taiwan. In northern Taiwan, the fault slip rates are relatively lower because of the gradually weak plate motion. Because of the full collision of plate motion, the long-term slip rates of Longitudinal Valley region are as high as 50 mm/yr. The postseismic relaxation of the 1999 Mw 7.6 Chi-Chi earthquake and of the 2010 Mw 6.4 Jiashian earthquake may be responsible for these faults with high slip rates. In the southern part of the Central Range, there is a significant extension besides the plate convergence. The principal strain rates of the blocks within this region are estimated about 0.4 to 0.7 μstrain/yr.

  13. Quaternary crustal deformation along a major branch of the San Andreas fault in central California

    USGS Publications Warehouse

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J. F.

    1979-01-01

    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0

  14. Crustal stacking and expulsion tectonics during continental subduction: P-T deformation constraints from Oman

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Searle, Michael P.; Alsop, G. Ian; Dubacq, B.

    2010-10-01

    The northeastern continental margin of Oman in the Saih Hatat region is characterized by high-pressure (HP) chloritoid- or carpholite-bearing metasediments and highly deformed mafic eclogites and blueschists in a series of tectonic units bounded by high-strain ductile shear zones. New data on the upper cover units of this HP nappe stack indicate that all of them underwent similar P conditions to the underlying Hulw structural unit (with a cooler exhumation pressure-temperature path). Early SSW directed crustal thickening during ophiolite emplacement created recumbent folds and strong schistose fabrics in these Permian-Mesozoic shelf carbonates and was followed by later NNE dipping normal sense shear zones and normal faults. The Mayh unit shows high strain in a 15-25 km long sheath fold that likely formed at carpholite grade pressures of 8-10 kbar. We show that there are no significant P differences across the Hulw shear zone (upper plate-lower plate discontinuity) or between the overlying Mayh, Yenkit-Yiti, and Ruwi units. Postpeak metamorphic exhumation of the HP rocks was therefore accomplished by bottom-to-SSW (rather than top-to-NNE) active footwall extrusion beneath a fixed, static, passive hanging wall. Footwall uplift beneath these passive roof faults resulted in progressive expulsion of the HP rocks from depths of ˜80-90 km (eclogites) and mainly 30-35 km (blueschists and chloritoid-/carpholite-bearing units) during the Campanian-Early Maastrichtian. Oman thus provides a detailed record of how continental material (thick platform shelf carbonates) progressively jammed a subduction zone and emphasizes the contrasting behavior between cover units and their underlying basement.

  15. Crustal deformation measurements in central Japan determined by a Global Positioning System fixed-point network

    NASA Technical Reports Server (NTRS)

    Shimada, Seiichi; Bock, Yehuda

    1992-01-01

    Results are presented from temporally dense measurements of crustal deformation associated with the convergence of the Eurasian (EUR), Pacific, North American, and Philippine Sea (PHS) plates, carried out in April 1988 by a 10-station GPS fixed-point network established in central Japan. Using regional orbit relaxation methods, the analysis of the first 17-month data revealed significant horizontal deformation across the Suruga trough. Namely, it was found that a site in the northern tip of PHS plate moved nearly westward with a velocity of 28 +/-5 mm per year, and a site at the southeastern tip of EUR plate moved south-southwestward with a velocity of 18 +/-5 mm per year. A significant vertical uplift with a velocity of 20 mm/yr was detected at a site inland of the Tokai district located in the Akaishi uplift zone and at a site on the Hatsushima Island in Sagami Bay.

  16. Late Cenozoic crustal deformation of the north-central Basin and Range

    SciTech Connect

    Eyal, Y. . Dept. of Geology); Ron, H. )

    1993-04-01

    Late Cenozoic deformation of Basin and Range in north-central Nevada is examined by small fault analysis. Consistency between fault types, fault trends and sense of displacement was found for this area in which normal faults strike N-S, and right-lateral and left-lateral faults strike NNW and NNE respectively. The existence of strike-slip faulting, mainly right-lateral, is consistent with horizontal counter clockwise rotation suggested by paleomagnetic declination data. The results of this analysis indicate that crustal deformation of this area did not occur by only simple E-W uniaxial extension but also by N-S compression and shortening, and that the contribution of strike slip faulting to the extension of this area is substantial almost similar to that of normal faulting.

  17. InSAR observations and models of crustal deformation due to a glacial surge in Iceland

    NASA Astrophysics Data System (ADS)

    Auriac, A.; Sigmundsson, F.; Hooper, A.; Spaans, K. H.; Björnsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-09-01

    Surges are common at all the major ice caps in Iceland. Ice masses of gigatons may shift from the upper part of the outlet glacier towards the terminus in a few months, advancing the glacier front by up to several kilometres. The advancing ice front may be up to 100 m thick, increasing the load on crustal rocks correspondingly. We use the observed change in crustal loading during a surge of the western part of the Vatnajökull ice cap, Iceland, during 1993-1995 and the corresponding elastic crustal deformation, surveyed with interferometric synthetic aperture radar, to investigate the material properties of the solid Earth in this region. Crustal subsidence due to the surge reaches ˜75 mm at the edge of the Síðujökull outlet glacier. This signal is mixed with a broad uplift signal of ˜12 mm yr-1, relative to our reference area, caused by the ongoing retreat of Vatnajökull in response to climate change. We disentangle the two signals by linear inversion. Finite element modelling is used to investigate the elastic Earth response of the surge, as well as to confirm that no significant viscoelastic deformation occurred as a consequence of the surge. The modelling leads to estimates of the Young's modulus and Poisson's ratio of the underlying Earth. Comparison between the observed and modelled deformation fields is made using a Bayesian approach that yields the estimate of a probability distribution for each of the free parameters. Residuals indicate a good agreement between models and observations. One-layer elastic models result in a Young's modulus of 43.2-49.7 GPa (95 per cent confidence) and Poisson's ratio of 0-0.27, after removal of outliers. Our preferred model, with two elastic layers, provides a better fit to the whole surge signal. This model consists of a 1-km-thick upper layer with an average Young's modulus of 12.9-15.3 GPa and Poisson's ratio of 0.17, overlying a layer with an average Young's modulus of 67.3-81.9 GPa and Poisson's ratio of 0.25.

  18. GPS measurements of crustal deformation in eastern Indonesia and Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Stevens, Colleen Whitney

    Here we present crustal velocities from Global Positioning System (GPS) measurements made. between 1991 and 1997 at 56 sites throughout eastern Indonesia and Papua New Guinea (PNG). From these measurements, we interpret the relative motions of the plates and fault slip rates in the region. Results indicate the tectonics of eastern Indonesia are defined by the interactions of plates and microplates whose boundaries appear to be largely discrete. In a few regions the plate boundaries encompass broad zones of deformation. We identify five distinct tectonic blocks in eastern Indonesia. These include the Northern Australia Block, the Southeast Asia Block, the Bird's Head Block, The South Banda Basin Block, and the East Sulawesi Block. We quantify the motions along the boundaries that bound these blocks, and estimate poles of rotation to define how these blocks move. Two large shear zones exist in eastern Indonesia. The Banda Sea comprises a large deforming region dominated by north-northeast trending left-lateral shear. It appears that shearing is accommodated by the relative motion of several crustal slivers. The southeastern Eurasian plate boundary is therefore broadly distributed. A shear zone also separates Bird's Head from Australia. We estimate about 80 mm/yr of left-lateral shear is needed to accommodate the rapid westward motion of Bird's Head, making this the fastest continental shear zone in the world.

  19. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  20. Crustal deformation in Australia measured by satellite radar interferometry using ALOS/PALSAR imagery

    NASA Astrophysics Data System (ADS)

    Ge, Linlin; Ng, Alex Hay-Man; Wang, Hua; Rizos, Chris

    2009-03-01

    The Advanced Land Observing Satellite (ALOS), launched on 24 January 2006, is a Japanese satellite carrying an L-band SAR sensor, namely the PALSAR, which is expected to demonstrate good performance in applications such as crustal deformation measurement, subsidence detection and landslide monitoring. This paper describes a case study of Differential Synthetic Aperture Radar Interferometry (DInSAR) using ALOS/PALSAR data to detect crustal deformation caused by a recent small earthquake in Western Australia. Single Look Complex (SLC) images acquired by the ALOS/PALSAR sensor were used to measure the co-seismic deformation of the 9 October 2007 earthquake that occurred south of the town of Katanning, in the state of Western Australia. Three images with dual polarizations (HH & HV) were used in this study; two acquired before the earthquake event and one after. The two-pass DInSAR processing method was applied to generate differential interferograms. The peak-to-peak surface displacement is up to 32 centimetres in the radar line-of-sight direction. The interferograms were used to constrain the fault modelling. The co-seismic displacements were modelled using a two-segment uniform slip model in a homogeneous isotropic half-space. A genetic algorithm was used to determine the optimal source parameters for the nonlinear inversion. The resultant maximum slip is about 0.4 metres on an almost pure reverse fault striking ~NE55° and dipping at ~40°S. The scalar moment was estimated to be 1:84 × 1016 Nm (Mw4.8), which is in good agreement with the seismological results. The root-mean-square difference between the DInSAR observed and modelled displacements is 1.6 cm.

  1. Crustal deformation at the Nankai Trough estimated from seafloor geodetic observations

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Tadokoro, K.; Ikuta, R.; Okuda, T.; Nagai, S.; Kuno, M.

    2012-12-01

    The Philippine Sea plate subducts beneath the southwest Japan along the Nankai Trough with a rate of about 4-6 cm/yr, where megathrust earthquakes have repeatedly occurred every 100-150 years. Because the region expected to be the hypocentral area of next Nankai and Tonankai earthquakes is almost located in offshore area, it is important to know the spatio-temporal variation of crustal deformation accompanied with plate interaction in high precision. For this issue, we have conducted seafloor geodetic observation at the Nankai Trough using a GPS/Acoustic technique since 2004. In this system, we estimate the position of a surveying vessel by Kinematic GPS analysis and measure the distance between the vessel and the benchmark on the seafloor by Acoustic measurements. Next we determine the location of the benchmark. For the repeatability of this observation, the location of benchmark is determined within a precision of 2-3 cm at horizontal components. Several seafloor benchmarks are located at the Nankai Trough, which are individually operated by Japan Coast Guard, Tohoku University, and Nagoya University. In the Kumano Basin, we have three seafloor benchmarks located about 60-80 km away from the deformation front of the Nankai Trough. The observations from 2005 to 2011 have illustrated that those benchmarks are moving at rates of about 4 cm/yr toward west-northwest with velocity uncertainties of about 2 cm/yr relative to the Amurian plate. In this study, to explain the crustal deformation derived from seafloor geodetic observations especially at the shallower part of the Nankai Trough, we conduct numerical simulations using finite element method and then discuss the interplate coupling at the Nankai Trough.

  2. Evidence for Along-Strike Variations in the Crustal Deformation beneath the Bhutan Himalaya from Receiver Function Imaging and Seismicity

    NASA Astrophysics Data System (ADS)

    Singer, J.; Kissling, E. H.; Diehl, T.; Hetényi, G.

    2015-12-01

    In the Bhutan Himalaya seismicity and geologic surface features like the Kuru Chu Spur (an embayment of the Main Central Thrust) or the Paro window indicate along-strike variations in the collisional structure. The deeper structure of the orogenic wedge and associated deformation processes, however, are poorly understood partly due to the lack of seismic images of the crust. To better understand these differences in structure and deformation, we use data of a temporary seismic broadband network in Bhutan to image the crustal structure with receiver functions (RF). We apply an iterative 3D wave-based migration scheme including a high-frequency ray approximation, which satisfies Snell's law for dipping interfaces. With this approach we image variably dipping intra-crustal interfaces and the Moho topography across the Bhutan Himalaya, and identify lateral variations in the orogenic structure, which we interpret jointly with a new local earthquake catalog. In West Bhutan, RF imaging depicts a northward dipping Moho at ~50 km depth. The low-angle dip steepens north of ~27.6°N which matches well observations by wide-angle seismics in South Tibet and the hypocenter of a deep crustal earthquake recorded by our network. We also identify the Main Himalayan Thrust (MHT) at ~14 km depth in West Bhutan with a ramp-like structure north of ~27.6°N. The ramp is characterized by a negative impedance contrast in the RF signals and coincides with a concentration of seismicity. In the East, the Moho appears to be almost flat at a depth of ~50 km without clear indications of steepening towards north. Beneath the Kuru Chu Spur in East Bhutan, we observe listric-shaped structures reaching from the upper crust beneath the Lesser Himalaya down to the Moho beneath the Greater Himalaya, which we interpret as a stack of crustal material typical for an accretionary wedge. While these structures appear aseismic, a horizontal alignment of seismicity at ~12 km depth suggests an active MHT in

  3. Involving Undergraduates and K-14 Teachers in Research: Measuring and Modeling Crustal Deformation in Southern California

    NASA Astrophysics Data System (ADS)

    Fryxell, J. E.; Hams, J.; Barley, M.; Hobart, K.; Ramirez, J.; McGill, S.; Lyzenga, G.

    2003-12-01

    With funding from the NSF OEDG, we initiated a project to: (1) involve undergraduate students and K-14 teachers to research in geology, and (2) use GPS to monitor deformation across the plate boundary zone in southern California, and to model partitioning on specific faults that account for that deformation in the upper crust. Starting in July 2002, we collected campaign-style GPS data twice a year from 13 sites along a line across the San Andreas and San Jacinto faults near CSUSB. Our field crews have included 43 students and teachers in our three campaigns to date. These include 30 undergraduate and 3 graduate students, 1 middle school and 8 high school teachers, and 1 community college professor. We are also modeling site velocities from the SCEC Crustal Deformation Velocity Map. Our preliminary results are presented in session ED14 at this meeting. Our most recent campaign (June 2003) was expanded to include workshops. As before, the field crews got one day of hands-on training in setup and operation of the geodetic-quality receivers and antennae. In addition, we held a one-day workshop before the campaign on the active tectonics of southern California, elastic rebound theory, and the scientific goals of the project. After the campaign another one-day workshop was held to plot GPS position results from previous campaigns for a station crew members had occupied during the campaign, and to estimate a velocity for that station. Participants also tried modeling SCEC site velocity data from a transect across the San Andreas, San Jacinto and Elsinore faults. Four of the co-authors on this abstract were campaign participants, and have continued to work with faculty on processing our data and on modeling SCEC data. Students (geology and other majors) felt that participation in the campaign stimulated their interest in geology, and that their participation was a worthwhile experience. Most students are interested in participating in upcoming campaigns, and would

  4. Interaction between crustal tectonics and salt deformation in the Eastern Sardinian margin, Western Tyrrhenian Sea: seismic data and analogue modelling

    NASA Astrophysics Data System (ADS)

    Vendeville, Bruno; Lymer, Gael; Gaullier, Virginie; Chanier, Frank; Maillard, Agnes; Sage, Françoise; Lofi, Johanna; Thinon, Isabelle

    2014-05-01

    The Tyrrhenian Basin opened by eastward migration of the Apennine subduction system. Rifting along the Eastern Sardinian margin started during the middle to late Miocene times and hence this timing partly overlapped the Messinian Salinity Crisis. The two "METYSS" cruises were conducted to use the deformation of the Messinian salt and its Plio-Quaternary overburden as a proxy for better delineating the tectonic history of the sub-salt basement. Many parts of the study area contain two of the most typical Messinian series of the Western Mediterranean: the Mobile Unit (MU; salt, mainly halite), overlain by the more competent Upper Unit (UU: alternating dolomitic marls and anhydrite). The brittle Plio-Quaternary cover overlies the UU. Usually, the presence of mobile salt is viewed as a nuisance for understanding crustal tectonics because salt's ability to act as a structural buffer between the basement and the cover. However, we illustrate, using examples from the Cornaglia Terrace, how we can use thin-skinned salt tectonics as indicators of vertical movements in the sub-salt, pre-Messinian basement. There, slip along N-S-trending crustal normal faults bounding basement troughs has been recorded by salt and overburden in two different manners: - First, post-salt basement faulting (typically after deposition of the Upper Unit and the early Pliocene), and some crustal-scale southward tilting, triggered along-strike (southward) thin-skinned, gliding of salt and overburden recorded by upslope extension and downslope shortening. - Second, and less obvious at first glance, there was some crustal activity along another basement trough, located East of the Baronie Ridge after deposition of the Messinian salt. This trough is narrow, trends N-S and is bounded by crustal faults. The narrow width of the trough allowed for only minor across-strike (E-W) gliding. The resulting geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed

  5. Strain Accumulation Estimated from Seafloor Crustal Deformation at the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Ikuta, R.; Okuda, T.; Kenji, Y.; Sakata, T.

    2012-12-01

    Our research has developed an observation system for seafloor crustal deformation composed of the kinematic GPS and acoustic ranging techniques [Tadokoro et al., 2006; Ikuta et al., 2008]. We monitored crustal deformation at the Nankai Trough, Japan, where the Philippine Sea Plate subducts beneath the Amurian Plate. The convergence rate is predicted at 60 mm/y in the N59W direction by the Euler vector of REVEL [Sella et al., 2002]. We installed three monitoring sites (named KMN, KMS, and KME) on the seafloor at depths of about 1920-2030 m. The sites KMN and KMS are installed perpendicular to the trough axis with a spacing of 20 km; the site KME is 50 km from KMN and KMS in the direction parallel to the trough axis. The monitoring was started in 2004, 2005, and 2008 at KMS, KMN, and KME, respectively. The numbers of measurements are 16, 20, and 5 times at KMN, KMS, and KME, respectively. We obtained 3-7 years averaged horizontal site velocities within ITRF2000 adopting a robust estimation method with Tukey's biweight function to the time series of site position measured until the end of 2011. Substituting the synthetic rigid block motions of the Amurian Plate from the velocities within ITRF2000, we obtained the following site velocities with respect to the Amurian Plate [Tadokoro et al., 2012]: KMN 41±4 mm/y, N77±7W KMS 43±5 mm/y, N80±6W KME 42±5 mm/y, N80±7W In contrast, the on-land GPS horizontal velocities along the coast is 23-33 mm/y toward N74-80W. The present observational results show: (1) the velocity vectors are all the same length and direction, which indicates no internal deformation in this region; (2) the back-slip model predicts that the plate interface beneath the region is uniformly locked with coupling ratios of 60-80 %, indicating strain accumulation that will be released during the anticipated mega-thrust Tonankai earthquake; and (3) the directions of site velocities differ from that of convergence vector by 20 degrees, which is affected by

  6. Slip Partitioning, Crustal Tectonics and Deformation of the Queen Charlotte Margin and Northern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Hippchen, Sabine

    Part I of this thesis investigates current deformation in western British Columbia from northern Vancouver Island in the south to Haida Gwaii in the north. The area is characterized by transition from the Cascadia subduction zone to the Queen Charlotte transform fault. The tectonic setting involves interactions between the Pacific, North America, Juan de Fuca, and Explorer plates, and the Winona block, involving a number of plate boundaries: the mainly strike-slip Queen Charlotte, Revere-Dellwood-Wilson and Nootka faults, the Explorer ridge, and the Cascadia subduction zone. Using GPS campaign data from 1993 to 2008 I derive a new crustal velocity field for Northern Vancouver Island and the adjacent mainland, and integrate it with previous velocity fields developed for Haida Gwaii, southern Vancouver Island and the adjacent mainland. The northern limit of the subduction zone is confirmed to be at Brooks Peninsula, where the direction of the crustal motion changes abruptly from ENE to NNE. I use viscoelastic models to explore what percentage of the observed deformation is transient, related to the earthquake cycle, and how much is permanent ongoing deformation, distributed off the continental margin. Previous authors have developed two competing end-member models that can each explain how the Pacific/North America plate convergence is accommodated off Haida Gwaii. These models assume either internal crustal shortening or underthrusting of the Pacific plate. These new GPS data allow me to conclude that underthrusting does occur, and that a small component (<15%) of the observed data reflects long-term deformation. South of Haida Gwaii the distinction between transient and long-term deformation is not as clear; however, I conclude that transient deformation alone cannot fully explain the observed velocities, and so long-term deformation likely must also occur. Part II of the thesis investigates the updip and downdip limits of the seismogenic zone of the Sumatra

  7. Extraction of Crustal Deformation from Seafloor Hydraulic Pressure Gauges: A trial collaboration study

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Keisuke; Nagano, Akira; Hasegawa, Takuya; Matsumoto, Hiroyuki; Kido, Motoyuki; Igarashi, Toshihiro; Uchida, Naoki; Nakata, Ryoko; Yamashita, Yusuke

    2016-04-01

    , we propose a new interpretation of seismic plate coupling around the Tonankai region along the Nankai Trough, and discuss how to detect it by using the DONET data effectively. In the future, we have to extract the crustal deformation component by separating other components such as instrumental drift and oceanic changes as an integral study collaborated by seismology, geodesy, physical oceanography, and mechanical engineering.

  8. The InSAR Italy portal for open access to crustal deformation data

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Tolomei, Cristiano; Pezzo, Giuseppe; Lanari, Riccardo; Pepe, Antonio; Marchetti, Pier Giorgio; Della Vecchia, Andrea; Mantovani, Simone

    2014-05-01

    InSAR Italy is a web portal devised to provide open access services to crustal deformation data measured using multitemporal SAR Interferometry techniques over the Italian territory. It is an evolution of the VELISAR initiative, promoted in 2006 by the Istituto Nazionale di Geofisica e Vulcanologia, and originally participated by IREA-CNR and TRE srl. InSAR Italy was developed tailoring the Multi-sensor Evolution Analysis (MEA) environment, an Earth Observation and geospatial data analysis tool empowered with OGC standard interfaces. The web interface allows an easy browsing of the ground deformation maps obtained for each satellite image dataset, leading to a clear picture and improved analysis of the displacement time series over single pixels or large areas. Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) are used to access and process the maps, respectively. The crustal deformation data are provided by INGV and IREA-CNR as products of publicly-funded research projects, and are disseminated in compliance with the national legislation on the Open Data Access; metadata associated to the products are published according to the INSPIRE specifications. The information provided through InSAR Italy is mainly based on InSAR data maintained in the ESA archives, in particular from the ERS satellites for the 1992-2000 period, and ENVISAT for the period 2003-2010, however, ground velocity maps obtained from COSMO-SkyMed data will also be released in the near future. The InSAR Italy deformation maps consist of time series of ground displacement at resolution varying between 5 and 80 m, and the relative mean velocity values. The data sets can be queried and mean velocities can be recalculated over user-defined time periods, to account for possible non-linear displacement trends. The MEA spatiotemporal data analysis capability allows to investigate deformation phenomena occurring at very different spatial scales, from single buildings to entire regions

  9. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  10. Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Kramer, M. J.

    1983-01-01

    The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.

  11. Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Kramer, M. J.

    1984-01-01

    The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.

  12. The analysis of GPS crustal deformation, seismicity, and strain rate in October 2013 Ruisui, Taiwan Earthquake

    NASA Astrophysics Data System (ADS)

    Min-Chien, Tsai; Shui-Beih, Yu; Tzay-Chyn, Shin

    2016-04-01

    Continuous GPS network, a groundwater station specially designed for observation of seismic precursor signals. Most of all, the shock is located in the area with very active seismicity and fast crustal deformation. Furthermore, the quality of Central Weather Bureau Seismic Network (CWBSN) seismic data has been significantly improved and reached micro-earthquake level. Therefore, we have plenty data to do the case research for this earthquake event. To try to understand the possible seismogenic mechanism and tectonic structure. We also try to search for any pre-seismic signal and assess the capability of very short-term prediction in the area during the earthquake.

  13. Synchronous b-value change and crustal deformation following the 2007 Noto Peninsula Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2013-12-01

    Although a large number of studies have been made on temporal (and/or spatial) change in earthquake size distribution, the physical mechanics of the change is still unclear. This study shows the results of the analysis of the temporal variation in the b-value of the aftershock sequence of the 2007 Noto Peninsula Earthquake, Japan, and its relationship with the crustal deformation observed near the focal region. The method to estimate the temporal variation in the b-value is the same as Iwata[2008, 2012]. In this method, the statistical model representing a magnitude-frequency distribution of earthquakes covering the entire magnitude range [Ogata & Katsura, 1993, GJI] is introduced. The distribution model is represented as the product of the Gutenberg-Richter (GR) law and a detection rate function q(M), which is assumed to be the cumulative distribution function of the normal distribution [Ringdal, 1977]. In total, this statistical model has three parameters, and one of them is the b-value of the GR law. The temporal variations in the model parameters are estimated by adopting a Bayesian approach with a piecewise linear approximation and smoothness constraint. As a result of the Bayesian analysis, the b-value was low and was around 0.8 in the early stage of the aftershock activity. Then, it increased up to around 1.1 gradually, and the trend of the increase was terminated at the beginning of 2010. To explore the origin of the termination, geodetic records provided by GSI, Japan, were examined. Using cubic B-splines and a Bayesian approach with smoothness constraint, the trend and seasonality were extracted from the observed time-series and were decomposed. Consequently, we found that the trend obtained from the data at TOGI, which is the closest station to the main fault of the Noto earthquake, changed at the beginning of 2010. This change suggests that the direction and/or magnitude of the afterslip vector after the beginning of that year was different from before

  14. Crustal deformation in the Western Solomon Islands revealed by GPS observation during 2009 - 2012

    NASA Astrophysics Data System (ADS)

    Kuo, Y.; Lin, K.; Ku, C.; Taylor, F. W.; Chen, Y.; Huang, B.

    2012-12-01

    The plate boundary along the southern margin of the Solomon Islands, southwestern Pacific, is characterized by convergent tectonic processes between the Indo-Australian Plate and Pacific Plate. The horizontal convergence rate between two plates is 135 mm/yr in the direction of N45°E. In terms of the structure, this subduction zone is relatively complicated because large seamounts are involved in subduction of extremely young lithosphere generated by the Woodlark spreading system. Hence, the crustal deformation is essential to reconstructing the structural model that constitutes and operates the entire subduction system. For the purpose of monitoring crustal motion, we began to deploy continuous mode GPS stations in September 2009. All of them have been working for 1-3 yr. The total horizontal rates are 95±1, 52±3, 78±7, 120±14, 114±7, and 114±7 mm/yr for Sibo, Nusu, Lale, Husu, Tepa, and Sege respectively. However, the moving directions are N23°E, N63°W, N10°W, N65°W, N63°W, and N69°W. During 2009, the uplift rates are -31±8 and 50±17 mm/yr for Sibo and Nusu, but during 2010, the rate are 2±2 and 13±9 mm/yr. The larger slips may cause of the postseismic deformation of 2007 Mw8.1 Solomon Earthquake. It also shows the large uplift rates on Husu (98±36 mm/yr), Tepa (60±11 mm/yr) and Sege (33±10 mm/yr) after the 2010 Mw7.1 Solomon Earthquake; however, it still needs longer measuring time to confirm the tectonic behavior.

  15. A numerical simulation of magma motion, crustal deformation, and seismic radiation associated with volcanic eruptions

    USGS Publications Warehouse

    Nishimura, T.; Chouet, B.

    2003-01-01

    The finite difference method is used to calculate the magma dynamics, seismic radiation, and crustal deformation associated with a volcanic eruption. The model geometry consists of a cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We consider two models of eruption. In the first model, a lid caps the vent and the magma is overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In the second model, a plug at the reservoir outlet allows pressurization of only the magmatic fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure at the conduit orifice exceeds the material strength of the lid capping the vent. In both models, magma dynamics are expressed by the equations of mass and momentum conservation in a compressible fluid, in which fluid expansion associated with depressurization is accounted for by a constitutive law relating pressure and density. Crustal motions are calculated from the equations of elastodynamics. The fluid and solid are dynamically coupled by applying the continuity of wall velocities and normal stresses across the conduit and reservoir boundaries. Free slip is allowed at the fluid-solid boundary. Both models predict the gradual depletion of the magma reservoir, which causes crustal deformation observed as a long-duration dilatational signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic resonance of the reservoir-conduit system during the eruption. The volume of the reservoir, vent size, and magma properties control the duration of VLP waves and dominant periods of LP oscillations. The second model predicts that when the

  16. Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data

    NASA Astrophysics Data System (ADS)

    Simão, N. M.; Nalbant, S. S.; Sunbul, F.; Komec Mutlu, A.

    2016-01-01

    We present a new strain-rate and associated kinematic model for the eastern and central parts of Turkey. In the east, a quasi N-S compressional tectonic regime dominates the deformation field and is partitioned through the two major structural elements of the region, which are the conjugate dextral strike-slip North Anatolian Fault Zone (NAFZ) and the sinistral strike slip East Anatolian Fault Zone (EAFZ). The observed surface deformation is similar to that inferred by anisotropy studies which sampled the region of the mantle closer to the crust (i.e. the lithospheric mantle and the Moho), and is dependent on the presence or absence of a lithospheric mantle, and of the level of coupling between it and the overlaying crust. The areas of the central and eastern parts of Turkey which are deforming at elevated rates are situated above areas with strong gradients in crustal thickness. This seems to indicate that these transition zones, situated between thinner and thicker crusts, promote more deformation at the surface. The regions that reveal elevated strain-rate values are 1) the Elaziğ-Bingol segment of the EAFZ, 2) the region around the Karlıova triple-junction including the Yedisu segment and the Varto fault, 3) the section of the NAFZ that extends from the Erzincan province up to the NAFZ-Ezinepazarı fault junction, and 4) sections of the Tuz Gölü Fault Zone. Other regions like the Adana basin, a significant part of the Central Anatolian Fault Zone (CAFZ), the Aksaray and the Ankara provinces, are deforming at smaller but still considerable rates and therefore should be considered as areas well capable of producing damaging earthquakes (between M6 and 7). This study also reveals that the central part of Turkey is moving at a faster rate towards the west than the eastern part Turkey, and that the wedge region between the NAFZ and the EAFZ accounts for the majority of the counter clockwise rotation between the eastern and the central parts of Turkey. This

  17. Monitoring and understanding crustal deformation by means of GPS and InSAR data

    NASA Astrophysics Data System (ADS)

    Zerbini, Susanna; Prati, Claudio; Bruni, Sara; Errico, Maddalena; Musicò, Elvira; Novali, Fabrizio; Santi, Efisio

    2014-05-01

    Monitoring deformation of the Earth's crust by using data acquired by both the GNSS and SAR techniques allows describing crustal movements with high spatial and temporal resolution. This is a key contribution for achieving a deeper and better insight of geodynamic processes. Combination of the two techniques provides a very powerful means, however, before combing the different data sets it is important to properly understand their respective contribution. For this purpose, strictly simultaneous and long time series would be necessary. This is not, in general, a common case due to the relatively long SAR satellites revisit time. A positive exception is represented by the data set of COSMO SKYMed (CSK) images made available for this study by the Italian Space Agency (ASI). The flyover area encompass the city of Bologna and the smaller nearby town of Medicina where permanent GPS stations are operational. At the times of the CSK flyovers, we compared the GPS and SAR Up and East coordinates of a few stations as well as differential tropospheric delays derived by both techniques. The GPS time series were carefully screened and corrected for the presence of discontinuities by adopting a dedicated statistical procedure. The comparisons of both the estimated deformation and the tropospheric delays are encouraging and highlight the need for having available a more evenly sampled SAR data set.

  18. Water in Nominally Anhydrous Deep Crustal Minerals: Facilitators of Deformation and Partial Melting

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Williams, M. L.; Koteas, G. C.

    2010-12-01

    Igneous rocks of the lowest crust are commonly dominated by anhydrous minerals such as plagioclase feldspar, alkali feldspar, and quartz. Hydrous minerals such as muscovite, biotite, and hornblende can facilitate melting through dehydration melting reactions. Eutectic melting is aided by the relatively high ambient temperature of the lowermost crust and by the tendency of partial melts of mantle rocks to heat the lower crust both as a result of underplating and by intrusion into the lower crust. Free water is the most typical flux for lowering the eutectic temperature of the crystalline rocks of the lowermost crust, and subduction is the most commonly cited mechanism for delivering water to this setting. However, water in nominally anhydrous minerals such as quartz and feldspar is an additional flux for partial melting of granitoid source rocks. Water occurs both in structural sites in the host minerals and in fluid inclusions. Although water occurs in low concentrations (300-5000 ppm is typical), the abundance of these minerals in granitoids makes the effect of the water significant in terms of slightly lowering the solidus and initiating partial melting. 500 ppm water in minerals that make up large volumes of crustal rocks (alkali feldspar, plagioclase feldspar, quartz) would lower the dry solidus of granite by 24oC at 1 GPa and, because of the small bulk distribution coefficient likely for water in these minerals, would produce a near-solidus melt with XH20 = 0.248, corresponding to 8.3 weight percent water in the partial melt. Water that is trapped in a single phase is not an effective flux. It is likely that deformation of lower crustal minerals by dislocation creep mobilizes water from mineral interiors and transporting it to sites of cotectic or eutectic mineral assemblages. Water in mineral structures is likely to weaken nominally anhydrous minerals, making them susceptible to deformation by dislocation creep. The positive feedback between structural

  19. The crustal density structures and deformation scratches in the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Yanyun; Yang, Wencai; Hou, Zunze; Yu, Changqing

    2016-12-01

    After introducing the principals of the multi-scale scratch analysis method of regional gravity data, this paper presents the results of its application to the Qinghai-Tibet Plateau, producing three sets of density disturbance, ridge coefficient, and edge coefficient images. The density disturbance images can be used to delineate the hardness and rheological properties of continental tectonic units. The ridge coefficient images can be used to delineate deformation belts, and the edge coefficient images can be used to determine positioning boundaries of the structural division of the units. These images provide crustal geological and tectonic information from different aspects with depth information, which are able to give quantitative constrains to any possible tectonic models. To the upper crust, these results are basically coincident with surface geological and tectonic mapping. They can also provide more structural information of the middle and lower crust, which conventionally is hard to be accurately inferred. For instance, the density disturbance images show the source-zones and squeezed flows of channel flows in the lower crust, as well as the position of the subduction front of the Indian plate beneath the Himalayan mountain range. The ridge coefficient images provide the positions of suture zones, deformation and subduction volcanic belts, ancient collision belts and strike-slip zones. By combining with these edge coefficient images, one can draw out tectonic maps with different structural units in the middle and lower crust. For example, very high density terranes such as the Kashmir and Chayuhe, are divided from the Himalayan terrane, giving physical reasons for the formation of the western and eastern structural knots in the India-Eurasia collisional belt. The multi-scale scratch analysis not only provides the plane geometry of structures and deformation belts, but also their depth extension and stereoscopic patterns. For instance, a decrease of the low

  20. InSAR and GPS time series analysis: Crustal deformation in the Yucca Mountain, Nevada region

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hammond, W. C.; Blewitt, G.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Several previous studies have successfully demonstrated that long time series (e.g. >5 years) of GPS measurements can be employed to detect tectonic signals with a vertical rate greater than 0.3 mm/yr (e.g. Hill and Blewitt, 2006; Bennett et al. 2009). However, GPS stations are often sparse, with spacing from a few kilometres to a few hundred kilometres. Interferometric SAR (InSAR) can complement GPS by providing high horizontal spatial resolution (e.g. meters to tens-of metres) over large regions (e.g. 100 km × 100 km). A major source of error for repeat-pass InSAR is the phase delay in radio signal propagation through the atmosphere. The portion of this attributable to tropospheric water vapour causes errors as large as 10-20 cm in deformation retrievals. InSAR Time Series analysis with Atmospheric Estimation Models (InSAR TS + AEM), developed at the University of Glasgow, is a robust time series analysis approach, which mainly uses interferograms with small geometric baselines to minimise the effects of decorrelation and inaccuracies in topographic data. In addition, InSAR TS + AEM can be used to separate deformation signals from atmospheric water vapour effects in order to map surface deformation as it evolves in time. The principal purposes of this study are to assess: (1) how consistent InSAR-derived deformation time series are with GPS; and (2) how precise InSAR-derived atmospheric path delays can be. The Yucca Mountain, Nevada region is chosen as the study site because of its excellent GPS network and extensive radar archives (>10 years of dense and high-quality GPS stations, and >17 years of ERS and ENVISAT radar acquisitions), and because of its arid environment. The latter results in coherence that is generally high, even for long periods that span the existing C-band radar archives of ERS and ENVISAT. Preliminary results show that our InSAR LOS deformation map agrees with GPS measurements to within 0.35 mm/yr RMS misfit at the stations which is the

  1. Crustal Deformation in Southcentral Alaska: The 1964 Prince William Sound Earthquake Subduction Zone

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Freymueller, Jeffrey T.

    2003-01-01

    This article, for Advances in Geophysics, is a summary of crustal deformation studies in southcentral Alaska. In 1964, southcentral Alaska was struck by the largest earthquake (moment magnitude 9.2) occurring in historical times in North America and the second largest earthquake occurring in the world during the past century. Conventional and space-based geodetic measurements have revealed a complex temporal-spatial pattern of crustal movement. Numerical models suggest that ongoing convergence between the North America and Pacific Plates, viscoelastic rebound, aseismic creep along the tectonic plate interface, and variable plate coupling all play important roles in controlling both the surface and subsurface movements. The geodetic data sets include tide-gauge observations that in some cases provide records back to the decades preceding the earthquake, leveling data that span a few decades around the earthquake, VLBI data from the late 1980s, and GPS data since the mid-1990s. Geologic data provide additional estimates of vertical movements and a chronology of large seismic events. Some of the important features that are revealed by the ensemble of studies that are reviewed in this paper include: (1) Crustal uplift in the region that subsided by up 2 m at the time of the earthquake is as much as 1 m since the earthquake. In the Turnagain Arm and Kenai Peninsula regions of southcentral Alaska, uplift rates in the immediate aftermath of the earthquake reached 150 mm/yr , but this rapid uplift decayed rapidly after the first few years following the earthquake. (2) At some other locales, notably those away the middle of the coseismic rupture zone, postseismic uplift rates were initially slower but the rates decay over a longer time interval. At Kodiak Island, for example, the uplift rates have been decreasing at a rate of about 7mm/yr per decade. At yet other locations, the uplift rates have shown little time dependence so far, but are thought not to be sustainable

  2. On 18.6-Year and Approximately Nine-Year Variations in Seismicity and Crustal Deformation in Japan and Its Interpretation Based on Decadal Variations in Tremors

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Ide, S.

    2014-12-01

    It is well known that the statistical probability of earthquake occurrence changes over the course of a day due to periodic variations in the tidal stress acting on faults. However, periodicity on a decadal scale (8.85 and 18.61 years) has been studied by relatively few researchers and clear correlations have not been obtained. In this study, by investigating historical large earthquakes that occurred over 1,000 years in Japan, it is shown that a stronger periodicity of 8.85 years and a weaker periodicity of 18.61 years appear in the seismicity along the Japan Trench and the Nankai Trough, respectively. The past strain and tilt observations conducted during the 1950s through the 1970s indicate that, nationwide, gradual compression repeated every 8-10 years in the direction of relative plate motion. These compression periods are in accordance with the periods of higher seismic activity in the area along the Japan Trench. This agreement between the phase of the increasing seismicity and the compression periods seen in the long-term cyclic crustal deformation suggests that the periodicity is not merely a coincidence and that the transient crustal movement may be relevant with the tides. Considering the seismiity in the Nankai region, periodicity of 18.61 years should be superimposed on the crustal deformation with periods of 8-10 years. However, the approximately twenty-year observation was too short to extract it. According to a recently proposed model based on the combination of the nonlinear fault rheology and oscillating tidal stress, the above transient crustal deformation with periods of approximately 9 years may be caused by long-term variations in the occurrence rate of tremors. The initiation of the past slow slip events in the Tokai area also agreed with the phase of the 9-year mode except for the largest event from the year 2000.

  3. Monitoring of seafloor crustal deformation using GPS/Acoustic technique along the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Fujii, C.; Matsuhiro, K.; Sayanagi, K.

    2014-12-01

    Seafloor crustal deformation is crucial for estimating the interplate locking at the shallow subduction zone and has been carried out at subduction margins in Japan, e.g., Japan Trench and Nankai Trough [Sato et al., 2011; Tadokoro et al., 2012]. Iinuma et al. [2012] derived slip distributions during the 2011 Tohoku-Oki earthquake using GPS/Acoustic data and on-land GPS data. The result showed that maximum slip is more than 85 m near the trench axis. The focal area along the Nankai trough extended to the trough axis affected this earthquake by cabinet office, government of Japan.  We monitored seafloor crustal deformation along the Nankai trough, Japan. Observation regions are at the eastern end of Nankai trough (named Suruga trough) and at the central Nankai trough. We established and monitored by two sites across the trough at each region. In the Suruga trough region, we repeatedly observed from 2005 to 2013. We observed 13 and 14 times at a foot wall side (SNE) and at a hanging wall side (SNW), respectively. We estimated the displacement velocities with relative to the Amurian plate from the result of repeated observation. The estimated displacement velocity vectors at SNE and SNW are 42±8 mm/y to N94±3˚W direction and 39±11 mm/y to N84±9˚W direction, respectively. The directions are the same as those measured at the on-land GPS stations. The magnitudes of velocity vector indicate significant shortening by approximately 4 mm/y between SNW and on-land GPS stations at hanging wall side of the Suruga Trough. This result shows that the plate interface at the northernmost Suruga trough is strongly locked. In the central Nankai trough region, we established new two stations across the central Nankai trough (Both stations are about 15km distance from trough) and observed only three times, August 2013, January 2014, and June 2014. We report the results of monitoring performed in this year.

  4. Crustal deformation and surface kinematics after the 2010 earthquakes in Latin America

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Drewes, H.

    2016-12-01

    Strong earthquakes cause large changes in the station positions and velocities of the geodetic reference stations; i.e., the global ITRF (International Terrestrial Reference Frame) and its regional densifications like SIRGAS (Sistema de Referencia Geocéntrico para Las Américas) in Latin America and the Caribbean. To ensure the long-term stability of the geodetic reference frames, the transformation of station positions between different epochs requires the computation of reliable continuous surface deformation (or velocity) models. This paper presents the computation of a new continental continuous crustal deformation model for Latin America and the Caribbean inferred from GNSS (GPS + GLONASS) measurements gained after the strong earthquakes occurred in 2010 in Chile and Mexico. It is based on a multi-year velocity solution for a network of 456 continuously operating GNSS stations and covering a five years period from March 14, 2010 to April 11, 2015. This new deformation model, called VEMOS2015 (Velocity Model for SIRGAS 2015), is computed using the least square collocation (LSC) approach with empirically determined covariance functions. The result is summarised as follows: While the effects of the Baja California earthquake can be considered as local, the effects of the Maule earthquake changed the surface kinematics of a large area (between the latitudes 30°S-45°S from the Pacific to the Atlantic coasts). Before the Maule earthquake, the strain rate field in this area showed a strong west-east compression with maximum rates of about 0.40 μstrain/a between latitudes 38°S and 44°S. In accordance, the deformation vectors were roughly parallel to the plate subduction direction and their magnitudes decreased with the distance from the subduction front. After the earthquake, the largest compression (0.25 μstrain/a) occurs between the latitudes 37°S and 40°S with a N30°E direction. The maximum extensional strain rate (0.20-0.35 μstrain/a) is observed in the

  5. Short-Term versus Steady-State Crustal Deformation: Are Some Anomalies Driven by Transient Coupling with Mantle Flow? (Invited)

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Fouch, M. J.; Flesch, L. M.; Klein, E. C.; West, J. D.

    2010-12-01

    An important goal in crustal dynamics studies is the accurate measurement of crustal strain changes over a range of temporal and spatial scales. Measured transients hold the key to quantifying responsible driving forces and processes and the role of crustal and mantle rheological variations. Using GPS velocities, geologic observations, seismically defined crustal thicknesses, and seismic tomography models, we investigate the relationship between the shorter-term geodetic and longer-term ‘steady state’ deformation fields within the Great Basin region of western North America. We first determine a geodetic strain rate field using 4948 GPS velocities from campaign and EarthScope Plate Boundary Observatory stations within western North American Plate Boundary Zone. Details within regions of dense station coverage, such as southern California, show a high-resolution field, with narrow bands of high shear strain rate aligned with the San Andreas and San Jacinto fault zones. We then take the difference tensor field between the geodetic strain rates and those predicted by a crustal dynamic model. The crustal dynamic model possesses internal body forces (topography and crustal thickness variations), lateral strength variations, and spherical cap velocity boundary conditions (Pacific-North America and Juan de Fuca-North America). Furthermore, the crustal dynamic model matches Quaternary rates of strain throughout the plate boundary zone. Differences between the geodetic strain rate tensor field and the dynamic model tensor field can be theoretically related to driving traction rates acting at the base of the lithosphere. Within the Great Basin, we show that there is a negative (contractional) dilatational strain rate anomaly between 115°W - 118°W and 38°N - 40°N. This anomaly overlies a zone where both P and S-wave tomography have revealed a cylindrical volume of higher-than-average mantle velocities that extends from at least the uppermost mantle down to depths of

  6. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano

    NASA Astrophysics Data System (ADS)

    Ozawa, Taku; Fujita, Eisuke; Ueda, Hideki

    2016-11-01

    An MJMA6.5 earthquake (foreshock) and MJMA7.3 earthquake (mainshock) struck Kumamoto Prefecture on April 14, 2016, and April 16, 2016. To evaluate the effect of crustal deformation due to the earthquake on the Aso magma system, we detected crustal deformation using InSAR and GNSS. From InSAR analysis, we detected large crustal deformations along the Hinagu Fault, the Futagawa Fault, and the northeast extension of the latter fault. It extended to more than 50 km, and the maximum slant-range change exceeded 1 m. Although the obtained crustal deformation was approximately explained by the right-lateral strike-slip on the fault, its details could not be explained by such simple faulting. Additionally, we found complex surface deformation west of the Aso caldera rim, suggesting that shallow fault slips occurred in many known and unknown faults associated with the earthquake. Most of the crustal deformation could be reasonably explained by four rectangle faults located along the Futagawa Fault, in the northeast extension of the Futagawa Fault, alongside the Hinagu Fault, and in the eastern part of the Futagawa Fault. The first three of faults have high dip angles and right-lateral slip. The other was a fault with a low dip angle that branched from the shallow depth of the fault along the Futagawa Fault. The normal-dip right-lateral slip was estimated for this segment. Based on the estimated fault model, we calculated the displacement and stress field around the Aso volcano by the finite-element method (FEM) to evaluate the effects on the Aso magma system. In this calculation, we assumed a spherical soft medium located at a 6-km depth beneath the area south of the Kusasenri region as the magma system and considered only static effects. The result shows complex distributions of displacements and stresses, but we can notice the following significant points. (1) The spherical magma system deformed to an ellipsoid, and the total volume was slightly increased, less than 1%. (2

  7. Geomorphic Responses to Crustal Deformation: the Sensitivity of Surface Processes to Bedrock Displacement, Weakening, and Comminution Associated with Brittle Failure

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Tucker, G. E.; Upton, P.; Smith, S. M.; Gerbi, C. C.

    2014-12-01

    The mechanical properties of the lithosphere are increasingly recognized as having a quantifiable influence on the rates and patterns of surface processes. Strain localization, controlled by the mechanical response to local tectonic and topographic stress fields, manifests as tabular fault damage zones that impose displacement, strength, and grain size distribution patterns on the Earth's surface. Brittle failure and comminution associated with seismogenic cataclasis can reduce bedrock cohesion by several orders of magnitude and generate dense fracture networks, such that the grains released by rock weathering are much finer than those produced by weathering of the surrounding undamaged, intact bedrock. We combine models of landscape evolution and crustal mechanics to investigate how strain-induced crustal failure can exert significant controls on the rates and patterns of landscape development and adjustment. Based on our model results, drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion and transport of fault gouge. Fault erosion can be over an order of magnitude faster than erosion of intact bedrock. Fault zones with shallow dip angle are capable of enforcing lateral migration of their structurally confined rivers. Deep valleys created by eroding faults quickly become armored by coarse sediments transported from nearby intact bedrock. Differential displacement affects drainage network patterns by deforming and uplifting the surface relative to baselevel while simultaneously exposing fresh fault damage zones. Topography produced from these processes reflects the strong mechanical anisotropy associated with strain localization and brittle failure over many length scales, contrasting with the absence of a strong directional dependence from dendritic rivers incising into a predominantly homogeneous substrate. Our methods have been used to produce accurate predictions about local and

  8. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  9. Pointwise functions for flexible implementation of crustal deformation physics in PyLith

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Knepley, M.; Williams, C. A.

    2015-12-01

    The next stage of development for PyLith, a flexible, open-source finite-element code (http://geodynamics.org/cig/software/pylith/) for modeling quasi-static and dynamic crustal deformation with an emphasis earthquake faulting, focuses on refactoring the code to provide greater flexibility in support of a broader range of physics, discretizations, and optimizations for a variety of computer hardware. We separate the finite-element integration into a discretization-specific portion and discretization-independent pointwise functions associated with the governing equations. The discretization-specific portion is designed to accommodate arbitrary order finite elements and multiple implementations for optimization targeting specific hardware (e.g., CPU and GPU). The pointwise functions encapsulate the physics, including the governing equations and rheologies. Users can easily extend the code by adding new pointwise functions to implement different rheologies and/or governing equations. PyLith currently includes pointwise functions for quasi-static and dynamic elasticity for several elastic, viscoelastic, and elastoplastic rheologies. We plan to add pointwise functions for coupling of elasticity with fluid flow and incompressible elasticity. Tight integration with the Portable, Extensible Toolkit for Scientific Computation (PETSc) provides support for a wide range of linear and nonlinear solvers and time-stepping algorithms.

  10. Jurassic crustal deformation in west-central part of Colorado Plateau

    SciTech Connect

    Peterson, F.

    1985-05-01

    Although the Jurassic Period is commonly thought of as a time of tectonic quiescence, updated isopach maps and new sedimentologic information indicate that it was a time of notable crustal deformation on the Colorado Plateau. A significant change in structural style occurred in Middle Jurassic time, especially during the erosion interval that produced the J-3 unconformity. Prior to late Middle Jurassic time, the region had been tilted westward and structural troughs formed in the area of the present-day Circle Cliffs uplift and in the vicinity of the Circle Cliffs and Black Mesa regions were uplifted and the nearby Henry and Kaiparowits regions began to be downwarped as troughs or basins. It cannot be determined if or how the present-day monoclines flexed during the Jurassic. However, the direction of structural tilt across these areas changed from west side down to east side down during the late Middle and early Late Jurassic. The Monument region, the largest and most persistent structural element in the region, changed from a structural bench to a positive structure in the early Late Jurassic. In most cases the positive structures subsided more slowly than adjacent downwarps. Two exceptions during the Late Jurassic are the Black Mesa and Emery uplifts. These are the only uplifts that actually rose above the level of sediment accumulation. Jurassic rocks are not known to contain significant hydrocarbon resources in this region, but their tectonic history may offer clues to the structural history of underlying Paleozoic strata, which are the primary hydrocarbon exploration targets.

  11. The development of space geodetic observations of crustal kinematics and deformation.

    NASA Astrophysics Data System (ADS)

    Smith, D. E.

    2012-12-01

    Space geodesy for crustal dynamics studies reached maturity around the time of the Apollo landings. The techniques of laser ranging to earth satellites (SLR) and the Moon (LLR), and very long baseline interferometry (VLBY) all started to approach a viable quality. This enabled each technique to start the process of demonstrating on a regular and consistent basis that they could make observations that would enable earth scientists to better understand the movements along active fault lines, the rotation of the Earth, and improve the model of the Earth's gravity field. Much of the early years were consumed with understanding the strengths of each technique for various approaches and it was not until a decade later that the space agencies felt comfortable in establishing funded long-term programs. In the US it was the Crustal Dynamics Project and about the same time the WEGENER program in Europe under the auspices if the IAG were established. Together these programs eventually established SLR, LLR, and VLBI sites on almost all the major tectonic blocks and the real kinematics of the present-day geological blocks became known. While this was happening the Global Positioning System (GPS) emerged as the technique of choice for many local observations, complementing the other techniques, and together bringing the world this remarkable capability to understand dynamics of planet earth.

  12. Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models

    NASA Astrophysics Data System (ADS)

    Gu, Yanchao; Yuan, Linguo; Fan, Dongming; You, Wei; Su, Yong

    2017-01-01

    Obvious seasonal crustal vertical deformation largely related to mass redistribution on the Earth's surface can be captured by Gravity Recovery and Climate Experiment (GRACE), simulated by surface loading models (SLMs), and recorded by continuous Global Positioning System (GPS). Vertical deformation time series at 224 GPS stations with more than four-year continuous observations are compared with time series obtained by GRACE and SLMs with the aim of investigating the consistency of the seasonal crustal vertical deformation obtained by different techniques in mainland China. Results of these techniques show obvious seasonal vertical deformation with high consistency at almost all stations. The GPS-derived seasonal vertical deformation can be explained, to some content, by the environmental mass redistribution effect represented by GRACE and SLMs. Though the mean weighted root mean square reduction is 34% after removing the environmental mass loading from the monthly GPS height time series (up to 47% for the mean annual signals), systematic signals are still evident in the residual time series. The systematic residuals are probably attributed to GPS related errors, such as draconitic errors, while the leakage errors in the GRACE data processing and unmodeled components in land water storage should be considered in some regions. Additionally, the obvious seasonal residual perturbations in Southwest China may be related to the leakage errors in the GRACE data processing and large uncertainty in the land water storage in SLMs, indicating that GPS observations may provide more realistic mass transport estimates in Southwest China.

  13. Crustal dynamics project: The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1990-01-01

    The focus of the research was in two broad areas: (1) the nature and dynamics of time-dependent deformation and stress along major seismic zones, and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principal findings are described in the appendices.

  14. Crustal deformation evidences for viscous coupling and fragmented lithosphere at the Nubia-Iberia plate boundary (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; González, Pablo J.; Fernández, José

    2016-04-01

    A spatially dense crustal velocity field, based on up to 15 years of GNSS observations at more than 380 sites and extensively covering the Iberian Peninsula and Northern Africa, allow us to provide new insights into two main tectonic processes currently occurring in this area. We detected a slow large-scale clockwise rotation of the Iberian Peninsula with respect to a local pole located closely to the northwestern sector of the Pyrenean mountain range (Palano et al., 2015). Although this crustal deformation pattern could suggest a rigid rotating lithosphere block, this model would predict significant shortening along the Western (off-shore Lisbon) and North Iberian margin which cannot totally ruled out but currently is not clearly observed. Conversely, we favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. Furthermore, the western Mediterranean basin appears fragmented into independent crustal tectonic blocks, which delimited by inherited lithospheric shear structures and trapped within the Nubia-Eurasia collision, are currently accommodating most of the plate convergence rate. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. Most of the observed crustal ground deformation can be attributed to processes driven by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary. Nevertheless, the observed deformation field infers a very low convergence rates as observed also at the eastern side of the western Mediterranean, along the Calabro Peloritan Arc, by space geodesy (e.g. Palano, 2015). References Palano M. (2015). On the present

  15. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    SciTech Connect

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  16. Tectonic Escape and Present-Day Crustal Deformation in Northernmost Longitudinal Valley, Hualien Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Chen, C. Y.; Chen, Y. G.; Chen, R. F.; Chen, H. Y.

    2014-12-01

    The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007-2014 and 10 continuous GPS single-frequency stations recorded in 2011-2014, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a clockwise rotation at a rate of 33° M/yr and an eastward tectonic escape in the small Hualien City block (HUAL) area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block (~ 100 x 100 km) defined by previous studies. Combining the levelling data that indicated the Coastal Range is going down toward the north, we interpret the tectonic escape of the northernmost Longitudinal Valley as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault), which needs further investigation.

  17. Finite element modelling of stress field perturbations and interseismic crustal deformation in the Val d'Agri region, southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Candela, Stefania; Mazzoli, Stefano; Megna, Antonella; Santini, Stefano

    2015-08-01

    The Val d'Agri area provides the opportunity to analyse active structures in a seismic region for which a large amount of subsurface data is available. This area, which was struck in 1857 by one of the most destructive earthquakes in Italy (MW = 7.03), represents a unique natural laboratory to gain new insights into geometry, modes and rates of faulting controlling crustal deformation in an actively extending orogen. In this study, a crustal geological section through the southern Apennines is discretized into a finite element model (FEM). We present a 2D elastoplastic FEM that reproduces stress perturbations and strain field around the Val d'Agri active fault system. The influence of fault strand activity on interseismic crustal deformation is tested by a series of computer models, whose predictions are compared with the horizontal velocity components of continuous GPS sites in the region and with stress directions and geological data. The best fit with available geological and geophysical constraints is obtained with a 300 km long, 29 km deep model formed by a multilayer including three components having different rheological characteristics and including several shallow, locked fault segments, which branch into a freely slipping major basement fault at depth. Finite element modelling provides new insights into the controversial and widely debated active tectonic setting of the study area, pointing out the fundamental role played by a structural reactivation process involving inherited, long-lived, mature fault systems at depth. Our FEM, reconciling apparently contrasting geological and geophysical constraints from the study area, points to maximum stress build up and strain accumulation at a depth of 15 ± 5 km. Such a depth range is suggested as the most likely one for the nucleation of large events such as the 1857 Val d'Agri earthquake.

  18. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  19. Syncollisional extension along the India-Asia suture zone, south-central Tibet: Implications for crustal deformation of Tibet

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Sanchez, V.; Taylor, M. H.

    2010-02-01

    Crustal deformation models of the Tibetan plateau are assessed by investigating the nature of Neogene deformation along the India-Asia suture zone through geologic mapping in south-central Tibet (84°30'E). Our mapping shows that the suture zone is dominated by a system of 3 to 4 ENE-striking, south-dipping thrust faults, rather than strike-slip faults as predicted by models calling upon eastward extrusion of the Tibetan plateau. Faults along the suture zone are not active, as they are cut by a system of NNW-striking oblique slip normal faults, referred to herein as the Lopukangri fault system. Fault-slip data from the Lopukangri fault system shows that the mean slip direction of its hanging wall is N36W. We estimate the net slip on the Lopukangri fault by restoring components of the thrust system. We estimate that the fault has accommodated ˜ 7 km of right-slip and ˜ 8 km of normal dip-slip, yielding a net slip of ˜ 10.5 km, and 6 km of horizontal east-west extension. The Lopukangri fault system is active and geomorphic offsets indicate right separations and westside-down dip-separation. The mapview curviplanar geometry and geomorphic expression of the Lopukangri fault system is similar to faults and rift basins to its east and west. These extensional faults are en echelon in map view and encompass a region that is 200 km long (east-west) and 95 km wide (north-south). Assuming our results for the Lopukangri fault are applicable to the entire system, we estimate a maximum of 18% extension across the zone. All active faults in the system terminate southward adjacent to the India-Asia suture zone. Because the individual rift geometries are similar and suggest a common kinematic relationship, we propose that the extensional system formed as a trailing extensional imbricate fan at the southern termination of the central Tibet conjugate fault zone. Alternatively, the extensional system may terminate to the north and represent a group of isolated crustal tears. Both

  20. The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Muñoz, Angélica; Farraz, Isaac A.; Talavera, Emilio; Tenorio, Virginia; Novelo-Casanova, David A.; Sánchez, Antonio

    2016-10-01

    On 10 April 2014, an M w 6.1 earthquake struck central Nicaragua. The main event and the aftershocks were clearly recorded by the Nicaraguan national seismic network and other regional seismic stations. These crustal earthquakes were strongly felt in central Nicaragua but caused relatively little damage. This is in sharp contrast to the destructive effects of the 1972 earthquake in the capital city of Managua. The differences in damage stem from the fact that the 1972 earthquake occurred on a fault beneath the city; in contrast, the 2014 event lies offshore, under Lake Managua. The distribution of aftershocks of the 2014 event shows two clusters of seismic activity. In the northwestern part of Lake Managua, an alignment of aftershocks suggests a northwest to southeast striking fault, parallel to the volcanic arc. The source mechanism agrees with this right-lateral, strike-slip motion on a plane with the same orientation as the aftershock sequence. For an earthquake of this magnitude, seismic scaling relations between fault length and magnitude predict a sub-surface fault length of approximately 16 km. This length is in good agreement with the extent of the fault defined by the aftershock sequence. A second cluster of aftershocks beneath Apoyeque volcano occurred simultaneously, but spatially separated from the first. There is no clear alignment of the epicenters in this cluster. Nevertheless, the decay of the number of earthquakes beneath Apoyeque as a function of time shows the typical behavior of an aftershock sequence and not of a volcanic swarm. The northeast-southwest striking Tiscapa/Ciudad Jardín and Estadio faults that broke during the 1972 and 1931 Managua earthquakes are orthogonal to the fault where the 10 April earthquake occurred. These orthogonal faults in close geographic proximity show that Central Nicaragua is being deformed in a complex tectonic setting. The Nicaraguan forearc sliver, between the trench and the volcanic arc, moves to the

  1. Inherited crustal deformation along the East Gondwana margin revealed by seismic anisotropy tomography

    NASA Astrophysics Data System (ADS)

    Pilia, S.; Arroucau, P.; Rawlinson, N.; Reading, A. M.; Cayley, R. A.

    2016-12-01

    The mechanisms of continental growth are a crucial part of plate tectonic theory, yet a clear understanding of the processes involved remains elusive. Here we determine seismic Rayleigh wave phase anisotropy variations in the crust beneath the southern Tasmanides of Australia, a Paleozoic accretionary margin. Our results reveal a complex, thick-skinned pervasive deformation that was driven by the tectonic interaction between the proto-Pacific Ocean and the ancient eastern margin of Gondwana. Stress-induced effects triggered by the collision and entrainment of a microcontinent into the active subduction zone are evident in the anisotropy signature. The paleofracturing trend of failed rifting between Australia and Antarctica is also recorded in the anisotropy pattern as well as a tightly curved feature in central Tasmania. The observed patterns of anisotropy correlate well with recent geodynamic and kinematic models of the Tasmanides and provide a platform from which the spatial extent of deformational domains can be refined.

  2. Block Modeling of Crustal Deformation in the Northern Walker Lane, Western Basin and Range, to Improve Estimates of Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Kreemer, C.; Blewitt, G.

    2007-05-01

    In the United States, seismic hazard is evaluated officially by the U.S. Geological Survey and published as estimates in the National Seismic Hazard Maps (NSHM) that depict the peak ground shaking at a specific level of likelihood. In the western Great Basin, the 2002 NSHM is based on a combination of seismic, geologic and geodetic data. However, a discrepancy between the deformation rate that is inferred from the geodetic data (e.g. GPS) and geologic data (e.g. slip rates from fault studies) led to the introduction of an ad hoc zone of crustal shear strain in the western Basin and Range. Only then was the shaking risk portrayed in the NSHM consistent with the relative geodetic velocity of the Sierra Nevada microplate with respect to the central Great Basin. Since creation of the 2002 NSHM there has been a rapid increase in the quantity, quality and spatial coverage of GPS data in the western Great Basin, providing a vast improvement on the constraint on the pattern of crustal deformation. Thus geodesy is poised to make a substantial contribution to the spatial localization of seismic hazard in support of the next generation NSHM. In the Walker Lane ~10 mm/yr of relative motion are accommodated as shear and extension along a ~200 km wide and ~1000 km long zone of intracontinental deformation associated with the Pacific/North American plate boundary. We integrate GPS velocities obtained from sites in the continuous BARGEN, PBO, BARD, semi-continuous MAGNET network plus campaign results from numerous published results to constrain block models of crustal deformation. In so doing we estimate slip rates on block-bounding faults that have regional kinematic self-consistency and can be easily incorporated into the USGS algorithms that compute estimates for seismic hazard. Because of the large number and high density of candidate faults, and length of this zone we divide the region into three parts covering the Northern, Central and Southern Walker Lane. We have completed

  3. Kinematics and vorticity in Kangmar Dome: Testing patterns of mid-crustal ductile deformation during the Himalayan orogeny

    NASA Astrophysics Data System (ADS)

    Lee, J.; Wagner, T.

    2009-12-01

    The channel flow hypothesis states that mid-crustal rocks in southern Tibet flowed southward toward the Himalayan front. Channel flow is driven by a low-viscosity mid-crust, a horizontal pressure gradient between Tibet and India, and surface denudation along the southern flank of the high Himalaya. Flow is predicted to be top-N simple shear at the top of the channel grading into pure shear at the center and top-S simple shear at the base. To test this hypothesis, we completed detailed analyses of the kinematics, deformation temperatures, and mean vorticity (Wm) of D2 deformation, characterized by NS-horizontal extension and vertical thinning, preserved in mid-crustal (ctd- to ky-grade) metapelites overlying an orthogneiss in the core of Kangmar Dome, southern Tibet. Mylonitic D2 fabrics define an ~2260-3300 m wide zone of deformation extending from the gar-in isograd to ~1000 m below the metapelite/orthogneiss contact; the deeper parts of the orthogneiss appear undeformed. Quartz and feldspar textures and strain shadow mineral assemblages indicate that D2 deformation temperatures ranged from ~300-450°C in ctd-zone rocks to ≥600°C in ky-zone and deeper rocks, the same as peak metamorphic temperatures. Kinematics at these temperatures were characterized by a near equal mix of top-N and top-S shear in gar-zone rocks, and dominantly top-N shear and top-S shear on the north and south flanks of the dome, respectively, in st/ky-zone rocks. This distribution of shear sense suggests that D2 deformation across Kangmar was characterized by bulk pure shear vertical thinning and horizontal extension. D2 Wm values record an increase in pure shear component with depth from ~45% pure shear in ctd-zone rocks, to ~61% in gar-zone rocks, to ~64% in st/ky-zone rocks, likely the result of an increase in lithostatic load with structural depth. Shear bands, which cross-cut the D2 mylonitic foliation, are characterized by dominantly top-N shear on the north flank of the dome and a mix

  4. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  5. Investigating crustal deformation associated with the North America-Pacific plate boundary in southern California with GPS geodesy

    NASA Astrophysics Data System (ADS)

    Spinler, Joshua C.

    determining the slip-rates on each of the major crustal faults prior to the earthquake, we are able to model the pre-earthquake velocity field for comparison with velocities measured using sites constructed post-earthquake. We then determine how individual site velocities have changed in the 3 years following the earthquake, with implications for the rate at which the lower crust and upper mantle viscously relax through time. We find that the viscosity of the lower crust is at least an order of magnitude higher than that of the uppermost mantle, and hypothesize that this is due to mafic material emplaced at the base of the crust as the spreading center developed beneath the Salton Trough since about 6 Ma. The final study investigates crustal deformation and fault slip rates for faults in the northern Mojave and southern Walker Lane regions of the ECSZ. Previous geodetic studies estimated slip-rates roughly double those inferred via geological dating methods in this region for NW striking strike-slip faults, but significantly smaller than geologic estimates for the Garlock fault. Through construction of a detailed elastic block model, which selects only active fault structures, and applying a new, dense GPS velocity field in this region, we are able to estimate slip-rates for the strike-slip faults in the ECSZ that are much closer to those reported from geology.

  6. Three-dimensional mechanical modeling of large-scale crustal deformation in China constrained by the GPS velocity field

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ye, Zheng-Ren; He, Jian-Kun

    2008-01-01

    We present a quantitative model for the crustal movement in China with respect to the Eurasia plate by using the three-dimensional finite element code ADELI. The model consists of an elastoplastic upper lithosphere and a viscoelastic lower lithosphere. The lithosphere is supported by the hydrostatic pressure at its base. The India-Eurasia collision is modeled as a velocity boundary condition. Ten large-scale faults are introduced as Coulomb-type frictional zones in the modeling. The values for the root mean square (RMS) of the east and north velocity components differences (RMS(Ue) and RMS(Un)), which are between the observation and the prediction, are regarded as the measurements to evaluate our simulations. We model the long-term crustal deformation in China by adjusting the faults frictions ranged from 0.01 to 0.5 and considering the effects resulted from lithospheric viscosity variation and topographic loading. Our results suggest most of the large-scale faults frictions are not larger than 0.1, which is consistent with other large-scale faults such as the North Anatolian fault (Provost, A.S., Chery, J., Hassani, R., 2003. Three-dimensional mechanical modeling of the GPS velocity field along the North Anatolian fault. Earth Planet. Sci. Lett. 209, 361-377) and the San Andreas fault (Mount, V.S., Suppe, J., 1987. State of stress near the San Andreas fault: implications for wrench tectonics. Geology, 15, 1143-1146). Further, we examine the effects on the long-term crustal deformation in China of three causes: the large-scale faults, lithospheric viscosity structure and topographic loading. Results indicate that the lithospheric viscosity structure and the topographic loading have important influences on the crustal deformation in China, while the influences caused by the large-scale faults are small. Although our simulations satisfactorily reproduce the general picture of crustal movement in China, there is a poor agreement between the model and the observed GPS

  7. Crustal development and deformation of Laurentia during the Trans-Hudson and Alleghenian orogenies

    NASA Astrophysics Data System (ADS)

    Growdon, Martha Lynne

    The Kisseynew domain in Manitoba and the Orange-Milford complex in Connecticut are exhumed orogenic terranes that record the development of Laurentia along rigid basement margins during continent-continent collision and terrane accretion. The Kisseynew domain lies within the Paleoproterozoic Trans-Hudson Orogen and the Orange-Milford complex is a tectonic domain within the Paleozoic New England Appalachians. The response of continental crust to continent collisions ˜1.8 Ga contrasts with that during terrane accretions ˜300 Ma because the metamorphic evolution of each terrane is strongly controlled by the configuration of the converging tectonic blocks. The Paleoproterozoic Kisseynew domain is situated between three Archean cratons: the Hearne-Rae, Superior and Sask. The development of folds with axes oriented primarily NE-SW shows evidence for east-west compression of the rocks between the Superior and Hearne cratons. However, arching along a roughly east-west axis suggests a contribution of late north-south shortening between the Sask and Hearne cratons. Metamorphic temperatures exceeded 850°C and rocks now exposed at the surface were buried to at least 40 km due to the convergence of these three continental blocks. In contrast to these very high-grade rocks, the Orange-Milford complex is situated on the edge of the New York Promontory, a crustal buttress that localized strain from oblique terrane accretion into transpression, and contains an Acadian Barrovian-style metamorphic gradient. New 40Ar/39Ar thermochronology indicates a late phase of muscovite+chlorite growth occurred ˜300Ma during retrograde Alleghenian greenschist-facies deformation. The associated chlorite-muscovite fabrics are pervasive and cross-cut all older fabrics. These structures, that develop in association with the New York Promontory, are elongated parallel to the margin and contain evidence of significant along-strike stretching and thinning. In this setting rocks escape along the

  8. Aseismic Slips Preceding Ruptures Assumed for Anomalous Seismicities and Crustal Deformations

    NASA Astrophysics Data System (ADS)

    Ogata, Y.

    2007-12-01

    If aseismic slips occurs on a fault or its deeper extension, both seismicity and geodetic records around the source should be affected. Such anomalies are revealed to have occurred during the last several years leading up to the October 2004 Chuetsu Earthquake of M6.8, the March 2007 Noto Peninsula Earthquake of M6.9, and the July 2007 Chuetsu-Oki Earthquake of M6.8, which occurred successively in the near-field, central Japan. Seismic zones of negative and positive increments of the Coulomb failure stress, assuming such slips, show seismic quiescence and activation, respectively, relative to the predicted rate by the ETAS model. These are further supported by transient crustal movement around the source preceding the rupture. Namely, time series of the baseline distance records between a numbers of the permanent GPS stations deviated from the predicted trend, with the trend of different slope that is basically consistent with the horizontal displacements of the stations due to the assumed slips. References Ogata, Y. (2007) Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu Earthquake of October 23, 2004, central Japan, J. Geophys. Res. 112, in press.

  9. Crustal deformation and gas emission from the Krýsuvík high temperature geothermal system, Iceland

    NASA Astrophysics Data System (ADS)

    Rakel Gudjonsdottir, Sylvia; Ilyinskaya, Evgenia; Hreinsdottir, Sigrun; Michakczewska, Karolina; Bergsson, Baldur; Auippa, Alessandro; Agla Oladottir, Audur; Rut Hjartardottir, Asta

    2016-04-01

    The Krýsuvík volcanic system is located at the oblique spreading Reykjanes Peninsula, Iceland. Since early 2009 the region has been undergoing episodes of localized ground uplift and subsidence. From March 2011 to the end of 2012 the region inflated by over 7 cm, triggering upper crustal earthquakes at the plate boundary. From 2012 to present the region has been subsiding at a relatively steady rate, reaching the pre inflation state by the end of 2015. GPS measurements indicate that the deflation source is located at 3 km depth coinciding with a previously mapped low resistivity zone from MT measurements suggesting the presence of water, magma or conductive minerals. In April 2013, near-real time monitoring of gas emissions started in Krýsuvík using a MultiGAS sensor system to collect data gas composition. Gas emissions are correlated with crustal deformation and seismicity within the Krýsuvík geothermal system. The dataset comprises near-continuous gas composition time series (MultiGAS); quantification of diffuse CO2 gas flux; direct samples of dry gas; seismic records; and GPS dataset. The gas emissions from the Krýsuvík system are H2O dominated with CO2 as the most abundant dry gas species, followed by lesser amounts of H2S. The subsurface equilibrium temperature is calculated as 278°C. This is consistent with previous observations made through sporadical sampling campaigns (e.g. Arnórsson, 1987). In addition, the semi-continuous MultiGAS dataset reveals higher variations of gas composition than previously reported by spot sampling. The diffuse CO2 soil flux is found to be variable between the three degassing areas in Krýsuvík ranging from 10.9-70.9 T/day with the highest flux in Hveradalir where the MultiGAS station is located. The total flux was calculated as 101.4 T/day. Correlation of the MultiGAS data with the geophysical data shows that peaks of H2O-rich emissions follow events of crustal movements. Coinciding with the H2O-rich peaks, SO2 is

  10. Crustal Deformation and the Seismic Cycle across the Kodiak Islands, Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Carver, G.; Cohen, Steven C.; King, Robert

    2004-01-01

    The Kodiak Islands are located approximately 130 to 250 km from the Alaska-Aleutian Trench where the Pacific plate is underthrusting the North American plate at a rate of about 57 mm/yr. The southern extent of the 1964 Prince William Sound (${M-w}$ = 9.2) earthquake rupture occurred offshore and beneath the eastern portion of the Kodiak Islands. Here we report GPS results (1993-2001) from northern Kodiak Island that span the transition between the 1964 uplift region along the eastern coast and the region of coseismic subsidence further inland. The horizontal velocity vectors range from 22.9 $\\pm$ 2.2 mm/yr at N26.3$\\deg$W $\\pm$ 2.5$\\deg$, about 150 km from the trench, to 5.9 $\\pm$ 1.3 mm/yr at N65.9$\\deg$W $\\pm$ 6.6$\\deg$, about 190 km from the trench. Near the northeastern coast of Kodiak the velocity vector above the shallow, locked main thrust zone is between the orientation of PCFC-NOAM plate motion (N22$/deg$W) and the trench-normal (N3O$\\deg$W). Further west, our geodetic results suggest the accumulation of shear strain that will be released eventually as left-lateral motion on upper plate faults such as the Kodiak Island fault. These results are consistent with the hypothesis that the difference between the Pacific-North American plate motion and the orientation of the down going slab would lead to 4-8 mm/yr of left-lateral slip. Short-term geodetic uplift rates range from 2 - 14 mm/yr, with the maximum uplift located near the axis of maximum subsidence during the 1964 earthquake. We evaluated alternate interseismic models for Kodiak to test the importance of various mechanisms responsible for crustal deformation rates. These models are based on the plate interface slip history inferred from earlier modeling of coseismic and post-seismic geodetic results. The horizontal (trench perpendicular) and vertical deformation rates across Kodiak are consistent with a model that includes the viscoelastic response to : (1) a downgoing Pacific plate interface

  11. Application of an ultra-high-resolution FBG strain sensor for crustal deformation measurements at the Aburatsubo Bay, Japan

    NASA Astrophysics Data System (ADS)

    Tokunaga, T.; Liu, Q.; He, Z.; Mogi, K.; Matsui, H.; Wang, H. F.; Kato, T.

    2011-12-01

    For crustal deformation measurements, high-resolution strain sensors on the order of tens of nano-strains are desirable. Current sensors for this purpose include quartz-tube extensometers, free-space laser interferometers, and borehole strainmeters. The former two sensors show quite high strain resolution, however, these are large in size, from tens to hundreds of meter long, and hence, are difficult to measure spatial strain distribution. The optical fiber strain sensors have advantages of multiplexing capability and relatively low cost, and are widely adopted in the applications for structural health monitoring of civil structures such as bridges and buildings. Thus, as long as the strain resolution can be high enough to meet the requirement of crustal deformation measurements, fiber strain sensors can be an attractive tool. We have been developing an ultra-high strain-resolution fiber Bragg grating (FBG) sensor for static strain measurement, interrogated by a narrow line-width tunable laser. The sensor consists of a pair of FBGs, one for strain sensing and the other for temperature compensation. The Bragg wavelength difference between the two FBGs is evaluated using a cross-correlation algorithm. We already demonstrated that an ultra-high resolution corresponding to 2.6 nano-strain was obtained in the case where no strain was applied to the sensor, which was considered to be the ultimate performance of our measurement system. By directly applying variable strains to the developed sensor with a piezo-stage, a resolution of 17.6 nano-strain was demonstrated. This time, the sensor was installed into the vault at Aburatsubo, Japan, to measure crustal deformation caused by ocean tide, and the measured data were compared with the results obtained by a quartz-tube extensometer at the site, which has been measured by the University of Tokyo's Earthquake Research Institute. The deformation induced by oceanic tide was measured by the FBG sensor with the resolution about

  12. NASA plan for international crustal dynamics studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  13. Crustal Structure and Deformation of the Yakutat Microplate: New Insights From STEEP Marine Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Lowe, L. A.; Gulick, S. P.; Christeson, G.; van Avendonk, H.; Reece, R.; Elmore, R.; Pavlis, T.

    2008-12-01

    In fall 2008, we will conduct an active source marine seismic experiment of the offshore Yakutat microplate in the northern Gulf of Alaska. The survey will be conducted aboard the academic research vessel, R/V Marcus Langseth, collecting deep-penetrating multi-channel seismic reflection survey using an 8-km, 640 channel hydrophone streamer and a 6600 cu. in., 36 airgun array. The survey is the concluding data acquisition phase for the ST. Elias Erosion and tectonics Project (STEEP), a multi-institution NSF-Continental Dynamics project investigating the interplay of climate and tectonics in the Chugach-St. Elias Mountains in southern Alaska. The experiment will also provide important site survey information for possible future Integrated Ocean Drilling Program investigations. Two profiles coincident with wide-angle refraction data (see Christeson, et al., this session) will image structural changes across the Dangerous River Zone from east to west and the Transition Fault from south to north. We will also image the western portion of the Transition Fault to determine the nature of faulting along this boundary including whether or not the Pacific Plate is underthrusting beneath the Yakutat microplate as part of this collision. Our westernmost profile will image the Kayak Island Zone, typically described as the northern extension of the Aleutian megathrust but which may be a forming suture acting as a deformation backstop for the converging Yakutat and North American plates. Profiles across the Pamplona Zone, the current Yakutat-North America deformation front, will further constrain relative timing of structural development and the depth of deformation on the broad folds and thrust faults that comprise the area. This new dataset will allow further insight into regional tectonics of the St. Elias region as well as provide more detail regarding the development of the south Alaskan margin during major Plio-Pleistocene glacial- interglacial periods.

  14. Surface Reflection Phase in Two Way Acoustic Signal in Oceanic Crustal Deformation Measurement

    NASA Astrophysics Data System (ADS)

    Ikuta, R.; Tadokoro, K.; Watanabe, T.; Nagai, S.; Okuda, T.

    2011-12-01

    We are developing a geodetic method of monitoring crustal deformation under the ocean using kinematic GPS and acoustic ranging. The measurements are done by measuring two way traveltime of supersonic signal between a vessel, whose position is precisely determined by kinematic GPS, and transponders array (benchmark) on the ocean bottom. The goal of our research is to achieve sub-centimeter accuracy in measuring position of the benchmark by a very short-time measurement like 10 hours. In this study, we focused the under-water acoustic part of the system to improve data acquisition rate and then number of observation equations to solve the position of the benchmark with better accuracy. The measurements have started in Suruga Bay in 2003 and in Kumano Basin in 2004, which have been repeated a few times in a year. The accuracy of the benchmark positioning depends on the quality and quantity of the acoustic signal data. We are using M-sequence signal because of its robustness against ambient noises (The signal length is 14.322ms, Carrier frequency is 12.987kHz). We calculate cross-correlation between emitted and received signal and then accept the signal with cross correlation coefficient higher than a threshold. However, we often failed to achieve well correlated signals and then obtain very few traveltime data through one cruise. Sometimes in the cruise of good condition, 70 % of acoustic data have correlation coefficient above 0.7, on the other hand, only 10 % of all the data have correlation coefficient of 0.7 in bad condition cruise. We found that increase of ambient noise and contamination of later phase resembling to the main signal occurs independently each other. The ambient noise should be due to screw noise of the vessel because the noise grew up when sailing against the wind and current. On the other hand the later phases have following features: 1. Arrive in between 1 and 2 ms after the main signal arrival 2. The cross-correlation coefficient sometimes

  15. Crustal deformation study in the Canary Archipelago by the analysis of GPS observations

    NASA Astrophysics Data System (ADS)

    Martín, Adriana; Sevilla, Miguel; Zurutuza, Joaquín

    2014-06-01

    The Canary Archipelago is an active volcanic region located in the African plate, at 100 Km of the northwest coast of Africa. The Complutense University of Madrid, Institute of Astronomy and Geodesy (CSIC-UCM) and University of Jaén, established a GPS Network in this region and carried out six observations campaigns from 2002 to 2009. The focus of thiswork is processing and analyzing these observations to study the geodynamic behavior of the stations of this network. The data have been computed with the Bernese GPS Software Version 5.0 obtaining individual solutions of coordinates for each session and campaign, the coordinate velocities of the stations and the time series of baselines formed between them. Results show consistency of station velocities compared to behaviour of areas permanent stations and baselines stability. No deformations could be detected.

  16. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  17. First Observation of Coseismic Seafloor Crustal Deformation due to M7 Class Earthquakes in the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Ikuta, R.; Ando, M.; Okuda, T.; Sugimoto, S.; Besana, G. M.; Kuno, M.

    2005-12-01

    The Mw7.3 and 7.5 earthquakes (Off Kii-Peninsula Earthquakes) occurred close to the source region of the anticipated Tonankai Trough in September 5, 2004. The focal mechanisms of the two earthquakes have no low angle nodal planes, which shows that the earthquakes are intraplate earthquakes in the Philippine Sea Plate. We observed coseismic horizontal displacement due to the Off Kii-Peninsula Earthquakes by means of a system for observing seafloor crustal deformation, which is the first observation of coseismic seafloor displacement in the world. We have developed a system for observing seafloor crustal deformation. The observation system is composed of 1) acoustic measurement between a ship transducer and sea-bottom transponders, and 2) kinematic GPS positioning of the observation vessel. We have installed a seafloor benchmark close to the epicenters of the Off Kii-Peninsula Earthquakes. The benchmark is composed of three sea-bottom transponders. The location of benchmark is defined as the weight center of the three transponders. We can determine the location of benchmark with an accuracy of about 5 cm at each observation. We have repeatedly measured the seafloor benchmark six times up to now: 1) July 12-16 and 21-22, 2004, 2) November 9-10, 3) January 19, 2005, 4) May 18-20, 5) July 19-20, and 6) August 18-19 and 29-30. The Off Kii-Peninsula Earthquakes occurred during the above monitoring period. The coseismic horizontal displacement of about 21 cm toward SSE was observed at our seafloor benchmark. The displacement is 3.5 times as large as the maximum displacement observed by on land GPS network in Japan, GEONET. The monitoring of seafloor crustal deformation is effective to detect the deformations associated with earthquakes occurring in ocean areas. This study is promoted by "Research Revolution 2002" of Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural

  18. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  19. The Relationship Between the Surface Expression of Blind Thrust Faults and Crustal-Scale Deformation in the Eastern Precordillera, San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Schiffman, C. R.; Meigs, A. J.

    2005-12-01

    Large earthquakes (M w 6.5+) are often accompanied by surface rupture that has a predictable relationship with the magnitude. However, in large thrust earthquakes that have a deep (30+ km) hypocenter or fault tip, coseismic surface deformation is expressed primarily by folding rather than as rupture along the fault surface. Knowledge of source characteristics and surficial geology are required to characterize the relationship between earthquake fault slip and coseismic folding. By fully identifying and characterizing the fault plane of the M w 7.4 earthquake that occurred in 1944 in the eastern Precordillera of the Andes, destroying the city of San Juan in northwestern Argentina, we seek to relate active folding in the near-surface structures to the blind-thrust fault at depth. Coseismic deformation associated with the 1944 earthquake are secondary fault-related folding features, and there is a large discrepancy between the amount of surface rupture and the magnitude. Subtle fold-related clues at the surface represent the only potential for recognition of the occurrence of past earthquakes. This two-part study employs seismology and structural mapping to provide a new image of the Eastern Precordillera at the crustal scale. Source parameter inversion of teleseismic seismograms from the 1944 event place the hypocenter on a west-dipping plane approximately 30 km deep, which has previously been defined by microseismicity, as opposed to a surface-rupturing event in the Neogene sedimentary strata. Preliminary results from field mapping show two types of folding due to a west-dipping thrust fault with a tip at 5 km depth: a broad long-wavelength fold (~8 km) in deformed strath terraces cut into previously deformed bedrock, and short wavelength folding and faulting in the bedrock in the form of reactivation of older thrust planes. As of now, we cannot uniquely tie any one of these surficial structure to the thrust fault at depth because the pre-existing deformation in the

  20. Kinematics of SW Anatolia implications on crustal deformation above slab tear

    NASA Astrophysics Data System (ADS)

    Özkaptan, Murat; Koç, Ayten; Lefebvre, Côme; Gülyüz, Erhan; Uzel, Bora; Kaymakci, Nuretdin; Langereis, Cornelis G.; Özacar, Arda A.; Sözbilir, Hasan

    2014-05-01

    measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. Thus, the FBFZ is characterized at the surface mainly by extension unlike previously proposed transcurrent deformation. We think, the FBFZ may represent a deep structure that formed at the ancient northern track of the STEP fault that reflected to the surface as a wide extensional zone displaying counter-clockwise rigid body rotation since late Miocene possibly due to fast Aegean slab retreat towards south. This research is supported byTubitak-Turkish National Science Foundation Grant Number 111Y239.

  1. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; Jarrín, P.; Quidelleur, X.

    2014-02-01

    The Quito Fault System (QFS) extends over 60 km along the Interandean Depression in northern Ecuador. Multidisciplinary studies support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the N-S segmented, en echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active, and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited N-S direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected at depth to inactive suture to the west. A new GPS data set indicates active shortening rates for Quito blind thrust of up to 4 mm/yr, which decreases northward along the fold system as it connects to the strike-slip Guayllabamba Fault System. The proximity of these structures to the densely populated Quito region highlights the need for additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  2. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu; Lagreulet, Sarah; Segovia, Monica; Font, Yvonne; Yepes, Hugo; Mothes, Patricia; Rolandone, Frédérique; Jarrin, Pierre; Quidelleur, Xavier

    2014-05-01

    The Quito Fault System (QFS) is an intraplate reverse fault zone, that extend over 60km along the Interandean Depression in northern Ecuador. Multidisciplinary studies coherently support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the NS segmented, en-echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited NS direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected, at depth, to inactive suture to the west. A new GPS dataset indicates active shortening rates for Quito blind thrust of up to 4mm/yr, wich decreases northwards along the fold system as it connects to the strike slip Guayllabamba Fault System. The proximity of these structures to the densely-populated Quito region underlines the need of additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  3. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C.; Knepley, M.

    2008-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.3), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, gravitational body forces, and automatic time step selection for quasi-static problems. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection

  4. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C.; Knepley, M.

    2007-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith version 1.1, combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation and spontaneous rupture modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms, from laptops to Beowulf clusters. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault interface conditions, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, and quasi-static and dynamic time-stepping. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection simulation and an orogenesis and basin

  5. Numerical modeling of forceful pluton emplacement and associated deformation at different crustal levels - instantaneous, continuous or episodic intrusion?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Nabelek, P. I.

    2015-12-01

    The Papoose Flat pluton in the White-Inyo Range, California, is one of the best examples of forceful magma emplacement at mid-crustal levels that is revealed by a highly strained aureole. A thermo-rheological 2-D model of the pluton and its aureole is proposed. We explored how the frequency of magma input, from instantaneous to continuous to the bottom of the laccolith, affects the ductile width of the aureole and the crystallinity of the pluton, which has implications for eruption of magma. We modeled these aspects at mid- and upper-crustal levels. The pluton was assumed to be 5 km thick in the middle and 13 km wide. Except for instantaneous growth, pluton was assumed to grow over 5 m.y. The aureole was assumed to have power-law rheology of quartz with dependence on H2O fugacity, which was calculated using the CORK equation (Holland & Powell, 1991) Our result shows that the bottom of the Papoose Flat pluton was emplaced at the brittle-ductile transition zone of the crust. The crustal rheology profile assisted the softening of rocks around the pluton. The simulated temperature and strength profiles confirm that ductile deformation was related to thermal weakening (Saint-Blanquat et al., 2001). Results of incremental growth calculations show that the pluton remains hot and only partially crystalline for millions of years when it grows by frequent input of small batches of liquid. At the mid-crustal level, the ductile region around the pluton is much wider and exists longer than at the shallow crustal level. Brittle rheology is dominant during the late stage growth at the shallow depth. When the pluton grows instantly or by only few episodes of large batches of input, the mobile part of the pluton is thin and the ductile aureole is narrower. High-frequency incremental growth by smaller magma batches produces a large volume of mobile magma that has the potential to induce internal magmatic layering that may be reflected in aligned acquired magnetic susceptibility (AMS

  6. Tectonic evolution of the Lachlan Fold Belt, southeastern Australia: constraints from coupled numerical models of crustal deformation and surface erosion driven by subduction of the underlying mantle

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Pauselli, Cristina

    2004-04-01

    We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.

  7. Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.

    2015-05-01

    The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.

  8. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  9. Crustal Deformation Measurements Using Repeat-pass JERS 1 SAR Interferometry Near the Izu Peninsula, Japan

    NASA Technical Reports Server (NTRS)

    Fujiwara, Satoshi; Rosen, Paul A.; Tobita, Mikio; Murakami, Makoto

    1997-01-01

    We have examined the precision of interferometric SAR measurements of surface deformation of the Earth using 24-cm wavelength data acqured by the Japanese Earth Resources Satellite 1 (JERS 1) spacecraft, over the Izu Peninsula, Japan.

  10. Distance corrections for single- and dual-color lasers by ray tracing. [for earth crustal deformation and strain measurement

    NASA Technical Reports Server (NTRS)

    Berg, E.; Carter, J. A.

    1980-01-01

    The physical arc length difference between the red and blue beam of a dual-color laser generates an error term in determining Delta-n as well as n (the refractive index) and D (the line length). Numerical ray trace examples and theoretical approximations show that the resulting relative error Delta-D/D increases as D-squared. Error reduction by a factor of nearly 10 is possible by using the pressure, temperature, and humidity of both endpoints to calculate n. The present study results from a desire to improve the precision of monitoring the local and regional position of the Lunar Laser Ranging Observatory atop Haleakala, Maui, Hawaii; the monitoring of the earth's crustal deformation and strain is a primary concern of the study.

  11. Using combined GRACE and GPS data to investigate the vertical crustal deformation at the northeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Wu, Weiwei; Wu, Yunlong

    2017-02-01

    In this paper, two types of geodetic measurements, GRACE and GPS, are combined to study the vertical crustal deformation on the northeastern margin of the Tibetan Plateau. The GRACE and GPS derived results show that significant seasonal variations occur at 40 regional continuous GPS stations of the Crustal Movement Observation Network of China (CMONOC). The consistency between the seasonal variations in the GRACE and GPS data can be efficiently enhanced by decreasing the nonlinear deformation in the GPS time series with applying longer observation period. The vertical components of more than 78% of the total number of GPS stations exhibit correlations of more than 0.8 with respect to the corresponding GRACE components, and approximately 73% of the GPS vertical time series exhibit a significant root mean square reduction of approximately 40%, which increases to 60% when corresponding seasonal components derived from the GRACE measurements are subtracted. We consider that the vertical seasonal variations in the study area are caused by mass transfer related to hydrological loading, whereas the horizontal components are related to both mass transfer and other factors, such as the thermal elastic response of the GPS monuments and GPS data processing strategical deficits. These factors distinguish the main differences between the two measurements and exert larger influences in the eastward direction than in the northward direction, contributing to the total displacement. Finally, we use seasonal variations derived from the GRACE results to modify the vertical time series of corresponding GPS campaign stations to mitigate the influences of seasonal loading as much as possible in the dispersed time series. The results show that this modification can significantly reduce the scatter of campaign time series and improve the derived velocities uncertainties remarkably.

  12. Effect of distributed inelastic deformation on fault slip profiles and fault interaction under mid-crustal conditions

    NASA Astrophysics Data System (ADS)

    Nevitt, J. M.; Pollard, D. D.

    2015-12-01

    Under mid-crustal conditions, faults commonly are associated with distributed inelastic deformation (i.e., ductile fabrics). The effect of such inelastic deformation on fault slip profiles and fault interaction remains poorly understood, though it likely plays a significant role in the earthquake cycle. We have investigated meter-scale strike-slip faults exhumed from ~10 km depth in the Lake Edison granodiorite (Sierra Nevada, CA). These faults are characterized by slip-to-length ratios and slip gradients near fault tips that greatly exceed what is measured for faults in the brittle upper crust, or produced by linear elastic models. Using Abaqus, we construct elastoplastic finite element models to evaluate the impact of off-fault plasticity on the resulting slip profiles for both continuous and discontinuous faults. Elastoplastic models show that plastic strain near fault tips effectively lengthens faults, allowing for greater overall slip and increased slip gradients near fault tips. In the field, regions adjacent to fault tips contain mylonitized granodiorite and ductilely sheared dikes and schlieren, consistent with the model results. In addition, distributed plastic strain facilitates slip transfer between echelon fault segments, particularly for contractional step geometries. Relative to an isolated fault, fault segments adjacent to contractional steps are asymmetric, with the maximum slip shifted in the direction of the step. Immediately adjacent to the contractional step, fault slip is significantly reduced because shear offset is accommodated by distributed plastic shearing within the step, rather than by discrete slip on the faults. Although slip is locally reduced on each fault segment directly adjacent to a contractional step, overall slip transfer between discontinuous fault segments is most efficient for this step geometry. That is, faults segmented by contractional steps produce greater maximum slip than do those separated by extensional steps

  13. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1991-01-01

    During our participation in the NASA Crustal Dynamics Project under NASA contract NAS-27339 and grant NAG5-814 for the period 1982-1991, we published or submitted for publication 30 research papers and 52 abstracts of presentations at scientific meetings. In addition, five M.I.T. Ph.D. students (Eric Bergman, Steven Bratt, Dan Davis, Jeanne Sauber, Anne Sheehan) were supported wholly or in part by this project during their thesis research. Highlights of our research progress during this period include the following: application of geodetic data to determine rates of strain in the Mojave block and in central California and to clarify the relation of such strain to the San Andreas fault and Pacific-North American plate motions; application of geodetic data to infer post seismic deformation associated with large earthquakes in the Imperial Valley, Hebgen Lake, Argentina, and Chile; determination of the state of stress in oceanic lithosphere from a systematic study of the centroid depths and source mechanisms of oceanic intraplate earthquakes; development of models for the state of stress in young oceanic regions arising from the differential cooling of the lithosphere; determination of the depth extent and rupture characteristics of oceanic transform earthquakes; improved determination of earthquake slip vectors in the Gulf of California, an important data set for the estimation of Pacific-North American plate motions; development of models for the state of stress and mechanics of fold-and-thrust belts and accretionary wedges; development of procedures to invert geoid height, residual bathymetry, and differential body wave travel time residuals for lateral variations in the characteristic temperature and bulk composition of the oceanic upper mantle; and initial GPS measurements of crustal deformation associated with the Imperial-Cerro Prieto fault system in southern California and northern Mexico. Full descriptions of the research conducted on these topics may be

  14. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Aagaard, B.; Knepley, M. G.

    2009-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.4), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries and source code are available from geodynamics.org. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures with multiple sequential earthquakes and aseismic creep, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, linear elastic rheologies, generalized Maxwell and Maxwell linear viscoelastic rheologies, power-law rheologies, and gravitational body forces. Current development focuses on implementing dynamic fault interface conditions (employing fault constitutive models) and additional viscoelastic and viscoplastic materials. Future development plans include support for large deformation and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture

  15. Spatiotemporal model for crustal deformation around the focal area of the 2008 Iwate-Miyagi Inland Earthquake, northeastern Japan, estimated by GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Ohzono, M.; McCaffrey, R.; Ohta, Y.; Miura, S.; Iinuma, T.; Tachibana, K.; Sato, T.

    2009-12-01

    Applying the program tDEFNODE [McCaffrey, GRL09] to model elastic lithospheric block rotations and strains, and locking or coseismic slip on block-bounding faults, we model GPS and InSAR data of crustal deformation before and after the 2008 M7.2 Iwate-Miyagi Inland Earthquake (IMEQ). The epicenter of the IMEQ is located in a high strain rate zone along the Ou Backbone Range (OBR) in northeastern Japan, where volcanic front runs subparallel to the Japan Trench. Along eastern and western margin of the OBR, major inland active faults have been growing. In order to clarify detailed strain field around these active faults, Japan Nuclear Energy Safety Organization (JNES) installed 7 new continuous GPS sites with ~5 km spacing across the Dedana Fault (DF), which is a part of the eastern marginal active faults, in October 2007. Because the DF is located at only ~20 km northeast from the hypocenter of the IMEQ, the detailed coseismic and postseismic crustal deformation was obtained at these GPS sites [Ohta et al., EPS08; Iinuma et al., GRL09]. Takada et al. [EPS09] also estimated coseismic faults from InSAR with pixel-offset method. These studies, however, handled each data independently. We unify both GPS and InSAR data to model crustal deformation over inter-, co-, and post-seismic period using tDEFNODE. This code interprets geodetic timeseries data by assuming elastic block rotation, transient phenomena such as slow slip, and coseismic slip, on the block boundary faults. We use timeseries data obtained by continuous GPS networks conducted by JNES, Tohoku University, Geographical Survey Institute (GSI), National Astronomical Observatory (NAO), and IGS from 2006 to June 2009, together with a temporal network for postseismic deformation installed by Japanese University Consortium for GPS Research (JUNCO). InSAR data is obtained by analyzing images of ALOS/PALSAR mission. We presumed three blocks in the study area divided by two boundary faults. We expressed the time

  16. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan

    SciTech Connect

    Cappa, F.; Rutqvist, J.; Yamamoto, K.

    2009-05-15

    In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been driven by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the

  17. The observation of crustal deformation derived from Taiwan Continuous GPS Array (2007-2013)

    NASA Astrophysics Data System (ADS)

    Min-Chien, Tsai; Shui-Beih, Yu; Tzay-Chyn, Shin

    2015-04-01

    Data collected by 281 sites of Taiwan Continuous GPS Array from 2007 to 2013 are processed with GAMIT/GLOBK software. The acquired GPS position time series are described by model parameters such as linear rate, annual and semi-annual periodic motions, coseismic offsets, postseismic rate change, and exponential decay after earthquakes. Stacking of power spectral densities from 281 continuous GPS data in Taiwan, we found the slopes of spectra (spectral index) are -0.72, -0.77, and -0.57 for the E, N, U components, respectively. It indicates the errors of continuous GPS data can be described as a combination of white noise and flicker noise. The common-mode errors are removed by stacking data from 50 continuous GPS sites with data period more than 5 years. By removing common-mode errors, the precision of GPS data is further improved to 2.3 mm, 1.9 mm, and 6.9 mm in the E, N, U components, respectively. After strictly data quality control, time series analysis and noise analysis, we derive a new ITRF2008 velocity field and velocity field relative to Penghu using GPS data from 2007 to 2013 in the Taiwan area. The general pattern of the newly derived 2007-2013 velocity field is quite similar with that from previous studies, but the station density is much larger and spatial coverage is better, too. About 80 mm/yr plate convergence rate is observed, approximately half of plate convergence rate is accommodated on the fold and thrust belt of western Taiwan and another half is taken up in the Longitudinal Valley and the Coastal Range in eastern Taiwan. The velocities in western Taiwan generally show a fan-shaped pattern, consistent with the direction of maximum compression tectonic stress. In northern Taiwan, the velocity vectors reveal clockwise rotation, indicating the on-going extensional deformation related to the back-arc extension of the Okinawa Trough. In southern Taiwan, the horizontal velocity increases from about 40 mm/yr at Chiayi-Tainan to 55 mm/yr in the

  18. Inversion for sources of crustal deformation and gravity change at the Yellowstone caldera

    SciTech Connect

    Vasco, D.W.; Taylor, C.L. ); Smith, R.B. )

    1990-11-10

    The Yellowstone caldera was formed in the latest of three explosive eruptions of rhyolites and ash flow tuffs totaling 3,700 km{sup 3} at 2, 1.2, and 0.6 m.y. before present. Its youthful volcanic history, widespread hydrothermal activity, intense seismicity, and extremely high heat flow, in excess of 30 times the continental average, marks the Yellowstone volcanic system as a giant caldera at unrest. Orthometric height increases of the caldera of up to 76 cm, measured from precise leveling surveys from 1923 to 1975-1977, were inverted to determine volume expansion source models for the caldera-wide deformation. For the 1923 to 1977 uplift episode, two regions of expansion were found: (1) in the northern part of the caldera near the Sour Creek resurgent dome of {approximately}0.37 km{sub 3}, and (2) in the southern part of the caldera, near the Mallard Lake resurgent dome of {approximately}0.41 km{sub 3}. Both bodies occur in the upper crust from near-surface depths to 6.0 km, but the largest volume expansions were found in the 3.0-6.0 km depth range. The southern caldera source volume, near the Mallard Lake dome, may extend down to 9.0 km. From 1976 to 1987, nearly simultaneous measurements of elevation and gravity changes were made on a profile across the northern caldera during a period of net uplift. Models of the temporal gravity variation infer that the volume increase for the northern caldera source must lie above 9.0 km and involved a density perturbation greater than +0.002 g/cm{sup 3}. The modeled volumetric sources are in the same general locations as bodies of low P wave velocities, high seismic attenuation, and large negative Bouguer gravity anomalies. It is likely that the modeled volumetric increases were caused by migration of magmas and/or the introduction of large volumes of hydrothermal fluids into the upper crust.

  19. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  20. Alaska Crustal Deformation: Finite Element Modeling Constrained by Geologic and Very Long Baseline Interferometry Data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc

    1995-01-01

    We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench

  1. Crustal composition in southern Norway from active and passive source seismology

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Frassetto, A. M.; Thybo, H.

    2010-12-01

    Crustal composition and structure beneath the Fennoscandian shield are highly variable due to the method of crustal accretion and the long history of extensional and compressional tectonics. In southern Norway, the Moho and crust are inferred to be the youngest of the shield, however, it is likely that a large discrepancy between crustal age and Moho age exists beneath the high southern Scandes where the Caledonian orogeny was in effect and beneath the Oslo Graben where 60 million years of rifting and magmatism has altered the crust. Crustal structure in southern Norway was targeted with a multi-disciplinary seismic study (Magnus-Rex - Mantle investigations of Norwegian uplift Structure). Three ~400 km long active source seismic profiles across the southern Norway and a region wide array of broadband seismometers were deployed. P and S-wave arrivals were recorded in the Magnus-Rex project, from which Poisson ratios for the crust in southern Norway are calculated from both active source profiling and receiver functions. Unusually strong S-wave arrivals allow rare insight into crustal Poisson’s ratio structure, within crustal layers, that is not normally available from active source data and are usually determined by earthquake tomography studies where only bulk crustal values are available. An average Poisson’s ratio of 0.25 is calculated for the crust in southern Norway, suggesting it is predominantly of felsic-intermediate composition and lacks any significant mafic lower crust. This differs significantly from the adjacent crust in the Svecofennian domain of the Fennoscandian shield where Moho depths reach ~50 km and an up to 20 km thick mafic lower crust is present. The vast difference in Moho depths in the Fennoscandian shield are, therefore, mostly due to the variation in thickness of the high Vp lower crust. Estimates of crustal composition and the effect of Magma intrusion within the Oslo Graben, and possible delamination of the lowermost crust beneath

  2. Crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in Southwest Iceland

    NASA Astrophysics Data System (ADS)

    Juncu, D.; Arnadottir, T.; Budzińska, K.; Hooper, A. J.

    2014-12-01

    doing so, we hope to learn more about parameters that we don't have a priori knowledge about, e.g. hydraulic conductivity and elastic properties of the crust. Furthermore, we hope to gain a better understanding of what are the key mechanisms that drive crustal deformation in areas of geothermal energy production.

  3. The BIFROST project: 21 years of search for the true crustal deformation in Fennoscandia

    NASA Astrophysics Data System (ADS)

    Johansson, Jan; Kierulf, Halfdan; Kristiansen, Oddgeir; Lidberg, Martin; Steffen, Holger

    2015-04-01

    in activities like BIFROST are issues regarding reference frames, which are especially important while searching for true vertical velocities, as well as long-term stability in the observation system including new generation of satellites and changes in the ground seg-ment. These issues will also be discussed in the presentation. References Johansson, J.M., Davis, J.L., Scherneck, H.-G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O., Shapiro, I.I., 2002. Continuous GPS measurements of postglacial adjustment in Fen-noscandia 1. Geodetic results. J. Geophys. Res. 107 (B8), doi:10.1029/2001B000400. Lidberg, M., J.M. Johansson, H.-G. Scherneck, and G.A. Milne. 2010. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J. Geodyn. 50: 8-18. Milne, G.A., Mitrovica, J.X., Scherneck, H.-G., Davis, J.L., Johansson, J.M., Koivula, H., Vermeer, M., 2004. Continuous GPS measurements of postglacial adjustment in Fennoscandia. 2. Model-ing results. J. Geophys. Res. 109, B02412, doi:10.1029/2003JB002619. Scherneck, H.-G., Johansson, J.M., Elgered, G., Davis, J.L., Jonsson, B., Hedling, G., Koivula, H., Ollikainen, M., Poutanen, M., Vermeer, M.,Mitrovica, J.X., Milne, G.A., 2002. BIFROST: observ-ing the three-dimensional deformation of Fennoscandia. In: Ice Sheets, Sea Level and the Dy-namic Earth; Geodynamic Series 29. American Geophysical Union.

  4. Characteristics of the Cenozoic crustal deformations in SE Korea and its vicinity due to major tectonic events

    NASA Astrophysics Data System (ADS)

    Son, M.; Kim, J.; Song, C.; Sohn, Y.; Kim, I.

    2010-12-01

    The southeastern Korean Peninsula has experienced multiple crustal deformations according to changes of global tectonic setting during the Cenozoic. Characteristics of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50 ~ 43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm pervasively. (2) Opening of the East Sea (25 ~ 16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. At that time, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting, and the eastward propagating rifting also occurred. At about 17 Ma, the Yeonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (16~15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Islands. The

  5. Utilization of temperature and pressure simulator for ocean-bottom and bore-hole observatories for quantitative crustal deformation

    NASA Astrophysics Data System (ADS)

    Machida, Y.; Matsumoto, H.; Araki, E.; Kimura, T.; Nishida, S.; Kawaguchi, K.

    2015-12-01

    JAMSTEC has developed temperature and pressure simulator for ocean-bottom and bore-hole observatories in 2010, which is mainly composed of temperature chamber and hydraulic pressure standard. We call this equipment "environment simulator". Temperature chamber is capable to control its target temperature from -10 to 180 ℃, hence it is supposed for ocean-bottom to bore-hole environment. Pressure standard in which the dead weight is mounded on the piston-cylinder module produces the reference pressure up to 100 MPa (ca. 10,000 meters deep), which makes it possible to apply the constant pressure to the pressure sensors via the hydraulic pressure tube. Thus, our environment simulator can demonstrate ocean-bottom or bore-hole environment in the laboratory. The main purpose of the pressure simulator is to evaluate long-term pressure sensor's stability, i.e., sensor's drift by applying the constant pressure under the constant temperature. Here, we introduce two applications of our environment simulator. The first application is to evaluate the initial behavior of pressure sensors to be used in the Dense Ocean-floor Network system for Earthquakes and Tsunamis (DONET) in the Nankai Trough, Japan. DONET pressure sensors have been deployed in order for detection of not only tsunami but also crustal deformation. We applied 20 MPa pressure under 2 ℃ temperature to the pressure sensors for one month before deploying into the deep-sea. As a result, the initial sensor drift of 5 hPa per month in maximum was measured. The second application is to provide the reference pressure to the mobile pressure sensor which is designed for the in-situ calibration for the pressure sensors being in operation. We have developed the in-situ pressure calibration tool equipped with the high precision pressure sensor. The concept is that we carry the reference pressure to the on-site to calibrate the pressure sensor. Before carrying it to the deep-sea, the reference pressure is given to the mobile

  6. Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

    NASA Astrophysics Data System (ADS)

    Boyd, Oliver S.; Smalley, Robert; Zeng, Yuehua

    2015-08-01

    Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811-1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10-9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811-1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.

  7. Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

    USGS Publications Warehouse

    Boyd, Oliver; Robert Smalley, Jr; Zeng, Yuehua

    2015-01-01

    Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811–1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10−9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811–1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.

  8. Crustal Deformation During Co- and Postseismic Phases of the Earthquake Cycle Inferred from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Huang, Mong-Han

    The work presented in my dissertation focuses on the crustal deformation during the co- and postseismic periods in earthquake cycles. I use geodetic and seismic data to constrain and better understand the behavior of the earthquake source during the coseismic period. For the postseismic period, I use geodetic data to observe the surface displacements from centimeter-scale to millimeter-scale from an Mw 7.9 and Mw 6.9 event, respectively. I model different mechanisms to explain the postseismic deformation and to further constrain the crustal and upper mantle rheology. For the coseismic earthquake source study, I explore the source of the 2010 Mw 6.3 Jia-Shian, Taiwan earthquake. I develop finite-source models using a combination of seismic data (strong motion and broadband) and geodetic data (InSAR and GPS) to understand the rupture process and slip distribution of this event. The main shock is a thrust event with a small left-lateral component. Both the main shock and aftershocks are located in a transition zone where the depth of seismicity and an inferred regional basal detachment increases from central to southern Taiwan. The depth of this event and the orientation of its compressional axis suggest that this event involves the reactivation of a deep and weak pre-existing NW-SE geological structure. The 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity since the 1906 San Francisco (Mw 7.9) earthquake to study postseismic relaxation processes and estimate rheological parameters in the region with modern space geodetic tools. The first five years postseismic displacements can be interpreted to be due to aseismic right-oblique fault slip on or near the coseismic rupture, as well as thrusting up-dip of the rupture within the Foothills thrust belt. However, continuing transient surface displacements (≤ 5 mm/yr) until 2002 revealed by PSInSAR and GPS in the northern Santa Cruz Mountains may indicate a longer-term postseismic deformation. I model the

  9. The crustal structure, deformation from GPS, and seismicity related to oblique convergence along the Queen Charlotte margin, British Columbia

    NASA Astrophysics Data System (ADS)

    Bustin, Amanda M. M.

    Tectonic processes and seismic hazard along the west coast of British Columbia result from oblique convergence between the continental North America plate and the oceanic Pacific and Juan de Fuca plates. This dissertation integrates seismic and geodetic techniques to examine the tectonic interaction along these plate boundaries. The Queen Charlotte Fault zone is the transpressive boundary between the North America and Pacific plates along the northwestern margin of British Columbia. Two models have been suggested for the accommodation of the ˜20 mm/yr of convergence along the fault boundary: (1) underthrusting; (2) internal crustal deformation. Strong evidence supporting an underthrusting model is provided in this dissertation by a teleseismic receiver function analysis that defines the underthrusting slab. Forward and inverse modelling techniques were applied to receiver function data calculated at two permanent and six temporary seismic stations within the Islands. The modelling reveals a ˜10 km thick low-velocity zone dipping eastward at 28° interpreted to be underthrusting oceanic crust. The oceanic crust, which may be anisotropic, is located beneath a thin (28 km) westward shallowing (10°) continental margin. The majority of seismicity along the Queen Charlotte Fault zone plots within the modelled underthrusting crust, suggesting that these earthquakes are occurring on faults that extend down into the slab or they might be intraslab events. None of the earthquakes within the Queen Charlotte Basin have occurred deep enough to be intraslab earthquakes. The Wadati-Benioff seismicity may be inhibited beneath the basin by the hot young oceanic crust or by the short distance of underthrusting. GPS measurements have been recorded within the Queen Charlotte Islands during 8 years of campaign surveys. The crustal velocity field derived from the GPS data indicates northward margin-oblique motion of 10--15 mm/yr. Comparisons of the observed velocities with elastic

  10. 3D finite amplitude folding: Implications for stress evolution during crustal and lithospheric deformation

    NASA Astrophysics Data System (ADS)

    Kaus, Boris J. P.; Schmalholz, Stefan M.

    2006-07-01

    Compression of the lithosphere, sedimentary sequences or quartz veins may result in a folding instability. We perform numerical simulations of viscous single-layer folding to study this instability in 3D. It is demonstrated that linear theories correctly describe the instability for small amplitudes. At larger amplitudes, however, the theory breaks down. For these stages we present a new nonlinear amplification equation. Numerical simulations of folding of an initially horizontal layer, perturbed with random noise, demonstrate that in most cases fold axes form perpendicular to the main shortening direction. Aspect ratios of folds are finite and the patterns are relatively insensitive to the applied background shortening directions. Furthermore, the 3D folding instability reduces the averaged differential stress within the folded (``strong'') layer, in agreement with 2D results. This implies that the Christmas-tree approach to represent the strength of the crust and lithosphere may be invalid if folding occurs during the deformation.

  11. The interseismic, coseismic and permanent crustal deformation in the Tohoku region, Japan by the kinematic earthquake cycle model

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Sato, T.

    2012-12-01

    In the Tohoku region, Japan, we can observe the different crustal deformation patterns through several stages of the great earthquake cycle. The heights of marine and river terraces in the late Quaternary indicate permanent uplift up to 1 mm/yr in the whole Tohoku region. On the contrary, geodetic observation of the recent 100 years shows subsidence up to 5-10 mm/yr particularly on the Pacific coast. Therefore, in terms of long-term balance, great uplift was expected at the great earthquake. However, GPS observation at the M9.0, 2011 Tohoku earthquake shows further subsidence of 1 m. It remains a puzzle the stage at which Tohoku turns to uplift, and its mechanism. In this study, we construct a kinematic subduction model with dislocations to explain these variable features in Tohoku in a unified way. We assume a 40-km thick elastic surface layer over viscoelastic half-space as lithosphere-asthenosphere system. Two-dimensional plate interface is taken from the vertical section near the epicenter of the Tohoku earthquake of the CAMP plate boundary model. The slip on the plate interface is decomposed into three components: steady slip on the whole plate interface (steady subduciton), increase of slip deficit in the locked region (interseismic locking) and periodic seismic slip. We give relative plate velocity (8 cm/yr) as steady slip and assume that fracture occur each 500 years on the 500-km long locked region. For simplicity, uniform coseismic slip over the fault region is assumed. First, the permanent deformation is affected only by the effect of steady subduciton, regardless of the coseismic slip. The deformation shows subsidence at the trench and uplift in the arc region, which agrees well with the uplifts in geological timescale in Tohoku. On the other hand, the coseismic deformation shows uplift near the trench and subsidence at the lower edge and inland area. For the interseismic deformation, the vertical extent of the fault slip region is significantly

  12. Deep seismic structure and tectonics of northern Alaska: Crustal-scale duplexing with deformation extending into the upper mantle

    USGS Publications Warehouse

    Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, T.E.; Bird, K.J.; Christensen, N.I.

    1997-01-01

    Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.

  13. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C. A.; Knepley, M. G.

    2011-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.

  14. Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes

    USGS Publications Warehouse

    Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.

    1997-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.

  15. Active crustal extension in the Central Apennines (Italy) inferred from GPS measurements in the interval 1994-1999

    NASA Astrophysics Data System (ADS)

    D'Agostino, N.; Giuliani, R.; Mattone, M.; Bonci, L.

    We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994-1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18 × 10-6 yr-1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.

  16. Crustal deformation in the Western Solomon Islands revealed by GPS observation and D_InSAR during 2009 - 2013

    NASA Astrophysics Data System (ADS)

    Kuo, Y. T.; Ku, C. S.; Wang, Y.; Lin, Y. N. N. N.; Chen, Y. G.; Lin, K. C.; Huang, B. S.; Hsu, Y. J.; Taylor, F. W.

    2014-12-01

    The Solomon Islands are located in the southwestern Pacific, where the Australian Plate underthrusts the Solomon Plate towards ~N70 E at a rate of ~100 mm/yr. The Coleman seamount on the Australian plate is impinging on the forearc at Rendova Island and may cause both the seismicity and tectonic behavior to be more complicated than usual. Hence, an understanding o f the ongoing crustal deformation is essential to reconstructing the structural framework that controls the entire subduction system, particularly earthquake generation on the megathrust fault and possible subsidiary faults. Based on the results from GPS and D_InSAR, the horizontal velocity profiles across the trench for areas of the forearc to the west and to the east of the impinging Coleman seamount show different characteristics. The eastern profile shows convergence rates of ~100 mm/yr only 10 km from the trench at the western end of the Tetepare Island, and the western profile reaches 70 mm/yr at 30 km from the trench. This difference might be caused by the shallow locked depth consistent with co-seismic slip located extremely close to the trench during the Mw 7.1 Solomon Earthquake on 3rd January, 2010. We have a hypothesis to argue that the behavior of the fault geometry should be very different on the two sides of the seamount. However, the coupling ratio could be realized by further detailed analysis.

  17. Sources of crustal deformation associated with the Krafla, Iceland, eruption of September 1984

    USGS Publications Warehouse

    Arnadottir, T.; Sigmundsson, F.; Delaney, P.T.

    1998-01-01

    A decade-long plate-boundary rifting episode in northern Iceland ended with the September 1984 fissure eruption of Krafla volcano. We apply a nonlinear inversion method to geodetic data collected before and after the eruption to infer the location, geometry, and strngths of deformation sources associated with the eruption. The net outflow of magma from a 3-km-deep magma chamber beneath the Krafa caldera was 30-120 ?? 106 m3. A similar volume of magma, 50-70 ?? 106 m3, was emplaced in a l-meter-wide, ~9-km-long dike extending from the surface to ~7 km depth. Furthermore, at least 110 ?? 106 m3 of magma erupted. Accordingly, a surplus of magma must have been expelled from a second reservoir, the location of which, although uncertain, is likely to lie at depths greater than ~5 km beneath Krafla volcano. It would be difficult to detect this deeper source because of the narrow aperture of the geodetic networks.A decade-long plate-boundary rifting episode in northern Iceland ended with the September 1984 fissure eruption of Krafla volcano. We apply a nonlinear inversion method to geodetic data collected before and after the eruption to infer the location, geometry, and strengths of deformation sources associated with the eruption. The net outflow of magma from a 3-km-deep magma chamber beneath the Krafla caldera was 30-120??106 m3. A similar volume of magma, 50-70??106 m3, was emplaced in a 1-meter-wide, approximately 9-km-long dike extending from the surface to approximately 7 km depth. Furthermore, at least 110??106 m3 of magma erupted. Accordingly, a surplus of magma must have been expelled from a second reservoir, the location of which, although uncertain, is likely to lie at depths greater than approximately 5 km beneath Krafla volcano. It would be difficult to detect this deeper source because of the narrow aperture of the geodetic networks.

  18. Observing crustal deformation and atmospheric signals from COSMO-SKYMED and GPS data

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Prati, C.; Cappello, G.; Errico, M.; Novali, F.

    2012-04-01

    The combined use of InSAR and GPS allows for the full exploitation of the complementary aspects of the two techniques by overcoming the limitations inherent in the use of each technique alone. Additionally, GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. We have compared the InSAR and GPS data at Bologna (urbanized area) and Medicina (agricultural area), in northeastern Italy, where two permanent GPS stations of the University of Bologna are operational since mid 1999 and 1996 respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate on the one hand the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the results of both techniques. The

  19. 3D Finite Amplitude Folding: Implications for the Stress Evolution During Crustal and Lithospheric Deformation

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Schmalholz, S.

    2006-12-01

    Compression of the lithosphere, sedimentary sequences or quartz veins may all result in a folding instability, provided that the effective viscosity contrast between "strong" and "weak" layers is sufficiently large. Whereas this process is relatively well understood in 2D, little is known about the finite amplitude instability in 3D. We perform 3D numerical simulations of viscous single-layer folding to study the growth of the fold amplitude during progressive shortening for different amounts of shortening in the two horizontal directions. We demonstrate that existing, linear theories correctly describe the behavior of the instability for small amplitudes. For larger amplitudes, however, numerical results strongly deviate from the linear theory. Therefore, we present a new nonlinear amplification equation that successfully describes folding up to finite amplitudes. Numerical simulations of folding of an initially horizontal layer, perturbed with random noise, demonstrate that in most cases fold axes form perpendicular to the main shortening direction. Aspect ratios of folds are finite and the patterns are relatively insensitive to the applied background shortening directions. Furthermore, the 3D folding instability reduces the averaged differential stress within the folded ("strong") layer, in agreement with 2D results. This implies that the Christmas-tree approach to represent the strength of the crust and lithosphere may be invalid if folding occurs during the deformation.

  20. Late Paleozoic basin formation and crustal deformation, ancestral Rocky Mountains province, Arizona and New Mexico

    SciTech Connect

    Lawton, T.F. )

    1993-04-01

    Late Paleozoic collision of Laurussia and Gondwanaland resulted in regionally consistent sedimentation patterns that record two modes of lithospheric deformation in Arizona and New Mexico. Discrete intraforeland depocenters, the Orogrande and Pedregosa basins, formed in middle to late Pennsylvanian time (late Atokan-Virgilian). A regional unconformity is present at the base of the Permian system. Early Wolfcampian depositional thicknesses largely mimic and accentuate those of the Pennsylvanian, but later Wolfcampian rocks onlap intraforeland uplifts. Depositional systems paralleled the larger collision suture; a marine basin in southern New Mexico and Arizona graded northward to widespread redbeds deposited by south-flowing rivers. Intraforeland highs in northern Arizona and New Mexico were blanketed by sediment in late Wolfcampian time, whereas uplifts in southern New Mexico were covered in the Leonardian. Pennsylvanian basins formed during intraforeland wrench faulting that resulted from initial collision of marginal salients on one or both of the continental masses. The Wolfcampian basin formed through a combination of renewed wrenching and flexural subsidence during final suturing of the two supercontinents.

  1. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California

    USGS Publications Warehouse

    Zeng, Yuehua; Shen, Zheng-Kang

    2016-01-01

    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019

  2. Crustal Deformation in the Isthmus of Tehuantepec, Mexico Observed from Microseismic Data recorded by the VEOX Experiment

    NASA Astrophysics Data System (ADS)

    Suarez, G.; Aguilar, S.

    2015-12-01

    An array of 45 broad band sensors was installed across the 300-km-long Isthmus of Techuantepec, in the narrowest part of Mexico. This array was deployed from August of 2007 to March of 2009. Data was recorded in a continous manner in all seismographs throughout the whole deployment period. We used an LTA/STA algorithm to automatically detect earthquakes recorded by the norhernmost stations near the coast of the Gulf of Mexico. Earthquakes recorded by one station were searched in adjaecent sites. This allowed a thorough and systematic search of the seismic traces in order to identify seismic events recorded by the northern segment of the array. The earthquakes culled from the algorithm were filtered in order to include only those with crustal or upper mantle depths that reflect deformation of the overriding plate. Intermediate depth earthquakes occurring within the subducted slab were filtered out. In total, during the 18 month duration of the experiment, 34 earthquakes were clearly identified and located within the crust and the upper mantle. Tests on the location accuracy were conducted using different velocity models proposed for this region. A selection criteria of the best located earthquakes was applied observing the stability of the hypocentral locations to changes in the velocity model. The resulting subset of the best-located earthquakes indicate that the deformation of the upper North American plate is concentrated in the northern part of the Isthmus of Tehuantepec, along the coast of the Gulf of Mexico. Only a few events occurred farther inland, to the south of the coast of the Gulf of Mexico. The location of these microseismic events coincides with the location of moderate events recorded in the past. In particular, the largest cluster of microearthquakes occurs near where the 29 August 1959 earthquake. The location and depth of the microearthquakes located further demonstrates that the overriding North American plate is being deformed, probably by the

  3. Modes of active deformation in Eastern Hispaniola

    NASA Astrophysics Data System (ADS)

    García-Senz, J.; Pérez-Estaún, A.

    2012-04-01

    Eastern Hispaniola and the Puerto Rico Island are the emerged part of a doubly vergent thrust wedge formed by oblique arc-continent collision with subduction and underthrusting of the North America Plate in the Puerto Rico trench and underthrusting of the Caribbean crust in The Muertos trough (Dolan et al. 1998, Mann et al., 2002, ten Brink et al. 2010). In the relatively small area of Eastern Hispaniola several types of active crustal deformation have been recognized: 1) At the prowedge of the orogene, the rear of the accretionary prism is cut by the strike-slip Septentrional Fault, bounding a sliver plate (Mann et al, 2002). Recent detailed mapping and aeromagnetic surveys in the onshore part of the prism (Samaná Peninsula and Septentrional Cordillera, Sysmin Team) revealed that the internal structure of the sliver is made of parallel bands of sigmoidal, left-lateral, NW-SE thrust splays, bounded by steep strike-slip faults. We interpreted these structures as transpressional strike-slip duplex. It is worth to note the similarity between the strike and dip of the thrust splays and the 303, 62, 74 focal mechanism calculated by Russo and Villaseñor (1995) for the thrust event of the August 4, 1946 Hispaniola earthquake. 2) The uplifted core of the orogen extends between the accretionary prism and the beginning of the Muertos retrowedge. Half of this area is occupied by the Oriental Cordillera, a recent uplift of cretaceous island-arc rocks arching the Late Neogene reef. The rest of the territory is the Caribbean Coastal Plain modelled on the Late Neogene reef. The Oriental Cordillera is made of two en echelon left-stepping uplifts: the domal-shaped Haitises and the rhombohedral-shaped Seibo (García-Senz et al, 2007); the latter share structural similarities and scaling relations with the 90° neutral stepover model of McClay and Bonora (2001). Therefore we interpret it as a restraining stepover developed over a blind splay of the Septentrional Fault, and the main

  4. Present-day crustal deformation along the Magallanes-Fagnano Fault System in Tierra del Fuego from repeated GPS observations

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Perdomo, R.; Hormaechea, J. L.; Del Cogliano, D.; Fritsche, M.; Richter, A.; Dietrich, R.

    2011-03-01

    The present-day deformation of the earth crust in the Argentine part of Tierra del Fuego main island (southernmost South America) is here investigated based on repeated geodetic GPS observations. The island is traversed by the active transform boundary between the South American and Scotia tectonic plates, represented by the Magallanes-Fagnano fault system. Since 1993 a regional network comprising to date 29 GPS sites has been observed almost every year. The complete set of accumulated observations was processed using the Bernese GPS software and state-of-the-art processing strategies and models. The utilization of homogeneous GPS products resulting from a reprocessing of the global IGS network warrants a stable realization of a global reference frame. For each GPS site 3-D positions and linear velocities with error estimates were obtained. A strain analysis of the horizontal velocity components revealed the zones of major deformation activity. A 30-km-wide deformation belt centred on the main trace of the fault system was identified. This belt is bordered to the north (South America) and south (Scotia) by geodynamically stable zones, which move horizontally with a relative average velocity of 4.4 ± 0.6 (east) and -0.3 ± 0.4 (north) mm a-1. Within the deformation belt a maximum strain rate in the order of 0.25 μstrain per year has been detected. A pronounced change in the deformation style from transtension (east) to transpression (west) is observed. The area of predominating shortening of the crust coincides with a local rotation minimum and relative uplift. Throughout the period covered by the GPS observations the displacements and deformations occurred to be linear with time.

  5. Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T.; Tackley, P. J.

    2011-12-01

    Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with

  6. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day

  7. Crustal Deformation Associated with Glacial Fluctuations in the Eastern Chugach Mountains, Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Plafker, George; Molnia, Bruce F.; Bryant, Mark A.

    2000-01-01

    The changes of the solid Earth in south central Alaska in response to two major glacial fluctuations on different temporal and spatial scales have been estimated and we evaluated their influence on the stress state and ongoing tectonic deformation of the region. During the recent (1993-1995) Bering Glacier surge, a large transfer of ice from the Bagley Ice Field to the Bering Glacier terminus region occurred. We estimated the elastic displacement of the solid Earth due to ice mass redistribution from Global Positioning System (GPS) measurements at sites near the surging glacier. We can account for these displacements by transfer of an ice volume of about 14 cubic km from the surge reservoir area to the terminus region. We examined the background seismicity (M(sub L) > 2.5) before, during, and after the surge. We found that the occurrence of small earthquakes (M(sub L) < 4.0) in the surge reservoir region increased during the surge time interval possibly in response to a decrease in ice mass. This suggests that a small decrease in the vertical stress, o,3, could be enough to modulate the occurrence of small, shallow earthquakes in this dominantly thrust fault setting. During this century the southern Alaska coastal glaciers have been undergoing an overall decrease in volume. Based on our compilation of changes in the extent and thickness of the coastal glaciers between the Malaspina and Bering, we calculated surface displacements due to the Earth's viscoelastic response to annual thinning and to the cumulative retreat over the last 100 years. The uplift of the region due to an average annual thinning rate of 1-6 m/yr in the ablation region is 1-12 mm/yr. For our reference model with a viscosity of 5 x 10(exp 19) Pa s for depths between approximately equal 40 and 200 km the total viscoelastic response due to the retreat over the last century may be as much as a couple of meters within the coastal ablation zone near Icy Bay. The maximum decrease in sigma(sub V

  8. Crustal deformation associated with glacial fluctuations in the eastern Chugach Mountains, Alaska

    USGS Publications Warehouse

    Sauber, Jeanne; Plafker, George; Molnia, Bruce F.; Bryant, Mark A.

    2000-01-01

    The changes of the solid Earth in south central Alaska in response to two major glacial fluctuations on different temporal and spatial scales have been estimated and we evaluated their influence on the stress state and ongoing tectonic deformation of the region. During the recent (1993–1995) Bering Glacier surge, a large transfer of ice from the Bagley Ice Field to the Bering Glacier terminus region occurred. We estimated the elastic displacement of the solid Earth due to ice mass redistribution from Global Positioning System (GPS) measurements at sites near the surging glacier. We can account for these displacements by transfer of an ice volume of about 14 km3 from the surge reservoir area to the terminus region. We examined the background seismicity (ML ≥ 2.5) before, during, and after the surge. We found that the occurrence of small earthquakes (ML ≤ 4.0) in the surge reservoir region increased during the surge time interval possibly in response to a decrease in ice mass. This suggests that a small decrease in the vertical stress, σ3, could be enough to modulate the occurrence of small, shallow earthquakes in this dominantly thrust fault setting. During this century the southern Alaska coastal glaciers have been undergoing an overall decrease in volume. Based on our compilation of changes in the extent and thickness of the coastal glaciers between the Malaspina and Bering, we calculated surface displacements due to the Earth's viscoelastic response to annual thinning and to the cumulative retreat over the last 100 years. The uplift of the region due to an average annual thinning rate of 1–6 m/yr in the ablation region is 1–12 mm/yr. For our reference model with a viscosity of 5×1019 Pa s for depths between ≈ 40 and 200 km the total viscoelastic response due to the retreat over the last century may be as much as a couple of meters within the coastal ablation zone near Icy Bay. The maximum decrease in σv between 0 and 10 km was ≈ 1.0 MPa, which is

  9. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1989-01-01

    A particularly detailed set of observations in the vicinity of an intraplate, thrust earthquake (M 7.4) in Argentina, indicate a cyclic pattern of deformation very similar to that reported previously for interplate earthquakes. This deformation cycle, which may be characteristic of many seismically active areas, consists of: (1) steady strain accumulation, possibly punctuated by strain reversals; (2) coseismic strain release; (3) a period of continued strain release due to afterslip (persisting for perhaps a year or so); and (4) rapid postseismic strain accumulation which decreases exponentially and grades into steady strain accumulation. Deformation associated with three earthquakes in the U.S. (1940, M7.1 Imperial Valley California; 1964, M8.4 Alaska; 1959, M7.5 Hebgen Lake, Montana) are interpreted in light of this general earthquake cycle and are used to investigate the mechanics of strain release for these events. These examples indicate that large postseismic movements can occur for strike-slip, thrust, and normal fault events, and both viscoelastic relaxation and postseismic after-slip must be incorporated in models of earthquake related deformation. The mechanics of the strain release process revealed by these examples has implications for estimating earthquake repeat times from geodetic observations near active faults.

  10. The Crustal Deformation Revealed by GPS and InSAR in the Northwest Corner of the Tarim Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Qiao, Xuejun; Yu, Pengfei; Nie, Zhaosheng; Li, Jie; Wang, Xiaoqiang; Kuzikov, Sergey I.; Wang, Qi; Yang, Shaomin

    2017-03-01

    The Northwestern Corner of the Tarim Basin (hereinafter the NOCTB) is surrounded by the Pamir salient, the south Tian Shan Mountains, and the Tarim Basin. The tectonic settings of these three structures dominate the crustal deformation patterns and seismic events in the NOCTB and its adjacent regions. We integrated the GPS and InSAR measurements to derive a large-scale three-dimensional velocity map of the NOCTB. The GPS data obtained during 38 campaigns between 1992 and 2013 were used to derive a horizontal velocity field. 149 Envisat ASAR images observed along four satellite tracks between 2003 and 2011 were processed to get a line of sight rate map based on the small baseline subset time series analysis method and a homogeneous isotropic model. Finally, we modeled the dip angle, slip rate, and locking depth of selected faults. The results indicate that the crustal convergence is not uniformly distributed across the NOCTB: more than 50% of the N-S shortening is absorbed by the Tian Shan Mountains in the southwest, whereas the N-S shortening rates are low and therefore the strain accommodations are smaller in the east of the NOCTB. The vertical displacement rates in the NOCTB range from -2 to 3 mm/year with different magnitudes in different areas. The main uplift areas are located on the junction region between frontal MPT and the southwestern STT including the Kazkeaerte fault, Aikenerte fault, the Southern Artux fault, and part areas in north of the Kalping fault. The main subsident areas are located on central belt of STT including the Totgumbaz-Alpaleh fault, Nothern Artux fault, the southwestern Karatieke fault, and the north of Puchang/Piqiang fault. Compared with the substantial N-S shortening rate of 10 mm/year, the vertical rate across each fault ranges from approximately -1 to 1 mm/year, suggesting that vertical movement in NOCTB area is relatively moderate at present. Both the horizontal and vertical rates show obvious changes across the Kazkeaerte

  11. Interpretation of Crustal Deformation following the 2011 Tohoku-oki Megathrust Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    NASA Astrophysics Data System (ADS)

    Noda, A.; Takahama, T.; Ohba, M.; Ito, T.; Matsu'ura, M.

    2015-12-01

    Crustal deformation following the 2011 Tohoku-oki megathrust earthquake, occurred at the North American-Pacific plate interface, has been revealed by GPS measurement on land (Geospatial Information Authority of Japan) and GPS/Acoustic measurement on seafloor (Japan Coast Guard). The essential causes of the postseismic crustal deformation are considered to be slow afterslip at the downdip extension of the main rupture zone and viscoelastic relaxation of stress changes induced in the asthenosphere. Crustal responses to the afterslip and the viscoelastic relaxation are different in both space and time. So, given proper plate interface geometry and proper crust-mantle rheological structure, we can estimate unbiased spatiotemporal distribution of afterslip through the inversion analysis of observed geodetic data. In the present analysis, we used a 3-D realistic model developed by Hashimoto et al. (2004) for plate interface geometry and a standard elastic-viscoelastic layered model, consisting of a 60 km-thick elastic surface layer and a Maxwell-type viscoelastic substratum with the viscosity of 1019 Pa s, for crust-mantle rheological structure. First, following Noda et al. (2013), we transformed the GPS displacement data on land into the average strains of triangular elements composed of adjacent three GPS stations. Then, by applying a sequential method of stepwise (every two months) inversion to the strain data, we estimated the spatiotemporal distribution of afterslip together with coseismic slip distribution. The estimated results show that significant afterslip has proceeded for the first one and a half years at the downdip extension of the main rupture zone off Iwate and Miyagi with decaying its rate. Finally, based on the estimated results, we computed postseismic offshore crustal movements by using the same elastic-viscoelastic structure model and compared them with seafloor geodetic observations (Watanabe et al., 2014). The good agreement between the computed

  12. Layout of buoys and seafloor transponders for next-generation measurement system for ocean floor crustal deformation

    NASA Astrophysics Data System (ADS)

    Sakata, T.; Nagai, S.; Tadokoro, K.; Ikuta, R.

    2012-12-01

    We are developing a geodetic method for monitoring crustal deformation under the ocean. We deployed benchmarks on the ocean floor and determine their positions through acoustic ranging from a vessel whose position is determined by kinematic GPS technique. Both sound speed structure and the benchmark (transponder) positions are determined simultaneously from the two-way travel time of ultrasonic signals. To monitor the crustal deformation at the focal area of anticipated plate boundary earthquakes, a lower margin of error is desirable. The most effective factor is a temporal-spatial variation of sound speed structure. In our measurement system, we can average temporal variations of sound speed structure, although they also include spatial variations. We are planning to install a moored buoy-based next generation measurement system using the tomographic technique as a method of distinguishing temporal and spatial variations of sound speed structure completely. We need to consider that the positions of the buoys are controlled by water current. We can control only the area of drifting by adjusting the length of the mooring cables and the buoyancy of the buoys. If we want to make the buoy stable around one point, we can make the cable short but we must make the buoyancy larger to avoid sinking by the current, which requires more cost. An appropriate designing of length of the cable and buoyancy is very important. We theoretically investigated the relationship between buoy-transponder geometry and the accuracy of transponder position. We assumed a system composed of three transponders installed at a depth of 1000 m and three buoys. The configurations of both buoy and transponder were equilateral triangles. The length of a side of them was 2000m.We assumed that the sound speed structure consisted of two layers. We defined 'initial sound speed structure (ISSS)' on which the value of sound speed in the first layer (0-100 m in depth) was 1523 m/s and it in the second layer

  13. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  14. A High-Rate Continuous GPS Network in Iceland for Crustal Deformation Research

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; Árnadóttir, T.; Bennett, R.; Lafemina, P.; Jónsson, S.; Hreinsdóttir, S.; Holland, A.; Deutscher, J.; Ingvarsson, T.; Sturkell, E.; Villemin, T.

    2007-12-01

    A significant expansion of the current continuous GPS network in Iceland is well underway. The goal of the project is to install 30-40 new continuous GPS stations, with a sampling rate of 1 second or higher in selected areas of the country. Most of the sites are already installed and are collecting data and communications are being established. Currently we have in total about 50 continuous and 12 semi-continuous stations running. Eventually, the older continuous GPS stations (installed from 1999 onwards) will also be upgraded to allow high sampling rates. Many of the CGPS sites are co-located with stations in the national seismic network which is very beneficial for operation of the sites and enhanced monotoring capabilities. The national seismic network in Iceland contains 51 3-component digital stations that all are on-line. High-rate GPS observations have been used successfully to study dynamic earthquake rupture processes, for example the Denali earthquake in Alaska and the 2003 Tokachi-Oki earthquake in Japan. New GPS stations were installed in seismically active areas in the South Iceland Seismic Zone, the Reykjanes Peninsula and in Northern Iceland. We also attempt to capture volcanic processes by installing high-rate GPS stations near the three most active volcanoes in Iceland: Hekla, Grímsvotn, and Katla. These volcanoes have been active recently or are currently showing signs of unrest. Continuous GPS and recent campaign GPS measurements indicate rapid uplift (up to 2 cm/yr) over a wide area in central Iceland due to retreat of the glaciers in a warming climate. The new network already installed in central Iceland will obtain more detailed information on the rate and extent of the uplift. Implementing the 1-Hz technology in Iceland enables studies of both the dynamic as well as slower-rate processes related to earthquake and volcanic activity. The high level of volcanic and earthquake activity in Iceland makes it an ideal site for this project. In

  15. Lower crustal deformation beneath the central Transverse Ranges, southern California: Results from the Los Angeles Region Seismic Experiment

    USGS Publications Warehouse

    Godfrey, N.J.; Fuis, G.S.; Langenheim, V.; Okaya, D.A.

    2002-01-01

    We present a P wave velocity model derived from active source seismic data collected during the 1994 Los Angeles Region Seismic Experiment. Our model extends previously published upper crustal velocity models to mantle depths. Our model was developed by both ray tracing through a layered model and calculating travel times through a gridded model. It includes an 8-km-thick crustal root centered beneath the surface trace of the San Andreas fault, north of the highest topography in the San Gabriel Mountains. A simple mass balance calculation suggests that ???36 km of north-south shortening across the San Andreas fault in the central Transverse Ranges could have formed this root. If north-south compression began when the "Big Bend" in the San Andreas fault formed at ???5 Ma, 36 km of shortening implies a north-south contraction rate of ???7.1 mm/yr across the central Transverse Ranges. If, instead, north-south compression began when the Transverse Ranges formed at 3.4-3.9 Ma, 36 km of shortening implies a contraction rate of 9.2-10.6 mm/yr. North of the San Andreas fault, the Mojave Desert crust has a low-velocity (6.3 km/s) mid and lower crust and a 28-km-deep Moho. South of the San Andreas fault, beneath the Los Angeles and San Gabriel Valley basins, there is a fast (6.6-6.8 km/s), thick (10-12 km) lower crust with a 27-km-deep Moho. Farther south still, the lower crust of the Continental Borderland is fast (6.6-6.8 km/s) and thin (5 km) with a shallow (22 km deep) Moho.

  16. Crustal deformation of Miyakejima volcano, Japan since the eruption of 2000 using dense GPS campaign observation

    NASA Astrophysics Data System (ADS)

    Fukui, M.; Matsushima, T.; Oikawa, J.; Watanabe, A.; Okuda, T.; Ozawa, T.; Kohno, Y.; Miyagi, Y.

    2013-12-01

    Miyakejima is an active volcanic Island located about 175 km south of Tokyo, Japan. Miyakejima volcano erupted approximately every 20 years in the past 100 years. The latest eruptive activities since 2000 was different from those of the last 100 years, in that the activities included a caldera formation for the first time in 2500 years and gigantic volcanic gas emission that forced islander to evacuate over four and half years. In 2000, a dense GPS observation campaign had detected the magma intrusion in detail (e.g., Irwan et al., 2003; Murase et al., 2006). However, this campaign observation ceased from 2002 to 2010 because a large amount of volcanic gas prevented from entering to the island. Since 2011, we restarted the campaign observation by the dense GPS network, and examined the ongoing magma accumulation process beneath Miyakejima volcano to get insights about the future activity. In this analysis, we combined the data of our campaign observations, the data of the University Union in 2000, and the GEONET data. The observation data were analyzed by RTK-LIB (Takasu et al., 2007) using GPS precise ephemeris from IGS. We estimated the locations and volumes of the pressure sources beneth Miyakejima using an elevation-modified Mogi model (Fukui et al., 2003) and open crack model (Okada, 1992) during the two periods (2000 ~ 2012 and 2011 ~ 2012). We used the software of Magnetic and Geodetic data Computer Analysis Program for Volcano (MaGCAP-V) (Fukui et al., 2010), and estimated the source parameters by trial and error. During 2000 and 2012, a contracting spherical source and contracting dyke were estimated beneath the caldera and at the southwestern part of the island, respectively. In contrast, during 2011 and 2012, an spherical inflation source was estimated a few km beneath the caldera. This result suggest that Miyakejima is now storing new magma for the next eruption. Geospatial Information Authority of Japan (GSI) (2011) suggested that the inflation started

  17. Geodetic and seismological investigation of crustal deformation near Izmir (Western Anatolia)

    NASA Astrophysics Data System (ADS)

    Dogru, Asli; Gorgun, Ethem; Ozener, Haluk; Aktug, Bahadir

    2014-03-01

    The Aegean region including western Turkey, mainland Greece, and the Hellenic Arc is the most seismological and geodynamical active domain in the Alpine Himalayan Belt. In this study, we processed 3 years of survey-mode GPS data and present the analysis of a combination of geodetic and seismological data around Izmir, which is the third most populated city in Turkey. The velocities obtained from 15 sites vary between 25 mm/yr and 28 mm/yr relative to the Eurasian plate. The power law exponent of earthquake size distribution (b-value) ranges from 0.8 to 2.8 in the Izmir region between 26.2°E and 27.2°E. The lowest b-value zones are found along Karaburun Fault (b = 0.8) and, between Seferihisar and Tuzla Faults (b = 0.8). A localized stress concentration is expected from numerical models of seismicity along geometrical locked fault patches. Therefore, areas with lowest b-values are considered to be the most likely location for a strong earthquake, a prediction that is confirmed by the 2005 Mw = 5.9 Seferihisar earthquake sequences, with epicentres located to the south of the Karaburun Fault. The north-south extension of the Izmir area is corroborated by extension rates up to 140 nanostrain/yr as obtained from our GPS data. We combined the 3-year GPS velocity field with the published velocity field to determine the strain rate pattern in the area. The spatial distribution of b-value reflects the normal background due to the tectonic framework and is corroborated by the geodetic data. b-Values correlate with strain pattern. This relationship suggests that decrease of b-values signifies accumulating strain.

  18. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    increase in the elevation of the marine terraces of the last 600 ka. In the two analysed crustal blocks, the crustal doming with the related basin collapses and the concurrent tectonic motion without any back-stop can be respectively related to the thermal anomalies and to the drag forces exerted by a hot Mantle flow, triggered by the opening of a vertical slab windows at the southern edge of the Calabrian arc. This process has favored the migration of hot Mantle material towards the sectors of larger rollback of the subduction hinge, producing the spectacular tectonic uplift and active magmatism of the region. The increase of the volume of the Mantle wedged in the subduction zone of the Calabrian arc has been also effective to accommodate the differential roll-back between the adjacent segments of Nubia Plate, thus replacing the motion along the pre-existing transform faults dissecting the orogenic belt. In this frame, the deformation of the Hyblean-Etnean and the Peloritani-Aeolian blocks heralded the development of the two Sicily branches of the SCRZ. The delayed crustal stretching responsible for the propagation of the rift zone across the orogenic belt can be framed in the dynamic of a still active convergent margin if interpreted as the result of the sliding of the crust along the Ionian flank of the Mantle flow.

  19. Exploratory results from a new rotary shear designed to reproduce the extreme deformation conditions of crustal earthquakes

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.

    2011-12-01

    A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15

  20. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  1. Locating Active Plate Boundaries by Earthquake Data. Crustal Evaluation Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  2. Global Positioning System constraints on crustal deformation before and during the 21 February 2008 Wells, Nevada M6.0 earthquake

    USGS Publications Warehouse

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné; Murray-Moraleda, Jessica R.; Svarc, Jerry L.; dePolo, Craig M.; LaPointe, Daphne D.

    2011-01-01

    Using Global Positioning System (GPS) data from permanent sites and U.S. Geological Survey (USGS) campaign data we have estimated co-seismic displacements and secular background crustal deformation patterns associated with the 21 February 2008 Wells Nevada earthquake. Estimated displacements at nearby permanent GPS sites ELKO (84 km distant) and GOSH (81 km distant) are 1.0±0.2 mm and 1.1±0.3 mm, respectively. The magnitude and direction are in agreement with those predicted from a rupture model based on InSAR measurements of the near-field co-seismic surface displacement. Analysis of long GPS time series (>10 years) from the permanent sites within 250 km of the epicenter indicate the eastern Nevada Basin and Range undergoes steady tectonic transtension with rates on the order of 1 mm/year over approximately 250 km. The azimuth of maximum horizontal crustal extension is consistent with the azimuth of the Wells earthquake co-seismic slip vector. The orientation of crustal shear is consistent with deformation associated with Pacific/North America plate boundary relative motion seen elsewhere in the Basin and Range. In response to the event, we deployed a new GPS site with the capability to telemeter high rate, low latency data that will in the future allow for rapid estimation of surface displacement should aftershocks or postseismic deformations occur. We estimated co-seismic displacements using campaign GPS data collected before and after the event, however in most cases their uncertainties were larger than the offsets. Better precision in co-seismic displacement could have been achieved for the campaign sites if they had been surveyed more times or over a longer interval to better estimate their pre-event velocity.

  3. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  4. The use of baseline measurements and geophysical models for the estimation of crustal deformations and the terrestrial reference system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bock, Y.

    1982-01-01

    Four possible estimators are investigated for the monitoring of crustal deformations from a combination of repeated baseline length measurements and adopted geophysical models, particularly an absolute motion plate model. The first estimator is an extension of the familiar free adjustment. The next two are Bayesian type estimators, one weak and one strong. Finally, a weighted constraint estimator is presented. The properties of these four estimators are outlined and their physical interpretations discussed. A series of simulations are performed to test the four estimators and to determine whether or not to incorporate a plate model for the monitoring of deformations. The application of these estimations to the maintenance of a new conventional terrestrial reference system is discussed.

  5. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, B.T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  6. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, T.; Ichimura, T.

    2015-12-01

    Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for

  7. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  8. Crustal deformation model of the Beppu-Shimabara graben area, central Kyushu, Japan, based on inversion of three-component GNSS data in 2000-2010

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kazuma; Mitsui, Yuta

    2016-11-01

    The 2016 Kumamoto earthquakes, including an Mw-7 right-lateral earthquake on April 15 (UTC), occurred along faults within the Beppu-Shimabara graben in central Kyushu, Japan. Previous studies showed that the graben area was under heterogeneous stress conditions with north-south T-axes and spreading in a north-south direction. Here, we construct a detailed crustal deformation model using three-component Global Navigation Satellite System data in 2000-2010 and considering the distribution of geological fault traces in this area. Our inversion analysis suggests that the strain accumulation rate for the right-lateral seismic slip segment (corresponding to the Futagawa fault), where the largest of the 2016 Kumamoto earthquakes ruptured, was several times smaller than the other segments in the Beppu-Shimabara graben. Furthermore, we observe distinct subsidence along the Beppu-Shimabara graben. Our base model attributes the subsidence to deflation of magma reservoirs beneath volcanoes, but the observed vertical velocities are poorly fit. In order to improve the fitting results for the vertical deformation, we need more sophisticated volcano-deformation model (such as a sill-like deformation source for Mt. Aso) or graben model. [Figure not available: see fulltext.

  9. Precursory slow crustal deformation before short-term slow slip event in January 2006, recorded at Shingu borehole station southern Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Sagiya, T.

    2007-12-01

    In January 2006, a deep low frequency tremor activity and an associated short-term slow slip event occurred in the eastern Kii Peninsula and this coupled activity migrated to the northeast at a rate of 10km/day. We are monitoring crustal deformation at Shingu borehole station in the southeastern Kii peninsula. The Shingu borehole site is located about 100km landward from the Nankai Trough axis, and close to the epicenter of the 1944 Tonankai Earthquake. The borehole is 500 m deep and is equipped with an integrated multi-component borehole monitoring system developed by Ishii et al. (2002), consisting of 6 strain sensors (4 in horizontal, 2 in vertical), 2 pendulum tilt sensors, a magnetic direction finder, and a quartz thermometer. Each signal is originally recorded with a sampling frequency of 50 Hz. We decimated the original data into hourly data, which we decomposed into tidal response, barometric response, smoothed trend and random noise component by applying BAYTAP-G software [Tamura et al., 1991]. In the trend component from November 2005 to March 2006, we did not found deformation signal at the time of the Jan. 2006 tremor event. However, we found three significant slow strain changes from the processed records. Two of them coincide with the occurrence of the tremor activities in the southern Kii Peninsula, and are characterized by N-S contraction (0.019-0.031 ppm) and E-W extension (0.025-0.038 ppm). These are the first evidence of the short-term slow slip event in this area. The third change is characterized by NW-SE extension (0.026 ppm), N-S contraction (0.012 ppm), E-W extension (0.022 ppm), and southwestward tilting (0.23 micro rad). It occurred from December 29, 2005 to January 2, 2006, just before the tremor and slip event in January 2006, but was not accompanied by any tremor activity. We conducted a series of inversion analysis to infer the source of this possible slow slip event. We assumed that the slow slip event was caused by a reverse fault

  10. Creep Cavitation in Lower Crustal Shear Zones

    NASA Astrophysics Data System (ADS)

    Menegon, L. M.; Fusseis, F.; Stunitz, H. H.

    2014-12-01

    Shear zones channelize fluid flow in the Earth's crust. A number of mechanisms have been suggested to control fluid migration pathways in upper- and mid-crustal shear zones, amongst them creep cavitation, which is well-known from deforming metals and ceramics. However, little is known on deep crustal fluid migration and on how fluids are channelized and distributed in actively deforming lower crustal shear zones.This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed under lower crustal conditions (T=700-730° C, P=0.65-0.8 GPa). The ultramylonite consists of feldspathic layers and of domains of amphibole + quartz + calcite, which represent the products of hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 μm. Microstructural observations and EBSD analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. In feldspathic layers, isolated quartz grains without a crystallographic preferred orientation occur along C'-type shear bands. All microstructures suggest that quartz precipitated in cavities. The orientation of such quartz bands overlaps with the preferred orientation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type shear bands are interpreted as high-strain cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation. The volume increase is consistent with a synkinematic formation of cavities. Thus, this study presents clear evidence that high-strain cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in cavitation bands inhibits grain growth and enhances the activity of grain-size sensitive creep, thereby maintaining

  11. Crustal movements at a divergent plate boundary: interplay between volcano deformation, geothermal processes, and plate spreading in the Northern Volcanic Zone, Iceland since 2008.

    NASA Astrophysics Data System (ADS)

    Drouin, Vincent; Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Ofeigsson, Benedikt G.; Sturkell, Erik; Islam, Tariqul

    2014-05-01

    Iceland is a subaerial part of the Mid-Atlantic Ridge, where the divergent plate boundary between the North-American and Eurasian Plates can be studied. The Northern Volcanic Zone (NVZ) of Iceland, comprised of several volcanic systems, is particularly well suited to study interplay between volcanoes, geothermal areas and plate spreading, as the zone is relatively simple and accommodates the full spreading of the plates (18.6 mm/yr in a direction of 105 degrees according to NUVEL-1A predictions). The most recent volcanic activity in the area was the Krafla rifting episode (1975-1984). In 2007-2008 two intrusive events were detected: one in Upptypingar and the other in Þeistareykir. Extensive crustal deformation studies have been carried out in the NVZ; we report the results of recent GPS and Interferometric Synthetic Aperture Radar (InSAR) studies focusing on Krafla, Þeistareykir and Askja volcanic systems in the NVZ. An extensive GPS survey was undertaken in 2013, with over 135 stations occupied. This data was evaluated in conjunction with data acquired since 2008, to generate a velocity field spanning this entire time period. In addition to an existing continuous GPS (cGPS) station, three cGPS stations were installed in the area in 2011-2012. The 2008-2013 GPS velocities were compared to earlier GPS results, and complementary analysis of InSAR images was undertaken. Earlier studies have shown that the Krafla caldera underwent uplift during 1984-1989, followed by subsidence. Since 1995, the maximum subsidence in Krafla has shifted from directly above the shallow magma chamber towards an array of boreholes (geothermal exploitation) in Leirbotnar. Similar subsidence has been observed around another array of boreholes in Bjarnaflag, 7 km further south. The most significant signal on the velocities calculated from campaign GPS data over the 5 year period, is plate spreading with an E-W velocity of about 12 mm/yr over a 30 km wide area. However it also shows an

  12. Analysis of crustal deformation associated with the 2011 Tohoku earthquake in Korean Peninsula using GPS time series with ARMA

    NASA Astrophysics Data System (ADS)

    Won, J.; Park, K.

    2011-12-01

    The huge earthquake off the Pacific coast of Tohoku in Japan occurred on 11 March, 2001. This earthquake moved portions of Japan and Northeast Asia in the east direction. After the earthquake many research institutes in South Korea analysed crustal movements of the Korean Peninsula and Korea Astronomy and Space Science Institute announced that South Korea was moved 2 to 5 cm toward Japan. In this study, GPS time series were used to analyse the crustal displacements and the velocity change. In order to calculate the daily positions of 80 sites, we used GIPSY 5.0 software. Then the autoregressive moving average (ARMA) method was used to improve the GPS time series of daily position changes. We also analyzed the amount and tendency of the displacement and velocity changes after the ARMA was applied. As a result, the ARMA method can reduce the noise and detect the outlier but it can be lead to an over-estimation of the velocity.

  13. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    NASA Technical Reports Server (NTRS)

    Dorman, H. J.

    1981-01-01

    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  14. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    NASA Astrophysics Data System (ADS)

    Azzouzi, R.

    2009-04-01

    Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames. By: R. Azzouzi*, M. Ettarid*, El H. Semlali*, et A. Rimi+ * Filière de Formation en Topographie Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts MAROC + Département de la Physique du Globe Université Mohammed V Rabat MAROC This study focus on the use of the geodetic spatial technique GPS for geodynamic purposes generally in the Western Mediterranean area and particularly in Morocco. It aims to exploit this technique first to determine the geodetic coordinates on some western Mediterranean sites. And also this technique is used to detect and to determine movements cross the boundary line between the two African and Eurasian crustal plates on some well chosen GPS-Geodynamics sites. It will allow us also to estimate crustal dynamic parameters of tension that results. These parameters are linked to deformations of terrestrial crust in the region. They are also associated with tectonic constraints of the study area. The usefulness of repeated measurements of these elements, the estimate of displacements and the determination of their temporal rates is indisputable. Indeed, sismo-tectonique studies allow a good knowledge of the of earthquake processes, their frequency their amplitude and even of their prediction in the world in general and in Moroccan area especially. They allow also contributing to guarantee more security for all most important management projects, as projects of building great works (dams, bridges, nuclear centrals). And also as preliminary study, for the most important joint-project between Europe and Africa through the Strait of Gibraltar. For our application, 23 GPS monitoring stations under the ITRF2000 reference frame are chosen in Eurasian and African plates. The sites are located around the

  15. Hydrological changes and vertical crustal deformation in south India: Inference from GRACE, GPS and absolute gravity data

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Srinivas, N.; Singh, B.

    2014-06-01

    Monsoon rainfall over Indian subcontinent causes large hydrological changes that deform the earth on varied time scale. The seasonal hydrological mass changes are in the range of 20-50 cm of equivalent water height over southern India, which causes vertical deformation of 1-2 cm. We compare the deformation computed from GRACE mass signal with that of height changes from continuous GPS data from two locations in south India and find that the amplitude and phases of seasonal vertical deformation derived from both (GPS and GRACE) are consistent, indicating that hydrological effects are major cause of periodic deformation in the region. This supports the earlier deduction that GRACE data can be utilized to remove hydrological effects from GPS data. High precision absolute gravity values measured near the GPS location and groundwater levels measured in the boreholes corroborate the space based observations of hydrological changes and vertical deformation. GPS and GRACE data also indicate inter-annual variation caused due to rainfall variability, signifying that hydrological effects must be removed before deriving any long term vertical deformation trend.

  16. Dependency of continental crustal rupture, decompression melt initiation and OCT architecture on lithosphere deformation modes during continental breakup: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.

    2012-12-01

    During the continental breakup process, the initiation of sea-floor spreading requires both the rupture of the continental crust and the initiation of decompression melting. Using numerical experiments, we investigate how the deformation mode of continental lithosphere thinning and stretching controls the rupture of continental crust and lithospheric mantle, the onset of decompression melting and their relative timing. We use a two dimensional finite element viscous flow model to describe lithosphere and asthenosphere deformation. This flow field is used to advect lithosphere and asthenosphere material and temperature. Decompression melting is predicted using the parameterization scheme of Katz et al. (2003). Consistent with the observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996), we assume that the topmost continental and oceanic lithosphere, corresponding to the cooler brittle seismogenic layer, deforms by extensional faulting (which we approximate to pure-shear deformation) and magmatic intrusion. Beneath this topmost lithosphere layer approximately 15-20 km thick, we assume that deformation occurs in response to passive upwelling and thermal and melt buoyancy driven small-scale convection. The relative contribution of these deformation components is parameterised by the ratio Vz/Vx, where Vx is the half spreading rate applied to the topmost lithosphere deformation and Vz is the upwelling velocity associated with the small scale convection. We use a series of numerical experiments to investigate the dependency of continental crust and lithosphere rupture, decompression melt initiation, rifted margin ocean-continent transition architecture and subsidence history on the half-spreading rate Vx, buoyancy driven upwelling rate Vz, the ratio Vz/Vx and upper lithosphere pure-shear width W. Based on the numerical experiment results we explore a polyphase evolution of deformation modes leading to continental breakup, sea

  17. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  18. Crustal deformation at very long baseline interferometry sites due to seasonal air-mass and ground water variations

    NASA Technical Reports Server (NTRS)

    Stolz, A.; Larden, D. R.

    1980-01-01

    The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.

  19. Active Tectonics in the Central Chilean Andes: 3D Tomography Based on the Aftershock Sequence of the 28 August 2004 Shallow Crustal Earthquake

    NASA Astrophysics Data System (ADS)

    Comte, D.; Farias, M.; Charrier, R.; Gonzalez, A.

    2008-12-01

    Most of the seismological research in the Andes has been mainly oriented to the detection and understanding of the seismicity associated with megathrust earthquakes that characterize the subduction environment that governs the Andean tectonics. However, deployments of temporary networks have allowed the detection of intense crustal seismicity beneath the Chilean forearc-arc region. The temporary seismic network deployed along the Las Leñas and Pangal river valleys (34°25'S), between January and May 2004 permitted to better constrain the abundant shallow intra-continental seismicity previously detected in that region. Although most of the seismicity is randomly distributed in the region, several microearthquakes occur along the trace of the major El Fierro fault-system. This system is well recognized between 33°30' and 35°15'S and is located at or close to the eastern contact between Mesozoic and Cenozoic deposits in the Principal Cordillera and, locally, below active volcanoes, being considered to have participated in the extension and tectonic inversion of a widely extended (>600 km long) Cenozoic basin along the Principal Cordillera. Further south, at 35°S, a Mw=6.5 strike-slip shallow earthquake occurred on August 28, 2004, near of the headwater of the Teno river, close to the Planchon volcano. A 3D detailed Vp and Vs velocities determination was obtained along the 2004 earthquake aftershock area. The aftershocks are distributed along one branch of the El Fierro fault system, with a NNE-SSW direction and depths lower than 15 km. The rupture zone coincides with a sharp contrast in Vp and Vs, also in coincidence with the presence of hydrothermal fluids, gypsum diapers and the volcanic arc, suggesting rheological contrast controlling deformation. At the surface, this zone present an intense contractive deformation produced during the Neogene, which differs from what can be observed in other regions. Present day deformation related to seismicity has no

  20. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The nature and dynamics of time-dependent deformation along major seismic zones including the influence of irregularities in fault geometry on the earthquake cycle, and the processes contributing to the state of stress and rates of strain in plate interior regions were studied. The principle findings of the research are discussed.

  1. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus was in two broad areas during the most recent 6-month period: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings are described in the accompanying appendices.

  2. How is strain localized in a meta-granitoid, mid-crustal basement section? Spatial distribution of deformation in the central Aar massif (Switzerland)

    NASA Astrophysics Data System (ADS)

    Wehrens, P.; Baumberger, R.; Berger, A.; Herwegh, M.

    2017-01-01

    This study investigates strain distribution in granitoid rocks formerly in the middle crust in the Central Aar massif, Switzerland and places the deformation behavior in the tectonic framework of the Alpine orogeny. Strain is heterogeneously distributed in terms of strain partitioning forming several hundreds of closely spaced shear zones (SZ) (>80 SZ/km with SZ thicknesses <10 cm; about 10 SZ/km with SZ thicknesses of 0.5-10 m) separating 3D bodies of low to moderate background strain. Both the degree of background-strain intensity as well as the number of shear zones increases from granitic to granodioritic host rocks and is controlled by primary variations in the mica content between 10 and 15 vol% (granodiorite) and <8 vol% (granite). Shear zones evolved from ductile shearing in granodiorites, whereas they often nucleated from fractures in the stronger granites. The majority of the steep shear zones preferentially accommodated upward motion by the southern block leading to an increase in peak metamorphic conditions from 250 °C in the North to 450 °C in the South of the Aar massif. The shear zones initiated at about 18-20 km depths during a stage of crustal thickening (Handegg phase). Subsequent deformation reactivated some shear zones with a gradual transition from reverse dip-slip over oblique-slip to strike-slip shear zones under local transpressional conditions (Oberaar phase).

  3. Mapping of surface ruptures and crustal deformations by field investigations and PALSAR/InSAR for the 2008 Wenchuan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Hao, K.; Si, H.; Fujiwara, H.; Ozawa, T.

    2009-12-01

    The 2008 Wenchuan earthquake (Mw 7.9) ruptured partial faults along the 500 km-length Longmen Shan (LMS) thrust faults, resulted in major damage to the areas more than 100,000 km2, the death toll over 87,400, and the homeless of five million. Three weeks later we investigated the fields of heavily damage-belts along the LMS faults. The challenges of fieldworks included road blocked by landslides, inaccessible high-mountain areas, and unexpectedly political restrictions. On the three-sets of field investigations we found over 10 sites of coseismic surface ruptures along Guanxian-Anxian(GX-AX), and Yingxiu-Beichuan fault (YX-BC). Of them the maximum reached ~5m horizontal and ~6m vertical displacements at Housheng along YX-BC fault, and ~2m vertical at Bailu along GX-AX fault. Moreover, the left-slip fault at Xiaoyudong between of the two LMS faults, ruptured ~2.8m horizontal, and 1.5m vertical displacements as well. However, the irregularly distributed surface fault-ruptures and the huge areas inaccessible still left unknown even if many distinguished faults reported. Using interferometric synthetic aperture radar (InSAR) technology and Phased Array L-band SAR sensor (PALSAR) equipped on Advanced Land Observing Satellite (ALOS), we captured the whole pictures of faults movements and crustal deformations from the two-sets of data before and after the event. The larger deformation zones where the data was out of correlation range, occurred over 300km length of LMS faults, with a width of ~30 km in southwestern section, ~10km in northeastern section. Therefore, we created a novel bi-fault-slip model based on the field and satellite information along the LMS faults. The Inversion analysis of the elastic half-space dislocation theory using InSAR interferogram resulted in the fault-slips distributions on the bi-fault-slip model. The surface fault-slips analyzed are similarly with the field results. Furthermore, simulation of the fault-slips reconstructed the

  4. Constraints on crustal rheology and age of deformation from models of gravitational spreading in Ishtar Terra, Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Soloman, Sean C.

    1992-01-01

    Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation.

  5. Instabilities, motion and deformation of active fluid droplets

    NASA Astrophysics Data System (ADS)

    Whitfield, Carl A.; Hawkins, Rhoda J.

    2016-12-01

    We consider two minimal models of active fluid droplets that exhibit complex dynamics including steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a concentration of active contractile matter adsorbed to its boundary. We analytically predict activity driven instabilities in the concentration profile, and compare them to the dynamics we find from simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities in the polarisation field. Both these systems show spontaneous transitions to motility and deformation which resemble dynamics of the cell cytoskeleton in animal cells.

  6. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The focus of the research was in two broad areas during the most recent 6 month period: the nature and dynamics of time-dependent deformation along major seismic zones, including the influence of irregularities in fault geometry on the earthquake cycles, and the processes contributing to the state of stress and rates of strain in plate interior regions. The principal findings of the research to date are described.

  7. Progressive deformation and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona, U.S.A.

    USGS Publications Warehouse

    Laubach, S.E.; Reynolds, S.J.; Spencer, J.E.; Marshak, S.

    1989-01-01

    In the Maria fold and thrust belt, a newly recognized E-trending Cretaceous orogenic belt in the southwestern United States, ductile thrusts, large folds and superposed cleavages record discordant emplacement of crystalline thrust sheets across previously tilted sections of crust. Style of deformation and direction of thrusting are in sharp contrast to those of the foreland fold-thrust belt in adjacent segments of the Cordillera. The net effect of polyphase deformation in the Maria belt was underthrusting of Paleozoic and Mesozoic metasedimentary rocks under the Proterozoic crystalline basement of North America. The structure of the Maria belt is illustrated by the Granite Wash Mountains in west-central Arizona, where at least four non-coaxial deformation events (D1-D4) occurred during the Cretaceous. SSE-facing D1 folds are associated with S-directed thrusts and a low-grade slaty cleavage. D1 structures are truncated by the gently-dipping Hercules thrust zone (D2), a regional SW-vergent shear zone that placed Proterozoic and Jurassic crystalline rocks over upturned Paleozoic and Mesozoic supracrustal rocks. Exposures across the footwall margin of the Hercules thrust zone show the progressive development of folds, cleavage and metamorphism related to thrusting. D3 and D4 structures include open folds and spaced cleavages that refold or transect D1 and D2 folds. The D2 Hercules thrust zone and a D3 shear zone are discordantly crosscut by late Cretaceous plutons. ?? 1989.

  8. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  9. GPS-derived estimates of crustal deformation in the central and north Ionian Sea, Greece: 3-yr results from NOANET continuous network data

    NASA Astrophysics Data System (ADS)

    Ganas, A.; Marinou, A.; Anastasiou, D.; Paradissis, D.; Papazissi, K.; Tzavaras, P.; Drakatos, G.

    2013-07-01

    Ionian Sea (western Greece) is a plate-boundary region of high seismicity and complex tectonics, dominated by frequent earthquake activity along the right-lateral Cephalonia transform fault. We present an analysis of 30-s GPS data from five (5) continuous stations of NOANET (NOA permanent GPS network) spanning the period 2007-2010. Our results show N-S crustal shortening onshore Lefkada island of the order of 2-3 mm/yr which is probably related to increased locking on the offshore Lefkada fault. We also calculated a large difference (1:3) in the principal strain rate amplitude between extension and shortening for the central Ionian Sea.

  10. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  11. Three-dimensional crustal structure in the Southern Alps region of New Zealand from inversion of local earthquake and active source data

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen

    2002-10-01

    P and S-P arrival time data from 311 earthquakes and several thousand offshore and onshore shots have been used in simultaneous inversion for hypocenters, three-dimensional (3-D) Vp and Vp/Vs models in the Southern Alps region, New Zealand. The combined data result in a highly nonuniform ray path distribution, and linked nodes are used in sparsely sampled areas. Gravity data are used to improve the model below 20-km depth, where it is poorly sampled by local earthquakes. The crustal Vp from 5 to 25 km depth is fairly uniform, generally ranging from 5.5 to 6.5 km/s, typical of graywacke and schist. Active fault zones tend to be correlated with low-velocity zones. Where the Alpine fault is primarily strike slip, it is characterized by a vertical low-velocity zone, to at least 15-km depth. Where the fault is dipping and has a large dip-slip component, it is characterized by a large region of low velocity above and southeast of the fault, to at least 14-km depth, consistent with fluids and fracture density from active deformation. A large high-velocity, high-resistivity feature in the eastern Southern Alps may represent Mesozoic schist of higher metamorphic grade than its surroundings, which is relatively rigid and serves to both reduce deformation in the overlying basin and concentrate deformation in the adjoining low-velocity region. The imaged crustal root is deepest 80-km south of Mt. Cook and is asymmetric with a sharper gradient on the northwestern side. The approximate Moho shows regional variation, with 5-10 km thicker crust in Otago than Canterbury.

  12. Exploring Subduction, Slab Breakoff, and Upper-Plate Deformation in the Georgian Greater Caucasus: Shortening Estimates from Area- and Line-Balanced Crustal Scale Cross Sections

    NASA Astrophysics Data System (ADS)

    Trexler, C. C.; Cowgill, E.; Niemi, N. A.; Godoladze, T.

    2015-12-01

    Between the Black and Caspian Seas, the Greater Caucasus Mountains (GC) delineate the northern margin of the Arabia-Eurasia collision zone. The role of subduction in formation of the GC is not widely recognized, despite patterns of subcrustal seismicity attesting to its importance at the E end of the range. The GC currently absorbs most orogen-perpendicular plate convergence (11 mm/yr, 70% of total), but its tectonic evolution relation to subduction remain unclear. Proposed models include 1) subduction of an ~400 km wide backarc ocean basin followed by slab breakoff under the W end of the range; 2) loss of a lithospheric root followed by buoyancy-driven uplift; and 3) closure of a small (~100 km?) basin with no/minimal subduction. Patterns of modern seismicity, exhumation, and shortening are most consistent with the subduction/slab breakoff model, suggesting the western GC may capture the surface expression of processes associated with recent slab breakoff. Each model of the GC makes specific predictions for the amount of shortening within the orogen, with the subduction/breakoff model predicting large magnitudes of convergence. Here we estimate orogenic shortening by balancing mass along several, orogen-perpendicular, crustal-scale cross sections across the GC. First we estimate the original length of undeformed crust by comparing the modern deformed volume (determined from modern topography and moho depth and assuming no net erosional loss) with hypothesized end-member original crustal thicknesses (based on seismic data in the Eastern Black Sea and Scythian platform). These end-member assumptions allow shortening magnitudes as great as ~700 km (12 km-thick oceanic crust), and as small as ~100 km (39 km-thick Scythian margin). Second, we use line-length balanced crustal-scale geologic cross sections to estimate shortening in the western and central GC. We generated these sections using previously published 1:200k geologic maps and our own focused field

  13. Analysis of Coseismic Fault Slip Models of the 2012 Indian Ocean Earthquake: Importance of GPS Data for Crustal Deformation Studies

    NASA Astrophysics Data System (ADS)

    Gunawan, Endra; Maulida, Putra; Meilano, Irwan; Irsyam, Masyhur; Efendi, Joni

    2016-12-01

    Based on continuous GPS data, we analyze coseismic deformation due to the 2012 Indian Ocean earthquake. We use the available coseismic slip models of the 2012 earthquake, derived from geodetic and/or seismic waveform inversion, to calculate the coseismic displacements in the Andaman-Nicobar, Sumatra and Java. In our analysis, we employ a spherical, layered model of the Earth and we find that Java Island experienced coseismic displacements up to 8 mm, as also observed by our GPS network. Compared to coseismic offsets measured from GPS data, a coseismic slip model derived from multiple observations produced better results than a model based on a single type of observation.

  14. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus of the research was in two broad areas: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings of the research are described in the accompanying appendices. The first two and the fourth appendices are reprints of papers recently submitted for publication, and the third is the abstract of a recently completed thesis supported by this project.

  15. Application of the Global Positioning System to crustal deformation measurements. 3: Result from the southern California borderlands

    SciTech Connect

    Larson, K.M.

    1993-12-01

    Five years of measurements from the Global Positioning System (GPS) satellites collected between 1986 and 1991 are used to investigate deformation in the offshore regions of southern California. GPS provides the first practical technique to make precise geodetic measurements in the region. The geodetic network is situated along the California coastline from Vandenberg (120.6 deg W, 34.6 deg N) to San Diego, with additional sites on Santa Cruz, San Nicolas, Santa Catalina, Santa Rosa, and San Clemente Islands. The precision of horizontal interstation vectors is subcentimeter, and the interstation vector rate between Owens Valley Radio Observatory (OVRO) and Vandenberg agrees with the very long baseline interferometry derived rate to within one standard deviation. No significant motion is observed in th e western Santa Barbara Channel between Vandenberg and Santa Rosa Island, 0.5 +/- 1.6 mm/yr, where the quoted uncertainties are one standard deviation. Motions in the eastern Santa Barbara Channel are consistent with compressional deformation of 6 +/- 1 mm/yr at N16 +/- 3 deg E. This motion is in agreement with seismicity and an independent geodetic analysis for the period 1971-1987 (Larsen, 1991). San Clemente Island is moving relative to San Diego at the rate of 5.9 +/- 1.8/yr at a direction of N38 +/- 20 deg W. The motion between San Nicolas Island and San Clemente Island, 0.8 +/- 1.5 mm/yr, is insignificant.

  16. Effect of length-scale on localization of shear zones along precursor fractures and layers during deformation of middle to lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Pennacchioni, Giorgio; Hawemann, Friedrich; Wex, Sebastian; Camacho, Alfredo

    2016-04-01

    Deformation of high grade rocks at middle to lower crustal levels involves both distributed and more highly localized ductile strain, with localized shear zones developing on elongate near-planar rheological precursors. These planar heterogeneities may be compositional layers (e.g. dykes) or pre-existing or newly developed fractures, with or without pseudotachylyte. Usual rheological models for viscous rock deformation are scale independent. The geometry of developing localized shear zones should therefore be scalable and depend only on the pre-existing geometry and imposed boundary conditions, as shown in numerical and analogue models. However, this is not what is observed in natural examples. Shear zones preferentially or exclusively develop on long fractures and dykes, typically on the scales of many (tens of) metres to (tens of) kilometres, whereas smaller-scale healed fractures, basic enclaves and short layers or inclusions are less prone to reactivation and locally may be largely ignored. Preferential localization of strain on these longer structures means that the intervening rock volumes remain low-strain domains, so that the smaller-scale planar heterogeneities are effectively shielded during progressive deformation. Any localized deformation of these intervening low-strain domains requires the formation of new elongate fractures acting as a necessary precursor for subsequent localization. These field observations suggest that ductile shear zone localization is more effective with increasing length of the approximately planar precursor. Localized shear zones do not develop by propagation away from an initial small heterogeneity. Instead, their length is largely predetermined by the length of the controlling precursor structure and in-plane propagation of the tips appears to be very limited. Preferential shear reactivation of longer precursors introduces a length-scale dependence from the very initiation of localized "viscous" or "ductile" shear zones

  17. Crustal deformation and magmatic processes at Laguna del Maule volcanic field (Chile): Geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mével, Hélène

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation measured by interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2016, and data from the Global Positioning System (GPS) recorded since 2012 at five stations. The inflating region includes most of the 16--km-by--14--km ring of rhyolitic domes and coulees. The fastest-moving GPS station (MAU2) has a velocity vector of [[special character omited]72 +/- 4, 19 +/- 1, 194 +/- 3] mm/yr between 2012 and 2016 for the eastward, northward, and upward components, respectively. First, we model the InSAR observations assuming a rectangular dislocation in a half space with uniform elastic properties. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2011. Modeling of historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation and present a new dynamic model to describe this process. A Newtonian fluid characterized by its viscosity, density, and pressure flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain and leading to time-dependent surface deformation. Using a grid-search optimization, we minimize the misfit to the InSAR displacement data by varying the three parameters governing the analytical solution: the characteristic timescale tauP for magma propagation, the injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semi-major axis a = 6200 m, semi-minor axis c = 100 m, located at a

  18. Crustal Fluid Evolution and Changes in Deformation Conditions during Regional Syn- to Post-Orogenic Exhumation: Southeastern Piedmont, Southern Appalachians

    SciTech Connect

    Evans, M.A.

    2000-07-05

    Fluid inclusion microthermometric data from veins in the southeastern Piedmont province record the changes in fluid composition and deformation conditions during regional exhumation and cooling related to Late Paleozoic syn- to post-orogenic processes and early Mesozoic rifting. In general, the composition of post-metamorphic fluids that were trapped late during the Alleghanian orogeny and during post-orogenic exhumation are remarkably consistent across the southeastern Piedmont, indicating regional fracture connectivity. The first fluids were trapped in veins that formed during the last phases of the Alleghanian. These syn-deformational fluids are CO2-saturated low salinity brines (salinities of 2.6 to 5.7 wt. percent NaCl equivalent) with homogenization temperatures in the range of 200 degrees to 365 degrees C. They were trapped under lithostatic pressures between 240 and 280 MPa, indicating burial depths of 11.2 to 12.7 km. These depths are similar to emplacement depths of post-kinematic plutons, suggesting a period of rapid isobaric cooling. Low-salinity H2O inclusions and rare CO2-rich inclusions are evidence for Early Mesozoic regional decompression as fracturing above the brittle-to-ductile transition allowed regional pore-fluid pressure to drop to hydrostatic levels. Convective circulation of meteoric water resulted in the dilution of 'in-situ' fluids, and ultimately to a system saturated with meteoric water. These fluids continued to be trapped in vein minerals through much of the Mesozoic as rift basins formed during the opening of the Atlantic Ocean. Late Paleozoic through Mesozoic exhumation rates for the eastern Piedmont province average 0.063 km m.y.-1 and cooling rates average approximately 1.9 degrees C m.y.-1. These low rates may be directly related to thinned crust and lithosphere resulting from delamination processes during the late Alleghanian orogeny.

  19. Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study

    USGS Publications Warehouse

    Battaglia, Maurizio; Hill, D.P.

    2009-01-01

    Joint measurements of ground deformation and micro-gravity changes are an indispensable component for any volcano monitoring strategy. A number of analytical mathematical models are available in the literature that can be used to fit geodetic data and infer source location, depth and density. Bootstrap statistical methods allow estimations of the range of the inferred parameters. Although analytical models often assume that the crust is elastic, homogenous and isotropic, they can take into account different source geometries, the influence of topography, and gravity background noise. The careful use of analytical models, together with high quality data sets, can produce valuable insights into the nature of the deformation/gravity source. Here we present a review of various modeling methods, and use the historical unrest at Long Valley caldera (California) from 1982 to 1999 to illustrate the practical application of analytical modeling and bootstrap to constrain the source of unrest. A key question is whether the unrest at Long Valley since the late 1970s can be explained without calling upon an intrusion of magma. The answer, apparently, is no. Our modeling indicates that the inflation source is a slightly tilted prolate ellipsoid (dip angle between 91?? and 105??) at a depth of 6.5 to 7.9??km beneath the caldera resurgent dome with an aspect ratio between 0.44 and 0.60, a volume change from 0.161 to 0.173??km3 and a density of 1241 to 2093??kg/m3. The larger uncertainty of the density estimate reflects the higher noise of gravity measurements. These results are consistent with the intrusion of silicic magma with a significant amount of volatiles beneath the caldera resurgent dome. ?? 2008 Elsevier B.V.

  20. RNGCHN: a program to calculate displacement components from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation

    NASA Astrophysics Data System (ADS)

    Feigl, Kurt L.; Dupré, Emmeline

    1999-07-01

    The RNGCHN program calculates a single component of the displacement field due to a finite or point-source dislocation buried in an elastic half space. This formulation approximates the surface movements produced by earthquake faulting or volcanic intrusion. As such, it is appropriate for modeling crustal deformation measured by geodetic surveying techniques, such as spirit leveling, trilateration, Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS), or especially interferometric analysis of synthetic aperture radar (SAR) images. Examples suggest that this model can fit simple coseismic earthquake signatures to within their measurement uncertainties. The program's input parameters include fault position, depth, length, width, strike, dip, and three components of slip. The output consists of displacement components in the form of an ASCII list or a rectangular array of binary integers. The same program also provides partial derivatives of the displacement component with respect to all 10 input parameters. The FORTRAN source code for the program is in the public domain and available as the compressed tar file rngchn.tar.Z in the directory/pub/GRGS via the Internet by anonymous ftp to spike.cst. cnes.fr. This distribution includes worked examples and a MATLAB interface.

  1. Crustal root beneath the Rif Cordillera as imaged from both active seismic data and teleseismic receiver functions.

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gil, Alba; Gallart, Josep; Carbonell, Ramon; Harnafi, Mimoun; Levander, Alan

    2015-04-01

    The Rif cordillera forms, together with the Betic ranges, one of the tightest orogenic arcs on Earth. This continental boundary zone is dominated now by the slow convergence between Nubia and Eurasia, but with clear evidences of extensional tectonics. One of the missing elements to constrain the complex geodynamics of the Gibraltar Arc System is the knowledge of the crustal architecture beneath northern Morocco. In the last decade a major effort has been done in this sense, from active and passive seismics. We compile here the recent results available from the Rif domains. Two 330 km long wide angle DSS profiles were recorded end of 2011 across the Rif in NS and EW transects within the Rifsis project, complemented by onshore recordings of the Gassis-WestMed marine profiles. At the same period, BB seismic arrays were deployed in the area within Topo-Iberia and Picasso projects, allowing receiver function analyses of crustal depths. The ray-tracing modeling of the Rifsis profiles reveal a large Moho step and an area of crustal thickening both in EW and NS directions, grossly coincident with the Bouguer gravity anomalies. The deployment logistics allowed that all the stations recorded all the shots, thus providing useful offline data. We will use here all available in-line and offline data to provide a map of the crustal thickness in northern Morocco. We combined two approaches: i) a hyperbolic time reduction applied to the seismic data, resulting in low-fold stacks in which the reflections from the Moho should appear as subhorizontal lines; ii) the arrival times of the observed PmP phases allow, assuming a mean crustal velocity, to assign a midpoint crustal thickness to each lecture. Although some uncertainties may be inherent to those approaches, a large crustal root, reaching more than 50 km, is well documented in the central part of the Rif Cordillera, close to the zone where the Alboran slab may still be attached to the lithosphere. We also compared these results

  2. The Evolution of Deformation-Induced Grain-Boundary Porosity and Dynamic Permeability in Crustal Fault Zones: Insights From the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sauer, K. M.; Toy, V.

    2015-12-01

    Fluids and minor phases have an important influence on the bulk rheology of a deforming rock mass, but they are not uniformly distributed at any scale within fault zones. Additionally, exhumed ductile shear zones show little interconnected porosity or static permeability, requiring a dynamic process at depth to allow fluids to access the deforming rock mass. It was recently recognized that reactive fluids interact with high-strain sites to generate cavities on quartz grain boundaries, increasing the grain-scale porosity and dynamic permeability of the rock and allowing for additional fluids to infiltrate the shear zone along interlinking cavities, stimulating further reaction and cavitation. Grain-boundary cavities and fine-grained secondary phases impede grain-boundary mobility and cause a transition in deformation mechanisms from grain-size insensitive dislocation creep to grain-size sensitive creep, which is recognized as a weakening mechanism that promotes strain localisation. At present, it is unclear how the distribution of grain-boundary pores within fault rocks reflects the bulk mineralogy and phase arrangement, which is a function of shear strain. We have used micro-computed x-ray tomography (μ-CT), SEM imaging, and EDS analyses to examine how the distribution of grain-boundary pores varies in relation to the arrangement of secondary phases in exhumed protomylonites, mylonites, and ultramylonites within the actively-deforming Alpine Fault zone, and in samples acquired from the Deep Fault Drilling Project (DFDP). Additionally, EBSD is coupled with µ-CT and EDS analyses to characterise the evolution of microstructures in three dimensions across a finite strain gradient. Here we examine the relationship and competition between grain-boundary cavitation and microstructural processes during deformation in a high-strain shear zone, and discuss the implications of these grain-scale deformation processes on strain localisation and continental fault zone dynamics.

  3. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  4. Effects of the troposphere on GPS and InSAR point target analysis for measurement of crustal deformation and vertical motion near Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Plag, H.; Kreemer, C. W.; Li, Z.

    2009-12-01

    Precise measurement of vertical motions of the solid Earth with space based geodetic techniques such as GPS and Interferometric Synthetic Aperture Radar (InSAR) is complicated by the presence of the atmosphere. A fundamental question is to what degree do GPS and InSAR provide similar information about the delays in signal propagation associated with the troposphere. Knowledge of this relationship can improve methods for using GPS to correct for the effects of atmosphere in InSAR, or vice versa. To isolate residual signals associated with the atmosphere in GPS using the GIPSY-OASIS II software, we apply a height-dependent dry delay, and solve for wet zenith delay and its two horizontal gradients every five minutes as a random walk process. We estimate the residual phase from InSAR as the difference between phase and the expected phase based on interferometric point target analysis performed with the Gamma IPTA software module. We will investigate correlations between 1) the GPS troposphere zenith delay estimates at the time of radar scene acquisition, 2) the GPS height estimate residual to the linear rate in height, and 3) the GAMMA IPTA derived atmospheric delays (including orbit errors). As a test case we will use the long running and stable GPS sites of the Basin and Range Geodetic Network (BARGEN) in the vicinity of Yucca Mountain, Nevada. These sites have been shown to exhibit extremely clean time series, likely attributable to the very high quality monumentation, stability of GPS equipment, dry atmosphere over the Great Basin, and low rates of crustal deformation. This, in addition to the high density of stations (16 sites within a 50 km radius), makes the Yucca mountain regional network one of the best possible localities for the analysis of the relative contributions to noise in GPS vertical rates and atmospheric contributions to InSAR measurements.

  5. The gravity method and interpretive techniques for detecting vertical crustal movements

    NASA Technical Reports Server (NTRS)

    Jachens, R. C.

    1978-01-01

    Observations of temporal variations of gravity can be used as an inexpensive and rapid means of detecting, monitoring, and studying crustal deformation associated with many active geological processes. Such observations can yield qualitative or semiquantitative information on elevation changes and, when combined with independent elevation data, can yield information about changes of the subsurface density field arising from both subsurface displacements and temporal variations of the density of materials in the subsurface. The effectiveness of gravity techniques in specific cases of crustal deformation depends on the configuration of the local gravity field, the physical processes involved in the deformation, and the accuracy with which temporal gravity variations can be measured.

  6. Deformation conditions, kinematics, and displacement history of shallow crustal ductile shearing in the Norumbega fault system in the Northern Appalachians, eastern Maine

    NASA Astrophysics Data System (ADS)

    Wang, Chunzeng; Ludman, Allan

    2004-06-01

    The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300-350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting. Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c' shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S-C' structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system. Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The

  7. Crustal deformation along the Northern Hyblean Plateau margin (Sicily, Italy) from GPS measurements and comparison with stress data

    NASA Astrophysics Data System (ADS)

    Mattia, M.; Bruno, V.; Cannavò, F.; Palano, M.

    2009-04-01

    In this work we analyze data from permanent and non-permanent GPS stations collected between 1998 and 2006 on a dense geodetic network covering a large area of the Hyblean Plateau (southern Italy). This is a seismogenetic area, where strong earthquakes destroyed many cities and killed thousands of people in the past. The analysis of geodetic velocities referring to an Eurasian and an African reference frames, reveals the occurrence of active shortening in the northern sector of the plateau along the boundary defined by the Gela-Catania Foredeep, coupled with an active lengthening in the central sector of the plateau itself. Starting from the estimated velocity at each station, the horizontal strain-rate field of the Hyblean Plateau was calculated. The strain rate pattern clearly defines an area of a prevailing N-S compression along the northern rim of the Hyblean Plateau. Furthermore the central sector of the plateau is affected by a NNW-SSE and NE-SW extensional strain rate pattern. A comparison with seismological and structural data, available for the studied area, allows improving the knowledge of the tectonic processes in the Hyblean Plateau and their implications for seismic hazard.

  8. Kinematics and significance of a poly-deformed crustal-scale shear zone in central to south-eastern Madagascar: the Itremo-Ikalamavony thrust

    NASA Astrophysics Data System (ADS)

    Giese, Jörg; Schreurs, Guido; Berger, Alfons; Herwegh, Marco

    2016-10-01

    Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly metasedimentary units of the Ikalamavony and Itremo Groups of the Southwest Madagascar Block. The generally west-dipping tectonic contact can be traced for more than 750 km from NW to SE and is referred to here as the Itremo-Ikalamavony thrust. The basal units of the SW Madagascar Block comprise metasedimentary quartzites with the potential to preserve a multistage deformation history in their microstructures. Previous studies suggest contrasting structural evolutions for this contact, including eastward thrusting, top-to-the-west directed extension and right-lateral strike-slip deformation during the late Neoproterozoic/Ediacaran. In this study, we integrate remote sensing analyses, structural and petrological fieldwork, as well as microstructural investigations of predominantly quartz mylonites from the central southern segment of the contact between Ankaramena and Maropaika. In this area, two major phases of ductile deformation under high-grade metamorphic conditions occurred in latest Neoproterozoic/early Phanerozoic times. A first (Andreaba) phase produces a penetrative foliation, which is parallel to the contact between the two blocks and contemporaneous with widespread magmatism. A second (Ihosy) phase of deformation folds Andreaba-related structures. The investigated (micro-)structures indicate that (a) juxtaposition of both blocks possibly already occurred prior to the Andreaba phase, (b) (re-)activation with top-to-the-east thrusting took place during the latest stages of the Andreaba phase, (c) the Ihosy phase resulted in regional-scale open folding of the tectonic contact and (d) reactivation of parts of the contact took place at distinctively lower temperatures post-dating the major ductile deformations.

  9. The 2015 Fillmore earthquake swarm and possible crustal deformation mechanisms near the bottom of the eastern Ventura Basin, California

    USGS Publications Warehouse

    Hauksson, Egill; Andrews, Jennifer; Plesch, Andreas; Shaw, John H.; Shelly, David R.

    2016-01-01

    The 2015 Fillmore swarm occurred about 6 km west of the city of Fillmore in Ventura, California, and was located beneath the eastern part of the actively subsiding Ventura basin at depths from 11.8 to 13.8 km, similar to two previous swarms in the area. Template‐matching event detection showed that it started on 5 July 2015 at 2:21 UTC with an M∼1.0 earthquake. The swarm exhibited unusual episodic spatial and temporal migrations and unusual diversity in the nodal planes of the focal mechanisms as compared to the simple hypocenter‐defined plane. It was also noteworthy because it consisted of >1400 events of M≥0.0, with M 2.8 being the largest event. We suggest that fluids released by metamorphic dehydration processes, migration of fluids along a detachment zone, and cascading asperity failures caused this prolific earthquake swarm, but other mechanisms (such as simple mainshock–aftershock stress triggering or a regional aseismic creep event) are less likely. Dilatant strengthening may be a mechanism that causes the temporal decay of the swarm as pore‐pressure drop increased the effective normal stress, and counteracted the instability driving the swarm.

  10. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  11. Crustal recycling at active convergent margins and growth of the continents

    SciTech Connect

    Morris, J. . Dept. of Earth and Planetary Sciences Carnegie Institution of Washington, DC ); Zheng, S.H. . Dept. of Geological Sciences)

    1993-03-01

    Subduction of continental materials at active convergent margins provides an opportunity to evaluate mechanisms and magnitude of subduction-driven crustal recycling and its potential role in continental growth. Continental materials, in the form of detrital sediments and elements adsorbed out of seawater onto settling sediment particles, are continuously supplied to subduction trenches. The sediments may be accreted and re-attached to the continental crust through collisional processes subducted to depth and subsequently involved in arc magma generation (magmatic recycling) or subducted past the arc into the deep mantle. Cosmogenic 10Be, which is strongly adsorbed onto settling sediment particles, may be used to investigate all aspects of sediment recycling. Because of its atmospheric source and short half-life, the high 10Be concentrations observed in many volcanic arc magmas require that the uppermost part of the sediment column be subducted to depth and some part of it returned to the surface in arc magmas within the measurable 10Be lifetime, effectively a few million years. In the Aleutians, Middle America and Marianas, 10Be is present only in the upper 12m, 100m and 25m, respectively of the subducting oceanic sediment column. Using von Huene and Scholl's 1991 estimate of oceanic sediment supply to trenches, the authors evidence for sediment bypassing of accretionary margins, and the limited recycling of most major elements in arc volcanism, estimates of sediment subduction are nearly equal to those required in a steady-state, recycling model for growth of the continents through time.

  12. Crustal Deformation Analysis Using a 3D FE High-fidelity Model with a Fast Computation Method and Its Application to Inversion Analysis of Fault Slip in the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hori, M.

    2012-12-01

    Crustal deformation analysis is important in order to understand the interplate coupling and coseismic fault slips. To perform it more accurately, we need a high-fidelity crustal structure model. However, in spite of accumulated crustal data, models with simplified flat shapes or relatively low resolution have been used, because the computation cost using high-fidelity models with a large degree-of-freedom (DOF) could be significantly high. Especially, estimation of the interplate coupling and coseismic fault slip requires the calculation of Green's function (the response displacement due to unit fault slip). To execute this computation in a realistic time, we need to reduce the computation cost. The objectives of our research is following: (1)To develop a method to generate 3D Finite Element (FE) models which represent heterogeneous crustal layers with the complex shape of crustal structure; (2)To develop a fast FE analysis method to perform crustal deformation analysis many times using single computation node, supposing the use of a small-scale computation environment. We developed an automatic FE model generation method using background grids with high quality meshes in a large area by extending the method of (Ichimura et al, 2009). We used Finite Element Method (FEM) because it has an advantage in representing the shape. Hybrid meshes consisting of tetrahedral and voxel elements are generated; the former is used when the interface surfaces and the grids intersect so that the shape of the crust is represented well, while the latter is used in the homogeneous areas. Also, we developed a method for crustal deformation analysis due to fault slip, which solves the FEM equation Ku=f assuming that the crust is an elastic body. To compute it fast, firstly we solved the problem by CG method with a simple preconditioning, parallelizing it by OpenMP. However, this computation took a long time, so we improved the method by introducing Multigrid Method (Saam, 2003) to the

  13. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  14. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  15. Nanocalorimetric Characterization of Microbial Activity in Deep Subsurface Oceanic Crustal Fluids.

    PubMed

    Robador, Alberto; LaRowe, Douglas E; Jungbluth, Sean P; Lin, Huei-Ting; Rappé, Michael S; Nealson, Kenneth H; Amend, Jan P

    2016-01-01

    Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 1.2 nW ml(-1)) was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63°C) and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb) near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 h during a step-wise isothermal scan from 35.5 to 85.0°C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 × 10(4) cells ml(-1) FLUID) and their subsequent metabolic activity at temperatures greater than 50°C. The average cellular energy consumption (5.68 pW cell(-1)) reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8°C), relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 h as temperature ramped from 34.8 to 43.0°C. Corresponding cell-specific energy turnover rates (0.18 pW cell(-1)) were converted to oxygen uptake rates of 24.5 nmol O2 ml(-1) FLUID d(-1), validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  16. Thermally activated deformation of irradiated reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Böhmert, J.; Müller, G.

    2002-03-01

    Temperature and strain rate change tensile tests were performed on two VVER 1000-type reactor pressure vessel welds with different contents of nickel in unirradiated and irradiated conditions in order to determine the activation parameters of the contribution of the thermally activated deformation. There are no differences of the activation parameters in the unirradiated and the irradiated conditions as well as for the two different materials. This shows that irradiation hardening preferentially results from a friction hardening mechanism by long-range obstacles.

  17. Detailed crustal deformation and fault rupture of the 2015 Gorkha earthquake, Nepal, revealed from ScanSAR-based interferograms of ALOS-2

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2015-12-01

    We have successfully detected widely distributed ground displacements for the 2015 Gorkha earthquake by applying a ScanSAR-based interferometry analysis of Advanced Land Observing Satellite 2 (ALOS-2) L-band data. A major displacement area extends with a length of about 160 km in the east-west direction, and the most concentrated crustal deformation with ground displacement exceeding 1 m is located 20-30 km east from Kathmandu. A quasi-vertical displacement estimated by combining the ascending and the descending data indicates upheaval of about 1.4 m at maximum. We inverted the synthetic aperture radar interferometry (InSAR) data including both of the main shock (moment magnitude (Mw) 7.8) and the largest aftershock (Mw 7.3) to construct a slip distribution model. Our model shows a nearly pure reverse fault motion with a slip amount of approximately 6 m at maximum, and the spatial extent is zonally distributed within a distance of 50 to 100 km from the surface along downdip direction. The downdip end of the slip is quite consistent with that of the interseismic coupling area geodetically inferred in previous studies. On the other hand, there is no significant slip at shallow depth in spite of the fact that the plate interface is thought to be fully locked there, may be suggesting that there still remains a potential of fault slip. The slip distribution unnaturally bifurcates in the east, and we can identify a clear-cut slip deficit area with a radius of ~10 km just west side of the Mw 7.3 event, where the slip amount reaches only 20 cm at most. This area is presumably subjected to a strong shear stress which should promote a reverse fault slip. There is a possibility to produce a fault slip equivalent to Mw ~7.0 in the future although we do not know if the slip heterogeneity would be smoothed out by a seismic event or an aseismic event.

  18. Constraints on Crustal Viscosity from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory

    2015-04-01

    Laboratory measurements of the ductile deformation of crustal rocks demonstrate a range of crystal deformation mechanisms that may be represented by a viscous deformation law, albeit one in which the effective viscosity may vary by orders of magnitude, depending on temperature, stress, grain size, water content and other factors. In such measurements these factors can be separately controlled and effective viscosities can be estimated more or less accurately, though the measured deformation occurs on much shorter time scales and length scales than are typical of geological deformation. To obtain bulk measures of the in situ crustal viscosity law for actual geological processes, estimated stress differences are balanced against measured surface displacement or strain rates: at the continental scale, surface displacement and strain rates can be effectively measured using GPS, and stress differences can be estimated from the distribution of gravitational potential energy; this method has provided constraints on a depth-averaged effective viscosity for the lithosphere as a whole in regions that are actively deforming. Another technique measures the post-seismic displacements that are interpreted to occur in the aftermath of a large crustal earthquake. Stress-differences here are basically constrained by the co-seismic deformation and the elastic rigidity (obtained from seismic velocity) and the strain rates are again provided by GPS. In this technique the strain is a strong function of position relative to the fault, so in general the interpretation of this type of data depends on a complex calculation in which various simplifying assumptions must be made. The spatial variation of displacement history on the surface in this case contains information about the spatial variation of viscosity within the crust. Recent post-seismic studies have shown the potential for obtaining measurements of both depth variation and lateral variation of viscosity in the crust beneath

  19. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    Site velocities from six separate Global Positioning System (GPS) networks comprising 374 stations have been referred to a single common Eurasia-fixed reference frame to map the velocity distribution over the entire Aegean. We use the GPS velocity field to identify deforming regions, rigid elements, and potential microplate boundaries, and build upon previous work by others to initially specify rigid elements in central Greece, the South Aegean, Anatolia, and the Sea of Marmara. We apply an iterative approach, tentatively defining microplate boundaries, determining best fit rigid rotations, examining misfit patterns, and revising the boundaries to achieve a better match between model and data. Short-term seismic cycle effects are minor contaminants of the data that we remove when necessary to isolate the long-term kinematics. We find that present day Aegean deformation is due to the relative motions of four microplates and straining in several isolated zones internal to them. The RMS misfit of model to data is about 2-sigma, very good when compared to the typical match between coseismic fault models and GPS data. The simplicity of the microplate description of the deformation and its good fit to the GPS data are surprising and were not anticipated by previous work, which had suggested either many rigid elements or broad deforming zones that comprise much of the Aegean region. The isolated deforming zones are also unexpected and cannot be explained by the kinematics of the microplate motions. Strain rates within internally deforming zones are extensional and range from 30 to 50 nanostrain/year (nstrain/year, 10-9/year), 1 to 2 orders of magnitude lower than rates observed across the major microplate boundaries. Lower strain rates may exist elsewhere withi the microplates but are only resolved in Anatolia, where extension of 13 ?? 4 nstrain/ year is required by the data. Our results suggest that despite the detailed complexity of active continental deformation

  20. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  1. A province-scale block model of Walker Lane and western Basin and Range crustal deformation constrained by GPS observations (Invited)

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Bormann, J.; Blewitt, G.; Kreemer, C.

    2013-12-01

    The Walker Lane in the western Great Basin of the western United States is an 800 km long and 100 km wide zone of active intracontinental transtension that absorbs ~10 mm/yr, about 20% of the Pacific/North America plate boundary relative motion. Lying west of the Sierra Nevada/Great Valley microplate (SNGV) and adjoining the Basin and Range Province to the east, deformation is predominantly shear strain overprinted with a minor component of extension. The Walker Lane responds with faulting, block rotations, structural step-overs, and has distinct and varying partitioned domains of shear and extension. Resolving these complex deformation patterns requires a long term observation strategy with a dense network of GPS stations (spacing ~20 km). The University of Nevada, Reno operates the 373 station Mobile Array of GPS for Nevada transtension (MAGNET) semi-continuous network that supplements coverage by other networks such as EarthScope's Plate Boundary Observatory, which alone has insufficient density to resolve the deformation patterns. Uniform processing of data from these GPS mega-networks provides a synoptic view and new insights into the kinematics and mechanics of Walker Lane tectonics. We present velocities for thousands of stations with time series between 3 to 17 years in duration aligned to our new GPS-based North America fixed reference frame NA12. The velocity field shows a rate budget across the southern Walker Lane of ~10 mm/yr, decreasing northward to ~7 mm/yr at the latitude of the Mohawk Valley and Pyramid Lake. We model the data with a new block model that estimates rotations and slip rates of known active faults between the Mojave Desert and northern Nevada and northeast California. The density of active faults in the region requires including a relatively large number of blocks in the model to accurately estimate deformation patterns. With 49 blocks, our the model captures structural detail not represented in previous province-scale models, and

  2. Crustal Structure in the Imperial Valley Region of California From Active-Source Seismic Investigations

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.

    2008-12-01

    shallow as 12 km beneath the Imperial Valley. Modeling of gravity data requires that this layer deepen and/or pinch out beneath the bordering mesas and mountain ranges. This pinch-out is imaged in the 1992 data beneath the Chocolate Mountains. Based on its high velocity and the presence of intrusive basaltic rocks in the sedimentary section in the Imperial Valley, the subbasement is thought to be a mafic intrusive complex similar to oceanic middle crust. (4) Crustal thickness and upper-mantle velocity are 21-22 km and 7.6-7.7 km/s, respectively, beneath the Imperial Valley but increase to 27 km and 8.0 km/s, respectively, beneath the Chocolate Mountains. Our results from the Salton Trough may be contrasted with active-source seismic results from the northern Gulf of California (Guaymas basin; Lizarralde et al., 2007). These results show the crust to thin to 10-14 km within the Gulf. Below 3-4 km of sediment, the crust has a velocity of 6.8 km/s, interpreted to be new igneous (gabbroic) crust. Thus, the rifting process appears to have produced negligible metasedimentary basement and a crustal thickness as little as half that beneath the Salton Trough.

  3. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    ERIC Educational Resources Information Center

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  4. 3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.; Nicol, A.; Fohrmann, M.; Bland, K. J.; King, P. R.

    2013-04-01

    The Taranaki Basin in the west of New Zealand's North Island has evolved from a rifted Mesozoic Gondwana margin to a basin straddling the Neogene convergent Australian-Pacific plate margin. However, given its proximity to the modern subduction front, Taranaki Basin is surprisingly cold when compared to other convergent margins. To investigate the effects of active margin evolution on the thermal regime of the Taranaki Basin we developed a 3D crustal-scale forward model using the petroleum industry-standard basin-modelling software Petromod™. The crustal structure inherited from Mesozoic Gondwana margin breakup and processes related to modern Hikurangi convergent margin initiation are identified to be the main controls on the thermal regime of the Taranaki Basin. Present-day surface heat flow across Taranaki on average is 59 mW/m2, but varies by as much as 30 mW/m2 due to the difference in crustal heat generation between mafic and felsic basement terranes alone. In addition, changes in mantle heat advection, tectonic subsidence, crustal thickening and basin inversion, together with related sedimentary processes result in variability of up to 10 mW/m2. Modelling suggests that increased heating of the upper crust due to additional mantle heat advection following the onset of subduction is an ongoing process and heating has only recently begun to reach the surface, explaining the relatively low surface heat flow. We propose that the depth of the subducted slab and related mantle convection processes control the thermal and structural regimes in the Taranaki Basin. The thermal effects of the subduction initiation process are modified and overprinted by the thickness, structure and composition of the lithosphere.

  5. 400My of Deformation Along Tibet Active Strike Slip Faults

    NASA Astrophysics Data System (ADS)

    Arnaud, N. O.

    2003-12-01

    While it is widely accepted that strike slip faults in Tibet accommodate a significant part of the tertiary convergence between India and Asia, the true Cenozoic magnitude of the offset is still largely debated. Direct dating of Cenozoic piercing points is the most powerful tool to assess the total offset, but their use is not always possible. Therefore one gets to use older markers although this leads to significant results ONLY at the supreme condition that pre-Cenozoic movement of those markers be accurately known. The Kunlun and Altyn Tagh faults for example form a prominent example of Tibetan presently active fault, but they also constitute geological frontiers between blocks of different geological histories accreted at various times since early Paleozoic. One may thus question how much of the visible offset is indeed Cenozoic. Although deformation facies agree with recent kinematics, multi-geochronological approach indicates a series of events from 280-230 Ma to 120+/-10 Ma. The former may be linked either with suturing of the Qiantang and Kunlun blocks farther to the south, or collision further to the north or east in the Qilian Shan and Bei Shan ranges, while the latter range appears to be growing in importance with ongoing work but is still largely unexplained. Oblique subductions of collision to the north of the Qilian Shan are adequate candidates. Argon loss suggests that deformation was associated to a 250-300° C thermal pulse that lasted 5 to 20 Ma after the onset of movement (Arnaud et al., 2003). Unroofing on all faults occurred much later, around 25 Ma ago when sudden cooling suggests a component of normal faulting (Mock et al., 1999). Strong inheritage was also found along the Ghoza active fault, in central western Tibet. Of course the fact that some of the deformation is much older than the Cretaceous and shares compatible deformation criteria with the present-day deformation leads to false appreciation of the pure Cenozoic offset, potentially

  6. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    Noll, Carey E. (Editor)

    1988-01-01

    This document represents a catalog of site information for the Crustal Dynamics Project. It contains information on and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements necessary for studies of the Earth's crustal movements and deformation.

  7. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This document represents a catalogue of site information for the Crustal Dynamics Project. It contains information and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements useful for studies of the Earth's crustal movements and deformation.

  8. InSAR analysis of the crustal deformation affecting the megacity of Istanbul: the results of the FP7 Marsite Project as a GEO Supersite Initiative

    NASA Astrophysics Data System (ADS)

    Solaro, Giuseppe; Bonano, Manuela; Manzo, Mariarosaria

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most active faults worldwide, extending approximately 1,200 km from Eastern Turkey to the Northern Aegean Sea. During the 20th century series of damaging earthquakes occurred along the NAF, generally propagated westward towards Istanbul; the last one occurred in 1999 at Izmit, a city 80 km away from Istanbul. Within this scenario, the FP7 MARsite project (New Directions in Seismic Hazard assessment through Focused Earth Observation in Marmara Supersite), supported by EU, intends to collect, share and integrate multidisciplinary data (seismologic, geochemical, surveying, satellite, etc.) in order to carry out assessment, mitigation and management of seismic risk in the region of the Sea of Marmara. In the framework of the MARsite project, we performed the analysis and monitoring of the surface deformation affecting the Istanbul mega city by exploiting the large archives of X-band satellite SAR data, made available through the Supersites Initiatives, and by processing them via the advanced multi-temporal and multi-scale InSAR technique, known as the Small BAseline Subset (SBAS) approach. In particular, we applied the SBAS technique to a dataset of 101 SAR images acquired by the TerraSAR-X constellation of the German Space Agency (DLR) over descending orbits and spanning the November 2010 - August 2014 time interval. From,these images, we generated 312 differential interferograms with a maximum spatial separation (perpendicular baseline) between the acquisition orbits of about 500 m., that were used to generate, via the SBAS approach, mean deformation velocity map and corresponding ground time series of the investigated area. The performed InSAR analysis reveals a generalized stability over the Istanbul area, except for some localized displacements, related to subsidence and slope instability phenomena. In particular, we identified: (i) a displacement pattern related to the Istanbul airport, showing a mostly linear

  9. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  10. Imaging time dependent crustal deformation using GPS geodesy and induced seismicity, stress and optimal fault orientations in the North American mid-continent

    NASA Astrophysics Data System (ADS)

    Holland, Austin A.

    Transient deformation has been observed in a number of different types of tectonic environments. These transient deformation signals are often observed using continuous GPS (CGPS) position time-series observations. Examining transient deformation using CGPS time-series is problematic due to the, often, low signal-to-noise ratios and variability in duration of transient motions observed. A technique to estimate a continuous velocity function from noisy CGPS coordinate time-series of is examined. The resolution of this technique is dependent on the signal-to-noise ratio and the duration or frequency content of the transient signal being modeled. Short period signals require greater signal-to-noise ratios for effective resolution of the actual transient signal. The technique presented here is similar to a low-pass filter but with a number of advantages when working with CGPS data. Data gaps do not adversely impact the technique but limit resolution near the gap epochs, if there is some a priori knowledge of the noise contained within the time-series this information can be included in the model, and model parameter uncertainties provide information on the uncertainty of instantaneous velocity through time. A large transient has been observed in the North-American stable continental interior as a significant increase in the number and moment release of earthquakes through time. This increase in the number of earthquakes has been suggested to be largely related changes in oil and gas production activities within the region as triggered or induced seismicity, primarily from fluid injection. One of the first observed cases of triggered earthquakes from hydraulic fracturing where the earthquakes were large enough to be felt by local residents is documented. The multiple strong temporal and spatial correlations between these earthquakes indicate that hydraulic fracturing in a nearby well likely triggered the earthquake sequence. The largest magnitude earthquake in this

  11. Active deformable sheets: prototype implementation, modeling, and control

    NASA Astrophysics Data System (ADS)

    Lind, Robert J.; Johnson, Norbert; Doumanidis, Charalabos C.

    2000-06-01

    Active deformable sheets are integrated smart planar sheet structures performing off-plane deformations under computer actuation and control, to take up a desired dynamic morphology specified in CAD software or obtained by 3-D scanning of a solid surface. The sheet prototypes are implemented in the laboratory by elastic neoprene foil layers with embedded asymmetric grids of SMA wires (Nitinol), which upon electrical contraction bend the sheet to the necessary local curvature distribution. An analytical model of such prototypes, consisting of an electrical, a thermal, a material and a mechanical module, as well as a more complex finite element thermomechanical simulation of the sheet structure have been developed and validated experimentally. Besides open-loop control of the sheet curvatures by modulation of the SMA wire actuation current, a closed-loop control system has been implemented, using feedback of the wire electrical resistance measurements in real time, correlating to the material transformation state. The active deformable sheets are intended for applications such as reconfigurable airfoils and aerospace structures, variable focal length optics and electromagnetic reflectors, flexible and rapid tooling and microrobotics.

  12. Strain Partitioning During Continental Extension: Role Of Crustal Decoupling And Lower Crustal Flow

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.; Beaumont, Christopher

    Lithosphere extension is accommodated by localized deformation of brittle and vis- cous shear zones. Distributed lower crustal flow may also occur in response to the changing crustal and mantle lithosphere geometry during extension and the associated buoyancy forces. We investigate the relationship between the localised deformation and distributed flow in a series of model experiments. Successive experiments increase the decoupling of the upper crust from the upper mantle lithosphere by increasing the contribution of thermally activated creep in the lower crust. We use visco-plastic fully thermally coupled numerical experiments to simulate the thermo-mechanical evolu- tion of the extending lithosphere. In our first set of numerical models, crust and man- tle lithosphere have normal thickness and thermal conditions. In the reference model, strong coupling between crust and mantle is achieved by scaling up the crustal viscos- ity by a factor of 100. Subsequently, decoupling is achieved by allowing for thermally activated creep in the lower crust. The models suggest that strong coupling between crust and mantle lithosphere may result in relatively narrow rift basins bounded by nested conjugate fault systems. In contrast, the decoupled models show outward prop- agation of synthetic fault systems and the formation of multiple crustal necks, where the frictional shears sole out in the lower crustal decollement. In our second set of nu- merical models we investigate the effect of introducing a zone of thick and hot crust in the centre of the model. Under these circumstances, channel flow directed toward the rift in the middle and lower crust becomes increasingly important at the expense of the frictional plastic behaviour of the upper crust and upper mantle lithosphere. We test the sensitivity of the model results to the initial position in either crust or mantle where localisation first occurs. The thick crust models show a natural progression from core complex style of

  13. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  14. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  15. Recent crustal movements in the Sierra Nevada-Walker lane region of California-Nevada: Part i, rate and style of deformation

    USGS Publications Warehouse

    Slemmons, D.B.; Wormer, D.V.; Bell, E.J.; Silberman, M.L.

    1979-01-01

    This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada. The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of ho??rst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament. Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE-SW compression axis (??1) and an

  16. Discontinuous fluidization transition in dense suspensions of actively deforming particles

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    Collective dynamics of self-propelled particles at high density have been shown to display a glass-like transition with a critical slowing down of 2 to 4 orders of magnitude. In this talk, we propose a new mechanism of injecting energy or activity via volume fluctuations. We show that the behaviour of actively deforming particles is strikingly different from that of self-propelled particles. In particular, we find a discontinuous non-equilibrium phase transition from a flowing state to an arrested state. Our minimal model might also explain the collective dynamics in epithelial tissues. In particular, without needing self-propulsion or cell-cell adhesion, volume fluctuations of individual cells alone might be sufficient to give rise to an active fluidization and collective dynamics in densely packed tissues.

  17. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma

    NASA Astrophysics Data System (ADS)

    Rangin, Claude; Maurin, Thomas; Masson, Frederic

    2013-10-01

    It is widely accepted that deformation of the India/Sunda plate is the result of partitioned hyper oblique convergence. Presently, sub-meridian dextral strike slip faulting accommodates this India/Sunda motion in a buffer zone, the Burma platelet. This wide dextral strike slip shear zone is complicated by the side effect of the Tibet plateau collapse that can be described in term of crustal flow and gravity tectonics. The loss of potential energy related to this plateau collapse affects most of the Burmese platelet particularly in its northernmost part. Interaction of these two distinct geodynamic processes is recorded in the GPS based regional strain field, the analysis of seismic focal mechanism but also from direct geologic observations both onshore and offshore Myanmar and Bangladesh. We propose the apparent E-W shortening component of this so called partitioned hyper-oblique subduction is only the effect of regional gravitational forces related to the Tibet plateau collapse whereas the NS strike slip faulting accommodates the India/Sunda motion.

  18. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments

    NASA Astrophysics Data System (ADS)

    Środa, Piotr

    2017-03-01

    The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to

  19. Active deformation of the northern front of the Eastern Great Caucasus

    NASA Astrophysics Data System (ADS)

    Niviere, Bertrand; Gagala, Lukasz; Callot, Jean-Paul; Regard, Vincent; Ringenbach, Jean-Claude

    2016-04-01

    The Arabia-Eurasia collision involved a mosaic of island arcs and microcontinents. Their accretion to the complex paleogeographic margin of Neotethys was marked by numerous collisional events. The Greater Caucasus constitute the northernmost tectonic element of this tectonic collage, developed as a back arc extensional zone now inverted, which relationships to the onset of Arabia-Eurasia continental collision and/or to the reorganization of the Arabia-Eurasia plate boundary at ˜5 Ma remain controversial. Structurally, the Greater Caucasus are a former continental back arc rift, now the locus of ongoing continental shortening. Modern geodetic observations suggest that in the west, the strain north of the Armenian Plateau is accommodated almost exclusively along the margins of the Greater Caucasus. This differs from regions further east where strain accommodation is distributed across both the Lesser and Greater Caucasus, and within the Greater Caucasus range, with a unique southward vergence. We question here the amount and mechanisms by which the Eastern Greater Caucasus accommodate part of the Arabia-Eurasia convergence. Morphostructural analysis of the folded late Pleistocene marine terrace along the northern slope of the Eastern Greater Caucasus evidences an on going tectonic activity in the area where GPS measurements record no motion. Most of the recent foreland deformation is accommodated by south-vergent folds and thrust, i. e. opposite to the vergence of the Caucasus frontal northern thrust. A progressive unconformity in the folded beds shows that it was already active during the late Pliocene. Cosmogenic dating of the terrace and kinematic restoration of the remnant terrace, linked to the subsurface geology allows for the estimation of a shortening rate ranging from a few mm/yr to 1 cm/yr over the last 5 Myr along the greater Caucasus northern front. Thus more than one third of the shortening between the Kura block / Lesser Caucasus domain and the Stable

  20. The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; González, Pablo J.; Fernández, José

    2015-11-01

    A spatially dense GNSS-based crustal velocity field for the Iberian Peninsula and Northern Africa allows us to provide new insights into two main tectonic processes currently occurring in this area. In particular, we provide, for the first time, clear evidence for a large-scale clockwise rotation of the Iberian Peninsula with respect to stable Eurasia (Euler pole component: N42.612°, W1.833°, clockwise rotation rate of 0.07 deg/Myr). We favor the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. We furnish evidence for a fragmentation of the western Mediterranean basin into independent crustal tectonic blocks, which are delimited by inherited lithospheric shear structures. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. These processes can be mainly explained by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary.

  1. Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002-2013) of GPS measurements

    NASA Astrophysics Data System (ADS)

    Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla

    2016-10-01

    The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.

  2. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  3. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  4. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps

    PubMed Central

    Heberer, B.; Prasicek, G.; Neubauer, F.; Hergarten, S.

    2017-01-01

    Abstract The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA‐EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one‐dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ‐transformed channel profiles coincide spatially with the Valsugana‐Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA‐EA drainage divide imply an ongoing, north directed shift of the Danube‐ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA‐EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration. PMID:28344912

  5. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, J.; Heberer, B.; Prasicek, G.; Neubauer, F.; Hergarten, S.

    2017-01-01

    The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one-dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ-transformed channel profiles coincide spatially with the Valsugana-Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA-EA drainage divide imply an ongoing, north directed shift of the Danube-ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration.

  6. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1988-01-01

    The long-term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate movements and intraplate deformation. The approach is to combine realistic modeling studies with analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also reported on briefly is progress in the use of the Global Positioning System to densify SLR observations in the Eastern Mediterranean. Reference is made to the previous annual report for a discussion of modeling results.

  7. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The long term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate motions and intraplate deformation. The approach is to combine realistic modeling studies with an analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also briefly reported on is progress made in using GPS measurements to densify SLR observations in the Eastern Mediterranean.

  8. Crustal permeability

    USGS Publications Warehouse

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  9. Activities and source mechanisms of volcanic deep low-frequency earthquakes and its implication for deep crustal process in magmatic arc (Invited)

    NASA Astrophysics Data System (ADS)

    Nakamichi, H.

    2013-12-01

    Rocks under upper mantle and lower crustal temperatures and pressures typically deform in a ductile manner, therefore it is difficult to accumulate enough deviatoric stress in rocks to generate brittle failure under this condition. However earthquakes occur at upper mantle and lower crust beneath active volcanoes, and are recognized as volcanic deep low-frequency earthquakes (VDLFs). VDLFs are characterized by mostly low-frequency energy (<5 Hz), emergent arrivals and long-duration codas. VDLF activity observed at depths of 10-50 km in Japan, the Philippines, Alaska and the Western US (Power et al., 2004; Ukawa, 2005; Nichols et al. 20011), has generally been attributed to magma transport in the mid-to-lower crustal and uppermost mantle regions. However because VDLF seismicity is infrequent, with relatively weak and emergent signals, the relationship between deep magma transport and seismic radiation remains poorly understood. Borehole dense seismic observation systems, such as the high-sensitivity seismograph network 'Hi-net' in Japan (Obara et al. 2005), are effective for detecting not only non-VDLFs (Obara, 2002) but also VDLFs. Since 1997 the Japan Meteorological Agency has routinely detected and located DLFs using the Hi-net dataset, and have identified DLFs in and around most quaternary volcanoes in Japan (Takahashi and Miyamura, 2009). Several studies have attempted to estimate source mechanisms of VDLFs in Japan. The first attempt by Ukawa and Ohtake (1987), obtained a single force as the source mechanism of a VDLF beneath Izu-Ohshima by using particle motions of S-waves. Following that work strike-slip type and non-double-couple source mechanisms were obtained using waveform inversions for VDLFs in Northeast Japan (Nishidomi and Takeo 1996; Okada and Hasegawa, 2000). Nakamichi et al. (2003; 2004) estimated the source mechanisms of Mts. Iwate and Fuji through the moment tensor inversion of spectral ratios of body waves from using data from a dense seismic

  10. Application of space technology to crustal dynamics and earthquake research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.

  11. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements.

    PubMed

    Pan, Yuanjin; Shen, Wen-Bin

    2017-03-28

    The ongoing collision between the Indian plate and the Eurasian plate brings up N-S crustal shortening and thickening of the Tibet Plateau, but its dynamic mechanisms remain controversial yet. As one of the most tectonically active regions of the world, South-Eastern Tibet (SET) has been greatly paid attention to by many geoscientists. Here we present the latest three-dimensional GPS velocity field to constrain the present-day tectonic process of SET, which may highlight the complex vertical crustal deformation. Improved data processing strategies are adopted to enhance the strain patterns throughout SET. The crustal uplifting and subsidence are dominated by regional deep tectonic dynamic processes. Results show that the Gongga Shan is uplifting with 1-1.5 mm/yr. Nevertheless, an anomalous crustal uplifting of ~8.7 mm/yr and negative horizontal dilation rates of 40-50 nstrain/yr throughout the Longmenshan structure reveal that this structure is caused by the intracontinental subduction of the Yangtze Craton. The Xianshuihe-Xiaojiang fault is a major active sinistral strike-slip fault which strikes essentially and consistently with the maximum shear strain rates. These observations suggest that the upper crustal deformation is closely related with the regulation and coupling of deep material.

  12. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements

    PubMed Central

    Pan, Yuanjin; Shen, Wen-Bin

    2017-01-01

    The ongoing collision between the Indian plate and the Eurasian plate brings up N-S crustal shortening and thickening of the Tibet Plateau, but its dynamic mechanisms remain controversial yet. As one of the most tectonically active regions of the world, South-Eastern Tibet (SET) has been greatly paid attention to by many geoscientists. Here we present the latest three-dimensional GPS velocity field to constrain the present-day tectonic process of SET, which may highlight the complex vertical crustal deformation. Improved data processing strategies are adopted to enhance the strain patterns throughout SET. The crustal uplifting and subsidence are dominated by regional deep tectonic dynamic processes. Results show that the Gongga Shan is uplifting with 1–1.5 mm/yr. Nevertheless, an anomalous crustal uplifting of ~8.7 mm/yr and negative horizontal dilation rates of 40–50 nstrain/yr throughout the Longmenshan structure reveal that this structure is caused by the intracontinental subduction of the Yangtze Craton. The Xianshuihe-Xiaojiang fault is a major active sinistral strike-slip fault which strikes essentially and consistently with the maximum shear strain rates. These observations suggest that the upper crustal deformation is closely related with the regulation and coupling of deep material. PMID:28349926

  13. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  14. Crustal deformation of the Yellowstone-Snake River Plain volcano-tectonic system-Campaign and continuous GPS observations, 1987-2004

    USGS Publications Warehouse

    Puskas, C.M.; Smith, R.B.; Meertens, Charles M.; Chang, W. L.

    2007-01-01

    The Yellowstone-Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a network of 15 permanent stations. GPS deployments focused on the Yellowstone caldera, the Hebgen Lake and Teton faults, and the eastern Snake River Plain. The GPS data revealed periods of uplift and subsidence of the Yellowstone caldera at rates up to 15 mm/yr. From 1987 to 1995, the caldera subsided and contracted, implying volume loss. From 1995 to 2000, deformation shifted to inflation and extension northwest of the caldera. From 2000 to 2003, uplift continued to the northwest while caldera subsidence was renewed. The GPS observations also revealed extension across the Hebgen Lake fault and fault-normal contraction across the Teton fault. Deformation rates of the Yellowstone caldera and Hebgen Lake fault were converted to equivalent total moment rates, which exceeded historic seismic moment release and late Quaternary fault slip-derived moment release by an order of magnitude. The Yellowstone caldera deformation trends were superimposed on regional southwest extension of the Yellowstone Plateau at up to 4.3 ± 0.2 mm/yr, while the eastern Snake River Plain moved southwest as a slower rate at 2.1 ± 0.2 mm/yr. This southwest extension of the Yellowstone-Snake River Plain system merged into east-west extension of the Basin-Range province. Copyright 2007 by the American Geophysical Union.

  15. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  16. Numerical modelling of crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in South Iceland

    NASA Astrophysics Data System (ADS)

    Juncu, Daniel; Árnadóttir, Thóra; Ali, Tabrez; Hooper, Andrew

    2015-04-01

    Several high temperature geothermal energy production fields are currently harnessed in Iceland. One of these is located at the Hengill triple junction, where the oblique plate motion along the Reykjanes peninsula is partitioned between the E-W oriented transform along the South Iceland Seismic Zone (SISZ) and spreading across the Western Volcanic Zone in SW Iceland. The Hengill volcano is a high temperature geothermal area that is utilized by the Hellisheiði and Nesjavellir power plants. The regions around the power plants are subject to surface deformation due to several processes. These include the motion of the Earth's crust due to plate spreading, co- and post seismic deformation due to earthquakes in the South Iceland Seismic Zone and deformation due to water and steam extraction and wastewater re-injection near geothermal power plants. We measure surface displacement in the Hengill area using both GPS and InSAR data. The former are obtained from four continuous and more than 15 campaign GPS stations in the area, with time-series starting after two M6 earthquakes on 29 May 2008 in Ölfus - the westernmost part of the SISZ. The InSAR data consist of 10 images taken by the TerraSar-X mission, starting October 2009. The InSAR time-series has a temporal resolution of 1 to 3 images per year, taken at an incidence angle of approximately 30° from the vertical. In the InSAR data we can see a clear subsidence signal in the proximity of the power plants with a maximum of ~24 mm/yr in Line-of-Sight direction (LOS) at Hellisheiði, after correcting for plate motion. The subsidence is elongated in NNE-SSW direction and possibly related to the orientation of the Hengill fissure swarm. In addition to subsidence, we observe an uplift signal of ca. 10 mm/yr in LOS west of the Hellisheiði site, potentially due to wastewater re-injection in the area. The area of maximum uplift is located close to the epicenters of two M4 earthquakes that occurred in October 2011. We run

  17. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  18. Crustal velocity model along the southern Cuban margin: implications for the tectonic regime at an active plate boundary

    NASA Astrophysics Data System (ADS)

    Moreno, Bladimir; Grandison, Margaret; Atakan, Kuvvet

    2002-11-01

    A new 1-D velocity model along the southern Cuban margin has been determined using local earthquake data, which are the result of the merged Cuban and Jamaican catalogues. Simultaneous inversion using joint-hypocentre determination was applied to solve the coupled hypocentre-velocity model problem. We obtained a seven-layer model with an average Moho interface at 20 km. The average velocity was found to be 7.6 km s-1 on the top of the crust-mantle transition zone and 6.9 km s-1 in the basaltic layer of the crust. The improvement in the earthquake locations allowed us for the first time to use local seismicity to characterize the activity on local faults and the stress regime in the area. For this purpose, 34 earthquake focal mechanisms were determined along the eastern segments of the Oriente Fault. These solutions are consistent with the known left-lateral strike-slip motion along this major structure as well as with the stress regime of two local structures: (1) the Cabo Cruz Basin and (2) the Santiago deformed belt. The first structure is dominated by normal faults with minor strike-slip components and the second by reverse faults. The shallow seismicity in the Cabo Cruz Basin is associated with fault planes trending N55°-58°E and dipping 38°-45° to the north. The Santiago deformed belt, on the other hand, exhibits diverse fault plane orientations. These local structures account for most of the earthquake activity along the southern Cuban margin. Deep seismicity observed in the Santiago deformed belt, supported by focal mechanisms, suggests underthrusting of the Gonave Microplate beneath the Cuban Block in this area. The principal stress orientations obtained from stress inversion of earthquake focal mechanisms suggest a thrust faulting regime along the Southern Cuban margin. We obtained a nearly horizontal σ1 and nearly vertical σ3, which indicates active compressional deformation along the major Oriente transcurrent fault in agreement with the dominant

  19. Crustal differentiation

    NASA Astrophysics Data System (ADS)

    Melekhova, E.; Blundy, J.

    2012-12-01

    Few erupted arc magmas are sufficiently primitive to be in equilibrium with mantle wedge peridotite, meaning a significant volume of arc crust must comprise plutonic cumulates formed during differentiation of primitive basalts. This cumulate material is typically not available for petrological study. A notable exception is the Lesser Antilles arc, which is renowned for the exceptional abundance and variety of cumulate xenoliths. Additionally, several Lesser Antilles islands erupt primitive basaltic magmas that are close to being in mantle equilibrium. The abundance of plutonic cumulate xenolith and presence of primitive basalts make the Lesser Antilles an ideal natural laboratory for understanding crust-building processes. Here we evaluate the chemical consequences of basalt differentiation in the mid to lower crust and uppermost mantle (10 to 30 km) by means of experiments on a primitive basalt from St. Vincent. The results were combined with compositional and textural observation of plutonic cumulate xenoliths from the island. Our goal was to constrain the conditions under which basalt differentiation can generate the observed chemical diversity of erupted magmas at St. Vincent and the compositions of minerals in cumulate xenoliths. Our experimental results show that it is possible to produce a wide compositional range of melts by differentiation at different depths and water contents from the same primitive source. The melts provide a close match to the full range of erupted lavas on the island. The cumulate assemblages, however, have a consistently lower pressure origin (6-10 km). They are formed by crystallisation of ascending melts generated in the deep crust. Phencocrysts in the lavas are distinct from those in cumulates, notably in the absence of amphibole. The phenocrysts demonstrably grew in response to crystallisation at very shallow depth, probably in sub-volcanic magma chambers. Thus St. Vincent shows clear evidence for polybaric crustal

  20. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    PubMed

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints.

  1. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  2. Distinct metasomatic events and their relation to a crustal-scale deformation zone (Gemer-Vepor Contact Zone, Central Western Carpathians)

    NASA Astrophysics Data System (ADS)

    Novotná, Nikol; Pitra, Pavel; Jeřábek, Petr

    2015-04-01

    Numerous talc, magnesite and siderite ore deposits occur in the Central Western Carpathians (Slovakia) along the so-called Gemer-Vepor Contact Zone, which marks the contact between two major blocks of Variscan basement, the Vepor and Gemer units. During the polyphase deformation of Cretaceous age, the Gemer Unit was first thrust over the Vepor Unit. This is well documented by the development of subhorizontal and prograde metamorphic foliation reaching up to amphibolite facies conditions in the Vepor and by the development of subvertical greenschist facies cleavages in the Gemer Unit. The subsequent exhumation of the Vepor Unit along large-scale detachment zone is documented by the development of subhorizontal lower grade cleavage in the Vepor Unit. Finally, the ongoing northward propagating convergence with the Gemer Unit led to the development of the sinistral transpressional Trans-Gemer Shear zone. Two types of shear zones with contrasting metasomatic record have been recognized in the Vepor Unit. Mg-enriched shear zones heterogeneously develop within the Carboniferous granitoids resulting in formation of Mg-chlorite-muscovite-quartz phyllonites as well as Mg-chlorite-kyanite-bearing schists. Compared to the composition of granitoids, these mylonites-phyllonites are depleted in alkalies and enriched in magnesium, iron and manganese, which is most likely related to the influx of fluids along the shear zones. The equilibrium mineral assemblage chlorite, kyanite, muscovite, rutile and quartz corresponds to ~ 420°C at 4 kbar. In contrast, the second type of shear zones developed within chloritoid-kyanite schists of the Veporic Permian cover. These shear zones display metasomatic alteration characterized by a strong Fe-enrichment resulting in formation of Fe-chlorite-muscovite-quartz phyllonite. The unusual enrichment in either Mg or Fe suggests either heterogenous fluid composition or two separate metasomatic events in the studied area. Indeed, the two types of

  3. Mechanics of dielectric elastomer-activated deformable transmission grating

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Zhou, Jinxiong; Sun, Wenjie; Wu, Xiaohong; Zhang, Ling

    2014-09-01

    Laminating a thin layer of elastomeric grating on the surface of a prestretched dielectric elastomer (DE) membrane forms a basic design of electrically tunable transmission grating. We analyze the inhomogeneous deformation of a circular multiple-region configuration. Variation of the geometric and material parameters, as well as of the critical condition determined by loss of tension instability, is probed to aid the design of a DE-based deformable grating. The predicted changes in the grating period agree substantially with the experimental results reported by Aschwanden et al (Aschwanden et al 2007 IEEE Photon. Technol. Lett. 19 1090).

  4. Active Deformation in the Greater Himalayan Zone in Western Nepal from Inversion of New (U-Th)/He Cooling Ages

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Burbank, D.

    2015-12-01

    Much of the central Himalaya features an abrupt rise in mean elevation from ~1.5 km in the Lesser Himalaya to ~4-5 km Greater Himalaya and Tibetan Plateau. This physiographic transition is known as PT2, and is often interpreted as the surface expression of transport over a ramp in the Main Himalayan Thrust (MHT). In western Nepal, however, the same rise in elevation occurs over two distinct topographic steps (PT2-N and PT2-S). In previous work, Harvey et al. (2015) argue that this anomalous topography is the result of recent southward-migration of mid-crustal deformation along the MHT. Due to the seismogenic potential of the MHT it is important to constrain its geometry in the western Nepal seismic gap, which has not had a large earthquake in over 600 years. To test the above hypothesis, we perform [U-Th]/He dating on 39 apatite and 47 zircon samples collected along seven relief transects throughout western Nepal. We constrain exhumation histories by inverting these new cooling ages with the 3-D thermo-kinematic model Pecube. Five transects collected from the Greater Himalaya north of PT2-N are best fit by relatively rapid exhumation rates (~1-2 km/Myr) since ~4 Ma. The other two, collected from farther south near PT2-S, require rapid (~1-2 km/Myr) exhumation until around 8-11 Ma, followed by much slower (~0.1-0.2 km/Myr) exhumation until at least the late Pliocene. Assuming that exhumation rates reflect uplift rates, the rapid Plio-Pleistocene exhumation in the Greater Himalaya north of PT2-N suggest that this physiographic transition is similar to that at the foot of the Greater Himalaya in central Nepal. It follows that active deformation is occurring along a NW-trend as much as 100 km farther north than would be expected if simply projecting PT2 across western Nepal. This finding is consistent with transport over a more northerly MHT ramp or perhaps oblique slip along the recently identified, surface-breaking WNFZ. Although the geomorphology and microseismicity

  5. Evolution of the Dharwar Craton: A terrain of early Archean crustal stability, long term orogenic cycles and large scale palaeobiological activity

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Naqvi, S. M.

    1988-01-01

    Traceable history of the Dharwar Craton goes back to approximately 3400 m.y. old tonalitic to trondhjemitic fundamental gneiss whose REE composition indicates its derivation from a preexisting basalt which apparently had very short time of crustal residence. The fundamental gneiss is preserved only as rare relicts in the vast gneissic complex of the Indian Peninsula (the Peninsular Gneiss), and as pebbles in the conglomerates of the Archean Dharwar sequence. Study of these relicts, shows evidence of a deformation episode prior to the deposition of the high- and low-grade Dharwar supracrustal sequence. The Dharwar supracrustal sequence is briefly described. Geochemistry of the volcanic and sedimentary rocks of the Dharwar supracrustal belts are examined.

  6. Active Dehydration, Delamination and Deformation of Transitional Continental Crust in an Arc-Continent Collision, Taiwan

    NASA Astrophysics Data System (ADS)

    Byrne, T. B.; Rau, R. J.; Chen, K. H.; Huang, H. H.; Wang, Y. J.; Ouimet, W. B.

    2014-12-01

    A new study of the 3-D velocity structure of Taiwan, using a new tomographic model (Vp and Vs; Huang et al., 2014), suggests that subducted continental crust is delaminated from the subducting mantle of the Eurasia plate and progressively deformed by the subducting Philippine Sea plate. In southern Taiwan, vertical sections show an east-dipping, asymmetric lobe of low velocity that projects down dip to a band of seismicity interpreted as the Wadati-Benioff zone of the subducting Eurasian plate. Seismic tremors in the mid-crust also suggest dehydration (Chuang et al., 2014), consistent with prograde metamorphism of crustal materials. In central Taiwan, however, the seismicity of the W-B zone progressively disappears and the low velocity lobe shallows and broadens. The velocity structure of the lower and middle crust (represented by the 7.5 and 6.5 km/sec isovelocity surfaces, respectively) also appear distinctly out-of-phase, with the lower crust forming a broad, smooth synformal structure that contrasts with the higher amplitude undulations of the middle crust. These mid-crust structures appear as smaller irregular lobes separated by patches of higher velocity. In northern Taiwan, the velocity structure of the lower and middle crust again appear "in phase" and form a symmetrical crustal root centered beneath the Central Range. Seismicity patterns and 3-D analysis of the velocity structure also show the western edge of the PSP subducting beneath the eastern Central Range. We interpret these south-to-north changes to reflect the partial subduction (southern Taiwan), delamination (central Taiwan) and deformation (northern Taiwan) of continental-like crust. Support for these interpretation comes from: 1) unusually high rates of surface uplift (up to 15 mm/yr; Ching et al., 2011); 2) Vp and Vs attenuation studies that suggest anomalously high temperatures; 3) evidence for NE-SW extension; and 4) anomalous areas of low topographic relief.

  7. Mercury's Magnetic Field: Active, Thermoelectric, or Decaying Dynamo or Crustal Remanence? - The MESSENGER Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Lohr, D. A.; Acuna, M. H.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L.

    2005-12-01

    The discovery of Mercury's intrinsic magnetic field in 1974 by Mariner 10 was a surprise because the planet's size, thermal state, and angular momentum seemed to rule out the possibility of an active dynamo. Additional encounters of Mercury by the Mariner 10 spacecraft in 1975 confirmed the initial results and allowed the estimation of the planetary magnetic dipole moment to within perhaps a factor of two. This discovery prompted a variety of suggestions for the source of the intrinsic field. The presence of sufficient sulfur in the outer core would allow a thin fluid outer core to persist to the present and perhaps serve as host to a thin-shell dynamo. Recent dynamo simulations under conditions appropriate to Mercury support this possibility and point to aspects of the external field that may be observable from an orbiting spacecraft. Remanent magnetization of the crust and mantle by a now-dead core dynamo field was proposed as an alternative explanation of the Mariner 10 observations in 1976, but this suggestion has been questioned on the grounds that the characteristic time between polarity reversals of a core dynamo field is likely much less than the timescale for acquisition of thermoremanence by the cooling crust and upper mantle. The discovery by Mars Global Surveyor (MGS) in 1997 of an intensely magnetized Martian crust added fuel to this debate, because the Mariner 10 measurements can be reproduced if Mercury's crust is approximated by a magnetized shell having an intrinsic magnetization of the same order of magnitude as that suggested for Mars by the MGS measurements. The MESSENGER magnetic field investigation is designed to address this and other fundamental questions regarding the nature and origin of Mercury's internal field as well as the planet's thermal history. We present here a summary of the MESSENGER magnetic field investigation goals and an assessment of observations acquired during the spacecraft's Earth flyby on 2 August 2005.

  8. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    SciTech Connect

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger; Xiao, Xianghui

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.

  9. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  10. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models.

  11. Collaborative Research: Analysis and Interpretation of Multi-Scale Phenomena in Crustal Deformation Processes Using Numerical Simulations of Complex Nonlinear Earth Systems

    SciTech Connect

    Rundle, John B.

    2004-12-31

    In both our past work and the work in progress we focused on understanding the physics and statistical patterns in earthquake faults and fault systems. Our approach had three key aspects. The first was to look for patterns of seismic activity in earthquake fault systems. The second was to understand the physics of a sequence of models for faults and fault systems that are increasingly more realistic. The third key element was to connect the two previous approaches by investigating specific properties found in models to see if they are indeed properties of real faults. A specific example of how this approach works can be seen in the following: In the papers discussed below, we demonstrated that the cellular automation (CA) versions of the slider block models with long range stress transfer are ergodic and could be described by a Boltzmann-Gibbs distribution in the meanfield limit. The ergodicity follows from the fact that the long range stress transfer makes the model meanfield. The meanfield nature of the CA models, generated by long range stress transfer, also allows a description of the CA models by a Langevin equation. The Langevin equation indicates that evolution of seismicity in the model over relatively short times is linear in time. This appears to be consistent with the success of a forecasting algorithm we have developed that is based on a linear evolution of seismicity patterns. This algorithm has had considerable success in that the regions of the Southern California fault system which have been predicted to have a higher probability of an event greater than magnitude 5 have consistently been the sites where such events occur. These two results have led to the question as to whether the Southern California fault system is ergodic and can be described by a Langevin equation like the model. To answer this question we ran a series of tests for ergodicity very much like the ones run on the models. Our results, which have been accepted for publication in

  12. Block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Ron, H.

    1987-01-01

    Much of the earth's crust is broken by sets of parallel strike-slip faults which are organized in domains. A simple kinematic model suggests that when subject to tectonic strain, the faults, and the blocks bound by them, rotate. The rotation can be estimated from the structurally-determined fault slip and fault spacing, and independently from local deviations of paleomagnetic declinations from global values. A rigorous test of this model was carried out in northern Israel, where good agreement was found between the two rotations.

  13. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  14. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects.

    PubMed

    Monesterolo, Noelia E; Nigra, Ayelen D; Campetelli, Alexis N; Santander, Verónica S; Rivelli, Juan F; Arce, Carlos A; Casale, Cesar H

    2015-11-01

    Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.

  15. Active upper crust deformation pattern along the southern edge of the Tyrrhenian subduction zone (NE Sicily): Insights from a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; Schiavone, Domenico; Loddo, Mariano; Neri, Marco; Presti, Debora; Quarto, Ruggiero; Totaro, Cristina; Neri, Giancarlo

    2015-08-01

    Using a multidisciplinary dataset based on gravimetric, seismic, geodetic and geological observations, we provide an improved picture of the shallow structure and dynamics of the southern edge of the Tyrrhenian subduction zone. With a local earthquake tomography we clearly identify two main crustal domains in the upper 15 km characterized by different P-wave velocity values: a high-velocity domain comprising southeasternmost Tyrrhenian Sea, NE Sicily and Messina Straits, and a low-velocity domain comprising Mt. Etna and eastern Sicily. The transition between the two domains shows a good spatial correspondence with a wider set of faults including the Taormina Fault System (TFS) and the Aeolian-Tindari-Letojanni Fault System (ATLFS), two nearly SE-striking fault systems crossing northeastern Sicily and ending on the Ionian shoreline of Sicily according to many investigators. Within this set of faults, most of the deformation/seismicity occurs along the northern and central segments of ATLFS, compared to low activity along TFS. A lack of seismicity (both recent and historical) is observed in the southern sector of ATLFS where, however, geodetic data reveal significant deformation. Our multidisciplinary dataset including offshore observations suggests the southeastward continuation of the ATLFS into the Ionian Sea until joining with the faults cutting the Ionian accretionary wedge described in the recent literature. Our findings imply the existence of a highly segmented crustal shear zone extending from the Aeolian Islands to the Ionian Abyssal plain, that we believe plays the role of accommodating differential motion between the Southern Tyrrhenian unit and the western compressional domain of Sicily. The ATLFS, which is a main part of the inferred shear zone, behaves similarly to what often observed at the edges of retreating subduction slabs, where the overriding plate drifts with a highly non-uniform transform motion along the lateral borders.

  16. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  17. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Deeds, Daniel A.; Kulongoski, Justin T.; Mühle, Jens; Weiss, Ray F.

    2015-02-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (Cre; ∼30 fmol kg-1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1-9 times Cre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10-980 times Cre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20-100 km) suggests that the SAFS potentially emits (0.3- 1) ×10-1 kg CF4 yr-1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 ×104km2 of granitic rock in California is estimated to release (0.019- 3.2) ×10-1 kg CF4 yr-1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial-interglacial transitions.

  18. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    NASA Astrophysics Data System (ADS)

    Zha, Yang; Webb, Spahr C.

    2016-05-01

    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  19. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The primary effort in this study during the past year has been directed along two separate lines: (1) expanding finite element models to include the entire Anatolian plate, the Aegean Sea and the Northeastern Mediterranean Sea, and (2) investigating the relationship between fault geometry and earthquake activity for the North Anatolian and similar strike-slip faults (e.g., San Andreas Fault). Both efforts are designed to provide an improved basis for interpreting the Crustal Dynamics measurements NASA has planned for this region. The initial phases of both investigations have been completed and the results are being prepared for publication. These investigations are described briefly.

  20. a case of casing deformation and fault slip for the active fault drilling

    NASA Astrophysics Data System (ADS)

    Ge, H.; Song, L.; Yuan, S.; Yang, W.

    2010-12-01

    Active fault is normally defined as a fault with displacement or seismic activity during the geologically recent period (in the last 10,000 years, USGS). Here, we refer the active fault to the fault that is under the post-seismic stress modification or recovery. Micro-seismic, fault slip would happen during the recovery of the active faults. It is possible that the drilling through this active fault, such as the Wenchuan Fault Scientific Drilling(WFSD), will be accompanied with some possible wellbore instability and casing deformation, which is noteworthy for the fault scientific drilling. This presentation gives a field case of the Wenchuan earthquake. The great Wenchuan earthquake happened on May 12, 2008. An oilfield is 400km apart from the epicenter and 260km from the main fault. Many wells were drilled or are under drilling. Some are drilled through the active fault and a few tectonic active phenomenons were observed. For instance, a drill pipe was cut off in the well which was just drilled through the fault. We concluded that this is due to the fault slip,if not, so thick wall pipe cannot be cut off. At the same time, a mass of well casings of the oilfield deformed during the great Wenchuan Earthquake. The analysis of the casing deformation characteristic, formation structure, seismicity, tectonic stress variation suggest that the casing deformation is closely related to the Wenchuan Earthquake. It is the tectonic stress variation that induces seismic activities, fault slip, salt/gypsum creep speedup, and deformation inconsistent between stratums. Additional earthquake dynamic loads were exerted on the casing and caused its deformation. Active fault scientific drilling has become an important tool to understand earthquake mechanism and physics. The casing deformation and wellbore instability is not only a consequence of the earthquake but also an indicator of stress modification and fault activity. It is noteworthy that tectonic stress variation and fault

  1. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  2. Two-layer Crustal Structure of the Contiguous United States from Joint Inversion of USArray Receiver Functions and Gravity

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.

    2015-12-01

    The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.

  3. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  4. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  5. Patterns of brittle deformation under extension on Venus

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.

    1994-01-01

    The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.

  6. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  7. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic

  8. Slip-rate Estimation of Active Fault by Luminescence Dating on Deformed River Terraces at Tsaotun, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chen, W.; Lee, C.

    2003-12-01

    This study carried out luminescence ages of the deformed terraces located at Tsaotun in central Taiwan. These terraces are considered as a result of crustal deformation caused by recent activity of the Chelungpu fault, 1999 surface rupture. Since this active fault runs through urban area, it is urgently needed to figure out its neotectonic behavior, including slip-rate and recurrence interval. Based on new ages, we also discuss the terrace correlation and its related structures. The study terraces are all strath terraces with only a few meters of veneered fluvial deposits on top. Due to the strong stream-power, nearly all the outcrops are dominated by fluvial cobbles, which is worst condition to preserve the syndepositional carbonaceous materials. Alternatively, optical stimulated luminescence (OSL) dating uses sandy quartz as the material and even has longer dating upper limit (up to several hundreds of years). Fortunately, sandy layer are found intercalated within the fluvial cobbles in studying terraces. We adopted the Single-Aliquot Regenerative (SAR) dose protocol on large aliquots of 90-150μ m quartz, which were cleaned using HCL, H2O2 and HF in the usual way. In case of incomplete bleaching during quick deposition, the OSL/TL ratio was adopted to approach the true De. Dosimetry is derived by ICP-MS and XRF analyses. For ascertainment of the initial bleaching of fluvial sediment, the modern samples collected in river bed of Wuhsi were also measured. Based on the results of modern samples, we believe that the residuals are inevitable in younger sediments, especially along the upper stream. On the contrary, the samples older than 10 kyr are little influenced due to the larger age error than the younger ones. The OSL age of the terrace samples in the hanging wall is dated ca. 13 kyr, which has been corrected for poorly-bleaching problem. Comparing to the ages collected down hole in the footwalls, we found out vertical displacements of ca. 67 and 37 m, has been

  9. Detection of crustal strains in Egypt using GPS networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, S. M.

    2003-04-01

    DETECTION OF CRUSTAL STRAINS IN EGYPT USING GPS NETWORKS S.M. Mahmoud National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt. Fax: 202 554 80 20 Email: salahm55@yahoo.com Abstract. Studies of crustal deformation in Egypt started as early as 1983 following the occurrence of Aswan earthquake in 1981. Several publications were published and presented in local and international meetings. On November 14, 1981 an earthquake with magnitude 5.6 occurred at kalabsha fault, 70-Km southwest of Aswan City. This earthquake is considered as an important event as it is located not far from the Aswan High Dam. Therefore, the first program for monitoring crustal deformation has been started in Kalabsha area during the winter of 1983 with the cooperation between the National Research Institute of Astronomy and Geophysics (NRIAG) and the Aswan &High Dam Authority. A local network of 18 terrestrial geodetic points was established at kalabsha area in 1983 in order to monitor the horizontal and vertical crustal movements along Kalabsha fault. The initial measurements were carried out in December 1984. These measurements were repeated twice a year till December 1994.An other terrestrial network were established at seiyal fault, 15 km to the north of kalabsha fault. The initial measurements of seiyal network were carried out in March 1989 and repeated twice a year till August 1992. Analysis of the terrestrial horizontal measurements from both networks for the epoch from December 1984 till December 1994 indicated significant deformations varying from 3x10-6 to 7x10-6. Since the year of 1994 till now, the geodetic observations by means of Space Techniques which known as Global Positioning System (GPS) were applied instead of the Terrestrial ones to cover some other regions of the country. Data adjustment and analysis of the reapted GPS campaigns from the different networks prevailed significant movements which helps in more understanding the geodynamics of

  10. Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Jiang, Wenliang; Zhang, Jingfa; Tian, Tian; Wang, Xin

    2012-12-01

    In this paper, Bouguer gravity data were used to invert crustal structure of the Chuan-Dian region of China. Both multi-scale wavelet analysis and density interface inversive methods were adopted. Three gravity models transverse to major blocks were constructed. Our research indicates that great differences exist in crustal structures between the Eastern Basin and the Western plate, and crustal structures of Chuan-Dian region are closely correlated with tectonic activities of the Eastern Tibetan Plateau. The Western Sichuan platform experienced strong deformation due to eastward extrusion of the Tibetan Plateau. This led to heaving of the upper crust and thickening of the lower crust. The low-density crusts of Western Blocks were deformed by many high-angle faults, and most of these faults cut through to the middle crust. Density structures of upper and middle crusts are restricted by the regional tectonic stress fields and fault zones. The lower crust was deformed by folding, inducing high- and low-density anomalies alternatively. Rocks beneath the Longmenshan sub-block and the Northwestern sub-block of Sichuan were severely broken. For strong eastward extrusion of the plateau, large areas of low-density anomaly were observed in the lower crust. Adjusted by gravity isostasy, the lower crusts of the Chuan-Dian block and the Songpan-Garze block have thickened intensely. Density structures present highly inhomogeneous manner in lateral direction throughout the Western Block. Crustal densities of the Sichuan Basin are much more homogeneous, and the whole lithosphere is denser than that of Western Block. In transitional area between the South China Block and the Chuan-Dian Block, with the decreasing of crustal density, crustal stability is also depressed. In addition, we obtained a detailed map of Moho using variable density model. The Moho topography undulates greatly beneath the Chuan-Dian region. The maximum crustal thickness difference of the Chuan-Dian region is

  11. Some contributions to the high strain rate deformation of solids and the thermally activated deformation of wood

    NASA Astrophysics Data System (ADS)

    Ferguson, W. George

    2009-08-01

    The behaviour of metals as a function of rate of loading, strain rate, and temperature is discussed in terms of previous work by the author. Strain rates range from 10-3 s-1, obtained in a standard tensile testing machine, to 102 s-1 obtained in a hydraulic piston driven machine and up to 104 s-1, very high strain rates with a Kolsky split Hopkinson bar using shear type loading. At rates less 103 s-1 the strength is a function of strain rate and temperature, is thermally activated and governed by the stress-assisted thermal activation of dislocations across short-range barriers in the crystal. At very high strain rates however the behaviour is controlled by interaction of dislocations with either phonons or electrons, giving a strength proportional to strain rate. The compressive strength of small clear samples of wood, Pinus radiata and Kahikatea, determined over the strain rate range 10-3 s-1 to 103 s-1 as a function of strain rate, temperature and moisture content shows the behaviour to again be thermally activated with the strength a function of stain rate, temperature and moisture content. A rate theory of deformation is developed where the yield behaviour of wood is assumed to result from the stress-assisted thermally activated motion of elementary fibrils over short-range barriers. The moisture is assumed to affect the bond energy between elementary fibrils and the barrier energy is taken to be a linear decreasing function of increasing moisture content and the moisture to act like a plasticiser in separating the elementary fibrils. The theory more than adequately explains the observed behaviour.

  12. The Mendocino crustal conveyor: Making and breaking the California crust

    USGS Publications Warehouse

    Furlong, K.P.; Lock, J.; Guzofski, C.; Whitlock, J.; Benz, H.

    2003-01-01

    The northward migration of the Mendocino triple junction has resulted in a fundamental modification of the crust of coastal California. As a consequence of viscous coupling between the southern edge of the Gorda slab and the base of the North American crust beneath the Coast Ranges of central and northern California, the crust of coastal California was first thickened and then thinned. This viscous coupling and ephemeral crustal thickening has produced a distinctive pattern of uplift that allows us to map the three-dimensional extent of crustal modification. This pattern of crustal deformation has combined with the strain field of the developing San Andreas fault system to produce the observed pattern of near-surface deformation. The rapid rise in heat flow south of the triple junction observed in the northern Coast Ranges is a direct consequence of development and removal of the crustal welt that migrated with the triple junction.

  13. Activity of platelet hemostasis in children with spinal deformities.

    PubMed

    Medvedev, I N; Lapshina, E V; Zavalishina, S Yu

    2010-10-01

    An increase of adhesion and aggregation functions of platelets in vivo and in vitro was detected in 5-6-year-old children with scoliosis. These disorders were caused by hyperproduction of von Willebrand's factor in the vascular wall and intensification of thromboxane production in blood platelets. Activation of thromboxane formation is the main cause of platelet hyperactivity in children with scoliosis. Correction of platelet hemostasis may include pathogenetically substantiated complex of therapeutic exercises, swimming, and massage.

  14. New GPS constraints on active deformation along the Africa-Iberia plate boundary

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Ouazar, D.; Tahayt, A.; King, R. W.; Vernant, P.; Reilinger, R. E.; McClusky, S.; Mourabit, T.; Davila, J. M.; Amraoui, N.

    2011-08-01

    We use velocities from 65 continuous stations and 31 survey-mode GPS sites as well as kinematic modeling to investigate present day deformation along the Africa-Iberia plate boundary zone in the western Mediterranean region. The GPS velocity field shows southwestward motion of the central part of the Rif Mountains in northern Morocco with respect to Africa varying between 3.5 and 4.0 mm/yr, consistent with prior published results. Stations in the southwestern part of the Betic Mountains of southern Spain move west-southwest with respect to Eurasia (˜ 2-3 mm/yr). The western component of Betics motion is consistent with partial transfer of Nubia-Eurasia plate motion into the southern Betics. The southward component of Betics motion with respect to Iberia is kinematically consistent with south to southwest motion of the Rif Mountains with respect to Africa. We use block modeling, constrained by mapped surface faults and seismicity to estimate the geometry and rates of strain accumulation on plate boundary structures. Our preferred plate boundary geometry includes one block between Iberia and Africa including the SW Betics, Alboran Sea, and central Rif. This geometry provides a good fit to the observed motions, suggesting a wide transpressive boundary in the westernmost Mediterranean, with deformation mainly accommodated by the Gloria-Azores fault system to the West and the Rif-Tell lineament to the East. Block boundaries encompass aspects of earlier interpretations suggesting three main deformation styles: (i) extension along the NE-SW trending Trans-Alboran shear zone, (ii) dextral strike-slip in the Betics corresponding to a well defined E-W seismic lineament, and (iii) right lateral strike-slip motion extending West to the Azores and right-lateral motion with compression extending East along the Algerian Tell. We interpret differential motion in the Rif-Alboran-Betic system to be driven both by surface processes related the Africa-Eurasia oblique convergence and

  15. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  16. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-07

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  17. Active range of motion outcomes after reconstruction of burned wrist and hand deformities.

    PubMed

    Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E

    2016-06-01

    This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture.

  18. Dense seismic networks as a tool to characterize active faulting in regions of slow deformation

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Arroucau, Pierre; Carrilho, Fernando; Cesca, Simone; Dias, Nuno; Matos, Catarina; Vales, Dina

    2016-04-01

    The theory of plate tectonics states that the relative motion between lithospheric plates is accommodated at plate boundaries, where earthquakes occur on long faults. However, earthquakes with a wide range of magnitudes also occur both off plate boundaries, in intra-plate settings, and along discontinuous, diffuse plate boundaries. These settings are characterized by low rates of lithospheric deformation. A fundamental limitation in the study of slowly deforming regions is the lack of high-quality observations. In these regions, earthquake catalogs have traditionally displayed diffuse seismicity patterns. The location, geometry and activity rate of faults - all basic parameters for understanding fault dynamics - are usually poorly known. The dense seismic networks deployed in the last years around the world have opened new windows in observational seismology. Although high-magnitude earthquakes are rare in regions of slow deformation, low-magnitude earthquakes are well observable on the time-scale of these deployments. In this presentation, we will show how data from dense seismic deployments can be used to characterize faulting in regions of slow deformation. In particular, we will present the case study of western Iberia, a region undergoing low-rate deformation and which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The methods that we employ include automated earthquake detection methods to lower the completeness magnitude of catalogs, earthquake relocations, focal mechanisms patterns, waveform similarity and clustering analysis.

  19. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    USGS Publications Warehouse

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  20. Deformation of the Calabrian Arc subduction complex and its relation to STEP activity at depth.

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Wortel, Rinus; Nijholt, Nicolai; Govers, Rob; Torelli, Luigi

    2015-04-01

    Propagating tear faults at the edge of subducted slabs ("Subduction transform edge propagator", STEP) are an intrinsic part of lithospheric plate dynamics. The surface expression of a STEP is generally not known yet, and is expected to vary significantly from one region to the other. We choose the Sicily -Calabria-Ionian Sea region, of which the lithosphere-upper mantle structure has the characteristics of a STEP zone, as a study area. The area has a very prominent accretionary wedge, the formation and subsequent deformation of which presumably were affected by the STEP activity at depth. In this contribution, we use seismic data on the near surface structure and deformation in combination with numerical model results to investigate the relation between deep STEP activity and near surface expression. Prominent features in the surface tectonics are the Malta escarpment (with predominantly normal faulting), the newly identified Ionian Fault and Alfeo-Etna fault system, and a distinct longitudinal division of the wedge into a western and an eastern lobe (Polonia et al., Tectonics, 2011). The two lobes are characterized by different structural style, deformation rates and basal detachment depths. Numerical model results indicate that the regional lithospheric structure, such as the orientation of the eastern passive (albeit subsequently activated) margin of Sicily relative to the Calabrian subduction zone, has a profound effect on possible fault activity along the Malta escarpment. Fault activity along the above primary fault structures may have varied in time, implying the possibility of intermittent activity. Interpreting seismicity in the context of a possible STEP, and the accompanying deformation zone at or near the surface, is not (yet) straightforward. Although direct evidence for recognizing all aspects of STEP activity is - as usual - lacking, a comparison with two well-known STEP regions, the northern part of the Tonga subduction zone and southern part of the

  1. Evidence and models for lower crustal flow beneath the Galápagos platform

    NASA Astrophysics Data System (ADS)

    Orellana-Rovirosa, Felipe; Richards, Mark

    2016-01-01

    The volcanic Galápagos Islands are constructed upon a broad platform, with their active westernmost islands marking the current position of the hotspot. Built upon young oceanic lithosphere (<15 Ma), this platform exhibits unique morphologic features including a system of stepped terraces on the southwestern escarpment with 3 km relief, contrasting with gentle slopes off the eastern platform toward the Carnegie Ridge. Considering horizontal lithostatic pressure differences associated with this relief, along with high temperatures within the young, hotspot-affected lithosphere, it is likely that lower crustal flow contributes significantly to crustal deformation within the Galápagos platform. Using a 2-D, isostatic, thin-sheet approximation for the Stokes flow equation with (Newtonian) space-time-dependent viscosity, we suggest that the bathymetric rim along the eastern platform region (where gravimetry indicates Airy isostasy) near Española Island may be the expression of a mature lower crustal flow front developed over the last ˜3 Myr; horizontal mass displacements (˜50 km) associated with this crustal flow episode may have advected mantle plume geochemical signatures toward the southeast, and in directions not necessarily parallel to the hotspot track. Also, the stepped terraces along the southwestern platform may be explained by lower crustal flow-associated backward tilting of the bathymetric surface that, although resulting in small angular changes (˜0.1°), effectively hinders the horizontal flow of lava sheets. This backward-tilting process was likely restricted to the last ˜1 Ma or less, and may be a unique event involving extrusion of lavas from within the southwestward-marching lower-crustal flow front.

  2. Continental crustal composition and lower crustal models

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1983-01-01

    The composition of the upper crust is well established as being close to that of granodiorite. The upper crustal composition is reflected in the uniform REE abundances in shales which represent an homogenization of the various REE patterns. This composition can only persist to depths of 10-15 km, for heat flow and geochemical balance reasons. The composition of the total crust is model dependent. One constraint is that it should be capable of generating the upper granodioritic (S.L.) crust by partial melting within the crust. This composition is based on the andesite model, which assumes that the total crust has grown by accretion of island arc material. A representation of the growth rate of the continental crust is shown. The composition of the lower crust, which comprises 60-80% of the continental crust, remains a major unknown factor for models of terrestrial crustal evolution. Two approaches are used to model the lower crust.

  3. Chemopreventive activity of sesquiterpene lactones (SLs) from yacon against TPA-induced Raji cells deformation.

    PubMed

    Siriwan, D; Miyawaki, C; Miyamoto, T; Naruse, T; Okazaki, K; Tamura, H

    2011-05-15

    Yacon is a medicinal plant used as a traditional medicine by the natives in South America. In Japan, it becomes popular as a health food. Sesquiterpene Lactones (SLs) from yacon leaves were investigated and the active SLs such as enhydrin, uvedalin and sonchifolin, bearing alpha-methylene-gamma-lactone and epoxides as the active functional groups, were identified by 1H-6000 MHz-NMR. Chemopreventive and cytotoxic activities were determined using different primary screening methods. In this study, all tested SLs strongly inhibited TPA-induced deformed of Raji cells. The IC50 values of yacon SLs from anti-deforming assay were 0.04-0.4 microM. Interestingly, yacon SLs showed more potential of chemo preventive activity than both curcumin and parthenolide. However, the cytotoxicity on Raji cells was observed at high concentration of yacon SLs. The degree of anti-deformation was ranked in order: enhydrin >uvedalin >sonchifolin >parthenolide >curcumin. As according to structure-activity relationship, the high activities of enhydrin, uvedalin and sonchifolin may be due to the 2-methyl-2-butenoate and its epoxide moiety.

  4. Deep Crustal Anisotropy and its Distortion Through the Seismological Lens

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.

    2011-12-01

    Seismic interpretations of crustal anisotropy often appear to be at odds with expectations based on structural geology. We provide a solution to the apparent discrepancy based on petrological data and synthetic seismograms and present results across the continental US. Seismic investigations of crustal anisotropy offer one of the best chances to observe lower crustal flow in situ, and receiver function (converted wave) studies have good horizontal and depth resolution and are less expensive than active source studies, and suffer from less tradeoff than tomographic studies. A puzzling observation in receiver function studies of the continental crust has been a prevalence of observed plunging axis anisotropy in subhorizontal layers interpreted to have accommodated a significant component of simple shear. In contrast, geological field observations and deformation experiments suggest that shear zones develop a significant boundary-parallel foliation (C-planes in S-C mylonite) after only modest amounts of strain accumulation (~gamma <3). The solution may lie in a preferential sensitivity of seismic waves. Receiver functions have ~5 times higher signal amplitudes for plunging compared to horizontal symmetry axis anisotropy. Even a small plunge (10-20 deg off horizontal) leads to a roughly twofold increase of signal amplitude compared to the horizontal symmetry axis case. For an S-C fabric with horizontal C and dipping S planes, the S fabric is well detected even for relatively small and realistic (3% - 6%) amounts of anisotropy. Horizontally aligned mica does not appear anisotropic to body waves, although it can be detected via radial anisotropy with surface waves. Amphibole alignment with a fast symmetry axis parallel to horizontal shear also produces a much weaker signal than in the plunging case. The behavior with backazimuth is also distinct. General S anisotropy and horizontal axis P anisotropy generate two pairs of relatively small amplitude peaks and troughs over

  5. Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in north-central Wyoming

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Miller, Kate C.; Erslev, Eric A.; Anderson, Megan L.; Chamberlain, Kevin R.; Sheehan, Anne F.; Yeck, William L.; Harder, Steven H.; Siddoway, Christine S.

    2016-01-01

    The crustal structure of north-central Wyoming records a history of complex lithospheric evolution from Precambrian accretion to Cretaceous-Paleogene Laramide shortening. We present two active source P wave velocity model profiles collected as part of the Bighorn Arch Seismic Experiment in 2010. Analyses of these velocity models and single-fold reflection data, together with potential field modeling of regional gravity and magnetic signals, constrain crustal structure and thickness of the Bighorn region. We image a west dipping reflection boundary and model a sharp magnetic contact east of the Bighorn Arch that together may delineate a previously undetected Precambrian suture zone. Localized patches of a high-velocity, high-density lower crustal layer (the "7.× layer") occur across the study area but are largely absent beneath the Bighorn Arch culmination. Moho topography is relatively smooth with no large-scale offsets, with depths ranging from ~50 to 37 km, and is largely decoupled from Laramide basement topography. These observations suggest that (1) the edge of the Archean Wyoming craton lies just east of the Bighorn Mountains, approximately 300 km west of previous interpretations, and (2) Laramide deformation localized in an area with thin or absent 7.× layer, due to its relatively weak lower crust, leading to detachment faulting. Our findings show that Precambrian tectonics in northern Wyoming may be more complicated than previously determined and subsequent Laramide deformation may have been critically dependent on laterally heterogeneous crustal structure that can be linked to Precambrian origins.

  6. Deep crustal imaging of thick-skinned foreland fold and thrust belts: The Rocky Mountains and the Sierras Pampeanas

    NASA Astrophysics Data System (ADS)

    Sheehan, A.; Anderson, M. L.; Alvarado, P. M.; Beck, S. L.; Erslev, E.; Gilbert, H. J.; Miller, K. C.; Ridgway, K. D.; Worthington, L. L.; Yeck, W. L.; Zandt, G.

    2013-05-01

    Foreland mountain belts consisting of basement-involved arches are major features of many modern and ancient contractional orogens. They occur most prominently during low-angle subduction (e.g., the Rocky Mountains of North America and Sierras Pampeanas of South America) and continental collision. The dissimilarity between thick-skinned, arch-dominated and more thin-skinned fold and thrust belts as well as their placement far from active tectonic boundaries prompts the following question: do these arches form due to the lithospheric rheology inherent to the zone between mobile belts and cratons, or are they driven by deeper processes such as low-angle subduction? Previous geologic studies have shown that the upper crustal geometries bounding these arches are broadly similar, however the manifestation of shortening at depth and the rheology of the lower crust and upper mantle has been uncertain due to the absence of detailed geophysical imaging. This situation is changing rapidly, as foreland arches are the target of deep seismological investigations in both North and South America. In this presentation we will compare and contrast recent results from seismological experiments in the Sierras Pampeanas of Argentina and the Bighorn Mountains in Wyoming, USA. Late Cretaceous to Early Eocene Laramide orogenesis produced the Bighorn arch, deforming a sequence of platformal sediments which can be used as stratigraphic markers in tectonic reconstructions. The Bighorn Arch Seismic Experiment (BASE) took place in 2009-10 and included a passive-source seismic experiment, a crustal-scale active-source seismic experiment, a hybrid active-passive experiment, and kinematic investigations. The Pampean flat-slab region of Argentina and Chile is considered a modern analogue for Laramide flat-slab subduction of North America. The Sierras de Cordoba is one of the largest arches comprising the Sierras Pampeanas, lacks much platformal sediment to define deformation geometries, and is

  7. Active Deformation in the Zagros-Makran Transition Zone Inferred From GPS, Tectonic and Seismological Measurements

    NASA Astrophysics Data System (ADS)

    Bayer, R.; Shabanian, E.; Regard, V.; Yaminifard, F.; Vernant, P.; Nilforoushan, F.; Abbassi, M.; Chery, J.; Tatar, M.; Doerflinger, E.; Peyret, M.; Daignières, M.; Bellier, O.; Hatzfeld, D.; Mokhtari, M.

    2002-12-01

    The present-day N-S convergence between the Arabian and the Eurasian plates is accommodated in Southern Iran along the Zagros fold and thrust belt (with a shortening of ~8 mm/yr)and by the subduction of the Oman oceanic lithosphere beneath the Makran (with a rate of 18mm/yr). The Bandar Abbas-Strait of Hormuz zone is considered as a transition between the Zagros continental collision and the Makran oceanic subduction. In this area, the strain is mainly accommodated along the NNW-SSE trending reverse right lateral Minab-Zendan-Palami faults and along the N-S trending faults of Sarduiyeh, Jiroft and Sabzevaran. We used GPS network measurements (carried out in 2000 and 2002) to better understand how the deformation is distributed between between the Zagros continental collision and the Makran oceanic subduction. The analysis of the velocities (together with the measurements of the global network of Iran) leads to the following conclusions : - The rate of shortening in the Eastern Zagros is < 8mm/yr. It is < 5 mm/yr between the coast and the Main Zagros Thrust. - The horizontal residual velocities of the coastal sites in Zagros relative to Musandan are < 3mm/yr, evidencing for a small deformation in the Persian Gulf. - Across the Minab-Zendan-Palami faults system GPS measurements are consistent with a N-S trending reverse right lateral motion at rate of ~ 10 mm/yr. - West of the Lut block at the latitude of Khanuj, the N-S trending Sarduiyeh-Jiroft-Sabzevaran fault system is characterized by a 2 mm/yr right strike slip motion. Local seismicity is located at an unusual depth down to 35 km. Little is associated with the Minab-Zendan-Palami faults strike slip faults. They rather suggest that they are associated with a complex transition between the Zagros collision and the Makran subduction. Times delays also suggest a large heterogeneity in the crust across the fault system. These measurements support the model that the convergence from the collision to the subduction is

  8. Bedrock temperature as a potential method for monitoring change in crustal stress: Theory, in situ measurement, and a case history

    NASA Astrophysics Data System (ADS)

    Chen, Shunyun; Liu, Peixun; Liu, Liqiang; Ma, Jin

    2016-06-01

    Experimental studies have confirmed that temperature is notably affected by rock deformation; therefore, change in crustal stress should be indicated by measurable changes in bedrock temperature. In this work, we investigated the possibility that the bedrock temperature might be used to explore the state of crustal stress. In situ measurement of bedrock temperature at three stations from 2011 to 2013 was used as the basis for the theoretical analysis of this approach. We began with theoretical analyses of temperature response to change in crustal stress, and of the effect of heat conduction. This allowed distinction between temperature changes produced by crustal stress (stress temperature) from temperature changes caused by conduction from the land surface (conduction temperature). Stress temperature has two properties (synchronous response and a high-frequency feature) that allow it to be distinguished from conduction temperature. The in situ measurements confirmed that apparently synchronous changes in the stress temperature of the bedrock occur and that there exist obvious short-term components of the in situ bedrock temperature, which agrees with theory. On 20 April 2013, an earthquake occurred 95 km away from the stations, fortuitously providing a case study by which to verify our method for obtaining the state of crustal stress using temperature. The results indicated that the level of local or regional seismic activity, representing the level of stress adjustment, largely accords with the stress temperature. This means that the bedrock temperature is a tool that might be applied to understand the state of stress during seismogenic tectonics. Therefore, it is possible to record changes in the state of crustal stress in a typical tectonic position by long-term observation of bedrock temperature. Hereby, the measurement of bedrock temperature has become a new tool for gaining insight into changes in the status of shallow crustal stress.

  9. Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: Interseismic megathrust coupling

    NASA Astrophysics Data System (ADS)

    Feng, Lujia; Newman, Andrew V.; Protti, Marino; GonzáLez, VíCtor; Jiang, Yan; Dixon, Timothy H.

    2012-06-01

    We use campaign and continuous GPS measurements at 49 sites between 1996 and 2010 to describe the long-term active deformation in and near the Nicoya Peninsula, northwestern Costa Rica. The observed deformation reveals partial partitioning of the Cocos-Caribbean oblique convergence into trench-parallel forearc sliver motion and less oblique thrusting on the subduction interface. The northern Costa Rican forearc translates northwestward as a whole ridge block at 11 ± 1 mm/yr relative to the stable Caribbean. The transition from the forearc to the stable Caribbean occurs in a narrow deforming zone of ˜16 km wide. Subduction thrust earthquakes take 2/3 of the trench-parallel component of the plate convergence; however, surface deformation caused by interseismic megathrust coupling is primarily trench-normal. Two fully coupled patches, one located offshore Nicoya centered at ˜15 km depth and the other located inland centered at ˜24 km depth, are identified in Nicoya with the potential to generate an Mw 7.8 1950-type earthquake. Another fully coupled patch SE of Nicoya coincides with the rupture region of the 1990 Nicoya Gulf earthquake. Interface microearthquakes, non-volcanic tremor, low-frequency earthquakes, and transient slow-slip events generally occur in the intermediately to weakly coupled regions.

  10. The Interpretation of Crustal Dynamics Data in Terms of Plate Interactions and Active Tectonics of the Anatolian Plate and Surrounding Regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert E.

    1990-01-01

    During the past 6 months, efforts were concentrated on the following areas: (1) Continued development of realistic, finite element modeling of plate interactions and associated deformation in the Eastern Mediterranean; (2) Neotectonic field investigations of seismic faulting along the active fault systems in Turkey with emphasis on identifying seismic gaps along the North Anatolian fault; and (3) Establishment of a GPS regional monitoring network in the zone of ongoing continental collision in eastern Turkey (supported in part by NSF).

  11. Evolution of crustal thickening in the central Andes, Bolivia

    NASA Astrophysics Data System (ADS)

    Eichelberger, Nathan; McQuarrie, Nadine; Ryan, Jamie; Karimi, Bobak; Beck, Susan; Zandt, George

    2015-09-01

    Paleoelevation histories from the central Andes in Bolivia have suggested that the geodynamic evolution of the region has been punctuated by periods of large-scale lithospheric removal that drive rapid increases in elevation at the surface. Here, we evaluate viable times and locations of material loss using a map-view reconstruction of the Bolivian orocline displacement field to forward-model predicted crustal thicknesses. Two volumetric models are presented that test assumed pre-deformation crustal thicknesses of 35 km and 40 km. Both models predict that modern crustal thicknesses were achieved first in the northern Eastern Cordillera (EC) by 30-20 Ma but remained below modern in the southern EC until ≤10 Ma. The Altiplano is predicted to have achieved modern crustal thickness after 10 Ma but only with a pre-deformation thickness of 50 km, including 10 km of sediment. At the final stage, the models predict 8-25% regional excess crustal volume compared to modern thickness, largely concentrated in the northern EC. The excess predicted volume from 20 to 0 Ma can be accounted for by: 1) crustal flow to the WC and/or Peru, 2) localized removal of the lower crust, or 3) a combination of the two. Only models with initial crustal thicknesses >35 km predict excess volumes sufficient to account for potential crustal thickness deficits in Peru and allow for lower crustal loss. However, both initial thickness models predict that modern crustal thicknesses were achieved over the same time periods that paleoelevation histories indicate the development of modern elevations. Localized removal of lower crust is only necessary in the northern EC where crustal thickness exceeds modern by 20 Ma, prior to paleoelevation estimates of modern elevations by 15 Ma. In the Altiplano, crustal thicknesses match modern values at 10 Ma and can only exceed modern values by 5 Ma, post-dating when modern elevations were thought to have been established. Collectively, these models predict that

  12. Monitoring Hippocampus Electrical Activity In Vitro on an Elastically Deformable Microelectrode Array

    PubMed Central

    Yu, Zhe; Graudejus, Oliver; Tsay, Candice; Lacour, Stéphanie P.; Wagner, Sigurd

    2009-01-01

    Abstract Interfacing electronics and recording electrophysiological activity in mechanically active biological tissues is challenging. This challenge extends to recording neural function of brain tissue in the setting of traumatic brain injury (TBI), which is caused by rapid (within hundreds of milliseconds) and large (greater than 5% strain) brain deformation. Interfacing electrodes must be biocompatible on multiple levels and should deform with the tissue to prevent additional mechanical damage. We describe an elastically stretchable microelectrode array (SMEA) that is capable of undergoing large, biaxial, 2-D stretch while remaining functional. The new SMEA consists of elastically stretchable thin metal films on a silicone membrane. It can stimulate and detect electrical activity from cultured brain tissue (hippocampal slices), before, during, and after large biaxial deformation. We have incorporated the SMEA into a well-characterized in vitro TBI research platform, which reproduces the biomechanics of TBI by stretching the SMEA and the adherent brain slice culture. Mechanical injury parameters, such as strain and strain rate, can be precisely controlled to generate specific levels of damage. The SMEA allowed for quantification of neuronal function both before and after injury, without breaking culture sterility or repositioning the electrodes for the injury event, thus enabling serial and long-term measurements. We report tests of the SMEA and an initial application to study the effect of mechanical stimuli on neuron function, which could be employed as a high-content, drug-screening platform for TBI. PMID:19594385

  13. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  14. New Insights into the Morphology of the Galapagos Platform from Lower Crustal Flow Models

    NASA Astrophysics Data System (ADS)

    Orellana Rovirosa, F.; Richards, M. A.

    2014-12-01

    The volcanically-active Galapagos Islands are constructed upon a broad platform, with the westernmost islands being the most active, marking the present-day position of the Galapagos hotspot (mantle plume). This volcanic platform overlies relatively young oceanic lithosphere (<15 Myr) and exhibits unique morphologic features along its boundaries. The most spectacular of these features is a system of stepped terraces on the southwestern escarpment, with very large vertical relief (>3 km), and contrasting with relatively gentle slopes off the eastern platform edge toward the Carnegie ridge. Considering the horizontal lithostatic pressure differences associated with this bathymetric relief, along with the high temperatures within this young, hotspot-affected oceanic lithosphere and crust; it is likely that lower crustal flow contributes significantly, perhaps even dominantly, to lithospheric and crustal deformation within the Galapagos Platform. Using 2D numerical models that invoke a thin-sheet approximation for the Stokes' equation for a Newtonian fluid with space- and time-dependent viscosity, and assuming isostatic conditions, we show that: (1) the pronounced bathymetric rim along the Eastern platform region (where gravimetric studies indicate Airy isostasy) near Española Island may be the expression of a mature stage of a lower crustal flow front evolving asymptotically during the last ~3 Myr; (2) the spectacular system of stepped terraces along the southwestern edge of the platform may be explained by lower crustal flow-associated backward tilting of the bathymetric surface that, even with small amounts of angular change (~0.1 deg) and potentially occurring in non-isostatic regimes, effectively hinders the horizontal flow of lava. This process of backward-tilting may have been largely restricted to the last ~1 Myr of platform growth, and hence may be a unique event that may involve horizontal extrusion of large lava sheets from within the southwestward

  15. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  16. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  17. Deformation at the frictional-viscous transition: Evidence for cycles of fluid-assisted embrittlement and ductile deformation in the granitoid crust

    NASA Astrophysics Data System (ADS)

    Wehrens, Philip; Berger, Alfons; Peters, Max; Spillmann, Thomas; Herwegh, Marco

    2016-12-01

    Mid-crustal deformation is classically characterized by the transition from ductile to brittle deformation defining the frictional-to-viscous transition (FVT). Here we investigate an exhumed continental mid-crustal basement section in order to envisage the relationship between ductile and brittle deformation at the FVT. Our detailed study from km- to micro-scale shows that, under greenschist metamorphic conditions, deformation is accommodated by a dense network of highly-localized ductile shear zones. In the investigated case it is not quartz which defines the overall ductile deformation behavior but the viscous granular deformation in shear zones with an ultrafine-grained polymineralic matrix consisting of quartz, feldspar, sheet silicates and epidote. During viscous granular flow mass transfer processes under the presence of fluids promote a chemo-mechanical mixing, resulting in grain size reduction and reaction softening. Coeval with this ductile deformation, fluid-assisted embrittlement occurs, as indicated by biotite-coated fractures, cataclasites and injection of non-cohesive polymineralic gouge material into secondary fractures inside the host rock. The embrittlement during predominant ductile deformation occurs in cycles, i.e. prolonged periods of slow viscous granular flow are interrupted by rapid brittle deformation. We interpret this fluid-assisted cyclic embrittlement evidenced by injection of the fluidized material into off-fault fractures as an alternative equivalent to pseudotachylites and as a microstructural indicator for paleo-seismic activity. With exhumation and associated cooling, localized deformation persists in the ultrafine-grained polymineralic shear zones but progressively transitions to cataclastic flow and finally to pressure-dependent frictional flow; always showing cycles of slow interseismic flow and fast seismic injection events. Overall, in the granitic crust of the Aar-massif, brittle and ductile deformation coexist up to

  18. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  19. Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B.; Schwab, F.; Ghigo, F.; Dicker, S.

    2009-01-01

    The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high-frequency observations since Fall 2006, yielding a consistent gain curve that is flat with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka-band during

  20. Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B. S.; Schwab, F. R.; Ghigo, F. D.; Dicker, S. R.

    2009-01-01

    The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high frequency observations since Fall 2006, yielding a consistent gain curve that is constant with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka

  1. Crustal signatures of the tectonic development of the North American midcontinent

    NASA Astrophysics Data System (ADS)

    McGlannan, Austin J.; Gilbert, Hersh

    2016-01-01

    The stable eastern portion of the North American continent offers an excellent environment to study the tectonic development of intra-continental structures. The midcontinent of North America formed by the accretion of Proterozoic terranes, and has since experienced episodes of deformation during the subsidence of the Illinois Basin and uplift of the Ozark Plateau. Rifting also initiated in eastern North America, but extension did not continue and arms of failed rifts extend across the region. The New Madrid Seismic Zone, situated within a portion of the failed Reelfoot Rift, represents an active zone of intraplate seismicity. Analyzing the structure of the crust and upper mantle within the midcontinent will therefore provide insight into the factors that lead to intraplate deformation. Using data from over 180 Transportable Array seismic stations, we calculate receiver functions to investigate the crust and upper mantle of the midcontinent. At close to 40 km thick, the crust of the New Madrid Seismic Zone is thinner than in the surrounding areas outside of the Reelfoot Rift and Rough Creek Graben. The Illinois Basin cannot be characterized by a single crustal structure, as crust near 50 km thick in the central portion of the basin thins to between 40 and 45 km thick towards the northern and southern portions of the basin. Discontinuities within the crust and upper mantle are prominent in and around the New Madrid Seismic Zone and mark locations of crustal modification and underplating. Comparing changes in crustal structure to the distribution of Bouguer gravity anomalies, the presence of positive gravity anomalies suggests that higher density crust plays a role in maintaining low surface elevations within the Reelfoot Rift. Conversely, a negative gravity anomaly in an area of thinner crust within the Ozark Plateau supports the need for low-density crustal material to influence the uplift of the plateau.

  2. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  3. Cavitation bands control porosity and fluid flow in lower crustal shear zones

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger

    2014-05-01

    Shear zones channelize fluid flow in the Earth's crust. A number of mechanisms were suggested to control fluid migration pathways in upper- and midcrustal shear zones, amongst them creep cavitation, which is well-known from deforming metals and ceramics. Deep crustal fluid migration is hardly constrained by any observations, and so it remains unclear how fluids are channelized and distributed in an actively deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction and development of porosity in a mangerite ultramylonite from Lofoten, northern Norway. The synkinematic mineral assemblage consists of plagioclase, K-feldspar, hornblende, quartz, calcite and biotite, and yields P, T conditions of deformation of 700-730° C, 0.65-0.8 GPa. Mass-balance calculations indicate (1) a volume increase of 2.3%, and (2) fluid infiltration during the protolith-ultramylonite transformation. Microstructural observations and EBSD analysis are consistent with diffusion creep as the dominant deformation mechanism in the ultramylonite. The microstructure shows extensive evidence of synkinematic nucleation of new phases in dilatant sites resulting from the concomitant operation of grain boundary sliding and cavitation during grain-size sensitive creep. EBSD maps show the occurrence of isolated quartz grains along C' shear bands in feldspathic layers. Quartz does not show a crystallographic preferred orientation in these bands, suggesting that it precipitated in cavities. The occurrence of such quartz bands is consistent with the coalescence of individual pores originally formed at dilatant sites resulting from the operation of grain boundary sliding. Opening of pores implies local dilatancy. Positive volume change accompanied by fluid infiltration, as inferred from the mass balance calculations, is consistent with the precipitation of new phases in pores from intragranular fluids. We used synchrotron X-ray microtomography to analyse

  4. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  5. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  6. Active deformation in the northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Ortiz, Gustavo; Alvarado, Patricia; Fosdick, Julie C.; Perucca, Laura; Saez, Mauro; Venerdini, Agostina

    2015-12-01

    The Western Sierras Pampeanas region in the San Juan Province is characterized by thick-skinned deformation with approximately N-S trending ranges of average heights of 2500 m and a high frequency occurrence of seismic activity. Its location to the east of the mainly thin-skinned tectonics of the Argentine Precordillera fold-and-thrust belt suggests that at 30°S, deformation is concentrated in a narrow zone involving these two morphostructural units. In this paper, we present new apatite (U-Th)/He results (AHe) across the northern part of the Sierra de Valle Fértil (around 30°S) and analyze them in a framework of thermochronologic available datasets. We found Pliocene AHe results for Carboniferous and Triassic strata in the northern Sierra de Valle Fértil consistent with the hypothesis of recent cooling and inferred erosional denudation concentrated along the northern end of this mountain range. Our analysis shows that this northern region may have evolved under different conditions than the central part of the Sierra de Valle Fértil. Previous studies have observed AHe ages consistent with Permian through Cretaceous cooling, indicating the middle part of the Sierra de Valle Fértil remained near surface before the Pampean slab subduction flattening process. Those studies also obtained ˜5 My cooling ages in the southern part of the Sierra de Valle Fértil, which are similar to our results in the northern end of the range. Taken together, these results suggest a pattern of young deformation in the northern and southern low elevation ends of the Sierra de Valle Fértil consistent with regions of high seismic activity, and Quaternary active faulting along the western-bounding thrust fault of the Sierra de Valle Fértil.

  7. PS-InSAR measurements at the most active volcanoes in Iceland: role of the GEO supersite initiative in deformation monitoring at Bárðarbunga, Askja, Hekla, Katla and Eyjafjallajökull volcanoes

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Drouin, Vincent; Sigmundsson, Freysteinn; Spaans, Karsten; Hooper, Andrew; Ófeigsson, Benedikt; Árnadóttir, Þóra; Hreinsdóttir, Sigrún; Michalczewska, Karolina; Hjaltadóttir, Sigurlaug; María Friðriksdóttir, Hildur; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur; Vogfjörd, Kristín; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Geirsson, Halldór; Sturkell, Erik

    2015-04-01

    deformation studies utilising data spanning this eruption, have provided insight into the shallow plumbing system, which may explain the large reduction in eruption repose interval following the 1970 eruption. InSAR and GPS observations at Katla volcano prior to 2010 suggest no magma induced deformation. However, deformation associated with a small flood at Mýrdalsjökull in July 2011, followed by an increase in micro-seismic earthquakes, could be interpreted in relation to magma movements. Post-eruption deformation observations reveal inflation at Eyjafjallajökull possibly related to the influx of new melt or readjustment of crustal stresses following the 2010 eruption. Continued deflation at Askja caldera since 1983 may have led to crustal weakening and the triggering of a mega rockslide and subsequent tsunami occurring on the 21 July 2014. Interferograms spanning the recent unrest and eruption within the Bárðarbunga volcanic system display both pre-eruptive and co-eruptive deformation associated with the initial dyke emplacement and ongoing magma withdrawal from beneath the Bárðarbunga central volcano. Continued high-resolution geodetic observations at these volcanoes are essential for assessing changes in their behaviour and the associated hazards. Rapid analysis of interferograms combined with GPS and earthquake seismicity measurements assists in tracking the evolution of magmatic activity during volcanic unrest/eruption, and may facilitate the assessment of associated hazards.

  8. Crustal strength anisotropy influences landscape form and longevity

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.

    2013-12-01

    Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel

  9. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  10. 10Be surface exposure dating reveals strong active deformation in the central Andean backarc interior

    NASA Astrophysics Data System (ADS)

    García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor

    2016-04-01

    Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical

  11. Deep structure beneath Lake Ontario: crustal-scale Greeneville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  12. Investigation of the Deformation Activation Volume of an Ultrafinegrained Ti50Ni50 Alloy

    NASA Astrophysics Data System (ADS)

    Gunderov, D. V.; Churakova, A. A.; Lukianov, A. V.; Prokofiev, E. A.; Prokoshkin, S. D.; Kreizberg, A. Yu.; Raab, G. I.; Sabirov, I. N.

    2015-10-01

    The mechanical properties, strain rate sensitivity (m) and deformation activation volume (ΔV) are investigated at the experimental temperatures from 20 to 400°C in a Ti50Ni50 alloy in a coarse-grained (CG) state with the austenite grain size D = 200 μm and in an ultrafine-grained (UFG) state with D = 700 μm following an ECAP treatment. It is observed that this treatment improves the yield strength of the alloy compared to its CG-state. The strain rate sensitivity, m, is found to be by a factor of 1.5-2 higher than that of CG-specimens; it increases with the temperature in both states of the material. As the temperature of the material in tension increases up to Т = 150-250°C, parameter ΔV increases to its maximum and with a further growth of the experimental temperature to 400°C, parameter ΔV decreases. The deformation activation volume of the alloy in the UFG-state is by a factor of 2-4 larger than that in the CG-state for the same experimental temperatures.

  13. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  14. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  15. Evaluation of the deformation parameters of the northern part of Eg

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Monem S.; Radwan, Ali M.; Sharf, Mohamed; Hamimi, Zakaria; Hegazy, Esraa E.; Abou Aly, Nadia; Gomaa, Mahmoud

    2016-06-01

    The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS) will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults

  16. Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal

    NASA Astrophysics Data System (ADS)

    Homer, Eric R.; Rodney, David; Schuh, Christopher A.

    2010-02-01

    Shear transformation zone (STZ) dynamics simulations, which are based on the kinetic Monte Carlo algorithm, are used to model the mechanical response of amorphous metals and provide insight into the collective aspects of the microscopic events underlying deformation. The present analysis details the activated states of STZs in such a model, as well as the statistics of their activation and how these are affected by imposed conditions of stress and temperature. The analysis sheds light on the spatial and temporal correlations between the individual STZ activations that lead to different macroscopic modes of deformation. Three basic STZ correlation behaviors are observed: uncorrelated activity, nearest-neighbor correlation, and self-reactivating STZs. These three behaviors correspond well with the macroscopic deformation modes of homogeneous flow, inhomogeneous deformation, and elastic behavior, respectively. The effect of pre-existing stresses in the simulation cell is also studied and found to have a homogenizing effect on STZ correlations, suppressing the tendency for localization.

  17. USArray receiver-function imaging of crustal lithology and temperature

    NASA Astrophysics Data System (ADS)

    ma, X.

    2013-12-01

    three layer crust with 10% quartz content yields significant differences from a two-layer model, including 'splitting' of the converted amplitude peak arrivals, that are intriguingly similar to the behavior of observed receiver functions at some sites. In this presentation we will examine evidence for the α- to β-quartz phase transition in receiver functions and its implications. One significant implication would be the potential to estimate geothermal variations in the continental crust from receiver function modeling. A second implication would be the identification of quartz as a significant constituent of the lower crust. Lowry and Pérez-Gussinyé (2011) observed a strong correlation between low bulk-crustal vP/vS (indicating abundant quartz), steep geotherms and active deformation, and subsequent work establishes that quartz is also abundant in ancient orogens. Confirming significant quartz abundance in the lower crust would bolster their hypothesis that the abundance of crustal quartz may control continental deformation via a feedback between lower crustal rheology, advective heating and wetting of the lithosphere.

  18. On the energy conservation during the active deformation in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhong, Zheng

    2015-04-01

    In this paper, we examined the energy conservation for the current schemes of applying active deformation in molecular dynamics (MD) simulations. Specifically, two methods are examined. One is scaling the dimension of the simulation box and the atom positions via an affine transformation, suitable for the periodic system. The other is moving the rigid walls that interact with the atoms in the system, suitable for the non-periodic system. Based on the calculation of the external work and the internal energy change, we present that the atom velocities also need to be updated in the first deformation method; otherwise the energy conservation cannot be satisfied. The classic updating scheme is examined, in which any atom crossing the periodic boundary experiences a velocity delta that is equal to the velocity difference between the opposite boundaries. In addition, a new scheme which scales the velocities of all the atoms according to the strain increment is proposed, which is more efficient and realistic than the classic scheme. It is also demonstrated that the Virial stress instead of its interaction part is the correct stress definition that corresponds to Cauchy stress in the continuum mechanics.

  19. Crustal structure and extension mode in the northwestern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George

    2016-06-01

    Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

  20. Venezuela Basin crustal structure

    NASA Astrophysics Data System (ADS)

    Diebold, J. B.; Stoffa, P. L.; Buhl, P.; Truchan, M.

    1981-09-01

    Velocity-depth profiles derived from six two-ship expanding spread experiments, in combination with other geophysical data, define the characteristics of two distinct types of Venezuela Basin crust and the boundary between them. Each two-ship common midpoint reflection/refraction profile is automatically transformed into the τ-p plane, `picked' and interpreted to provide V(Z) functions with appropriate confidence bounds. The results, together with gravity, magnetic, and near-vertical incidence reflection data, reveal a 50,000 km2 triangle of Venezuela Basin crust which resembles normal oceanic crust in a magnetic quiet zone. North and west of this triangle lies the previously defined, thick `Caribbean' crust, having two distinct layers above the M discontinuity. Acoustic basement there appears unusually smooth due to extensive basaltic sills and flows which were cored at Deep Sea Drilling Project sites 146/149(sills), and 150 (flows); also, depths to mantle are greater than normal. Interpretations of near-vertical and wide-angle reflection data show that the extra crustal thickness is due not only to the emplacement of the flows but also to the crust below being somewhat thicker than normal. The boundary between the two crustal areas has a NE-SW trend which parallels the dominant structural and magnetic lineations.This boundary coincides in position, though not in trend, with the previously defined `central Venezuela Basin fault zone'. Further study is required to determine whether this boundary is of tectonic origin or if it represents a change in style of crustal production.

  1. Quaternary grabens in southernmost Illinois: deformation near an active intraplate seismic zone

    NASA Astrophysics Data System (ADS)

    Nelson, W. John; Denny, F. Brett; Follmer, Leon R.; Masters, John M.

    1999-05-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  2. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  3. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  4. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  5. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  6. Local Effects Induced by Crustal Seismogenic Zone of Banat, Romania

    NASA Astrophysics Data System (ADS)

    Florin Balan, Stefan; Apostol, Bogdan Felix; Ortanza Cioflan, Carmen; Malita, Zina

    2013-04-01

    The aim of this study is to evaluate the seismic effects induced by the crustal earthquakes in the local structure of the Banat area. The investigated area belongs to the Eastern part of the Pannonia Depression, with geographical limits between 450N-460N latitude and 200E-220E longitude, and its geological, tectonic and geophysical particularities are presented. The area contains a complex system of faults crossing each other perpendicularly. The seismicity of the region is studied, along with a history of the seismic activity starting with the strong earthquakes of 1879 up to 2012. About 300 events were reported in the area, four of them with Mw ≥ 5.0. Macroseismic intensities observed during this period are about VII MSK for 24 events and VII-VIII for 9 other events. Time distribution indicates a higher activity in the last two decades, possible because of the much accurate seismic network. The parametric catalogue of Banat shows superficial depths (10-15 km) for hypocenters and a great variety of focal mechanism solutions. These local and crustal events influence seismic hazard of the region, being the only earthquakes that affect the Timisoara city area, the most important town situated in the studied zone. Several seismic scenarios are defined in order to study the seismic hazard for the city of Timisoara. The chosen scenario in this paper is based on the seismic sequence of July-December 1991. Local seismic effects in Timisoara area are discussed in terms of accelerations and response spectra at the surface, seismic response of the local structure is computed on the basis of synthetic processing for available records (the 2.12.1991 earthquake, Mw=5.5). Nonlinear effects induced by significant deformations need a certain method - linear equivalent - for a multi-stratified zone as we considered for the Banat superficial area. Therefore important nonlinear variations of shear modulus and damping function with state of strain, as a seismic event occurs, are

  7. Calculation of the Slip System Activity in Deformed Zinc Single Crystals Using Digital 3-D Image Correlation Data

    SciTech Connect

    Florando, J; Rhee, M; Arsenlis, A; LeBlanc, M; Lassila, D

    2006-02-21

    A 3-D image correlation system, which measures the full-field displacements in 3 dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, the slip system activity for the two crystals has been calculated. The results of the calculation show that for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal however, shows appreciable deformation on slip systems other than the primary. An analysis has been conducted which confirms the experimental observation that these other slip system deform in such a manner that the net result is slip which is approximately one third the magnitude and directly orthogonal to the primary system.

  8. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  9. Crustal and Lithospheric Structure at Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Ritzer, J. A.; Hauck, S. A.

    2005-12-01

    Isidis Planitia is the site of a large free air gravity anomaly consistent with modification and sedimentary or magmatic filling of an impact basin. Mars Global Surveyor gravity and topography data of the Isidis basin on Mars are analyzed to elucidate the crustal and lithospheric structure near the dichotomy boundary in the Eastern hemisphere. Global gravity and topography datasets are inverted using an extension of Banerdt's [1986] model for deformation of a thin elastic shell and a nominal assumption that Isidis was isostatically compensated prior to modification by infilling. Using this model we attempt to constrain potential variations in (and trade-offs among) local crustal thickness, density and thickness of basin fill material, and lithospheric deformation. The permissible parameter space is limited by assuming that the local crustal thickness of the basin cannot be less than zero at the time of infilling. Our results suggest that the density of the fill inside Isidis must be more than 2500 kg/m3 and higher densities are probable. Recent work of Wieczorek and Zuber [2004] indicates that the most likely average crustal thickness of Mars is between 38 and 62 km. On the basis of this range of values for crustal thickness, we infer that the average density of the fill is more than 2900 kg/m3. A high fill density suggests that the material inside the basin is predominantly of igneous rather than sedimentary origin. Under the assumption of an average crustal density of 2900 kg/m3 the inferred thickness of the fill layer is at least 5 km, and could be significantly larger depending upon the degree of compensation of the basin before it was loaded by fill material. A comparison of the faulting observed at Nili Fossae to the predicted zone of extensional strain northwest of Isidis may further constrain the thickness of the elastic lithosphere beneath the basin at the time of loading.

  10. Along-Strike Variations in Crustal Seismicity in the Central Andes and Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Metcalf, K.; Pearson, D. M.; Kapp, P. A.; McGroder, M.; Kendall, J. J.

    2011-12-01

    For the central Andes, we compiled relocated crustal earthquakes (magnitude ≥ 4.5) from the EHB Bulletin and Nipress et al. [2007] and focal mechanisms from the Global CMT catalog and published literature [Alvarado et al., 2005]. These data were plotted in map, cross section, and 3D views in the context of local tomography [Koulakov et al., 2006] and lithospheric boundaries [Tassara et al., in prep]. The results imply major along-strike variations in the mechanisms of crustal deformation. At the latitude of the Altiplano, there is scarce forearc seismicity. The thin-skinned Bolivian retroarc thrust belt shows no seismic events (magnitude ≥ 4.5), suggesting that it is deforming aseismically or locked. In contrast, at the latitude of the Puna to the south (20-25°S), crustal seismicity is more prevalent in both the forearc and retroarc. Within this region, active deformation in the Coastal Cordillera near Antofagasta is occurring along steeply east-dipping normal faults at 15-41 km depth; this is the only part of the central Andean forearc that displays prominent extension. Outboard of this, thrust events at ~15 km depth in the forearc wedge display gently dipping nodal planes, and may be signatures of underplating crust that was tectonically eroded at the trench. Underplating is a likely process by which this region of the forearc has undergone ~1 km of surface uplift during the Neogene. Seismicity with thrust or reverse and oblique focal mechanisms in the retroarc wedge is localized beneath the frontal part of the thick-skinned Eastern Cordilleran thrust belt and the Santa Barbara ranges. Seismicity along discrete, east- and west-dipping planes occurs to near Moho depths (~50 km). While retroarc crustal seismicity continues to the south toward the Juan Fernandez flat slab, there is a concentration of seismic events in the retroarc at the latitude (22-23°S) where there is prominent normal faulting in the forearc. We interpret the compiled data to suggest that

  11. Colorado Plateau Uplift Through Deep Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Butcher, L. A.; Mahan, K. H.; Jones, C. H.; Farmer, G.

    2013-12-01

    The conventional view of plate tectonics restricts deformation to plate boundaries and does not account for regionally elevated topography in continental interiors. Thermal, mechanical or chemical alteration of ancient continental lithosphere is a mechanism sometimes invoked to explain intracratonic uplift in the western U.S. although the timing, extent and effects of this modification are poorly understood. Here we present new petrological and in situ geochronological data for a hydrated deep crustal xenolith from the Colorado Plateau and investigate the effects of deep crustal hydration on topography. Two distinct mineral assemblages recorded in a garnet biotite schist xenolith from the Navajo Volcanic Field, Four Corners region document hydration subsequent to peak metamorphism in the deep crust whereby the primary metamorphic assemblage (Gt + Bt + Ms + Pl + Kfs + Qtz) is variably replaced by a lower-density, hydrated assemblage (Ab + Ph + Cc + Rt). Results from forward petrological modeling constrain hydration at ≥ 20 km (0.65 GPa, 450 °C) prior to exhumation in the ˜20 Ma volcanic host. In situ Th/Pb dating of secondary monazite grains spatially associated with fluid-related plagioclase and allanite breakdown reveals a significant majority of Late Cretaceous dates from 91 to 58 Ma. These dates are interpreted to reflect a finite period of deep crustal hydration, possibly by fluids sourced from a shallowly subducting Farallon slab. Xenolith data additionally supports crustal hydration as a mechanism for producing regionally elevated topography. Fluid-related reactions in the deep crust may lead to a net density decrease as low-density hydrous phases (e.g. Ms + Amp + Cc) replace high-density, anhydrous minerals (e.g. Gt + Fsp + Opx + Cpx) abundant in high-pressure, high-temperature assemblages preserved in Proterozoic North American lithosphere. If these reactions are sufficiently pervasive and widespread, reductions in lower crustal density would provide a

  12. Crustal Magnetic Field Anomalies and Global Tectonics

    NASA Astrophysics Data System (ADS)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  13. The Front of the Aar Massif: A Crustal-Scale Ramp Anticline?

    NASA Astrophysics Data System (ADS)

    Herwegh, Marco; Mock, Samuel; Wehrens, Philip; Baumberger, Roland; Berger, Alfons; Wangenheim, Cornelia; Glotzbach, Christoph; Kissling, Edi

    2015-04-01

    passively deforms the sedimentary cover rocks into an embryonic recumbent fold-type structure of several kilometers size. In this sense, the frontal part of the Aar massif represents a thick-skinned ramp anticline structure formed by out of sequence thrusting during a very late stage of Alpine orogeny. The latter point is corroborated by the offset of zircon fission track ages, which yield about 12 Ma suggesting latest activity along the crustal ramp surely later than that time under preferentially brittle to semi-brittle deformation conditions (< 220°C).

  14. Antarctic VLNDEF Network for Regional Deformation Control in Absolute Reference Frame: Problems and Possible Solution.

    NASA Astrophysics Data System (ADS)

    Capra, A.; Gandolfi, S.; Mancini, F.; Negusini, M.; Vittuari, L.

    2004-05-01

    VLNDEF (Victoria Land Network for DEFormationn control) Geodetic Program addresses the crustal deformation control of the Northern Victoria Land (Antarctica) by means of geodetic GPS measurements. The project is within the activity of GIANT (Geodetic Infrastructure of Antarctica) SCAR Program and was established within the actions of ANTEC (ANTarctic NeoTECtonics) Group of Specialists. During 1999-2000 and 2000-2001 Italian expeditions a network of 27 stations was established and completely surveyed over an area extending from the southernmost points at 70 degrees latitude south to the Oates Coast region at 76°S, corresponding to a wideness of 700 km along the south-north and 300 km in the west to east directions. The average distance between stations is about of 70-80 km. During the field activities in the 2002-03 expedition the whole network was surveyed. During those expeditions long time sessions of connection between VLNDEF and TAMDEF networks performed. TAMDEF is a USA NSF program for crustal deformation control on southern Victoria Land. The dataset has been processed using different package such as Bernese and Gipsy in order to compare solutions and fix the better approach for the transition between reference frame. The first solution was initially constrained in the ITRF97 solution using the TNB1 GPS permanent station coordinate provided by the SCAR GPS Epoch solution. The approach to crustal deformation determination is relevant in terms of relative regional deformation, among the network stations, and the absolute deformation study, through the connection to international reference frame. Particularly important is the study of for VLNDEF in order to integrated evaluation with other continental and regional networks, as SCAR GPS Epoch and TAMDEF.Some aspects related to the data processing in the Antarctic region and the use of the ITRF2000 as reference frame will be discussed in the paper in addition to the analysis of the deformation in the area.

  15. Shear zone evolution and timing of deformation in the Neoproterozoic transpressional Dom Feliciano Belt, Uruguay

    NASA Astrophysics Data System (ADS)

    Oriolo, Sebastián; Oyhantçabal, Pedro; Wemmer, Klaus; Heidelbach, Florian; Pfänder, Jörg; Basei, Miguel A. S.; Hueck, Mathias; Hannich, Felix; Sperner, Blanka; Siegesmund, Siegfried

    2016-11-01

    New structural, microstructural and geochronological (U-Pb LA-ICP-MS, Ar/Ar, K-Ar, Rb-Sr) data were obtained for the Dom Feliciano Belt in Uruguay. The main phase of crustal shortening, metamorphism and associated exhumation is recorded between 630 and 600 Ma. This stage is related to the collision of the Río de la Plata and Congo cratons at ca. 630 Ma, which also involved crustal reworking of minor crustal blocks such as the Nico Pérez Terrane and voluminous post-collisional magmatism. Subsequent orogen-parallel sinistral shearing gave rise to further deformation up to ca. 584 Ma and resulted from the onset of the convergence of the Kalahari Craton and the Río de la Plata-Congo cratons. Sinistral shear zones underwent progressive strain localization and retrograde conditions of deformation during crustal exhumation. Dextral ENE-striking shear zones were subsequently active at ca. 550 Ma, coeval with further sinistral shearing along N- to NNE-striking shear zones. The tectonothermal evolution of the Dom Feliciano Belt thus recorded the collision of the Río de la Plata and Congo cratons, which comprised one of the first amalgamated nuclei of Gondwana, and the subsequent incorporation of the Kalahari Craton into Western Gondwana.

  16. Combined use of remote sensing and seismic observations to infer geologically recent crustal deformation, active faulting, and stress fields. [California and Pennsylvania

    NASA Technical Reports Server (NTRS)

    Alexander, S. S. (Principal Investigator)

    1982-01-01

    Characteristic traits for earthquakes associated with strike-slip motion in Central California and the Salton Sea area, as revealed in ground based studies and LANDSAT imagery, were compared. The mapped lineaments are found to be oriented in several dominant directions. One direction is the same as the trend of the San Andreas fault. The other directions differ from area to area and may reflect the stresses of earlier geologic processes. The pattern of lineament orientations is significantly LANDSAT MSS data, SEASAT synthetic aperture radar data, and magnetic field data from the South Mountain area west of Gettysburg, Pennsylvania were registered to match each other in spatial position and merged. Pattern recognition techniques were applied to the composite data set to determine its utility in recognizing different rock types and structures in vegetated terrain around South Mountain. With the use of a texture algorithm to enhance geologic features, a classification of the entire area was made. A test of the correlation between SAR tone and texture, LANDSAT tone and texture, and magnetic field data revealed no tone or texture measures linking any two of the original data sets.

  17. Terrane-controlled crustal shear wave splitting in Taiwan

    NASA Astrophysics Data System (ADS)

    Okaya, David; Christensen, Nikolas I.; Ross, Zachary E.; Wu, Francis T.

    2016-