Science.gov

Sample records for active crustal magma

  1. Energy extraction from crustal magma bodies

    SciTech Connect

    Dunn, J.C.

    1982-01-01

    An open heat exchanger system for extracting thermal energy directly from shallow crustal magma bodies is described. The concept relies on natural properties of magma to create a permeable, solidified region surrounding a borehole drilled into the magma chamber. The region is fractured, possessing large surface area, and is sealed from the overburden. Energy is extracted by circulating a fluid through the system. Thermal stress analysis shows that such a fractured region can be developed at depths up to 10 km. An open heat exchanger experiment conducted in the partial melt zone of Kilauea Iki lava lake demonstrated the validity of this concept. Effective heat transfer surface area an order of magnitude greater than the borehole area was established during a two-day test period. The open heat exchanger concept greatly extends the number of magma systems that can be economically developed to produce energy.

  2. Volatile Changes in Magma Related to Magma Evolution: Influences From Magma Mixing, Crustal Assimilation, and Crystallization

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.; Gardner, J.

    2008-12-01

    The volatile budget of magma is the cumulative product of magma mixing, crustal assimilation, and crystallization, with the concentration of each volatile resulting from how much is added by each process and whether the magma is gas saturate. In order to clarify how volatile budgets fluctuate during magma evolution, we are measuring volatile concentrations in melt inclusions trapped within individual zones of plagioclase crystals from different dacitic Plinian eruptions and a recent small-scale explosion of Popocatépetl Volcano. The plagioclase zones were analyzed for their anorthite (An) composition and their Sr isotopic (87Sr/86Sr) composition in order to investigate the evolutionary processes responsible for crystal growth and their relation to volatile concentrations measured in the melt inclusions. In general, plagioclase from all eruptions display three different correlations between An content and Sr isotopes, with each recording different conditions under which crystals grew. Some crystals have nearly constant 87Sr/86Sr compositions from core to rim with either variable An compositions or a continuous decrease in An, suggesting these crystals were affected only by crystallization and, in some cases, thermal fluctuations. Other crystals display anti-correlations between An and Sr isotopes, which record mass inputs into the system from either magma mixing or crustal assimilation. Single crystals record a variety of processes during their growth, and single pumices contain an extremely heterogeneous population of such crystals, suggesting that the magma system is highly dynamic. Our preliminary results show that water can vary by several weight percent and carbon dioxide by hundreds of ppm between different zones of individual crystals. Interestingly, we find that inclusions related to recharge events by hotter, more primitive magma are more hydrous than those related to assimilation of more radiogenic wall rock. This suggests that the volatile budget of

  3. Derivation of primary magmas and melting of crustal materials on Venus - Some preliminary petrogenetic considerations

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Head, James W.

    1990-01-01

    As an aid to understanding crustal formation and evolution processes on Venus, a general paradigm is developed for the derivation of primary magmas, and the range of possibilities of conditions for remelting of crustal materials and the evolution of the products of remelting. The present knowledge of the bulk and surface composition is used as a basis. A wide range of magma types is possible for the range of conditions of derivation of primary magmas and crustal remelting and no magma type can be arbitrarily excluded from consideration on Venus. The composition of Venus and the nature of source materials for melting, the melting of mantle material peridotites, and the melting of basalts including tholeiites and modified basalts are discussed. Magmatic differentiation is considered, and a comparison to terrestrial magmatic environments is conducted. It is concluded the magnetic and volcanic activity on Venus could be very similar to that on the earth, although eruption styles are expected to vary due to environmental conditions.

  4. Seismic Structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations of Crustal Magma Chamber Properties With Seismicity, Faulting, and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    van Ark, E. M.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J. B.; Harding, A.; Kent, G.; Nedimovic, M. R.; Wilcock, W. S.

    2003-12-01

    Multichannel seismic reflection data collected in July 2002 at the RIDGE2000 Integrated Studies Site at the Endeavour segment, Juan de Fuca Ridge show a high-amplitude, mid-crustal reflector underlying all of the known hydrothermal vent fields at this segment. This reflector, which has been identified with a crustal magma body [Detrick et al., 2002], is found at a two-way travel time of 0.85-1.5 s (1.9-4.0 km) below the seafloor and extends approximately 25 km along axis although it is only 1-2 km wide on the cross-axis lines. The reflector is shallowest (2.5 km depth on the along-axis line) beneath the central, elevated part of the Endeavour segment and deepens toward the segment ends, with a maximum depth of 4 km. The cross axis lines show the mid-crustal reflector dipping from 9 to 50? to the east with the shallowest depths under the ridge axis and greater depths under the eastern flank of the ridge. The amplitude-offset behavior of this mid-crustal axial reflector is consistent with a negative impedance contrast, indicating the presence of melt or a crystallizing mush. We have constructed partial offset stacks at 2-3 km offset to examine the variation of melt-mush content of the axial magma chamber along axis. We see a decrease in P-wave amplitudes with increasing offset for the mid-crustal reflector beneath the Mothra and Main Endeavour vent fields and between the Salty Dawg and Sasquatch vent fields, indicating the presence of a melt-rich body. Beneath the High Rise, Salty Dawg, and Sasquatch vent fields P-wave amplitudes vary little with offset suggesting the presence of a more mush-rich magma chamber. Hypocenters of well-located microseismicity in this region [Wilcock et al., 2002] have been projected onto the along-axis and cross-axis seismic lines, revealing that most axial earthquakes are concentrated in a depth range of 1.5 - 2.7 km, just above the axial magma chamber. In general, seismicity is distributed diffusely within this zone indicating thermal

  5. Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Dufek, Josef

    2015-09-01

    Tectonic extension and magmatism often act in concert to modify the thermal, mechanical, and chemical structure of the crust. Quantifying the effects of extension and magma flux on melting relationships in the crust is fundamental to determining the rate of crustal melting versus fractionation, magma residence time, and the growth of continental crust in rift environments. In order to understand the coupled control of tectonic extension and magma emplacement on crustal thermal evolution, we develop a numerical model that accounts for extension and thermal-petrographic processes in diverse extensional settings. We show that magma flux exerts the primary control on melt generation and tectonic extension amplifies the volume of melt residing in the crustal column. Diking into an extending crust produces hybrid magmas composed of 1) residual melt remaining after partial crystallization of basalt (mantle-derived melt) and 2) melt from partial melting of the crust (crustal melt). In an extending crust, mantle-derived melts are more prevalent than crustal melts across a range of magma fluxes, tectonic extension rates, and magmatic water contents. In most of the conditions, crustal temperatures do not reach their solidus temperatures to initiate partial melting of these igneous lithologies. Energy balance calculations show that the total enthalpy transported by dikes is primarily used for increasing the sensible heat of the cold surrounding crust with little energy contributing to latent heat of melting the crust (maximum crustal melting efficiency is 6%). In the lower crust, an extensive mush region develops for most of the conditions. Upper crustal crystalline mush is produced by continuous emplacement of magma with geologically reasonable flux and extension rates on timescales of 106 yr. Addition of tectonic effects and non-linear melt fraction relationships demonstrates that the magma flux required to sustain partially molten regions in the upper crust is within the

  6. Constraints on the Physiochemical Evolution of Crustal Magma Bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.

    2009-12-01

    Crustal magma bodies chemically differentiate via complex combinations of relatively simple processes dominated by recharge, assimilation and reaction, and fractional crystallization (RAFC). A multitude of data, including field, whole rock and in situ crystal chemistry, provides constraints on the efficacy of such processes. Because each magma body is subjected to unique thermal and chemical conditions, it is critical is to quantify the fundamental physiochemical conditions governing magma diversification. In order to combine thermal, chemical, and mass constraints, we have developed Energy-Constrained Recharge, Assimilation, Fractional Crystallization (EC-RAFC), a tool to track the physiochemical evolution of melt and associated solids. EC-RAFC can address broad questions about crustal magma bodies, including (1) How much differentiation occurs in deep vs. shallow reservoirs? and (2) What controls the growth of giant magma reservoirs? The distinct signatures that may develop during lower vs. upper crustal RAFC can be simulated by varying initial wallrock (WR) temperature (T) (e.g., 600, 300°C) and initial WR 87Sr/86Sr (e.g., 0.710, 0.722). Comparison of lower vs. upper RAFC cases suggests that the record of assimilation initially will be recorded in higher T phases in the lower crust because assimilation initiates at higher magma T. Because the upper crust is generally more radiogenic, as assimilation progresses, upper crustal melt and solid 87Sr/86Sr typically will be more radiogenic. Because a record of RAFC processes may be preserved as solid phases grow, inverse EC-RAFC modeling of crystal stratigraphy may yield a family of solutions, which include masses of all subsystems (e.g., cumulates, recharge magma) and compositional predictions for melt and solids. Best-fit models may then be chosen by integrating information from field, geophysical and other studies. As suggested by a number of workers (e.g., DeSilva & Gosnold 2007), aggregation of large volumes of

  7. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  8. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  9. The crystal's view of upper-crustal magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cooper, K. M.; Kent, A. J.; Huber, C.; Stelten, M. E.; Rubin, A. E.; Schrecengost, K.

    2015-12-01

    Upper-crustal magma reservoirs are important sites of magma mixing, crustal refining, and magma storage. Crystals residing in these reservoirs have been shown to represent valuable archives of the chemical and physical evolution of reservoirs, and the time scales of this evolution. This presentation addresses the question of "What do crystals "see" and record about processes within the upper crust? And how is that view similar or different between plutonic and volcanic records?" Three general observations emerge from study of the ages of crystals, combined with crystal-scale geochemical data: 1) Patterns of isotopic and trace-element data over time in zircon crystals from a given magmatic system (e.g., Yellowstone, WY, and Taupo Volcanic Zone, New Zealand) can show systematic changes in the degree of heterogeneity, consistent with extraction of melts from a long-lived (up to 100s of kyr), heterogeneous crystal mush and in some cases continued crystallization and homogenization of the magma during a short period (< a few kyr) preceding eruption. 2) Thermal histories of magma storage derived from crystal records also show that the vast majority of time recorded by major phases was spent in storage as a crystal mush, perhaps at near-solidus conditions. 3) Comparison of ages of accessory phases in both plutonic blocks and host magmas that brought them to the surface do not show a consistent relationship between the two. In some cases, zircons from plutonic blocks have age spectra much older than zircon in the host magma. In other cases, host and plutonic block zircons have similar age spectra and chemical characteristics, suggesting a closer genetic connection between the two. These observations suggest that crystals in plutonic bodies, if examined at similar spatial and temporal scales to those in volcanic rocks, would show records that are highly heterogeneous in chemistry and age on the scale of a pluton or a lobe of a pluton, but that local regions of limited

  10. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  11. The Sub-Crustal Magma Chamber Existence and Magma Ascent Rate for Klyuchevskoy Volcano (Kamchatka): Constrains from Ni Zonation in Olivine Phenocrysts

    NASA Astrophysics Data System (ADS)

    Ozerov, A.; Gavrilenko, M.

    2014-12-01

    Klyuchevskoy volcano is the highest active volcano in Europe and Asia (~4800 m). Morphologically it is a classic stratovolcano, but its edifice consists entirely of mafic rocks (up to 55% of SiO2). The absence of andesites and dacites suggests that Klyuchevskoy does not have a crustal magma chamber. This is supported by seismological studies, the results of which have shown that stable crustal structures (magma bodies) are not found. However, [2] petrological barometry, indicates the existence of a magma chamber near the base of the crust beneath Klyuchevskoy at pressures of 5 - 9 kbar, (~ 18-33 km). In later studies, [1] and [4] proposed a model of decompression crystallization during continuous magma ascent in the conduit (from 50-60 km depth to the surface), which explains the genesis of the whole variety of Klyuchevskoy mafic rocks without the magma chamber requirement. The most recent detailed seismological studies combined with petrological barometry [3] suggest the existence of a sub-crustal volume (magma chamber) beneath Klyuchevskoy volcano (25-35 km depths) where processes of magma accumulation most likely occur. In this study we attempt to confirm the presence of a sub-crustal magma chamber using Ni zonation in primitive olivines, which may preserve information about mixing between distinct primitive melts in the magma chamber. Moreover, olivine Ni diffusion rates could help to estimate the rate of magma ascent (from the 35 km depths to the surface) beneath Klyuchevskoy using the approach of [5]. Ni concentration in olivines were measured by the electron microprobe high-precision technique (20kV, 300 nA) developed in [6]. [1] Ariskin et al. (1995) Petrology, 3(5): p.449-472. [2] Kersting & Arculus (1994) J. of Petrology, 35(1): p.1-41. [3] Levin et al. (2014) Geology, (in print). [4] Ozerov et al. (1997) Petrology, 1997. 5(6): p. 550-569. [5] Ruprecht & Plank, (2013) Nature, 500(7460): p.68-72. [6] Sobolev et al. (2007) Science, 316(5823): p.412-417.

  12. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  13. Crustal Magma Evolution: the View from the Chemistry of Large Central Andean Ignimbrites

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Coira, B.

    2006-12-01

    Voluminous andesitic to rhyodacitic ignimbritic fields linked to giant calderas are distinctive features of the Neogene magmatic record of the central Andean Altiplano-Puna plateau. These magmas evolved in a thickened backarc crust of an active subduction regime at a compressional margin. Their chemistry reflects the thermo-mechanical conditions that control the generation of large crustal magma systems, and tracks changes in a crust subjected to thickening, flow and delamination. Correlations with high resolution geophysical images help to decipher magma generation and eruption processes. A compilation of some 400 published and new chemical analyses allows a view of the spatial-temporal crustal evolution of large complexes in the Puna (22° -28°S) over the last 12 Ma. Data are from the 11-10 Ma Granada and Pairique, 9 to 8 Ma Vilama, 6.8 to 6.5 Ma Coranzulí, 6.7-6.1 Ma Panizos, 5.3-4 Ma Toconao, 4.2-3.8 Ma Atana, and 1.3 Ma Purico complexes in the north, the 12-10 Ma Aguas Calientes complex in the central Puna and the 5.1-3.6 Ma Laguna Amarga/Verde and 6.4 2.2 Ma Cerro Galan complexes in the south. A notable older to younger chemical trend that is seen is for La/Yb (40 to 10) and Sm/Yb (7.5 to 2) ratios to decrease without a corresponding pattern in Eu anomalies. This trend suggests a change from garnet to amphibole as a controlling residual phase at depth followed by feldspar fractionation at higher levels, possibly in magmas chambers near 20 km imaged by seismic data. Xenocrysts in mafic andesitic lavas could be phenocrysts from magmas at this level. A correlated temporal change to lower Al/(K+Na+Ca) and ^8^7Sr/^86Sr ratios and increasing epsilon Nd in the northern Puna requires a changing source linked to an evolving crust. Other patterns are better linked to regional basement differences and variability in the mantle-derived mafic magmas that supply the heat for melting.

  14. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective.

    PubMed

    Chiaradia, Massimo

    2015-01-29

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts.

  15. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  16. Nd isotopic gradients in upper crustal magma chambers: Evidence for in situ magma-wall-rock interaction

    SciTech Connect

    Farmer, G.L.; Tegtmeyer, K.J.

    1990-01-01

    Multiple Nd isotopic analyses were obtained for one metaluminous and two peralkaline Tertiary rhyolitic ash-flow tuffs in the Great Basin to determine whether upper crustal silici magmas chemically evolve under closed- or open-system conditions. All the ash-flow tuffs analyzed show significant internal Nd isotopic variations. The largest variations occur within the peralkaline Double-H Mountains Tuff ({epsilon}{sub Nd} = +2.0 to +6.4) at the McDermitt volcanic field in north-central Nevada, and the smallest within the metaluminous Topopah Spring Tuff ({epsilon}{sub Nd} = {minus}10.6 to {minus}11.7) at the southwestern Nevada volcanic field. In all cases the isotopic variation are correlated with magmatic Nd contents, even though the Nd concentrations decreased roofward for the metaluminous rhyolite and increased for the peralkaline rhyolites. The consistent positive correlation between [Nd] and {epsilon}{sub Nd} provides strong evidence for in situ open-system addition of low {epsilon}{sub Nd} wall-rock material to the silicic magmas during their residence in the upper crust. The proportion of wall-rock Nd required to produce the isotopic zonations is small (1 to 15 mol%) for both the peralkaline and metaluminous rhyolites. All levels of the parental magmas sampled by the ash-flow tuffs, and not just magma occupying the roof zone, were open to wall-rock interaction. These results suggest that upper crustal silicic magma bodies evolve under open-system conditions and the effects of such processes should be addressed in models for their chemical differentiation.

  17. Magma-compensated crustal thinning in continental rift zones.

    PubMed

    Thybo, H; Nielsen, C A

    2009-02-12

    Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures.

  18. Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: Insights from Proterozoic anorthosites

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.; Ashwal, L. D.

    2015-10-01

    Many Proterozoic anorthosite massifs show crustal isotopic signatures that have, for decades, fuelled debate regarding the source of these temporally-restricted magmas. Are these signatures indicative of lower crustal melting or of significant assimilation of crustal material into mantle-derived magmas? Traditional whole rock isotopic tracers (Sr, Nd, Pb and Os), like other geochemical, petrological and experimental tools, have failed to identify unambiguously the origins of the crust-like signature and resolve the source controversies for these feldspathic, cumulate intrusives. We make use of high precision Sr, Nd and Pb isotopic compositions of mineral phases (plag, opx, mag) and comagmatic, high-pressure orthopyroxene megacrysts as well as whole rock anorthosites/leuconorites from the Mealy Mountains Intrusive Suite (MMIS) and the Nain Plutonic Suite (NPS) to probe the origin of the crustal isotopic signatures and assess the importance of differentiation at lower crustal depths. This selection of samples represents fragments from various stages of the polybaric ascent of the magmas, while the study of the Mealy Mountains Intrusive Suite and the Nain Plutonic Suite is instructive as each is intruded into crust of significantly different age and isotopic composition. We observe marked differences in the whole-rock isotopic composition of Proterozoic anorthosites and high-pressure megacrysts (e.g. εNd;T = +2 to -10) intruded into crustal terranes of different ages and isotopic compositions. Evidence for varying degrees of internal isotopic disequilibrium (ΔNd, ΔSr, ΔPb) in anorthosites from these different terranes reinforces the notion that crustal contamination, and more importantly, the nature of the crustal assimilant, has a profound influence on the chemical signature of Proterozoic anorthosites. While most samples from the MMIS and NPS show significant and measurable ΔNd and ΔPb disequilibrium, ΔSr compositions cluster around zero. This decoupling in

  19. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian

  20. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  1. A Refined Model of Zircon Saturation in Crustal Magmas

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Watson, E. B.; Trail, D.; Harrison, T. M.; Schmitt, A. K.

    2012-12-01

    Improvements in experimental, analytical and computation methodologies together with published studies yielding seemingly contradictory results prompted us to return to the determination of zircon stability in the range of felsic to intermediate melts expected in continental environments. We re-analyzed both the run products from the zircon crystallization study of [1] and a new style of zircon dissolution experiments (up to 25 kbars) using a large radius ion microprobe to constrain a refined zircon solubility model. The new data yield broadly similar patterns as before when arrayed for temperature and confirm that the parameter M [=(K+Na+2Ca)/(Si Al) as molar abundances] is an appropriate compositional proxy for the mechanism by which zircon is dissolved. We used a Bayesian approach to optimize calculation of the coefficients in the zircon solution model, which is given by: ln DZr = (10108±32)/T(K) - (1.16±0.15) * (M-1) - (1.48±0.09), where DZr is the distribution coefficient of Zr between zircon and melt and the errors are at one sigma. Sensitivity tests indicate that temperature and composition are the two dominant controls on zircon solubility in crustal melts with, surprisingly, no observable pressure effect. Our new data together with literature results suggest a weaker dependence of zircon solubility on water content than previously thought. Comparison of the down-temperature extrapolation with natural examples confirms the validity of the model at ca. 700C. [1] Watson and Harrison, 1983. Earth Planet. Sci. Lett 64, 295-304.

  2. A multidisciplinary study on the crustal nature of volcanic conduits and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.

    Volcanic settings vary widely not only in their eruptive style and products, but in the manner magma travels from deep sources to individual eruptive centers. Imaging these pathways, and their associated crustal reservoirs, provides unique and unprecedented views into these environments. Imaging techniques are varied with the strength of the technique often based on data availability. As such, we focus on two methods---gravity and seismic---in two different settings, each with its own unique volcanic environments, crustal structures, and associated data resources. The first, the Hawaiian Islands, are the most geologically studied hot-spot islands in the world, yet the only large-scale compilation of marine and land gravity data is more than 45 years old. We present a new chain-wide gravity compilation allowing us to locate current and former volcanic centers, major rift zones, a previously suggested volcano, and show that volcanoes along the chain are composed of a small proportion of intrusive material (<30% by volume). At the second area, the arc-volcanism of southern Washington, we used ambient seismic noise methods to constrain the crustal pathways of deep-sourced melt to the surface. We image two zones of reduced velocity, one of which correlates with a proposed extensive zone of mid-crustal partial melt which likely supplies evolved magmas to the surrounding volcanoes and vents, including Mounts St. Helens and Adams.

  3. Thermodynamics and Phase Equilibria of Concurrent Assimilation and Fractional Crystallization (AFC) in Crustal Magma Bodies

    NASA Astrophysics Data System (ADS)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2009-12-01

    Mafic magmas generated by partial melting of mantle peridotites, eclogites or clinopyroxenites are hotter than, compositionally distinct from and have higher liquidus temperatures than the crustal rocks through which they ascend or are emplaced. The low thermal conductivity of crystalline and molten silicates implies that steep thermal gradients along the margins of propagating melt-filled fractures and stagnant magma bodies can develop and lead to crustal anatexis especially at depths >~10 km. Small differences in ambient deviatoric stresses within the crust can lead to the percolation of anatectic melts into adjacent magma. The magnitude of contamination is strongly dependant upon permeability which in turn depends upon the square of the volume fraction of anatectic melt, itself controlled by local phase equilibria. From the thermochemical vantage, AFC processes may be quantified using the Magma Chamber Simulator (MCS) by studying the variables that define the extent of AFC: thermal interaction mass ratio (ratio of pristine magma mass to mass of wallrock), bulk composition (including volatiles) of pristine magma and wallrock, the mean pressure and prevailing oxygen fugacity at which AFC occurs. Here we present MCS phase equilibria and major element solutions for a number of scenarios in which the sensible variables defining the extent of assimilation have been systematically varied. In particular, initial magma and wallrock temperatures, relative masses of wallrock and magma, oxygen fugacity and the mean pressure of AFC interaction are defined. The sub-systems are then allowed to proceed towards thermodynamic (thermal and chemical potential) equilibrium. Incremental enthalpy changes associated with magma cooling and crystallization are transferred to wallrock where heating and possible partial melting can occur. Fractional crystallization occurs in the magma and once the wallrock temperature exceeds its solidus, equilibrium melting in wallrock is enabled. When

  4. A numerical simulation of magma motion, crustal deformation, and seismic radiation associated with volcanic eruptions

    USGS Publications Warehouse

    Nishimura, T.; Chouet, B.

    2003-01-01

    The finite difference method is used to calculate the magma dynamics, seismic radiation, and crustal deformation associated with a volcanic eruption. The model geometry consists of a cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We consider two models of eruption. In the first model, a lid caps the vent and the magma is overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In the second model, a plug at the reservoir outlet allows pressurization of only the magmatic fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure at the conduit orifice exceeds the material strength of the lid capping the vent. In both models, magma dynamics are expressed by the equations of mass and momentum conservation in a compressible fluid, in which fluid expansion associated with depressurization is accounted for by a constitutive law relating pressure and density. Crustal motions are calculated from the equations of elastodynamics. The fluid and solid are dynamically coupled by applying the continuity of wall velocities and normal stresses across the conduit and reservoir boundaries. Free slip is allowed at the fluid-solid boundary. Both models predict the gradual depletion of the magma reservoir, which causes crustal deformation observed as a long-duration dilatational signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic resonance of the reservoir-conduit system during the eruption. The volume of the reservoir, vent size, and magma properties control the duration of VLP waves and dominant periods of LP oscillations. The second model predicts that when the

  5. Variable H2O content in magmas from the Tongariro Volcanic Centre and its relation to crustal storage and magma ascent

    NASA Astrophysics Data System (ADS)

    Auer, A.; White, J. D. L.; Tobin, M. J.

    2016-10-01

    The water content of crystal-hosted glass inclusions from Mt. Ruapehu has been determined by Fourier transform infrared spectroscopy (FTIR) at the IR beamline of the Australian Synchrotron. The results are compared with those from previous investigations as well as with calculated melt water concentrations in other magmas from the Tongariro Volcannic Center (TgVC). It is shown that low and high water content in different magmas can be related to distinct styles of magma ascent and intermittent crustal storage. The first style is related to frequent small magma batches erupted from the central volcanoes of Mt. Tongariro and Mt. Ruapehu. It produces highly porphyritic two-pyroxene-plagioclase andesites which generally show water contents below 3 wt%. The second style is sourced from mid-crustal intrusions which are characterized by highly differentiated hornblende dacites with dissolved water concentrations of up to 6 wt% H2O.

  6. The genesis of silicic arc magmas in shallow crustal cold zones

    NASA Astrophysics Data System (ADS)

    Adam, John; Turner, Simon; Rushmer, Tracy

    2016-11-01

    A number of currently popular models for the genesis of evolved arc-magmas (from basaltic andesite to dacite) invoke repeated intrusion, partial-melting and differentiation at the base of the crust. However, several observations suggest that this may be the exception rather than the norm: (1) geobarometry often indicates shallow pressure (0.1-0.3 GPa) evolution; (2) incongruent melting of amphibolite at elevated pressures should yield magmas in equilibrium with high pressure phases like garnet, but rare earth element patterns almost ubiquiously preclude this; (3) compositionally-zoned caldera forming eruptions suggest differentiation at near surface depths; (4) U-series data most commonly indicate differentiation over millennia time-scales. This requires rapid cooling that, in turn, is most easily explained by relatively small magma volumes undergoing crystal fractionation within the shallow (i.e. cool) crust. To further test these ideas, we combined published experimental-data for liquidus equilibria with appropriate silicic arc-magma compositions. On projections of the ternary liquidus system nepheline-silica-olivine, recent data for Tongan silicic lavas plot either on or close to low-pressure (1 atm) cotectics for the rocks' phenocryst phases, suggesting low-pressure differentiation. Using our own and published data from arc volcanoes around the world we find that the majority are consistent with differentiation at shallow depths, regardless of total crustal thickness. Combined with the typical timescales of differentiation, we estimate that the volumes of magma stored during differentiation in shallow crustal zones are usually on the order of only a few km3. There is also a clear role for mixing and recharge that involves magmas that are more deeply-sourced and primitive in character (typically evolved basalts and basaltic andesites). Whether the latter differentiated in the lower-crust or at the crust/mantle boundary has important implications for the

  7. Interaction of ascending magma with pre-existing crustal structures: Insights from analogue modeling

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; Menand, T.; Rowland, J. V.

    2010-12-01

    Magma transport through dikes is a major component of the development of basaltic volcanic fields. Basaltic volcanic fields occur in many different tectonic setting, from tensile (e.g., Camargo Volcanic Field, Mexico) to compressive (e.g., Abu Monogenetic Volcano Group, Japan). However, an important observation is that, independently of their tectonic setting, volcanic fields are characterized by numerous volcanic centers showing clustering and lineaments, each volcanic center typically resulting from a single main eruption. Analyses from Auckland Volcanic Field reveal that, for each eruption, magma was transported from its source and reached the surface at different places within the same field, which raises the important question of the relative importance of 1) the self-propagation of magma through pristine rock, as opposed to 2) the control exerted by pre-existing structures. These two mechanisms have different implications for the alignment of volcanic centers in a field as these may reflect either 1) the state of crustal stress dikes would have experienced (with a tendency to propagate perpendicular to the least compressive stress) or 2) the interaction of propagating dikes with pre-existing crustal faults. In the latter case, lineaments might not be related to the syn-emplacement state of stress of the crust. To address this issue, we have carried out a series of analogue experiments in order to constrain the interaction of a propagating magma-filled dike with superficial pre-existing structures (e.g., fracture, fault, joint system). The experiments involved the injection of air (a buoyant magma analogue) into elastic gelatine solids (crustal rock analogues). Cracks were cut into the upper part of the gelatine solids prior to the injection of air to simulate the presence of pre-existing fractures. The volume of the propagating dikes, their distance from pre-existing fractures and the ambient stress field were systematically varied to assess their influence

  8. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii

    USGS Publications Warehouse

    Okubo, P.G.; Benz, H.M.; Chouet, B.A.

    1997-01-01

    Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9-11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low -velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6-8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.

  9. Testing a New Method for Imaging Crustal Magma Bodies: A Pilot Study at Newberry Volcano, Central OR

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.; Durant, D. T.

    2010-12-01

    Magmatic systems are often imaged using delay time seismic tomography, though a known limitation is that wavefront healing limits the ability of transmitted waves to detect small, low-velocity regions such as magma chambers. Crustal magma chambers have been successfully identified using secondary arrivals, including both P and S wave reflections and conversions. Such secondary phases are often recorded by marine seismic experiments owing to the density and quality of airgun data, which improves the identification of coherent arrivals. In 2008 we conducted a pilot study at Newberry volcano to test a new method of detecting secondary arrivals in a terrestrial setting. Our experimental geometry used a line of densely spaced (~300 m), three-component seismometers to record a shot-of-opportunity from the High Lave Plains Experiment. An ideal study would record several shots, however, data from this single event proves the concept. As part of our study, we also reanalyze all existing seismic data from Newberry volcano to obtain a tomographic image of the velocity structure to 6 km depth. Newberry is a lone shield volcano in central Oregon, located 40 km east of the Cascade axis. Newberry eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system, possibly located at upper crustal depths. The system may still be active with a recent eruption ~1300 years ago, and a central drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. Our tomographic study combines our 2008 seismic data with profile and array data collected in the 1980s by the USGS. In total, the inversion includes 16 active sources and 322 receivers yielding 1007 P-wave first arrivals. Beneath the caldera ring faults we image a high-velocity ring-like anomaly extending to 2 km depth. This anomaly is inferred to be near

  10. Magma storage and migration associated with the 2011-2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic island volcanoes

    NASA Astrophysics Data System (ADS)

    González, Pablo J.; Samsonov, Sergey V.; Pepe, Susi; Tiampo, Kristy F.; Tizzani, Pietro; Casu, Francesco; Fernández, José; Camacho, Antonio G.; Sansosti, Eugenio

    2013-08-01

    Starting in July 2011, anomalous seismicity was observed at El Hierro Island, a young oceanic island volcano. On 12 October 2011, the process led to the beginning of a submarine NW-SE fissural eruption at ~15 km from the initial earthquake loci, indicative of significant lateral magma migration. Here we conduct a multifrequency, multisensor interferometric analysis of spaceborne radar images acquired using three different satellite systems (RADARSAT-2, ENVISAT, and COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin Observation)). The data fully captures both the pre-eruptive and coeruptive phases. Elastic modeling of the ground deformation is employed to constrain the dynamics associated with the magmatic activity. This study represents the first geodetically constrained active magmatic plumbing system model for any of the Canary Islands volcanoes, and one of the few examples of submarine volcanic activity to date. Geodetic results reveal two spatially distinct shallow (crustal) magma reservoirs, a deeper central source (9.5 ± 4.0 km), and a shallower magma reservoir at the flank of the southern rift (4.5 ± 2.0 km). The deeper source was recharged, explaining the relatively long basaltic eruption, contributing to the observed island-wide uplift processes, and validating proposed active magma underplating. The shallowest source may be an incipient reservoir that facilitates fractional crystallization as observed at other Canary Islands. Data from this eruption supports a relationship between the depth of the shallow crustal magmatic systems and the long-term magma supply rate and oceanic lithospheric age. Such a relationship implies that a factor controlling the existence/depth of shallow (crustal) magmatic systems in oceanic island volcanoes is the lithosphere thermomechanical behavior.

  11. Refining thermal modeling parameters to assess the survivability of upper crustal silicic magma reservoirs

    NASA Astrophysics Data System (ADS)

    Gelman, S. E.; Gutierrez, F. J.; Bachmann, O.

    2012-12-01

    eutectic phase diagram is to significantly lower the temperature threshold for eruptible magma accumulation, while the temperature-dependent diffusivity results in a longer final cooling time after sills are no longer being intruded. The addition of these two layers of complexity into thermal models can increase the volumes of eruptible magma to levels consistent with the largest super-eruptions, and simultaneously lower the required sill injection fluxes necessary for survival of volcanic reservoirs. These simulations challenge the previous notion that upper crustal magma reservoirs cool too effectively for the survival and differentiation of silicic systems, and that super-eruptions (>500km3) associated with shallow reservoirs are only possible due to anomalously high injection rates. Acknowledgements: This material is based upon work supported by the National Science Foundation under grant numbers DGE-0718124 (Graduate Research Fellowship Program) and EAR-080982.

  12. Intractions of mantle and crustal magmas in the southern part of the Ivrea Zone (Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, S.; Antonini, P.; Demarchi, G.; Longinelli, A.; Mazzucchelli, M.; Negrini, L.; Rivalenti, G.

    1991-10-01

    In the southern part of the Ivrea Zone (Italy), the majority of the Mafic Formation is composed of: 1. amphibole-bearing gabbro; 2. a series of rocks ranging from norites to charnockites; 3. leucocratic charnockites. In the proximity of metasedimentary septa within the Mafic Formation, the igneous lithologies are in many places intimately and chaotically intermingled, giving rise to a marble-cake structure. Whole-rock chemistry, and oxygen and strontium isotopic compositions indicate that the mafic and felsic rocks are dominated by mantle and crustal sources respectively. The norite-charnockite suite may be modelled as the mixing product of basic and acid melts. Abundant plastic deformation structures suggest that mafic and hybrid rocks experienced an important tectonic event during or soon after their crystallization. Melting of crustal country rocks continued after the deformation event and produced the undeformed leucocratic charnockites. The study area exemplifies some of the possible effects of the intrusion of a large volume of basic magma into hot crust.

  13. Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions

    NASA Astrophysics Data System (ADS)

    Colucci, M. T.; Dungan, M. A.; Ferguson, K. M.; Lipman, P. W.; Moorbath, S.

    1991-07-01

    Early intermediate composition volcanic rocks of the Oligocene (circa 34-29 Ma) southeast San Juan volcanic field, southern Colorado, comprise the Conejos Formation. Conejos lavas include both high-K calc-alkaline and alkaline magma series (54-69% SiO2) ranging in composition from basaltic andesite (basaltic trachyandesite) to dacite (trachydacite). The subsequent Platoro caldera complex (29-27 Ma) was superimposed on a cluster of broadly precursory Conejos stratocones. Precaldera volcanism occurred in three pulses corresponding to three time-stratigraphic members: (1) the Horseshoe Mountain member, (2) the Rock Creek member, and (3) the Willow Mountain member. Each member exhibits distinctive phenocryst modes and incompatible trace element contents. Horseshoe Mountain lavas (hornblende-phyric) have relatively low alkali and incompatible element abundances, Rock Creek lavas (anhydrous phenocrysts) and ash-flow tuffs have the highest abundances, and Willow Mountain lavas (diverse mineralogy) are intermediate. All Conejos lavas exhibit low ratios of lead (206Pb/204Pb = 17.5 to 18.2) and neodymium (ɛNd = -8 to -4) isotopes and high 87Sr/86Sr (0.7045 to 0.7056) compared to depleted asthenospheric mantle. These values lie between those of likely mantle compositions and the isotopic composition of Proterozoic crust of the southern Rocky Mountains. Mafic lavas of the Horseshoe Mountain member have the lowest Pb and Nd isotope ratios among Conejos members but trend toward higher isotopic values with increasing degrees of differentiation. Compositions within the Rock Creek series trend toward higher Pb and lower Nd isotope ratios with increasing SiO2. Willow mountain volcanic sequences define diverse chemical-isotopic correlations. We interpret the chemical and isotopic differences observed between mafic lavas of each member to reflect derivation from compositionally distinct mantle derived parent magmas that have experienced extensive deep level crustal contamination

  14. Bubbles Accumulation And Their Role On The Eruptability Of Melt-Rich Silicic Lenses In Upper Crustal Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Parmigiani, A.; Faroughi, S. A.; Huber, C.; Bachmann, O.

    2014-12-01

    A first-order observation in magmatic rocks is that highly evolved rhyolites are relatively abundant in the volcanic realm, but their plutonic counterparts (granites sensu stricto) are rarer, when ratioed to dacitic/granodioritic compositions. As eruptability is a function of the buoyancy of magmas in upper crustal reservoirs, the presence of exsolved gas (bubbles) plays a fundamental role on eruptability by lowering the bulk density of magmas. Then, if exsolved gas content can accumulate in certain areas of magma reservoirs, it follows that such areas might be more prone to erupt. Magma reservoirs in the upper crust likely have relatively stable, sharp transitions in crystallinity between crystal-rich regions and crystal-poor regions. With this framework in mind, in this presentation, by means of theoretical considerations, numerical modelling and laboratory experiments, we suggest that the storage capacity of exsolved gas in magma reservoirs is a function of the relative abundance of melt respect to crystals present; crystal-poor regions (high melt to crystal volume ratio) tend to act as sponges, accumulating bubbles, while crystal-rich regions (mush zones with low melt to crystal ratio) tend to degas efficiently, leading to upward percolation of volatiles. Hence, melt-rich cupolas accumulating in upper parts of crystal-rich upper crustal reservoirs are particularly eruptible and dominate the volume of volcanic deposits in silicic magmatic provinces.

  15. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure

    NASA Astrophysics Data System (ADS)

    Hata, Maki; Takakura, Shinichi; Matsushima, Nobuo; Hashimoto, Takeshi; Utsugi, Mitsuru

    2016-10-01

    At Naka-dake cone, Aso caldera, Japan, volcanic activity is raised cyclically, an example of which was a phreatomagmatic eruption in September 2015. Using a three-dimensional model of electrical resistivity, we identify a magma pathway from a series of northward dipping conductive anomalies in the upper crust beneath the caldera. Our resistivity model was created from magnetotelluric measurements conducted in November-December 2015; thus, it provides the latest information about magma reservoir geometry beneath the caldera. The center of the conductive anomalies shifts from the north of Naka-dake at depths >10 km toward Naka-dake, along with a decrease in anomaly depths. The melt fraction is estimated at 13-15% at 2 km depth. Moreover, these anomalies are spatially correlated with the locations of earthquake clusters, which are distributed within resistive blocks on the conductive anomalies in the northwest of Naka-dake but distributed at the resistive sides of resistivity boundaries in the northeast.

  16. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano

    NASA Astrophysics Data System (ADS)

    Ozawa, Taku; Fujita, Eisuke; Ueda, Hideki

    2016-11-01

    An MJMA6.5 earthquake (foreshock) and MJMA7.3 earthquake (mainshock) struck Kumamoto Prefecture on April 14, 2016, and April 16, 2016. To evaluate the effect of crustal deformation due to the earthquake on the Aso magma system, we detected crustal deformation using InSAR and GNSS. From InSAR analysis, we detected large crustal deformations along the Hinagu Fault, the Futagawa Fault, and the northeast extension of the latter fault. It extended to more than 50 km, and the maximum slant-range change exceeded 1 m. Although the obtained crustal deformation was approximately explained by the right-lateral strike-slip on the fault, its details could not be explained by such simple faulting. Additionally, we found complex surface deformation west of the Aso caldera rim, suggesting that shallow fault slips occurred in many known and unknown faults associated with the earthquake. Most of the crustal deformation could be reasonably explained by four rectangle faults located along the Futagawa Fault, in the northeast extension of the Futagawa Fault, alongside the Hinagu Fault, and in the eastern part of the Futagawa Fault. The first three of faults have high dip angles and right-lateral slip. The other was a fault with a low dip angle that branched from the shallow depth of the fault along the Futagawa Fault. The normal-dip right-lateral slip was estimated for this segment. Based on the estimated fault model, we calculated the displacement and stress field around the Aso volcano by the finite-element method (FEM) to evaluate the effects on the Aso magma system. In this calculation, we assumed a spherical soft medium located at a 6-km depth beneath the area south of the Kusasenri region as the magma system and considered only static effects. The result shows complex distributions of displacements and stresses, but we can notice the following significant points. (1) The spherical magma system deformed to an ellipsoid, and the total volume was slightly increased, less than 1%. (2

  17. {sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise

    SciTech Connect

    Goldstein, S.J.; Murrell, M.T.; Perfit, M.R.; Batiza, R.; Fornari, D.J.

    1994-06-01

    Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

  18. Evidence for multiple mechanisms of crustal contamination of magma from compositionally zoned plutons and associated ultramafic intrusions of the Alaska Range

    USGS Publications Warehouse

    Reiners, P.W.; Nelson, B.K.; Nelson, S.W.

    1996-01-01

    Models of continental crustal magmagenesis commonly invoke the interaction of mafic mantle-derived magma and continental crust to explain geochemical and petrologic characteristics of crustal volcanic and plutonic rocks. This interaction and the specific mechanisms of crustal contamination associated with it are poorly understood. An excellent opportunity to study the progressive effects of crustal contamination is offered by the composite plutons of the Alaska Range, a series of nine early Tertiary, multiply intruded, compositionally zoned (peridotite to granite) plutons. Large initial Sr and Nd isotopic contrasts between the crustal country rock and likely parental magmas allow evaluation of the mechanisms and extents of crustal contamination that accompanied the crystallization of these ultramafic through granitic rocks. Three contamination processes are distinguished in these plutons. The most obvious of these is assimilation of crustal country rock concurrent with magmatic fractional crystallization (AFC), as indicated by a general trend toward crustal-like isotopic signatures with increasing differentiation. Second, many ultramafic and mafic rocks have late-stage phenocryst reaction and orthocumulate textures that suggest interaction with felsic melt. These rocks also have variable and enriched isotopic compositions that suggest that this felsic melt was isotopically enriched and probably derived from crustal country rock. Partial melt from the flysch country rock may have reacted with and contaminated these partly crystalline magmas following the precipitation and accumulation of the cumulus phenocrysts but before complete solidification of the magma. This suggests that in magmatic mush (especially of ultramafic composition) crystallizing in continental crust, a second distinct process of crustal contamination may be super-imposed on AFC or magma mixing involving the main magma body. Finally, nearly all rocks, including mafic and ultramafic rocks, have (87Sr

  19. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is

  20. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Xu, Yi-Gang; Zheng, Jian-Ping; Sun, Min; Griffin, William L.; Wei, Ying; Ma, Liang; Yu, Xiaolu

    2016-09-01

    Understanding how adakitic magmas form is important for understanding the formation of the continental crust. Generating such high-Sr/Y rocks by crystal fractionation of basalts/basaltic andesites in magma chambers has been proposed in a wide range of tectonic settings. However, the complementary cumulates predicted by this scenario have rarely been observed. The late Triassic ( 227 Ma) Ningcheng complex from the North China Craton is composed of a websterite - (Ol -/Hbl-) pyroxenite - gabbro unit and a quartz-diorite unit. They are interpreted as the products (cumulates and derivative melts, respectively) of fractionation from hydrous mafic magmas at mid- to lower-crustal pressures (4.9 8.3 kbar). The quartz diorites are high-Mg intermediate rocks with moderate SiO2 (57.0 62.9 wt%), high Mg# (> 49) and adakitic trace element signatures, such as high Sr (≥ 636 ppm) and light rare earth elements (REEs), low Y (≤ 17 ppm) and heavy REEs (Yb ≤ 1.8 ppm), lack of obvious Eu anomalies, and high Sr/Y (≥ 31) and La/Yb (≥ 24)). These adakitic signatures reflect differentiation of hydrous mantle-derived magmas in the deep crust, leaving behind a plagioclase-free residual solid assemblage in the early stages, which is represented by the coeval websterite-pyroxenite complex. This study therefore not only demonstrates that hydrous crystal fractionation is an important mechanism to form adakitic rocks, but also presents an example of a preserved fractionating system, i.e. high-Sr/Y rocks and their complementary cumulates. A geochemical comparison is made between representative adakitic rocks formed by fractionation of hydrous magmas and Archean TTGs. It is suggested that crystal fractionation is an efficient process for making Phanerozoic high Sr/Y rocks but was not responsible for the formation of Archean granitoids.

  1. Increasing Interaction of Alkaline Magmas with Lower Crustal Gabbroic Cumulates over the Evolution of Mt. Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Crumpler, L. S.; Schrader, C.

    2010-12-01

    The Mount Taylor Volcanic Field at the southeastern edge of the Colorado Plateau, New Mexico erupted diverse alkaline magmas from ~3.8 to 1.5 Ma (Crumpler, 1980; Perry et al., 1990). The earliest eruptions include high silica topaz rhyolites of Grants Ridge (plagioclase, quartz, biotite) and Si-under saturated basanites and trachytes at Mt Taylor stratovolcano. Mt. Taylor was later constructed of stacks of thick, trachyandesitic to rhyolitic lava flows that were subsequently eroded into a ~4-km across amphitheatre opening toward the southeast. Early Mt. Taylor rhyolitic lavas exposed within the amphitheatre contain quartz, plagioclase, hornblende, and biotite (± sanidine) phenocrysts. Later cone-building trachydacite to trachyandesite lavas are crystal-rich with plagioclase and augite megacrysts (± hornblende, ± quartz) and record an overall trend of decreasing SiO2 with time. The last eruptions ~1.5 Ma from the stratovolcano (Perry et al. 1990) produced thick (>70 m), viscous lava flows that contain up to 50% zoned plagioclase phenocrysts. While SiO2 decreased among the silicic magmas, the degree of silica saturation increased among peripheral basaltic magmas from basanite to ne-normative hawaiite to hy-normative basalts. Evidence of increasing crustal contamination within the basalts includes zoned plagioclase megacrysts, augite and plagioclase cumulate texture xenoliths with accompanying xenocrysts. These textures within the basalts combined with abundant, complex plagioclase among the cone-building silicic magmas imply interaction and mixing with gabbroic cumulate mush in the lower crust beneath Mt. Taylor Volcano. Contemporaneous basanitic to trachytitc volcanism in the northern part of the volcanic field at Mesa Chivato (Crumpler, 1980) was more widely distributed, smaller volume, and produced mainly aphyric magmas. The lower crustal gabbroic cumulates either do not extend northward beneath Mesa Chivato, or they were not accessed by lower magma flux rate

  2. Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.

    2006-01-01

    Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.

  3. Structural reconstruction and zonation of a tilted mid-crustal magma chamber: the felsic Chemehuevi Mountains plutonic suite

    SciTech Connect

    John, B.E.

    1988-07-01

    Structural relief resulting from middle Tertiary extensional deformation in the Chemehuevi Mountains of California exposes a unique cross section through an extensive (> 280 km/sup 2/) calc-alkalic, compositionally zoned, sill-like granitic intrusion of Late Cretaceous age. Minimum estimates for emplacement pressure, 4 to 6 kbar, imply that the Chemehuevi Mountains plutonic suite was initially intruded at mid-crustal depths and has undergone 10/sup 0/ to 15/sup 0/ of post emplacement tilting, tectonic denudation, and erosion. Reconstruction of the pre-Tertiary (pre-tilt) configuration suggests that this metaluminous to peraluminous granitic suite exhibits crude normal, vertical, and temporal zonation from granodiorite to granite. The zonation involves a decrease in age and an increase in silica away from the walls and roof, the youngest and most evolved members being concentrated toward the center and floor of the intrusion. The lower part of the intrusion had a flat floor, which was penetrated by at least three feeder dikes providing magma to the chamber. Structural reconstruction indicates that the roof is less than 1 km above the exposed top of the intrusion. The magma apparently ponded along the contact between undeformed Proterozoic basement above and subhorizontally foliated mylonitic gneisses below. This reconstruction provides opportunity to observe crosscutting relations between different types of mid-crustal structures (thick mylonitic shear zones, granitic intrusions, and temporally unrelated detachment faults), the geometry of which emphasizes the need for careful evaluation of seismic reflection profiles across complexly deformed and intruded continental crust.

  4. Deep crustal anatexis, magma mixing, and the generation of epizonal plutons in the Southern Rocky Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Jacob, Kristin H.; Farmer, G. Lang; Buchwaldt, Robert; Bowring, Samuel A.

    2015-01-01

    The Never Summer Mountains in north-central Colorado, USA, are cored by two Oligocene, epizonal granitic plutons originally emplaced in the shallow levels of a short-lived (~1 m.y.), small-volume continental magmatic system. The younger Mt. Cumulus stock (28.015 ± 0.012 Ma) is a syenogranite equivalent compositionally to topaz rhyolites. A comparison to the chemical and isotopic composition of crustal xenoliths entrained in nearby Devonian kimberlites demonstrates that the silicic melts parental to the stock were likely derived from anatexis of local Paleoproterozoic, garnet-absent, mafic lower continental crust. In contrast, the older Mt. Richthofen stock is compositionally heterogeneous and ranges from monzodiorite to monzogranite. Major and trace element abundances and Sr, Nd and Pb isotopic ratios in this stock vary regularly with increasing whole rock wt% SiO2. These data suggest that the Mt. Richthofen stock was constructed from mixed mafic and felsic magmas, the former corresponding to lithosphere-derived basaltic magmas similar isotopically to mafic enclaves entrained in the eastern portions of the stock and the latter corresponding to less differentiated versions of the silicic melts parental to the Mt. Cumulus stock. Zircon U-Pb geochronology further reveals that the Mt. Richthofen stock was incrementally emplaced over a time interval from at least 28.975 ± 0.020 to 28.742 ± 0.053 Ma. Magma mixing could have occurred either in situ in the upper crust during basaltic underplating and remelting of an antecedent, incrementally emplaced, silicic intrusive body, or at depth in the lower crust prior to periodic magma ascent and emplacement in the shallow crust. Overall, the two stocks demonstrate that magmatism associated with the Never Summer igneous complex was fundamentally bimodal in composition. Highly silicic anatectic melts of the mafic lower crust and basaltic, mantle-derived magmas were the primary melts in the magma system, with mixing of the two

  5. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2002-01-01

    More than 5000 km3 of nearly compositionally homogeneous crystalrich dacite (~68 wt % SiO2: ~45% Pl + Kfs + Qtz + Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) erupted from the Fish Canyon magma body during three phases: (1) the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented pyroclastic deposit, ~ 200 km3); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, ~ 5000 km3); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by rejuvenation of a near-solidus upper-crustal intrusive body (mainly crystal mush) of batholithic dimensions. The necessary thermal input was supplied by a shallow intrusion of more mafic magma represented at the surface by sparse andesitic enclaves in late-erupted Fish Canyon Tuff and by the post-caldera Huerto Andesite. The solidified margins of this intrusion are represented by holocrystalline xenoliths with Fish Canyon mineralogy and mineral chemistry and widely dispersed partially remelted polymineralic aggregates, but dehydration melting was not an important mechanism in the rejuvenation of the Fish Canyon magma. Underlying mafic magma may have evolved H2O-F-S-Cl-rich fluids that fluxed melting in the overlying crystal mush. Manifestations of the late up-temperature magma evolution are: (1) resorbed quartz, as well as feldspars displaying a wide spectrum of textures indicative of both resorption and growth, including Rapakivi textures and reverse growth zoning (An27-28 to An32-33) at the margins of many plagioclase phenocrysts; (2) high Sr, Ba, and Eu contents in the high-SiO2 rhyolite matrix glass, which are inconsistent with extreme fractional crystallization of feldspar; (3) oscillatory and reverse growth zoning toward the margins of many euhedral hornblende phenocrysts (rimward increases from ~5??5-6 to 7??7-8??5 wt % Al2O3). Homogeneity in magma composition at the chamber-wide scale, contrasting with extreme textural

  6. Short Timescales for Crustal Residence, Transport and Contamination of Flood Basalt Magma: Crystal Isotope Stratigraphy of the Columbia River Basalt Group.

    NASA Astrophysics Data System (ADS)

    Tollstrup, D. L.; Ramos, F. C.; Wolff, J. A.

    2002-12-01

    Geochemical studies of continental flood basalt magmas provide evidence for contributions from one or more enriched reservoirs. There is, however, no consensus on the role of continental crust as a major source of enriched signatures. With its stratigraphy defined and mapped at the scale of individual flows, the Columbia River Basalt Group (CRBG) is the most thoroughly studied continental flood basalt province in the world. Its tectonic position (overlying both thin accreted Mesozoic crust and thick ancient cratonic crust) makes the CRBG ideal for isolating the contribution of crust in the petrogenesis of continental flood basalts. Many flows are plagioclase-phyric. Because plagioclase in basaltic magmas can be assumed to have grown at crustal pressures, growth layers in plagioclase phenocrysts record changes in the chemical and isotopic composition of the magma occurring at crustal depths. We have initiated a micro-sampling study utilizing laser ablation multicollector ICP-MS (ThermoFinnigan Neptuner) to analyze 87Sr/86Sr variability in plagioclase and clinopyroxene phenocrysts (where present) and associated groundmass. Initial results are: 1) plagioclase and clinopyroxene phenocrysts within CRBG lavas are overall less radiogenic than host groundmass and 2) plagioclase phenocrysts are commonly zoned from less radiogenic cores to more radiogenic rims. The rims may have similar compositions to, or be less radiogenic than, host groundmass. One-dimensional diffusion modeling applied to observed 87Sr/86Sr zoning and crystal/groundmass gradients constrains phenocryst residence times, and the timescale of crustal-level petrogenetic events that modified CRBG magmas. Residence times for phenocrysts in their final host liquid may be as little as 10 years prior to quenching. These results require that the 87Sr/86Sr composition of the CRBG magmas increased rapidly with time at crustal pressures during and after phenocryst growth. This could result from mixing between magmas

  7. Formation of lunar mare domes along crustal fractures: Rheologic conditions, dimensions of feeder dikes, and the role of magma evolution

    NASA Astrophysics Data System (ADS)

    Wöhler, Christian; Lena, Raffaello; Phillips, Jim

    2007-08-01

    In this study we examine a set of lunar mare domes located in the Hortensius/Milichius/T. Mayer region and in northern Mare Tranquillitatis with respect to their formation along crustal fractures, their rheologic properties, the dimensions of their feeder dikes, and the importance of magma evolution processes during dome formation. Many of these domes display elongated summit vents oriented radially with respect to major impact basins, and several dome locations are also aligned in these preferential directions. Analysis of Clementine UV/VIS and Lunar Prospector gamma ray spectrometer data reveals that the examined mare domes formed from low-Si basaltic lavas of high FeO and low to moderate TiO 2 content. Based on their morphometric properties (diameter, height, volume) obtained by photoclinometric and shape from shading analysis of telescopic CCD images, we derive rheologic quantities (lava viscosity during eruption, effusion rate, duration of the effusion process, magma rise speed) and the dimensions of the feeder dikes. We establish three rheologic groups characterised by specific combinations of rheologic properties and dike dimensions, where the most relevant discriminative parameter is the lava viscosity η. The first group is characterised by 10 Pas<η<10 Pas and contains the domes with elongated vents in the Milichius/T. Mayer region and two similar domes in northern Mare Tranquillitatis. The second group with 10 Pas<η<10 Pas comprises the very low aligned domes in northern Mare Tranquillitatis, and the third group with 10 Pas<η<10 Pas the relatively steep domes near Hortensius and in the T. Mayer region. The inferred dike dimensions in comparison to lunar crustal thickness data indicate that the source regions of the feeder dikes are situated within the upper crust for six of the domes in northern Mare Tranquillitatis, while they are likely to be located in the lower crust and in the upper mantle for the other examined domes. By comparing the time scale

  8. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part I: Petrography and Thermobarometry

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Braga, Roberto; Cesare, Bernardo; Renzulli, Alberto; Perugini, Diego; Del Moro, Stefano

    2016-02-01

    The San Vincenzo Volcanic Complex was emplaced ~ 4.4 Ma. ago and consists of cordierite-bearing lavas which are the result of a complex interaction between mantle-derived and crustal anatectic magmas. The lavas are mostly characterized by porphyritic, glassy peraluminous rhyolites hosting variable contents of magmatic enclaves (clinopyroxene-bearing latites and amphibole-bearing clinopyroxene crystal mushes), sialic and ultramafic cognates (syenogranites, anorthosites, cordierite-biotite and pyroxenite inclusions), and crustal rocks (sillimanite-cordierite xenoliths, cordierite and biotite xenocrysts) of centimetric-to-millimetric size. Mineral chemistry shows large variations as well. Plagioclase and sanidine are represented respectively by An21-79Or1-13 and An≤ 1Or57-77. Cordierite has a Mg# of 51-78%, while garnet shows almandine compositions with low CaO (≤ 2 wt.%) and variable MnO contents (1-5 wt.%). Clinopyroxene indicates large ranges of Mg# (68-92%) and Al2O3 (0.5-6.3 wt.%), and relatively high CaO contents (up to 24 wt.%); orthopyroxene shows both ferroan enstatite (Mg# = 60-78%) and magnesian ferrosilite (Mg# = 39-44%) compositions; whereas amphibole shows only Mg-rich calcic compositions. On the basis of textural characteristics, as well as Ti and XMg variations, we have identified six different types of biotite associated with oxide minerals such as ilmenite and spinels of both aluminium (Al > 1 in Y site) and iron (Fe > 1 in Y site) subgroups. Compositional/textural relationships indicate crystallization at both equilibrium and disequilibrium conditions. Minerals with euhedral habits and homogeneous compositions usually occur in the same thin sections of partly-equilibrated crustal xenoliths (and xenocrysts) and zones of "active" mixing between mantle-derived and crustal magmas characterized by "needle-like" and skeletal microlites, and subhedral microphenocrysts of amphibole and biotite. These hybrid-mixed features, as well as the occurrence of

  9. Exotic seismic phases recorded near Mammoth Lakes and their use in the delineation of shallow-crustal (magma?) anomalies

    NASA Astrophysics Data System (ADS)

    Peppin, William A.

    1987-11-01

    Observations of several hundred exotic seismic phases (herein defined) recorded in and near Long Valley caldera, California, have been cataloged. I discuss here four classes of such seismograms: (1) seismograms with missing S-waves, (2) seismograms with an unusual pre-S phase seen at the single station SLK northwest of the caldera, (3) seismograms with a strong pre-S phase as seen at a number of stations south of the caldera, and (4) a very large, very slow (<2 km/sec) post-S phase seen at the single station Benton. For each of these phenomena, it is not yet possible to pin down an unambiguous and unique theoretical explanation. However, for each, I have presented an explanation, summarizing current thinking, which involves nonplanar reflections/refractions within shallow-crustal anomalous zones which can reasonably be supposed to be magma bodies. If these explanations are even partially pertinent, then the investigation of exotic phases near complex regions like Mammoth Lakes and other volcanic areas is potentially a way to bring precise resolving power on the nature and geometry of local crustal anomalies.

  10. Crustal composition in southern Norway from active and passive source seismology

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Frassetto, A. M.; Thybo, H.

    2010-12-01

    Crustal composition and structure beneath the Fennoscandian shield are highly variable due to the method of crustal accretion and the long history of extensional and compressional tectonics. In southern Norway, the Moho and crust are inferred to be the youngest of the shield, however, it is likely that a large discrepancy between crustal age and Moho age exists beneath the high southern Scandes where the Caledonian orogeny was in effect and beneath the Oslo Graben where 60 million years of rifting and magmatism has altered the crust. Crustal structure in southern Norway was targeted with a multi-disciplinary seismic study (Magnus-Rex - Mantle investigations of Norwegian uplift Structure). Three ~400 km long active source seismic profiles across the southern Norway and a region wide array of broadband seismometers were deployed. P and S-wave arrivals were recorded in the Magnus-Rex project, from which Poisson ratios for the crust in southern Norway are calculated from both active source profiling and receiver functions. Unusually strong S-wave arrivals allow rare insight into crustal Poisson’s ratio structure, within crustal layers, that is not normally available from active source data and are usually determined by earthquake tomography studies where only bulk crustal values are available. An average Poisson’s ratio of 0.25 is calculated for the crust in southern Norway, suggesting it is predominantly of felsic-intermediate composition and lacks any significant mafic lower crust. This differs significantly from the adjacent crust in the Svecofennian domain of the Fennoscandian shield where Moho depths reach ~50 km and an up to 20 km thick mafic lower crust is present. The vast difference in Moho depths in the Fennoscandian shield are, therefore, mostly due to the variation in thickness of the high Vp lower crust. Estimates of crustal composition and the effect of Magma intrusion within the Oslo Graben, and possible delamination of the lowermost crust beneath

  11. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  12. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    PubMed

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  13. Crustal magmatism under a hydrothermal system, and the imprints of assimilation of hydrothermally altered protolith: an investigation of geochemical signatures in rhyolitic magmas at Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Girard, G.

    2014-12-01

    Yellowstone caldera, Wyoming, hosts one of the largest hydrothermal systems on Earth, fueled by heat and volatiles released from hotspot-derived basalt magmas that stall in the crust. Prolonged hydrothermal activity has pervasively altered the subsurface and such altered material is presumed to have acted as a source for magmas erupted after the two largest caldera eruptions, as evidenced by low-δ18O signatures in these magmas. This study focuses on the youngest Yellowstone volcanic units, the ~ 255 ka to ~ 70 ka large volume (~ 360 km3) Central Plateau Member (CPM) rhyolites. New laser-ablation ICP-MS whole rock, glass and mineral trace element data were obtained in order to refine existing constraints on CPM petrogenesis. Small temporal increases in elements such as As (3.1-4.1 ppm), Rb (170-200 ppm), Cs (3.6-4.3 ppm), Pb (26-31 ppm), Th (23-27 ppm) and U (5.4-6.8 ppm) contrast with increases of ~ 40-50 % in HFSE and REE in the same samples. The highest observed temporal increase is that of Zn, from 65 to 105 ppm. Caesium is highly incompatible with mineral/glass partition coefficients KD < 0.05 measured in all investigated mineral phases. Rubidium is also incompatible but its sanidine/glass KD ~ 0.4 results in a larger bulk distribution coefficient DRb ~ 0.2. For Pb, sanidine/glass KD ~ 0.8 leads to DPb > 0.4. Zinc is observed to be compatible in clinopyroxene, fayalite, zircon, chevkinite (KD ~ 5-12), and Fe-Ti oxides (KD ~ 40), such that DZn may approach 1. Fractional crystallization or partial melting processes alone cannot explain the same small increase rate of elements with diverse degrees of incompatibility (Rb, Cs and Pb), nor a larger increase rate in nearly compatible Zn. Assimilation by the juvenile CPM magmas of a crustal material of distinct composition appears to be required, and hydrothermally altered rhyolites, comprising much of the Yellowstone subsurface represent the most likely assimilant. Lower Rb, Cs, Pb (perhaps also As and U) and higher

  14. Pressures of Partial Crystallization of Magmas from the Juan de Fuca Ridge: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Barton, M.

    2010-12-01

    Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the rate of spreading. As part of a larger effort to examine this hypothesis, we determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) which extends from the Blanco fracture zone at about 44.5 degrees North to the Triple junction of the JdF, Nootka Fault, and the Socanco fracture zone at 48.7 degrees North. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 533 samples were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. Preliminary results indicate that the pressure of partial crystallization decreases from 2 to 1±0.5 kbars from the Blanco fracture zone to the north along the Cleft segment of the ridge. Calculated pressures remain approximately constant at 0.87±0.53 kbars along ridge segments to the north of the Cleft. These low pressures for the remaining segments of the ridge are interpreted to indicate magma chambers at depths of 1.3-4.9 km and agree reasonably well with the depths of seismically imaged tops of axial magma chambers (2-3 km) (Canales et al 2009). The higher pressures obtained for lavas erupted along the Cleft segment of the JdF agree very well with recent

  15. Crustal deformation and volcanic earthquakes associated with the recent volcanic activity of Iwojima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Fujita, E.; Tanada, T.

    2013-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The seismometer and GPS network of National Research Institute for Earth Science and Disaster Prevention (NIED) in Iwojima has observed a repeating island wide uplift more than 1 m associated with large number of volcanic earthquakes every several years. During 2006-2012, we observed more than 20000 volcanic earthquakes and an uplift of about 3 m, and precursory volcanic earthquakes and rapid crustal deformation just before the small submarine eruption near the northern coast of Iwojima in April 2012. In a restless volcano such as Iwojima, it is important issue to distinguish whether rapid crustal deformation and intense earthquake activity lead to an eruption or not. According to a long period geodetic observation by Ukawa et al. (2006), the crustal deformation of Iwojima can be classify into 2 phases. The first is an island wide large uplift centering on Motoyama area (the eastern part of the island, the center of the caldera), and the second is contraction and subsidence at local area centering on Motoyama and uplift around that area. They are interpreted by superposition of crustal deformations by a shallow contraction source and a deep seated inflation source beneath Motoyama. The earthquake activity of Iwojima highly correlates with the island wide large uplift, suggesting the earthquakes are almost controlled by a magma accumulation into a deep seated magma chamber. In contrast to the activity, the precursory activity of the eruption in 2012 is deviated from the correlation. The rapid crustal deformation just before and after the eruption in 2012 can be interpreted by rapid inflation and deflation of a shallow sill source about 1km deep, respectively, suggesting that it was caused by a shallow hydrothermal activity. The result shows that we can probably distinguish an abnormal activity related with a volcanic eruption when we observe

  16. Rejuvenation of shallow-crustal silicic magma bodies at Augustine and Hayes volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Vazquez, J. A.; Hayden, L. A.; Calvert, A. T.; Lidzbarski, M. I.; Andersen, N. L.; Till, C. B.

    2015-12-01

    Rejuvenation of crystal-rich magma bodies leading to eruption can occur on a variety of scales and in varied tectonic settings. Two examples from the Aleutian arc highlight 1) segregation of silicic melt from an intermediate mush, and 2) "defrosting" of a shallowly emplaced intrusion. Augustine Volcano erupted a late Pleistocene rhyolite pumice fall that we link through zircon geochronology to cumulate dioritic blocks, ripped from Augustine's shallow magmatic plumbing system and ejected during the 2006 eruption. Unpolished zircon rims from the rhyolite yield a U-Th age of ~25 ka, and interiors yield a dominant age population of ~26 ka. Zircons from diorites have interior ages and compositions indistinguishable from those of the rhyolite. The diorites, rhyolite, and early Holocene dacites define whole-rock linear unmixing trends consistent with melt (rhyolite) extraction from a mush (dacites), leaving behind a cumulate residue (diorites). A volatile-rich basalt erupted just prior to the rhyolite likely facilitated melt extraction from the mush. The rhyolitic Hayes River ignimbrite, erupted from Hayes volcano, contains dense porphyry blocks that match pumices in composition and phenocryst content and are samples of a shallow intrusion. Autocrystic monazite accommodated up to several weight % Th and significantly affected the U-Th ratio of the magma during differentiation. An isochron for early melt and low-U monazites yields an age of ~67 ka, whereas one for late melt and high-U monazites yields ~42 ka. This younger age is indistinguishable from the laser single crystal Ar-Ar age for sanidine of 41±2 ka (1 sigma). We interpret the apparent ~25 k.y. crystallization interval to represent the assembly and differentiation timescale associated with the Hayes magma body. Sharp reverse zoning in sanidine from pumice (but not porphyry) records a thermal pulse not seen in the more slowly reacting phases, suggesting that a rejuvenation event occurred just prior to eruption.

  17. Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: the effect of modelling assumptions and system variables

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2016-04-01

    Magma fluxes in the Earth's crust play an important role in regulating the relationship between the frequency and magnitude of volcanic eruptions, the chemical evolution of magmatic systems and the distribution of geothermal energy and mineral resources on our planet. Therefore, quantifying magma productivity and the rate of magma transfer within the crust can provide valuable insights to characterise the long-term behaviour of volcanic systems and to unveil the link between the physical and chemical evolution of magmatic systems and their potential to generate resources. We performed thermal modelling to compute the temperature evolution of crustal magmatic intrusions with different final volumes assembled over a variety of timescales (i.e., at different magma fluxes). Using these results, we calculated synthetic populations of zircon ages assuming the number of zircons crystallising in a given time period is directly proportional to the volume of magma at temperature within the zircon crystallisation range. The statistical analysis of the calculated populations of zircon ages shows that the mode, median and standard deviation of the populations varies coherently as function of the rate of magma injection and final volume of the crustal intrusions. Therefore, the statistical properties of the population of zircon ages can add useful constraints to quantify the rate of magma injection and the final volume of magmatic intrusions. Here, we explore the effect of different ranges of zircon saturation temperature, intrusion geometry, and wall rock temperature on the calculated distributions of zircon ages. Additionally, we determine the effect of undersampling on the variability of mode, median and standards deviation of calculated populations of zircon ages to estimate the minimum number of zircon analyses necessary to obtain meaningful estimates of magma flux and final intrusion volume.

  18. Oxygen isotope evidence for crustal assimilation and magma mixing in the Granite Harbour Intrusives, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Ghezzo, C.; Sharp, Z. D.

    2003-03-01

    The stable isotope composition (O,H) of whole-rock and mineral separates of Cambrian-Ordovician gabbros, diorites, granodiorites and granites forming the Mt. Abbott composite intrusions (Northern Victoria Land, Antarctica) was measured to constrain the origin and evolution of the magmas postdating the Ross Orogen. The δ18O values of olivine gabbros plot in the field of slightly evolved mantle-derived melts ( δ18O WR=6.8-7.4‰). The O-isotope character of the mantle source inferred from the δ18O values of cumulous olivine in gabbros (5.7-6.8‰) is enriched in 18O compared to modern arc-related magmas. Geochemical data and concurrent high δ18O values, and initial strontium ( 87Sr/ 86Sr=0.7060) and neodymium ( 143Nd/ 144Nd=0.5122) isotope ratios indicate that the olivine gabbros formed by crustal contamination of a primary calc-alkaline basaltic melt. The diorites have high δ18O values, among the highest ever measured for dioritic rocks (8.7-10.3‰), and Sr-isotope ratios that partially overlap with the adjacent and mingled felsic lithologies (0.708-0.710). The diorites have pyroxene with high, nearly constant δ18O values (8.2-8.6‰) that are independent from the silica content of the rocks; thus, they did not increase in response of the chemical evolution of the rocks. The diorites originated from the same primary calc-alkaline basalt experiencing different amounts of crustal contamination, and underwent different degrees of mixing with the adjacent granites, producing granodioritic facies and quartz/feldspar xenocrystic diorites. The δ18O, 87Sr/ 86Sr and 143Nd/ 144Nd compositions of the granites and granodiorites overlap (10.8-12.1‰, 0.7096-0.7108, 0.5119-0.5120). They are distinct from the values of the mafic rocks and indicate that gabbros and granites were not cogenetic. The granites are a separate melt component likely derived from nonmodal partial melting of fertile meta-igneous protoliths.

  19. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  20. Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Huang, Xiao-Wen; Zhou, Mei-Fu; Chen, Li-Hui; Xu, Xi-Sheng

    2016-08-01

    Continental basalts have complicated petrogenetic processes, and their chemical compositions can be affected by multi-staged geological evolution. Compared to lithophile elements, chalcophile elements including Ni, platinum-group elements (PGEs) and Cu are sensitive to sulfide segregation and fractional crystallization during the evolution of mantle-derived magmas and can provide constraints on the genesis of continental basalts. Cenozoic intra-continental alkaline basalts in the Nanjing basaltic field, eastern China, include high-Ca and low-Ca varieties. All these basalts have poor PGE contents with Ir ranging from 0.016 ppb to 0.288 ppb and high Cu/Pd ratios from 0.7 × 105 to 4.7 × 105 (5.7 × 103 for DMM), indicating that they were derived from sulfide-saturated mantle sources with variable amounts of residual sulfide during melting or might undergo an early-sulfide segregation in the mantle. Relatively high Cu/Pd ratios along with high Pd concentrations for the high-Ca alkaline basalts indicate an additional removal of sulfide during magma ascent. Because these basalts have high, variable Pd/Ir ratios (2.8-16.8) with low Ce/Pb (9.9-19.7) ratios and εNd values (+ 3.6-+6.4), crustal contamination is proposed to be a potential process to induce the sulfide saturation and removal. Significantly increased Pd/Ir ratios for few high-Ca basalts can be explained by the fractionation of laurite or Ru-Os-Ir alloys with olivine or chromite. For low-Ca alkaline basalts, their PGE contents are well correlated with the MgO, Sc contents, incompatible element ratios (Lu/Hf, Na/Ti and Ca/Al) and Hf isotopes. Good correlations are also observed between Pd/Ir (or Rh/Ir) and Na/Ti (or Ca/Al) ratios. Variations of these elemental ratios and Hf isotopes is previously documented to be induced by the mixing of peridotite xenolith-released melts during ascent. Therefore, we suggest that such xenolith-magma interaction are also responsible for the variable PGE compositions of low

  1. Oxygen isotopes reveal crustal contamination and a large, still partially molten magma chamber in Chaîne des Puys (French Massif Central)

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Demacon, Mickael; Gurenko, Andrey A.; Briot, Danielle

    2016-09-01

    The two main magmatic properties associated with explosive eruptions are high viscosity of silica-rich magmas and/or high volatile contents. Magmatic processes responsible for the genesis of such magmas are differentiation through crystallization, and crustal contamination (or assimilation) as this process has the potential to enhance crystallization and add volatiles to the initial budget. In the Chaîne des Puy series (French Massif Central), silica- and H2O-rich magmas were only emitted during the most recent eruptions (ca. 6-15 ka). Here, we use in situ measurements of oxygen isotopes in zircons from two of the main trachytic eruptions from the Chaîne des Puys to track the crustal contamination component in a sequence that was previously presented as an archetypal fractional crystallization series. Zircons from Sarcoui volcano and Puy de Dôme display homogeneous oxygen isotope compositions with δ18O = 5.6 ± 0.25‰ and 5.6 ± 0.3‰, respectively, and have therefore crystallized from homogeneous melts with δ18Omelt = 7.1 ± 0.3‰. Compared to mantle derived melts resulting from pure fractional crystallization (δ18Odif.mant. = 6.4 ± 0.4‰), those δ18Omelt values are enriched in 18O and support a significant role of crustal contamination in the genesis of silica-rich melts in the Chaîne des Puys. Assimilation-fractional-crystallization models highlight that the degree of contamination was probably restricted to 5.5-9.5% with Rcrystallization/Rassimilation varying between 8 and 14. The very strong intra-site homogeneity of the isotopic data highlights that magmas were well homogenized before eruption, and consequently that crustal contamination was not the trigger of silica-rich eruptions in the Chaîne des Puys. The exceptionally strong inter-site homogeneity of the isotopic data brings to light that Sarcoui volcano and Puy de Dôme were fed by a single large magma chamber. Our results, together with recent thermo-kinetic models and an experimental

  2. The effects of depth-dependent crustal viscosity variation on visco-elastic response to inflation/deflation of magma chamber

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi

    2016-04-01

    Development of the satellite observations (GPS and/or InSAR) has allowed us to precisely measure surface deformation. However any geodetic observation by itself does not tell us a mechanism of the deformation. All we can do the most is to compare such an observation to some quantitative predictions, only from which we can deduce a possible deformation mechanism. We therefore need to understand characteristic deformation pattern for a given source mechanism. This study particularly pays attention to magmatic activity in depth as the source, aiming to distinguish magma-induced crustal deformation by better knowing how the activity can be reflected in geodetically observable surface deformation. A parallelized 3-D finite element code, OREGANO_VE [e.g., Yamasaki and Houseman, 2015, J. Geodyn., 88, 80-89], is used to solve the linear Maxwell visco-elastic response to an applied internal inflation/deflation of magma chamber. The rectangular finite element model is composed with a visco-elastic layer overlaid by an elastic layer with thickness of H, and the visco-elastic layer extends over the rest of crust and the uppermost mantle. The visco-elastic crust has a depth-dependent viscosity (DDV) as an exponential function of depth due to temperature-dependent viscosity: hc = h0 exp[c(1 - z/L0)], where h0 is the viscosity at the bottom of the crust, c is a constant; c > 0 for DDV model and c = 0 for uniform viscosity (UNV) model, z is the depth, and L0 is a reference length-scale. The visco-elastic mantle has a spatially uniform viscosity hm. The inflation and/or deflation of sill-like magma chamber is implemented by using the split node method developed by Melosh and Raefsky [1981, Bull. Seism. Soc. Am., 71, 1391-1400]. UNV model with c = 0 employed in this study shows that the inflation-induced surface uplift would abate with time by visco-elastic relaxation. The post-inflation subsidence would erase the uplift in ~ 50 - 100 times Maxwell relaxation time of the crust

  3. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  4. Crustal structure of Axial Volcano on the Juan de Fuca Ridge, from seafloor depths to the bottom of the magma chamber, using Elastic Full Waveform Inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, Adrien; Harding, Alistair; Kent, Graham

    2013-04-01

    Axial volcano is located at 46˚N, 130˚W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical offsets of >300 m at the caldera walls, consistent with faulting of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the ever-dropping floor of the caldera appears to be a perfect trap for the ponding of lava flows: the thickness of the lava flows increase gradually to the northwest reaching ~450 m at end of the caldera. Surface velocities are low and exhibit limited variation over the whole volcano suggesting relative recent formation, as layer 2A velocity increases rapidly with age at slightly greater depths. Crustal aging (increase in layer 2A velocity with age) appears to be controlled by pipe-like pattern of focused hydrothermal mineralization. Finally, RTM images reveal a large melt

  5. Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions

    NASA Astrophysics Data System (ADS)

    Dahren, Börje; Troll, Valentin R.; Andersson, Ulf B.; Chadwick, Jane P.; Gardner, Màiri F.; Jaxybulatov, Kairly; Koulakov, Ivan

    2012-04-01

    Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2-8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7-12 km, while plagioclase records both shallow crustal (3-7 km) and sub-Moho (23-28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.

  6. Are U-Series Disequilibria Transparent to Crustal Processing of Magma? A Case Study at Bezymianny and Klyuchevskoy Volcanoes, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Kayzar, T. M.; Nelson, B. K.; Bachmann, O.; Portnyagin, M.; Ponomareva, V.

    2010-12-01

    Disequilibria in the short-lived uranium-series isotopic system can provide timescales of magma production, modification and transport in all tectonic settings. In volcanic arcs, the field has converged on the concept that (238U/230Th) and (226Ra/230Th) activities greater than one are a result of fluid fluxing from the slab to mantle wedge, and that the preservation of (226Ra/230Th) disequilibria requires rapid transport of melts from the mantle wedge to the surface (226Ra returns to equilibrium with 230Th in ~8000 years). The need for rapid transport coupled with the incompatibility of U-series elements suggest that U-series fractionation is not measurably affected by crustal processes. However, some well-studied arc systems, including the very productive Central Kamchatka Depression (CKD) of the Kamchatkan volcanic arc, show U-series data that are in conflict with this commonly accepted model. Our study focuses on two neighboring volcanic systems, Bezymianny and Klyuchevskoy volcanoes in the CKD. Separated by ~10km, these two systems are thought to share the same mantle source. Klyuchevskoy has primitive compositions (51-56 wt%) while Bezymianny erupts more differentiated andesites (57-63 wt% SiO2); therefore, by examining the U-series signals in these two systems it is possible to decouple a primary signal from one having undergone crustal processing. We record whole rock (238U/230Th) values for Bezymianny ranging from 0.94 to 0.96 in modern eruptive products, while (226Ra/230Th) are >1. We also observe a similar signal in older (212-6791BP) tephra deposits from Klyuchevskoy, measuring (238U/230Th) of 0.92-0.99 (unpublished data, collaborative research with the KALMAR project). (238U/230Th) <1 in arcs have mostly been reported from areas of thick continental crust (Andes; Sigmarsson et al. 1998, Garrison et al. 2006, Jicha et al. 2007) or from an arc where phases such as garnet and/or Al-rich clinopyroxene can retain a high U/Th in the crystalline residue (Jicha

  7. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  8. High- & Low-δ18O magma: Comparative study of crustal and mantle plagiogranites from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Alberts, R. C.; Grimes, C. B.; Koepke, J.; Erdmann, M.; Kitajima, K.; Spicuzza, M. J.; Valley, J. W.

    2015-12-01

    Plagiogranite (PLGT) from the crust and mantle sections of the Oman ophiolite preserve widely varied δ18O values that monitor different processes occurring during ophiolite construction. Mantle-like δ18O values are expected if MORB fractionation played a dominant role in PLGT genesis. Magmatic values (monitored here by zircon) shifted away from the mantle-like range indicate open system processes which include partial melting of hydrothermally-altered crust or influx of subduction-related, sediment-derived melt. Zircon (zrn) and quartz (qtz) from twenty-four new samples of PLGT from the crustal and mantle sections of the Oman ophiolite were analyzed for δ18O. Rock-averaged δ18O from the sheeted dikes (zrn: 4.3-4.5‰, qtz: 6.7-6.9‰) and dike-gabbro transition (zrn: 3.9-4.8‰, qtz: 4.7-7.7‰) are mostly below values in magmatic equilibrium with MORB (zrn = 5.2±0.5‰, qtz = 7.0-7.5‰). δ18O for PLGT in the gabbro section (zrn: 4.8-5.1‰, qtz: 7.7-8.3‰) are mostly mantle-like. Quartz is generally found to be more variable than coexisting zrn and likely experienced some sub-solidus exchange. When organized into a relative structural position, δ18Ozrn values typically increase with depth. The lowest δ18Ozrn are observed near the dike-gabbro transition and are consistent with petrogenesis involving hydrous partial melting of mafic crust previously hydrothermally-altered at high-T. The return to nominally mantle-equilibrated δ18Ozrn deeper in the gabbro section may reflect decreasing seawater-signatures of fluids penetrating to depth, lower water/rock ratios, or extreme fractional crystallization. Crustal PLGT thus predate the development of high δ18O signatures in the upper oceanic crust as it cools and experiences low temperature hydrothermal alteration. Mantle PLGT intrusions (1-3 m thick) from the Haylayn block extend to considerably higher rock-averaged δ18O values (zrn: 5.1-15.4‰, qtz: 7.0-18.5‰). Individual rocks (5 samples) were uniform in

  9. Output rate of magma from active central volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1980-01-01

    For part of their historic records, nine of the most active volcanoes on earth have each erupted magma at a nearly constant rate. These output rates are very similar and range from 0.69 to 0.26 cu m/s. The volcanoes discussed - Kilauea, Mauna Loa, Fuego, Santiaguito, Nyamuragira, Hekla, Piton de la Fournaise, Vesuvius and Etna - represent almost the whole spectrum of plate tectonic settings of volcanism. A common mechanism of buoyantly rising magma-filled cracks in the upper crust may contribute to the observed restricted range of the rates of output.

  10. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  11. Crustal recycling at active convergent margins and growth of the continents

    SciTech Connect

    Morris, J. . Dept. of Earth and Planetary Sciences Carnegie Institution of Washington, DC ); Zheng, S.H. . Dept. of Geological Sciences)

    1993-03-01

    Subduction of continental materials at active convergent margins provides an opportunity to evaluate mechanisms and magnitude of subduction-driven crustal recycling and its potential role in continental growth. Continental materials, in the form of detrital sediments and elements adsorbed out of seawater onto settling sediment particles, are continuously supplied to subduction trenches. The sediments may be accreted and re-attached to the continental crust through collisional processes subducted to depth and subsequently involved in arc magma generation (magmatic recycling) or subducted past the arc into the deep mantle. Cosmogenic 10Be, which is strongly adsorbed onto settling sediment particles, may be used to investigate all aspects of sediment recycling. Because of its atmospheric source and short half-life, the high 10Be concentrations observed in many volcanic arc magmas require that the uppermost part of the sediment column be subducted to depth and some part of it returned to the surface in arc magmas within the measurable 10Be lifetime, effectively a few million years. In the Aleutians, Middle America and Marianas, 10Be is present only in the upper 12m, 100m and 25m, respectively of the subducting oceanic sediment column. Using von Huene and Scholl's 1991 estimate of oceanic sediment supply to trenches, the authors evidence for sediment bypassing of accretionary margins, and the limited recycling of most major elements in arc volcanism, estimates of sediment subduction are nearly equal to those required in a steady-state, recycling model for growth of the continents through time.

  12. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto; Perugini, Diego; Cesare, Bernardo; Braga, Roberto; Del Moro, Stefano

    2016-02-01

    This work reports a geochemical overview and modelling of the lavas erupted ~ 4.4 Ma ago at San Vincenzo (Tuscan Magmatic Province, TMP). Although these lavas cover a relatively small area (~ 10 km2), they show very large geochemical variations caused by the interaction of mantle-derived and crustal-anatectic magmas. The lavas consist of peraluminous rhyolites (87Sr/86Sr(i) up to 0.726) hosting primarily variably sized magmatic enclaves with shoshonite/latite compositions (87Sr/86Sr(i) down to 0.708). New whole-rock data for a large shoshonite enclave show high concentrations of LREE, LILE, and tetravalent HFSE, coupled with pentavalent HFSE depletions and enrichments in compatible elements such as Cr and Co. The chondrite-normalised REE pattern is strongly fractionated and characterised by a negative Eu anomaly (Eu/Eu* = 0.79). Hybridisation and AFC models suggest that the shoshonite enclave is the result of 12% rhyolite contamination of a mantle-derived magma akin to the potassic trachybasalt/shoshonite lavas of Capraia Island (~ 4.6 Ma; TMP), following an 18.5% assimilation of Late Triassic metasediments (13% evaporite and 5.5% carbonate) and 56% fractionation of clinopyroxene (39%), plagioclase (10%), and biotite (7%). Each rhyolite sample is characterised by mineral-scale isotopic disequilibria (e.g., 87Sr/86Sr(i) = 0.711-0.726), glass inclusions with large K2O/Na2O variations (1.1-3.4) and a poli-thermobarometric history of crustal melt production at eutectic conditions. A multi-parametric approach accounting for K2O/Na2O (1.3-2.2), 87Sr/86Sr(i) (0.713-0.725), Sr (104-311 ppm) and Rb (294-403 ppm) whole-rock variations, allowed us to divide the anatectic (A) rhyolites into five groups (A1, A2.1, A2.2, A2.3, A3). Group A1 shows the highest 87Sr/86Sr(i) ratios and the lowest values of Sr, K2O/Na2O and Rb. It is related to A2.1 and A3 rhyolites by positive K2O/Na2O-Rb and K2O/Na2O-FeO correlations. These three rhyolite groups crop out in the south of San

  13. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography

    NASA Astrophysics Data System (ADS)

    Wu, Tengfei; Zhang, Shuangxi; Li, Mengkui; Qin, Weibing; Zhang, Chaoyu

    2016-12-01

    The SE margin of the Tibetan Plateau is an important area to develop a better understanding of the plateau uplift and the Indian-Eurasian continental collision dynamics. Previous studies have reported widespread low-velocity anomalies beneath this region, particularly in the Tengchong volcanic field (TCVF). However, the spatial distribution and dynamic processes of these low-velocity anomalies are not well constrained. In this study, a 3-D S-wave velocity structure model of the crust and upper mantle (10-120 km) in the region is constructed by the inversion of surface wave dispersion data. A two-step inversion procedure is adopted to generate the S-wave velocity structure images. The measured phase velocities and inverted S-wave velocities jointly show a large-scale low-velocity anomaly distributed in the crust, consistent with the view that the region is the passageway of the eastward migration of Tibetan Plateau material. Two crustal flowing channels are clearly observed at depths of ∼20 km and ∼30 km, which connect and rotate clockwise around the Eastern Himalaya Syntaxis. Beneath the TCVF, there are two prominent low-velocity anomaly zones at depths of ∼15-25 km and ∼50-80 km, which indicate the existence of magma chambers. One of the crustal flowing channels is connected with the magma chamber of the TCVF, and the other has a short branch north of Kunming toward the Mile-Shizong fault at a depth of 20 km. Based on the distribution of the S-wave velocities under the TCVF, a dynamic model of the Tengchong volcano magma system is proposed to explain the migration patterns of the volcanic material.

  14. Mafic magmas from Mount Baker in the northern Cascade arc, Washington: probes into mantle and crustal processes

    NASA Astrophysics Data System (ADS)

    Moore, Nicole E.; Debari, Susan M.

    2012-03-01

    Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3-50.3 wt% SiO2, Mg# 64-65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7-52.6 wt% SiO2, Mg# 58-62) and Sulphur Creek (51.2-54.6 wt% SiO2, Mg# 56-57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8-54.0 wt% SiO2, Mg# 68-70) and the HMA of Glacier Creek (58.3-58.7 wt% SiO2, Mg# 63-64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2-52.6 wt% SiO2, Mg# 55-58), is an Mg-poor differentiate of the Type 3 endmember. The calc

  15. Deep crustal structure of magma-rich passive margin as revealed by the Northeast GreenlandSPAN 2D seismic survey and airborne Full Tensor Gradiometry

    NASA Astrophysics Data System (ADS)

    Mazur, Stanislaw; Rippington, Stephen; Silva, Mercia; Houghton, Phill; Helwig, Jim

    2014-05-01

    The objective of our project was to integrate the results from the Northeast GreenlandSPAN™ 2D seismic survey with newly acquired airborne Full Tensor Gradiometry (FTG) and Magnetic potential field data over the Danmarkshaven Ridge area, NE Greenland. The potential field data were constrained by 32 long offset pre stack depth migrated seismic profiles selected from the Northeast GreenlandSPAN™ survey. The results provide a new insight in the deep crustal architecture of the Greenland passive margin. They also shed a new light on crustal-scale deformation and igneous activity in a magma-rich continental margin. The structural data set is based on the integrated interpretation of 2D seismic data and FTG data, which was further supplemented by the airborne magnetic data plus the gravity and magnetic shipborne data. 2D gravity and magnetic forward modelling was used for testing geological/seismic models against the potential field data. A regional Moho grid derived from 3D gravity inversion was as a starting point and reference for the 2D modelling. The resultant horizons from the 2D potential fields models were subsequently gridded to help create a 3D structural model. The computed residual signal from the 3D model, the difference between the observed gravity and the forward calculated model response, allowed the accuracy of the structural interpretation to be tested. The area is dominated by three structural trends: (1) N-S to NNE-SSW, (2) WNW-ESE, and (3) NW-SE. The first trend is represented by Early Cretaceous normal faults defining the Danmarkshaven Ridge whereas the second set of structures corresponds to the WNW-ESE oriented right-lateral strike slip faults. The third structural trend is delineated by the NW-SE oriented Greenland Fracture Zone (GFZ). Importantly, a distinct step in the COB suggests post-break-up reactivation of the GFZ with left-lateral kinematics. There is a good match between the modelled Moho and the GFZ suggesting its continuation

  16. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  17. AMS record of brittle dilation, viscous-stretching and gravity-driven magma ascent in area of magma-rich crustal extension (Vosges Mts., NE France)

    NASA Astrophysics Data System (ADS)

    Kratinová, Zuzana; Schulmann, Karel; Edel, Jean-Bernard; Tabaud, Anne-Sophie

    2012-04-01

    Orogenic compression-related fabrics (~340-335 Ma) were reworked during regional extensional deformation (~328-325 Ma) in a large anatectic crustal domain of the Central Vosges (NE France). The extension was first accommodated by brittle dilation affecting vertically anisotropic high-grade rocks associated with emplacement of subvertical granitic sheets. The AMS fabric of granitoids is consistent with highly partitioned transtensional deformation marked by alternations of flat and steep foliations and development of orthogonal lineations. This deformation passes to top-to-the-southwest ductile shearing expressed in southerly migmatitic middle crust. The AMS fabric revealed moderately west-dipping foliations bearing subhorizontal NNW-SSE-trending lineations and predominantly plane strain to prolate shapes. This fabric pattern is interpreted as a viscous response of stretched partially molten crust during continuous ductile extension. Vertical ascent of voluminous granites and stoping of the upper crust occurs further south. This gravity ascent triggered by extension leads to development of south-dipping AMS foliations, south-plunging lineations and oblate fabrics in various crustal granites. Vertical shortening related to ascent of these (~325 Ma) granitoids and persistent N-S stretching is responsible for reworking and remelting of originally vertical compression-related fabric in roof supracrustal granites (~340 Ma) and development of highly prolate fabrics in these rocks. This work shows that the finite shape of AMS fabric ellipsoid is highly sensitive to both strain regime and superpositions of orthogonal deformation events.

  18. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  19. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  20. Origin of rhyolite by crustal melting and the nature of parental magmas in the Oligocene Conejos Formation, San Juan Mountains, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Parker, D. F.; Ghosh, A.; Price, C. W.; Rinard, B. D.; Cullers, R. L.; Ren, M.

    2005-01-01

    Four closely spaced volcanoes (Summer Coon; Twin Mountains; Del Norte; Carnero Creek) form the east-central cluster of Conejos volcanic centers. These Conejos rocks range from high-K basaltic andesite to rhyolite, with andesite volumetrically the most abundant. Summer Coon and Twin Mountains are composite volcanoes. The Del Norte and Carnero Creek volcanoes are deeply eroded dacite shields. Rhyolite (10% of our Conejos analyses but a much smaller percentage by volume) is only known from Summer Coon and Twin Mountains volcanoes, although high-SiO 2 dacite occurs in the Del Norte volcano. The younger Hinsdale Formation contains a related series ranging from transitional basalt to high-K andesite; we use Hinsdale Formation analyses to represent Conejos parental magmas. Conejos and Hinsdale magmas evolved through AFC processes: Basalt, after interacting with lower crust, assimilated low K/Rb crust, similar in some ways to Taylor and McLennan (Taylor, S.R., and McLennan, S.M., 1985, The continental crust: its composition and evolution. Oxford, Blackwell Scientific.) model upper crust; main series basaltic andesite fractionated to high-K andesite; rhyolite was produced by melting of high K/Ba upper crustal rocks similar to granite gneiss known from inclusions and basement outcrops. Some rhyolite may have been back-mixed into fractionating andesite and dacite. Field evidence for assimilation includes sanidinite-facies, partially melted, gneiss blocks up to 1 m in diameter. Temperature estimates (1100-900 ° C) from two-pyroxene equilibria are consistent with this interpretation, as are the sparsely porphyritic nature of the most-evolved rhyolites and the absence of phenocrystic alkali feldspar. Our study supports the conclusions of previous workers on AFC processes in similar, but generally more mafic, Conejos magmas of the southeastern San Juan Mountains. Our results, however, emphasize the importance of crustal melting in the generation of Conejos rhyolite. We further

  1. Magma mixing, crustal contamination, contamination before chemical analysis or complex history? The case study from the Wołek Hill, SW Poland

    NASA Astrophysics Data System (ADS)

    Nowak, Monika

    2015-04-01

    Wołek Hill is one of the smallest exposures from ca. 300 occurrences of Cenozoic volcanic rocks from SW Poland. The outcrop is located about 100 km SW from Wrocław and belongs to the Złotoryja Volcanic Field, which is one of the largest volcanic fields in the Polish part of the Central European Volcanic Province (Ladenberger et al. 2006). The volcanic body, which is about 20 m wide, cross-cuts older Permian volcanic rocks (trachyandesites and rhyolites) and is well exposed in an old abandoned quarry. The occurrence was studied in detail because of great amount of mantle and crustal xenoliths brought to the surface by magma. Wołek Hill is one of the two occurrences in SW Poland where amphibole crystals were recognized as results of modal metasomatism in lithospheric mantle (Nowak et al. 2012). The volcanic rock from Wołek Hill represents complex history, difficult to explain by simple model. The rock was classified as basanite (Nowak, 2012). Its texture is porphyritic to glomeroporphyritic, olivine (Ol) and clinopyroxene (Cpx) occurs as phenocrysts, Cpx is also the dominant phase in the groundmass. Wołek Hill basanite differs from other exposures in Złotoryja Volcanic Field by presence of xenocrysts of Ol and Cpx from mantle rocks and also quartz (Qrtz) and feldspars (Feld) xenocrysts from crustal rocks. Those xenocrysts with additional carbonate veins, probably related with post-volcanic processes, were a great difficulty during rock preparation for whole-rock and isotopic analyses. The complex history of Wołek Hill basanite is visible in its chemical content (slight increase of SiO2, positive Pb anomaly, 87Sr/86Sr and 143Nd/144Nd values), but also in its petrography (e.g. by three types of olivine phenocrysts Fo82-91 with differences in zonation patterns reflecting Fo content; the most abundant are phenocrysts with normal zoning, but also crystals with opposite zoning and oscillatory zoning were recognised). According to available data from the basanite

  2. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas

    NASA Astrophysics Data System (ADS)

    Grocke, Stephanie B.; Cottrell, Elizabeth; de Silva, Shanaka; Kelley, Katherine A.

    2016-04-01

    The composition of the continental crust is closely tied to subduction zone magmatism. Elevated oxygen fugacity (fO2) plays a central role in fostering crystallization of oxide minerals and thereby aids in generating the calc-alkaline trend of iron depletion that characterizes the continents. Along continental margins, arc magmas erupt through continental crust and often undergo extensive differentiation that may modify magmatic fO2. The importance of the subducting slab and mantle wedge relative to the effects of this differentiation on the fO2 recorded by continental arc magmas remains relatively unconstrained. Here, we focus on the effect of differentiation on magmatic fO2 using a suite of 14 samples from the Central Volcanic Zone (CVZ) of the Andes where the continental crust is atypically thick (60-80 km). The samples range in composition from ∼55 to 74 wt% SiO2 and represent the Neogene history of the arc. Samples are basaltic andesite to rhyolite and span a range of radiogenic isotopic compositions (87Sr/86Sr = ∼0.705-0.712) that represent 30 to 100% crustal assimilation. We use several proxies to estimate the fO2 recorded by lavas, pumice, and scoria: (1) whole rock Fe3+ / Σ Fe ratios, (2) Fe3+ / Σ Fe ratios in quartz-hosted melt inclusions, and (3) Fe-Ti oxide oxygen-barometry. Comparison of the fO2 calculated from bulk Fe3+ / Σ Fe ratios (post-eruptive) with that derived from Fe-Ti oxides or melt inclusion Fe3+ / Σ Fe ratios (pre-eruptive), enables us to quantify the effect of syn- or post-eruptive alteration, and to select rocks for bulk analysis appropriate for the determination of pre-eruptive magmatic fO2 using a strict criterion developed here. Across our sample suite, and in context with samples from the literature, we do not find evidence for systematic oxidation due to crystal fractionation or crustal contamination. Less evolved samples, ranging from 55 to 61 wt% SiO2, record a range of >3 orders of magnitude in fO2, spanning the fO2 range

  3. Imaging of Lower-crustal Magma Chambers at an Ultraslow Spreading Ridge Segment using Elastic Waveform Inversion of a Sparse OBS Dataset

    NASA Astrophysics Data System (ADS)

    Jian, H.; Singh, S. C.; Chen, Y. J.; Li, J.

    2014-12-01

    The existence of axial magma chambers (AMC) is indicative of the magmatic crustal accretion at Mid-Ocean Ridges. They have been extensively imaged with seismic reflection data (e.g. multichannel seismic data), showing that the depth of the top reflector increases from 1 km to ~3 km below the seafloor, when the spreading rate decreases from fast to slow spreading. Under the ultraslow spreading environment, we have previously reported the discovery of a large lower-crustal low-velocity zone at the Southwest Indian Ridge at 50°28'E from 3-D travel time tomography of refraction data registered by an ocean bottom seismometer (OBS) array. These results suggest the presence of partial melt within the lower crust (>4 km bsf). Here we further improve the resolution of the AMC image by employing a 2-D time-domain elastic full waveform inversion (FWI) method. The FWI gives a higher resolution than travel time tomography as it utilizes amplitude information and does not require the high-frequency approximation used in travel time tomography. The non-linearity of the FWI is overcome by using the tomographic results as a starting model. We have selected a 70-km long profile running across the ridge axis around the segment center, where 340 shots spaced at ~220 m were recorded on 3 OBSs. The small number of OBS poses serious challenge for the success of the full waveform inversionFWI. In order to examine the resolvability of this sparse OBS dataset, we first performed FWI over a sparse synthetic data set. We find that the FWI of these this sparse dataset is capable of retrieving an isolated lower-crustal AMC anomaly beneath the ridge axis, although the resulting velocity anomaly is smeared out, particularly along the lateral direction. For the real-data inversion, the starting model was built from the 3-D travel time tomography. The inverted results clearly show the sharp boundary of the top of the low velocity zone, suggesting that the low velocity zone indeed corresponds to

  4. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras

    2016-05-01

    Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.

  5. Pervasive lower crustal melting and granite genesis in southern India: mechanisms of magma differentiation and rheological equilibration in continental-arc roots

    NASA Astrophysics Data System (ADS)

    GR, R.; Chettootty, S.

    2013-12-01

    Comprehensive studies of well preserved orogenic belts reveal that the continental crust generated at accretionary margins generally acquire contrasting compositions from that of underlying primary basaltic material. Although major process that lead to juvenile addition of continental crust via accretion of intra-oceanic volcanic arcs is well understood, the processes that advance the compositional diversification of primary magma are not yet fully understood. In this context we examine the geochemical and thermo-mechanical characteristics of magmatic pattern preserved in the Kerala Khondalite Belt (KKB), a Proterozoic section of exhumed roots of magmatic arc, within the southern Indian granulite belt and address the problem of magma differentiation and possible mechanism of ascent to middle-crust levels. The calc-alkaline tonalitic and granitic rocks of the KKB record complimentary geochemical characteristics. Low contents of Y and Ti and high [La/Yb]N ratios in tonalites are suggestive of melting and removal of garnet, titanite and or ilmenite in the source. Therefore tonalites are identified as product of partial melting of metamorphosed hydrated basaltic lower crust, under fluid present conditions. On the contrary, the geochemistry of granites with significant negative Eu anomaly and relatively high Rb/Sr and Ba/Sr ratios indicate magmatic fractionation produced by reworking of early crust. The tectonic scenarios for the formation are: (1) low- to moderate-degree partial melting of hydrated basaltic crust at pressures high enough to stabilize garnet-amphibole residue for the formation of tonalitic magma and (2) continental arc-accretion directed to an episode of crustal remelting of the tonalitic crust, within plagioclase stability field for the production of granites. Calculations based on molar volumes of major oxide concentrations (Bottinga and Weill, 1970), indicate that the density of the original, hydrous magma with lowest silica content would have been

  6. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Blundy, Jon D.; Brooker, Richard A.

    2016-07-01

    Piston cylinder experiments are used to investigate the effect of oxygen fugacity (ƒO2) on sulphur speciation and phase relations in arc magmas at 0.5-1.5 GPa and 840-950 °C. The experimental starting composition is a synthetic trachyandesite containing 6.0 wt% H2O, 2880 ppm S, 1500 ppm Cl and 3800 ppm C. Redox conditions ranging from 1.7 log units below the Ni-NiO buffer (NNO - 1.7) to NNO + 4.7 were imposed by solid-state buffers: Co-CoO, Ni-NiO, Re-ReO2 and haematite-magnetite. All experiments are saturated with a COH fluid. Experiments produced crystal-bearing trachydacitic melts (SiO2 from 60 to 69 wt%) for which major and volatile element concentrations were measured. Experimental results demonstrate a powerful effect of oxidation state on phase relations. For example, plagioclase was stable above NNO, but absent at more reduced conditions. Suppression of plagioclase stability produces higher Al2O3 and CaO melts. The solid sulphur-bearing phases and sulphur speciation in the melt are strong functions of ƒO2, as expected, but also of pressure. At 0.5 GPa, the anhydrite stability field is intersected at NNO ≥ +2, but at 1.0 and 1.5 GPa, experiments at the same ƒO2 produce sulphides and the stability field of sulphate moves towards higher ƒO2 by ~1 log unit at 1.0 GPa and ~1.5 log units at 1.5 GPa. As a result, models that appeal to high oxidation state as an important control on the mobility of Cu (and other chalcophiles) during crustal differentiation must also consider the enhanced stability of sulphide in deep- to mid-crustal cumulates even for relatively oxidized (NNO + 2) magmas. Experimental glasses reproduce the commonly observed minimum in sulphur solubility between the S2- and S6+ stability fields. The solubility minimum is not related to the Fe content (Fe2+/Fe3+ or total) of the melt. Instead, we propose this minimum results from an unidentified, but relatively insoluble, S-species of intermediate oxidation state.

  7. Hydrous albite magmas at lower crustal pressure: new results on liquidus H2O content, solubility, and H2O activity in the system NaAlSi3O8-H2O-NaCl at 1.0 GPa

    NASA Astrophysics Data System (ADS)

    Makhluf, A. R.; Newton, R. C.; Manning, C. E.

    2016-09-01

    The system albite-H2O serves as an important model for the generation of granitic magmas, yet relatively few experimental investigations have focused on phase relations at high pressure. This study reports new experimental results, at 1.0 GPa and 690-1050 °C, on the temperature and liquid composition at vapor-saturated melting, the H2O content of undersaturated silicate liquids in equilibrium with albite, the solubility of albite in H2O-NaCl fluids immediately below the solidus, and the activity of H2O in hydrous NaAlSi3O8 liquids along the liquidus. Albite melts and dissolves congruently at all temperatures and salinities. In the NaCl-absent system, the temperature of vapor-saturated melting of low albite, confirmed by X-ray diffraction, is 695 ± 5 °C and the liquid composition is 18.14 ± 1.35 wt% H2O. The temperature dependence of the fluid-undersaturated liquidus curve in the system NaAlSi3O8-H2O varies with H2O wt% (w_{{{{H}}2 {{O}}}}) according to T = - 2.0331 × 10^{ - 3} w_{{{{H}}2 {{O}}}}3 + 1.6497w_{{{{H}}2 {{O}}}}2 {-} 58.963w_{{{{H}}2 {{O}}}} + 1235.5°C} indicating positive curvature in temperature-composition coordinates and a dry melting temperature of 1235 °C. At 690 °C, immediately below the solidus, albite solubility decreases drastically with NaCl content of the fluid phase, from 8.8 ± 0.6 wt% in the NaCl-free fluid to ˂2 % at NaCl concentration of only 10 mol%. Experiments determining the activity of H2O (a_{{{{H}}2 {{O}}}}) in liquids at vapor-saturated melting exploited low Cl solubility in liquids and low albite solubility in the presence of H2O-NaCl fluids. The maximum Cl content of quenched glasses, only 0.95 wt%, and very low albite solubility together make possible H2O activity measurement in melts equilibrated with NaCl-H2O solutions. When combined with activity data for H2O-NaCl fluids, experimentally determined a_{{{{H}}2 {{O}}}} along the liquidus is described by T = - {469.16a_{{H2 O}}L}^{{1/2}} {-} 93.382a_{{H2 O}}L + 1235.5

  8. A Long-Lived Porphyry Ore Deposit and Associated Upper Crustal Silicic Magma Body, Bajo de la Alumbrera, Argentina

    NASA Astrophysics Data System (ADS)

    Harris, A. C.; Allen, C. M.; Reiners, P. W.; Dunlap, W. J.; Cooke, D. R.; Campbell, I. H.; White, N. C.

    2004-05-01

    Porphyry Cu deposits form within and adjacent to small porphyritic intrusions that are apophyses to larger silicic magma bodies that reside in the upper parts of the Earth's crusts. Centred on these intrusions are hydrothermal systems of exsolved magmatic fluid with a carapace of convectively circulating meteoric water. We have applied several different dating techniques to assess the longevity of the magmatic-hydrothermal system and to define the cooling history of porphyry intrusions at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. The closure temperatures of these techniques range from 800oC (zircon U-Pb) to ~70oC (apatite (U-Th)/He; Fig. 1). The resulting cooling history indicates that the magmatic-hydrothermal system cooled to ca. 200oC by ~1.5 m.y. after the last porphyry intrusion (i.e., 6.96±0.09 Ma; U-Pb zircon age). Based on (U-Th)/He apatite data (closure temperature ~60-70oC), exposure and cessation of the system occurred before 4 Ma. The longevity of the magmatic-hydrothermal system indicated by these results is inconsistent with accepted mechanisms for porphyry Cu deposit formation. Depending on wallrock permeability, depth and cooling method, a 2 km wide by 3 km high intrusion has been predicted to cool between 0.01 to 0.1 m.y. (marked as the grey interval; Cathles et al., 1997 Economic Geology). We have obtained numerous age determinations younger than the U-Pb zircon age of the last known intrusion at Bajo de la Alumbrera. These imply that simple cooling of the small, mineralized porphyries did not happen. For the magmatic-hydrothermal system to have been sustained for longer than 0.1 m.y., either 1) younger small intrusions have been episodically emplaced below the youngest known intrusions, thus prolonging heat flow, or 2) fluids derived from a deeper and larger parental intrusion have been episodically discharged through the ore deposit long after the porphyry intrusion had lost its available heat. In either case, the longevity of

  9. Magma Energy Extraction

    SciTech Connect

    Dunn, J.C.; Ortega, A.; Hickox, C.E.; Chu, T.Y.; Wemple, R.P.; Boehm, R.F.

    1987-01-20

    The rate at which energy can be extracted from crustal magma bodies has an important influence on the economic viability of the magma energy concept. Open heat exchanger systems where fluid is circulated through solidified magma offer the promise of high energy extraction rates. This concept was successfully demonstrated during experiments in the molten zone of Kilauea Iki lava lake. Ongoing research is directed at developing a fundamental understanding of the establishment and long term operation of open systems in a crustal magma body. These studies show that magma solidifying around a cooled borehole will be extensively fractured and form a permeable medium through which fluid can be circulated. Numerical modeling of the complete magma energy extraction process predicts that high quality thermal energy can be delivered to the wellhead at rates that will produce from 25 to 30 MW electric. 10 figs., 10 refs.

  10. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  11. Architecture of on- and off-axis magma bodies at EPR 9°37-40‧N and implications for oceanic crustal accretion

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo; Carbotte, Suzanne M.; Carton, Hélène; Mutter, John C.; Aghaei, Omid; Nedimović, Mladen R.; Canales, J. Pablo

    2014-03-01

    Crustal accretion at fast-spreading mid-ocean ridges is believed to be concentrated in a narrow zone up to a few kilometers wide centered beneath the ridge axis. However, there is increasing evidence for off-axis magmatism occurring beyond this narrow zone. Here, we present 3D multichannel seismic (MCS) images from the East Pacific Rise 9°37-40‧N extending to 11 km on the ridge flanks. In the axial region, two offset axial magma bodies underlie a small ridge-axis discontinuity at ∼9°37‧N, displaying an overlapping geometry similar to that of the seafloor structures above. On the ridge flanks, a series of off-axis magma lenses (OAML) are imaged: they are located 2-10 km from the ridge axis, at 700 to 1520 ms two-way travel time below seafloor (bsf) (∼1.6 to 4.5 km bsf), with variable areas ranging from 0.5 km2 to 5.2 km2. The largest body is centered 4 km east of the ridge axis and is composed of a large, continuous, flat-topped lens and a series of small, discontinuous, westward-dipping bodies along its western edge. The flat crest of the OAML lies at approximately the same depth beneath layer 2A as the axial magma lens and we infer that this OAML has formed by aggregation of ascending melts that accumulate at the base of the sheeted dike section. A cluster of reflections underlying the OAML at 1260-1510 ms bsf are observed that may be deeper lenses feeding melts to the upper lens. This largest OAML is associated with Moho travel time anomalies of 120-260 ms within a zone that extends up to 2 km from the edge of the OAML, suggesting a lower crust that is partially molten with lower crustal velocities reduced by 8-18% and/or thicker than normal by up to 1 km. Local volcanic edifices are found above two of the three OAMLs imaged in our study area and are inferred to be the eruptive products of the OAMLs. From the volume of these edifices and the Moho travel time anomalies we estimate the potential contribution of off-axis magmatism to the total volume of

  12. Magma mixing in a zoned alkalic intrusion

    SciTech Connect

    Price, J.G.; Henry, C.D.; Barker, D.S.; Rubin, J.N.

    1985-01-01

    The Marble Canyon stock is unique among the alkalic intrusions of the Trans-Pecos magmatic province in being zoned from a critically silica-undersaturated rim of alkali gabbro (AG) to a silica-oversaturated core of quartz syenite (QS). Hybrid rocks of intermediate chemical and mineralogical compositions occur between the rim and core. Nepheline-syenite dikes occur only within the AG. Silica-rich dikes of quartz trachyte, pegmatite, and aplite cut the AG, QS, and hybrid rocks. Thermodynamic calculations of silica activity in the magmas illustrate the presence of two trends with decreasing temperature: a silica-poor trend from AG to nepheline syenite and a silica-rich trend from hybrid rocks to QS. Least-square modeling of rock and mineral compositions suggests 1) the nepheline syenites were derived by crystal-liquid fractionation from nearly solidified AG at the rim of the stock, 2) AG magma farther from the rim mixed with a small proportion of granitic magma, and 3) the mixture then differentiated to produce the hybrid rocks and QS. Zirconium dioxide inclusions in plagioclase crystals of the hybrid rocks and QS indicate that the AG magma contained some crystals before it mixed with the granitic magma. Two origins for the granitic magma are possible: 1) a late-stage differentiate of a mantle-derived hypersthene-normative magma and 2) melting of crustal material by the AG magma. Recognition of magma mixing might not have been possible if the AG had been hypersthene-normative.

  13. Upper Crustal Structure above Off-axis Magma Lenses at RIDGE-2000 East Pacific Rise Integrated Study Site from 3D Multichannel Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Newman, K. R.; Canales, J.; Nedimovic, M. R.

    2010-12-01

    seafloor reflection. Layer 2A and 2B arrivals from the downward continued shot gathers are picked and a regularized non-linear inversion is conducted with FAST software (Zelt & Barton, 1998). We present the tomography results as well as associated 3D seismic reflection images that encompass the OAML. With this analysis we aim to better constrain the spatial extent of altered upper crust associated with the OAML. The results have implications for the processes of the crustal formation and off-axis hydrothermal activity on fast-spreading mid-ocean ridges.

  14. Crustal structure along the active Costa Rican volcanic arc

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Holbrook, W. S.; van Avendonk, H. J.; Mora Fernandez, M.; Alvarado, G. E.; Harder, S. H.

    2010-12-01

    We present results from an explosion-source seismic refraction transect along the entire active Costa Rican volcanic arc. The seismic data were acquired in 2005 as part of the TICO-CAVA experiment with the goals of delineating the basic crustal architecture of this relatively young volcanic arc, understanding magmatic emplacement processes, and estimating the bulk composition and growth rates of arc crust. The seismic transect extends ~280 km along the axis of the arc and consists of 16 shots (200 - 1200 kg) recorded by 710 seismometers. The active Costa Rican arc consists of two segments with distinct morphologies, the Guanacaste Cordillera (GC) in the north and Central Cordillera (CC) in the south. This segmentation is linked to the subducting Cocos ridge, which occurs beneath the CC and has a northern boundary roughly coincident with the arc segment boundary. Volcanoes of the GC rise from a plateau of ~500 m elevation to maximum heights of ~1500 m, while the CC volcanoes rise from ~1500 m to heights of 3500 m. The crustal structure beneath these segments is distinctly different. The entire arc is covered by a ~5-km-thick carapace with velocities of 4.5-5.8 km/s that probably represent volcaniclastics, flows and small plutons. Beneath the GC, a 1- to 2-km-thick “grainitic” layer (6.0-6.1 km/s) lies beneath the carapace. Velocities below this granitic layer suggest a somewhat more mafic composition, but they increase slowly with depth from 6.2-6.3 km/s between 6-15 km depth. Total crustal thickness beneath the GC is ~40 km, but analysis of crustal thickness is ongoing. The crust beneath Guanacaste thus has a velocity structure very similar to average continental crust, though with slightly slower velocities, perhaps due to high temperatures beneath the arc. As the arc has only been active in this location for <5 m.y., this suggests that either the earlier Neogene arc to the west substantially modified the oceanic-plateau crustal foundation here or that the

  15. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    Popocatepetl gas plumes can be explained by the ingestion of limestone by the rising magma. Long-lived recycling of oceanic crust and sediments into the mantle, varying amounts of mantle and slab flux heterogeneities, and obvious crustal assimilation processes are responsible for the complex element and isotope distributions observed along the TMVB.

  16. Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil.

    PubMed

    Motoki, Akihisa; Sichel, Susanna E; Vargas, Thais; Melo, Dean P; Motoki, Kenji F

    2015-01-01

    This paper presents geochemical behaviour of trace elements of the felsic alkaline rocks of the state of Rio de Janeiro, Brazil, with special attention of fractional crystallization and continental crust assimilation. Fractionation of leucite and K-feldspar increases Rb/K and decreases K2O/(K2O+Na2O). Primitive nepheline syenite magmas have low Zr/TiO2, Sr, and Ba. On the Nb/Y vs. Zr/TiO2 diagram, these rocks are projected on the field of alkaline basalt, basanite, and nephelinite, instead of phonolite. Well-fractionated peralkaline nepheline syenite has high Zr/TiO2 but there are no zircon. The diagrams of silica saturation index (SSI) distinguish the trends originated form fractional crystallization and crustal assimilation. In the field of SSI<-200, Zr/TiO2 and Ba/Sr have negative correlations to SSI in consequence of fractional crystallization. In the field of SSI>-200, they show positive correlations due to continental crust assimilation. Total REEs (Rare Earth Elements) is nearly 10 times that of granitic rocks, but LaN/SmN and LaN/YbN are similar. REE trend is linear and Eu anomaly is irrelevant. The pegmatitic liquid generated by country rock partial melting is SiO2-oversaturated and peraluminous with high Ba, Sr, Ba/Sr, Zr/TiO2, and SSI, with high content of fluids. This model justifies the peraluminous and SiO2-oversaturated composition of the rocks with relevant effects of continental crust assimilation.

  17. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, Lu-Lu; Wang, Qiang; Wyman, Derek A.; Ou, Quan; Dan, Wei; Jiang, Zi-Qi; Wu, Fu-Yuan; Yang, Jin-Hui; Long, Xiao-Ping; Li, Jie

    2016-02-01

    depleted isotope compositions [(87Sr/86Sr)i = 0.7054-0.7065; εNd(t) = - 0.61 to + 0.25; zircon εHf(t) = + 4.7 to + 9.7] of the granodiorite porphyries indicate that they were most probably generated by partial melting of newly underplated and thickened basaltic lower crust. Taking into account ophiolites in the Bangong-Nujiang Suture and Late Mesozoic magmatic rocks in the southern Qiangtang sub-block, we suggest that this area was located in a continental arc setting. Moreover, from the Late Jurassic to Early Cretaceous, the ancient lower crust in the southern Qiangtang sub-block was gradually replaced by mantle-derived juvenile materials. The crustal evolution indicates that, in a continental arc, basaltic magma underplating plays a key role in vertical crustal growth.

  18. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  19. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  20. Architecture of Off-Axis Magma Bodies at EPR 9o37-40'N and Implications for Oceanic Crustal Accretion (Invited)

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Mutter, J. C.; Aghaei, O.; Nedimovic, M. R.; Canales, J.

    2013-12-01

    Oceanic crust is formed by decompression melting of upwelling mantle beneath mid-ocean ridges. At fast spreading ridges, although the mantle melting region is several hundred kilometers wide, crustal accretion is believed to be concentrated in a narrow zone a few kilometers wide centered beneath the ridge axis. However, mid-ocean ridge studies over the past two decades have provided increasing evidence that melt focusing may not occur entirely within this narrow zone. Here, we present 3D multichannel seismic (MCS) images from the East Pacific Rise 9o37-40'N extending to 11 km on the ridge flanks. In the axial region, we observe two axial magma bodies underlying the seafloor discontinuity at ~9°37'N at a depth of 1.5-1.6 km, with an overlapping geometry similar to that of the seafloor structures. On the ridge flanks, a series of off-axis melt lenses (OAML) are imaged, located from 2 -10 km from ridge axis, at 700 to 1520 ms twtt below seafloor (bsf) (~1.6 to 4.5 km), and with various sizes from 0.46 km2 to 5.15 km2. The largest body is centered 3.9 km east of the ridge axis and is composed of a series of small discontinuous upward dipping bodies at the western edge of a larger, continuous flat-topped lens. The flat-topped crest of the OAML lies at approximately the same depth beneath layer 2A as the axial magma lens, from which we infer that this OAML has formed by aggregation of smaller melt bodies ascending along the western edge of the main body that accumulate at the base of the sheeted dike section. A cluster of reflectors underlies the OAML at 1260-1510 ms bsf that may be deeper lenses feeding melts to the upper lens. Moho traveltime anomalies associated with this OAML suggest a lower crust that is partially molten with velocities reduced by 8-18% and/or thicker than normal by up to 1 km. The data indicate that melt delivery pathways to the OAML are independent of the axial system. Local volcanic edifices are found above two of the three OAMLs in our study

  1. Distinct Chlorine Isotopic Reservoirs on Mars: Implications for Character, Extent and Relative Timing of Crustal Interaction with Mantle-Derived Magmas, Evolution of the Martian Atmosphere, and the Building Blocks of an Early Mars

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.

    2017-01-01

    The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar

  2. A forward modeling approach to relate geophysical observables at active volcanoes to deep magma dynamics

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Longo, A.; Papale, P.; Vassalli, M.; Saccorotti, G.; Cassioli, A.

    2010-12-01

    Geophysical signals usually recorded at active volcanoes mainly consist of i) seismicity - high frequency volcano-tectonic events, volcanic tremor, and LP, VLP, and ULP events, ii) ground displacement, and iii) gravity changes. These signals are inverted to constrain the characteristics of the underground signal source, usually under the simplifying assumptions of point source or small volume homogeneous source with simple geometry. We have instead designed a forward approach, that complements the more classical inverse approaches, whereby magma chamber dynamics are numerically solved for compressible-to-incompressible multi-component magmas in geometrically complex systems constituted by one or more magma chambers connected through dykes. Our new code, that we named GALES (GAlerkin LEast Squares), solves the complex time-space-dependent dynamics of convection and mixing of magmas with different composition and properties, and reveals patterns of overpressure much more complex than commonly assumed in inverse analyses. Time-space-dependent stress distributions computed along the rigid magma-wall boundaries are employed as boundary conditions in either numerical simulations of wave propagation through the rock system by taking into account wall rock heterogeneities and topographic surface, or semi-analytical solutions of the Green’s functions in homogeneous infinite space. Ground displacement computed at the topographic surface ranges from the seismic to the quasi-static frequency band. Density variations associated to the simulated magma convection dynamics are instead employed to determine the corresponding gravity change at the surface. Seismicity, ground deformation, and gravity changes associated to deep magma dynamics are therefore computed as a function of time at different points on the Earth’s surface. Performed numerical simulations involve cases with largely different magma/dyke size, geometry and depth, and magma compositions from basaltic to

  3. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Rivalta, E.; Pinel, V.; Maccaferri, F.; Bagnardi, M.; Acocella, V.

    2015-12-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  4. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  5. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  6. Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.

    2013-12-01

    Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  8. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  9. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha Volcanic Cluster

    NASA Astrophysics Data System (ADS)

    Walker, Barry A.; Klemetti, Erik W.; Grunder, Anita L.; Dilles, John H.; Tepley, Frank J.; Giles, Denise

    2013-04-01

    Phenocryst assemblages of lavas from the long-lived Aucanquilcha Volcanic Cluster (AVC) have been probed to assess pressure and temperature conditions of pre-eruptive arc magmas. Andesite to dacite lavas of the AVC erupted throughout an 11-million-year, arc magmatic cycle in the central Andes in northern Chile. Phases targeted for thermobarometry include amphibole, plagioclase, pyroxenes, and Fe-Ti oxides. Overall, crystallization is documented over 1-7.5 kbar (~25 km) of pressure and ~680-1,110 °C of temperature. Pressure estimates range from ~1 to 5 kbar for amphiboles and from ~3 to 7.5 kbar for pyroxenes. Pyroxene temperatures are tightly clustered from ~1,000-1,100 °C, Fe-Ti oxide temperatures range from ~750-1,000 °C, and amphibole temperatures range from ~780-1,050 °C. Although slightly higher, these temperatures correspond well with previously published zircon temperatures ranging from ~670-900 °C. Two different Fe-Ti oxide thermometers (Andersen and Lindsley 1985; Ghiorso and Evans 2008) are compared and agree well. We also compare amphibole and amphibole-plagioclase thermobarometers (Ridolfi et al. 2010; Holland and Blundy 1994; Anderson and Smith 1995), the solutions from which do not agree well. In samples where we employ multiple thermometers, pyroxene temperature estimates are always highest, zircon temperature estimates are lowest, and Fe-Ti oxide and amphibole temperature estimates fall in between. Maximum Fe-Ti oxide and zircon temperatures are observed during the middle stage of AVC activity (~5-3 Ma), a time associated with increased eruption rates. Amphibole temperatures during this time are relatively restricted (~850-1,000 °C). The crystal record presented here offers a time-transgressive view of an evolving, multi-tiered subvolcanic reservoir. Some crystals in AVC lavas are likely to be true phenocrysts, but the diversity of crystallization temperatures and pressures recorded by phases in individual AVC lavas suggests erupting magma

  10. The ˜AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Guilbaud, Marie-Noëlle; Siebe, Claus

    2016-04-01

    Medium-sized volcanoes, also known as Mexican shields due to their andesitic composition and slightly higher slope angles in comparison to Icelandic shields, occur across the Trans-Mexican Volcanic Belt and represent nearly one third of all volcanic edifices in the Michoacán-Guanajuato Volcanic Field (MGVF). Many questions about their origin and eruptive dynamics remain unanswered. Here, we focus on El Metate, the youngest (˜AD 1250) monogenetic shield volcano of the MGVF and the most voluminous (˜9.2 km3 dense rock equivalent) Holocene eruption in Mexico. Its eruptive history was reconstructed through detailed mapping, geochemical analysis (major and trace elements, Sr-Nd-Pb isotopic data), and rheological study of its thick andesitic flows. Early and late flow units have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by two separate magma batches that originated from a heterogeneous mantle source and followed distinct differentiation paths during their ascent. Thermobarometry calculations constraining the conditions of crystallization indicate a temporary storage of the last erupted magma batch at a depth of ˜7-10 km. Lava rheology was estimated using petrographic characteristics, geochemical data, and flow dimensions. The magma viscosity increased from 102-103 Pa s prior to eruption through 106-108 Pa s during ascent, to 109-1011 Pa s during lava emplacement. Though magma viscosity was quite high, the eruption was purely effusive. The explosive eruption of such a large magma volume was probably avoided due to efficient open system degassing (outgassing) of the magma as it ascended through the uppermost crust and erupted at the surface.

  11. Coupling Thermal and Chemical Signatures of Crustal Magma Bodies: Energy-Constrained Eruption, Recharge, Assimilation, and Fractional Crystallization (E'RAχFC)

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.

    2004-12-01

    Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at

  12. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day

  13. Deep to shallow crustal differentiation of within-plate alkaline magmatism at Mt. Bambouto volcano, Cameroon Line

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Aka, Festus T.; Merle, Renaud; Callegaro, Sara; N'ni, Jean

    2015-04-01

    At Mt. Bambouto, a continental stratovolcano of the Cameroon Line, magmatic activity lasted for over 20 Ma and was characterized by at least two caldera formation events. Here we present detailed mineral and whole-rock compositions of Mt. Bambouto basanites, hawaiites, trachytes and phonolites, with emphasis on caldera related volcanic rocks. These data show that differentiation took place within a complex magma plumbing system, with magma chambers occurring at different depths within the crust. Though differentiation was chiefly dominated by fractional crystallization, chemical mineral zoning of olivines, clinopyroxenes, and feldspars is also indicative of open-system processes such as magma mixing and magma chamber recharge. Chemical zoning is evident mainly in the outer 100 microns of the analyzed crystals, suggesting that magma mixing occurred shortly before eruption. The last caldera collapse at about 15 Ma also marked a clear change in the magma plumbing system. Before caldera collapse, Mt. Bambouto was characterized by a dominant production of peralkaline quartz trachytic magmas in shallow magma chambers. During this phase, evolved basic magmas (hawaiites) and strongly evolved alkaline magmas were formed in middle and upper crustal magma chambers, respectively. After emptying of the shallow quartz trachytic magma chamber and caldera collapse, magmas from the deep magmatic plumbing system were mobilized and partially mixed. This triggered eruptions of magmas on the caldera rims.

  14. CO2 contents of basaltic arc magmas from the southern Cascades: Corrections for shrinkage bubble effects and implications for crustal storage

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Aster, E. M.; Clynne, M. A.

    2015-12-01

    Volatiles such as H2O and CO2 play an important role in a variety of magmatic processes from magma generation to eruption, and melt inclusions (MI) - small volumes of melt trapped inside phenocrysts - have been used to measure their pre-eruptive concentrations. In particular, the volatile contents of MI from basaltic arc magmas have been used to track the role of dehydrating subducted oceanic lithosphere in magma formation in subduction zones. However, recent studies have shown that MI are imperfect storage containers and can lose H by diffusion through the mineral host and CO2 due to formation of a vapor bubble in the inclusion. Such results suggest that even the least degassed melt inclusions from a volcano may have volatile concentrations that underestimate the initial volatile contents of the magma. Thus, recognizing pre- and post-entrapment processes that influence MIs is important for interpreting magmatic processes at depth. Recent studies have developed methods that can be used to distinguish and correct for H diffusive loss (Bucholz et al., 2013) and CO2 loss to vapor bubbles (Wallace et al., 2015). Here, we focus on MI from eight cinder cones that erupted primitive basaltic magmas in the Lassen region of the Cascade arc, where H2O and Cl concentrations have been shown to relate to the amount of a subduction component added to the mantle wedge (Walowski et al., 2015). Using methods of Aster (2015), we correct for the loss of CO2 to a vapor bubble formed within a melt inclusion as the result of post-entrapment crystallization and thermal contraction. The results of the CO2 restoration calculations suggest that ~25-75% of the initial dissolved CO2 in the melt inclusions at the time of trapping was lost to a vapor bubble after entrapment. Trapping pressures for the restored CO2 and maximum H2O contents calculated using methods of Iacono-Marziano et al. (2012) range from ~2-5 kbar, equivalent to entrapment depths of ~7-18 km below the surface. The results

  15. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Bagnardi, Marco; Acocella, Valerio

    2016-04-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we use numerical models to show that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observation. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control the shallow accumulation of magma in stacked sills, consistently with observations as well as the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  16. Crustal reworking during a long-lived magma pulse: 11 m.y. isotopic record from the Aucanquilcha Volcanic Cluster, central Andes

    NASA Astrophysics Data System (ADS)

    Walker, B. A.; Grunder, A.

    2010-12-01

    Since ~11 Ma, successive eruptions from the Aucanquilcha Volcanic Cluster (AVC) in northern Chile document the magmatic evolution of a long-lived subduction system. Situated within the central volcanic zone of the Andes, the AVC is constructed upon remarkably thick (~70 km) crust—a heterogeneous filter through which all central Andean lavas are extensively processed and modified. The 11 m.y. history of the AVC is characterized by sluggish eruption rates from ~11-5 Ma, with an increase in eruptive output between ~5-2.5 Ma, and a return to modest eruption rates from ~2.5 Ma to present. This pattern is attributed to the waxing, climactic, and waning stages of a magmatic ‘pulse’. Eruptive pulsing in the form of long-lived magmatic systems appears to be not uncommon (cf. APVC, Tuolumne, SRMVF), and we exploit the AVC lavas to explore the geochemical signal accompanying the evolution of such a system. More specifically, isotopes (whole rock Sr, Nd, Pb; O from plagioclase) and trace elements of the AVC lavas are employed to investigate the compositional influence of the crustal filter on the production of arc lavas. 87Sr/86Sr of AVC andesite to dacite lavas ranges from 0.70509 to 0.70680, with a broad increase through time. Three analyses from nearby, recently erupted basaltic andesite scoria cones yield relatively high ratios of 0.706347 - 0.706826. 143Nd/144Nd ranges from 0.512262 - 0.512590 (scoria cones: 0.512300 - 0.512323), and decrease through time, consistent with the Sr data. δ18O ranges from 6.47 to 7.47, with the lowest values associated with the onset of AVC volcanism. 206Pb/204Pb ranges from 18.4679 to 18.7039, with a small, but distinguishable, increase through time. Dy/Yb ranges from 1.79 - 3.45 and Sm/Yb ranges from 2.18 - 6.66, with a marked increase from 11 Ma to present. The AVC is situated on the boundary between two distinct Pb domains (Arequipa and Antofalla) of the central Andean crust. The minor fluctuation seen in Pb isotopes through time

  17. Crustal differentiation

    NASA Astrophysics Data System (ADS)

    Melekhova, E.; Blundy, J.

    2012-12-01

    Few erupted arc magmas are sufficiently primitive to be in equilibrium with mantle wedge peridotite, meaning a significant volume of arc crust must comprise plutonic cumulates formed during differentiation of primitive basalts. This cumulate material is typically not available for petrological study. A notable exception is the Lesser Antilles arc, which is renowned for the exceptional abundance and variety of cumulate xenoliths. Additionally, several Lesser Antilles islands erupt primitive basaltic magmas that are close to being in mantle equilibrium. The abundance of plutonic cumulate xenolith and presence of primitive basalts make the Lesser Antilles an ideal natural laboratory for understanding crust-building processes. Here we evaluate the chemical consequences of basalt differentiation in the mid to lower crust and uppermost mantle (10 to 30 km) by means of experiments on a primitive basalt from St. Vincent. The results were combined with compositional and textural observation of plutonic cumulate xenoliths from the island. Our goal was to constrain the conditions under which basalt differentiation can generate the observed chemical diversity of erupted magmas at St. Vincent and the compositions of minerals in cumulate xenoliths. Our experimental results show that it is possible to produce a wide compositional range of melts by differentiation at different depths and water contents from the same primitive source. The melts provide a close match to the full range of erupted lavas on the island. The cumulate assemblages, however, have a consistently lower pressure origin (6-10 km). They are formed by crystallisation of ascending melts generated in the deep crust. Phencocrysts in the lavas are distinct from those in cumulates, notably in the absence of amphibole. The phenocrysts demonstrably grew in response to crystallisation at very shallow depth, probably in sub-volcanic magma chambers. Thus St. Vincent shows clear evidence for polybaric crustal

  18. Thermomechanics of shallow magma chamber pressurization: Implications for the assessment of ground deformation data at active volcanoes

    NASA Astrophysics Data System (ADS)

    Gregg, P. M.; de Silva, S. L.; Grosfils, E. B.

    2013-12-01

    In this study, we utilize thermomechanical models to investigate how magma chambers overpressurize as the result of either magmatic recharge or volatile exsolution. By implementing an adaptive reservoir boundary condition we are able to track how overpressure dissipates as the magma chamber expands to accommodate internal volume changes. We find that the size of the reservoir greatly impacts the resultant magma chamber overpressure. In particular, overpressure estimates for small to moderate-sized reservoirs (1-10 km3) are up to 70% lower than previous analytical predictions. We apply our models to Santorini volcano in Greece where recent seismic activity and ground deformation observations suggested the potential for eruption. The incorporation of an adaptive boundary condition reproduces Mogi flux estimates and suggests that the magma reservoir present at Santorini may be quite large. Furthermore, model results suggest that if the magma chamber is >100 km3, overpressures generated due to the high magma flux may not exceed the strength of the host rock, thus requiring an additional triggering mechanism for eruption. Although the adaptive boundary condition approach does not calculate the internal evolution of the magma reservoir, it represents a fundamental step forward from elastic Mogi models and fixed boundary solutions on which future investigations of the evolution of the magma can be built.

  19. Active convection and magma dynamics at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Katz, Richard

    2010-05-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, convection can break the symmetry of corner flow. This may help to explain the asymmetric distribution of shear-wave velocity beneath the MELT region of the East Pacific Rise. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  20. Locating Active Plate Boundaries by Earthquake Data. Crustal Evaluation Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  1. Shallow-crustal magma zones in and south of Long Valley, California: Final report for the period 1 Sept 1986 to 30 April 1988

    SciTech Connect

    Peppin, W.A.

    1988-04-25

    This report summarizes our investigations of seismic data from the Long Valley caldera region based mainly on data obtained from the USGS-Doe seismic network. During the period several thousands of earthquakes were recorded and located, including the extensive aftershock sequence of the July 1986 Chalfant Valley. This contract has provided partial operating support for this network, including the establishment of the first permanently-recording wideband digital station in the Mammoth Lakes region. Results presented here unclude five manuscripts involving various aspects of the research. These manuscripts cover: (1) a general description of unusual seismic phase near Mammoth Lakes and their possible use in the delineation of shallow-crustal anomalous bodies, (2) a paper which pinpoints the location of a shallow-crustal anomaly about 6 km deep and 2 to 3 km in lateral near the south end of Hilton Creek fault, (3) the documentation of a strong lateral structural change in the vicinity of Inyo Craters, and (4) papers contributing to knowledge of the tectonics of the Mammoth Lakes area.

  2. Development of a deep-crustal shear zone in response to syntectonic intrusion of mafic magma into the lower crust, Ivrea-Verbano zone, Italy

    USGS Publications Warehouse

    Snoke, A.W.; Kalakay, T.J.; Quick, J.E.; Sinigoi, S.

    1999-01-01

    A 1 to 1.5 km-thick, high-temperature shear zone is localized in wall rocks subparallel to the eastern intrusive contact of the Permian Mafic Complex of the Ivrea-Verbano zone (IVZ), Italy. The shear zone is characterized by concentrated ductile deformation manifested by a penetrative foliation subparallel to the intrusive contact and a northeast-plunging sillimanite lineation. Evidence of noncoaxial strain and transposition is widespread in the shear zone including such features as rootless isoclinal folds, dismemberment of competent layers, and scattered kinematic indicators. The metasedimentary rocks in the shear zone are migmatitic, and the accumulation of leucosome is variable within the shear zone. Near the intrusive contact with the Mafic Complex leucosome forms ~20 vol% of the wall rock, whereas leucosome concentrations may locally reach ~60 vol% of the wall rock near the outer limits of the shear zone. This variation in vol% leucosome suggests melt/magma migration from the inferred site of anatexis along the intrusive contact to lower-strain regions within and near the margins of the shear zone. The leucosome accumulations chiefly occur as layer-parallel concentrations, but are also folded and boudined, and locally are associated with tension gashes and fracture arrays. Networks of granitic dikes and small plutons in the eastern IVZ suggest that some magmas migrated out of the high-temperature shear zone. Some magma apparently migrated laterally along the strike of the shear zone and concentrated in areas of lower strain where the intrusive contact takes a major westward bend. The high-temperature shear zone is interpreted as a 'stretching fault' (or stretching shear zone) after Means [W.D. Means, Stretching faults, Geology 17 (1989) 893-896], whereupon the metasedimentary wall rocks and associated leucosome deformed synchronously with the multistage emplacement and deformation flow of the Mafic Complex. The recognition of a high-temperature shear zone

  3. Ultra-rapid formation of large volumes of evolved magma

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Jaupart, C.

    2006-10-01

    We discuss evidence for, and evaluate the consequences of, the growth of magma reservoirs by small increments of thin (⋍ 1-2 m) sills. For such thin units, cooling proceeds faster than the nucleation and growth of crystals, which only allows a small amount of crystallization and leads to the formation of large quantities of glass. The heat balance equation for kinetic-controlled crystallization is solved numerically for a range of sill thicknesses, magma injection rates and crustal emplacement depths. Successive injections lead to the accumulation of poorly crystallized chilled magma with the properties of a solid. Temperatures increase gradually with each injection until they become large enough to allow a late phase of crystal nucleation and growth. Crystallization and latent heat release work in a positive feedback loop, leading to catastrophic heating of the magma pile, typically by 200 °C in a few decades. Large volumes of evolved melt are made available in a short time. The time for the catastrophic heating event varies as Q- 2 , where Q is the average magma injection rate, and takes values in a range of 10 5-10 6 yr for typical geological magma production rates. With this mechanism, storage of large quantities of magma beneath an active volcanic center may escape detection by seismic methods.

  4. Inverse differentiation pathway by multiple mafic magma refilling in the last magmatic activity of Nisyros Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Braschi, Eleonora; Francalanci, Lorella; Vougioukalakis, Georges E.

    2012-07-01

    Based on detailed field, petrographic, chemical, and isotopic data, this paper shows that the youngest magmas of the active Nisyros volcano (South Aegean Arc, Greece) are an example of transition from rhyolitic to less evolved magmas by multiple refilling with mafic melts, triggering complex magma interaction processes. The final magmatic activity of Nisyros was characterized by sub-Plinian caldera-forming eruption (40 ka), emplacing the Upper Pumice (UP) rhyolitic deposits, followed by the extrusion of rhyodacitic post-caldera domes (about 31-10 ka). The latter are rich in magmatic enclaves with textural and compositional (basaltic-andesite to andesite) characteristics that reveal they are quenched portions of mafic magmas included in a cooler more evolved melt. Dome-lavas have different chemical, isotopic, and mineralogical characteristics from the enclaves. The latter have lower 87Sr/86Sr and higher 143Nd/144Nd values than dome-lavas. Silica contents and 87Sr/86Sr values decrease with time among dome-lavas and enclaves. Micro-scale mingling processes caused by enclave crumbling and by widespread mineral exchanges increase from the oldest to the youngest domes, together with enclave content. We demonstrate that the dome-lavas are multi-component magmas formed by progressive mingling/mixing processes between a rhyolitic component ( post-UP) and the enclave-forming mafic magmas refilling the felsic reservoir (from 15 wt.% to 40 wt.% of mafic component with time). We recognize that only the more evolved enclave magmas contribute to this process, in which recycling of cumulate plagioclase crystals is also involved. The post-UP end-member derives by fractional crystallization from the magmas leftover after the previous UP eruptions. The enclave magma differentiation develops mainly by fractional crystallization associated with multiple mixing with mafic melts changing their composition with time. A time-related picture of the relationships between dome-lavas and

  5. Earthquake relocations, crustal rheology, and active deformation in the central-eastern Alps (N Italy)

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Scafidi, Davide; Ranalli, Giorgio; Martin, Silvana; Della Vedova, Bruno; Spallarossa, Daniele

    2015-10-01

    A revised seismic catalogue (1994-2007) for the central-eastern Alps (N Italy) is presented. 396 earthquake relocations, for local magnitudes in the 1.2-5.3 range, are performed using a 3D crustal velocity structure and probabilistic locations. The location procedure is validated by computing a set of 41 quarry shot solutions and all the results, both about shots and seismic events, are compared with those obtained using the routine location procedure. Results are shown for five contiguous seismotectonic domains, as supported by geological and geophysical evidence (e.g., fault systems, crustal tomography, focal mechanisms types). Earthquake hypocentres are mostly located in the upper crust (0-15 km of depth), in good agreement with thermo-rheological models about the brittle-ductile transitions (8-9 km of depth) and total crustal strengths (1.0-2.0 TN m- 1). Epicentres are clustered and/or aligned along present-day active geological structures. The proposed seismotectonic model shows dominant compression along the Giudicarie and Belluno-Bassano-Montello thrusts, with strain partitioning along the dominant right-lateral strike-slip faults of the Schio-Vicenza domain. The present-day deformation of the Southern Alps and the internal Alpine chain is compatible with Adria indentation and the related crustal stress distribution.

  6. Os and S isotope studies of ultramafic rocks in the Duke Island Complex, Alaska: variable degrees of crustal contamination of magmas in an arc setting and implications for Ni-Cu-PGE sulfide mineralization

    NASA Astrophysics Data System (ADS)

    Stifter, Eric C.; Ripley, Edward M.; Li, Chusi

    2016-10-01

    The Duke Island Complex is one of the several "Ural-Alaskan" intrusions of Cretaceous age that occur along the coast of SE Alaska. Significant quantities of magmatic Ni-Cu-PGE sulfide mineralization are locally found in the complex, primarily within olivine clinopyroxenites. Sulfide mineralization is Ni-poor, consistent with petrologic evidence which indicates that sulfide saturation was reached after extensive olivine crystallization. Olivine clinopyroxenites were intruded by magmas that produced sulfide-poor, adcumulate dunites. As part of a study to investigate the potential for Ni-rich sulfide mineralization in association with the dunites, a Re-Os and S isotope study of the dunites, as well as sulfide mineralization in the olivine clinopyroxenites, was initiated. Importantly, recent drilling in the complex identified the presence of sulfidic and carbonaceous country rocks that may have been involved in the contamination of magmas and generation of sulfide mineralization. γOs (110 Ma) values of two sulfidic country rocks are 1022 and 2011. δ34S values of the country rocks range from -2.6 to -16.1 ‰. 187Os/188Os ratios of sulfide minerals in the mineralization hosted by olivine clinopyroxenites are variable and high, with γOs (110 Ma) values between 151 and 2059. Extensive interaction with Re-rich sedimentary country rocks is indicated. In contrast, γOs (110 Ma) values of the dunites are significantly lower, ranging between 2 and 16. 187Os/188Os ratios increase with decreasing Os concentration. This inverse relation is similar to that shown by ultramafic rocks from several arc settings, as well as altered abyssal dunites and peridotites. The relation may be indicative of magma derivation from a sub-arc mantle that had experienced metasomatism via slab-derived fluids. Alternatively, the relation may be indicative of minor contamination of magma by crustal rocks with low Os concentrations but high 187Os/188Os ratios. A third alternative is that the low Os

  7. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia

    2011-10-01

    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  8. Shallow S wave attenuation and actively degassing magma beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi

    2014-10-01

    Taal Volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A real-time broadband seismic network was recently deployed and has detected volcano-tectonic events beneath Taal. Our source location analysis of these volcano-tectonic events, using onset arrival times and high-frequency seismic amplitudes, points to the existence of a region of strong attenuation near the ground surface beneath the east flank of Volcano Island in Taal Lake. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. These features strongly suggest that the high-attenuation region represents an actively degassing magma body near the surface that has existed for more than 20 years.

  9. First Assessment Of Volatiles Dissolved In Magma Feeding Yasur Activity (Vanuatu Arc)

    NASA Astrophysics Data System (ADS)

    Metrich, N.; Bertagnini, A.; Garaebiti, E.; Belhadj, O.; Edouard, D.; Mercier, M.

    2008-12-01

    Yasur is the active volcano of Tanna island, located in the south part of the arc where the convergence rate achieves 12 cm per year. Yasur is known, since its discovery in 1774 by Cook, for its continuous strombolian to vulcanian activity. Proximal pyroclastic deposits are constituted by alternating cm to dm thick fallout layers of highly vesicular scoria and ash, most likely representative of the Yasur early activity, although not dated. The scoriae are basaltic-trachyandesites, with relatively low abundances in Th and Nb (2.1 and 1.0 ppm, respectively), intermediate Nb/Y and La/Yb ratios (0.05 and 5.2, respectively) and high Th/Ta and Ba/La ratios (23 and 37, respectively). They display an unusual low crystal content (~14% in mass), possibly suggesting a high thermal flux. The plagioclase-phyric bombs presently thrown out at the crater, during strombolian activity, have more evolved trace and major element compositions that requires ~25% crystal fractionation. The crystal textures in scoria testify to rapid crystallization. In particular, olivine Fo75-71 contains typical hopper to closed-hopper, melt/glassy inclusions (M.I.) indicative of high cooling rates that prevented significant interactions with their hosts. Their major element compositions cover a wide range encompassing that of the bulk rocks and glassy matrices. There is no evidence of boundary layer effect in M.I. due to high olivine crystallization rate. The very first dataset on dissolved volatiles indicates that these melt inclusions are rather poor in water (H2O <1.3 wt% and CO2 (<0.03 wt%) but rich in Cl (up to 0.3-0.4 wt%) and S (up to 0.25 wt%). The glassy matrices of scoria are strongly degassed (in wt% Cl = 0.07-0.09; S <0.01 to 0.03). Thus both S (>90%) and Cl (up to 75-80%) are extensively degassed from the erupting Yasur magma. The expected S/Cl wt ratio in gas emissions should be close to 1, a factor 2- 3 lower than actually measured [1]. It implies that only one third of S emissions

  10. Investigating magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions.

    NASA Astrophysics Data System (ADS)

    Dahren, Börje; Troll, Valentin R.; Andersson, Ulf-Bertil; Chadwick, Jane P.; Gardner, Mairi F.

    2010-05-01

    Improving our understanding of magma plumbing and storage remains one of the major challenges for petrologists and volcanologists today. This is especially true for explosive volcanoes, where constraints on magma plumbing are essential for predicting dynamic changes in future activity and thus for hazard mitigation. This study aims to investigate the magma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the 1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rate of ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry [1,2] b.) plagioclase-melt thermo-barometry [3] c.) clinopyroxene composition barometry [2,4] and d.) olivine-melt thermometry [5]. The minerals analysed are from basaltic-andesites erupted between 1990-2002, with an average modal composition of 70% groundmass, 25% plagioclase, 4% clinopyroxene and <1% olivine. Clinopyroxenes are homogenous and display no obvious zoning. Plagioclases are considerably more heterogenous, exhibiting complex zoning and An content between An45-80. In addition, mineral compositions of older clinopyroxenes, erupted between 1883-1981, are used for comparison [6,7]. Previously, both seismic [8] and petrological studies [6,7,9] have addressed the magma plumbing beneath Anak Krakatau. Interestingly, petrological studies indicate shallow magma storage in the region of 2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and 22 km respectively. Our results imply that clinopyroxene presently crystallizes in a mid-crustal storage region (8-12 km), a previously identified depth level for magma storage, using seismic methods [8]. Plagioclases, in turn, form at shallower depths (4-6 km), in concert with previous petrological studies [6,7,9]. Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km), indicating that there may have been an overall shallowing of the plumbing system over the last ~40 years

  11. Activities and source mechanisms of volcanic deep low-frequency earthquakes and its implication for deep crustal process in magmatic arc (Invited)

    NASA Astrophysics Data System (ADS)

    Nakamichi, H.

    2013-12-01

    Rocks under upper mantle and lower crustal temperatures and pressures typically deform in a ductile manner, therefore it is difficult to accumulate enough deviatoric stress in rocks to generate brittle failure under this condition. However earthquakes occur at upper mantle and lower crust beneath active volcanoes, and are recognized as volcanic deep low-frequency earthquakes (VDLFs). VDLFs are characterized by mostly low-frequency energy (<5 Hz), emergent arrivals and long-duration codas. VDLF activity observed at depths of 10-50 km in Japan, the Philippines, Alaska and the Western US (Power et al., 2004; Ukawa, 2005; Nichols et al. 20011), has generally been attributed to magma transport in the mid-to-lower crustal and uppermost mantle regions. However because VDLF seismicity is infrequent, with relatively weak and emergent signals, the relationship between deep magma transport and seismic radiation remains poorly understood. Borehole dense seismic observation systems, such as the high-sensitivity seismograph network 'Hi-net' in Japan (Obara et al. 2005), are effective for detecting not only non-VDLFs (Obara, 2002) but also VDLFs. Since 1997 the Japan Meteorological Agency has routinely detected and located DLFs using the Hi-net dataset, and have identified DLFs in and around most quaternary volcanoes in Japan (Takahashi and Miyamura, 2009). Several studies have attempted to estimate source mechanisms of VDLFs in Japan. The first attempt by Ukawa and Ohtake (1987), obtained a single force as the source mechanism of a VDLF beneath Izu-Ohshima by using particle motions of S-waves. Following that work strike-slip type and non-double-couple source mechanisms were obtained using waveform inversions for VDLFs in Northeast Japan (Nishidomi and Takeo 1996; Okada and Hasegawa, 2000). Nakamichi et al. (2003; 2004) estimated the source mechanisms of Mts. Iwate and Fuji through the moment tensor inversion of spectral ratios of body waves from using data from a dense seismic

  12. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  13. Io: Loki Patera as a Magma Sea

    NASA Technical Reports Server (NTRS)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  14. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  15. Effects of magma and conduit conditions on transitions between effusive and explosive activity: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.

    2013-12-01

    Transitions between effusive and explosive eruptions, common at silicic volcanoes, can occur between distinct eruptive episodes or can occur as changes between effusive and explosive phases within a single episode. The precise causes of these transitions are difficult to determine due to the multitude of mechanisms and variables that can influence fragmentation thresholds. Numerical modeling of magma ascent within a volcanic conduit allows the influence of key variables to be extensively tested. We study the effect of different variables on the mass eruption rate at the vent using a conservative, 1-D, two-phase, steady-state model that allows for lateral gas loss at shallow depths. Several fragmentation criteria are also tested. We are able to generate a number of regime diagrams for a variety of magma and conduit conditions that constrain transitions from effusive to explosive episodes. We show that a transition to explosive activity can occur without changes in the bulk chemistry, crystal volume fraction, or gas mass fraction of the magma. Eruptive style can be controlled by the pressure gradient within the conduit caused by either overpressure in the chamber or varying lava dome size at the vent. Specific results are sensitive to both magma temperature and conduit geometry. It is important that these variables are well constrained when applying this model to different volcanic systems. We apply our model to the recent activity at Merapi Volcano in Indonesia. We constrain model input and output parameters using current petrologic, seismic, and geodetic studies of the Merapi system, and vary critical parameters over reasonable ranges as documented in the literature. Our model is able to reproduce eruption rates observed during both the 2006 effusive and 2010 explosive/effusive eruptions. Our modeling suggests that a combination of chamber overpressure, increased volatile content, and decreased crystal content due to the voluminous injection of new magma into the

  16. Pressure of Partial Crystallization of Katla Magmas: Implications for Magma Chamber Depth and for the Magma Plumbing System

    NASA Astrophysics Data System (ADS)

    Tenison, A.; Kelley, D. F.; Barton, M.

    2012-12-01

    Iceland is home to some of the most active volcanoes in the world, and recent eruptions emphasize the need for additional studies to better understand the volcanism and tectonics in this region. Historical patterns of eruptive activity and an increase in seismic activity suggest that Katla is showing signs of an impending eruption. The last major eruption in 1918 caused massive flooding and deposited enough sediment to extend part of Iceland's southern shoreline by 5 km. It also generated sufficient ash over many weeks to cause a brief drop in global temperature. A future eruption similar to the 1918 event could have serious global consequences, including severe disruptions in air travel, short-term global cooling, and shortened growing seasons. Relatively few studies have focused on establishing the depth of the main magma chamber beneath Katla, although knowledge of magma chamber depth is essential for constraining models for magma evolution and for understanding the eruption dynamics of this volcano. The results of seismic and geodetic studies suggest the presence of a shallow magma body at a depth of 2-4 km, but do not provide firm evidence for the presence of deeper chambers in contrast to results obtained for other volcanoes in Iceland. Studies of volcanic ash layers reveal a history of alternating cycles of basaltic and silicic eruptions. We suggest that the shallow magma chamber is primarily the source of silica-rich magma, and postulate that there must be one or more additional chambers in the middle or deep crust that serve as the storage site of the basaltic magma erupted as lava and ash. We have tested this proposal by calculating the pressures of partial crystallization for basalts erupted at Katla using petrological methods. These pressures can be converted to depths and the results provide insight into the likely configuration of the magma plumbing system. Published analyses of volcanic glasses (lava, ash and hyaloclastite) were used as input data

  17. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    PubMed

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  18. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    NASA Astrophysics Data System (ADS)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  19. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    PubMed Central

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-01-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges. PMID:28218270

  20. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  1. Staged storage and magma convection at Ambrym volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Sheehan, Fionnuala; Barclay, Jenni

    2016-08-01

    New mineral-melt thermobarometry and mineral chemistry data are presented for basaltic scoriae erupted from the Mbwelesu crater of Ambrym volcano, Vanuatu, during persistent lava lake activity in 2005 and 2007. These data reveal crystallisation conditions and enable the first detailed attempt at reconstruction of the central magma plumbing system of Ambrym volcano. Pressures and temperatures of magma crystallisation at Ambrym are poorly constrained. This study focuses on characterising the magma conditions underlying the quasi-permanent lava lakes at the basaltic central vents, and examines petrological evidence for magma circulation. Mineral-melt equilibria for clinopyroxene, olivine and plagioclase allow estimation of pressures and temperatures of crystallisation, and reveal two major regions of crystallisation, at 24-29 km and 11-18 km depth, in agreement with indications from earthquake data of crustal storage levels at c. 25-29 km and 12-21 km depth. Temperature estimates are 1150-1170 °C for the deeper region, and 1110-1140 °C in the mid-crustal region, with lower temperatures of 1090-1100 °C for late-stage crystallisation. More primitive plagioclase antecrysts are thought to sample a slightly more mafic melt at sub-Moho depths. Resorption textures combined with effectively constant mafic mineral compositions suggest phenocryst convection in a storage region of consistent magma composition. In addition, basalt erupted at Ambrym has predominantly maintained a constant composition throughout the volcanic succession. This, coupled with recurrent periods of elevated central vent activity on the scale of months, suggest frequent magmatic recharge via steady-state melt generation at Ambrym.

  2. Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS

    NASA Astrophysics Data System (ADS)

    Ueda, Hideki; Kozono, Tomofumi; Fujita, Eisuke; Kohno, Yuhki; Nagai, Masashi; Miyagi, Yousuke; Tanada, Toshikazu

    2013-06-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) developed volcano observation stations at the Kirishima volcanic group in 2010. The stations observed remarkable crustal deformation and seismic tremors associated with the Shinmoe-dake eruption in 2011. The major eruptive activity began with sub-Plinian eruptions (January 26) before changing to explosive eruptions and continuous lava effusion into the summit crater (from January 28). The observation data combined with GEONET data of GSI indicated a magma chamber located about 7 km to the northwest of Shinmoe-dake at about 10 km depth. The tiltmeter data also quantified detailed temporal volumetric changes of the magma chamber due to the continuous eruptions. The synchronized tilt changes with the eruptions clearly show that the erupted magma was supplied from the magma chamber; nevertheless, the stations did not detect clear precursory tilt changes and earthquakes showing ascent of magma from the magma chamber just before the major eruptions. The lack of clear precursors suggests that magma had been stored in a conduit connecting the crater and the magma chamber prior to the beginning of the sub-Plinian eruptions.

  3. Increased capture of magma in the crust promoted by ice-cap retreat in Iceland

    NASA Astrophysics Data System (ADS)

    Hooper, Andrew; Ófeigsson, Benedikt; Sigmundsson, Freysteinn; Lund, Björn; Einarsson, Páll; Geirsson, Halldór; Sturkell, Erik

    2011-11-01

    Climate warming at the end of the last glaciation caused ice caps on Icelandic volcanoes to retreat. Removal of surface ice load is thought to have decreased pressures in the underlying mantle, triggering decompression melting, enhanced magma generation and increased volcanic activity. Present-day climate change could have the same effect, although there may be a time lag of hundreds of years between magma generation and eruption. However, in addition to increased magma generation, pressure changes associated with ice retreat should also alter the capacity for storing magma within the crust. Here we use a numerical model to evaluate the effect of the current decrease in ice load on magma storage in the crust at the Kverkfjöll volcanic system, located partially beneath Iceland's largest ice cap. We compare the model results with radar and global positioning system measurements of surface displacement and changes in crustal stress between 2007 and 2008, during the intrusion of a deep dyke at Upptyppingar. We find that although the main component of stress recorded during dyke intrusion relates to plate extension, another component of stress is consistent with the stress field caused by the retreating ice cap. We conclude that the retreating ice cap led to enhanced capture of magma within the crust. We suggest that ice-cap retreat can promote magma storage, rather than eruption, at least in the short term.

  4. Crustal root beneath the Rif Cordillera as imaged from both active seismic data and teleseismic receiver functions.

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gil, Alba; Gallart, Josep; Carbonell, Ramon; Harnafi, Mimoun; Levander, Alan

    2015-04-01

    The Rif cordillera forms, together with the Betic ranges, one of the tightest orogenic arcs on Earth. This continental boundary zone is dominated now by the slow convergence between Nubia and Eurasia, but with clear evidences of extensional tectonics. One of the missing elements to constrain the complex geodynamics of the Gibraltar Arc System is the knowledge of the crustal architecture beneath northern Morocco. In the last decade a major effort has been done in this sense, from active and passive seismics. We compile here the recent results available from the Rif domains. Two 330 km long wide angle DSS profiles were recorded end of 2011 across the Rif in NS and EW transects within the Rifsis project, complemented by onshore recordings of the Gassis-WestMed marine profiles. At the same period, BB seismic arrays were deployed in the area within Topo-Iberia and Picasso projects, allowing receiver function analyses of crustal depths. The ray-tracing modeling of the Rifsis profiles reveal a large Moho step and an area of crustal thickening both in EW and NS directions, grossly coincident with the Bouguer gravity anomalies. The deployment logistics allowed that all the stations recorded all the shots, thus providing useful offline data. We will use here all available in-line and offline data to provide a map of the crustal thickness in northern Morocco. We combined two approaches: i) a hyperbolic time reduction applied to the seismic data, resulting in low-fold stacks in which the reflections from the Moho should appear as subhorizontal lines; ii) the arrival times of the observed PmP phases allow, assuming a mean crustal velocity, to assign a midpoint crustal thickness to each lecture. Although some uncertainties may be inherent to those approaches, a large crustal root, reaching more than 50 km, is well documented in the central part of the Rif Cordillera, close to the zone where the Alboran slab may still be attached to the lithosphere. We also compared these results

  5. The three-dimensional pattern of crustal deformation associated with active normal fault systems observed using continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Hreinsdottir, S.

    2009-12-01

    Geological examples of shallow dipping normal faults with large displacements are exposed at numerous locations throughout the world and it is widely recognized that extensional deformation at brittle crustal levels is most efficiently accomplished by slip across such structures. It has previously been shown that lower dip angles reduce the regional stresses required to drive large horizontal displacements. Nevertheless, the traditional theory of fault mechanics—based on Anderson’s classification of stress regimes, the Coulomb failure criterion, and Byerlee’s friction law—precludes such faults from slipping at low angle. Observational support for this traditional theory includes the absence of large unequivocally low-angle normal fault earthquakes in the global catalog; all well-determined normal fault earthquakes appear to have occurred on moderate to steeply dipping planes. However, precise measurements of 3D crustal motions based on continuous GPS in central Italy and Utah reveal deformation patterns across active normal fault systems that are inconsistent with active slip across steeply dipping planes. Instead, the combination of observed horizontal and vertical surface motions are consistent with slip across low angle surfaces independently imaged in the subsurface by seismic reflection and other geophysical data. For the Alto Tiberina fault in central Italy, active aseismic creep occurs at shallow crustal levels, most likely within the brittle-frictional regime at which Andersonian-Byerlee fault mechanics should be applicable. The actively creeping portion of the fault inferred using GPS geodesy correlates well with the observed pattern of micro-seismicity, which concentrates along the inferred subsurface fault plane. GPS measurements across the greater Wasatch fault zone in the vicinity of Salt Lake City, Utah, reveal crustal motions consistent with aseismic displacement across a shallow dipping fault or sub-horizontal shear zone at mid-crustal

  6. Is magma cooling responsible for the periodic activity of Soufrière Hills volcano, Montserrat, West Indies?

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Simpson, Guy; Chelle-Michou, Cyril; Neuberg, Jürgen

    2016-04-01

    After 400 years of quiescence, Soufrière Hills volcano on Montserrat (SHV) started erupting in 1995. Ongoing deformation and sulphur dioxide emission demonstrate that this volcanic systems is still restless, however, after 5 years of inactivity it remains unclear whether magma extrusion will restart. Also, if such periodically observed activity at SHV will restart, can we use past monitoring data to attempt to forecast the reawakening of this volcano? Cooling of volatile saturated magma leads to crystallisation, the formation of gas bubbles and expansion. Such volumetric variations are not only potentially responsible for deformation signals observed at the surface (Caricchi et al., 2014), but also lead to pressurisation of the magmatic reservoir and eventually renewed magma extrusion (Tait et al., 1989). We postulate that volcanic activity observed at SHM over the last 20 years could be essentially the result of the unavoidable progressive cooling of a magmatic body, which was probably assembled over thousands of years and experienced internal segregation of eruptible lenses of magma (Christopher et al., 2015). To test this hypothesis, we performed thermal modelling to test if the cooling of a shallow magma body emplaced since 1990 could account for the monitoring signals observed at SHV. The results show that progressive cooling of a 4km3 volume of melt could explain the deformation rate currently observed. Using the deformation rate obtained from the modelling for the first 15 years of cooling, a reservoir volume of about 13 km3 (Paulatto et al., 2012) and a critical value of overpressure of 10 MPa, it would have taken approximately only 3 years to pressurise the reservoir to the critical pressure and restart magma extrusion. This is in agreement with the time interval between previous pauses at SHV before 2010. Considering the current deformation rates, we speculate that magma extrusion could restart in 6-8 years after the end of the last event in 2010, hence

  7. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  8. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; Jarrín, P.; Quidelleur, X.

    2014-02-01

    The Quito Fault System (QFS) extends over 60 km along the Interandean Depression in northern Ecuador. Multidisciplinary studies support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the N-S segmented, en echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active, and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited N-S direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected at depth to inactive suture to the west. A new GPS data set indicates active shortening rates for Quito blind thrust of up to 4 mm/yr, which decreases northward along the fold system as it connects to the strike-slip Guayllabamba Fault System. The proximity of these structures to the densely populated Quito region highlights the need for additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  9. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu; Lagreulet, Sarah; Segovia, Monica; Font, Yvonne; Yepes, Hugo; Mothes, Patricia; Rolandone, Frédérique; Jarrin, Pierre; Quidelleur, Xavier

    2014-05-01

    The Quito Fault System (QFS) is an intraplate reverse fault zone, that extend over 60km along the Interandean Depression in northern Ecuador. Multidisciplinary studies coherently support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the NS segmented, en-echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited NS direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected, at depth, to inactive suture to the west. A new GPS dataset indicates active shortening rates for Quito blind thrust of up to 4mm/yr, wich decreases northwards along the fold system as it connects to the strike slip Guayllabamba Fault System. The proximity of these structures to the densely-populated Quito region underlines the need of additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  10. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  11. Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T.; Tackley, P. J.

    2011-12-01

    Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with

  12. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  13. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source

  14. CHARACTERISTICS OF THE CRUSTAL MAGMA BODY IN THE 2005-2006 ERUPTION AREA AT 9°50'N ON THE EAST PACIFIC RISE FROM 3D MULTI-CHANNEL SEISMIC DATA

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Marjanovic, M.; Aghaei, O.; Xu, M.; Han, S.; Stowe, L.

    2009-12-01

    In the summer of 2008 a large 3D multi-channel seismic dataset (expedition MGL0812) was collected over the 9°50’N Integrated Study Site at the East Pacific Rise, providing insight into the architecture of the magmatic system and its relationship with hydrothermal activity and volcanic/dyking events associated with the 2005-06 eruption. The main area of 3D coverage is located between 9°42’N and 9°57’N, spanning ~28km along-axis, and was acquired along 94 (1 partial) prime lines shot across-axis and each ~24km-long. Pre-processing of the data acquired in this area is now well under way, with significant efforts targeted at amplitude spike removal. Current work focuses on setting up the 3D processing sequence up to the stack stage for a small group of inlines (axis-perpendicular grid lines spaced 37.5m apart) located over the “bull’s eye” site at 9°50’N, a sequence that will subsequently be applied to the whole dataset. At the meeting we will present stacked and migrated sections - inlines, crosslines, time slices - obtained through 3D processing. We will discuss results focusing on the characteristics of the axial magma body, whose detailed structure and along-axis segmentation will be resolved by the 3D data.

  15. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Cascades, USA

    NASA Astrophysics Data System (ADS)

    Kiser, Eric; Levander, Alan; Zelt, Colin; Palomeras, Imma; Schmandt, Brandon; Hansen, Steven; Creager, Kenneth; Ulberg, Carl

    2016-04-01

    Mount St. Helens is currently the most active volcano along the Cascadia arc. Though several studies investigated the magmatic system beneath Mount St. Helens following the May 18, 1980 eruption, tomographic imaging of the system has been limited to ~10 km depth due to the distribution of earthquakes in the region. This has made it difficult to estimate the volume of the shallow magma reservoir beneath the volcano, the regions of magma entry into the lower crust, and the connectivity of this magma system throughout the crust. The latter is particularly interesting as one interpretation of the Southern Washington Cascades Conductor (SWCC) suggests that the Mount St Helens and Mount Adams volcanic systems are connected in the middle crust (Hill et al., 2009). The multi-disciplinary iMUSH (imaging Magma Under St. Helens) project is designed to investigate these and other fundamental questions associated with Mount St. Helens. Here we present the first high-resolution 2D Vp and Vs models derived from travel-time data from the iMUSH 3D active-source seismic experiment. The experiment consisted of ~6000 seismograph stations which recorded 23 explosions and hundreds of local earthquakes. Directly beneath Mount St. Helens, we observe a high Vp/Vs body, inferred to be the upper/middle crustal magma reservoir, between 4 and 13 km depth. We observe a second high Vp/Vs body, likely of magmatic origin, at roughly the same depth beneath Indian Heaven Volcanic Field, which last erupted 9 ka. Southeast of Mount St. Helens is a low Vp column extending from the middle crust, ~15 km depth, to the Moho at ~40 km depth. A cluster of deep long-period events, typically associated with injection of magma, occurs at the northwestern boundary of this low Vp column. We interpret this as the middle-lower crust magma reservoir. In the lower crust, high Vp features bound the magma reservoir directly beneath Mount St. Helens and the Indian Heaven Volcanic Field. One explanation for these high Vp

  16. Plume-driven plumbing and crustal formation in Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive

  17. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    . The GPS observation detected the westward displacement of 2cm and subsidence of 2-3cm in the west part of the island during 6 months of 2008. The deformation can be explained by a deflation source at depth of 5km, 2km west offshore, plus a shallow, inflation source in the shape of EW open crack (40cm wide) in the western part. The deflation source has the volume of 10**7 m3, much larger than the volume of inflation source, suggesting that the open crack was accompanied by a small activity in the 2008 summer. The distribution of seismic hypocenters and the deformation sources support the magmatic path rising from the deep part of the west part of the island, as proposed by Watanabe et al. (2005). Interaction of magma with seawater likely became the trigger of phreatic explosions in the waning stage.

  18. Magma Plumbing System of Baru Volcano From Deep to Shallow Crust

    NASA Astrophysics Data System (ADS)

    Hidalgo, P. J.; Rooney, T. O.

    2009-12-01

    Linking shallow and deep crustal processes at volcanic arcs has been an important component in evaluating the growth and evolution of the continental crust. Commonly, deep crustal processes and the nature of sub-arc lithosphere are studied long after the volcanism has ceased in locations such as obducted arc terranes. In active arcs, studies of deep crustal processes focus on rare cumulates or restites derived from lower crustal levels. Although uncommon in the erupted magmas, these cumulates are required by crustal differentiation models of arc magmatism. Quaternary magmas at Baru volcano in Panama contain ubiquitous amphibole bearing cumulates that provide an opportunity to probe the magma plumbing system of an active arc volcano. These cumulates are present in andesitic-dacitic lavas and pyroclastic flows of adakitic character and are not related to their host magmas by crystal fractionation processes. Two cumulate groups can be readily identified. The first group typically consists of 2-5 cm nodules of large amphiboles (3-6 mm) with minor (<2%) interstitial glass and small plagioclase phenocrysts (~0.5 mm). Amphiboles from this group are mostly tschermakites or magnesiohornblendes and are typically zoned with increasing MgO and decreasing AlT in core to rim transects. The second group forms larger nodules (5-10 cm) that are composed of variable amounts of amphibole and plagioclase microlites along with minor glass. Amphiboles from this group are all magnesiohornblendes and are typically unzoned. Pressure and temperature estimates for both groups of cumulates and the host amphiboles are consistent with sampling of mush/magma zones from the lower to upper crust within the plumbing system of Baru volcano. The first cumulate group may be derived from deep hot zones were magmatic differentiation of water-saturated arc magmas takes place by crystallization of amphibole-rich cumulates. The second group is consistent with derivation from shallow levels where

  19. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  20. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  1. Investigation of MAGMA chambers in the Western Great Basin. Final report, 9 June 1982-31 October 1985

    SciTech Connect

    Peppin, W.A.

    1986-02-10

    This report summarizes efforts made by the Seismological Laboratory toward the detection and delineation of shallow crustal zones in the western Great Basin, and toward the development of methods to accomplish such detection. The work centers around the recently-active volcanic center near Long Valley, California. The work effort is broken down into three tasks: (1) network operations, (2) data analysis and interpretation, and (3) the study of shallow crustal amomalies (magma bodies). Section (1) describes the efforts made to record thousand of earthquakes near the Long Valley caldera, and focusses on the results obtained for the November 1984 round Valley earthquake. Section (2) describes the major effort of this contract, which was to quantify the large volume of seismic data being recorded as it pertains to the goals of this contract. Efforts described herein include (1) analysis of earthquake focal mechanisms, and (2) the classification, categorization, and interpretation of unusual seismic phases in terms of reflections and refractions from shallow-crustal anomalous zones. Section (3) summarizes the status of our research to date on the locations of magma bodies, with particular emphasis on a location corresponding to the map location of the south end of Hilton Creek fault. Five lines of independent evidence suggest that magma might be associated with this spot. Finally, new evidence on the large magma bodies within the Long Valley caldera, of interest to the DOE deep drilling project, is presented.

  2. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  3. Nanocalorimetric Characterization of Microbial Activity in Deep Subsurface Oceanic Crustal Fluids.

    PubMed

    Robador, Alberto; LaRowe, Douglas E; Jungbluth, Sean P; Lin, Huei-Ting; Rappé, Michael S; Nealson, Kenneth H; Amend, Jan P

    2016-01-01

    Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 1.2 nW ml(-1)) was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63°C) and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb) near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 h during a step-wise isothermal scan from 35.5 to 85.0°C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 × 10(4) cells ml(-1) FLUID) and their subsequent metabolic activity at temperatures greater than 50°C. The average cellular energy consumption (5.68 pW cell(-1)) reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8°C), relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 h as temperature ramped from 34.8 to 43.0°C. Corresponding cell-specific energy turnover rates (0.18 pW cell(-1)) were converted to oxygen uptake rates of 24.5 nmol O2 ml(-1) FLUID d(-1), validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  4. Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru)

    NASA Astrophysics Data System (ADS)

    Chiaradia, Massimo; Merino, Daniel; Spikings, Richard

    2009-11-01

    The Yanacocha magmatic field (northern Peru) hosts the largest high sulfidation gold deposit on Earth. Mineralization is associated with porphyritic intrusions distributed along a NE-trending magmatic structural corridor. Eight of these intrusions investigated in this study range in age from 12.4 to 8.4 Ma and show systematic chemical and isotopic changes through time. They are interpreted to derive from hydrous mafic magmas evolving through amphibole-clinopyroxene ± garnet fractionation and lower crust melting (leaving a garnet residue) at deeper levels, which led to variably strong adakite-like signatures, and through plagioclase-amphibole fractionation at shallower levels, both accompanied by crustal assimilation and recharge (recharge assimilation fractional crystallization, RAFC, processes). Systematic geochemical and isotopic changes with intrusion ages, coupled with plagioclase zoning and amphibole geobarometry, suggest that the evolution of the magmatic system occurred through interaction of mantle-derived melts with an increasing length of the crustal column and propagation from deep towards shallower crustal levels through time. This was probably the result of a steadily increasing compression that has progressively slowed down magma ascent forcing magmas to evolve at a series of intermediate level chambers between the lower and upper crust. Increased compression might have been related to the onset of subduction of the buoyant Inca oceanic plateau, estimated to occur at ˜ 12 Ma, i.e., the same time of the onset of the rapid transition from "normal" to adakite-like signatures. The giant Yanacocha ore system developed in coincidence with the ˜ 3.6-4.0 Ma-long intrusion of the adakite-like magmas (12.4/12.0-8.4 Ma) formed by the above processes into a small upper crustal volume and peaked during the last ˜ 2.4 Ma (10.8-8.4 Ma) of magmatic activity after a ˜ 1.4 Ma long (12.4-11.0 Ma) maturation of magmas at deep crustal levels. Further investigation is

  5. Magma beneath Yellowstone National Park

    USGS Publications Warehouse

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.

    1975-01-01

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  6. Magma Beneath Yellowstone National park.

    PubMed

    Eaton, G P; Christiansen, R L; Iyer, H M; Pitt, A D; Mabey, D R; Blank, H R; Zietz, I; Gettings, M E

    1975-05-23

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  7. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (<3 Mm3) weak (< 20 m high fountains; strombolian activity) summit/proximal eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Non-eruptive tremor and increase in SO2 emissions were interpreted as evidences of magma intrusions at shallow depth (< 2.0 km) preceding the eruptions. The 2007-2011 phase of activity represents an ideal case-study to analyze the influence of magma ascent kinetics on the evolution of volcano dynamics at a persistently active basaltic volcano. In order to track magma storage and ascent, we compare geochemical data on fast quenched glasses (melt inclusions, Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by

  8. Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Browning, John; Bazargan, Mohsen; Gudmundsson, Agust

    2016-10-01

    Few places on Earth are as tectonically active as the Karlıova region of eastern Turkey. In this region, complex interactions between the Arabian, Eurasian and Anatolian plates occur at the Karlıova Triple Junction (KTJ). The relationship between tectonics and magma propagation in triple-junction tectonic settings is poorly understood. Here we present new field and numerical results on the mechanism of magma propagation at the KTJ. We explore the effects of crustal heterogeneity and anisotropy, in particular the geometry and mechanical properties of many faults and layers, on magma propagation paths under a variety of tectonic loadings. We propose that two major volcanic centres in the area, the Turnadağ volcano and the Varto caldera, are both fed by comparatively shallow magma chambers at depths of about 8 km, which, in turn, are fed by a single, much larger and deeper reservoir at about 15-18 km depth. By contrast, the nearby Özenç volcanic area is fed directly by the deeper reservoir. We present a series of two-dimensional and three-dimensional numerical models showing that the present tectonic stresses encourage magma-chamber rupture and dyke injection. The results show that inversion tectonics encourages the formation of magma paths as potential feeder dykes. Our three-dimensional models allow us to explore the local stresses induced by complex loading conditions at the Karlıova triple junction, using an approach that can in future be applied to other similar tectonic regions. The numerical results indicate a great complexity in the potential magma (dyke) paths, resulting from local stresses generated by interaction between mechanical layers, major faults, and magma chambers. In particular, the results suggest three main controls on magma path formation and eventual eruptions at KTJ: (1) the geometry and attitude of the associated faults; (2) the heterogeneity and anisotropy of the crust; and (3) mechanical (stress) interactions between deep and shallow

  9. Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.

    2009-01-01

    Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does

  10. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  11. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust

    NASA Astrophysics Data System (ADS)

    Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn

    2017-01-01

    The formation of the continental crust at subduction zones involves the differentiation of hydrous mantle-derived magmas through a combination of crystallization and crustal melting. However, understanding the mechanisms by which differentiation occurs at depth is hampered by the inaccessibility of the deep crust in active continental arcs. Here we report new high-pressure electrical conductivity and petrological experiments on hydrated andesitic melt from Uturuncu volcano on the Bolivian Altiplano. By applying our results to regional magnetotelluric data, we show that giant conductive anomalies at mid-crustal levels in several arcs are characterized by relatively low amounts of intergranular andesitic partial melts with unusually high dissolved water contents (≥8 wt.% H2O). Below Uturuncu, the Altiplano-Puna Magma Body (APMB) displays an electrical conductivity that requires high water content (up to 10 wt.%) dissolved in the melt based on crystal-liquid equilibria and melt H2O solubility experiments. Such a super-hydrous andesitic melt must constitute about 10% of the APMB, the remaining 90% being a combination of magmatic cumulates and older crustal rocks. The crustal ponding level of these andesites at around 6 kbar pressure implies that on ascent through the crust hydrous magmas reach their water saturation pressure in the mid-crust, resulting in decompression-induced crystallization that increases magma viscosity and in turn leads to preferential stalling and differentiation. Similar high conductivity features are observed beneath the Cascades volcanic arc and Taupo Volcanic Zone. This suggests that large amounts of water in super-hydrous andesitic magmas could be a common feature of active continental arcs and may illustrate a key step in the structure and growth of the continental crust. One Sentence Summary: Geophysical, laboratory conductivity and petrological experiments reveal that deep electrical conductivity anomalies beneath the Central Andes

  12. Crustal Structure in the Imperial Valley Region of California From Active-Source Seismic Investigations

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.

    2008-12-01

    shallow as 12 km beneath the Imperial Valley. Modeling of gravity data requires that this layer deepen and/or pinch out beneath the bordering mesas and mountain ranges. This pinch-out is imaged in the 1992 data beneath the Chocolate Mountains. Based on its high velocity and the presence of intrusive basaltic rocks in the sedimentary section in the Imperial Valley, the subbasement is thought to be a mafic intrusive complex similar to oceanic middle crust. (4) Crustal thickness and upper-mantle velocity are 21-22 km and 7.6-7.7 km/s, respectively, beneath the Imperial Valley but increase to 27 km and 8.0 km/s, respectively, beneath the Chocolate Mountains. Our results from the Salton Trough may be contrasted with active-source seismic results from the northern Gulf of California (Guaymas basin; Lizarralde et al., 2007). These results show the crust to thin to 10-14 km within the Gulf. Below 3-4 km of sediment, the crust has a velocity of 6.8 km/s, interpreted to be new igneous (gabbroic) crust. Thus, the rifting process appears to have produced negligible metasedimentary basement and a crustal thickness as little as half that beneath the Salton Trough.

  13. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    The area of Rabaul (Papua New Guinea) consists of at least seven - possibly nine - nested-calderas that have formed over the past 200 ky. The last caldera-forming eruption occurred 1400 y BP, and produced about 10 km3 of crystal-poor, two-pyroxene dacite. Since then, five effusive and explosive eruptive episodes have occurred from volcanic centres along the caldera rim. The most recent of these was preceded by decade-long unrest (starting in 1971) until the simultaneous eruption of Vulcan and Tavurvur, two vents on opposite sides of the caldera in 1994. Most eruptive products are andesitic in composition and show clear signs of mixing/mingling between a basalt and a high-K2O dacite. The hybridization is in the form of banded pumices, quenched mafic enclaves, and hybrid bulk rock compositions. In addition, the 1400 y BP caldera-related products show the presence of a third mixing component; a low-K2O rhyodacitic melt or magma. Geochemical modeling considering major and trace elements and volatile contents shows that the high-K2O dacitic magma can be generated by fractional crystallization of the basaltic magma at shallow depths (~7 km, 200 MPa) and under relatively dry conditions (≤3 wt% H2O). The low-K2O rhyodacitic melt can either be explained by extended crystallization at low temperatures (e.g. in the presence of Sanidine) or the presence of an additional, unrelated magma. Our working model is therefore that basalts ascend to shallow crustal levels before intruding a main silicic reservoir beneath the Rabaul caldera. Storage depths and temperatures estimated from volatile contents, mineral-melt equilibria and rock densities suggest that basalts ascend from ~20 km (~600 MPa) to ~7 km (200 MPa) and cool from ~1150-1100°C before intruding a dacitic magma reservoir at ~950°C. Depending on the state of the reservoir and the volumes of basalt injected, the replenishing magma may either trigger an eruption or cool and crystallize. We use evidence from major and

  14. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  15. 3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.; Nicol, A.; Fohrmann, M.; Bland, K. J.; King, P. R.

    2013-04-01

    The Taranaki Basin in the west of New Zealand's North Island has evolved from a rifted Mesozoic Gondwana margin to a basin straddling the Neogene convergent Australian-Pacific plate margin. However, given its proximity to the modern subduction front, Taranaki Basin is surprisingly cold when compared to other convergent margins. To investigate the effects of active margin evolution on the thermal regime of the Taranaki Basin we developed a 3D crustal-scale forward model using the petroleum industry-standard basin-modelling software Petromod™. The crustal structure inherited from Mesozoic Gondwana margin breakup and processes related to modern Hikurangi convergent margin initiation are identified to be the main controls on the thermal regime of the Taranaki Basin. Present-day surface heat flow across Taranaki on average is 59 mW/m2, but varies by as much as 30 mW/m2 due to the difference in crustal heat generation between mafic and felsic basement terranes alone. In addition, changes in mantle heat advection, tectonic subsidence, crustal thickening and basin inversion, together with related sedimentary processes result in variability of up to 10 mW/m2. Modelling suggests that increased heating of the upper crust due to additional mantle heat advection following the onset of subduction is an ongoing process and heating has only recently begun to reach the surface, explaining the relatively low surface heat flow. We propose that the depth of the subducted slab and related mantle convection processes control the thermal and structural regimes in the Taranaki Basin. The thermal effects of the subduction initiation process are modified and overprinted by the thickness, structure and composition of the lithosphere.

  16. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    In the Central Mediterranean, the differential roll-back of the subducting Nubia Plate caused the Neogene-Quaternary extrusion of the Calabrian arc onto the oceanic Ionian slab, and the opening of the oceanic Tyrrhenian Basin, in the overriding Eurasia Plate. The differential motion at the edges of the arc was largely accommodated along transform faults that propagated across the orogenic belt. Since the Late Quaternary, the southern edge of the arc has been replaced by the roughly N-S oriented Siculo-Calabrian Rift Zone (SCRZ) that formed as the NNW-directed normal faults of NE Sicily, crossing the orogenic belt, have linked the NNE-oriented Tyrrhenian margin of southern Calabria with the NNW-trending Africa-Ionian boundary of southeastern Sicily. Our study focused on the Sicily shoulder of the SCRZ, where the transition zone between the extensional belt and the still active Nubia-Eurasia convergent margin is characterized by two distinct mobile crustal wedges, both lying on an upwarped Mantle, where a re-orientations of the σ1 is combined with volcanism (e.g. Etna, Aeolian islands) and a huge tectonic uplift. In southeastern Sicily, the Hyblean-Etnean region evolved, since about 0.85 Ma, as an indipendent crustal wedge, moving towards the NNW and pointing to the active Mt. Etna volcano. A local ENE crustal stretching accompanied the traslation of the block and pre-dated the ESE-oriented extension governing the propagation of the southernmost branch of the SCR, which started at about 330 ka B.P.. Similarly, the Peloritani-Aeolian region, flanked by the 125 ka-old NE-Sicily branch of the rift zone, represents a mostly submerged crustal wedge that migrates towards the NE, diverging from the rest of the Sicily collision zone and pointing to the Stromboli volcano. The Peloritani-Aeolian block is characterized by the occurrence of a wide central NE-oriented collapsed basin contoured by an actively uplifting region, whose tectonic boundaries are evidenced by a sharp

  17. Imaging a magma plumbing system from MASH zone to magma reservoir

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Ward, Kevin M.; Zandt, George; Ducea, Mihai N.; Beck, Susan L.

    2017-01-01

    The Puna Plateau of the Central Andes is a well-suited location to investigate the processes associated with the tectono-magmatic development of a Cordilleran system. These processes include long-lived subduction (including shallow and steep phases), substantial crustal thickening, the emplacement of large volumes of igneous rocks, and probably delamination. To elucidate the processes associated with the development of a Cordilleran system, we pair Common Conversion Point-derived receiver functions with Rayleigh wave dispersion data from Ambient Noise Tomography. The resulting high-resolution shear wave velocity model of the southern Puna Plateau reveals the details of a lithospheric-scale magma plumbing system. Slow velocities near the crust-mantle transition are interpreted as a MASH zone (a partially molten zone where mantle-derived melts interact with the lithosphere and undergo density differentiation) with ∼ 4- 9% melt. After differentiation, less dense and presumably more felsic melts propagate to shallower depths within the crust (∼20 km below surface) and comprise vertically (∼10 km) and laterally (∼75 km) extensive slow velocity bodies that span the frontal arc and plateau interior. These large slow velocity bodies represent a partially molten mid-crust (up to 22%) where magma can further evolve to higher silica concentrations. The periodic influx of melt from the underlying MASH zone into these mid-crustal bodies may serve as a trigger to the eruption of the voluminous ignimbrites observed in the southern Puna Plateau. Many of the active tectonic processes operating along the southern Puna Plateau are thought to be analogous to the processes that formed the North American Cordillera. Thus, these results could provide insight into some of the processes associated with the development of a Cordilleran margin.

  18. Oxygen isotope composition of mafic magmas at Vesuvius

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.

    2009-12-01

    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  19. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase equilibria experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Yasuda, Atsushi; Hokanishi, Natsumi; Kaneko, Takayuki; Nakada, Setsuya; Fujii, Toshitsugu

    2013-05-01

    model is consistent with a geophysical model that explains whole crustal deformation as being due to a single source located 7-8 km northwest of the Shinmoe-dake summit. However, even the shallowest estimated source of this deformation (7.5-6.2 km) is deeper than the SA reservoir, which thus requires a contribution of deeper BA magmas to the observed deformation. Remobilization of mush-like SA magma occurred in two stages before the early sub-Plinian event. Firstly, precursor mixing with BA magma and associated heating occurred (925-871 °C; stage-1 of ≥ 350 h), followed by final mixing with BA magma (stage-2). MgO profiles of magnetite phenocrysts define timescales of 0.7-15.2 h from this final mixing to eruption. The mixed and heated magmas, and stagnant mush that existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the occurrence of continuous erosion of the stagnant mush during the course of the 2011 eruptive activity.

  20. Volatile concentrations in variably vesicular pyroclasts from the Rotongaio ash (181 AD Taupo eruption): did shallow magma degassing trigger exceptionally violent phreatomagmatic activity?

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Houghton, Bruce F.; Dingwellp, Donald B.; Pinkerton, Harry

    2010-05-01

    Measurement of dissolved volatile concentrations in pyroclasts has formed the basis of our understanding of the links between magma degassing and the explosivity of silicic eruptions[1]. To date these studies have focussed exclusively on the densest pyroclastic obsidians, which comprise on a tiny proportion of the erupted products, in order to bypass the difficulty of analysing vesicular material. As a consequence, crucial information is missing about how degassing in the densest clasts relates to the behaviour of the bulk of the magma volume. To overcome this shortcoming, the volatile content of variably vesicular pyroclasts from the Rotongaio ash has been analysed using both micro-analytical (SIMS, synchrotron FTIR) and bulk techniques (TGA-MS). The Rotongaio ash was an exceptionally violent phase of phreatomagmatic activity during the 181 AD rhyolitic eruption of Taupo (New Zealand), the most powerful worldwide in the last 5000 years. The Rotongaio phase involved opening of new vents beneath Lake Taupo and the ash is characterised by a wide range of clast vesicularities (<10 to ~80 % by volume). Volatile measurement was challenging due to the high bubble number densities and small clast sizes. The mismatch between the water content of matrix glasses measured using bulk and micro-analytical techniques reflects pervasive post-eruption hydration of vesicle walls, which is most problematic at high vesicularities. Micron-scale maps of water concentration variations around vesicles in 30-50 vol % vesicular samples were acquired using SIMS. They indicate strong hydration within ~5 microns of vesicle walls, with pockets of unhydrated glass remaining in the thickest septa. Analysis of these unhydrated domains allowed robust measurement of water contents in pyroclasts ranging from ~1 to >50 vol % vesicles. Matrix glasses had largely degassed (0.19-0.49 wt % H2O, compared with an initial concentration in melt inclusions of ~3.6 wt %). The water contents measured using SIMS

  1. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  2. Viscosity of Campi Flregrei (Italy) magmas

    NASA Astrophysics Data System (ADS)

    Misiti, Valeria; Vetere, Francesco; Scarlato, Piergiorgio; Behrens, Harald; Mangiacapra, Annarita; Freda, Carmela

    2010-05-01

    Viscosity is an important factor governing both intrusive and volcanic processes. The most important parameters governing silicate melts viscosity are bulk composition of melt and temperature. Pressure has only minor effect at crustal depths, whereas crystals and bubbles have significant influence. Among compositional parameters, the water content is critical above all in terms of rheological behaviour of melts and explosive style of an eruption. Consequently, without an appropriate knowledge of magma viscosity depending on the amount of dissolved volatiles, it is not possible to model the processes (i.e., magma ascent, fragmentation, and dispersion) required to predict realistic volcanic scenarios and thus forecast volcanic hazards. The Campi Flegrei are a large volcanic complex (~150 km2) located west of the city of Naples, Italy, that has been the site of volcanic activity for more than 60 ka and represents a potential volcanic hazard owing to the large local population. In the frame of a INGV-DPC (Department of Civil Protection) project devoted to design a multidisciplinary system for short-term volcano hazard evaluation, we performed viscosity measurements, under dry and hydrous conditions, of primitive melt compositions representative of two Campi Flegrei eruptions (Minopoli-shoshonite and Fondo Riccio-latite). Viscosity of the two melts have been investigated in the high temperature/low viscosity range at atmospheric pressure in dry samples and at 0.5 GPa in runs having water content from nominally anhydrous to about 3 wt%. Data in the low temperature/high viscosity range were obtained near the glass transition temperature at atmospheric pressure on samples whose water contents vary from 0.3 up to 2.43 wt%. The combination of high- and low-viscosity data permits a general description of the viscosity as a function of temperature and water content using a modified Tamman-Vogel-Fulcher equation. logν = a+ --b--+ --d--×exp(g × w-) (T - c) (T - e) T (1) where

  3. Magma ascent pathways associated with large mountains on Io

    NASA Astrophysics Data System (ADS)

    McGovern, Patrick J.; Kirchoff, Michelle R.; White, Oliver L.; Schenk, Paul M.

    2016-07-01

    While Jupiter's moon Io is the most volcanically active body in the Solar System, the largest mountains seen on Io are created by tectonic forces rather than volcanic construction. Pervasive compression, primarily brought about by subsidence induced by sustained volcanic resurfacing, creates the mountains, but at the same time inhibits magma ascent in vertical conduits (dikes). We superpose stress solutions for subsidence, along with thermal stress, (both from the "crustal conveyor belt" process of resurfacing) in Io's lithosphere with stresses from Io mountain-sized loads (in a shallow spherical shell solution) in order to evaluate magma ascent pathways. We use stress orientation (least compressive stress horizontal) and stress gradient (compression decreasing upwards) criteria to identify ascent pathways through the lithosphere. There are several configurations for which viable ascent paths transit nearly the entire lithosphere, arriving at the base of the mountain, where magma can be transported through thrust faults or perhaps thermally eroded flank sections. The latter is consistent with observations of some Io paterae in close contact with mountains.

  4. Mesozoic igneous activity in the southern Cordillera of North America: Implications for tectonics and magma genesis

    SciTech Connect

    Asmerom, Y.

    1988-01-01

    A representative section in Santa Rita Mountains is dated using the zircon U-Th-Pb isotopic method. The oldest unit, the lower member of the Mt. Wrightson Formation, is concordantly dated at 210 {plus minus} 3 Ma. Initial basaltic andesite to andesite volcanism was followed by deposition of red beds and associated volcanic rocks that are dated at 200 Ma. Felsic volcanism and eolian sand deposition may have spanned from 190 to 170 Ma. The Piper Gulch Granodiorite, representing the earliest Mesozoic intrusive equivalent, gives concordant dates of 188 {plus minus}2 Ma. A second cycle of andesite and rhyolitic volcanism and sedimentation is dated at 151 {plus minus} 5 Ma using the whole-rock Rb-Sr isotopic method. The Hovatter Volcanics in the Little Harquahala Mountains, southwestern Arizona is dated at 165 Ma. Whole-rock Rb-Sr isotopic method on the same rocks gives a coherent reset isochron of 70 {plus minus} 3 Ma. A new stratigraphic correlation is proposed based on the dating data. This part of the Cordillera was an uplifted arc terrane during the Early Mesozoic and may have provided volcanic detritus to the Late Triassic Chinle Formation in the Colorado Plateau. The second part deals with magma evolution and crust modification during arc magmatism. Rocks in southeastern Arizona have {sub Nd} values of {minus}3.4 to {minus}6.4, while rocks to the west have {sub Nd} values ranging from {minus}8.5 to {minus}9.2. Combined REE and isotopic data indicate that assimilation of lower crust by mantle melts followed by fractional crystallization took place.

  5. Geodetic-Imaging of Deep Magma Transfer Beneath Soufriere Hills Volcano, Montserrat, WI: 1995-2007

    NASA Astrophysics Data System (ADS)

    Elsworth, D.; Mattioli, G.; Taron, J.; Voight, B.; Herd, R.

    2008-12-01

    Magma melting and transport produces a complex architecture of connected magmatic systems present beneath many arc volcanoes. Although melt supplied by subduction may be considered constant over very long timescales (>Ma), rates of magma transport and eruptive episodes are episodic at timescales encompassing millennia and centuries to hours. A variety of mechanisms act at these various timescales; in general longer periodicities imply controlling processes rooted at greater depth and involving reservoirs of increasing volumes. Here we use histories of magma efflux and surface deformation to quantitatively constrain magma transfer into and within the deep (>12 km) crustal plumbing of the Soufrière Hills volcano over a 12-year eruptive cycle of active effusion punctuated by discrete pauses. For three cycles of effusion followed by pause, with a periodicity of 4-6 years, deep supply to the system is continuous and never drops below ~0.5-1 m3/s; this minimum supply is similar in magnitude to both the mean measured eruptive efflux (including pauses) (~0.7 m3/s) and the mass accumulation due to crustal convergence (~0.6 m3/s). Deep fluxes rise synchronously from this background magnitude in times of active eruption (~1-5 m3/s), are augmented by deflation (~1-2 m3/s) of a reservoir centered at ~12 km, and pass through an upper magmatic reservoir. An eruptive pause is marked by a decrease in supply from the deep crust, fully accommodated as the deep reservoir switches to reinflate, and with no resulting supply to the shallow crust. For a two-reservoir model, these observations are consistent with a model involving the continuous supply of magma from the deep crust/mantle into a voluminous and compliant deep reservoir, episodically-valved below the shallow reservoir.

  6. Deep Magma Transport beneath Soufriere Hills Volcano, Montserrat, WI: 1995-2007

    NASA Astrophysics Data System (ADS)

    Elsworth, D.; Mattioli, G.; Taron, J.; Voight, B.; Herd, R.; Foroozan, R.

    2009-04-01

    Magma melting and transport produces a complex architecture of connected magmatic systems present beneath many arc volcanoes. Although melt supplied by subduction may be considered constant over very long timescales (>Ma), rates of magma transport and eruptive episodes are episodic at timescales encompassing millennia and centuries to hours. A variety of mechanisms act at these various timescales; in general longer periodicities imply controlling processes rooted at greater depth and involving reservoirs of increasing volumes. Here we use histories of magma efflux and surface deformation to quantitatively constrain magma transfer into and within the deep (>12 km) crustal plumbing of the Soufrière Hills volcano over a 12-year eruptive cycle of active effusion punctuated by discrete pauses. For three cycles of effusion followed by pause, with a periodicity of 4-6 years, deep supply to the system is continuous and never drops below ~0.5-1 m3/s; this minimum supply is similar in magnitude to both the mean measured eruptive efflux (including pauses) (~0.7 m3/s) and the mass accumulation due to crustal convergence (~0.6 m3/s). Deep fluxes rise synchronously from this background magnitude in times of active eruption (~1-5 m3/s), are augmented by deflation (~1-2 m3/s) of a reservoir centered at ~12 km, and pass through an upper magmatic reservoir. An eruptive pause is marked by a decrease in supply from the deep crust, fully accommodated as the deep reservoir switches to reinflate, and with no resulting supply to the shallow crust. For a two-reservoir model, these observations implicate the deep system in controlling short-term (~3-5 yr) eruptive periodicity. They are consistent with a model involving the continuous supply of magma from the deep crust/mantle into a voluminous and compliant deep reservoir, episodically-valved below the shallow reservoir.

  7. Extensive, water-rich magma reservoir beneath southern Montserrat

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  8. Continuous magma recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and compositions of erupted lavas

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Calcagno, Rosario; Garozzo, Ileana; Giuffrida, Marisa; Nicotra, Eugenio

    2015-02-01

    Volcanic rocks erupted during the January 2011 - April 2013 paroxysmal sequence at Mt. Etna volcano have been investigated through in situ microanalysis of mineral phases and whole rock geochemistry. These products have been also considered within the framework of the post-2001 record, evidencing that magmas feeding the 2011-2013 paroxysmal activity inherited deep signature comparable to that of the 2007-2009 volcanic rocks for what concerns their trace element concentration. Analysis performed on plagioclase, clinopyroxene and olivine, which are sensitive to differentiation processes, show respectively fluctuations of the An, Mg# and Fo contents during the considered period. Also major and trace elements measured on the whole rock provide evidence of the evolutionary degree variations through time. Simulations by MELTS at fixed chemical-physical parameters allowed the definition of feeding system dynamics controlling the geochemical variability of magmas during the 2011-2013 period. Specifically, compositional changes have been interpreted as due to superimposition of fractional crystallization and mixing in variable proportions with more basic magma ascending from intermediate to shallower levels of the plumbing system. Composition of the recharging end-member is compatible with that of the most basic magmas emitted during the 2007 and the early paroxysmal eruptions of 2012. Analysis of the erupted volumes of magma combined with its petrologic evolution through time support the idea that large volumes of magma are continuously intruded and stored in the intermediate plumbing system after major recharging phases in the deepest levels of it. Transient recharge from the intermediate to the shallow levels is then responsible for the paroxysmal eruptions.

  9. Melt production and magma emplacement: What use are they?

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2003-04-01

    I will review the processes of melt production and magma emplacement and address two questions: how do these processes affect planetary evolution?; and what can we learn from observing them, both now and in the future? Melt production is primarily controlled by the temperature of the planetary interior. The extraction of melt from silicate mantles has a number of effects. Firstly, it advects heat (e.g. Io, Venus?). Secondly, it segregates radiogenic materials into the crust, thus cooling the mantle (e.g. Mars, Earth). Thirdly, it removes volatiles from the interior (e.g. Venus, Mars). Recognition that melting is occurring gives us information about likely conditions inside the planet. Models of melt generation by convective upwelling have been used to constrain the interior properties of the Earth, Venus and Mars. Melting during tidal heating (Io) or accretion is less well understood. Magma emplacement is primarily controlled by the density of the magma and the surrounding material. Extrusive activity is likely for high volatile concentrations or low crustal densities. Water is particularly difficult to erupt, since (unlike silicates) the melt is denser than the solid. Different styles of magma emplacement are observed: voluminous surface flows and volcanic edifices of various kinds (ubiquitous); giant radiating dyke swarms (Earth, Venus, Mars); intrusive sills and diapirs (Earth, Venus?, Mars?, Europa?). The extrusive emplacement of magma will cause resurfacing, and is thus easily detected. The release of volatiles during emplacement may have local (e.g. Laki) or global (Venus? Mars?) effects on climate and atmosphere. Intrusive emplacement is harder to detect, but may interact with local volatiles to create unusual landforms (Earth, Mars). The style and volume of emplacement is a useful diagnostic tool. The morphology of lava flows gives information about the rheology and composition of the flow material (e.g. Venus, Miranda). Observations of dykes may be used to

  10. Deformation of Grímsvötn volcano, Iceland, 1992-2014: Constraints on magma flow in relation to eruptions in 1998, 2004 and 2011

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hreinsdottir, Sigrun; Sturkell, Erik; Ofeigsson, Benedikt; Einarsson, Pall; Roberts, Matthew; Grapenthin, Ronni; Villemin, Thierry; Arnadottir, Thora; Geirsson, Halldor

    2014-05-01

    A time series of ground deformation at Grímsvötn volcano, Iceland from 1992 to 2014 reveals deformation due to plate movements, glacial-isostatic uplift in response to the melting of the Vatnajökull ice cap, annual changes due to snow loading and magma movements. GPS measurements have been made at one nunatak, conducted intermittently since 1992 and continuously since 2004. During this period eruptions have occurred at Grímsvötn in 1998, 2004 and 2011. The component of displacement related to magma movements is obtained after the time series are corrected for signals due to other processes. Uplift and displacement away from the caldera occurs between eruptions at a rate of few cm/yr, interrupted by sudden co-eruptive subsidence and displacement towards the caldera (up to half a meter). This inflation/deflation pattern suggests deformation driven by pressure change in an upper crustal magma chamber, similar to other highly active calderas in Iceland such as Askja and Krafla. A simple model of pressure change variation in a magma chamber at shallow depth, with variable inflow between eruptions and outflow during eruptions can explain the observed deformation pattern. The erupted volume of magma in the 2011 eruption is about 10 times larger than the inferred co-eruptive volume change, attributed to compressibility of magma in the chamber. The magma compressibility is inferred to have remained constant during the 2011 eruption, as about constant scale factor is found during that eruption between eruption rate and displacement rate. This scale factor is, however, about five times lower for the 2004 eruption. This difference implies higher compressibility of magma in the shallow Grímsvötn magma chamber during the 2011 eruption compared to 2004, assuming the active part of the Grimsvötn magma plumbing system remained the same in both eruptions.

  11. Crustal structure of the Mariana Trough

    SciTech Connect

    Ambos, E.L.; Hussong, D.M.

    1982-05-10

    Three seismic refraction profiles were shot in the Mariana Trough in the vicinity of the proposed axial rift spreading center. One long east-west trending line was shot across the axial high region, the elevated portion of the trough associated with the rift zone. The two other lines were shot in a rough north-south orientation subparallel to the trend of the axial rift, on crusts 1 and 5--6 m.y. old. Comparison of the results of the ray-tracing analysis for these two profiles indicated that thinning of layer 2A (velocity of 3.3 km/s) and development of a distinct layer 2B (velocity of 5.3 km/s and development of a distinct layer 2B (velocity of 5.3 km/s) and layer 3A (velocity of 6.7 km/s) takes place with increasing crustal age, implying a process of crustal evolution. The presence of large-scale crustal faults was noted in several instances. In addition, a consistent but low upper mantle seismic velocity of 7.7 km/s was measured for all three lines. These characteristics correlate with those previously observed for other areas of young oceanic crust. When compared with major active spreading centers such as the Mid-Atlantic Ridge and East Pacific Rise, the Mariana Trough appears similar to the former in most respects. Both the Mid-Atlantic Ridge and Mariana Trough are slow spreading (1-2 cm/yr half rate) and are characterized by rough topography, an axial rift, and a thick layer/sup 2/. Like the Mid-Atlantic Ridge, the Mariana Trough also has no low-velocity zone in the crust that could be interpreted as a magma chamber at the spreading center.

  12. A large magma chamber and complex magma delivery system revealed beneath Axial volcano

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.

    2013-12-01

    Axial volcano is located at 46N, 130W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis, has two major rift zones extending ~50 km to the north and south and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is part of an atypical segment of the intermediate spreading Juan de Fuca Ridge and its internal structure remains poorly understood. In this study, we have applied an accurate solution for imaging an active volcano combining full waveform inversion (FWI) with reverse time migration (RTM) imaging. Our approach produces images of the magmatic system at Axial volcano with spatial resolutions on the order of ~50 meters, at least an order of magnitude better resolution than traditional tomographic images of active magmatic systems. We show the clearest example to date of an unambiguous basal reflector from a melt lens system beneath a spreading centre. We find that the magma reservoir is up to 1 km thick, the thickest magma reservoir observed beneath a spreading centre to date. Interestingly, the amplitude of the magma reflector is stronger to the southeast of Axial volcano, between 0 and 6 km off axis, which might reflect an offset between the Cobb hotspot at depth and Axial volcano; if this is correct, the narrow ribbon of melt extending away from the caldera may actually funnel melt from a decoupled hotspot toward Axial caldera. In addition, we present a unique image of the magmatic plumbing system underlying an active volcano that appears to be composed of a network of sub-horizontal to shallow dipping features (planes of weakness), which might cyclically be reactivated to transport melt from the magma

  13. Intrusive LIPs: Deep crustal magmatic processes during the emplacement of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Karlstrom, L.

    2011-12-01

    Large Igneous Provinces (LIPs) are characterized by magmatic activity on two distinct timescales. While these provinces have total active lifetimes of order 10-30 Ma, most of the erupted volume is emplaced within <1 Ma in many cases. The latter timescale is likely controlled by magmatic intrusion/evolution processes within the deep crust. We present seismic evidence for 5-15 km thick Moho-level ultramafic intrusive/cumulate layers underlying Phanerozoic LIPs worldwide [Ridley and Richards, 2010]. These deep crustal bodies are both observed and predicted to have volumes at least as large as the extrusive components of flood volcanism. The evidence for these layers is particularly clear for oceanic LIPs (plateaus). We hypothesize that thermally activated creep of the lower crust due to magma chamber emplacement controls a transition from largely extrusive to largely intrusive magmatism during mantle plume impingement on the lithosphere [Karlstrom and Richards, 2011]. We explore this hypothesis by modeling the thermomechanical evolution of Moho-level magma chambers. Comparing the timescale for viscoelastic relaxation of intrusion-related stresses with the timescale for sill formation and magma differentiation, we find that fracture processes leading to diking from Moho levels may plausibly be shut off on a timescale of ~1 Ma. Continued melt influx therefore results in intrusive magmatism, which may be manifest as plateau growth in oceanic settings. We suggest that maximum intrusion size may be limited by crustal thickness, resulting in smaller volume individual eruptions in oceanic versus continental LIPs.

  14. Magma rheology variation in sheet intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    Magee, C.; O'Driscoll, B.; Petronis, M. S.; Stevenson, C.

    2013-12-01

    The rheology of magma fundamentally controls igneous intrusion style as well as the explosivity and type of volcanic eruptions. Importantly, the dynamic interplay between the viscosity of magma and other processes active during intrusion (e.g., crystallisation, magma mixing, assimilation of crystal mushes and/or xenolith entrainment) will likely bear an influence on the temporal variation of magma rheology. Constraining the timing of rheological changes during magma transit therefore plays an important role in understanding the nuances of volcanic systems. However, the rheological evolution of actively emplacing igneous intrusions cannot be directly studied. While significant advances have been made via experimental modelling and analysis of lava flows, how these findings relate to intruding magma remains unclear. This has led to an increasing number of studies that analyse various characteristics of fully crystallised intrusions in an attempt to ';back-out' the rheological conditions governing emplacement. For example, it has long been known that crystallinity affects the rheology and, consequently, the velocity of intruding magma. This means that quantitative textural analysis of crystal populations (e.g., crystal size distribution; CSD) used to elucidate crystallinity at different stages of emplacement can provide insights into magma rheology. Similarly, methods that measure flow-related fabrics (e.g., anisotropy of magnetic susceptibility; AMS) can be used to discern velocity profiles, a potential proxy for the magma rheology. To illustrate these ideas, we present an integrated AMS and petrological study of several sheet intrusions located within the Ardnamurchan Central Complex, NW Scotland. We focus on the entrainment and transport dynamics of gabbroic inclusions that were infiltrated by the host magma upon entrainment. Importantly, groundmass magnetic fabrics within and external to these inclusions are coaxial. This implies that a deviatoric stress was

  15. Petrology and Physics of Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.

    2003-01-01

    Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.

  16. The 1998-2002 activity of Piton de la Fournaise, Réunion island: lessons in magma supply and transfers

    NASA Astrophysics Data System (ADS)

    Semet, M. P.; Joron, J.-L.; Staudacher, T.

    2003-04-01

    In March 1998, Piton de la Fournaise, one of the most frequently active aerial volcanoes on earth, awoke after an unusually long sleep of almost 6 years. This eruption, which was also preceded and accompanied by uncommon patterns of seismicity and deformation (Staudacher et al., 1998), lasted about six months and was followed to the end of 2002 by 9 eruptive episodes of about one week to a little more than a month duration. In these episodes, seismicity and deformations were those more customarily observed. The total amount of erupted magma over this 5 year period amounts to ca. 120 Mm3, which yields an average production rate close to 0.3 m3/s. Suites of lava samples were regularly obtained for each of these episodes, often as water-quenched molten lava, and examined in the laboratory for their petrography and geochemistry. Two subtly differing magmas were erupted in the 1998 episode from two locations. The voluminous lavas vented North of the central cone (Kapor and related vents) were of the ordinary Steady State Basalts (SSB) type modeled by Albarède et al. (1997) yet showed minor but significant evolution through the six months of eruption. Those vented to the South of the cone (Hudson crater) were apparently fed directly and rapidly from depths ca. 15 km, the crust-upper-mantle boundary under Réunion. Hudson samples are of a type observed mostly in peripheral vents but rarely in central eruptions. They are characterized by major and trace element signatures indicating enhanced clinopyroxene fractionation (a high pressure fractionating phase) relative to SSB. In the subsequent 9 eruptions, lavas were again of the SSB kindred, sometimes rich (50 modal %) in cumulative xenocrystic olivine (e.g. June 2001 and January, 2002). Significant chemical differences with the Kapor trend indicate that they were not fed from the same reservoir nor were they akin to Hudson samples. Glass analyses in the quenched post-1998 samples have an almost invariable composition

  17. Magma, Magma, Quite Contaminated, How Does Your Garnet Grow?

    NASA Astrophysics Data System (ADS)

    Lackey, J.; Romero, G. A.; Valley, J. W.

    2010-12-01

    Garnet in granitoid rocks has drawn considerable attention and discussion because of uncertainty surrounding its origins. For example, enrichment of Al, resulting in peraluminous magmas capable of crystallizing garnets, may be controlled by contamination or extreme differentiation; Mn enrichment in aplitic and pegmatitic phases suggests garnet may appear only at relatively low, near solidus temperatures. Peritectic garnet, grown by magma-wallrock reaction, may be confused with magmatic garnet, and xenocrysts of metamorphic garnet, entrained from wallrocks, further complicate interpretation. We address these uncertainties with the SIMS analysis of oxygen isotope variations in single garnet crystals and crystal populations in granitic rocks. Values of δ18O were measured on a CAMECA IMS 1280 using a 10 µm spot size and typical precision of ± 0.3 at 2 standard deviations. Analyses were corrected for instrumental mass fractionation according to the newly solved bias correction protocol for garnet (Page et al. 2010). Samples were collected from the Devonian Togus and Hallowell plutons in the south central Maine. These plutons are an ideal site for this study because they are peraluminous and contain pervasive garnet, they locally intrude pelitic, garnet-bearing wallrocks, and they have field evidence of xenolith entrainment and peritectic reaction of xenoliths and the host magmas. Garnet δ18O values of 7.5-10.5‰ show a large range of crustal input to host magmas. Crystal-to-crystal variation of δ18O in hand-samples varies up to 2‰, confirming that garnet populations have complex origins. Traverses (20-50 spots) of single crystals show that δ18O varies up to 1‰, with rims of crystals (outer 50-100µm) being up to 1‰ higher or lower than interiors. Increases of δ18O are interpreted as late-stage contamination, whereas lower δ18O rims, with correspondence to decreasing Fe/Mg ratio, suggest growth during falling magma temperature (50-100°C). Some garnet

  18. Seismic images of multiple magma sills beneath the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Marjanovic, M.; Carbotte, S. M.; Carton, H. D.; Mutter, J. C.; Nedimovic, M. R.; Canales, J.

    2013-12-01

    Along fast and intermediate spreading centers, thin and narrow axial magma lenses (AMLs) are detected beneath much of the ridge axis, and the notion that the AML is the primary melt reservoir for dike intrusions and volcanic eruptions that build the upper crust is commonly accepted. However the role of the AML in construction of the lower crust is still actively debated. Some models based on geochemistry and structural observations from ophiolites suggest that formation of the lower crustal gabbro section takes place in situ, from multiple small magma sills, with the AML being the shallowest of these. Here, we present new observations from multichannel seismic data collected in 2008 along the East Pacific Rise (EPR) for seismic reflectors below the AML or sub-axial magma lens (SAML). The most prominent SAML events are found between latitudes 9°20' and 9°56'N, where they appear as moderately bright, discontinuous reflectors, at ~ 50 to 300 ms (~ 200-600 m) below the AML. From an analysis of the characteristics of these events, we rule out possible 'artifact' origins for the SAML including, seafloor side scattering, out-of-plane imaging of the AML or other crustal horizons, internal multiples, and the presence of a P-to-S converted phase (PAMLS). We interpret these deep melt lenses to have a low crystalline component (i.e. they are mostly molten). Disruptions in the SAML reflector, represented by relatively abrupt steps in two-way travel time are collocated with small-scale discontinuities in the AML and further support the notion of crustal accretion through small magmatic units. In addition, within the area of documented volcanic eruptions in 1991-1992 and 2005-2006, two prominent gaps centered at 9°46' and 9°50.5' N in the SAML reflectors are identified. We hypothesize that magma from these deeper lenses have also contributed to the eruption, implying hydraulic connectivity between the AML and SAMLs during eruption events. We suggest that the SAMLs play an

  19. Deep Crustal Structure of S-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Becker, K.; Schnabel, M.; Franke, D.; Heyde, I.; Schreckenberger, B.; Koopmann, H.; Krawczyk, C. M.; Trumbull, R. B.

    2013-12-01

    We investigate the crustal structure along the southern South Atlantic margins with a focus on the high velocity lower crustal bodies (HVLC). This is a distinct zone at the base of the crust, where seismic P-wave velocities exceed 7.0 km/s and locally reach values up to 7.7 km/s. The study is based on a selected set of refraction seismic lines on conjugate margin segments of Uruguay-Argentina and Namibia-South Africa, acquired during marine geophysical cruises in 2004 and 1998. We performed new P-wave tomography complemented with gravity modeling along two crustal transects, and combine these with previous seismic and gravity models. The results are used to examine the interplay of rifting and magmatism during the evolution of the South Atlantic, what activated the spreading phase and how this is reflected in the distribution of high velocity lower crust. On all sections we observe HVLC, even on a magma poor southernmost section at the western margin. The HVLC varies strongly in shape and size along the margin. From South to North the area of the HVLC on 2D velocity sections increases on both margins. However, the HVLC bodies along the South American margin are much smaller than on the South African margin, possibly indicating asymmetric break up. A striking feature is the distinct seaward shift of the HVLC relative to the seaward dipping reflectors (SDRs). While in the south, the HVLC is situated below the SDRs, towards the north the HVLC formed seaward of the SDRs. From this seaward migration we infer that the formation of HVLC in the magma-rich northern sections may have formed at least partly after rifting and break up.

  20. Echo-resonance and hydraulic perturbations in magma cavities: application to the volcanic tremor of Etna (Italy) in relation to its eruptive activity

    NASA Astrophysics Data System (ADS)

    Montalto, A.; Longo, V.; Patanè, G.

    1995-08-01

    A study is presented of spectral features of volcanic tremor recorded at Mount Etna (Sicily, Italy) following the methods of analysis suggested by the resonant scattering formalism of Gaunaurd and Überall (1978, 1979a, 1979b) and the model for hydraulic origin of Seidl et al. (1981). The periods investigated include summit and flank eruptions that occurred between 1984 and 1993. Recordings from a permanent station located near the top of the volcano were used, and the temporal patterns associated with (a) the average spacing (bar Δ ) between consecutive spectral peaks in the frequency range 1 6 Hz, (b) the spectral shape and (c) the overall spectral amplitude were analyzed. bar Δ values are thought to depend on the physical properties of magma, such as its density, which, in turn, is controlled by the degree of gas exsolution. Variations in the spectral shape are tentatively attributed to changes in the geometrical scattering from the boundary of resonant conduits and magma batches. Finally, the overall amplitude at the station should essentially reflect the state of turbulence of magma within the superficial ascending path. A limit in the application of the resonant scattering formalism to the study of volcanic tremor is given by the fact that the fundamental modes and integer harmonics are difficult to identify in the frequency spectra, as tremor sources are likely within cavities of very complex geometry, rather than in spherical or cylindrical chambers, as expected by theory. This study gives evidence of some correlations between the analyzed temporal patterns and the major events in the volcanic activity, related to both lava flow and explosions at the summit vents. In particular, relatively high values of bar Δ have been attained during the SE crater eruption of 1984, the complex eruptive phases of September October 1989 and the 1991 1993 flank eruption, suggesting the presence of a relatively dense magma for all of these events. Conversely, very low

  1. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  2. Fate of a perched crystal layer in a magma ocean

    NASA Technical Reports Server (NTRS)

    Morse, S. A.

    1992-01-01

    The pressure gradients and liquid compressibilities of deep magma oceans should sustain the internal flotation of native crystals owing to a density crossover between crystal and liquid. Olivine at upper mantle depths near 250 km is considered. The behavior of a perched crystal layer is part of the general question concerning the fate of any transient crystal carried away from a cooling surface, whether this be a planetary surface or the roof of an intrusive magma body. For magma bodies thicker than a few hundred meters at modest crustal depths, the major cooling surface is the roof even when most solidification occurs at the floor. Importation of cool surroundings must also be invoked for the generation of a perched crystal layer in a magma ocean, but in this case the perched layer is deeply embedded in the hot part of the magma body, and far away from any cooling surface. Other aspects of this study are presented.

  3. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  4. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  5. MAGMIX: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content

    USGS Publications Warehouse

    Frost, T.P.; Lindsay, J.R.

    1988-01-01

    MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.

  6. Active crustal extension in the Central Apennines (Italy) inferred from GPS measurements in the interval 1994-1999

    NASA Astrophysics Data System (ADS)

    D'Agostino, N.; Giuliani, R.; Mattone, M.; Bonci, L.

    We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994-1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18 × 10-6 yr-1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.

  7. Revealing the magmas degassing below closed-conduit active volcanoes: noble gases in volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.

    2016-04-01

    With the aim to constrain the nature of magma currently feeding the fumarolic field of Vulcano, we measured the elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions in high-K calcalcaline-shoshonitic and shoshonitic-potassic series so as to cover the entire volcanological history of Vulcano Island (Italy). The major and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic record of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-emitted Vulcanello latites (Punta del Roveto), which have high He- and Sr-isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs. Indeed, an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He isotope ratios between fluid inclusions and fumarolic gases showed that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that that the most probable magma which actually feeds the fumarolic emissions is a latitic body ponding at about 3-3.5 km of depth and flushed by fluids coming from a deeper and basic magma.

  8. Crustal permeability

    USGS Publications Warehouse

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  9. Space-geodetic evidence of shallow magma reservoirs in the West-Sunda arc; Insights from global data compilation on what controls magma ascent in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.

    2011-12-01

    A large proportion of the world's population lives on or near active volcanoes. Ground deformation measurements are key observations for volcano monitoring not only because they allow identification of precursory uplift caused by ascent of new magma towards the surface but also because volcanic hazard assessment relies on interpretations of geodetic data in terms of depth of magma accumulation. Here we conducted a global survey of the West-Sunda volcanic arc using differential InSAR combined with SBAS-time series analysis covering an area of about 500 000 km2 on the islands of Sumatra, Java and Bali. The compiled ground velocity map reveals the background level of activity of the 84 volcanic centers of the West-Sunda arc. We identified uplift at 6 volcanic centers and subsidence at 2 edifices. Interestingly, 3 of the 6 uplifting centers erupted after the time period of our survey, suggesting that edifice inflation is a precursor of eruptions. Elastic half-space models of the measured deformation give quantitative estimates of the depths of the magmatic sources and reveal that the sources of inflation are located at shallow depths, less than 3km under the sea level. To interpret these results from a global point of view we compiled data of magma chamber depths in volcanic arcs. Because magma primarily rises by buoyancy forces, in the absence of exterior stress, magma chambers are expected to develop at the level of neutral buoyancy, where magma first encounters a crustal density similar to its density, typically between 5 and 10km for Andesitic volcanoes [Ryan, 1987]. Magma chambers around these depths are found in most volcanic arcs, such as the Central Andes [Pritchard, 2004; Pritchard and Simons, 2004]. However, some volcanic arcs present in addition to magma chambers at these levels, shallower reservoirs, above 4km depth. It is the case in the Aleutian arc, the Costa-Rican arc and, from our survey, the West-Sunda arc [Lu et al., 2002; Lu, 2007; Alvarado et al

  10. Numerical Simulations of the Incremental Intrusion of Granitic Magma into Continental Crust

    NASA Astrophysics Data System (ADS)

    Cao, W.; Kaus, B. J.; Paterson, S. R.

    2012-12-01

    We have employed the visco-elasto-plastic Finite-Element & Marker-in-cell code, MILAMIN_VEP, to carry out a 2D modeling study of the incremental intrusion of granitic magma into continental crust. Algorithms of multiple pulses of magma and pseudo-diking are implemented into the code. New magma of an initial circular shape is regularly replenished at "magma source" regions at sub-crustal depths. Pseudo-dikes of rectangular shapes are added at location where the maximum differential stress along the melt-solid interface is greater than an assigned tensile strength of the surrounding solid host rock. Preliminary results show that when diking and multiple pulses of magma are included, later pulses of magma rise higher and faster and even reach the Earth's surface in some cases by taking advantage of the pre-heated low-viscosity pathways created by earlier dikes and pulses of magma. Host rocks display bedding rotation, and downward flow at two sides of a growing magma chamber but show discordantly truncation when magma ascend through the weak channels made by dikes. The effect of the thermal structure of the crust was tested as well. In a cold crust, "diking" is critical in breaking the high-viscosity crust, guiding the direction of magma rising, and facilitating later magma pulses to form chambers. In a warmer crust, magma rises in the form of diapirs, after which dikes take over in transporting later pulses of magma to the surface. The simulations also suggest that a magma chamber incrementally constructed by multiple magma bathes is a very dynamic environment featuring intra-chamber convection and recycling previous batches of magma. In simulations without diking and multiple pulses, magma is unable to reach the shallow crust. Instead, it is stuck in the middle crust, as the viscosity of the upper crust is too large to permit rapid motion, and at the same time magma-induced stresses are insufficient to deform the upper crust in a plastic manner. Intra-crustal

  11. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    structures of relatively high magnetic susceptibility (>0.035), which all dip to the NNE and do not exceed the depth of 2km; these have all been identified with outcropping ophiolitic bodies. With particular reference to the Argolid, the results also indicate the existence of extensive and massive deep magnetized domains at depths > 4km, with susceptibilities of the order of 0.02. The latter include a rather conspicuous volume beneath the Methana volcanic complex, at depths between 4 and 8km. Because the modeled susceptibility values are generally consistent with the values expected for hot (200°C - 500°C) calc-alcaline igneous rocks, this feature was interpreted to comprise a magma chamber. By analogy to the Methana chamber, all such massive structures were attributed to recent magmatic intrusions (plutons). The pervasive presence of the intrusive igneous rocks beneath the Argolid indicates a rather extensive complex of magmatic activity associated with the western volcano group of the HVA. Particular attention is due to one such elongate and deep reaching "pluton", which develops in a NNW direction (approx. 330°) along the axis of the Argolic Gulf, to the south of the Argolid peninsula; this is situated almost directly above the local inflection (steepening) of the subducting slab and is almost exactly aligned with to it. The sub-crustal stress field due to the subducting slab has been determined by Rondogianni et al (2011) and has been re-appraised in the frame of the present analysis using the method of Michael (1984, 1987). It turns out to be extensional and NE-SW oriented, with the azimuth/dip of the maximum principal axis (compression) being approx. 230°/57° and the same for thee minimum principal axis (extension) being 59°/33°. With such a field, deformation is expected to associate with steeply dipping dislocation surfaces parallel to approx. 325° and to be primarily extensional, with a non-trivial left-lateral heave. An analogous analysis was conducted for

  12. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  13. Zircons reveal magma fluxes in the Earth's crust.

    PubMed

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  14. dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Cervelli, Peter F.; Murray, Jessica R.

    2013-03-01

    We have developed a MATLAB software package for the most common models used to interpret deformation measurements near faults and active volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS), InSAR, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal and sill-like magma chambers in an elastic, homogeneous, flat half-space. Dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the expressions have been checked for typographical errors that might have been present in the original literature, extended to include deformation and strain within the Earth's crust (as opposed to only the Earth's surface) and verified against finite element models. A set of GPS measurements from the 2006 eruption at Augustine Volcano (Alaska) is used to test the software package. The results show that the best fit source to the GPS data is a spherical intrusion (ΔV=5×10 km3), about 880 m beneath the volcano's summit.

  15. Crustal deformation induced by volcanic activity measured by InSAR time series analysis (Volcan de Colima-Mexico)

    NASA Astrophysics Data System (ADS)

    Brunori, Carlo Alberto; Norini, Gianluca; Stramondo, Salvatore; Capra, Lucia; Zucca, Francesco; Groppelli, Gianluca; Bignami, Christian; Chini, Marco; Manea, Marina; Manea, Vlad

    2010-05-01

    The Volcán de Colima (CV) is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. This work is focused on the detection of surface deformation with centimetre or sub-centimeter accuracy of the Volcán de Colima and surrounding areas. We try to assess the amount and the spatial extension of surface movements of the CV and to get insights into the causes of the surface deformation by using Interferometric Synthetic Aperture Radar (InSAR), a powerful tool ensuring measurements at high-accuracy over large areas. The image dataset acquired by ESA ENVISAT ASAR (C band) sensor, has been processed using Advanced interferometric techniques (A-InSAR) to overcome the really challenging sources of decorrelation related to the setting context, mainly vegetation and atmosphere, in order to give us the opportunity to detect also very low rates of deformations. The main objectives of the interferometric analysis is the measurement of deformations in the CV in relation with active tectonics and gravity induced spreading, the identification of magma migration below the surface in the last decade, the detection of the incipient movements of volcanic landslides and large scale volcano instability, and the kinematics of the Colima rift. We present preliminary results of the A-InSAR processing, in the framework of the interdisciplinary Colima Deformation project (ColDef).

  16. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  17. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  18. The timescales of magma evolution at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Brandl, Philipp A.; Regelous, Marcel; Beier, Christoph; O'Neill, Hugh St. C.; Nebel, Oliver; Haase, Karsten M.

    2016-01-01

    Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at

  19. On the conditions of magma mixing and its bearing on andesite production in the crust.

    PubMed

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  20. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    NASA Astrophysics Data System (ADS)

    Iyer, H. M.

    1984-04-01

    This paper is a review of seismic, gravity, magnetic and electromagnetic techniques to detect and delineate magma chambers of a few cubic kilometres to several thousand cubic kilometres volume. A dramatic decrease in density and seismic velocity, and an increase in seismic attenuation and electrical conductivity occurs at the onset of partial melting in rocks. The geophysical techniques are based on detecting these differences in physical properties between solid and partially molten rock. Although seismic refraction techniques, with sophisticated instrumentation and analytical procedures, are routinely used for detailed studies of crustal structure in volcanic regions, their application for magma detection has been quite limited. In one study, in Yellowstone National Park, U.S.A., fan-shooting and time-term techniques have been used to detect an upper-crustal magma chamber. Attenuation and velocity changes in seismic waves from explosions and earthquakes diffracted around magma chambers are observed near some volcanoes in Kamchatka. Strong attenuation of shear waves from regional earthquakes, interpreted as a diffraction effect, has been used to model magma chambers in Alaska, Kamchatka, Iceland, and New Zealand. One of the most powerful techniques in modern seismology, the seismic reflection technique with vibrators, was used to confirm the existence of a strong reflector in the crust near Socorro, New Mexico, in the Rio Grande Rift. This reflector, discovered earlier from data from local earthquakes, is interpreted as a sill-like magma body. In the Kilauea volcano, Hawaii, mapping seismicity patterns in the upper crust has enabled the modelling of the complex magma conduits in the crust and upper mantle. On the other hand, in the Usu volcano, Japan, the magma conduits are delineated by zones of seismic quiescence. Three-dimensional modelling of laterally varying structures using teleseismic residuals is proving to be a very promising technique for detecting and

  1. Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Weis, Dominique; DePaolo, Donald J.; Renne, Paul R.; Mundil, Roland; Schmitt, Axel K.

    2014-01-01

    Rhyolite flows and tuffs from the Long Valley area of California, which were erupted over a two-million-year time period, exhibit systematic trends in Nd, Hf, and Pb isotopes, trace element composition, erupted volume, and inferred magma residence time that provide evidence for a new model for the production of large volumes of silica-rich magma. Key constraints come from geochronology of zircon crystal populations combined with a refined eruption chronology from Ar-Ar geochronology; together these data give better estimates of magma residence time that can be evaluated in the context of changing magma compositions. Here, we report Hf, Nd, and Sr isotopes, major and trace element compositions, 40Ar/39Ar ages, and U-Pb zircon ages that combined with existing data suggest that the chronology and geochemistry of Long Valley rhyolites can be explained by a dynamic interaction of crustal and mantle-derived magma. The large volume Bishop Tuff represents the culmination of a period of increased mantle-derived magma input to the Long Valley volcanic system; the effect of this input continued into earliest postcaldera time. As the postcaldera evolution of the system continued, new and less primitive crustal-derived magmas dominated the system. A mixture of varying amounts of more mafic mantle-derived and felsic crustal-derived magmas with recently crystallized granitic plutonic materials offers the best explanation for the observed chronology, secular shifts in Hf and Nd isotopes, and the apparently low zircon crystallization and saturation temperatures as compared to Fe-Ti oxide eruption temperatures. This scenario in which transient crustal magma bodies remained molten for varying time periods, fed eruptions before solidification, and were then remelted by fresh recharge provides a realistic conceptual framework that can explain the isotopic and geochemical evidence. General relationships between crustal residence times and magma sources are that: (1) precaldera rhyolites

  2. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  3. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  4. Revealing magma degassing below closed-conduit active volcanoes: Geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.

    2016-04-01

    The elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions have been measured for rocks at various degrees of evolution and belonging to high-K calcalkaline-shoshonitic and shoshonitic-potassic series in order to cover the entire volcanological history of Vulcano Island (Italy). The major- and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the theoretical value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic history of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-erupted Vulcanello latites (Punta del Roveto), which have anomalously high He isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs, since an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He-isotope ratios between fluid inclusions and fumarolic gases shows that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that the most probable magma which actually feeds the fumarolic emissions is a latitic body that ponded at about 3-3.5 km of depth and is flushed by fluids coming from a deeper and basic magma.

  5. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons

    USGS Publications Warehouse

    Charlier, B.L.A.; Wilson, C.J.N.; Lowenstern, J. B.; Blake, S.; van Calsteren, P.W.; Davidson, J.P.

    2005-01-01

    Young (crustal magmatic systems. Up to and including the 26??5 ka 530 km 3 Oruanui eruption, magmatic systems were contemporaneous but geographically separated. Subsequently they have been separated in time and have vented from geographically overlapping areas. Single-crystal (secondary ionization mass spectrometry) and multiple-crystal (thermal ionization mass spectrometry) zircon model-age data are presented from nine representative eruption deposits from ??? 45 to ???3??5 ka. Zircon yields vary by three orders of magnitude, correlating with the degrees of zircon saturation in the magmas, and influencing the spectra of model ages. Two adjacent magma systems active up to 26??5 ka show wholly contrasting model-age spectra. The smaller system shows a simple unimodal distribution. The larger system, using data from three eruptions, shows bimodal model-age spectra. An older ???100 ka peak is interpreted to represent zircons (antecrysts) derived from older silicic mush or plutonic rocks, and a younger peak to represent zircons (phenocrysts) that grew in the magma body immediately prior to eruption. Post-26??5 ka magma batches show contrasting age spectra, consistent with a mixture of antecrysts, phenocrysts and, in two examples, xenocrysts from Quaternary plutonic and Mesozoic-Palaeozoic metasedimentary rocks. The model-age spectra, coupled with zircon-dissolution modelling, highlight contrasts between short-term silicic magma generation at Taupo, by bulk remobilization of crystal mush and assimilation of metasediment and/or silicic plutonic basement rocks, and the longer-term processes of fractionation from crustally contaminated mafic melts. Contrasts between adjacent or successive magma systems are attributed to differences in positions of the source and root zones within contrasting domains in the quartzo-feldspathic (<15 km deep) crust below

  6. Using a combined population-based and kinetic modelling approach to assess timescales and durations of magma migration activities prior to the 1669 flank eruption of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Kahl, M.; Morgan, D. J.; Viccaro, M.; Dingwell, D. B.

    2015-12-01

    The March-July eruption of Mt. Etna in 1669 is ranked as one of the most destructive and voluminous eruptions of Etna volcano in historical times. To assess threats from future eruptions, a better understanding of how and over what timescales magma moved underground prior to and during the 1669 eruption is required. We present a combined population based and kinetic modelling approach [1-2] applied to 185 olivine crystals that erupted during the 1669 eruption. By means of this approach we provide, for the first time, a dynamic picture of magma mixing and magma migration activity prior to and during the 1669 flank eruption of Etna volcano. Following the work of [3] we have studied 10 basaltic lava samples (five SET1 and five SET2 samples) that were erupted from different fissures that opened between 950 and 700 m a.s.l. Following previous work [1-2] we were able to classify different populations of olivine based on their overall core and rim compositional record and the prevalent zoning type (i.e. normal vs. reverse). The core plateau compositions of the SET1 and SET2 olivines range from Fo70 up to Fo83 with a single peak at Fo75-76. The rims differ significantly and can be distinguished into two different groups. Olivine rims from the SET1 samples are generally more evolved and range from Fo50 to Fo64 with a maximum at Fo55-57. SET2 olivine rims vary between Fo65-75 with a peak at Fo69. SET1 and SET2 olivines display normal zonation with cores at Fo75-76 and diverging rim records (Fo55-57 and Fo65-75). The diverging core and rim compositions recorded in the SET1 and SET2 olivines can be attributed to magma evolution possibly in three different magmatic environments (MEs): M1 (=Fo75-76), M2 (=Fo69) and M3 (=Fo55-57) with magma transfer and mixing amongst them. The MEs established in this study differ slightly from those identified in previous works [1-2]. We note the relative lack of olivines with Fo-rich core and rim compositions indicating a major mafic magma

  7. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  8. Magma chamber dynamics and Vesuvius eruption forecasting

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2003-04-01

    Magma is continuously or periodically refilling an active volcano and its eruption depends on the mechanical, fluid, thermal, and chemical aspects of the magma storage region and its surroundings. A cyclically loaded and unloaded system can fail from a weakness in the system or its surroundings, and the fluctuating stresses can produce system failures at stress levels that are considerably below the yield strength of the material. Magma in a fractured rock system within a volcano is unstable and propagates toward the surface with the rate depending on the state of the system defined by the inertia, gravity, friction, and permeability parameters of magma and its source region. Cyclic loading and unloading of magma from a reservoir caused by small- or medium-scale eruptions of Vesuvius can produce catastrophic plinian eruptions because of the structural failure of the system and the quiescent periods between these eruptions increase with time until the next eruption cycle which will be plinian or subplinian and will occur with a very high probability this century. Such a system behavior is predicted by a Global Volcanic Simulator of Vesuvius developed for simulating different eruption scenarios for the purpose of urban planning the territory, reducing the number of people residing too close to the cone of the volcano, and providing safety to those beyond about 5 km radius of the crater. The magma chamber model of the simulator employs a thermomechanical model that includes magma inflow and outflow from the chamber, heat and mass transfer between the chamber and its surroundings, and thermoelastoplastic deformation of the shell surrounding the magma source region. These magma chamber, magma ascent, and pyroclastic dispersion models and Vesuvius eruption forecasting are described in Dobran, F., VOLCANIC PROCESSES, Kluwer Academic/Plenum Publishers, 2001, 590 pp.

  9. Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA

    SciTech Connect

    Carrrigan, Charles R.

    1989-03-21

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

  10. The response of visco-elastic crust and mantle to the inflation/deflation of magma chamber

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    It is important to quantitatively evaluate how magmatic activities at depth are reflected in geodetically (GPS and/or InSAR) observed surface deformation in order to distinguish magma-induced crustal deformation. This study employs 3-D finite element model to examine response of the linear Maxwell visco-elastic crust and mantle to a development of sill. Models with instantaneous and/or time-dependent inflation/deflation of sill at various depths in the crust have predicted geodetically detectable surface deformation, providing important constraints on spatio-temporal-scale of magmatic activities. Instantaneous inflation of sill in the crust causes the surface uplift. The amplitude and wavelength of the uplift are amplified for shallower and deeper inflations, respectively. The inflation occurred over a greater horizontal extent intensify both the amplitude and wavelength. The inflation-induced surface uplift would however abate with time by visco-elastic relaxation. Any signature of sill would disappear in ~ 50 - 100 times Maxwell relaxation time of the crust unless the inflation occurred within the uppermost layer that effectively acts as elastic layer. Time-dependent inflation accompanies with visco-elastic relaxation, and the inflation having occurred over the time-scale of ~ 50 - 100 times crustal relaxation time would provide insignificant signature at the surface, which in turn tells us that crustal deformation would reflect the development of magma chamber only if it has occurred in that time-scale. This study also has found that an ascent of magma into shallower depth may be recognised by an observation such that a horizontal extent over which the surface uplift is progressively intensified focusses into a narrower region.

  11. Compositional time-series from tephra and the temporal evolution of Grímsvötn's magma chamber

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Arna Óladóttir, Bergrun; Larsen, Guőrún

    2010-05-01

    Improved understanding of magma chambers and the related plumbing system is needed for active volcanoes. Their architecture, size and location determine the magma dynamics from source to surface, and the rate of magma transfer is in part controlled by variable sizes and forms of magma chambers. Since these are not constant features but evolve with time, only detailed studies of fine-tuned time-series allow quantitative assessment of their physical evolution, such as their volume. The subglacial volcano Grímsvötn is the most active of all Icelandic volcanoes. Interaction between the hot basaltic magma and glacier melt-water results in tephra formation during each eruption. Careful soil inspection around the Vatnajökull ice-cap has revealed an eruption frequency, higher than 7 eruptions per century. A compositional record of major- and trace element concentrations has been obtained by electron microprobe and laser ablation ICP-MS measurements of tephra glasses for the last 7600 years. We combine these results with more precise data from isotope-dilution mass-spectrometry on historical tephra from the Vatnajökull glacier. The Holcene basalts from Grímsvötn clearly form two distinct compositional groups, G-1 and G2. The group G-1 is characterized by Mg#> 47, K2O< 0.4 wt% and Th< 0.9 ppm, whereas the G-2 magma has more evolved composition. Simple fractional crystallization readily explains the compositional variations within group G-1, while the G-2 magmas have suffered from additional crustal contamination (through AFC). The Holocene tephra record reveals that both magma types are erupted contemporaneously, and even during the same eruption such as produced during the last eruption in 2004. This clearly indicates a polybaric origin of the emitted basalts, and eliminates the possibility of a single well-mixed, steady-state magma chamber beneath Grímsvötn. After the large fissure eruption of Laki (1783-84), which is on the same volcanic system, the composition of

  12. Isotopic evidence of source variations in commingled magma systems: Colorado River extensional corridor, Arizona and Nevada

    SciTech Connect

    Metcalf, R.V.; Smith, E.I.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    Mixing of mantle derived mafic and crustal derived felsic magmas is a major Province-wide process forming Tertiary intermediate magmas within the Basin and Range. Major variations in magma sources, however, may exist in temporally and spatially related systems. Such variations are exemplified by two closely spaced plutons within the northern Colorado River extensional corridor. The 15.96 Ma Mt. Perkins pluton (MPP) was emplaced in three major phases: phase 1 (oldest) gabbro; phase 2 quartz diorite to hornblende granodiorite; and phase 3 biotite granodiorite ([+-]hbld). Phases 2 and 3 contain mafic microgranitoid enclaves (MME) that exhibit evidence of magma mingling. Combined data from phase 2 and 3 rocks, including MMW, shows positive [sup 87]Sr/[sup 86]Sr and negative [var epsilon]Nd correlations vs. SiO[sub 2] (50--72 wt %). Phase 2 rocks, which plot between phase 2 MME and MME-free phase 3 granodiorite, represent hybrid magmas formed by mixing of mantle and crustal derived magmas. Phase 1 gabbro falls off isotope-SiO[sub 2] trends and represents a separate mantle derived magma. The 13.2 Ma Wilson Ridge pluton (WRP), <20 km north of MPP, is cogenetic with the river Mountains volcano (RMV). In WRP an early diorite was intruded by a suite of monzodiorite to quartz monzonite. The monzodiorite portion contains MME and mafic schlieren representing mingled and mixed mafic magmas. The WRP and MPP represent two closely spaced isotopically distinct and separate magma systems. There are five magma sources. The two felsic mixing end members represent two different crustal magma sources. Two mantle sources are presented by MPP phase 1 gabbro and phase 2 MME, reflecting lithospheric and asthenospheric components, respectively. The latter represents the oldest reported Tertiary asthenospheric component within the region. A single lithospheric mantle source, different from the MPP gabbro, is indicated for the mafic mixing end member in the WRP-RMV suite.

  13. Mercury's Magnetic Field: Active, Thermoelectric, or Decaying Dynamo or Crustal Remanence? - The MESSENGER Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Lohr, D. A.; Acuna, M. H.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L.

    2005-12-01

    The discovery of Mercury's intrinsic magnetic field in 1974 by Mariner 10 was a surprise because the planet's size, thermal state, and angular momentum seemed to rule out the possibility of an active dynamo. Additional encounters of Mercury by the Mariner 10 spacecraft in 1975 confirmed the initial results and allowed the estimation of the planetary magnetic dipole moment to within perhaps a factor of two. This discovery prompted a variety of suggestions for the source of the intrinsic field. The presence of sufficient sulfur in the outer core would allow a thin fluid outer core to persist to the present and perhaps serve as host to a thin-shell dynamo. Recent dynamo simulations under conditions appropriate to Mercury support this possibility and point to aspects of the external field that may be observable from an orbiting spacecraft. Remanent magnetization of the crust and mantle by a now-dead core dynamo field was proposed as an alternative explanation of the Mariner 10 observations in 1976, but this suggestion has been questioned on the grounds that the characteristic time between polarity reversals of a core dynamo field is likely much less than the timescale for acquisition of thermoremanence by the cooling crust and upper mantle. The discovery by Mars Global Surveyor (MGS) in 1997 of an intensely magnetized Martian crust added fuel to this debate, because the Mariner 10 measurements can be reproduced if Mercury's crust is approximated by a magnetized shell having an intrinsic magnetization of the same order of magnitude as that suggested for Mars by the MGS measurements. The MESSENGER magnetic field investigation is designed to address this and other fundamental questions regarding the nature and origin of Mercury's internal field as well as the planet's thermal history. We present here a summary of the MESSENGER magnetic field investigation goals and an assessment of observations acquired during the spacecraft's Earth flyby on 2 August 2005.

  14. Determining the Magma Genesis of Mo Porphyry Deposits

    NASA Astrophysics Data System (ADS)

    Gaynor, S.; Coleman, D. S.; Rosera, J.

    2015-12-01

    The high flux of magma associated with super eruptions is hypothesized to rebuild the deep crust, altering the source(s) of subsequent magmatism. Climax-type Mo deposits are commonly generated immediately after eruption of large ignimbrites within a volcanic field, and provide an opportunity to understand the evolution of magma sources following high flux events. The Questa caldera of the Latir volcanic field, NM exposes a 10 Ma long record of pre-, syn- and post-ignimbrite intrusive and extrusive rocks, and hosts the Questa Climax-type Mo deposit. New detailed geochronology and geochemistry from Questa (including extensive sampling of subsurface rocks in the mine) permit detailed reconstruction of the temporal evolution of magma sources through the waxing and waning stages of super eruption magmatism. Comparison of chemical and isotopic data waxing, ignimbrite, Mo-mineralizing and waning stage magmas reveals several patterns. Waxing and waning magmas (waxing: 29-25.7 Ma; waning: 24.5-19 Ma) have intermediate trace elements and radiogenic isotopes relative to other magmatism (87Sr/86Sri=0.7050 to 0.7070, ɛNd=-5.2 to -7.2). Ignimbrite magmatism (25.5 Ma) is depleted in incompatible elements, enriched in MREE and HREE's and has more evolved radiogenic isotopes (87Sr/86Sri=0.7095, ɛNd=-8.0). Molybdenum mineralizing magmas (24.9-24.5 Ma), are enriched in incompatible elements, depleted in MREE and HREE's and have distinct radiogenic isotopes (87Sr/86Sri=0.7055 to 0.7075, ɛNd=-4.2 to -5.7). We suggest the lower crustal source of magmas changed during ignimbrite generation, and as a result, subsequent mineralizing magmas incorporated more juvenile, mafic components. This mantle influence is the metallogenesis for Climax-type deposits and indicates that deep crustal hybridization, rather than upper crustal differentiation, is pivotal in their generation. These results indicate that a lower crustal source of magmatism for a volcanic field is altered due to super

  15. Magma generation on Mars: Estimated volumes through time

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Schneid, B.

    1991-01-01

    Images of volcanoes and lava flows, chemical analysis by the Viking landers, and studies of meteorites show that volcanism has played an important role in the evolution of Mars. Photogeologic mapping suggests that half of Mars' surface is covered with volcanic materials. Here, researchers present results from new mappings, including estimates of volcanic deposit thicknesses based on partly buried and buried impact craters using the technique of DeHon. The researchers infer the volumes of possible associated plutonic rocks and derive the volumes of magmas on Mars generated in its post-crustal formation history. Also considered is the amount of juvenile water that might have exsolved from the magma through time.

  16. From Map Unit to Magma Chamber: Understanding the 2006 Eruption of Augustine Volcano

    NASA Astrophysics Data System (ADS)

    Coombs, M.; Bull, K.; Cervelli, P.; Larsen, J.; Mandeville, C.; Nye, C.; Tilman, M.; Vallance, J.; Wallace, K.; Webster, J.

    2007-12-01

    In 2006, Augustine Volcano once again sprang to life and erupted ~70 x 106 m3 of magma during three eruptive phases. Variations in magma composition, eruptive style, and deformation of the edifice provide clues to the ascent and interaction of magmas prior to and during the three-month-long eruption. Genetically unrelated end members basaltic andesite (56.5 wt% SiO2) and dacite (63.3 wt% SiO2) bracket erupted magma compositions. Products from all three eruptive phases contain both end members though proportions varied with time, and many pyroclasts have mixing textures. Initial Vulcanian explosions in mid-January 2006 (explosive phase) erupted small-volumes (~14 x 106 m3 DRE) of basaltic andesite as ash fall and pyroclastic flows. In late January, explosions transitioned to continuous "boil over" at the vent (continuous phase), producing relatively voluminous (28.5 x 106 m3 DRE) block-and-ash flows that are rich in dacite and banded clasts. In early February, explosive activity gave way to effusion of basaltic andesite lava (effusive phase; 32 x 106 m3 DRE) highlighted by a pulse of increased effusion from March 7-14. Effusive activity ceased by the end of March. Geophysical and petrologic evidence lead us to a hypothetical series of magmatic processes that drove the eruption. The presence of amphibole in all eruptive products indicates that magma storage must have been within the amphibole stability field at depths greater than ~4 km, in agreement with elevated water (2 - 4 wt% by difference) and chlorine (2400 - 4900 ppm) contents in melt inclusions. Precursory unrest took the form of six months of volcano-tectonic earthquakes and island-wide uplift and radial displacement (recorded by GPS), all centered near sea level. Preliminary textural analysis of the explosively erupted basaltic andesite indicates that it did not undergo the degree of decompression-driven crystallization expected if it had accumulated at sea level (~40 MPa) for longer than a few days. This

  17. Investigating Compositional Links Between Arc Magmas And The Subducted Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Straub, S. M.

    2015-12-01

    Arc magmatism is causally related to the recycling of materials from the subducting plate. Numerous studies showed that the recycled material flux is dominated by recycled continental crust (oceanic sediment, eroded crust) and altered oceanic igneous crust (AOC). The crustal component is highly enriched, and thus its signal in arc magmas can readily be distinguished from mantle wedge contributions. In contrast, the impact of the AOC flux is much more difficult to detect, since the AOC isotopically resembles the mantle. Mass balance studies of arc input and output suggest that the recycled flux from the thick (6000 meter on average) AOC may buffer the flux of the recycled continental crust to the point of concealment in arc settings where the latter is volumetrically minor. In particular, highly fluid- mobile elements Sr and Pb in arc magmas are strongly influenced by the AOC, implying that the arc chemistry may allow for inferring the Sr and Pb isotopic composition of the subducted AOC. This hypothesis is being tested by a compilation of published data of high-quality trace element and isotope compositions from global arcs. In agreement with previous studies, our results confirm that the Sr-rich fluids released from the AOC control the arc Sr isotopes, whereby the slightly elevated 87Sr/86Sr (up to 0.705) of many arcs may principally reflect the similarly elevated Sr isotope ratios of the AOC rather than a recycled crustal component. In contrast, the arc Pb isotope ratios are influenced by both the AOC and the recycled crustal component which create the typical binary mixing arrays. These arrays should then point to the Pb isotope composition of the AOC and the recycled crust, respectively. However, as the proportions of these end members may strongly vary in arc magmas, the exact 206Pb/204Pb of the subducted AOC in a given setting is challenging. Remarkably, the Pb isotope systematics from well-constrained western Aleutian (minimal sediment subduction) and central

  18. Geochemical and isotopic profile of Pico de Orizaba (Citlaltépetl) volcano, Mexico: Insights for magma generation processes

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter; Carrasco-Núñez, Gerardo

    2010-11-01

    Pico de Orizaba or Citlaltépetl volcano is the easternmost and highest stratovolcano of the subduction-related Mexican Volcanic Belt (MVB) located > 400 km NNE of the Middle America Trench. This active volcano comprises four evolutionary stages, ranging in age from 0.65 Ma to the Holocene, and is surrounded by Quaternary monogenetic scoria cones and maar volcanoes. Magmatic products of the stratocone range from basaltic andesites to rhyolites and the cinder cones erupted basalts and basaltic andesites. All rock compositions form a continuous calc-alkaline suite. Petrogenetic processes involved in magma generation and evolution include fractional crystallization and mid-crustal assimilation. Trace element patterns with elevated Ba/Nb, positive Pb spikes, and Th enrichments indicate contributions from subducted sediment. Low Ba/Th ratios suggest melting of hydrous sediment without significant loss of fluid-mobile elements prior to melting. Sr-Nd isotopic ratios of Pico de Orizaba and cinder cones are nearly chondritic and are located on a mixing curve between Pacific MORB and Paleozoic crust of SE Mexico. However, vertical Nd distributions in an 87Sr/ 86Sr vs. ɛNd diagram cannot be explained by crustal assimilation and indicate contributions of a sedimentary component with unradiogenic Nd. In contrast to other eastern MVB volcanic centres, Pico de Orizaba magmas are derived almost exclusively from a depleted mantle source. Compared to other MVB stratocones, Pico de Orizaba shows the least radiogenic Nd isotope ratios at nearly identical 87Sr/ 86Sr. Steep trends in a 206Pb/ 204Pb vs. 207Pb/ 204Pb diagram favour the involvement of young, 207Pb-enriched oceanic sediments in magma generation processes of Pico de Orizaba volcano. The Pb isotope data do not support any assimilation of lower crustal Grenvillian basement.

  19. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge.

    PubMed

    West, M; Menke, W; Tolstoy, M; Webb, S; Sohn, R

    2001-10-25

    Axial volcano, which is located near the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain beneath the northeast Pacific Ocean, is a locus of volcanic activity thought to be associated with the Cobb hotspot. The volcano rises 700 metres above the ridge, has substantial rift zones extending about 50 kilometres to the north and south, and has erupted as recently as 1998 (ref. 2). Here we present seismological data that constrain the three-dimensional velocity structure beneath the volcano. We image a large low-velocity zone in the crust, consisting of a shallow magma chamber and a more diffuse reservoir in the lower crust, and estimate the total magma volume in the system to be between 5 and 21 km3. This volume is two orders of magnitude larger than the amount of melt emplaced during the most recent eruption (0.1-0.2 km3). We therefore infer that such volcanic events remove only a small portion of the reservoir that they tap, which must accordingly be long-lived compared to the eruption cycle. On the basis of magma flux estimates, we estimate the crustal residence time of melt in the volcanic system to be a few hundred to a few thousand years.

  20. Short Magma Residence Times at Mt. Rainier and the Probable Absence of a Large, Integrated, and Long-lived Magma Reservoir System

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Lanphere, M. A.

    2003-12-01

    Intensive, high-precision K-Ar and 40Ar/39Ar geochronology have proven essential for producing modern geologic maps of volcanoes and from these determining the volcanoes' time-volume histories. If sufficiently abundant, these data can also reveal aspects of the magma supply system. For Cascade volcanoes a general result has been the demonstration that edifice growth is highly episodic. Mount Rainier grew in the last 500,000 years atop the remains of an ancestral edifice that was active in the same location 1 - 2 Myr ago. The 500,000 year history of the modern edifice falls into four stages of alternating high and low magmatic output of subequal duration, but major and trace element compositions of eruptives show no correlation with volcano growth stages. Instead, the same spectrum of magmas (andesite to low-Si dacite) erupted throughout the history of the volcano with compositions in the same relative abundances. Superimposed on this seemingly null result are at least 6 brief but pronounced excursions in magma trace-element compositions. Concentrations of Zr, Ba, or Sr can double and then return to background values passing into and out of a single flow or flow-group. Some excursions are tightly bracketed by mapping and by measured ages and have durations no more than the geochronologic measurement precision of about 10,000 years. True excursion durations are potentially much shorter. The brevity and abrupt onsets and cessations of these compositional excursions are evidence against the presence of a sizeable, long-lived magma reservoir anywhere beneath the volcano, including a MASH zone in the lower crust, that would have attenuated, dampened, and homogenized compositional excursions introduced into the magmatic system. Instead, we take 10,000 years as a probable upper limit to the average residence time of magma batches transiting the crustal portion of Mount Rainier's plumbing system. A consistent scenario is that parental magmas enter the crust, differentiate

  1. Magma ascent pathways associated with large mountains on Io

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Kirchoff, M. R.; White, O. L.; Schenk, P.

    2013-12-01

    While Jupiter's moon Io is the most volcanically active body in the solar system, the largest mountains seen on Io are created by tectonic forces rather than volcanic construction. Pervasive compression, brought about by subsidence induced by sustained volcanic resurfacing and aided by thermal stress, creates the mountains, but at the same time inhibits magma ascent in vertical conduits (dikes). We superpose stress solutions for subsidence and thermal stress (from the 'crustal conveyor belt' resurfacing) in Io's lithosphere with stresses from Io mountain-sized loads (in a shallow spherical shell solution) in order to evaluate magma ascent pathways. We use stress orientation (least compressive stress horizontal) and stress gradient (compression decreasing upwards) criteria to identify ascent pathways through the lithosphere. For nominal 'conveyor belt' stress states, the ascent criteria are satisfied only in a narrow (5 km or so), roughly mid-lithosphere band. Superposed stresses from loading of a 150-km wide mountain (comparable to Boösaule Mons) on a lithosphere with thickness Te = 50 km results in a thickening of the ascent-favorable (AF) zone beneath the center of the edifice, with a total thickness of 38 km for an 18 km tall (post-flexure) edifice. Most of the thickening is upward, although some is downward. Widening the edifice to 200 km produces a 'U-shaped' AF zone, thin and depressed at r = 0 but intersecting the surface at distances of about 20 to 40 km from the center. Increasing edifice width increases the radial distance at which the AF zone intersects the surface. Thinner lithospheres create generally thinner AF zones, and U-shaped AF zones for narrower edifices. There are several configurations for which viable ascent paths transit nearly the entire lithosphere, arriving at the base of the mountain, where magma can be transported through thrust faults or perhaps thermally erode flank sections, the latter consistent with observations of paterae in

  2. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  3. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  4. Seismic Noise Auto-Correlation Function Changes Correlate with the Crustal Deformation for off-Izu Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Ueno, T.; Saito, T.; Shiomi, K.; Enescu, B.; Hirose, H.

    2010-12-01

    . The higher coherency shown around the seismic swarm periods were rare case, spanning less than 5% of the total observation time. It is difficult to pinpoint the causes for the individual temporal changes of ACFs amplitude and tilt. However, the temporal changes of ACFs have been seldom correlated with the tilt records except for the seismic swarm periods. Magma intrusion could explain both the crustal deformations and changes of crustal properties at which ACFs are particularly sensitive. It can be also the triggering factor for the swarm activity itself, as discussed in previous research. These observations stress out the importance of continuous monitoring of crustal deformations, and may produce important information for the prediction of seismic swarm occurrence.

  5. Recycled gabbro signature in Upper Cretaceous Magma within Strandja Massif: NW Turkey

    NASA Astrophysics Data System (ADS)

    Ulusoy, Ezgi; Kagan Kadioglu, Yusuf

    2016-04-01

    calkalkaline in character.Geochemical features include moderate to slightly elevated large ion lithophile elements (LILE) and slightly depleted high field strength element (HFSE) in patterns. According to petrographic, minerological and geochemical studies gabbroic rocks are products of mantle products with contaminated by crustal components and during magmatic activity mantle addition continuing with varying proportions during cycling of magma intrusion in the Strandja Massif.

  6. Volatile budget of Eyjafjallajokull magmas

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Mandeville, C. W.

    2010-12-01

    Volatile elments played a critical role in the style of activity during the 2010 eruptions of the glacier-covered Eyjafjallajokull volcano in Iceland. The alkali basalt flank eruption at Fimmvorduhals was dominated by vigorous fire fountaining that produced dominantly spatter-fed aa lava flows. Production of fine ash during the subsequent summit eruption has been variously attributed to magma fragmentation, either due to water-ice-magma interaction related to the 250 m thick glacier cover over the crater, or juvenile volatile content of the magma. Considering the great impact of the ash dispersal on trans-North Atlantic aviation, knowledge of the fragmentation mechanism and the relative roles of juvenile magmatic gases versus phreatomagmatic fragmentation is of prime significance. To evaluate the potential importance of juvenile components, the concentrations of volatiles in magmas erupted in 2010 from Eyjafjallajokull volcano in Iceland have been measured. Analysis of glass inclusions in olivine Fo 77-85 and plagioclase phenocrysts in the alkali basalt magma erupted at Fimmvorduhals flank eruption contain high total volatiles in the range 0.96 - 2.12 wt.%, and sulfur 0.10 - 0.16 wt.%. These glass inclusions are comparable to major element bulk composition of Fimmvörduháls alkali basalt lavas. In contrast, tephra from the explosive summit crater eruption are trachy-andesitic. This magma contains a rather wide range of olivine and plagioclase phenocrysts of Fo48-79 and An 69-81, with both basaltic and andesitic glass inclusions. This diversity is also reflected in a much wider range of total volatile content from 0.1 - 2.88 wt.% and sulfur 0.1 - 0.24 wt.%. At the basic end, the glass inclusions are comparable to the Fimmvorduhals alkali basalt lava, but some have andesitic composition. The highest volatile content is observed in the andesitic glass inclusions in plagioclase An78. Further analysis of glass inclusions and matrix glass by FTIR and ion probe is in

  7. Possible Time Dependent Deformation over Socorro Magma Body from GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Amelug, F.

    2015-12-01

    The Socorro Magma Body (SMB) is one of the largest, currently active magma intrusions in the Earth's continental crust. The area of Socorro is a segment of the Rio Grande Rift that display a broad seismic anomaly and ground deformation. The seismic reflector is imaged at 19 km depth coinciding with the occurrence of numerous small earthquake swarms. Broad crustal uplift was also observed above this reflector and led to the hypothesis of the presence of a large mid-crustal sill-like magma body. Previous geodetic studies over the area reveal ground deformation at the rate of 2-3 mm/yr from 1992 to 2006. The magma body was modeled as a penny-shaped crack of 21 km radius at 19 km depth based on InSAR results [Finnegan et. al., 2009]. In this study we expand the uplift measurement period over the SMB to two decades by using additional InSAR and GPS observations. We extended the InSAR observation record by analyzing 27 Envisat scenes acquired during the years 2006-2010. Continuous GPS observation acquired by the SC01 station since 2001 and three more recent Plate Boundary Observatory stations, which were installed between 2005 and 2011, provide high temporal record of uplift over the past decade and a half. We analyzed the InSAR data using ROI_PAC software package and calculated the temporal evolution of the vertical displacement using time series analysis. Preliminary results of 2006-2010 Envisat data show no significant deformation above the 1-2 mm noise level, which disagree with the previous ERS-1/2 results; 2-3 mm/yr during 1992-2006. This disagreement suggests a time dependent uplift of the SMB, which is also supported by GPS observations. The average uplift rate of the SC01 station is 0.9±0.02 mm/yr for 2001-2015 and 0.6±0.08 mm/yr for 2006-2010. Furthermore the SC01 time series exhibits episodic uplift events. The observed time dependent uplift suggests that magma supply in the middle crust may also occur episodically, as in shallow magmatic systems.

  8. Formation of continental crust in a temporally linked arc magma system from 5 to 30 km depth: ~ 90 Ma plutonism in the Cascades Crystalline Core composite arc section

    NASA Astrophysics Data System (ADS)

    Ratschbacher, B. C.; Miller, J. S.; Kent, A. J.; Miller, R. B.; Anderson, J. L.; Paterson, S. R.

    2015-12-01

    Continental crust has an andesitic bulk composition with a mafic lower crust and a granodioritic upper crust. The formation of stratified continental crust in general and the vertical extent of processes active in arc crustal columns leading to the differentiation of primitive, mantle-derived melts entering the lower crust are highly debated. To investigate where in the crustal column magma mixing, fractionation, assimilation and crystal growth occur and to what extent, we study the ~ 90 Ma magmatic flare-up event of the Cascades arc, a magma plumbing system from ~ 5 to 30 km depth. We focus on three intrusive complexes, emplaced at different depths during major regional shortening in an exceptionally thick crust (≥ 55 km1) but which are temporally related: the upper crustal Black Peak intrusion (1-3 kbar at 3.7 to 11 km; ~ 86.8 to 91.7 Ma2), the mid-crustal Mt. Stuart intrusion (3.5-4.0 kbar at 13 to 15 km; 90.8 and 96.3 Ma3) and the deep crustal Tenpeak intrusion (7 to 10 kbar at 25 to 37 km; 89.7 to 92.3 Ma4). These intrusive complexes are well characterized by geochronology showing that they have been constructed incrementally by multiple magma batches over their lifespans and thus allow the monitoring and comparison of geochemical parameters over time at different depths. We use a combination of whole rock major and trace element data and isotopes combined with detailed investigation of amphibole, which has been recognized to be important in the generation of calc-alkaline rocks in arcs to test the following hypotheses: (a) compositional bimodality is produced in the lower crust, whereas upper crustal levels are dominated by mixing to form intermediate compositions, or (b) differentiation occurs throughout the crustal column with different crystallizing phases and their compositions controlling the bulk chemistry. 1. Miller et al. 2009: GSA Special Paper 456, p. 125-149 2. Shea 2014: PhD thesis, Massachusetts Institute of Technology 3. Anderson et al. 2012

  9. The effect of water activity and oxygen fugacity on the phase relations and oxidation state of Fe in parental ferrobasaltic magma of Skaergaard

    NASA Astrophysics Data System (ADS)

    Botcharnikov, R.; Koepke, J.; Holtz, F.; McCammon, C.

    2003-04-01

    Phase relations and differentiation in the ferrobasaltic (FeO*=13wt%) system "SC1", an assumed parental liquid of the Skaergaard layered intrusion, have been investigated experimentally at dry conditions (1 atm) [1, 2]. However, the Skaergaard magma is believed to contain water. The present study investigates the role of water and fO2 on the phase relations and differentiation of the "SC1" ferrobasaltic system. The crystallization experiments have been performed in an internally heated pressure vessel equipped with a rapid quench facility and Shaw-membrane to determine the prevailing oxygen fugacity within the sample capsule [3]. To prevent the Fe-loss into the capsule material and ensure the desired conditions inside the capsule, the AuPd capsules were presaturated with iron and starting glasses were preequilibrated at the expected fO2 of the run. Water activity was varied by changing the H2O/CO2 ratio in the fluid phase. The first results of the experiments at P=200 MPa, T=1200-1000°C, various oxygen fugacities (logfO2=FMQ+4 to FMQ-1) and water activities (0 to 1) show that water influences not only the liquidus temperatures and temperature interval of mineral crystallization but also the sequence of crystallizing minerals; when compared with the dry system. Since water solubility strongly depends on pressure in the pressure range of 200-300 MPa, corresponding to the storage conditions of Skaergaard magma, the aH2O of hydrous magma may change significantly as a result of convection. Thus, convection has the potential to produce significant differences in stability and proportions of the prevailing minerals. This, in turn, may contribute to the formation of complex layering of the Skaergaard intrusion. The Moessbauer analysis of the quenched glasses shows that the Fe3+ / Sum Fe ratio of the silicate melt is a positive function of the water activity and has a linear dependence on water mole fraction in the system at 1200°C. The decrease of Fe3+ / Sum Fe ratio of

  10. On the potential for lunar highlands Mg-suite extrusive volcanism and implications concerning crustal evolution

    NASA Astrophysics Data System (ADS)

    Prissel, Tabb C.; Whitten, Jennifer L.; Parman, Stephen W.; Head, James W.

    2016-10-01

    The lunar magnesian-suite (Mg-suite) was produced during the earliest periods of magmatic activity on the Moon. Based on the cumulate textures of the samples and a lack of evidence for Mg-suite extrusives in both the sample and remote sensing databases, several petrogenetic models deduce a predominantly intrusive magmatic history for Mg-suite lithologies. Considering that ∼18% of the lunar surface is covered by mare basalt flows, which are substantially higher in density than estimated Mg-suite magmas (∼2900 versus ∼2700 kg/m3), the apparent absence of low-density Mg-suite volcanics is surprising. Were Mg-suite magmas predominantly intrusive, or have their extrusive equivalents been covered by subsequent impact ejecta and/or later stage volcanism? If Mg-suite magmas were predominantly intrusive, what prevented these melts from erupting? Or, if they are present as extrusives, what regions of the Moon are most likely to contain Mg-suite volcanic deposits? This study investigates buoyancy-driven ascent of Mg-suite parental melts and is motivated by recent measurements of crustal density from GRAIL. Mg-suite dunite, troctolite, and spinel anorthosite parental melts (2742, 2699, and 2648 kg/m3, respectively) are considered, all of which have much lower melt densities relative to mare basalts and picritic glasses. Mg-suite parental melts are more dense than most of the crust and would not be expected to buoyantly erupt. However, about 10% of the lunar crust is greater in density than Mg-suite melts. These areas are primarily within the nearside southern highlands and South Pole-Aitken (SP-A) basin. Mg-suite extrusions and/or shallow intrusions were possible within these regions, assuming crustal density structure at >4.1 Ga was similar to the present day crust. We review evidence for Mg-suite activity within both the southern highlands and SP-A and discuss the implications concerning crustal evolution as well as Mg-suite petrogenesis. Lower crustal densities

  11. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-02-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber-dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10-30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  12. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  13. Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, sourthern volcanic zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers

    USGS Publications Warehouse

    Dungan, M.A.; Wulff, A.; Thompson, R.

    2001-01-01

    The Quaternary Tatara-San Pedro volcanic complex (36°S, Chilean Andes) comprises eight or more unconformity-bound volcanic sequences, representing variably preserved erosional remnants of volcanic centers generated during 930 ky of activity. The internal eruptive histories of several dominantly mafic to intermediate sequences have been reconstructed, on the basis of correlations of whole-rock major and trace element chemistry of flows between multiple sampled sections, but with critical contributions from photogrammetric, geochronologic, and paleomagnetic data. Many groups of flows representing discrete eruptive events define internal variation trends that reflect extrusion of heterogeneous or rapidly evolving magna batches from conduit-reservoir systems in which open-system processes typically played a large role. Long-term progressive evolution trends are extremely rare and the magma compositions of successive eruptive events rarely lie on precisely the same differentiation trend, even where they have evolved from similar parent magmas by similar processes. These observations are not consistent with magma differentiation in large long-lived reservoirs, but they may be accommodated by diverse interactions between newly arrived magma inputs and multiple resident pockets of evolved magma and / or crystal mush residing in conduit-dominated subvolcanic reservoirs. Without constraints provided by the reconstructed stratigraphic relations, the framework for petrologic modeling would be far different. A well-established eruptive stratigraphy may provide independent constraints on the petrologic processes involved in magma evolution-simply on the basis of the specific order in which diverse, broadly cogenetic magmas have been erupted. The Tatara-San Pedro complex includes lavas ranging from primitive basalt to high-SiO2 rhyolite, and although the dominant erupted magma type was basaltic andesite ( 52-55 wt % SiO2) each sequence is characterized by unique proportions of

  14. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    Sakurajima volcano is the Quaternary post-caldera volcano of Aira caldera, which was caused by the eruption of huge amount of silicic pyroclastics, situated on Ryukyu arc, southern Kyushu Island, Japan. This volcano is quite active, so it can be considered that the preparation of next caldera-forming eruption with huge amount of silicic magma is proceeding. It is, therefore, expected that the investigation of magma genesis of Sakurajima volcano give us information for the mechanism generating huge amount of silicic magma, which cause the caldera formation. We analyzed major and trace elements with Sr, Nd and Pb isotopic compositions of volcanic rocks from Sakurajima volcano. We sampled (ol) - opx - cpx - pl andesite and dacite from almost all the volcanic units defined by Fukuyama and Ono (1981). In addition to Sakurajima samples, we also studied basaltic rocks erupted at pre-caldera stage of the Aira caldera to estimate the primary magma of Sakurajima volcano. Major and trace element variations generally show linear trends on the Harker diagrams, with the exception of P2O5 and TiO2. Based on the trend of P2O5 vs.SiO2, we divided studied samples low-P (P2O5 < 0.15 wt. %) and high-P (P2O5 > 0.15 wt. %) groups and these groups also display two distinct trends on TiO2-SiO2 diagram. The composition of trace elements shows typical island arc character as depletion of Nb and enrichments of Rb, K and Pb, suggesting addition of aqueous fluids to the mantle wedge. The Zr and Nb concentrations make a liner trend (Zr/Nb = 27) and this trend across from tend of MORB (Zr/Nb = 35) to that of crustal materials (Zr/Nb=17). The Sr, Nd and Pb isotopic compositions broadly plot to on the mixing curve connecting MORB-type mantle and sediments of the Philippine Sea Plate, indicating that the primary magma was generated by partial melting of MORB-type mantle wedge, which was hydrated with fluids derived from the subducted Philippine Sea sediments. But we found that our data plot apart

  15. Evaluating Crustal Contamination Effects On The Lithophile Trace Element Budget Of Shergottites, NWA 856 As A Test Case

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Ferdous, J.; Peslier, A. H.

    2017-01-01

    The issue of whether crustal contamination has affected the lithophile trace element budget of shergottites has been a point of contention for decades. The evaluation has focused on the enriched shergottite compositions as an outcome of crustal contamination of mantle-derived parent magmas or, alternatively, the compositions of these stones reflect an incompatible trace element (ITE) enriched mantle source.

  16. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, T.; Ichimura, T.

    2015-12-01

    Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for

  17. Physical inter-relationships between hydrothermal activity, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.

    2012-12-01

    The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma

  18. Modeling Anomalous Crustal Accretion at Spreading Zones

    NASA Astrophysics Data System (ADS)

    Schmeling, H.; Marquart, G.

    2003-12-01

    The thermal and seismic structure of normal oceanic crust or anomalous crust such as Iceland depends on the mode of melt extraction from the mantle and its emplacement within or on top of the crust. We model crustal accretion by a two fold approach. In a 2D spreading model with anomalous mantle temperature beneath the ridge we solve the Navier-Stokes-, the heat tansport, the mass conservation and the melting equations to determine the enhanced melt production beneath the ridge. This melt is extracted and emplaced on top of the model to form the crust. Two cases are distinguished: a) Extruded crustal material is taken out of the model and is only advected according to the spreading of the plate, b) extruded material is fed back into the model from the top to mimic isostatic subsidence of extruded crust. We find that the feed back of case b) is only moderate. For example, if extruded crustal material as thick as 40 km is fed back into the model, the melting region is depressed downward only by as much as 10km, and the total amount of generated melt is reduced by about 20 %. On the other hand, the upper 30 km of the model is cooled considerably by several 100 degrees. A second set of models focuses on the details of crustal accretion without explicitly solving for the melting and extraction. Knowing the spreading rate, the rate of crustal production can be estimated, but the site of emplacement is not obvious. For an anomalous crust such as Iceland we define four source regions of crustal accretion: surface extrusion, intrusion in fissure swarms at shallow depth connected to volcanic centres, magma chambers at shallow to mid-crustal level, and a deep accretion zone, where crust is produced by widespread dyke and sill emplacement and underplating. We solve the Navier-Stokes-, the heat tansport and the mass conservation equations and prescribe different functions in space and time for crustal production in the four defined regions. The temperature of the imposed

  19. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    PubMed Central

    Wang, Qiang; Hawkesworth, Chris J.; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui

    2016-01-01

    There is considerable controversy over the nature of geophysically recognized low-velocity–high-conductivity zones (LV–HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7–0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700–1,050 °C and pressures of 0.5–1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15–50 km in areas where the LV–HCZs have been recognized. This provides new petrological evidence that the LV–HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau. PMID:27307135

  20. Magma surge from the mantle: the Father's Day Eruption, Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2015-12-01

    The geometry of the shallow plumbing system of Kīlauea Volcano, Hawai'i, is constrained by both geophysical and petrologic studies, yet the loci of lower crustal magma storage and timescales of magma ascent are almost entirely unknown. The petrography and texture of erupted magmas are largely overprinted by processes in the shallow reservoir and conduit. Direct petrological evidence for lower crustal storage and transport is enigmatic but exists in the form of fine-scale crystal zoning in the cores of olivine phenocrysts, in the geochemical heterogeneity of melt inclusions and in fluid inclusion density. The 2007 Father's Day intrusion and eruption occurred at the culmination of a surge in magma supply to the summit reservoir and during a period of heightened CO2 outgassing flux. The erupted lavas provide an opportunity to analyze atypically primitive melts, with > 8.5 wt% MgO in the whole rock, which have undergone relatively little shallow crustal processing. We characterise melt inclusions and their host olivine crystals through a detailed study of olivine morphology, diffusion modelling, and melt and fluid inclusion geochemistry. We show that the melt inclusions preserve primitive geochemical heterogeneity, which we use to reconstruct fractionation, mixing and degassing processes through the crust. We infer timescales and pressures of magma ascent, storage, and CO2 degassing through the crustal plumbing system. These observations are interpreted in the context of the exceptionally detailed set of volcano monitoring data at Kīlauea Volcano.

  1. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Palomeras, I.; Levander, A.; Zelt, C. A.; Harder, S. H.; Schmandt, B.; Hansen, S. M.; Creager, K. C.; Ulberg, C. W.

    2015-12-01

    Seismic investigations following the 1980 eruption of Mount St. Helens have led to a detailed model of the magmatic and tectonic structure directly beneath the volcano. These studies suffer from limited resolution below ~10 km, making it difficult to estimate the volume of the shallow magma reservoir beneath the volcano, the regions of magma entry into the lower crust, and the connectivity of this magma system throughout the crust. The latter is particularly interesting as one interpretation of the Southern Washington Cascades Conductor (SWCC) suggests that the Mount St Helens and Mount Adams volcanic systems are connected in the crust (Hill et al., 2009). The multi-disciplinary iMUSH (imaging Magma Under St. Helens) project is designed to investigate these and other fundamental questions associated with Mount St. Helens. Here we present the first high-resolution 2D Vp and Vs models derived from travel-time data from the iMUSH 3D active-source seismic experiment. Significant lateral heterogeneity exists in both the Vp and Vs models. Directly beneath Mount St. Helens we observe a high Vp/Vs body, inferred to be the upper/middle crustal magma reservoir, between 4 and 13 km depth. Southeast of this body is a low Vp column extending from the Moho to approximately 15 km depth. A cluster of low frequency events, typically associated with injection of magma, occurs at the northwestern boundary of this low Vp column. Much of the recorded seismicity between the shallow high Vp/Vs body and deep low Vp column took place in the months preceding and hours following the May 18, 1980 eruption. This may indicate a transient migration of magma between these two reservoirs associated with this eruption. Outside of the inferred magma bodies that feed Mount St. Helens, we observe several other interesting velocity anomalies. In the lower crust, high Vp features bound the low Vp column. One explanation for these features is the presence of lower crustal cumulates associated with

  2. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    USGS Publications Warehouse

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  3. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    USGS Publications Warehouse

    Piochi, M.; de Vivo, B.; Ayuso, R.A.

    2006-01-01

    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18<8% that typically erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino plinian eruptions. New investigations are necessary to verify the proposed magma feeding system. ?? 2006 Elsevier B.V. All rights reserved.

  4. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Deeds, Daniel A.; Kulongoski, Justin T.; Mühle, Jens; Weiss, Ray F.

    2015-02-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (Cre; ∼30 fmol kg-1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1-9 times Cre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10-980 times Cre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20-100 km) suggests that the SAFS potentially emits (0.3- 1) ×10-1 kg CF4 yr-1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 ×104km2 of granitic rock in California is estimated to release (0.019- 3.2) ×10-1 kg CF4 yr-1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial-interglacial transitions.

  5. Linking enclave formation to magma rheology

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Jellinek, A. M.

    2012-10-01

    Magmatic enclaves record the history of deformation and disaggregation (i.e., fragmentation) of relatively hot, compositionally more mafic magmas injected into actively convecting silicic magma chambers through dikes. Enclave size distributions may provide crucial clues for understanding the nature of this mechanical mixing process. Accordingly, we conduct a comprehensive field study to measure enclave size distributions in six Cascade lava flows. Using results from recent fluid dynamics experiments along with thermodynamic and modeling constraints on key physical properties of the injected and host magmas (i.e., temperature, density and effective viscosity), we use the size distributions of enclaves to characterize the magmatic flow regime governing enclave formation. Scaling arguments suggest that the viscous stresses related to magma chamber flow acting against the yield strength of a crystallizing injected magma control the breakup of 1 m-wide mafic dikes into millimeter- to centimeter-scale enclaves. Our data analysis identifies a characteristic length scale of breakup that constrains the yield strength of the injected magmas in a more restrictive way than existing empirical models for yield strength based on crystal content. In all six lava flows, we show that the progressive fragmentation of the injected magma is self-similar and characterized by a fractal dimensionDf ˜ 2, which is comparable to previous studies on enclaves. We also find a small but statistically significant dependence of Df on the effective viscosity ratio between host and enclave magmas, such that large variations in effective viscosity enhance breakup. This work demonstrates that field observations of enclave size distributions can reliably constrain the rheological and flow conditions in which enclaves form.

  6. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The primary effort in this study during the past year has been directed along two separate lines: (1) expanding finite element models to include the entire Anatolian plate, the Aegean Sea and the Northeastern Mediterranean Sea, and (2) investigating the relationship between fault geometry and earthquake activity for the North Anatolian and similar strike-slip faults (e.g., San Andreas Fault). Both efforts are designed to provide an improved basis for interpreting the Crustal Dynamics measurements NASA has planned for this region. The initial phases of both investigations have been completed and the results are being prepared for publication. These investigations are described briefly.

  7. Collision zone magmatism aids continental crustal growth

    NASA Astrophysics Data System (ADS)

    Savov, Ivan; Meliksetian, Khachatur; Ralf, Halama; Gevorg, Navasardian; Chuck, Connor; Massimo, D'Antonio; Samuele, Agostini; Osamu, Ishizuka; Sergei, Karapetian; Arkadi, Karakhanian

    2014-05-01

    The continental crust has a broadly andesitic bulk composition and is predominantly generated at convergent margins. However, estimates of the bulk composition of oceanic arcs indicate a bulk composition closer to basalt than to andesite. Hence, reworking processes that transform basaltic island arc crust into andesitic continental crust are essential[1] and explaining growth of andesitic continental crust via accretion of arc crustal fragments remains problematic. Recent studies of magmatism in the Great Tibetan Plateau[2], as site of multiple and still active continent-continent collisions, have proposed that andesitic CC is generated via amalgamation of large volumes of collision-related felsic magmas generated by melting of hydrated oceanic crust with mantle geochemical signatures. We aim to test this hypothesis by evaluating geochemical data from the volcanically and tectonically active Lesser Caucasus region (Armenia, Azerbaijan, Georgia and E. Turkey), as the only other region where active continent-continent collision takes place. We will benefit from the newly compiled volcano-tectonic database of collision-related volcanic and plutonic rocks of Armenia that is comparable in quality and detail to the one available on Tibet. Our dataset combines several detailed studies from the large Aragats shield volcano[3] and associated monogenetic volcanic fields (near the capital city of Yerevan), as well as > 500 Quaternary to Holocene volcanoes from Gegham, Vardenis and Syunik volcanic highlands (toward Armenia-Nagorno-Karabakh-Azerbaijan-Iran border). The Armenian collision-related magmatism is diverse in volume, composition, eruption style and volatile contents. Interestingly, the majority of exposed volcanics are andesitic in composition. Nearly all collision-related volcanic rocks, even the highly differentiated dacite and rhyolite ignimbrites, have elevated Sr concentrations and 87Sr/86Sr and 143Nd/144Nd ratios varying only little (average ~ 0.7043 and ~ 0

  8. Evidence for a deep crustal hot zone beneath the Diamante Caldera-Maipo volcanic complex, Southern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Drew, D.; Murray, T.; Sruoga, P.; Feineman, M. D.

    2010-12-01

    Subduction zones at convergent continental margins are dynamic environments that control the long-term evolution and interaction of the crust and residual mantle. The Southern Volcanic Zone (SVZ) of the Andes formed as a result of volcanic activity and uplift due to the eastern subduction of the Nazca Plate beneath the South American Plate. Maipo and neighboring volcanoes in the northern SVZ are unique in that the continental crust is exceptionally thick (~50 km), causing the mantle-derived magma to stall and interact with the crust at multiple levels prior to eruption. Maipo is an andesite/dacite stratovolcano that lies within the Diamante Caldera, which formed approximately 450 Ka during an explosive eruption that produced 350 km3 of rhyolitic ignimbrite. Following post-caldera reactivation Maipo has undergone a complex evolution, first erupting 86 Ka and experiencing seven eruptive events extending to historic times. The Maipo lavas represent a unique geochemical evolution resulting from fractional crystallization, crustal assimilation, and magma mixing in the lower and upper crust. By analyzing trace element compositions, major element compositions, and 87Sr/86Sr ratios in sixteen samples, we have begun to constrain the complex geochemical processes that formed this volcano and contribute to the differentiation of Andean continental crust. The major element analysis of the samples reflects the extent of differentiation resulting in dacite to andesite volcanic rock, and was used to distinguish between the seven eruptive events. The trace elements and Sr isotope ratios reflect the composition of the source rock, the extent of crustal assimilation, and the crystallization of minerals from the resulting mantle derived magma. The SiO2 weight percent (ranging from 54.3 to 68.5%) and 87Sr/86Sr ratios (0.7048 to 0.7057) show a linear correlation nearly identical to that reported by Hildreth and Moorbath (1988, CMP 98, 455-489) for nearby Cerro Marmolejo, suggesting a

  9. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism

    NASA Astrophysics Data System (ADS)

    Annen, Catherine; Blundy, Jonathan D.; Leuthold, Julien; Sparks, R. Stephen J.

    2015-08-01

    Field, geochronological and geophysical studies show that many igneous bodies are emplaced incrementally, growing by accretion of successive magma sheets. The existence of melt reservoirs with a size that exceeds one single increment strongly depends on the sheet emplacement rate, whereas the total volumes of magma that accumulate depend on the volumetric magma flux. Integration of geochronological and field data with numerical simulations suggeststhat those rates can vary dramatically over the growth of an igneous body and that magmas accumulate to form melt-rich magma chambers only during episodes of high magma flux. Heat and mass balance considerations and the large volumes of mafic magma required to generate differentiated melts suggest that most crustal differentiation happens in deep hot zones in the lower crust wherein a wide diversity of melts are produced by crystallisation of mafic parents and concomitant partial melting of the crust. Melt composition is further modified during migration, segregation and ascent, and intermediate compositions can be generated when different types of melt mix. Magma fluxes and intrusion geometry play a fundamental role in igneous body evolution. Thus our knowledge of igneous processes depends ultimately on our understanding of the physics that control magma fluxes into the crust, magma emplacement within the crust and magma migration through the crust.

  10. On the conditions of mafic-felsic magmas mixing and its bearing on andesite production in the crust

    NASA Astrophysics Data System (ADS)

    Scaillet, Bruno; Laumonier, Mickael; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2015-04-01

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, using high pressure mixing experiments, we show that mixing only occurs at low viscosity contrast, when the touching crystal network of the more viscous magma breaks down. Using thermal calculations, we show that hybridization requires injection of high proportions of the replenishing magma during short periods. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, hence produces hybrids more mafic than in shallow reservoirs. Altogether, hybrid arc magmas correspond to periods of enhanced magma production at depth.

  11. Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile

    USGS Publications Warehouse

    Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.

    2014-01-01

    Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.

  12. Focal Mechanisms for Local Earthquakes within a Rapidly Deforming Rhyolitic Magma System, Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.; Cardona, C.; Thurber, C. H.; Singer, B. S.

    2015-12-01

    Large shallow rhyolitic magma systems like the one underlying the Laguna del Maule Volcanic Field (LdM) atop the Southern Andes, Chile, that comprises the largest concentration of rhyolitic lava and tephra younger than 20 ka at earth's surface, are capable of producing modest to very large explosive eruptions. Moreover, LdM is currently exhibiting magma migration, reservoir growth, and crustal deformation at rates higher than any volcano that is not actively erupting. The long-term build-up of a large silicic magmatic system toward an eruption has yet to be monitored, therefore, precursory phenomena are poorly understood. In January of 2015, 12 broadband, 3-component seismometers were installed at LdM to detect local microearthquakes and tele-seismic events with the goals of determining the migration paths of fluids as well as the boundaries of the magma chamber beneath LdM. These stations complement the 6 permanent stations installed by the Southern Andes Volcano Observatory in 2011. Focal mechanisms were calculated using FOCMEC (Snoke et al., 1984) and P-wave first motions for local events occurring between January and March of 2015 using these 18 broadband stations. Results from six of the largest local events indicate a mixture of normal and reverse faulting at shallow (<10 km) depths surrounding the lake. This may be associated with the opening of fractures to accommodate rising magma in the subsurface and/or stresses induced by the rapid deformation. Two of these events occurred near the center of maximum deformation where seismic swarms have previously been identified. Focal mechanisms from smaller magnitude events will be calculated to better delineate subsurface structure. Source mechanisms will be refined using P-S amplitude ratios and full waveform inversion.

  13. Sr-O isotope systematics in the Campi Flegrei magma systems

    NASA Astrophysics Data System (ADS)

    Wörner, Gerhard; Iovine, Raffaella; Carmine Mazzeo, Fabio; D'Antonio, Massimo; Arienzo, Ilenia; Civetta, Lucia; Orsi, Giovanni

    2016-04-01

    a large range mostly between 7 and 10 ‰ VSMOW, maximum and minimum values reach from ~11 to ~6 ‰ VSMOW. Our data obtained so far show compositions that are very different from typical mantle values and that span a very large range towards heavy δ18O values compared to other magmatic compositions from the Italian Peninsula. We compare our clinopyroxene and olivine data with published clinopyroxene and olivine O-isotope data from other Italian volcanic centers (Alban Hills, Mts. Ernici, Ischia, Mt. Vesuvius, Aeolian Islands, Tuscany and Sardinia) and from subduction zones worldwide (Kamchatka, Lesser Antilles, Indonesia and Central Andean ignimbrites). Distinct trends and sources are recognized: (1) serpentinized mantle (Kamchatka), (2) sediment-enrichment in the mantle source (Indonesia, Vesuvius), (3) magma assimilation by old radiogenic continental crust (Alban Hills, Tuscany, Ischia), (4) assimilation by mafic crust (Andes). Sr-O-isotope values of Campi Flegrei and Vesuvius magmas fall on the same vertical trend in Sr-O isotope space that deviates profoundly from all other subduction-related magmas. This indicates that magmas are derived from (a) a mantle source variably modified by pelagic sediments (as for Vesuvius) that were later (b) assimilated by highly δ18O-enriched crustal material that did not further significantly affect the Sr-isotope composition. From Sr-O isotope relations, this crustal signal could be introduced through interaction with Mesozoic limestone and/or low-T altered volcanic material from previous volcanic activity in the Campi Flegrei caldera.

  14. Watching magma from space

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte

    2000-01-01

    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  15. The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jeffery, A. J.; Gertisser, R.; Troll, V. R.; Jolis, E. M.; Dahren, B.; Harris, C.; Tindle, A. G.; Preece, K.; O'Driscoll, B.; Humaida, H.; Chadwick, J. P.

    2013-07-01

    Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia's most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007-2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47-94), orthopyroxene (En64-72, Fs24-32, Wo2-4), clinopyroxene (En40-48, Fs14-19, Wo34-46), Ti-magnetite (Usp16-34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6

  16. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  17. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-03-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  18. NASA plan for international crustal dynamics studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  19. Evidence for a homogeneous primary magma at Piton de la Fournaise (La Réunion): A geochemical study of matrix glass, melt inclusions and Pélé's hairs of the 1998-2008 eruptive activity

    NASA Astrophysics Data System (ADS)

    Villemant, B.; Salaün, A.; Staudacher, T.

    2009-07-01

    Magmas erupted at Piton de la Fournaise volcano since 0.5 Ma, display a large petrological and chemical range (picrites, 2 types of transitional basalts and differentiated magmas) and low amplitude isotopic heterogeneities. The recent activity (1998-2008) includes all magma types except evolved magmas. Matrix glass compositions from quenched lavas and Pélé's hairs of the whole 1998-2008 period define a single differentiation trend from a common basaltic melt (MgO ~ 9%) for the first time identified in the 2007 magmas. More primitive melt compositions (MgO ~ 12.5%) are only evidenced by olivine crystals with high Fo contents (Fo 85-88.4). Evolutions of major and trace element of glass and mineral compositions are consistently modelled by a unique low pressure crystal fractionation process. The composition range of olivine melt inclusions is distinct from that of matrix glass and Pélé's hair and corresponds to equilibrium crystallisation in closed system of melts trapped from the main differentiation series at high temperature. The range of basaltic types at Piton de la Fournaise is the result of large variations in the differentiation degree (10 to 35% crystallisation) of a single primary basaltic melt and the addition in highly variable amounts (up to 50% in picrites) of co-genetic olivine or gabbroic cumulates. These cumulates may represent the shallow and dense bodies identified by seismic tomography and have likely been produced by the repetitive intrusion and differentiation of basalts along Piton de la Fournaise history. Depending on the shallow transfer paths, ascending magmas may disaggregate and incorporate various types of cumulates, explaining all particular features of basaltic magmas and picrites. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt and of the differentiation process involved in volcanic activity of La Réunion hotspot since 0.5 Ma and the increasingly recognised role of melt-wall rock

  20. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    USGS Publications Warehouse

    Eychenne, Julia; Houghton, Bruce; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  1. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002-2003 eruptions

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Andronico, D.; Giammanco, S.; Lodato, L.

    2004-08-01

    Two strong flank eruptions occurred in July-August 2001 and from late October 2002 to late January 2003 at Mt. Etna volcano. The two eruptions mainly involved the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite eruptive activity on the upper southern flank of Mt. Etna during 2001-2003 has confirmed "a posteriori" the results of a multidisciplinary study, started well before its occurrence by combining geological, seismic and geochemical data gathered in this part of the volcano. We were able, in fact, to highlight fractured zones likely to be re-activated in the near future in this area, where the largest majority of eruptive fissures in the recent past opened along N120° to N180° ranging directions. The spatial distribution of earthquake epicentres during the period June 30th 2000-June 30th 2001 showed the greatest frequency in a sector compatible with both the direction of the main fissures of the pre-2001 period and that of the 2001 and 2002 lateral eruptions. Soil CO 2 and soil temperature surveys carried out in the studied area during the last 3 years have revealed anomalous release of magmatic fluids (mainly CO 2 and water vapour) along some NNW-SSE-trending volcano-tectonic structures of the area even during inter-eruptive periods, indicating persistent convective hydrothermal systems at shallow depth connected with the main feeder conduits of Etna. The temporal changes in both seismic and geochemical data from June 30th, 2000 to June 30th, 2001 were compared with the evolution of volcanic activity. The comparison allowed to recognize at least two sequences of anomalous signals (August to December 2000 and April to June 2001), likely related to episodes of step-like magma ascent towards the surface, as indicated by the following eruptive episodes. The N120° to N180° structural directions are in accord with one of the main structural

  2. The Active Solid Earth

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia

    2016-04-01

    Dynamic processes in Earth's crust, mantle and core shape Earth's surface and magnetic field over time scales of seconds to millennia, and even longer time scales as recorded in the ca. 4 Ga rock record. Our focus is the earthquake-volcano deformation cycles that occur over human time scales, and their comparison with time-averaged deformation studies, with emphasis on mantle plume provinces where magma and volatile release and vertical tectonics are readily detectable. Active deformation processes at continental and oceanic rift and back arc zones provide critical constraints on mantle dynamics, the role of fluids (volatiles, magma, water), and plate rheology. For example, recent studies of the East African rift zone, which formed above one of Earth's largest mantle upwellings reveal that magma production and volatile release rates are comparable to those of magmatic arcs, the archetypal zones of continental crustal creation. Finite-length faults achieve some plate deformation, but magma intrusion in the form of dikes accommodates extension in continental, back-arc, and oceanic rifts, and intrusion as sills causes permanent uplift that modulates the local time-space scales of earthquakes and volcanoes. Volatile release from magma intrusion may reduce fault friction and permeability, facilitating aseismic slip and creating magma pathways. We explore the implications of active deformation studies to models of the time-averaged structure of plume and extensional provinces in continental and oceanic plate settings.

  3. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  4. Crystallization processes and 'adakitic' magmas: mutually exclusive ? (Invited)

    NASA Astrophysics Data System (ADS)

    Muntener, O.; Ulmer, P.

    2009-12-01

    There are at least 6 different processes that contribute to the genesis of so-called ‘adakitic’ magmas (see session description V05) that all require some sort of (partial) melting of crustal lithologies. Since subduction zone geotherms derived from more complex numerical models that include temperature dependent viscosity became higher, partial melting of subducted crustal rocks is an attractive model to explain a wide variety of geochemical observations in arcs. Melting models plausibly explain highly incompatible elements in arcs such as Th, but probably less so major and moderately incompatible elements. Here we ask if the formation of ‘adakitic’ magmas requires polybaric crystal fractionation at all, and if so, what are the potential consequences for 'adakite' genesis. We review the results of crystallization experiments of primary, mantle-derived hydrous magmas and their derivatives under conditions prevailing in the uppermost mantle, at the base and in the lower part of island arc crust (0.8-1.5 GPa) and compare them to the results of partial melting experiments of metabasalts. We consider the mutual phase relations of the principal phases olivine, cpx, opx, garnet, amphibole, plagioclase and spinel at variable water contents and their bearing on the control of important trace elements and trace element ratios of arc magmas. At pressures exceeding 0.8 GPa (25km), between 45 and 70% of the initial liquid mass produced ultramafic, garnet- bearing, clinopyroxene and amphibole dominated cumulates and derivative andesitic to dacitic magmas that are typical for evolved island-arc magmas and plutonic rocks (tonalites) forming the upper part of the igneous arc crust. Delayed plagioclase crystallization at the expense of early amphibole saturation shifts derivative liquids close to or even into the peraluminous field, so peraluminous compositions are not a straightforward criterion for melting. Based on well studied and relatively complete arc sections, we

  5. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together? - New Findings with regard to Active Tectonics in the East Eifel Volcanic Field

    NASA Astrophysics Data System (ADS)

    Schreiber, Ulrich; Berberich, Gabriele

    2013-04-01

    . 2002). Our research findings suggest that due to the slow movement rates of active tectonic faults, an estimated 18 km³ magma chamber within the brittle fracture section of the earth's crust beneath the Laacher See (v. d. Bogaard & Schmincke 1984) cannot be confirmed yet. Another discrepancy is given by a comparison of modeling of caldera evolution (Acocella 2007) with the Laacher See Caldera formation. The Laacher See caldera has a volume of 0.5 km³ with regard to the pre-eruptive surface (Viereck & v.d. Bogaard 1986). According to v. d. Bogaard & Schmincke (1984) a volume of 6.3 km³ dry rock equivalent of lava and basic rock was erupted. This magnitude is contradictory to the calculated 0.5 km³ volume of the Laacher See caldera. A volume compensation of approx. 6 km³ which could have prevented a further subsidence of the magma chamber cannot be a scientific possible explanation. This hypothesis is strengthened by performed sonar recordings of the post-eruptive Laacher See sediment layers which do not show any displacements that might indicate a doming caused by magma. Estimations of the erupted tephra volume provided the basis for the calculation of the size of the Laacher See magma chamber (v.d. Bogaard 1983), but there is no statistical significant data set with regard to spatial distribution of the erupted tephra amount. Our findings show an overestimation of the tephra thickness in published isopach maps of the Westerwald. Therefore, an order of magnitude smaller magma chamber stretched over a longer vertical crustal section can help to better match the given tectonic movement rates and the size of the caldera. To estimate the future development of the East Eifel volcanic field, a good knowledge of the active tectonics is an absolute prerequisite. Along the "Laacher See Strike-slip Fault", an area of intensive micro-seismicity and a new seismically active zone with local magnitudes up to 4 has developed over the last 40 years (Hinzen 2003). In the last

  6. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  7. Primary melt from Sannome-gata volcano, NE Japan arc: constraints on generation conditions of rear-arc magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, T.; Yoshida, T.; Kimura, J.; Takahashi, T.; Hirahara, Y.; Miyazaki, T.; Senda, R.; Chang, Q.; Ito, Y.

    2013-12-01

    Material and energy transport in subduction zones has played an important role in Earth's evolution, and has been investigated extensively in petrological, geochemical, experimental, numerical, and geophysical studies. In these approaches, petrological and geochemical studies on arc basalts have remarkably contributed to the quantitative understanding of subduction-zone processes. However, a more rigorous understanding is limited by the fact that primary magmas generated in the mantle erupt only very occasionally without significant thermal and mechanical interaction with the crust. In this study, the conditions under which arc magma is generated are estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. The NE Japan arc has been investigated extensively, and is one of the best-documented volcanic arcs on Earth. Therefore, the reliable estimates of the magma generation conditions are expected to contribute to gaining a better understanding of subduction-zone processes. The Sannome-gata maar is located in the Oga Peninsula, NE Japan. The age of the volcanic activity is 20-24 ka (Kitamura 1990). We have examined the petrology and geochemistry of basaltic scoria samples that were collected from scoria fall deposits, outcropping around 500 m southwest of the Sannome-gata maar (Yoshinaga and Nakagawa 1999). The scoriae occur with abundant mantle and crustal xenoliths, suggesting that the magma ascended rapidly from the upper mantle. They show significant variations in their whole-rock compositions (7.9-11.1 wt.% in MgO). High-MgO scoriae (MgO > ~9.5 wt.%) have mostly homogeneous 87Sr/86Sr ratios (~0.70318), whereas low-MgO scoriae (MgO <~9 wt.%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol.% olivine microphenocrysts with Mg# of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali

  8. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  9. Bimodal magmatism produced by progressively inhibited crustal assimilation.

    PubMed

    Meade, F C; Troll, V R; Ellam, R M; Freda, C; Font, L; Donaldson, C H; Klonowska, I

    2014-06-20

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose 'progressively inhibited crustal assimilation' (PICA) as a major cause of bimodality in continental volcanism.

  10. Bimodal magmatism produced by progressively inhibited crustal assimilation

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Troll, V. R.; Ellam, R. M.; Freda, C.; Font, L.; Donaldson, C. H.; Klonowska, I.

    2014-06-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose ‘progressively inhibited crustal assimilation’ (PICA) as a major cause of bimodality in continental volcanism.

  11. Time Evolution of Thermo-Mechanically and Chemically Coupled Magma Chambers

    NASA Astrophysics Data System (ADS)

    Ozimek, C.; Karlstrom, L.; Erickson, B. A.

    2015-12-01

    Complexity in the volcanic eruption cycle reflects time variation both of magma inputs to the crustal plumbing system and of crustal melt storage zones (magma chambers). These data include timing and volumes of eruptions, as well as erupted compositions. Thus models must take into account the coupled nature of physical attributes. Here we combine a thermo-mechanical model for magma chamber growth and pressurization with a chemical model for evolving chamber compositions, in the limit of rapid mixing, to study controls on eruption cycles and compositions through time. We solve for the mechanical evolution of a 1D magma chamber containing melt, crystals and bubbles, in a thermally evolving and viscoelastic crust. This pressure and temperature evolution constrains the input values of a chemical box model (Lee et al., 2013) that accounts for recharge, eruption, assimilation and fractional crystallization (REAFC) within the chamber. We plan to study the influence of melt supply, input composition, and chamber depth eruptive fluxes and compositions. Ultimately we will explore multiple chambers coupled by elastic-walled dikes. We expect that this framework will facilitate self-consistent inversion of long-term eruptive histories in terms of magma transport physics. Lee, C.-T. A., Lee, T.-C., Wu, C.-T., 2013. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiationof arc magmas. Geochemica Cosmochimica Acta, http://dx.doi.org/10.1016/j.gca.2013.08.009.

  12. Magma energy: a feasible alternative

    SciTech Connect

    Colp, J.L.

    1980-03-01

    A short review of the work performed by Sandia Laboratories in connection with its Magma Energy Research Project is provided. Results to date suggest that boreholes will remain stable down to magma depths and engineering materials can survive the downhole environments. Energy extraction rates are encouraging. Geophysical sensing systems and interpretation methods require improvement, however, to clearly define a buried magma source.

  13. Petrogenesis of Mount Rainier andesite: magma flux and geologic controls on the contrasting differentiation styles at stratovolcanoes of the southern Washington Cascades

    USGS Publications Warehouse

    Sisson, Thomas W.; Salters, V.J.M.; Larson, P.B.

    2013-01-01

    The dominant cause of magmatic evolution at Mount Rainier, however, is inferred to be a version of in situ crystallization-differentiation and mixing (Langmuir, 1989) wherein small magma batches stall as crustal intrusions and solidify extensively, yielding silicic residual liquids with trace element concentrations influenced by accessory mineral saturation. Subsequent magmas ascending through the intrusive plexus entrain and mix with the residual liquids and low-degree re-melts of those antecedent intrusions, producing hybrid andesites and dacites. Mount St. Helens volcanic rocks have geochemical similarities to those at Mount Rainier, and may also result from in situ differentiation and mixing due to low and intermittent long-term magma supply, accompanied by modest crustal assimilation. Andesites and dacites of Mount Adams isotopically overlap the least contaminated Mount Rainier magmas and derive from similar parental magma types, but have trace element variations more consistent with progressive crystallization-differentiation, probably due to higher magma fluxes leading to slower crystallization of large magma batches, allowing time for progressive separation of minerals from melt. Mount Adams also sits atop the southern projection of a regional anticlinorium, so Eocene sediments are absent, or are at shallow crustal levels, and so are cold and difficult to assimilate. Differences between southwest Washington stratovolcanoes highlight some ways that crustal geology and magma flux are primary factors in andesite generation.

  14. Geyser's magma chamber, California: constraints from gravity data, density measurements, and well information

    USGS Publications Warehouse

    Blakely, Richard J.; Stanley, W.D.; ,

    1993-01-01

    A new crustal model based on isostatic residual gravity, geologic mapping, well information, and density measurements shows that the high-gradient parts of the residual gravity anomaly can be explained in terms of lithologic variations within the upper 7 km of the crust, consistent with the upper-crustal framework of the area. This conclusion does not rule out the presence of a magma chamber at lower crustal depths; the broad aspects of the gravity anomaly support the presence of low-density partial melting at 15 to 20 km depth, consistent with magnetotelluric soundings and other geophysical measurements.

  15. Deep magma feeding system of Fuji volcano, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Asano, K.; Nakajima, J.

    2012-12-01

    Fuji volcano is known for its perfect cone shape and it is the largest among Japanese Quaternary volcanoes. For the last 100kya, Fuji has erupted dominantly basalt magma (>>99 vol%), but its eruption style changed (from debris flow and tephra dominant Ko-Fuji or Older Fuji, to lava flow dominant Shin-Fuji or Younger Fuji) at ~15 kya BP. The incompatible trace element composition of the magma changed abruptly between Ko-Fuji and Shin-Fuji. The origin of the voluminous yet monotonous basalt production and the simultaneous changes in volcanic style and magma chemistry in Fuji volcano have been discussed but remain unanswered. Here we report the first high-pressure melting experimental results on Fuji Basalt (Hoei-IV, AD1707) and demonstrate that its main magma chamber is located at ca.25km depth (Asano et al, this conference). We also show seismic tomographic images of Fuji volcano for the first time, which reveal the existence of strong upwelling flow in the mantle and its connection to the voluminous lower crustal magma chamber (Fig.1). The chemistry of Fuji magma is buffered by a lower crustal AFC magma chamber located at 25-35km depth. Mantle derived primitive basalt (FeO/MgO~1.0, saturated with mantle peridotite assemblage, oliv+opx+cpx) changes to evolved basalt (FeO/MgO~2.0, saturated with lower crustal gabbroic assemblage, opx+cpx+pl) by the AFC process. Very frequent low frequency earthquakes just above the magma chamber (red circles in Fig.1) may be due to the injection of basalt magma and/or fluids (Ukawa, 2007). The total lack of silica-rich rocks (basaltic andesite and andesite) in Fuji volcano must be due to the special location of the volcano. As shown in Fig.1 (solid line), the plate boundary between the Eurasia plate and the subducting Phillipine sea plate is located just beneath Fuji volcano (~5 km depth). Large tectonic stress and deformation associated with the plate boundary inhibit the survival of a shallow level magma chamber, which would allow

  16. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  17. The three stages of magma ocean cooling

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1992-01-01

    Models of magma ocean (MO) cooling and crystallization can provide important constraints on MO plausibility for a given planet, on the origin of long term, stable crusts, and even on the origin of the solar system. Assuming the MO is initially extensive enough to have a mostly molten surface, its first stage of cooling is an era of radiative heat loss from the surface, with extremely rapid convection below, and no conductive layer in between. The development of the chill crust starts the second stage of MO cooling. Heat loss is now limited by conduction through the crust. The third stage of cooling starts when the near surface MO evolves compositionally to the point of saturation with feldspar. At this point, the cooling rate again precipitously diminishes, the rate of crustal thickness growth as a function of temperature suddenly increases. More work on incorporating chemical constraints into the evolving physical models of MO solidification would be worthwhile.

  18. Role of crustal contribution in the early stage of the Damara Orogen, Namibia: new constraints from combined U-Pb and Lu-Hf isotopes from the Goas Magmatic Complex

    NASA Astrophysics Data System (ADS)

    Milani, Lorenzo; Kinnaird, Judith; Lehmann, Jeremie; Naydenov, Kalin; Saalmann, Kerstin; Frei, Dirk; Gerdes, Axel

    2014-05-01

    The tholeiitic to calcalkaline Goas intrusive Complex of Namibia reflects the Pan-African plate convergence between the Congo and Kalahari Cratons and marks the first Pan-African magmatic event in the inland branch of the Damara Orogeny. We present new laser-ablation ICP-MS zircon U-Pb geochronology coupled with single-zircon Hf isotopic data obtained on Goas samples, in order to constrain the age of emplacement and investigate the crustal contribution on the magma sources. New ages on magmatic and detrital zircons on a pegmatitic and two metapsammitic samples are also presented, and help in constraining the major geotectonic events which affected the Goas magma sources through time. The new ages bracket the magmatic event between 580 Ma and 545 Ma, providing a better constraint on the timing record of the magmatic suite. Data, furthermore, show that the complex has been emplaced in a relatively short time, with a continuous magmatic activity from early tholeiitic metagabbro/hornblendite to main diorite or granite bodies with calcalkaline affinity. Hf isotopes analysis on zircons show invariably negative ɛHft values (from -34.4 to -3.8), indicating a significant crustal residence time with long-term reworking of multiple and mixed Archean to Mesoproterozoic components. Although the role of multiple crustal components is apparent from the wide range of ɛHft distribution, values of single intrusions cluster within relatively small ranges. The subchondritic data attest that no significant Pan-African juvenile magma was involved in the magmatogenesis. A subduction environment, although plausible, it is not inevitably disclosed by the new data. As we suggest magma underplating as a likely heating source for the Goas magmatism, the prolonged crustal residence time and the apparent lack of juvenile components suggest that the magma below the Pan-African active margin was unable to pass through the lithosphere, but managed to heat up sections of the crust sufficiently to

  19. Petrology of Volcán Tequila, Jalisco, Mexico: disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system

    NASA Astrophysics Data System (ADS)

    Wallace, Paul J.; Carmichael, Ian S. E.

    1994-09-01

    Volcán Tequila is an extinct stratovolcano in the western Mexican Volcanic Belt that has erupted lavas ranging from andesite to rhyolite during the last 0.9 Ma. Following an early period of rhyolitic volcanism, the main edifice of the volcano was constructed by central vent eruptions that produced ˜ 25 km3 of pyroxene-andesite. At about 0.2 Ma central activity ceased and numerous flows of hornblende-bearing andesite, dacite, and rhyodacite erupted from vents located around the flanks of the volcano. Bimodal plagioclase phenocryst rim compositions in lavas from both the main edifice and the flanks indicate that magma mixing commonly occurred shortly prior to or during eruption. Compositions of endmember magmas involved in mixing, as constrained by whole-rock major and trace element abundances, phenocryst compositions, and mineral-melt exchange equilibria, are similar to those of some lavas erupted from the central vent and on the flanks of the volcano. Estimated pre-eruptive temperatures for hornblende-bearing lavas (970° 830°C) are systematically lower than for lavas that lack hornblende (1045° 970°C), whereas magmatic H2O contents are systematically higher for hornblende-bearing lavas. In addition to stabilizing hornblende, high magmatic water contents promoted crystallization of calcic plagioclase (An70 82). Frequent injections of magma into the base of the subvolcanic plumbing system followed by eruption of mixed magma probably prevented formation of large volumes of silicic magma, which have caused paroxysmal, caldera-forming eruptions at other stratovolcanoes in western Mexico. The later stages of volcanic activity, represented by the flank lavas, indicate a change from a large magma storage reservoir to numerous small ones that developed along a NW-trending zone parallel to regional fault trends. Sr and Nd isotopic data for lavas from the Tequila region and other volcanoes in western Mexico demonstrate that differentiated calc-alkaline magmas are formed

  20. Origin of high-silica liquids at Stromboli volcano (Aeolian Islands, Italy) inferred from crustal xenoliths

    NASA Astrophysics Data System (ADS)

    Renzulli, A.; Serri, G.; Santi, P.; Mattioli, M.; Holm, P. M.

    High-silica igneous xenoliths (granophyre and obsidian fragments with SiO2 ca. 75 wt.%) and high-silica glass (SiO2 between ca. 64 and 75 wt.%) within glass-bearing tonalitic and dioritic xenoliths have been discovered at Stromboli. They are well beyond the silica range of the volcanic rocks erupted during the subaerial activity of the volcano. The granophyre and the obsidian fragments occur within the Petrazza pyroclastics (high-K andesite pumiceous scoriae) of the Paleostromboli I period (� to >61 ka), whereas the glass-bearing tonalites and diorites are hosted in the Omo basaltic-andesite lava flows of the Paleostromboli II period (64-55 ka). The obsidian represents an extremely evolved liquid derived from low-pressure fractional crystallization of high-K calc-alkaline magmas of Stromboli, coupled with minor assimilation of upper crust or terrigenous sediments. The other studied high-silica products have an anatectic origin. The granophyre composition is compatible with a genesis by low-degree melting of leucotonalites similar to some Calabrian Arc lithotypes. Partial melting of crustal rocks from the Stromboli basement is also demonstrated by interstitial glass in the tonalite and diorite xenoliths. Textural evidence and the presence of variable glass compositions suggest that in these plutonic xenoliths the melt chemistry was controlled by dehydration melting of biotite and non-modal melting of local mineralogy. High-degree undercooling of granophyre melt and of the partially melted xenoliths is consistent with rapid rise of the host magmas leading to eruption. Whether partial melting was initiated during stoping and transport of xenoliths within the rising magma or in situ during magma storage within the crust has not been unequivocally established.

  1. Relatively rapid emplacement of dome-forming magma inferred from strain analyses: The case of the acid Latian dome complexes (Central Italy)

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; de Rita, D.

    2006-11-01

    We have analysed the relationship between the volcanic substratum and magma body emplacement for the acid dome complexes of Latium, Central Italy. Our study shows that the volcanic edifices, which are mainly Pleistocene cryptodomes and related explosive products, were derived from mantle magmas contaminated by crustal materials. The Cimini, Tolfa and Cerite-Manziate dome complexes of Latium show the following characteristics: a shallow laccolith origin; emplacement in basins that have identical tectonic evolution and geological structure; the same magmatic composition and density contrast between magma and host rock; and geochronological data that are inconsistent with field evidence. In the Cimini and Tolfa dome complexes, the deformation induced by shallow intrusions was accompanied by ˜ 200 m uplift of the sedimentary cover. The estimated pluton infilling time for the Cimini and Tolfa domes is 10 2 years while the strain rate required to uplift their Pliocene overburden by 200 m is ɛm' ˜ 10 - 9 s - 1 . The rapid evolution of the dome complexes is consistent with field data that show no relevant interruptions in the volcanic activity and no significant compositional changes in the volcanic products related to the extrusion of the domes. For the Cerite-Manziate dome complex, the minimal input rate of magma favoured a monogenetic style of volcanism, independent of the regional stress conditions.

  2. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    USGS Publications Warehouse

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  3. The geochemical and Sr-Nd isotopic characteristics of Eocene to Miocene NW Anatolian granitoids: Implications for magma evolution in a post-collisional setting

    NASA Astrophysics Data System (ADS)

    Çelebi, Dağhan; Köprübaşı, Nezihi

    2014-10-01

    Early Eocene to Early Miocene magmatic activity in northwestern Anatolia led to the emplacement of a number of granitoid plutons with convergent margin geochemical signatures. Granitoid plutons in the area are mainly distributed within and north of the suture zone formed after the collision of the Anatolide-Tauride platform with the Pontide belt. We present geochemical characteristics of three intrusive bodies in the region in order to identify their source characteristics and geodynamic significance. Among these, the Çataldağ and Ilıca-Şamlı plutons are located to the north and the Orhaneli pluton is located to the south of the IAESZ (Izmir-Ankara-Erzincan Suture Zone). The plutons are calc-alkaline, metaluminous, and I-type with compositions from granite to monzonite. They display clear enrichments in LILE and LREE and depletions in HFSE relative to N-MORB compositions and have high 87Sr/86Sr and low 143Nd/144Nd ratios. The results of theoretical Fractional Crystallization (FC) model show that the samples are affected by fractionation of K-feldspar, plagioclase, biotite and amphibole. Assimilation and Fractional Crystallization (AFC) modeling indicates that the r value, the proportion of variable contamination to fraction, is high, indicating significant crustal contamination in the genesis of granitoid magmas. Combined evaluation of isotopic and trace element data indicates that the granitoids are the products of mantle-derived mafic magmas variably differentiated by simultaneous crustal contamination and fractional crystallization in lower to middle crustal magma chambers in a post-collisional setting.

  4. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona

    USGS Publications Warehouse

    Parsons, Thomas E.; Howie, John M.; Thompson, George A.

    1992-01-01

    We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that

  5. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    USGS Publications Warehouse

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  6. Crustal Thickness and Lower Crustal Velocity Structure Beneath the Endeavour Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Hill, R.; Soule, D. C.; Wilcock, W. S. D.; Toomey, D. R.; Hooft, E. E. E.; Weekly, R. T.

    2014-12-01

    In 2009, a multi-scale seismic tomography experiment was conducted on the Endeavour segment of the Juan de Fuca Ridge aboard the R/V Marcus G. Langseth. Ocean bottom seismometers were deployed at 64 sites and recorded 5567 shots of a 36-element, 6600 in.3 airgun array. The experiment extended 100 km along-axis and 60 km cross-axis. Two crustal tomographic analyses have previously been completed using data from the experiment. First, 93,000 manually picked crustal refraction arrivals (Pg) were used to develop a three-dimensional model of crustal velocity and thickness in the upper crust (Weekly et al. 2014). Second, this model was used as the starting model in an analysis that incorporated ~19,000 Moho reflection arrivals (PmP) for non-ridge crossing paths to image lower crustal velocity structure and crustal thickness off-axis. A key feature of this model is a ~0.5-1 km increase in crustal thickness beneath a bathymetric plateau that extends to either side of the central portion of the Endeavour segment. We present a tomographic inversions that incorporates ridge-crossing paths to examine spatial variations in lower crustal velocity and crustal thickness beneath the ridge axis. The preliminary results from an inversion that incorporates ~8700 manually picked ridge-crossing PmP arrival times reveals a ~10-km-wide low velocity zone extending throughout the lower crust with a velocity anomaly of -0.3 to -0.5 km/s at ≥4 km depth. This low velocity zone extends both to the north and south of the axial magma chamber reflector imaged previously beneath the central Endeavour. The inversion also shows significant variations in apparent crustal thickness along axis but additional analysis is required to understand whether these variations are well resolved.

  7. Thermo-rheological aspects of crustal evolution during continental breakup and melt intrusion: The Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Beekman, Fred; Clark, Stuart R.; Cloetingh, Sierd A. P. L.

    2016-08-01

    The Cenozoic-Quaternary Main Ethiopian Rift (MER) is characterized by extended magmatic activity. Although magmatism has been recognized as a key element in the process of continental breakup, the interaction between melts and intruded lithosphere is still poorly understood. We have performed a 2D thermo-rheological modeling study of continental crust incorporating rheological variations due to melt intrusion-related thermal perturbation. The model is calibrated based on the characteristics of lithologies occurring in the MER and its extensional history, and includes the effect of metamorphism and anatexis on crustal strength and rheological features. During Miocene early rift phases strain in the MER was mainly accommodated through rift border faults, whereas Pliocene-to-recent extension history is characterized by magma assisted rifting with most strain accommodated across magmatic segments in the rift axis. Consequently, very little strain is distributed in the old Pan-African to Paleogene crust during Pliocene to Holocene times. The magmatic activity along the rift axis created ≈ 20 km thick magmatic segments, with growth rate estimated to range from ≈ 3.5 mm yr- 1 to ≈ 6 mm yr- 1. Our model suggests that the strain transfer from Miocene rift border faults to magmatic segments was favored by a moderate increase in crustal strength, due to prograde metamorphism subsequent to the melt-induced thermal perturbation. Under such conditions, crustal stretching may not constitute an effective extension mechanism, thus strain may be preferentially accommodated by melt injection along hot, partially molten magmatic segments. Anatexis has been detected in our simulations, with melt fractions sufficient to break-up the crust solid framework and migrate. This determines local variations of rheological behavior and may induce seismicity. However, resulting melt percentages are not sufficient to induce widespread, crust-derived volcanic activity. Subsequently, volcanism

  8. Interdisciplinary Studies of Magma-Tectonic Interactions

    NASA Astrophysics Data System (ADS)

    LaFemina, Peter; Stix, John; Saballos, Armando

    2013-08-01

    The Pan-American Advanced Studies Institute (PASI) Magma-Tectonic Interactions in the Americas brought together researchers, postdoctoral fellows, and graduate students from every country in the Americas with active volcanoes and one participant from Iceland. Lecturers presented the latest geochemical and geophysical approaches to studying magma-tectonic interactions. Participants were introduced to the tectonics and volcanism of Nicaragua through a daylong field trip and given opportunities to collect and analyze their own data, including seismic, geodetic, and geochemical data, at the Cerro Negro volcano.

  9. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  10. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  11. Middle Triassic magma mixing in an active continental margin: Evidence from mafic enclaves and host granites from the Dewulu pluton in West Qinling, central China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Mo, X.; Yu, X.

    2015-12-01

    The Qinling-Dabie-Sulu orogen was formed through the collision of the North and South China blocks, but the precise timing of the closure of the Paleo-Tethys ocean between the two blocks remains debated. Large volumes of Triassic granites associated with mafic microgranular enclaves (MMEs) were emplaced in the Qinling terrane. This paper presents field observations, petrography, geochronology and geochemistry of the MMEs and their host granites from the Dewulu pluton in West Qinling. The host rocks comprise granodiorite and granodioritic porphyry, and the The MMEs range in composition from gabbroic diorite to diorite. Zircon LA-ICP-MS U-Pb ages suggest that the granites and MMEs were coeval at ca. 245 Ma. The granites are relatively enriched in LILE and depleted in HFSE, and have evolved Sr-Nd-Pb and zircon Hf isotopic compositions [initial 87Sr/86Sr = 0.7070-0.7076, ɛNd(t) = -7.5 to -6.8, ɛHf(t) = -8.2 to -4.2], indicative of an origin from the amphibolitic lower crust. The near-primitive gabbro-dioritic MMEs bear a remarkable geochemical resemblance to the high-magnesium andesite (HMA), such as moderate SiO2 (~55 wt.%), low FeOT/MgO (~0.75), high Cr (268-308 ppm) and MgO (8.58-8.77 wt.%) with Mg# of ~70. Additionally, they exhibit lower initial 87Sr/86Sr, higher ɛNd(t) and ɛHf(t), and more radiogenic Pb isotopes than the dioritic MMEs which share similar isotopic compositions with the granites. These features, together with the presence of the specific minerals in the MMEs (e.g., felsic xenocrysts and acicular apatite), point to mixing process between the lower crust-derived magmas and the melts produced by the reaction of the subducting sediment-derived components and the overlying mantle. Taking into account the regional occurrence of synchronous plutonic-volcanic complexes (250-234 Ma) ranging from basaltic to granitic variants, we suggest that the Dewulu pluton formed in an active continental margin in response to the local extension triggered by the

  12. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid

    2016-07-01

    A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

  13. Continental crustal composition and lower crustal models

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1983-01-01

    The composition of the upper crust is well established as being close to that of granodiorite. The upper crustal composition is reflected in the uniform REE abundances in shales which represent an homogenization of the various REE patterns. This composition can only persist to depths of 10-15 km, for heat flow and geochemical balance reasons. The composition of the total crust is model dependent. One constraint is that it should be capable of generating the upper granodioritic (S.L.) crust by partial melting within the crust. This composition is based on the andesite model, which assumes that the total crust has grown by accretion of island arc material. A representation of the growth rate of the continental crust is shown. The composition of the lower crust, which comprises 60-80% of the continental crust, remains a major unknown factor for models of terrestrial crustal evolution. Two approaches are used to model the lower crust.

  14. Magmas, Mushes and Mobility: Thermal Histories of Magma Reservoirs from Combined U-Series and Diffusion Ages

    NASA Astrophysics Data System (ADS)

    Cooper, K. M.; Rubin, A. E.; Schrecengost, K.; Kent, A. J.; Huber, C.

    2014-12-01

    The thermal conditions of magma storage control many aspects of the dynamics of a magma reservoir system. For example, the temperature of magma storage directly relates to the crystallinity, and magmas stored at relatively low temperatures in a crystal mush (more than 40-50% crystalline) must be remobilized (e.g., by heating) before they can be erupted. A better understanding of the duration of magma storage at largely-liquid vs. largely-solid conditions is thus critical to understanding crustal magmatic processes such as magma mixing and for quantifying the hazard potential of a given volcano. Although mineral thermometry reflects the conditions of crystal growth or equilibration, these may not correspond to the thermal conditions of crystal storage. The duration of crystal storage at high temperatures can be quantified by comparing U-series crystal ages with the time scales over which disequilibrium trace-element profiles in the same crystals would be erased by diffusion. In the case of Mount Hood, OR, such a comparison for the two most recent eruptions shows that <12% of the total lifetime of plagioclase crystals (minimum 21 kyr) was spent at temperatures high enough that the magma would be easily mobilized. Partial data sets for other systems suggest such behavior is common, although the diffusion and U-series ages in these cases are from different samples and may not be directly comparable. We will present preliminary data combining U-series dating and diffusion timescales on the same samples for other volcanic systems (e.g., Lassen Volcanic Center, Mount St. Helens, Okataina Volcanic Center, New Zealand). Combining these data with numerical models offers additional insights into the controls on the conditions of storage. In addition, extension of this approach to combining U-Th ages with time scales of Li diffusion in zircon offers a promising new method to quantify thermal histories of silicic reservoir systems.

  15. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth

    NASA Astrophysics Data System (ADS)

    Cashman, Kathy; Blundy, Jon

    2013-09-01

    fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20-40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this "petrological cannibalism" accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.

  16. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  17. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the

  18. A tale of two magmas, Fuego, Guatemala

    NASA Astrophysics Data System (ADS)

    Berlo, Kim; Stix, John; Roggensack, Kurt; Ghaleb, Bassam

    2012-03-01

    Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ˜1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ˜6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ˜30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.

  19. The Role of Magma Mixing in Creating Magmatic Diversity

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Collins, S.; Morgan, D. J.

    2012-12-01

    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  20. Crustal Deformation During the 2011 Volanic Crisis of El Hierro, Canary Islands, Revealed by Continuous GPS Observation

    NASA Astrophysics Data System (ADS)

    Sagiya, T.; Barrancos Martinez, J.; Calvo, D.; Padron, E.; Hernandez, G. H.; Hernández, P. A.; Perez Rodriguez, N.; Suárez, J. M. P.

    2012-04-01

    Seismo-volcnic activity of El Hierro started in the middle of July of 2011 and resulted in the active submarine eruption after October 12 south off La Restinga, the southern tip of the island. We have been operating one continuous GPS site on the island since 2004. Responding to the activity, we quickly installed 5 more GPS sites. Including another site operated by the Canary Islands Cartograhical Service (GRAFCAN) for a cartographic purpose, we have been monitoring 7 GPS sites equipped with dual-frequency receivers. We present the result of our crustal deformation monitoring and the magmatic activity inferred from the deformation data. In accordance with the deformation pattern, we divide the volcanic activity in 2011 into 4 stages. The first stage is from the middle of July to middle of September, during which steady magmatic inflation is estimated at the center of the island. The inflated volume of the first stage is estimated to be about 1.3 X 107 m3 at the depth of about 5km. The second stage, which continued until the first submarine eruption on October 12, is characterized by the accelerated deformation due to the upward as well as southward migration of magma. Additional inflation of about 2.1 X 107 m3 occurred in the depth range of 1-2km. The third stage continued for about 3 weeks after the first submarine eruption. During this stage, submarine eruption continues while no significant surface deformation is observed. It is considered magma supply from a deeper magma chamber continued during this 3 weeks period. Therefore, the total inflation volume during the first two stages gives the minimum estimate for the total magma volume. Since the beginning of November 2011, many GPS sites started subsiding. However, this deflation pattern is quite different from those in the shallow inflation stages. Horizontal deformation during this 4th stage is not significant, implying that deflation is occurring below the moho.

  1. The eruptibility of magmas at Tharsis and Syrtis Major on Mars

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Manga, Michael

    2016-06-01

    Magnetic and geologic data indicate that the ratio of intrusive to extrusive magmatism (the I/E ratio) is higher in the Tharsis and Syrtis Major volcanic provinces on Mars relative to most volcanic centers on Earth. The fraction of magmas that erupt helps to determine the effects of magmatism on crustal structure and the flux of magmatic gases to the atmosphere and also influences estimates of melt production inferred from the history of surface volcanism. We consider several possible controls on the prevalence of intrusive magmatism at Tharsis and Syrtis Major, including melt production rates, lithospheric properties, regional stresses and strain rates, and magmatic volatile budgets. The Curie temperature is the minimum crustal temperature required for thermal demagnetization, implying that if the primary magnetic mineral is magnetite or hematite, the crust was warm during the intrusive magmatism reflected in Tharsis and Syrtis Major I/E ratios. When wall rocks are warm, thermally activated creep relaxes stresses from magma replenishment and regional tectonics, and eruptibility depends on buoyancy overpressure. We develop a new one-dimensional model for the development of buoyancy in a viscous regime that accounts for cooling, crystallization, volatile exsolution, bubble coalescence and rise, fluid egress, and compaction of country rock. Under these conditions, we find that initial water and CO2 contents typically <1.5 wt % can explain the observed range of intrusive/extrusive ratios. Our results support the hypothesis that warm crust and a relatively sparse volatile budget encouraged the development of large intrusive complexes beneath Tharsis and Syrtis Major.

  2. Geology of magma systems: background and review

    SciTech Connect

    Peterfreund, A.R.

    1981-03-01

    A review of basic concepts and current models of igneous geology is presented. Emphasis is centered on studies of magma generation, ascent, emplacement, evolution, and surface or near-surface activity. An indexed reference list is also provided to facilitate future investigations.

  3. Crustal processes of the Mid-Ocean Ridge

    USGS Publications Warehouse

    Ballard, Richard D.; Craig, H.; Edmond, J.; Einaudi, M.; Holcomb, R.; Holland, H.D.; Hopson, C.A.; Luyendyk, B.P.; Macdonald, K.; Morton, J.; Orcutt, J.; Sleep, N.

    1981-01-01

    Independent geological and geophysical investigations of the Mid-Ocean Ridge system have begun to focus on the nature of the magma chamber system underlying its central axis. Thermal models predict the existence of a steady-state chamber beneath a thin crustal lid ranging in thickness from 2 to 13 kilometers. The only aspect of the system that these models fail to account for is the extremely slow spreading rates. Seismological studies reveal the existence of a low-velocity zone beneath segments of the East Pacific Rise, which is thought to correspond to a chamber system having a half-width of approximately 5 to 10 kilometers. These estimates compare favorably with those derived separately through petrological investigations of deep-sea drilling results, various sampling programs, and field and laboratory studies of ophiolites. The chamber is thought to be wing-shaped and to remain continuously open; it is thought to be fed from the center while simultaneously solidifying at the sides as spreading carries the two halves apart. Progressive fractionation occurs by crystal settling coupled with repeated replenishment and magma mixing in an open steady-state system. Near-bottom studies reveal that the zone of extrusion above the chamber is narrow, but its eruptive history is cyclic in nature, in conflict with the predictions of a steady-state model. On-bottom gravity data at 21 ??N on the East Pacific Rise reveal a negative gravity anomaly that may be related to the uppermost part of the chamber. The anomaly is only 2 kilometers wide and 1 kilometer below the sea floor. This feature may be associated with a short-term upper magma reservoir. The cyclic volcanic activity is directly related to the active phase of hydrothermal circulation responsible for the observed negative thermal anomaly. The volume of water associated with this circulation is equal to the entire ocean volume passing through the accretion zone approximately every 8 million years. This is about 0

  4. Preferential eruption of andesitic magmas through recharge filtering at Mount Hood, Oregon

    NASA Astrophysics Data System (ADS)

    Kent, A. J.; Darr, C.; Koleszar, A. M.; Salisbury, M. J.; Cooper, K. M.; Eppich, G. R.

    2010-12-01

    Andesitic compositions dominate the output of many subduction zone volcanoes. In this environment most andesites are produced by magma mixing, typically between mafic magmas, ultimately derived from the underlying mantle wedge, and felsic magmas produced by crustal melting or extensive differentiation. The high relative abundance of andesitic magmas in arcs require that they erupt in preference to the mafic and felsic magmas that mix to produce them, although the factors that control this remain less well understood. We investigate this issue through studies of Mount Hood, Oregon, which represents a class of intermediate volcanoes characterized by long-term outputs of compositionally monotonous andesitic magmas, and where recharge and magma mixing play a dominant role in petrogenesis. At Mount Hood 95% of magmas erupted over the last ~500,000 years have SiO2 contents between 58-66 wt.%, and textural and petrological evidence of magma mixing is ubiquitous. Estimates of the composition of mafic and felsic magmas involved in mixing at Mount Hood can be made by the combination of textural (CSD) and compositional data, and suggest that erupted magmas result from the mixing of mafic (50.7 ± 4.3 wt.% SiO2) and felsic (70.9 ± 2.1 wt.% SiO2) endmembers in approximately subequal proportions. These endmember compositions appear to have remained broadly constant through time but are virtually absent from the spectrum of erupted lavas. Mineral zoning and diffusion modeling shows that mafic and felsic endmember magmas evolve separately, and that mafic recharge and efficient mixing occurs weeks to months prior to eruption. Petrological estimates of pressure and temperature, melt inclusions measurements of volatile abundances and mineral ages from U-series, CSD and additional diffusion modeling also provide additional constraints on the dynamics of the system. The dependence on recharge for eruption also suggests that crustal and or magmatic conditions beneath Mount Hood prevent

  5. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma

    NASA Astrophysics Data System (ADS)

    Rangin, Claude; Maurin, Thomas; Masson, Frederic

    2013-10-01

    It is widely accepted that deformation of the India/Sunda plate is the result of partitioned hyper oblique convergence. Presently, sub-meridian dextral strike slip faulting accommodates this India/Sunda motion in a buffer zone, the Burma platelet. This wide dextral strike slip shear zone is complicated by the side effect of the Tibet plateau collapse that can be described in term of crustal flow and gravity tectonics. The loss of potential energy related to this plateau collapse affects most of the Burmese platelet particularly in its northernmost part. Interaction of these two distinct geodynamic processes is recorded in the GPS based regional strain field, the analysis of seismic focal mechanism but also from direct geologic observations both onshore and offshore Myanmar and Bangladesh. We propose the apparent E-W shortening component of this so called partitioned hyper-oblique subduction is only the effect of regional gravitational forces related to the Tibet plateau collapse whereas the NS strike slip faulting accommodates the India/Sunda motion.

  6. Three-dimensional crustal structure in the Southern Alps region of New Zealand from inversion of local earthquake and active source data

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen

    2002-10-01

    P and S-P arrival time data from 311 earthquakes and several thousand offshore and onshore shots have been used in simultaneous inversion for hypocenters, three-dimensional (3-D) Vp and Vp/Vs models in the Southern Alps region, New Zealand. The combined data result in a highly nonuniform ray path distribution, and linked nodes are used in sparsely sampled areas. Gravity data are used to improve the model below 20-km depth, where it is poorly sampled by local earthquakes. The crustal Vp from 5 to 25 km depth is fairly uniform, generally ranging from 5.5 to 6.5 km/s, typical of graywacke and schist. Active fault zones tend to be correlated with low-velocity zones. Where the Alpine fault is primarily strike slip, it is characterized by a vertical low-velocity zone, to at least 15-km depth. Where the fault is dipping and has a large dip-slip component, it is characterized by a large region of low velocity above and southeast of the fault, to at least 14-km depth, consistent with fluids and fracture density from active deformation. A large high-velocity, high-resistivity feature in the eastern Southern Alps may represent Mesozoic schist of higher metamorphic grade than its surroundings, which is relatively rigid and serves to both reduce deformation in the overlying basin and concentrate deformation in the adjoining low-velocity region. The imaged crustal root is deepest 80-km south of Mt. Cook and is asymmetric with a sharper gradient on the northwestern side. The approximate Moho shows regional variation, with 5-10 km thicker crust in Otago than Canterbury.

  7. Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany)

    NASA Astrophysics Data System (ADS)

    Wörner, G.; Staudigel, H.; Zindler, A.

    1985-09-01

    The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/ 86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/ 86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/ 86Sr . Phenocrysts, in contrast, show a narrow range in 87Sr/ 86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices. 143Nd/ 144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models. Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second

  8. Magma energy: engineering feasibility of energy extraction from magma bodies

    SciTech Connect

    Traeger, R.K.

    1983-12-01

    A research program was carried out from 1975 to 1982 to evaluate the scientific feasibility of extracting energy from magma, i.e., to determine if there were any fundamental scientific roadblocks to tapping molten magma bodies at depth. The next stage of the program is to evaluate the engineering feasibility of extracting energy from magma bodies and to provide insight into system economics. This report summarizes the plans, schedules and estimated costs for the engineering feasibility study. Tentative tasks and schedules are presented for discussion and critique. A bibliography of past publications on magma energy is appended for further reference. 69 references.

  9. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Straub, Susanne M.; Gómez-Tuena, Arturo; Bindeman, Ilya N.; Bolge, Louise L.; Brandl, Philipp A.; Espinasa-Perena, Ramón; Solari, Luigi; Stuart, Finlay M.; Vannucchi, Paola; Zellmer, Georg F.

    2015-10-01

    Recycling of upper plate crust in subduction zones, or 'subduction erosion', is a major mechanism of crustal destruction at convergent margins. However, assessing the impact of eroded crust on arc magmas is difficult owing to the compositional similarity between the eroded crust, trench sediment and arc crustal basement that may all contribute to arc magma formation. Here we compare Sr-Nd-Pb-Hf and trace element data of crustal input material to Sr-Nd-Pb-Hf-He-O isotope chemistry of a well-characterized series of olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 3He/4He = 7-8 Ra and high crustal δ18Omelt = +6.3-8.5‰ implying their host magmas to be near-primary melts from a mantle infiltrated by slab-derived crustal components. Remarkably, their Hf-Nd isotope and Nd/Hf trace element systematics rule out the trench sediment as the recycled crust end member, and imply that the coastal and offshore granodiorites are the dominant recycled crust component. Sr-Nd-Pb-Hf isotope modeling shows that the granodiorites control the highly to moderately incompatible elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust (AOC). Nd-Hf mass balance suggests that the granodiorite exceeds the flux of the trench sediment by at least 9-10 times, corresponding to a flux of ⩾79-88 km3/km/Myr into the subduction zone. At an estimated thickness of 1500-1700 m, the granodiorite may buoyantly rise as bulk 'slab diapirs' into the mantle melt region and impose its trace element signature (e.g., Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep slab melting and local recycling of other slab components such as oceanic seamounts further diversify the MVB magmas by producing rare, strongly fractionated high-La magmas and a minor population of

  10. Active Tectonics in the Central Chilean Andes: 3D Tomography Based on the Aftershock Sequence of the 28 August 2004 Shallow Crustal Earthquake

    NASA Astrophysics Data System (ADS)

    Comte, D.; Farias, M.; Charrier, R.; Gonzalez, A.

    2008-12-01

    Most of the seismological research in the Andes has been mainly oriented to the detection and understanding of the seismicity associated with megathrust earthquakes that characterize the subduction environment that governs the Andean tectonics. However, deployments of temporary networks have allowed the detection of intense crustal seismicity beneath the Chilean forearc-arc region. The temporary seismic network deployed along the Las Leñas and Pangal river valleys (34°25'S), between January and May 2004 permitted to better constrain the abundant shallow intra-continental seismicity previously detected in that region. Although most of the seismicity is randomly distributed in the region, several microearthquakes occur along the trace of the major El Fierro fault-system. This system is well recognized between 33°30' and 35°15'S and is located at or close to the eastern contact between Mesozoic and Cenozoic deposits in the Principal Cordillera and, locally, below active volcanoes, being considered to have participated in the extension and tectonic inversion of a widely extended (>600 km long) Cenozoic basin along the Principal Cordillera. Further south, at 35°S, a Mw=6.5 strike-slip shallow earthquake occurred on August 28, 2004, near of the headwater of the Teno river, close to the Planchon volcano. A 3D detailed Vp and Vs velocities determination was obtained along the 2004 earthquake aftershock area. The aftershocks are distributed along one branch of the El Fierro fault system, with a NNE-SSW direction and depths lower than 15 km. The rupture zone coincides with a sharp contrast in Vp and Vs, also in coincidence with the presence of hydrothermal fluids, gypsum diapers and the volcanic arc, suggesting rheological contrast controlling deformation. At the surface, this zone present an intense contractive deformation produced during the Neogene, which differs from what can be observed in other regions. Present day deformation related to seismicity has no

  11. Is the Valles caldera entering a new cycle of activity?

    SciTech Connect

    Wolff, J.A.; Gardner, J.N.

    1995-05-01

    The Valles caldera formed during two major rhyolitic ignimbrite eruptive episodes (the Bandelier Tuff) at 1.61 and 1.22 Ma, after some 12 m.y. of activity in the Jemez Mountains volcanic field, New Mexico. Several subsequent eruptions between 1.22 and 0.52 Ma produced dominantly high-silica rhyolite lava domes and tephras within the caldera. These were followed by a dormancy of 0.46 m.y. prior to the most recent intracaldera activity, the longest hiatus since the inception of the Bandelier magma system at approximately 1.8 Ma. The youngest volcanic activity at approximately 60 ka produced the SW moat rhyolites, a series of lavas and tuffs that display abundant petrologic evidence of being newly generated melts. Petrographic textures conform closely to published predictions for silicic magmas generated by intrusion of basaltic magma into continental crust. The Valles caldera may currently be the site of renewed silicic magma generation, induced by intrusion of mafic magma at depth. Recent seismic investigations revealed the presence of a large low-velocity anomaly in the lower crust beneath the caldera. The generally aseismic character of the caldera, despite abundant regional seismicity, may be attributed to a heated crustal column, the local effect of 13 m.y. of magmatism and emplacement of mid-crustal plutons. 24 refs., 3 figs.

  12. A multi-sill magma plumbing system beneath the axis of the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Marjanović, Milena; Carbotte, Suzanne M.; Carton, Helene; Nedimović, Mladen R.; Mutter, John C.; Canales, Juan Pablo

    2014-11-01

    Upper oceanic crust at fast- to intermediate-spreading mid-ocean ridges is thought to form from the intrusion and eruption of magma accumulated within a mid-crustal reservoir present beneath the ridge axis. However, the mechanisms for formation of the lower crust are debated. Observations from pieces of ancient oceanic crust exposed on land -- ophiolites -- imply that multiple small magma lenses exist throughout the lower crust at mid-ocean ridges and help form the crust, yet seismic data have imaged only a single lens beneath the innermost axial zones of various mid-ocean ridges. Here we use high-fidelity seismic data to image the crust beneath the East Pacific Rise. We identify a series of reflections below the axial magma lens that we interpret as magma lenses in the upper part of the lower crust. These reflections are present between 9° 20' and 9° 57' N and are located up to 1.5 km below the axial magma lens. From the geometry and amplitude of the reflections in a zone beneath a recent volcanic eruption, we infer that magma drained from a lower lens helped replenish the axial magma lens above and, perhaps, contributed to the eruption. Our data indicate that a multi-level complex of magma lenses is present beneath the East Pacific Rise and probably contributes to the formation of both the upper and lower crust.

  13. The Record of Magma Accumulation Processes and Magma-Crust Interactions in Arcs from Ultramafic Intrusions with Ni-Cu-PGE Mineralization

    NASA Astrophysics Data System (ADS)

    Scoates, J. S.; Manor, M. J.; Jackson-Brown, S.; Nixon, G. T.; Ames, D. E.

    2015-12-01

    Ultramafic arc plutons, key tracers of subduction zone magmatism, are present as Alaskan-type intrusions (no orthopyroxene) and a wide range of mineralogically diverse (ol-opx-cpx-hbl) intrusions. Turnagain (Alaskan-type) and Giant Mascot (opx-rich) are two Mesozoic mid-crustal ultramafic bodies in the Cordillera of British Columbia. They preserve lithologic, trace element, and isotopic records of magmatic evolution and crustal assimilation during the earliest stages of fractionation from mantle wedge-derived magmas. These processes are highlighted by sulfide saturation mechanisms in their respective oxidized parent magmas and the formation of significant magmatic Ni-Cu-PGE mineralization at Turnagain (1841.8 Mt at 0.21% Ni) and Giant Mascot (4.2 Mt at 0.77% Ni and 0.34% Cu). The intrusions represent mid-crustal magma conduits through which magmas laden with Mg-rich olivine and pyroxene ascended, stalled, fractionated, locally assimilated fusible pyrite- and graphite-bearing metasedimentary rocks, and ultimately left their crystal cargos as cumulates. Their extrusive components are picritic to ankaramitic basalts. The combined effects of fractional crystallization, sulfide melt segregation, and re-equilibration with sulfide melt are recorded by notable Ni-in-olivine variations. At Turnagain, there is a direct correlation between the presence of sulfide and partially digested phyllite blocks, which is reflected in a broad range of relatively light S isotope ratios. This contrasts with restricted near-mantle S isotope values from the steeply plunging Ni-sulfide pipes at Giant Mascot where sulfide saturation occurred in response to assimilation of host granitoids and schists. Many other similar Paleozoic to Mesozoic ultramafic intrusions in the North American Cordillera, extending from Alaska to Baja, also represent former magma pathways that potentially capture the record of arc growth through magmatic and mineralization processes from primitive arc magmas.

  14. Deformed Neogene basins, active faulting and topography in Westland: Distributed crustal mobility west of the Alpine Fault transpressive plate boundary (South Island, New Zealand)

    NASA Astrophysics Data System (ADS)

    Ghisetti, Francesca; Sibson, Richard H.; Hamling, Ian

    2016-12-01

    Tectonic activity in the South Island of New Zealand is dominated by the Alpine Fault component of the Australia-Pacific plate boundary. West of the Alpine Fault deformation is recorded by Paleogene-Neogene basins coeval with the evolution of the right-lateral/transpressive plate margin. Initial tectonic setting was controlled by N-S normal faults developed during Late Cretaceous and Eocene-early Miocene rifting. Following inception of the Alpine Fault (c. 25 Ma) reverse reactivation of the normal faults controlled tectonic segmentation that became apparent in the cover sequences at c. 22 Ma. Based on restored transects tied to stratigraphic sections, seismic lines and wells, we reconstruct the vertical mobility of the Top Basement Unconformity west of Alpine Fault. From c. 37-35 Ma to 22 Ma subsidence was controlled by extensional faulting. After 22 Ma the region was affected by differential subsidence, resulting from eastward crustal flexure towards the Alpine Fault boundary and/or components of transtension. Transition from subsidence to uplift started at c. 17 Ma within a belt of basement pop-ups, separated by subsiding basins localised in the common footwall of oppositely-dipping reverse faults. From 17 to 7-3 Ma reverse fault reactivation and uplift migrated to the WSW. Persistent reverse reactivation of the inherited faults in the present stress field is reflected by the close match between tectonic block segmentation and topography filtered at a wavelength of 25 km, i.e. at a scale comparable to crustal thickness in the region. However, topography filtered at wavelength of 75 km shows marked contrasts between the elevated Tasman Ranges region relative to regions to the south. Variations in thickness and rigidity of the Australian lithosphere possibly control N-S longitudinal changes, consistent with our estimates of increase in linear shortening from the Tasman Ranges to the regions located west of the Alpine Fault bend.

  15. Crystallization of the magma ocean

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Nomura, R.; Hirose, K.; Ballmer, M. D.

    2015-12-01

    We model the crystallization of the magma ocean using pyrolite as a proxy for its composition. We employ first-principles molecular-dynamics calculations to determine the density of the magmas. We use diamond-anvil cell experiments to trace the chemical evolution of the magmas during cooling and crystallization. We build a grid of pressure and temperature points, following the chemical evolution of the magma during the entire fractional crystallization of perovskite. Then we construct a geodynamical model of the evolving magma fully taking into account the density and chemistry of the melts and crystals. We show that the dynamics of the crystallization of the magma ocean is highly dependent (i) on extrinsic parameters, like pressure at the core-mantle boundary and temperature profile through the magma ocean, and (ii) on intrinsic parameters, like relative density relations between the melt and the crystals and vigor of the stirring. Formation of a solid layer in the middle of the magma ocean is possible, which can lead to the eventual formation of a basal magma ocean.

  16. Icelandic Volcanoes Geohazard Supersite and FUTUREVOLC: role of interferometric synthetic aperture radar to identify renewed unrest and track magma movement beneath the most active volcanoes in Iceland

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Spaans, Karsten; Drouin, Vincent; Sigmundsson, Freysteinn; Hooper, Andrew; Michalczewska, Karolina; Ófeigsson, Benedikt

    2014-05-01

    FUTUREVOLC is an integrated volcano monitoring project, funded by the European Commission (FP7) and led by the University of Iceland and the Icelandic Meteorological Office (IMO). The project is a European collaborative effort, comprising 26 partners, aimed at integrating ground based and satellite observations for improved monitoring and evaluation of volcanic hazards. Iceland has also recently been declared a Geohazard Supersite by the Committee on Earth Observation Satellites, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. Generating a long-term time series of ground displacements is key to gaining a better understanding of sub-volcanic processes, including the detection of new melt and migration of magma within the crust. The focus of the FUTUREVOLC deformation team is to generate and interpret an extended time series of high resolution deformation measurements derived from InSAR observations, in the vicinity of the four most active volcanoes in Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. A comprehensive network of continuous deformation monitoring equipment, led by IMO and collaborators, is already deployed at these volcanoes, including GPS, tilt and borehole strainmeters. InSAR observations are complementary to field based measurements and their high spatial resolution assists in resolving the geometry and location of the source of the deformation. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent deformation studies utilising data spanning this eruption, have provided insight into the shallow plumbing system which may explain the large reduction in eruption repose interval following the 1970 eruption. Although InSAR and GPS observations at Katla volcano (between 2001 and 2009) suggest no indication of magma induced deformation outside the ice-cap, it is possible that a small flood at Mýrdalsjökull in

  17. Geochemical effects of decoupled fractional crystallization and crustal assimilation

    NASA Astrophysics Data System (ADS)

    Cribb, J. W.; Barton, M.

    1996-05-01

    Most models of crustal assimilation assume that the amount of assimilant added to the magma is proportional to each infinitesimally small amount of solid removed during crystallization (AFC). In some magmatic systems, however, assimilation and crystallization are not strictly related and the mass assimilated is decoupled from, and therefore varies independently of, the mass crystallized (FCA). The geochemical consequences of FCA are examined and compared to those of AFC. The behavior of incompatible elements is identical during AFC and FCA, and ratios of these elements do not allow discrimination between the two processes. Major-oxide least-squares mass-balance models do not discriminate between AFC and FCA at F ≥ 0.7 ( F = fraction of melt remaining). However, FCA yields magmas richer in compatible elements and with higher Sr-isotopic ratios than AFC at a given value of F. Repeated cycles of FCA and AFC combined with magma mixing (FAM) may result in unusual geochemical trends, such as the evolution of a calc-alkaline basaltic parent to a tholeiitic daughter magma, or the evolution of low- and medium-K calc-alkaline basalts to high-K andesites, dacites, trachyandesites or trachydacites. Lavas erupted by the volcano Micro Profitis Ilias on Santorini, Hellenic arc, Greece, provide an example of magmas which evolved by combined fractionation, assimilation by FCA and mixing.

  18. Isotopic Disequilibrium and High-Crystallinity Magma Ascent: Clues to the Temporal Restriction of Proterozoic Anorthosites

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.

    2014-12-01

    Many Proterozoic anorthosite massifs show crustal isotopic signatures that have fuelled debate regarding the source (mantle vs. lower crust) of these temporally restricted magmas. The models advocating a mantle derivation for these rocks suggest that lower crustal assimilation plays an important role in developing the isotopic signature of the massifs, but no evidence exists to support this. We make use of Sr, Nd and Pb isotopic compositions of anorthosites from the Mealy Mountains Intrusive Suite (MMIS), the Nain Plutonic Suite (NPS) and the Rogaland Anorthosite Province (RAP), their internal mineral phases and comagmatic, high-pressure pyroxene megacrysts, which represent samples from various stages of the polybaric ascent of the magmas, to probe the origin of the crustal isotopic signatures and assess the importance of differentiation at lower crustal depths. Study of the MMIS and NPS is instructive as each is intruded into crust of significantly different age and isotopic composition. We observe varying degrees of internal isotopic disequilibrium, enforcing the notion that the nature of the crustal assimilant has a profound influence on the chemical signature of the magmas (Fig. 1). We also find unexpected patterns of internal isotopic disequilibrium, such as isotopically depleted orthopyroxene relative to plagioclase (Fig. 1), which suggests that anorthosite petrogenesis is not a "simple" case of progressive crustal contamination during polybaric magma ascent, but is more likely to involve significant differentiation and solidification at lower crust depths. The 100 m.y. magmatic timescales observed in these anorthosite systems may be caused by significant magmatic differentiation at Moho/lower crustal levels, as well as formation in long-lived arc environments. These long-lived magmatic timescales contrast with recent observations suggesting that the duration of magma ascent from the Moho to surface in arc environments is on the order of months to years. Such

  19. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr.

  20. Effect of Latent Heat of Freezing on Crustal Generation at Ultraslow Spreading Rates

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.; Warren, J. M.

    2013-12-01

    The transition between slow and ultraslow ridge axes occurs at the spreading rate below which steady state molten rock cannot exist above the normal Moho depth of ca. 6 km. The latent heat of basaltic magma freezing within the mantle and the kinematics of the seafloor spreading play significant roles in this transition. Using thermal models, we show that freezing of melt at mantle depths buffers temperature due to latent heat of freezing. This allows steady state crustal magma at lower spreading rates than when all the melt freezes at shallow crustal depths. Two quasi-stable seafloor-spreading patterns are possible: (1) basaltic magma along a narrow axial zone, maintaining a hot, weak axial lid that favors this extension pattern; (2) extension in simple shear over a broad zone with isotherms that are horizontal within the cool lid, favoring extension in simple shear. The statistics of basalt, gabbro, melt-impregnated peridotite, and peridotite dredged from transitional ridge axes indicates that the mode of crustal generation is extremely variable at ultraslow spreading rates. Portions of the easternmost Southwest Indian Ridge (SWIR) are spreading at 14 mm per year and consist of 90 percent peridotite, whereas the SWIR Oblique Segment has the same spreading rate but only 37 percent peridotite. Overall, the dredge statistics indicate that some, but not all, the latent heat of ascending magmas is released at mantle depth, that both quasi-stable seafloor-spreading geometries occur, and that magma ascent focuses locally along the strike of transitional ridge axes.

  1. Magma storage under Iceland's Eastern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  2. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  3. Post-collisional magmatism: Crustal growth not identified by zircon Hf-O isotopes

    NASA Astrophysics Data System (ADS)

    Couzinié, Simon; Laurent, Oscar; Moyen, Jean-François; Zeh, Armin; Bouilhol, Pierre; Villaros, Arnaud

    2016-12-01

    The combination of U-Pb, Lu-Hf and O isotopic analyses in global zircon databases has recently been used to constrain continental crustal growth and evolution. To identify crust-forming events, these studies rely on the assumption that new crust is formed from depleted mantle sources. In contrast, this work suggests that post-collisional mafic magmas and their derivatives represent a non-negligible contribution to crustal growth, despite having zircons with "crust-like" Hf-O isotopic characteristics. We address this paradox and its implications for crustal evolution on the basis of a case study from the Variscan French Massif Central (FMC). The late stages of continental collisions are systematically marked by the emplacement of peculiar mafic magmas, rich in both compatible (Fe, Mg, Ni, Cr) and incompatible elements (K2O, HFSE, LREE) and displaying crust-like trace element patterns. This dual signature is best explained by melting of phlogopite- (and/or amphibole-) bearing peridotite, formed by contamination of the mantle by limited amounts (10-20%) of crustal material during continental subduction shortly preceding collision. Mass balance constraints show that in melts derived from such a hybrid source, 62-85% of the bulk mass is provided by the mantle component, whereas incompatible trace elements are dominantly crustal in origin. Thereby, post-collisional mafic magmas represent significant additions to the crust, whilst their zircons have "crustal" isotope signatures (e.g. - 2 < εHft < - 9 and + 6.4 < δ18O < + 10 ‰ in the FMC). Because post-collisional mafic magmas are (i) ubiquitous since the late Archean; (ii) the parental magmas of voluminous granitoid suites; and (iii) selectively preserved in the geological record, zircons crystallized from such magmas (and any material derived from their differentiation or reworking) bias the crustal growth record of global zircon Hf-O isotopic datasets towards ancient crust formation and, specifically, may lead to an

  4. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  5. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    generated by the superposition of high hotspot-derived thermal fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby increasing meteoric water transport to depth and generating conditions for regional scale hydrothermal alteration of the crust. The intricacies of deformation rate and style, and the resulting crustal permeability-depth relations along the hotspot track, offer a qualitative explanation for low-δ18O magmas being pervasive in the CSRP, but restricted to post-caldera and late stage ignimbrites in the eastern SRP centers. This model has significant implications for the evolution of SRP-Y systems, as the thermal inputs required to drive both hydrothermal alteration and crustal melting complicate production of long-lived shallow crustal magma chambers. In addition, this model adds to a growing data set (e.g. Tangbai-Dabie-Sulu province, British Tertiary Igneous Province, etc.) demonstrating low-δ18O magmas can be generated in conjunction with regional scale hydrothermal alteration of the crust, and that this process has occurred throughout the geologic past where extensional tectonics and high thermal fluxes are superimposed.

  6. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    PubMed

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  7. Flow of ultra-hot Precambrian orogens and the making of crustal layering in Phanerozoic orogenic plateaux

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques

    2010-05-01

    Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen

  8. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.

    2015-09-01

    . These sulfides may retain some highly siderophile elements in the source, but are unlikely to be sufficiently voluminous to significantly affect the budget of more modestly sulfide-compatible and more abundant elements such as Cu and Mo. These primary magmas can therefore be considered to be largely Cu-Mo-undepleted, although highly siderophile elements such as Au and platinum group elements (PGE) may be depleted unless no sulfides remain in the source. The latter condition seems unlikely during active subduction because of the continuous flux of fresh sulfur from the slab, but may occur during post-subduction re-melting (leading to potentially Au-rich post-subduction porphyry and alkalic-type epithermal systems). Lower crustal differentiation of main-stage arc magmas results in some loss of Cu to residual or cumulate sulfides, but again the amount appears to be minor, and does not drastically reduce the Cu content of derivative intermediate-composition melts. Fractionation and devolatilization affect the oxidation state of the magma in competing ways, but, while crystallization and segregation of Fe3 +-rich magnetite can cause reduction in reduced to moderately oxidized evolved magmas, this effect appears to be outweighed by the oxidative effects of degassing reduced or weakly oxidized gaseous species such as H2, H2S, and SIVO2, and preferential solvation and removal of Fe2 + in saline hydrothermal fluids. Consequently, most arc magmatic suites show slight increases in oxidation state during differentiation, reaching typical values of ΔFMQ = + 1 to + 2. This oxidation state is significant, because it corresponds to the transition from dissolved sulfide to sulfate dominance in magmas. It has been shown that Cu and Au solubilities in silicate magma increase up to this level (ΔFMQ ≈ + 1), but while Cu solubility continues to increase at higher oxidation states, Au shows a precipitous drop as sulfide, which solvates Au in the melt, is converted to sulfate. This may

  9. Assimilation of rhyolitic magma by basaltic recharge in the Bruneau-Jarbidge eruptive center, Snake River Plain (USA)

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; de Campos, C. P.; Lavallee, Y.; Morgan, L. A.; Perugini, D.; Dingwell, D. B.

    2010-12-01

    Volcanic and magmatic activities in the Snake River Plain (SRP) have been characterised by a notably bimodal geochemical signature. The Bruneau-Jarbidge eruptive center (BJEC), in the southwestern SRP, is a fine example in which basaltic magma injection led to partial melting of the crust and different degrees of assimilation and eruption (Leeman et al., 2008). The BJEC is a 95 km by 55 km structural basin formed, ca.12 to 8 Ma, by multiple eruptions of rhyolitic pyroclastic and lava flows. The silicic eruptive phase is intercalated with a series of basaltic lava flows (e.g. Bonnichsen et al., 2008). Here, we assess the physical and chemical interaction of basaltic and rhyolitic magmas to help constrain the time scales of assimilation in the older southwestern SRP magma reservoirs. The Mary’s Creek basalt (MCB) and the Cougar Point Tuff unit V (CPTV) were chosen as end-members, based on work by Cathey and Nash (2009). The experimental procedure is: 1) geochemical analysis of the original samples using x-ray fluorescence (XRF) and electron microprobe, 2) determination of the temperature dependence of the viscosity of each sample using concentric cylinder and micropenetration methods, 3) magmatic assimilation of the end-members using a Couette geometry, and 4) geochemical analysis of the mixed product. Our geochemical analysis confirms that our end-members contain 49 wt. % SiO2 (MCB) and 76 wt. % SiO2 (CPTV), (c.f., Cathey and Nash, 2009). The dry superliquidus viscosities indicate that at 1450 °C, the CPTV and MCB melts have a viscosities of ~1.2x10^4 Pa*s and ~3x10^0 Pa*s, respectively - yielding a viscosity ratio of rhyolitic to basaltic magma of ca. 4x10^3. Assimilation experiments are being performed at 1450 °C, under laminar fluid conditions (Reynolds number of ca. 10^-7). Although recent numerical models (e.g., Jellinek and Kerr, 1999) suggest magma mixing to be inefficient under low Reynolds numbers and high viscosity ratios, we are hereby testing whether

  10. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.

    2016-07-01

    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  11. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Valderez P.; Sial, Alcides N.; Pimentel, Marcio M.; Armstrong, Richard; Guimarães, Ignez P.; da Silva Filho, Adejardo F.; de Lima, Mariucha Maria C.; da Silva, Thyego R.

    2015-09-01

    The 572 Ma Guarany stock consists of magmatic epidote-bearing hornblende monzodiorite to biotite granite that intruded Paleoproterozoic orthogneisses about 10 km inland from the coast in northeastern Brazil. Co-magmatic diorite enclaves and dikes are abundant throughout the pluton. The monzodiorite-granite pluton and diorite enclaves are shoshonitic and display continuous trends in variation diagrams. They display chemical and isotopic characteristics of crustal melts, such as enrichment in incompatible elements, high back-calculated initial 87Sr/86Sr ratios (avg. 0.71253), negative εNd (0.57Ga) values (avg. - 14.58), as well as high and variable (+ 9.1 to + 11.1‰VSMOW) δ18O (zircon) values. Correlations between O-isotope and whole-rock silica contents, as well as initial 87Sr/86Sr ratios with 1/Sr concentrations, suggest hybridization of a lower continental crustal melt with more felsic crustal rocks, concomitant with fractional crystallization. Amphibole chemistry and whole rock Zr, TiO2 and P2O5 contents suggest magma solidification at a pressure 7 kbar and near liquidus temperature 900 °C. The parental magma was likely formed by partial melting of old (tDM = 2.0 Ga) amphibolitic lower continental crustal rocks, in a post-collisional setting, probably triggered by underplating of mantle-derived mafic magma during the period of relaxation after collision.

  12. Crustal and upper mantle structures beneath Cenozoic volcanoes on the board of China and North Korea.

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.

    2015-12-01

    The Cenozoic-to-recent volcanoes on the border of China and North Korea are recognized as continental intraplate volcanoes. Despite of much work, the origin and mechanism of the volcanoes remain as an issue of debate, due to their complex and long-lived volcanic activities and lack of detailed information for the crust and upper mantle structures. In this work, ambient noise analysis is performed to image lithospheric structures beneath the volcanoes and surrounding regions using continuous broadband recordings of two temporary networks (1998-1999 PASSCAL array and a part of the 2009-2011 NECASSArray). To better constrain the entire depths of lithosphere in the estimated 3-D velocity structure, we utilize the spectral auto-correlation (SPAC) method and a Bayesian inversion technique to measure phase velocity dispersion data and to obtain shear-wave velocity structures, respectively. We developed a novel grid-search technique for more stable SPAC measurements, and obtained phase velocity data are compared and combined with group and phase velocity data from the conventional frequency-time analysis. Hierarchical and trans-dimensional techniques are implemented in the Bayesian method to estimate more rigorous models and associated uncertainties. The estimated 3-D model shows slower velocity (~0.3 km/s) at the bottom of lithosphere (>60 km) and less modified thick-crust beneath the volcanoes compared to other regions in the model. This suggests our model favors the theory of magma underplating, crustal assimilation, and less volume of magma supply from upper mantle.

  13. Oman Ophiolite Structural Constraints Complement Models of Crustal Accretion at the EAST Pacific RISE

    NASA Astrophysics Data System (ADS)

    Nicolas, A. A.; Jousselin, D.; Boudier, F. I.

    2014-12-01

    This review documents significant similarities between East Pacific Rise (EPR), especially EPR at 9°-10°N and the Oman ophiolites. Both share comparable fast spreading rates, size and their dominant source of information that is mainly geophysical in EPR and structural in Oman. In these respects, they are remarkably complementary. Mantle upwelling zones at the EPR and mantle diapirs in Oman have a similar size and spacing. They punctually introduce basaltic melt and heat in the accreting crust, thus controlling elementary segments structure and activity. A tent-shaped magma chamber fits onto the diapir head, the top of which is a Mantle Transition Zone (MTZ) that stores, modifies, and injects the modified melt into the upper Axial Melt Lens (AML) beneath the lid. This MTZ-AML connection is central in crustal accretion, as documented in Oman. Heat from the diapir is captured above the Moho by the magma chamber and escapes through its walls, into a thin thermal boundary layer that bounds the chamber. Beyond, seawater at lower temperatures feeds smokers on the seafloor.

  14. Complex igneous processes and the formation of the primitive lunar crustal rocks

    NASA Technical Reports Server (NTRS)

    Longhi, J.; Boudreau, A. E.

    1979-01-01

    Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.

  15. Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: a case study of the Enako fault in central Japan

    NASA Astrophysics Data System (ADS)

    Kimura, Haruo; Itoh, Yasuto; Tsutsumi, Hiroyuki

    2004-10-01

    To evaluate cumulative strike-slip deformation around an active fault, we carried out tectonic geomorphic investigations of the active right-lateral strike-slip Enako fault in central Japan and paleomagnetic investigations of the Kamitakara pyroclastic flow deposit (KPFD; 0.6 Ma welded tuff) distributed around the fault. Tectonic geomorphic study revealed that the strike-slip displacement on the fault is ca. 150 m during the past 600 ka. We carried out measurements of paleomagnetic directions and anisotropy of magnetic susceptibility (AMS) within the pyroclastic flow deposit. Stable primary magnetic directions at each sampling site are well clustered and the AMS fabric is very oblate. We then applied tilt correction of paleomagnetic directions at 15 sites using tilting data obtained by the AMS property and orientations of eutaxitic structures. Within a distance of about 500 m from the fault trace, differential clockwise rotations were detected; the rotation angle is larger for zones closer to the fault. Because of this relation and absence of block boundary faults, a continuous deformation model explains the crustal deformation in the study area. The calculated minimum value of strike-slip displacement associated with this deformation detected within the shear zone is 210 m. The sum of this and offset on the Enako fault is 360 m and the slip rate is estimated at 0.6 mm/year.

  16. The potential for crustal resources on Mars

    NASA Technical Reports Server (NTRS)

    Cordell, Bruce M.; Gillett, Stephen L.

    1991-01-01

    Martian resources pose not only an interesting scientific challenge but also have immense astronautical significance because of their ability to enhance mission efficiency, lower launch and program costs, and stimulate the development of large Mars surface facilities. Although much terrestrial mineralization is associated with plate tectonics and Mars apparently possesses a thick, stationary lithosphere, the presence of crustal swells, rifting, volcanism, and abundant volatiles indicates that a number of sedimentary, hydrothermal, dry-magma mineral concentration processes may have operated on Mars. For example, in Colorado Plateau-style (roll-front) deposits, uranium precipitation is localized by redox variations in groundwater. Also, evaporites (either in salt pans or even interstitially in pore spaces) might concentrate Cl, Li, and K. Many Martian impact craters have been modified by volcanism and probably have been affected by rising magma bodies interacting with ground ice or water. Such conditions might produce hydrothermal circulations and element concentrations. If the high sulfur content found by the Viking landers typifies Martian abundances, sulfide ore bodies may have been formed locally. Mineral-rich Africa seems to share many volcanic and tectonic characteristics with portions of Mars and may suggest Mars' potential mineral wealth. For example, the rifts of Valles Marineris are similar to the rifts in east Africa, and may both result from a large mantle plume rising from the interior and disrupting the surface. The gigantic Bushveld complex of South Africa, an ancient layered igneous intrusion that contains ores of chromium and Pt-group metals, illustrates the sort of dry-magma processes that also could have formed local element concentrations on Mars, especially early in the planet's history when heat flow was higher.

  17. Origin of basaltic magmas of Perşani volcanic field, Romania: A combined whole rock and mineral scale investigation

    NASA Astrophysics Data System (ADS)

    Harangi, Szabolcs; Sági, Tamás; Seghedi, Ioan; Ntaflos, Theodoros

    2013-11-01

    The Perşani volcanic field is a low-volume flux monogenetic volcanic field in the Carpathian-Pannonian region, eastern-central Europe. Volcanic activity occurred intermittently from 1200 ka to 600 ka, forming lava flow fields, scoria cones and maars. Selected basalts from the initial and younger active phases were investigated for major and trace element contents and mineral compositions. Bulk compositions are close to those of the primitive magmas; only 5-12% olivine and minor spinel fractionation occurred at 1300-1350 °C, followed by clinopyroxenes at about 1250 °C and 0.8-1.2 GPa. Melt generation occurred in the depth range from 85-90 km to 60 km. The estimated mantle potential temperature, 1350-1420 °C, is the lowest in the Pannonian Basin. It suggests that no thermal anomaly exists in the upper mantle beneath the Perşani area and that the mafic magmas were formed by decompression melting under relatively thin continental lithosphere. The mantle source of the magmas could be slightly heterogeneous, but is dominantly variously depleted MORB-source peridotite, as suggested by the olivine and spinel composition. Based on the Cr-numbers of the spinels, two coherent compositional groups (0.38-0.45 and 0.23-0.32, respectively) can be distinguished that correspond to the older and younger volcanic products. This indicates a change in the mantle source region during the volcanic activity as also inferred from the bulk rock major and trace element data. The younger basaltic magmas were generated by lower degree of melting, from a deeper and compositionally slightly different mantle source compared to the older ones. The mantle source character of the Perşani magmas is akin to that of many other alkaline basalt volcanic fields in the Mediterranean close to orogenic areas. The magma ascent rate is estimated based on compositional traverses across olivine xenocrysts using variations of Ca content. Two heating events are recognized; the first one lasted about 1

  18. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  19. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    NASA Astrophysics Data System (ADS)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  20. Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.

    2012-04-01

    Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.

  1. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    PubMed

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  2. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  3. The Abundance of Sulfur in Venus Magmas

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Grinspoon, D. H.

    1999-09-01

    Outgassing of sulfur gases due to volcanism within the past 100 My on Venus is probably responsible for the planet's globally encircling H2SO4 cloud layers. Dramatic changes in volcanic output on Venus would have altered the atmospheric inventory of sulfur gases, and hence the structure of its clouds (Bullock and Grinspoon, Icarus, submitted 1999). Although Magellan radar images provide some constraints on the magnitude of volcanism in the geologically recent past, little is known of the sulfur content of Venus lavas. In order to assess the effects that Venus' volcanic history may have had on cloud and therefore climate change, it is desirable to place some constraints on the abundance of sulfur in Venus magmas. The sulfur content of terrestrial volcanic lavas varies widely, depending upon the local sedimentary environment and the source and history of upwelling magmas. We estimate the average abundance of sulfur in Venus lavas from an analysis of the production and loss of atmospheric SO2. The volumetric rate of resurfacing on Venus in the recent past is approximately 0.1 to 2 km3/yr (Bullock et al., JGR 20, 1993, Basilevsky and Head, GRL 23, 1996). Outgassed SO2 reacts quickly with crustal carbonate -- residence times in the atmosphere with respect to the reaction SO2 + CaCO3 <=> CaSO4 + CO are about 2-30 My (Fegley and Prinn, Nature 337, 1989, Bullock and Grinspoon, Icarus, submitted 1999). Assuming steady state conditions and an abundance of 25-180 ppm of atmospheric SO2 (Oyama et al., JGR 85, 1980, Bertaux et al., JGR 101, 1996), we will discuss constraints on the abundance of this important greenhouse and cloud-precursor gas in Venus lavas.

  4. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  5. Mantle and crustal contributions to continental flood volcanism

    USGS Publications Warehouse

    Arndt, N.T.; Czamanske, G.K.; Wooden, J.L.; Fedorenko, V.A.

    1993-01-01

    Arndt, N.T., Czamanske, G.K., Wooden, J.L. and Fedorenko, V.A., 1993. Mantle and crustal contributions to continental flood volcanism. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near the Earth's Surface. Tectonophysics, 223: 39-52. Most continental flood basalts are enriched in incompatible elements and have high initial 87Sr/86Sr ratios and low ??{lunate}Nd values. Many are depleted in Nb and Ta. The commonly-held view that these characteristics are inherited directly from a source in metasomatized lithospheric mantle is inconsistent with the following arguments: (1) thermomechanical modelling demonstrates that flood basalt magmas come mainly from an asthenospheric or plume source, with minimal direct melting of the continental lithospheric mantle. The low water contents of most flood basalts argue against proposals that hydrous lithosphere was the source. (2) Lithospheric mantle normally has low concentrations of incompatible elements, and chondrite-normalized Nb and Ta contents similar to those of other incompatible elements. Such material cannot be the unmodified source of Nb-Ta-depleted basalts such as those from the Karoo, Ferrar, or Columbia River provinces. We suggest there are two main controls on the compositions of continental flood basalts. The first is lithospheric thickness, which strongly influences the depth and degree of mantle melting of a plume or asthenospheric source, and thus has an important influence on the composition of primary magmas. All liquids formed by partial melting of peridotite at sub-lithosphere depths are highly magnesian (20-25 wt.% MgO) but have variable trace-element contents. Where the lithosphere is thick, the source melts at high pressure, garnet is present, the degree of melting is low, and trace-element concentrations are high. This type of magma evolves to produce the high-Ti type of continental flood basalt. Where the lithosphere is

  6. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  7. Eruption vs. storage: Key thermomechanical controls on the production of large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Depaolo, D.

    2008-12-01

    the related rates of melt production and extraction. Isotopic studies, parameterized mantle convection calculations and varied geophysical observations suggest that mantle melt production rates in regions not associated with hot mantle plumes are order 10-4 to 10-2 km3 yr-1. Isotopic studies and heat balance considerations indicate that the supply to the mid crust can be increased by factors of 2-10 as a result of lower crustal melting. Applying these constraints on the average supply along with the corresponding thermal structure in the crust (also determined, in part, by the nature of mantle heat transfer) and reasonable crustal mechanical properties we identify conditions in which the storage of crystal-rich magma is favored. Additional effects and implications related to time-dependent magma supplies, varied chamber shapes, wall rock rheologies and background crustal stress regimes will also be discussed.

  8. Mechanical constraints on the evolution of magma chambers of intermediate composition and resultant ground displacements

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.

    2012-12-01

    Petrological studies indicate that most intermediate magmas erupted in the recent past were stored within a pressure window of between about 50 and 220 MPa prior to eruption. Most of these eruptions were, however, of small to modest magnitude and few of them have well-documented pre-eruptive geodetic signatures. The pre-eruptive ground deformation of a future large magnitude intermediate eruption similar to that of Tambora in 1815 is thus poorly understood. Here, I explore a potential pre-eruptive geodetic signature of a M7 intermediate magma chamber using constraints from the (data-poor) Tambora case in contrast to the (data-rich) case of the current small-magnitude eruptive period of Soufriere Hills volcano (SHV) combining petrological constraints with analytical and numerical mechanical modeling. I establish a chamber failure criterion based on rock tensile strength and forward model pre-failure ground displacements starting with the simple assumption of elastic mechanical behaviour of surrounding rocks. Accounting for gravitational loading the results demonstrate that a static failure criterion is inadequate to explain cyclic eruptive behaviour at SHV-type systems, given observed pre-eruptive deformation amplitudes and petrologically deduced storage conditions. The same applies for a Tambora-type system, where forward models of permissible (but unrealistically large) chamber pressures predict several meters of uplift with a wavelength of tens of kilometers, when assuming elastic crustal mechanics. Results indicate that pressurisation of a small and shallow-seated chamber (SHV-type) is more likely to rupture and repeatedly feed intrusions or small magnitude eruptions. However, even in this case anelastic effects appear to be important to explain the cyclic behaviour during the current activity at SHV. Although there is a first order influence of edifice load, topography, and mechanical heterogeneity of encasing rocks on the stress distribution and the resultant

  9. Crustal structure of the Caribbean-northeastern South America arc-continent collision zone

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Mann, Paul; Escalona, Alejandro; Aitken, Trevor J.

    2008-08-01

    We present the results of a 568-km-long regional wide-angle seismic profile conducted in the southeastern Caribbean that crosses an active island arc, a remnant arc, two basins possibly floored by oceanic crust, an allochthonous terrane of forearc affinity, and the passive margin of northern South America. The velocity structures of the Late Cretaceous Aves Ridge remnant arc and Miocene and younger Lesser Antilles arc are remarkably similar, which implies that magmatic processes have remained moderately steady over time. Crustal thickness is ˜26 km at the Aves Ridge and ˜24 km at the Lesser Antilles arc. In comparison to the Izu-Bonin and Aleutian arcs, the Lesser Antilles arc is thinner and has no evidence for a lower crustal cumulate layer, which is consistent with the estimated low magma production rates of the Lesser Antilles arc. Crustal thickness beneath the Grenada and Tobago basins is 4-10 km, and the velocity structure suggests that these basins could be floored by oceanic crust. A decrease of ˜1 km/s in average seismic velocity of the upper crust is observed from NW to SE across the North Coast fault zone; we argue that this marks the suture between the far-traveled Caribbean arc and the passive margin of the South American continent. Current strike-slip motion between the Caribbean and South American plates is located ˜30 km to the south, and thus material originally deposited on the South American passive margin has now been transferred to the Caribbean plate.

  10. Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Klinger, Yann; Socquet, Anne; Doubre, Cécile; Jacques, Eric

    2017-02-01

    Measuring displacement-length profiles along normal faults provides crucial information on fault growth processes. Here, based on satellite imagery and topography we analyze 357 normal faults distributed along the active rift of Dabbahu-Manda-Hararo (DMH), Afar, which offers a unique opportunity to investigate the influence of magmatism on fault growth processes. Our measurements reveal a large variety of slip profiles that are not consistent with elastic deformation. Their analysis contributes towards a better understanding of the lateral propagation of faults, especially when nucleation points and existence of barriers are included. Using the fault growth model of Manighetti et al. (2001), we determine the preferred direction of lateral propagation for each fault. Our results suggest that lateral propagation of faults is easier away from areas where magma has been stored for long time at crustal depth, and has thus modified the thermo-mechanical properties of the host-rock. However, these areas correspond also to areas where the initiation of fault growth appears as easiest along the rift. In combining these results with the analysis of rift width and the position of magma reservoirs along DMH rift, we show that fault growth keeps track of the magma presence and/or movement in the crust.

  11. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Goldstein, Steven L.

    1990-05-01

    Pb isotopic compositions for three suites of well-characterized granulite facies xenoliths from a diversity of crustal settings (the Chudleigh and McBride volcanic provinces, Queensland, Australia and the Eifel volcanics, West Germany) are presented here. All three suites plot to the right of the 4.57 Ga geochron, similar to the published Pb results of other mafic granulite xenoliths. Correlations between Sr, Nd and Pb isotopes in the three suites measured here point to an origin by mixing of mantle-derived basaltic magmas with lower crust at the time of basaltic underplating (i.e., < 100 Ma for Chudleigh, ˜ 300 Ma for McBride, ˜ 450 Ma for Eifel). Because the Pb concentration of the continental crust is much greater than that of mantle-derived basaltic magmas, the Pb isotopic compositions of the magmas are shifted dramatically by the mixing, allowing delineation of the isotopic characteristics of the lower crust. In all three cases, this lower crust had radiogenic Pb and Sr isotopic compositions and unradiogenic Nd isotopic compositions, yielding Proterozoic Nd model ages. Such radiogenic lower crust contrasts markedly with the Pb isotopic characteristics of most Precambrian granulite facies terrains. Whereas the Nd isotopes reflect the average age of crust formation, the Pb isotopic characteristics of the lower crust appear to be a function of the tectonothermal age of the crust: unradiogenic Pb can only develop in regions which have remained stable for long time periods (e.g., cratons), whereas in areas where orogenies have occurred subsequent to crustal formation, the Pb isotopic composition of the lower crust is "rejuvenated" through mixing with radiogenic Pb from upper crust and mantle-derived magmas. Thus, after orogeny, the Pb isotopic composition of the lower crust resembles that of the upper crust. On the basis of this proposed orogenic age-Pb isotope correlation, we estimate the Pb isotopic composition of the lower crust using the data for granulite

  12. Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back-arc basin

    NASA Astrophysics Data System (ADS)

    Arai, Ryuta; Kodaira, Shuichi; Yuka, Kaiho; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2017-01-01

    Back-arc basins are a primary target to understand lithospheric evolution in extension associated with plate subduction. Most of the currently active back-arc basins formed in intraoceanic settings and host well-developed spreading centers where seafloor spreading has occurred. However, rift structure at its initial stage, a key to understand how the continental lithosphere starts to break in a magma-rich back-arc setting, is poorly documented. Here we present seismological evidence for structure of the southern Okinawa Trough, an active rift zone behind the Ryukyu subduction zone. We find that the southern Okinawa Trough exhibits an almost symmetric rift system across the rift axis (Yaeyama Rift) and that the sedimentary layers are highly cut by inward dipping normal faults. The rift structure also accompanies a narrow (2-7 km wide) on-axis intrusion resulted from passive upwelling of magma. On the other hand, an active submarine volcano is located 10 km away from the rift axis. The P wave velocity (Vp) model derived from seismic refraction data suggests that the crust has been significantly thinned from the original 25 km thick arc crust and the thinnest part with 12 km thickness occurs directly beneath the rift axis. The velocity model also reveals that there exists a thick layer with Vp of 6.5-7.2 km/s at lower crustal levels and may indicate that mantle materials accreted at the bottom of the crust during the crustal stretching. The abrupt crustal thinning and the velocity-depth profile suggest that the southern Okinawa Trough is at a transitional stage from continental rifting to seafloor spreading.

  13. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  14. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  15. Magma flow pattern in dykes of the Azores revealed by anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.; Geoffroy, L.; Pozzi, J. P.

    2015-02-01

    The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.

  16. Extremely High Magma Emplacement Rates Recorded in the Golden Horn Batholith, WA

    NASA Astrophysics Data System (ADS)

    Eddy, M. P.; Bowring, S. A.; Tepper, J. H.; Miller, R. B.

    2015-12-01

    High SiO2 rhyolites emplaced during 'super-eruptions' demonstrate that large volumes of eruptible magma can exist in the upper crust. However, the timescale over which the magma reservoirs that source these eruptions are built remains controversial. Thermal models suggest that magma emplacement rates need to be > 0.005-0.01 km3/yr in order to accumulate enough eruptible magma to source a 'super-eruption'. Yet, these rates are higher than the time-averaged rates (< 0.001 km3/yr) for nearly all well-studied granitoid plutonic complexes. This disparity contradicts geologic evidence suggesting that the high SiO2 rhyolites emplaced during 'super-eruptions' are extracted from crystal rich magma chambers that should be preserved in the geologic record as granodioritic and granitic plutons. We quantify time-averaged magma emplacement rates for the upper crustal Golden Horn batholith, WA based on new geologic mapping and U-Pb zircon CA-IDTIMS geochronology. The batholith is exposed over 310 km3 and can be separated in the field into five intrusive units. High topography allows the 3D geometry of each phase to be constrained and their volumes range from < 100 km3 to > 400 km3. U-Pb zircon geochronology reveals that four of the five phases were assembled incrementally and distinct zircon populations from samples within these phases suggest that individual magmatic pulses had fully crystallized before the next arrived. However, six nearly identical U-Pb zircon dates from a > 400 km3 rapakivi granite show that this phase was built in ca. 50 kyr and that large portions may have been emplaced nearly simultaneously. The implied emplacement rate for this phase (≥ 0.008 km3/yr) is in agreement with those predicted for assembly of the upper crustal magma chambers that source 'super-eruptions', and it may provide a rare and unprecedented opportunity to study the processes that occur in such chambers.

  17. Tracking dynamics of magma migration in open-conduit systems

    NASA Astrophysics Data System (ADS)

    Valade, Sébastien; Lacanna, Giorgio; Coppola, Diego; Laiolo, Marco; Pistolesi, Marco; Donne, Dario Delle; Genco, Riccardo; Marchetti, Emanuele; Ulivieri, Giacomo; Allocca, Carmine; Cigolini, Corrado; Nishimura, Takeshi; Poggi, Pasquale; Ripepe, Maurizio

    2016-11-01

    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.

  18. Assimilation by Lunar Mare Basalts: Melting of Crustal Material and Dissolution of Anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) m(exp 2) s(exp -1) at 1340 C and 10(exp -11) m(exp 2) s(exp -1) at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  19. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) sq m/s at 1340 C and 10(exp -11) sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  20. Crustal evolution and recycling in a juvenile continent: Oxygen isotope ratio of zircon in the northern Arabian Nubian Shield

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Katzir, Yaron; Valley, John W.

    2009-02-01

    Crustal recycling patterns during the evolution of the Neoproterozoic Arabian-Nubian Shield (ANS) were defined using the oxygen isotope ratio of zircon [ δ18O(Zrn)]. Evidence for early (~ 870-740 Ma) crustal recycling in the northernmost ANS (southern Israel and Sinai, Egypt) is given by laser fluorination analysis of bulk zircon separates, which yield higher than mantle δ18O(Zrn) values of several island arc complex (IAC) orthogneisses (6.9 to 8.2‰) and also from the average δ18O(Zrn) value of 6.4‰ determined for detrital zircons (~ 870-780 Ma) from the Elat-schist; the latter representing the oldest known rock sources in the region. These results indicate prolonged availability of surface-derived rocks for burial or subduction, melting, and assimilation at the very early stages of island arc formation in the ANS. Other IAC intrusions of ~ 800 Ma show mantle-like δ18O(Zrn) values, implying that not all magmas involved supracrustal contribution. Much younger (650-625 Ma) deformed syn-collisional calc-alkaline (CA1) intrusions are characterized by δ18O(Zrn) values of 5.0 to 7.9‰ indicating continued recycling of the felsic crust. The main sample set of this study comprises rocks from the mostly granitic, post-collisional calc-alkaline (CA2: ~ 635-590 Ma) and alkaline (AL: ~ 608-580 Ma) magmatic suites. Despite having distinct geochemical characteristics and petrogenetic paths and spans of magmatic activity, the two suites are indistinguishable by their average δ18O(Zrn) values of 5.7 and 5.8‰ pointing to the dominance of mantle-like δ18O sources in their formation. Nonetheless, grouping the two suites together reveals geographical zoning in δ18O(Zrn) where a large southeastern region of δ18O(Zrn) = 4.5 to 5.9‰ is separated from a northwestern belt with δ18O(Zrn) = 6 to 8‰ by a '6‰ line'. It is thus suggested that all CA2 and AL magmas of the northernmost ANS were derived from mantle-like δ18O reservoirs in the mafic lower-crust and the

  1. Rates, Mechanisms, and Implications of Crustal Assimilation in Continental Arcs

    NASA Astrophysics Data System (ADS)

    Dungan, M.; Davidson, J.

    2002-12-01

    Contrary to the limiting constraints postulated by Bowen for the coupled thermal and mass balance implicated in assimilation, many studies [1-6] suggest that multi-stage and multi-component assimilation, abetted by magma mixing, may be volumetrically important and have profound consequences for the chemistry of basaltic and evolved magmas in long-lived continental magmatic systems. The probability of a primitive or evolved basalt arriving at the Earth's surface having undergone perfectly closed-system evolution during passage through 25-60 km of continental crust is vanishingly low. A case-by-case demonstration that the intra-crustal chemical overprint is trivial, or that it can be quantified and subtracted, is an essential step in any evaluation of mantle source-region chemistry and processes based on inversion of continental basalt compositions. In magmatic systems characterized by mafic magma recharge the thermal energy and physical dynamism needed for assimilation are not constrained to come uniquely from one magma batch [7, 8]. Equally important is that assimilation is rarely equivalent to bulk melting of ingested blocks followed by reservoir-wide homogenization. The mechanics of crustal assimilation are governed by grain boundary melting, disaggregation, and dispersal of refractory solids (including xenocryst settling) wherein liberated low-density, incompatible element-enriched partial melts have the capacity to render primitive arc magma batches variably modified, as well as heterogeneous on short length-scales. Evidence that basalts thermally erode surface channels and conduit walls, and new observations constraining the maximum time that some extensively melted xenoliths have resided in their host magmas, indicate that the time required to impose an open-system overprint on a hot basaltic magma (days to yrs) is far shorter than typical repose periods at most arc volcanoes (50-500 yrs). Assimilative recycling of broadly gabbroic arc cumulates has had large

  2. Magma Rich Events at Magma-Poor Rifted Margins: A South-East Indian Example

    NASA Astrophysics Data System (ADS)

    Harkin, Caroline; Kusznir, Nick; Tugend, Julie; Manatschal, Gianreto; Horn, Brian

    2016-04-01

    The south-east Indian continental rifted margin, as imaged by the INE1-1000 deep long-offset seismic reflection section by ION Geophysical, is a classic example of a magma-poor rifted margin, showing highly thinned continental crust, or possibly exhumed mantle, within the ocean-continent transition (OCT). Outboard, the steady-state oceanic crust is between 4 and 5 km thickness, consistent with magma-poor continental breakup and sea-floor spreading. It is therefore surprising that between the hyper-extended crust showing thin or absent continental crust (of approximately 75 km width) and the anomalously thin steady-state oceanic crust, there appears to be a region of thicker magmatic crust of approximately 11 km thickness and 100 km width. Magmatic events, at or just after continental breakup, have also been observed at other magma-poor rifted margins (e.g. NE Brazil). This interpretation of magma-poor OCT structure and thinner than global average oceanic crust separated by thicker magmatic crust on the SE Indian margin is supported by gravity inversion; which uses a 3D spectral technique and includes a lithosphere thermal gravity anomaly correction. Residual depth anomaly (RDA) analysis corrected for sediment loading using flexural backstripping, gives a small negative value (approximately -0.1 km) over the steady-state oceanic crust compared with a positive value (approximately +0.3 km) over the thicker magmatic crust. This RDA difference is consistent with the variation in crustal thickness seen by the seismic reflection interpretation and gravity inversion. We use joint inversion of the time domain seismic reflection and gravity data to investigate the average basement density and seismic velocity of the anomalously thick magmatic crust. An initial comparison of Moho depth from deep long-offset seismic reflection data and gravity inversion suggests that its basement density and seismic velocity are slightly less than that of the outboard steady-state oceanic

  3. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  4. Crustal velocity model along the southern Cuban margin: implications for the tectonic regime at an active plate boundary

    NASA Astrophysics Data System (ADS)

    Moreno, Bladimir; Grandison, Margaret; Atakan, Kuvvet

    2002-11-01

    A new 1-D velocity model along the southern Cuban margin has been determined using local earthquake data, which are the result of the merged Cuban and Jamaican catalogues. Simultaneous inversion using joint-hypocentre determination was applied to solve the coupled hypocentre-velocity model problem. We obtained a seven-layer model with an average Moho interface at 20 km. The average velocity was found to be 7.6 km s-1 on the top of the crust-mantle transition zone and 6.9 km s-1 in the basaltic layer of the crust. The improvement in the earthquake locations allowed us for the first time to use local seismicity to characterize the activity on local faults and the stress regime in the area. For this purpose, 34 earthquake focal mechanisms were determined along the eastern segments of the Oriente Fault. These solutions are consistent with the known left-lateral strike-slip motion along this major structure as well as with the stress regime of two local structures: (1) the Cabo Cruz Basin and (2) the Santiago deformed belt. The first structure is dominated by normal faults with minor strike-slip components and the second by reverse faults. The shallow seismicity in the Cabo Cruz Basin is associated with fault planes trending N55°-58°E and dipping 38°-45° to the north. The Santiago deformed belt, on the other hand, exhibits diverse fault plane orientations. These local structures account for most of the earthquake activity along the southern Cuban margin. Deep seismicity observed in the Santiago deformed belt, supported by focal mechanisms, suggests underthrusting of the Gonave Microplate beneath the Cuban Block in this area. The principal stress orientations obtained from stress inversion of earthquake focal mechanisms suggest a thrust faulting regime along the Southern Cuban margin. We obtained a nearly horizontal σ1 and nearly vertical σ3, which indicates active compressional deformation along the major Oriente transcurrent fault in agreement with the dominant

  5. Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano

    2010-05-01

    Pumice and scoria from different eruptive layers of Mt. Vesuvius volcanic products contain mafic minerals consisting of High-Fo olivine and Diopsidic Pyroxene. These phases were crystallized in unerupted trachibasaltic to tephritic magmas, and were brought to surface by large phonolitic/tephri-phonolitic (e.g. Avellino and Pompei) and/or of tephritic and phono-tephritic (Pollena) eruptions. A large set of these mm-sized crystals was accurately separated from selected juvenile material and measured for their chemical compositions (EPMA, Laser Ablation ICP-MS) and 18O/16O ratios (conventional laser fluorination) to constrain the nature and evolution of the primary magmas at Mt. Vesuvius. Uncontaminated mantle δ18O values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary melts during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). At Mt. Vesuvius, measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas. Trace element composition constrains the near primary nature of the phases. Published data on volatile content of melt inclusions hosted in these crystals reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth occurred in a reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element content of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. Low, nearly primitive δ18O values are observed for olivine from Pompeii eruption, although still

  6. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  7. Faults Activities And Crustal Deformation Along The Arc-Continent Collision Boundary, Eastern Taiwan - Observed From Persistent Scatterer SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Yen, Jiun-Yee; Chang, Chung-Pai; Hooper, Andrew; Chang, Yo-Ho; Liang, Wen-Tzong; Chang, Tsui-Yu

    2010-05-01

    Located in the southeastern periphery of the Eurasian plate, eastern Taiwan marks the collional boundary between the Eurasian plate and the Philippine Sea plate. These two plates converge at about 8 cm/yr near Taiwan and nearly half of the shortening is consumed in eastern Taiwan. There have been many studies in this area about the dynamics of the plate convergence, however, most of the geodetic studies focused on small area (strainmeter), with very few data points (GPS), or only gather data along a specific profile (leveling). We applied the Persistent Scatterer SAR Interferometry in the Longitudinal Valley of eastern Taiwan to observe temporally-variable processes using both ERS and Envisat data. At the same time, leveling and GPS data were measured for the auxiliary tool to verify the deformation rate in this area. Our result indicated that although the area is under active collision, faults do not move in the same fashion along the boundary. In the very northern part of the collided arc, small subsidence has been detected, while in the north-central part very few activity is observed. In the central and southern part of the collisional boundary, patches of faults are moving as rapidly as 15 mm/yr along radar line-of-sight. In addition. between late 2004 and middle 2005 there had been an earthquake swarm consists of shallow earthquakes, which coincided with PSI observation of a large vertical displacement. The comparison between our leveling data and PS results indicated PSI is a reliable tool even in the highly vegetated area in eastern Taiwan.

  8. Numerical modeling of forceful pluton emplacement and associated deformation at different crustal levels - instantaneous, continuous or episodic intrusion?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Nabelek, P. I.

    2015-12-01

    The Papoose Flat pluton in the White-Inyo Range, California, is one of the best examples of forceful magma emplacement at mid-crustal levels that is revealed by a highly strained aureole. A thermo-rheological 2-D model of the pluton and its aureole is proposed. We explored how the frequency of magma input, from instantaneous to continuous to the bottom of the laccolith, affects the ductile width of the aureole and the crystallinity of the pluton, which has implications for eruption of magma. We modeled these aspects at mid- and upper-crustal levels. The pluton was assumed to be 5 km thick in the middle and 13 km wide. Except for instantaneous growth, pluton was assumed to grow over 5 m.y. The aureole was assumed to have power-law rheology of quartz with dependence on H2O fugacity, which was calculated using the CORK equation (Holland & Powell, 1991) Our result shows that the bottom of the Papoose Flat pluton was emplaced at the brittle-ductile transition zone of the crust. The crustal rheology profile assisted the softening of rocks around the pluton. The simulated temperature and strength profiles confirm that ductile deformation was related to thermal weakening (Saint-Blanquat et al., 2001). Results of incremental growth calculations show that the pluton remains hot and only partially crystalline for millions of years when it grows by frequent input of small batches of liquid. At the mid-crustal level, the ductile region around the pluton is much wider and exists longer than at the shallow crustal level. Brittle rheology is dominant during the late stage growth at the shallow depth. When the pluton grows instantly or by only few episodes of large batches of input, the mobile part of the pluton is thin and the ductile aureole is narrower. High-frequency incremental growth by smaller magma batches produces a large volume of mobile magma that has the potential to induce internal magmatic layering that may be reflected in aligned acquired magnetic susceptibility (AMS

  9. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  10. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  11. P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) - evidence for the magma chamber

    SciTech Connect

    Ferrucci, F.; Hirn, A.; De Natale, G.; Virieux, J.; Mirabile, L. Inst. de Physique du Globe, Paris Osservatorio Vesuviano, Naples CNRS, Inst. de Geodynamique, Valbonne Ist. Universitario Navale, Naples )

    1992-10-01

    Seismograms from an active seismic experiment carried out at Campi Flegrei caldera (near Naples, Italy), show a large-amplitude SV-polarized shear wave, following by less than 1.5-s P waves reflected at wide angle from a deep crustal interface. Early arriving SV-polarized waves, with the same delay to direct P waves, are also observed in seismograms from a regional 280 km-deep, magnitude 5.1 earthquake. Such short delays of S to P waves are consistent with a P-SV conversion on transmission occurring at a shallow boundary beneath the receivers. The large amplitude of the converted-SV phase, along with that the P waves are near vertical, requires a boundary separating a very low rigidity layer from the upper caldera fill. The converted phases are interpreted as a seismic marker of a magma chamber. The top of this magma chamber is located slightly deeper than the deepest earthquakes observed during the 1982-1984 unrest of Campi Flegrei. 8 refs.

  12. A lead isotopic study of the Stillwater Complex, Montana: constraints on crustal contamination and source regions

    USGS Publications Warehouse

    Wooden, J.L.; Czamanske, G.K.; Zientek, M.L.

    1991-01-01

    Analyses of the Pb isotopic compositions of plagioclase from 23 samples covering the stratigraphic thickness of the Stillwater Complex indicate a narrow range of apparent initial isotopic compositions (206Pb/ 204Pb=13.95; 207Pb/204Pb=14.95-15.01; 208Pb/204Pb=33.6). The uniformity of our data is in contrast to, but not necessarily contradictory to, other recent investigations which give indications that the complex formed by repeated injection of magmas with at least two distinct compositions that were presumably derived from different source regions. Samples from the Basal series of the complex have consistently higher 207Pb/204Pb ratios, suggesting either minor contamination from adjacent country rocks or a slight distinction between parental magmas. Apparent initial Pb isotopic compositions of the complex are very radiogenic compared to Late Archean model-mantle values, but are nearly identical to initial Pb isotopic compositions found for the the adjacent, slightly older (2.73-2.79 Ga), Late Archean crustal suite in the Beartooth Mountains. Contamination of magmas parental to the Stillwater Complex by the Late Archean crustal suite is rejected for two reasons: (1) Th and U concentrations in Stillwater rocks and plagioclase are very low (about 0.08 and 0.02 ppm respectiv