Science.gov

Sample records for active damper wind

  1. Simulation study of semi-active control of stay cable using MR damper under wind loads

    NASA Astrophysics Data System (ADS)

    Liu, Jiangyun; Huang, Hongwei; Sun, Limin

    2013-04-01

    This paper aims to evaluate the effectiveness of MR damper for vibration mitigation of stay cable under complex wind excitations. The MR damper, RD-1005-03, provided by Lord Company was used, a semi-active control algorithm based on the universal design curve for linear dampers and the bilinear mechanical model of the MR damper was developed, and simulation study was carried out for the cable-MR damper system. Firstly, fluctuating wind field was generated using the method of weighted amplitude wave superposition (WAWS) and Kaimal spectrum and the time-history sample curve of turbulent wind speed of stay cable was obtained. Then the dynamic response of the cable-MR damper system was computed with the proposed semi-active control algorithm applied for mitigating the vibration of stay cable. Finally, the effectiveness of MR damper for controlling cable vibration was assessed by comparing the dynamic responses of stay cable before and after damper installation.

  2. Wind turbine with damper

    SciTech Connect

    Kenfield, J.A.C.

    1987-06-23

    This patent describes a horizontal axis wind turbine assembly comprising: a rotor assembly having delta wing blades; a head assembly secured at one end to the rotor assembly and being mountable on a tower so as to pivot about a vertical yaw axis; a tail assembly pivotally mounted on the other end of the head assembly, so as to pivot about a vertical axis, the assembly having one or more upstanding tail surfaces which cooperate with the wind to cause the assembly to track the wind; the central axis of the rotor assembly being offset from the vertical plane of the yaw axis; A wind force acting on the blades will generate a moment about the yaw axis; moment urges the rotor assembly to pivot from an operative position, transverse to the wind, toward a feathered position, edgeways to the wind flow; the tail assembly continues to track the wind; means, connected with the head assembly, for applying a counterbalancing counter-rotational moment to the head assembly to resist the wind moment; a container, mounted in the wind turbine assembly, for containing a reservoir of hydraulic fluid; a double-acting cylinder being pivotally connected with the head and tail assemblies so as to resist pivoting movement of the head assembly about the yaw axis; hydraulic fluid lines interconnecting the reservoir and the two ends of the cylinder chamber; and means for controlling the rate of fluid movement through each of the lines.

  3. Space Shuttle Damper System for Ground Wind Load Tests

    NASA Technical Reports Server (NTRS)

    Robinson, G. D.; Holt, J. R.; Chang, C. S.

    1973-01-01

    An active damper system which was originally developed for a 5.5% Saturn IB/Skylab Ground Winds Model was modified and used for similar purposes in a Space Shuttle model. A second damper system which was originally used in a 3% Saturn V/Dry Workshop model was also modified and made compatible with the Space Shuttle model to serve as a back-up system. Included in this final report are descriptions of the modified damper systems and the associated control and instrumentation.

  4. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Fitzgerald, B.; Basu, B.

    2014-11-01

    In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today's turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler-Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.

  5. Semi-active control of stay cables using nonlinear friction damper

    NASA Astrophysics Data System (ADS)

    Wang, Huiping; Sun, Limin

    2013-04-01

    Stay cables of long span cable-stayed bridges are easy to vibrate under wind or wind/rain loads owning to their very low inherent damping. To install cable dampers near to the anchorages of cable has become a common practice for cable vibration control of cable-stayed bridge structures. The performance of passive linear viscous dampers has been widely studied. However, even the optimal passive device can only add a small amount of damping to the cable when attached a reasonable distance from the cable anchorage. This paper investigates the potential for improved damping using semiactive devices based on nonlinear frictional type of dampers. The equations of motion of a cable with a friction damper were derived using an assumed modes approach and the analytical solution for the motion equations was obtained. The results show that the friction damper evokes linearly decaying of free vibrations of the cable as long as the damper does not lock the cable. The equivalent modal damping ratio of cable with the friction damper is strongly amplitude dependent. Based on the characteristics of friction damper, the authors proposed a semi-active control strategy for cable control with dampers. According to the semi-active control law, the damper force has to be adjusted in proportion to the cable amplitude at damper position. The effectiveness of passive linear viscous dampers is reviewed. The response of a cable with passive and semi-active dampers is studied. The response with a semi-active damper is found to be dramatically reduced compared to the optimal passive linear viscous damper, thus demonstrating the potential benefits using a semi-active damper for absorbing cable vibratory energy.

  6. Verification of Effect of Damper Windings on the Transient Condition of Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Matsuki, Junya; Taoka, Hisao; Hayashi, Yasuhiro; Iwamoto, Shigeru; Daikoku, Akihiro

    This paper describes the results of experimental investigation on the effects of damper winding of a 4-pole synchronous generator at the synchronous generator transient. It is known in the simulation that the damper winding acts effectively at the synchronous generator transient condition. However, experimental proof has not been performed yet. Then, experiments on damper effects were conducted in this paper using a laboratory-scale power system. The damper winding of tested generator consists of 5 damper bars each pole and the number of working damper bars can be changed manually. Damper currents at each bar were measured by a Rogowski coil. FFT analysis was applied to both damper currents and armature currents under different operating conditions. Relationships between damper currents in the rotor and armature currents in the stator were made clearer than before.

  7. Vibration Control of Bridge Tower Under Construction Using Active Mass Damper

    NASA Astrophysics Data System (ADS)

    Kagaya, Hiroaki; Tamaki, Toshihiro; Nishi, Yoshikazu; Nagao, Yoichi; Yamaguchi, Kazunori

    For large structures such as towers of suspension bridges or cable-stayed bridges, we often need to suppress wind-induced vibration for safety. Especially in the construction stage, the structures have a low tolerance than completed ones. This paper discusses the active vibration dampers used to suppress wind-induced vibration of a tower of a suspension bridge during a construction. The active damper was used to suppress wind-induced vibration in multiple modes predicted by wind-tunnel test. The controller design of the dampers is based on H∞ robust control theory. At each erection step, we measured dynamic properties of towers to adjust parameters of the controller using active vibration exciters. The measured dynamic properties of active controlled structures are compared with those of non-controlled structures. The analysis of free vibration shows the suppression performance of active damper as expected in the controller design.

  8. Active Inertial Vibration Isolators And Dampers

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren; Blackburn, John; Smith, Dennis

    1994-01-01

    Report describes development of active inertial vibration isolators and dampers in which actuators electromagnet coils moving linearly within permanent magnetic fields in housings, somewhat as though massive, low-frequency voice coils in loudspeakers. Discusses principle of operation, electrical and mechanical considerations in design of actuators, characteristics of accelerometers, and frequency responses of control systems. Describes design and performance of one- and three-degree-of-freedom vibration-suppressing system based on concept.

  9. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2009-01-01

    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  10. Quasi-active suspension design using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Potter, Jack N.; Neild, Simon A.; Wagg, David J.

    2011-05-01

    Quasi-active damping is a method of coupled mechanical and control system design using multiple semi-active dampers. By designing the systems such that the desired control force may always be achieved using a combination of the dampers, quasi-active damping seeks to approach levels of vibration isolation achievable through active damping, whilst retaining the desirable attributes of semi-active systems. In this article a design is proposed for a quasi-active, base-isolating suspension system. Control laws are firstly defined in a generalised form, where semi-active dampers are considered as idealised variable viscous dampers. This system is used to demonstrate in detail the principles of quasi-active damping, in particular the necessary interaction between mechanical and control systems. It is shown how such a system can produce a tunable, quasi-active region in the frequency response of very low displacement transmissibility. Quasi-active control laws are then proposed which are specific for use with magnetorheological dampers. These are validated in simulation using a realistic model of the damper dynamics, again producing a quasi-active region in the frequency response. Finally, the robustness of the magnetorheological, quasi-active suspension system is demonstrated.

  11. A damper for ground wind-induced launch vehicle oscillations

    NASA Technical Reports Server (NTRS)

    Bodle, J. G.; Hackley, D. S.

    1975-01-01

    Prelaunch oscillatory bending deflections of the Atlas/Centaur launch vehicle are restrained by a damper mechanism mounted on the end of a horizontal boom supported from the umbilical tower. A single vertical pin on the vehicle engages the mechanism, and the damper is connected to the vehicle until liftoff. As the attach pin rises with the vehicle, a retractable arm mechanism provides initial clearance. An explosive release mechanism allows the boom to swing clear of the vehicle like a pendulum, while a snubber mechanism decelerates the free swinging boom and damper mechanism to a safe stop.

  12. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie

    SciTech Connect

    Ohashi, S.; Ohsaki, H.; Masada, E.

    1999-09-01

    Numerical simulation of the superconducting magnetically levitated bogie (JR Maglev) has been studied. The active damper coil system is introduced. In this levitation system, the interaction between levitation and guidance is strong. This active damper coil system is designed for reducing the vertical vibration of the bogie. Using the numerical simulation, its effect on the lateral displacement of the bogie is assessed. The active damper coil system for the vertical vibration is shown to works as a passive damper for the lateral vibration.

  13. Robust semi-active control for uncertain structures and smart dampers

    NASA Astrophysics Data System (ADS)

    Yeganeh Fallah, Arash; Taghikhany, Touraj

    2014-09-01

    Recent developments in semi-active control technology have led to its application in civil infrastructures as an efficient strategy to protect susceptible structures against seismic and wind induced vibration. The reliable and robust performance of semi-active systems depends on the level of uncertainties in the structural parameters as well as on the sensors’ measurement and on smart mechanical dampers. A common source of uncertainties in semi-active control devices is related to the inherent nonlinear nature of these devices, thermal variation, or their malfunctioning. This study deals with the robust H∞ control problem and aims to model different sources of uncertainty. The uncertainty of the structural model and damper force are assumed to be norm bounded random variables. By using linear fractional transformation (LFT), the uncertain part of the system is decoupled from the nominal parameters of the system. The robust H∞ controller is designed to achieve consistent performance in structures including nominal and perturbed dynamics. Additionally, to reduce the uncertainty of the damper force, an inverse model of the magnetorheological (MR) damper is developed based on an adaptive neuro-fuzzy inference system (ANFIS). The robustness of the proposed algorithm is validated by numerical simulations.

  14. Active control of train bogies with MR dampers

    NASA Astrophysics Data System (ADS)

    Fotoohi, Abbas; Yousefi-Koma, Aghil; Yasrebi, Naser

    2006-03-01

    This research is conducted to demonstrate the advantages of skyhook semi-active dampers in railway vehicle suspension systems. This semi- active suspension system consists of four actuators on each bogie that locate in the secondary suspension position instead of passive dampers. Employing equations of skyhook control scheme, the semi- active damping force (actuator force) is determined by absolute velocity of car body instead of relative velocity. An integration of a control design tool, i.e. MATLAB, together with a tool for railway vehicle simulation, i.e. ADAMS/Rail is utilized for modeling and control analysis simultaneously. Analysis has been performed on a traditional bogie model with passive secondary suspension and on a new bogie model with semi-active suspension. The effects of suspension system on displacement and acceleration in passenger seats have been investigated in various points of car body. Results show that the semi-active suspension improves the ride comfort by reducing accelerations, in comparison with passive model. Finally, according to the damper force obtained from Sky-hook controller, a Magnetorheological (MR) damper has been designed for the semi-active suspension system.

  15. Parameter identification for active mass damper controlled systems

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Wang, J. F.; Lin, C. C.

    2016-09-01

    Active control systems have already been installed in real structures and are able to decrease the wind- and earthquake-induced responses, while the active mass damper (AMD) is one of the most popular types of such systems. In practice, an AMD is generally assembled in- situ along with the construction of a building. In such a case, the AMD and the building is coupled as an entire system. After the construction is completed, the dynamic properties of the AMD subsystem and the primary building itself are unknown and cannot be identified individually to verify their design demands. For this purpose, a methodology is developed to obtain the feedback gain of the AMD controller and the dynamic properties of the primary building based on the complex eigen-parameters of the coupled building-AMD system. By means of the theoretical derivation in state-space, the non-classical damping feature of the system is characterized. This methodology can be combined with any state-space based system identification technique as a procedure to achieve the goal on the basis of the acceleration measurements of the building-AMD system. Results from numerical verifications show that the procedure is capable of extracting parameters and is applicable for AMD implementation practices.

  16. Performance analysis of a semi-active railway vehicle suspension featuring MR dampers

    NASA Astrophysics Data System (ADS)

    Kim, Hwan-Choong; Choi, Seung-Bok; Lee, Gyu-Seop; An, Chae-Hun; You, Won-Hee

    2014-03-01

    This paper presents performance analysis of semi-active railway vehicle suspension system using MR damper. In order to achieve this goal, a mathematical dynamic model of railway vehicle is derived by integrating car body, bogie frame and wheel-set which can be able to represent lateral, yaw and roll motion. Based on this model, the dynamic range of MR damper at the railway secondary suspension system and design parameters of MR damper are calculated. Subsequently, control performances of railway vehicle including car body lateral motion and acceleration of MR damper are evaluated through computer simulations. Then, the MR damper is manufactured to be retrofitted with the real railway vehicle and its characteristics are experimentally measured. Experimental performance of MR damper is assessed using test rig which is composed of a car body and two bogies.

  17. Semi-active control of seat suspension with MR damper

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Fu, J.; Yu, M.; Peng, Y. X.

    2013-02-01

    The vibration control of a seat suspension system with magnetorheological (MR) damper is investigated in this study. Firstly, a dynamical model of the seat suspension system with parameter uncertainties (such as mass, stiffness, damping) and actuator saturation is established. Secondly, based on Lyapunov functional theory and considering constraint conditions for damping force, the semi-active controller is designed, and the controller parameters are derived in terms of linear matrix inequalities (LMIs), which guarantees performance index. Finally, compared control strategy and the passive, skyhook control strategy, the simulation results in time and frequency domains demonstrate the proposed approach can achieve better vertical acceleration attenuation for the seat suspension system and improve ride comfort.

  18. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers

    NASA Astrophysics Data System (ADS)

    Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo

    2015-11-01

    Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.

  19. An investigation on a semi-active magnetorheological tuned liquid column damper (MR-TLCD)

    NASA Astrophysics Data System (ADS)

    Sun, H. X.; Wang, X. Y.

    2016-04-01

    this paper, a novel semi-active magnetorheological tuned liquid column damper (MR-TLCD) device combining tuned liquid column damper (TLCD) and magnetorheological damper (MRD) is devised for wind or earthquake vibration control of civil structures. In this device, a traditional moving head loss in the TLCD is replaced with a controlled MRD in the bottom or one side of the vertical column, which can easily and rapidly adjust the damping of the device. A semi-active experimental prototype MR-TLCD consisting of a shear rotary MRD and a TLCD is built. Based on the four basic presumptions, a dynamic model of the devised MR-TLCD is established using the Lagrange equation. In this equation, the formula of MRD employs the Bingham Boltzmann model. The natural frequency of the MR-TLCD is determined by the total central length and spring stiffness. It is worth noting that the natural frequency differs with the simple TLCD, because the device adds a joint spring. An equivalent linear damping expression is developed under harmonic excitation, and its mechanical model is developed using the equivalent period displacement and the coulomb friction force of MRD. At the same time, the equivalent damping can be adjusted by the real-time applied current, which can achieve the semi-active control performance. To validate the proposed frequency and damping model, Experimental test is conducted on a section area 150mm × 150mm and a total length 2.24m of the MR-TLCD dimensions. Comparisons are made between predicted and measured TLCD liquid surface displacement motion. The result shows the error of its nature frequency is only 2.29%.

  20. Digital active material processing platform effort (DAMPER), SBIR phase 2

    NASA Technical Reports Server (NTRS)

    Blackburn, John; Smith, Dennis

    1992-01-01

    Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.

  1. Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations

    NASA Astrophysics Data System (ADS)

    Bargi, Khosrow; Dezvareh, Reza; Mousavi, Seyed Amin

    2016-09-01

    The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jackettype offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.

  2. Seismic response of torsionally coupled building with passive and semi-active stiffness dampers

    NASA Astrophysics Data System (ADS)

    Mevada, Snehal V.; Jangid, R. S.

    2015-03-01

    The seismic response of single-storey, one-way asymmetric building with passive and semi-active variable stiffness dampers is investigated. The governing equations of motion are derived based on the mathematical model of asymmetric building. The seismic response of the system is obtained by numerically solving the equations of motion using state-space method under different system parameters. The switching and resetting control laws are considered for the semi-active devices. The important parameters considered are eccentricity ratio of superstructure, uncoupled lateral time period and ratio of uncoupled torsional to lateral frequency. The effects of these parameters are investigated on peak lateral, torsional and edge displacements and accelerations as well as on damper control forces. The comparative performance is investigated for asymmetric building installed with passive stiffness and semi-active stiffness dampers. It is shown that the semi-active stiffness dampers reduce the earthquake-induced displacements and accelerations significantly as compared to passive stiffness dampers. Also, the effects of torsional coupling on effectiveness of passive dampers in reducing displacements and accelerations are found to be more significant to the variation of eccentricity as compared to semi-active stiffness dampers.

  3. Experimental investigation on seismic response control of adjacent buildings using semi-active MR dampers

    NASA Astrophysics Data System (ADS)

    Ni, Yi-Qing; Liu, H. J.; Ko, Jan Ming

    2002-06-01

    This paper reports an experimental study on semi-active seismic response control of adjacent building structures using magneto-rheological (MR) dampers. A 1:15 scaled adjacent structural system consisting of a 12-story building model and an 8-story building model was tested on shaking table with MR damper passive and semi-active control. An MR damper with large stroke is specifically designed for this study. After experimentally identifying dynamic characteristics of the individual MR damper and the uncontrolled structural models, the two building models are interconnected with the MR damper at different floors and semi-active control is implemented using the dSPACE DS1005 real-time control system. The structures are excited on their base by a shaking table imposing sweep sine excitation and El Centro earthquake excitation. A stochastic optimal control strategy proposed by the authors is applied through the dSPACE system and its MATLAB environment to accomplish real-time semi-active control from the measurement of displacement and velocity responses at each floor. This control strategy results in a dissipative energy control with its feedback control force being a nonlinear generalized damping force. The structural response under semi-active control is compared with that by using the MR damper as a passive device without voltage input. Different MR damper installation locations are addressed in the experimental study to search for maximum response mitigation capability.

  4. Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers.

    PubMed

    Jaksic, V; Wright, C S; Murphy, J; Afeef, C; Ali, S F; Mandic, D P; Pakrashi, V

    2015-02-28

    In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments. PMID:25583861

  5. Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers.

    PubMed

    Jaksic, V; Wright, C S; Murphy, J; Afeef, C; Ali, S F; Mandic, D P; Pakrashi, V

    2015-02-28

    In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments.

  6. Real-time hybrid simulation technique for performance evaluation of full-scale sloshing dampers in wind turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Zili; Basu, Biswajit; Nielsen, Saren R. K.

    2016-09-01

    As a variation of the pseudodynamic testing technique, the real-time hybrid simulation (RTHS) technique is executed in real time, thus allowing investigation of structural systems with rate-dependent components. In this paper, the RTHS is employed for performance evaluation of full-scale liquid sloshing dampers in multi-megawatt wind turbines, where the tuned liquid damper (TLD) is manufactured and tested as the physical substructure while the wind turbine is treated as the numerical substructure and modelled in the computer using a 13-degree-of-freedom (13-DOF) aeroelastic model. Wind turbines with 2 MW and 3 MW capacities have been considered under various turbulent wind conditions. Extensive parametric studies have been performed on the TLD, e.g., various tuning ratios by changing the water level, TLD without and with damping screens (various mesh sizes of the screen considered), and TLD with flat and sloped bottoms. The present study provides useful guidelines for employing sloshing dampers in large wind turbines, and indicates huge potentials of applying RTHS technique in the area of wind energy.

  7. Modeling of Semi-Active Vehicle Suspension with Magnetorhological Damper

    NASA Astrophysics Data System (ADS)

    Hasa, Richard; Danko, Ján; Milesich, Tomáš; Magdolen, Ľuboš

    2014-12-01

    Modeling of suspension is a current topic. Vehicle users require both greater driving comfort and safety. There is a space to invent new technologies like magnetorheological dampers and their control systems to increase these conflicting requirements. Magnetorheological dampers are reliably mathematically described by parametric and nonparametric models. Therefore they are able to reliably simulate the driving mode of the vehicle. These simulations are important for automotive engineers to increase vehicle safety and passenger comfort.

  8. Semi-active control of a landing gear system using magnetrorheological damper

    NASA Astrophysics Data System (ADS)

    Nam, Y. J.; Park, M. K.; Choi, J. W.; Yamane, R.

    2007-12-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Finally, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body.

  9. Magnetorheological composites as semi-active elements of dampers

    NASA Astrophysics Data System (ADS)

    Kaleta, Jerzy; Lewandowski, Daniel; Zając, Piotr; Kustroń, Pawel

    2009-02-01

    An original magnetorheological composite (MRC) with porous elastomeric matrix and filled with magnetorheological fluid was created at the work. It was used later on to build a damper working in the shearing mode without friction against external surfaces of the so-called skid. This prototype construction was used for damping free vibrations in the beam. An analysis of the effectiveness in the magnetic field function steering the damper was performed. As a result an important relationship between the change of damping in the material under the influence of the magnetic field and the length of time needed for damping the vibrations in the beam was demonstrated.

  10. Trust-region based instantaneous optimal semi-active control of long-span spatially extended structures with MRF-04K damper

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Li, Zhongxian; Ding, Yang

    2008-12-01

    In the field of civil engineering, magneto rheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semiactive control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc-Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.

  11. Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zong, Lu-Hang; Gong, Xing-Long; Xuan, Shou-Hu; Guo, Chao-Yang

    2013-05-01

    In this paper, semi-active H∞ control with magnetorheological (MR) dampers for railway vehicle suspension systems to improve the lateral ride quality is investigated. The proposed semi-active controller is composed of a H∞ controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse MR damper model as the damper controller. First, a 17-degree-of-freedom model for a full-scale railway vehicle is developed and the random track irregularities are modelled. Then a modified Bouc-Wen model is built to characterise the forward dynamic characteristics of the MR damper and an inverse MR damper model is built with the ANFIS technique. Furthermore, a H∞ controller composed of a yaw motion controller and a rolling pendulum motion (lateral motion+roll motion) controller is established. By integrating the H∞ controller with the ANFIS inverse model, a semi-active H∞ controller for the railway vehicle is finally proposed. Simulation results indicate that the proposed semi-active suspension system possesses better attenuation ability for the vibrations of the car body than the passive suspension system.

  12. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  13. Semi-active friction damper for buildings subject to seismic excitation

    NASA Astrophysics Data System (ADS)

    Mantilla, Juan S.; Solarte, Alexander; Gomez, Daniel; Marulanda, Johannio; Thomson, Peter

    2016-04-01

    Structural control systems are considered an effective alternative for reducing vibrations in civil structures and are classified according to their energy supply requirement: passive, semi-active, active and hybrid. Commonly used structural control systems in buildings are passive friction dampers, which add energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Semi-Active Variable Friction Dampers (SAVFD) allow the optimum efficiency range of friction dampers to be enhanced by controlling the clamping force in real time. This paper describes the development and performance evaluation of a low-cost SAVFD for the reduction of vibrations of structures subject to earthquakes. The SAVFD and a benchmark structural control test structure were experimentally characterized and analytical models were developed and updated based on the dynamic characterization. Decentralized control algorithms were implemented and tested on a shaking table. Relative displacements and accelerations of the structure controlled with the SAVFD were 80% less than those of the uncontrolled structure

  14. The Influence of Semi-active Dampers on the Vibration Behaviour of Passenger Cars

    NASA Astrophysics Data System (ADS)

    Schneider, Sebastian; Brechter, Daniel; Janßen, Andreas; Mauch, Heiko

    The number of mechatronic components in modern car suspensions is increasing continuously to solve conflicts concerning design goals. Thus, changes in the vibration behaviour of the vehicle are caused. It needs to be ascertained whether this influence has to be taken into account when determining the fatigue life of a car and its components. Therefore, changes of the loads are studied in measurements and multi-body simulations of a passenger car with semi-active dampers. The evaluation of the forces at the wheel centre and at the shock absorber tower shows that different settings of semi-active dampers have an influence on fatigue life of the chassis and the car body. It is concluded that these effects need to be taken into account when determining fatigue life. Furthermore, multi-body simulations have been successfully applied to study the influence of semi-active dampers on the loads.

  15. Semi-active tuned liquid column damper implementation with real-time hybrid simulations

    NASA Astrophysics Data System (ADS)

    Riascos, Carlos; Marulanda Casas, Johannio; Thomson, Peter

    2016-04-01

    Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

  16. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    SciTech Connect

    Bai, Xian-Xu; Wereley, Norman M.; Hu, Wei

    2015-05-07

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  17. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Wereley, Norman M.; Hu, Wei

    2015-05-01

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  18. Experimental Comparison of Dynamic Responses of a Tension Moored Floating Wind Turbine Platform with and without Spring Dampers

    NASA Astrophysics Data System (ADS)

    Wright, C.; O'Sullivan, K.; Murphy, J.; Pakrashi, V.

    2015-07-01

    The offshore wind industry is rapidly maturing and is now expanding to more extreme environments in deeper water and farther from shore. To date fixed foundation types (i.e. monopoles, jackets) have been primarily used but become uneconomical in water depths greater than 50m. Floating foundations have more complex dynamics but at the moment no design has reached commercialization, although a number of devices are being tested at prototype stage. The development of concepts is carried out through physical model testing of scaled devices such that to better understand the dynamics of the system and validate numerical models. This paper investigates the testing of a scale model of a tension moored wind turbine at two different scales and in the presence and absence of a spring damper controlling its dynamic response. The models were tested under combined wave and wind thrust loading conditions. The analysis compares the motions of the platform at different scales and structural conditions through RAO, testing a mooring spring damper for load reductions.

  19. Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat with a Semi-Active Magnetorheological Fluid Damper

    NASA Astrophysics Data System (ADS)

    MCMANUS, S. J.; ST. CLAIR, K. A.; BOILEAU, P. É.; BOUTIN, J.; RAKHEJA, S.

    2002-05-01

    The potential benefits of a semi-active magnetorheological (MR) damper in reducing the incidence and severity of end-stop impacts of a low natural frequency suspension seat are investigated. The MR damper considered is a commercially developed product, referred to as “Motion Master semi-active damping system” and manufactured by Lord Corporation. The end-stop impact and vibration attenuation performance of a seat equipped with such a damper are evaluated and compared with those of the same seat incorporating a conventional damper. The evaluation is performed on a servo-hydraulic vibration exciter by subjecting the seat-damper combinations to a transient excitation with dominant frequency close to that of the seat and continuous random excitation class EM1 applicable to earth-moving machinery, and a more severe excitation realized by amplifying the EM1 excitation by 150%. Tests are performed for medium and firm settings of the MR damper and for seat height positions corresponding to mid-ride and ±2·54 and ±5·08 cm relative to mid-ride. The results indicate that significantly higher levels of transient excitation are necessary to induce end-stop impacts for the seat equipped with the MR damper, particularly when set for firm damping, the difference with the conventional damper being more pronounced for seat positions closer to the end-stops. Under the EM1 excitation, the results indicate that under conditions which would otherwise favour the occurrence of end-stop impacts for a seat equipped with a conventional damper, the use of the MR damper can result in considerably less severe impacts and correspondingly lower vibration exposure levels, particularly when positioned closer to its compression or rebound limit stop.

  20. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    SciTech Connect

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  1. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  2. Semi-active vibration absorber based on real-time controlled MR damper

    NASA Astrophysics Data System (ADS)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  3. Nutation damper

    NASA Technical Reports Server (NTRS)

    Evans, J. (Inventor)

    1973-01-01

    A nutation damper for use on a spinning body is disclosed. The damper is positioned parallel to the spin axis of the body and radially displaced therefrom. The damper is partially filled with a fluid and contains a porous media to impede the flow of the fluid induced by nutation.

  4. Shake test of rotor test apparatus with balance dampers in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Biggers, J. G.

    1975-01-01

    A shake test was conducted to determine the dynamic characteristics of a rotor test apparatus on two strut systems with balance dampers in the Ames 40- by 80-ft wind tunnel. The rotor-off hub transfer function (acceleration per unit force as a function of frequency) was measured in the longitudinal and lateral directions, using a combination of broadband and discrete frequency excitation techniques. The dynamic data are summarized for the configurations tested, giving the following properties for each mode identified: the natural frequency, the hub response at resonance, the fixed system damping, the damping ratio, and the modal mass. The complete transfer functions are presented, and the detailed test results are included as an appendix.

  5. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  6. Influence analysis of time delay to active mass damper control system using pole assignment method

    NASA Astrophysics Data System (ADS)

    Teng, J.; Xing, H. B.; Lu, W.; Li, Z. H.; Chen, C. J.

    2016-12-01

    To reduce the influence of time delay on the Active Mass Damper (AMD) control systems, influence analysis of time delay on system poles and stability is applied in the paper. A formula of the maximum time delay for ensuring system stability is established, by which the influence analysis of control gains on system stability is further arisen. In addition, the compensation controller is designed based on the given analysis results and pole assignment. A numerical example and an experiment are illustrated to verify that the performance of time-delay system. The result is consistent to that of the long-time delay control system, as well as to proof the better effectiveness of the new method proposed in this article.

  7. Design of a stand-alone active damper for distributed control of vibration

    NASA Astrophysics Data System (ADS)

    Cinquemani, S.; Cazzulani, G.; Costa, A.; Resta, F.

    2016-04-01

    The aim of active vibration control is to enhance the performance of a system (eg. comfort, fatigue life, etc.) by limiting vibrations. One of the most effective technique to reach this goal is to increase the equivalent damping of the system and then the dissipation of the kinetic energy (the so called skyhook damping technique). Application of active vibration control often require a complex setup. When large structures are considered, it is often necessary to have a high number of sensors and actuators, suitably cabled, in addition to all the devices necessary to condition and amplify the signals of measurement and control and to execute in real time the control algorithms synthesized. This work arises from the need to simplify this situation, developing a standalone device that is able of carrying out operations of vibration control in an autonomous way, thus containing in itself an actuator, the sensors needed to evaluate the vibratory state of the structure, and a micro-controller embedding different control algorithm. The design of the smart damper covers many aspects and requires a strong integration of different disciplines. A prototype has been realized and tested on a vibrating structure. The experimental results show good performance in suppress vibration.

  8. Semi-active control of automotive suspension systems with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Lam, Hiu Fung; Liao, Wei-Hsin

    2001-08-01

    Vibration in today's increasingly high-speed vehicles including automobiles severely affects their ride comfort and safety. The objective of this paper is to develop and study automotive suspension systems with magneto-rheological (MR) fluid dampers for vibration control in order to improve the passenger's comfort and safety. A two degree-of-freedom quarter car model is considered. A mathematical model of MR fluid damper is adopted. In this study, a sliding mode controller is developed by considering loading uncertainty to result in a robust control system. Two kinds of excitations are inputted in order to investigate the performance of the suspension system. The vibration responses are evaluated in both time and frequency domains. Compared to the passive system, the acceleration of the sprung mass is significantly reduced for the system with a controlled MR damper. Under random excitation, the ability of the MR fluid damper to reduce both peak response and root-mean-square response is also shown. The effectiveness of the MR suspension system is also demonstrated via hardware-in-the-loop simulation. The results of this study can be used to develop guidelines to effectively integrate automotive suspensions with MR dampers.

  9. Simulation of adaptive semi-active magnetorheological seat damper for vehicle occupant blast protection

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.

    2013-04-01

    This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.

  10. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Pang, Li

    1998-10-01

    We develop nonlinear quasi-steady electrorheological (ER) and magnetorheological (MR) damper models using an idealized Bingham plastic shear flow mechanism. Dampers with cylindrical geometry are investigated, where damping forces are developed in an annular bypass via Couette (shear mode), Poiseuille (flow mode) flow, or combined Couette and Poiseiulle flow (mixed mode). Models are based on parallel plate or rectangular duct geometry, and are compared to our prior 1D axisymmetric models. Three nondimensional groups are introduced for damper analysis, namely, the Bingham number, 0964-1726/7/5/015/img1, the nondimensional plug thickness, 0964-1726/7/5/015/img2, and the area coefficient defined as the ratio of the piston head area, 0964-1726/7/5/015/img3, to the cross-sectional area of the annular bypass, 0964-1726/7/5/015/img4. The approximate parallel plate analysis compares well with the 1D axisymmetric analysis when the Bingham number is small, or 0964-1726/7/5/015/img5, or the nondimensional plug thickness is small, 0964-1726/7/5/015/img6. Damper performance is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping constant, 0964-1726/7/5/015/img7, to the Newtonian viscous damping constant, C. In shear mode, the damping coefficient is a linear function of the Bingham number. In flow mode, the damping coefficient is a function of the nondimensional plug thickness only. For the mixed mode damper, the damping coefficient reduces to that for the flow mode case when the area coefficient is large. The quasi-steady damping coefficient versus nondimensional plug thickness diagram is experimentally validated using measured 10 Hz hysteresis cycles for a electrorheological mixed mode damper.

  11. Dual clearance squeeze film damper

    NASA Technical Reports Server (NTRS)

    Fleming, D. P. (Inventor)

    1985-01-01

    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.

  12. Earthquake response reduction of mid-story isolated system due to semi-active control using magnetorheological rotary inertia mass damper

    NASA Astrophysics Data System (ADS)

    Ito, Mai; Yoshida, Shohei; Fujitani, Hideo; Sato, Yusuke

    2015-04-01

    The dynamic characteristics of mid-story isolated buildings and seismic response reduction due to a semi-active control system were investigated using a three-lumped-mass model that simplified the sixteen story building with an isolation layer in the sixth story. A semi-active control method using a rotary inertia mass damper filled with magnetorheological fluid (MR fluid) was proposed. The damper shows both mass amplification effect due to rotational inertia and variable damping effect due to the MR fluid. The damping force is controlled by the strength of the magnetic field that is applied to the MR fluid. It is determined by using the electric current, which is calculated by the proposed semi-active control method based on the velocity of the isolation layer relative to the layer just underneath it. Real-time hybrid tests using an actual damper and simulations using a building model were conducted to check the damper model; the test results were in good agreement with the simulation results. The simulation results suggest that the response displacement of the structure above the isolation layer is significantly reduced, without increasing the response acceleration of the entire structure against near-fault pulse and long-period ground motions. The proposed semi-active control using an MR rotary inertia mass damper was confirmed to be effective for mid-story isolated buildings.

  13. Effects of the lower extremities muscle activation during muscular strength training on an unstable platform with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun

    2009-03-01

    Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.

  14. The effect of time delay on control stability of an electromagnetic active tuned mass damper for vibration control

    NASA Astrophysics Data System (ADS)

    Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    The aim of this paper is to investigate the effect of time delays on the stability of a zero-placement position and velocity feedback law for a vibratory system comprising harmonic excitation equipped with an electromagnetic active tuned mass damper (ATMD). The purpose of the active control is broadening the vibration attenuation envelope of a primary mass to a higher frequency region identified as from 50±0.5Hz with a passive tuned mass damper (TMD) to a wider range of 50±5Hz with an ATMD. Stability conditions of the closed-loop system are determined by studying the position of the system closed-loop poles after the introduction of time delays for different excitation frequencies. A computer simulation of the model predicted that the proposed control system is subject to instability after a critical time delay margin dependent upon the frequency of excitation and the finding were experimentally validated. Three solutions are derived and experimentally tested for minimising the effect of time delays on the stability of the control system. The first solution is associated with the introduction of more damping in the absorber system. The second incorporates using a time-delayed ATMD by tuning its original natural resonant frequency to beyond the nominal operational frequency range of the composite system. The third involves an online gain tuning of filter coefficients in a dual arrangement of low-pass and high-pass filters to eliminate the effect time delays by manipulating the signal phase shifts.

  15. Booster's coupled bunch damper upgrade

    SciTech Connect

    William A. Pellico and D. W. Wildman

    2003-08-14

    A new narrowband active damping system for longitudinal coupled bunch (CB) modes in the Fermilab Booster has recently been installed and tested. In the past, the Booster active damper system consisted of four independent front-ends. The summed output was distributed to the 18, h=84 RF accelerating cavities via the RF fan-out system. There were several problems using the normal fan-out system to deliver the longitudinal feedback RF. The high power RF amplifiers normally operate from 37 MHz to 53 MHz whereas the dampers operate around 83MHz. Daily variations in the tuning of the RF stations created tuning problems for the longitudinal damper system. The solution was to build a dedicated narrowband, Q {approx} 10, 83MHz cavity powered with a new 3.5kW solid-state amplifier. The cavity was installed in June 2002 and testing of the amplifier and damper front-end began in August 2002. A significant improvement has been made in both operational stability and high intensity beam damping. At present there are five CB modes being damped and a sixth mode module is being built. The new damper hardware is described and data showing the suppression of the coupled-bunch motion at high intensity is presented.

  16. Robust hybrid mass damper

    NASA Astrophysics Data System (ADS)

    Collette, C.; Chesné, S.

    2016-08-01

    In this paper, the design of a hybrid mass damper (HMD) is proposed for the reduction of the resonant vibration amplitude of a multiple degree-of-freedom structure. HMD includes both passive and active elements. Combining these elements the system is fail-safe and its performances are comparable to usual purely active systems. The control law is a revisited direct velocity feedback. Two zeros are added to the controller to interact with the poles of the plant. The developed control law presents the particularity to be simple and hyperstable. The proposed HMD is compared to other classical control approaches for similar purpose in term of vibration attenuation, power consumption and stroke.

  17. Skyhook-based semi-active control of full-vehicle suspension with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2013-05-01

    The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) full-vehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Bouc-wen hysteretic force-velocity ( F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and

  18. Active mass damper system for high-rise buildings using neural oscillator and position controller considering stroke limitation of the auxiliary mass

    NASA Astrophysics Data System (ADS)

    Hongu, J.; Iba, D.; Nakamura, M.; Moriwaki, I.

    2016-04-01

    This paper proposes a problem-solving method for the stroke limitation problem, which is related to auxiliary masses of active mass damper systems for high-rise buildings. The proposed method is used in a new simple control system for the active mass dampers mimicking the motion of bipedal mammals, which has a neural oscillator synchronizing with the acceleration response of structures and a position controller. In the system, the travel distance and direction of the auxiliary mass of the active mass damper is determined by reference to the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using a PID controller. The one of the purpose of the previouslyproposed system is stroke restriction problem avoidance of the auxiliary mass during large earthquakes by the determination of the desired value within the stroke limitation of the auxiliary mass. However, only applying the limited desired value could not rigorously restrict the auxiliary mass within the limitation, because the excessive inertia force except for the control force produced by the position controller affected on the motion of the auxiliary mass. In order to eliminate the effect on the auxiliary mass by the structural absolute acceleration, a cancellation method is introduced by adding a term to the control force of the position controller. We first develop the previously-proposed system for the active mass damper and the additional term for cancellation, and verity through numerical experiments that the new system is able to operate the auxiliary mass within the restriction during large earthquakes. Based on the comparison of the proposed system with the LQ system, a conclusion was drawn regarding which the proposed neuronal system with the additional term appears to be able to limit the stroke of the auxiliary mass of the AMD.

  19. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Moutinho, Carlos

    2015-05-01

    This paper is focused on the control problems related to semi-active tuned mass dampers (TMDs) used to reduce harmonic vibrations, specially involving civil structures. A simplified version of the phase control law is derived and its effectiveness is investigated and evaluated. The objective is to improve the functioning of control systems of this type by simplifying the measurement process and reducing the number of variables involved, making the control system more feasible and reliable. Because the control law is of ON/OFF type, combined with appropriate trigger conditions, the activity of the actuation system may be significantly reduced, which may be of few seconds a day in many practical cases, increasing the durability of the device and reducing its maintenance. Moreover, due to the ability of the control system to command the motion of the inertial mass, the semi-active TMD is relatively insensitive to its initial tuning, resulting in the capability of self-tuning and in the possibility of controlling several vibration modes of a structure over a significant broadband frequency.

  20. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  1. Viscous damper

    NASA Technical Reports Server (NTRS)

    Dean, W. C.

    1968-01-01

    Damping device exhibiting no hysteresis effect and capable of preload is used in place of a preload spring in an aneroid bellows to provide viscous damping. It operates about the action of a pressure sensing outer bellows attached to an active header above and a static header below.

  2. An electroviscous damper

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.; Hoque, M. S.

    1989-01-01

    A new type of vibration damper for rotor systems was developed and tested. The damper contains electroviscous fluid which solidifies and provides Coulomb damping when an electric voltage is imposed across the fluid. The damping capacity is controlled by the voltage. The damper was incorporated in a flexible rotor system and found to be able to damp out high levels of unbalanced excitation. Other proven advantages include controllability, simplicity, and no requirement for oil supply. Still unconfirmed are the capabilities to eliminate critical speeds and to suppress rotor instabilities.

  3. Science Activities in Energy: Wind Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  4. Skylab viscous damper study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.

  5. Damping augmentation of helicopter rotors using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongsheng

    This dissertation describes an investigation exploring the use of magnetorheological (MR) dampers to augment the stability of helicopter rotors. Helicopters with advanced soft in-plane rotors are susceptible to ground resonance instabilities due to the coupling of the lightly damped rotor lag modes and fuselage modes. Traditional passive lag dampers, such as hydraulic or elastomeric dampers, can be used to alleviate these instabilities. However, these passive dampers suffer from the disadvantages that they produce large damper loads in forward flight conditions. These damper forces increase fatigue loads and reduce component life. Thus, it is desirable to have lag dampers controllable or adaptable, so that the damper can apply loads only when needed. MR fluid based dampers have recently been considered for helicopter lag damping augmentation because the forces generated by these dampers can be controlled by an applied magnetic field. In this dissertation, control schemes to integrate MR dampers with helicopters are developed and the influences of the MR dampers on rotorcraft ground resonance are studied. Specifically, the MR dampers are incorporated into the ground resonance model in two ways: using a linear equivalent viscous damping and using a nonlinear damper model. The feasibility of using MR dampers to stabilize ground resonance is studied. The open loop on-off control is utilized where MR dampers are turned on over RPM where ground resonance occurs, and turned off otherwise. To further explore the damping control ability of MR dampers, the nonlinear semi-active closed loop feedback control strategies are developed: feedback linearization control and sliding mode control. The performance of the two control strategies is evaluated using two examples: to stabilize an unstable rotor and to augment the stability of a marginally stable rotor. In addition, the robustness of the closed loop control strategies is studied using two cases: damper degradation and

  6. Frequency analysis of a semi-active suspension with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Andronic, Florin; Mihai, Ioan; Suciu, Cornel; Beniuga, Marius

    2015-02-01

    Suspension systems for motor vehicles are constantly evolving in order to ensure vehicle stability and traffic safety under all driving conditions. The present work aims to highlight the influence factors in the case of a quarter car model for semi-active suspensions. The functions that must be met by such suspension systems are first presented. Mathematical models for passive systems are first illustrated and then customized for the semi-active case. A simulation diagram was conceived for Matlab Simulink. The obtained simulation results allow conducting a frequency analysis of the passive and semi-active cases of the quarter car model. Various charts for Passive Suspension Transmissibility and for the Effect of Damping on Vertical Acceleration Response were obtained for both passive and semi-active situations. Analysis of obtained results allowed evaluating of the suspension systems behavior and their frequency dependence. Significant differences were found between the behaviors of passive and semi-active suspensions. It was found that semi-active suspensions ensure damping in accordance to the chosen control method, and are much more efficient than passive ones.

  7. Influence of MR damper modeling on vehicle dynamics

    NASA Astrophysics Data System (ADS)

    de-J Lozoya-Santos, Jorge; Morales-Menendez, Ruben; Ramirez-Mendoza, Ricardo A.; Vivas-Lopez, Carlos A.

    2013-12-01

    The influence of magneto-rheological damper modeling in vehicle dynamics analysis is studied. Several tests using CarSim™ compare a four-corner controlled semi-active suspension for two different magneto-rheological damper models. The magneto-rheological damper characteristics were identified from experimental data. A model-free controller discards the influence of control and emphasizes the compliance of the magneto-rheological damper model; the characteristics of the vehicle index performance considered were comfort, road holding, handling, roll and suspension deflection. The comparison for magneto-rheological damper dynamics and semi-active suspension covers the automotive bandwidth. The results show that high precision of a magneto-rheological damper model as an isolated feature is not enough. The magneto-rheological damper model, as a component of a vehicle suspension, needs to simulate with passive precision and variable damping forces. The findings exhibit the requisite of accurate models for evaluation of semi-active control systems in classic tests. The lack of the friction component in a magneto-rheological damper model leads to an overestimation in handling and stability.

  8. Wind Powering America FY06 Activities Summary

    SciTech Connect

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  9. Vibration dampers for cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Olan, Emmanuel; Ibrahim, Azman Syed; Kascak, Albert F.

    1990-01-01

    This paper describes the development of effective and reliable minimum-weight and minimum-envelope vibration dampers for cryogenic turbines. To meet this objective, a high speed test rig was designed and fabricated, which is currently used to test a curved beam type damper. The operation, capacity, structural characteristics, measurement system, and safety features of the cryogenic damper test rig are discussed.

  10. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  11. A regenerative damper with MR fluids working between gear transmissions

    NASA Astrophysics Data System (ADS)

    Chan, Yan; Chen, Chao; Liao, Wei-Hsin

    2013-04-01

    Magnetorheological (MR) dampers are used for semi-active vibration control of various dynamic systems. Existing MR dampers are usually cylinder-piston based design, which may limit the shapes and have constraints to the design of MR devices. In this paper, we propose a new MR-fluid working operation, in which MR fluids work between gear transmissions. This operation could provide more design flexibility. A prototype of the regenerative damper with MR fluids working between gear transmissions was designed, fabricated, and tested. This MR damper has the capability of power generation and velocity sensing. The feasibilities of the controllable MR damping force, power generation and velocity sensing are experimentally verified. The results of this research would be beneficial to advance the design and multiple functions of MR dampers while not limited to traditional piston-type design.

  12. Nutation Damper System

    NASA Technical Reports Server (NTRS)

    Sevilla, D. R.

    1983-01-01

    The Nutation Damper System is a three function mechanism designed for the Galileo Spacecraft, a spin stabilized deep-space probe to Jupiter. By damping the movement of a large deployable science boom acting as an outboard pendulum, the nutation damper rapidly stabilizes the spacecraft from dynamic irregularities. The system includes the boom deployment device and the ultra-low friction boom hinge. This paper describes the mechanism, the degree to which friction, stiction and lost motion have been eliminated, and the unique test methods that allow its performance to be measured.

  13. Eddy current damper

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Rich, R. W.

    1989-01-01

    A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.

  14. Roller belleville spring damper

    SciTech Connect

    Hebel, J.B.

    1981-07-07

    A double acting damper for use in rotary drilling includes a splined tubular telescopic joint and employs plural paralleled stacks of double acting series stacked roller belleville spring washers in an annular pocket between the inner and outer tubular members of the joint. The springs, spline and telescopic bearings are in an oil filled volume sealed from the outside by a pressure seal at the lower end of the damper and a floating seal at the upper end. Electric and magnetic means are provided to check on the condition and quantity of the lubricant.

  15. Enhanced damping for bridge cables using a self-sensing MR damper

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  16. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  17. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  18. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  19. Wind Powering America FY07 Activities Summary

    SciTech Connect

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  20. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  1. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  2. Extended Kalman filter based structural damage detection for MR damper controlled structures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Jang, Shinae; Sun, Xiaorong; Jiang, Zhaoshuo; Christenson, Richard

    2016-04-01

    The Magneto-rheological (MR) dampers have been widely used in many building and bridge structures against earthquake and wind loadings due to its advantages including mechanical simplicity, high dynamic range, low power requirements, large force capacity, and robustness. However, research about structural damage detection methods for MR damper controlled structures is limited. This paper aims to develop a real-time structural damage detection method for MR damper controlled structures. A novel state space model of MR damper controlled structure is first built by combining the structure's equation of motion and MR damper's hyperbolic tangent model. In this way, the state parameters of both the structure and MR damper are added in the state vector of the state space model. Extended Kalman filter is then used to provide prediction for state variables from measurement data. The two techniques are synergistically combined to identify parameters and track the changes of both structure and MR damper in real time. The proposed method is tested using response data of a three-floor MR damper controlled linear building structure under earthquake excitation. The testing results show that the adaptive extended Kalman filter based approach is capable to estimate not only structural parameters such as stiffness and damping of each floor, but also the parameters of MR damper, so that more insights and understanding of the damage can be obtained. The developed method also demonstrates high damage detection accuracy and light computation, as well as the potential to implement in a structural health monitoring system.

  3. A review of UK wind energy activities

    NASA Astrophysics Data System (ADS)

    Musgrove, P. J.

    1982-01-01

    Wind power activities in Great Britain are reviewed, including a brief summary of historical windmill usage and details of developmental efforts in large and small wind turbines. An annual average resource of 5 m/sec at 10 m has been extrapolated to predict an 8-10 m/sec resource at the hub heights of large wind turbines. Initial estimates indicate that at least half of Great Britain's annual electricity consumption can be produced from windpowered generators. The potential of offshore large WECS siting is being examined, although the wind-derived electricity from those regions are projected to cost three times that of land-based operation. Recorded wind patterns with 12-48 hr. duration have indicated that at least 20% penetration into the national grid is acceptable. A test 250 kW machine is being built as a model for a 3.7 MW machine, both intended for installation at Orkney, Scotland. Additionally, construction has begun on a 25-m diameter, vertical axis, variable geometry Musgrove wind turbine. The straight-bladed machine will produce a maximum of 130 kW, and is a prototype of multi-MW offshore units.

  4. Analysis and testing of an inner bypass magnetorheological damper for shock and vibration mitigation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Hu, Wei; Wereley, Norman M.

    2013-04-01

    Aiming at fundamentally improving the performance of MR dampers, including maximizing dynamic range (i.e., ratio of field-on to field-off damping force) while simultaneously minimizing field-off damping force, this study presents the principle of an inner bypass magnetorheological damper (IBMRD). The IBMRD is composed of a pair of twin tubes, i.e., the inner tube and outer concentric tube, a movable piston-shaft arrangement, and an annular MR fluid flow gap sandwiched between the concentric tubes. In the IBMRD, the inner tube serves simultaneously as the guide for the movable piston and the bobbin for the electromagnetic coil windings, and five active rings on the inner tube, annular MR fluid flow gap, and outer tube forms five closed magnetic circuits. The annular fluid flow gap is an inner bypass annular valve where the rheology of the MR fluids, and hence the damping force of the MR damper, is controlled. Based on the structural principle of the IBMRD, the IBMRD is configured and its finite element analysis (FEA) is implemented. After theoretically constructing the hydro-mechanical model for the IBMRD, its mathematical model is established using a Bingham-plastic nonlinear fluid model. The characteristics of the IBMRD are theoretically evaluated and compared to those of a conventional piston-bobbin MR damper with an identical active length and cylinder diameter. In order to validate the theoretical results predicted by the mathematical model, the prototype IBMRD is designed, fabricated, and tested. The servo-hydraulic testing machine (type: MTS 810) and rail-guided drop tower are used to provide sinusoidal displacement excitation and shock excitation to the IBMRD, respectively.

  5. Vibration power generator for a linear MR damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2010-10-01

    The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power.

  6. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  7. A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Zeinali, Mohammadjavad; Amri Mazlan, Saiful; Yasser Abd Fatah, Abdul; Zamzuri, Hairi

    2013-12-01

    A magnetorheological (MR) damper is a promising appliance for semi-active suspension systems, due to its capability of damping undesired movement using an adequate control strategy. This research has been carried out a phenomenological dynamic model of two MR dampers using an adaptive-network-based fuzzy inference system (ANFIS) approach. Two kinds of Lord Corporation MR damper (a long stroke damper and a short stroke damper) were used in experiments, and then modeled using the experimental results. In addition, an investigation of the influence of the membership function selection on predicting the behavior of the MR damper and obtaining a mathematical model was conducted to realize the relationship between input current, displacement, and velocity as the inputs and force as output. The results demonstrate that the proposed models for both short stroke and long stroke MR dampers have successfully predicted the behavior of the MR damper with adequate accuracy, and an equation is presented to precisely describe the behavior of each MR damper.

  8. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  9. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  10. Multiple plate hydrostatic viscous damper

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A device for damping radial motion of a rotating shaft is described. The damper comprises a series of spaced plates extending in a radial direction. A hydraulic piston is utilized to place a load in these plates. Each annular plate is provided with a suitable hydrostatic bearing geometry on at least one of its faces. This structure provides a high degree of dampening in a rotor case system of turbomachinery in general. The damper is particularly useful in gas turbine engines.

  11. Fuzzy logic control of the building structure with CLEMR dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao

    2013-04-01

    The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.

  12. Investigation on seismic resistance of high-rising buildings installed with viscoelastic-wall dampers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Wang, Y.; Ren, J.

    2015-04-01

    Viscoelastic dampers are one of popular vibration mitigation devices applied to tall buildings to reduce seismic and wind-induced vibiration. In this paper,a new kind of viscoelastic-wall damper, which could be installed at the shearwall location of high-rising buildings, is proposed to enhance the energy disspation ability. The seismic resistance behaviors of one tall building installed with the viscoelastic-wall dampers are investigated by numerical analysis. The mechanical property testing of the viscoelastic-wall damper is carried to investigate its performance parameter under various exciting frequency and strain amplitude. According to the testing results, a mathematical model of viscoelastic - wall damper is modeled based on Kelvin model. On the basis of a 36-floor frame-shear wall structure and using the finite element software ABAQUS, two finite element models of the high-rising building with and without viscoelastic-wall dampers are set up. Elasto-plastic time-history analysis is used to compare the seismic performance of the two structures subjected to the frequently and rarely earthquakes. It is proved that the seismic response of the structure is mitigated effectively when it is equipped with viscoelastic-wall dampers.

  13. Stability of Intershaft Squeeze Film Dampers

    NASA Technical Reports Server (NTRS)

    El-Shafei, A.

    1991-01-01

    Intershaft squeeze film dampers were investigated for damping of dual rotor aircraft jet engines. It was thought that the intershaft damper would enhance the stability of the rotor-bearing system. Unfortunately, it was determined that the intershaft squeeze film damper was unstable above the engine's first critical speed. Here, a stability analysis of rotors incorporating intershaft squeeze film dampers is discussed. A rotor model consisting of two Jeffcott rotors with two intershaft squeeze film dampers was investigated. Examining the system characteristic equation for the conditions at which the roots indicate an ever-growing unstable motion results in the stability conditions. The cause of the instability is identified as the rotation of the oil in the damper clearance. Several proposed configurations of intershaft squeeze film dampers are discussed, and it is shown that the intershaft dampers are stable supercritically only with a configuration in which the oil film does not rotate.

  14. Prototype and test of a novel rotary magnetorheological damper based on helical flow

    NASA Astrophysics Data System (ADS)

    Yu, Jianqiang; Dong, Xiaomin; Wang, Wen

    2016-02-01

    To increase the output damping torque of a rotary magnetorheological (MR) damper with limited geometrical space, a novel rotary MR damper based on helical flow is proposed. A new working mode, helical flow mode, is discussed and applied to enlarge the flow path of MR fluids. The helical flow can improve the performance of the rotary damper by enlarging the length of the active region. Based on the idea, a rotary MR damper is designed. The rotary MR damper contains a spiral piston, dual-coil core, a rotating cylinder and a stator cylinder. Based on the Bingham model, the output damping torque of the damper is analytically derived. The finite element method (FEM) is applied to calculate the magnetic field of the active region. The multi-objective optimal design method is adopted to obtain the optimal geometric parameters. A prototype is fabricated based on the optimal results. To validate the proposed rotary MR damper, two types of experiments including the low rotation speed and the high rotation speed are investigated. The results show that the proposed rotary MR damper has high torque density and compact structure. The helical flow mode can increase the output damping torque with limited space.

  15. 46 CFR 131.899 - Fire dampers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire dampers. 131.899 Section 131.899 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.899 Fire dampers. Each fire damper installed within the boundary...

  16. 46 CFR 131.899 - Fire dampers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire dampers. 131.899 Section 131.899 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.899 Fire dampers. Each fire damper installed within the boundary...

  17. 46 CFR 131.899 - Fire dampers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire dampers. 131.899 Section 131.899 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.899 Fire dampers. Each fire damper installed within the boundary...

  18. 46 CFR 131.899 - Fire dampers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire dampers. 131.899 Section 131.899 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.899 Fire dampers. Each fire damper installed within the boundary...

  19. 46 CFR 131.899 - Fire dampers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire dampers. 131.899 Section 131.899 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.899 Fire dampers. Each fire damper installed within the boundary...

  20. Novel design of a self powered and self sensing magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  1. Electromagnetic dampers for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  2. The damper placement problem for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1992-01-01

    The damper placement problem for large flexible space truss structures is formulated as a combinatorial optimization problem. The objective is to determine the p truss members of the structure to replace with active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns indexed on the truss members, we seek to find the set of p columns such that the smallest row sum, over the p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the Controls Structures Interaction (CSI) Phase 1 Evolutionary Model (10 modes and 1507 truss members). The resulting solutions are shown to be of high quality.

  3. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    Digital control systems for space structural dampers, also referred to as inertia or proof-mass dampers are investigated. A damper concept is improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Another damper using a three inch stroke rather than the standard one inch stroke is described. Provisions are made for a relative velocity feedback. In one approach, the digital controller is modified to accept the signal from a linear velocity transducer. In the other, the velocity feedback is included in the digital program. An overall system concept for the use of the dampers is presented.

  4. Dampers for Stationary Labyrinth Seals

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Mitchell, William; Roberts, Lawrence; Montgomery, Stuart; Davis, Gary

    2011-01-01

    Vibration dampers have been invented that are incorporated as components within the stationary labyrinth seal assembly. These dampers are intended to supplement other vibration-suppressing features of labyrinth seals in order to reduce the incidence of high-cycle-fatigue failures, which have been known to occur in the severe vibratory environments of jet engines and turbopumps in which labyrinth seals are typically used. A vibration damper of this type includes several leaf springs and/or a number of metallic particles (shot) all held in an annular seal cavity by a retaining ring. The leaf springs are made of a spring steel alloy chosen, in conjunction with design parameters, to maintain sufficient preload to ensure effectiveness of damping at desired operating temperatures. The cavity is vented via a small radial gap between the retaining ring and seal housing. The damping mechanism is complex. In the case of leaf springs, the mechanism is mainly friction in the slippage between the seal housing and individual dampers. In the case of a damper that contains shot, the damping mechanism includes contributions from friction between individual particles, friction between particles and cavity walls, and dissipation of kinetic energy of impact. The basic concept of particle/shot vibration dampers has been published previously; what is new here is the use of such dampers to suppress traveling-wave vibrations in labyrinth seals. Damping effectiveness depends on many parameters, including, but not limited to, coefficient of friction, mode shape, and frequency and amplitude of vibrational modes. In tests, preloads of the order of 6 to 15 lb (2.72 to 6.8 kilograms) per spring damper were demonstrated to provide adequate damping levels. Effectiveness of shot damping of vibrations having amplitudes from 20 to 200 times normal terrestrial gravitational acceleration (196 to 1,960 meters per square second) and frequencies up to 12 kHz was demonstrated for shot sizes from 0.032 to

  5. A new magnetorheological damper for seismic control

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Zhang, Lu; Zhu, Hai-Tao; Li, Zhong-Xian

    2013-11-01

    This paper proposes a new MR damper with bidirectional adjusting damping forces to enhance the fail-safe property of the MR damper. The structure of the composite magnetic circuits is improved for the new damper. Four prototype dampers are fabricated and tested by magnetic field tests and dynamic tests. The magnetic field distribution in the damping path and the dynamic properties of the dampers with different input currents are obtained. The Gompertz model is proposed to portray the dynamic behavior of the prototype dampers. The study shows that, due to the improved structure of composite magnetic circuits, the prototype dampers can maintain a medium damping force with zero current input. This behavior may ensure a better fail-safe property and avoid settlement of MR fluid compared with conventional MR dampers. Furthermore, the minimum and maximum output powers of the proposed dampers can be obtained at the states of the negative peak and positive peak of currents inputs, respectively. In addition, the dynamic range of controllable force is wider than that of conventional MR dampers. The analysis further shows that the proposed Gompertz model can precisely portray the nonlinear hysteretic behavior of the proposed dampers without complicated function forms.

  6. Response of a quarter car model with optimal magnetorheological damper parameters

    NASA Astrophysics Data System (ADS)

    Prabakar, R. S.; Sujatha, C.; Narayanan, S.

    2013-04-01

    In this paper, the control of the stationary response of a quarter car model to random road excitation with a Magnetorheological (MR) damper as a semi-active suspension device is considered. The MR damper is a hypothetical analytical damper whose parameters are determined optimally using a multi-objective optimization technique Non-dominated Sorting Genetic Algorithm II (NSGA II). The hysteretic behaviour of the MR damper is characterized using Bingham and modified Bouc-Wen models. The multi-objective optimization problem is solved by minimizing the difference between the root mean square (rms) sprung mass acceleration, suspension stroke and the road holding responses of the quarter car model with the MR damper and those of the active suspension system based on linear quadratic regulator (LQR) control with the constraint that the MR damper control force lies between ±5 percent of the LQR control force. It is observed that the MR damper suspension systems with optimal parameters perform an order of magnitude better than the passive suspension and perform as well as active suspensions with limited state feedback and closer to the performance of fully active suspensions.

  7. Experimental and numerical investigations on the dynamic response of turbine blades with tip pin dampers

    NASA Astrophysics Data System (ADS)

    Zucca, S.; Berruti, T.; Cosi, L.

    2016-09-01

    Friction dampers are used to reduce vibration amplitude of turbine blades. The dynamics of these assemblies (blades + dampers) is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. The study of the dynamics of blades with a tip damper is the aim of the present paper. The blades with axial-entry fir tree attachment carry a damper in a pocket between the blade covers. Pin dampers significantly affect the resonance frequency of the first blade bending mode and introduces non linearity due to friction contacts. A test rig, made of two blades held in a fixture by an hydraulic press with one damper between the blades was used for the experimental activity. Three different types of dampers (cylindrical, asymmetrical, wedge) have been experimentally investigated and experiments have shown that asymmetrical damper performs better than the others. The response of the blades with the asymmetrical damper was then simulated with a non linear code based on the Harmonic Balance Method (HBM). In the analysis, both the blade and the damper are modelled with the Finite Elements and then the matrices reduced with the Craig- Bampton Component Mode Synthesis (CB-CMS), while the periodical contact forces are modelled with state-of-the-art node-to-node contact elements. Numerical analysis has shown a strong influence of the actual extent of the contact area on the dynamics of the assembly. A model updating process was necessary. In the end, the numerical predictions match very well with the experimental curves.

  8. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  9. Special Fluid Viscous Dampers For The Messina Strait Bridge

    SciTech Connect

    Colato, Gian Paolo; Infanti, Samuele; Castellano, Maria Gabriella

    2008-07-08

    The Messina Strait Bridge would be the world's longest suspension bridge, with a design earthquake characterised by a PGA value of 0.58 g and a distance between the ipocenter and the bridge of 15 km. Said critical structure of course would need a suitable restraint system for traffic braking loads, wind and seismic actions. Each type of load requires a specific behaviour of the restraint system, making its design a big challenge.The restraint system comprises special types of fluid viscous dampers, installed both in longitudinal and transverse direction, both at the towers and at the anchorages. In seismic conditions they behave as viscous dampers, to reduce the forces on the structural elements and the movements of the bridge deck. But in service dynamic conditions, e.g. under traffic or wind load, the devices shall behave like shock transmission units, thus preventing the longitudinal and transverse movements of the deck.FIP Industriale cooperated with the selected General Contractor, a consortium lead by Impregilo, in the design of said viscous dampers. This paper describes the main features of said devices.

  10. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  11. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  12. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  13. Improved Coulomb-Friction Damper

    NASA Technical Reports Server (NTRS)

    Campbell, G. E.

    1985-01-01

    Equal damping provided on forward and reverse strokes. Improved damper has springs and wedge rings symmetrically placed on both ends of piston wedge, so friction force same in both directions of travel. Unlike conventional automotive shock absorbers, they resemble on outside, both versions require no viscous liquid and operate over wide temperature range.

  14. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  15. Electroviscoelastic materials as active dampers

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Janet M.; Kosmatka, John B.

    2002-07-01

    Electroviscoelastic materials (EVEMs) are polymeric materials that exhibit changes in structural properties when a voltage is applied across it. In the current study, an EVEM is developed that produce large changes in stiffness and damping materials with applied voltage. The resulting material exhibits many of the same properties as an electrorheological (ER) material, except the current material is self-supporting and thus can be used to applications where viscoelastic materials are used. The EVEM is composed of three components: 20% (by mass) of poly (p-phenylene) (PPP) particles doped with CuCl2 or FeCl3, 64% of Dow Sylgard 527 silicone gel, and 16% Dow Corning Sylgard 182 silicone elastomer, where the elastomer is added to for stiffening. Experimental harmonic tests using a double-lap shear test and a 0.025 thick specimens between 1 and 150 Hz reveal a factor six increase in stiffening and a factor of three decrease in damping with applied voltage (1500v).

  16. Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Zong, Lu-Hang; Gong, Xing-Long; Guo, Chao-Yang; Xuan, Shou-Hu

    2012-07-01

    In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First, a modified Bouc-Wen model is proposed to characterise the forward dynamic characteristics of the MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car suspension model together with the MR damper is set up, and a semi-active controller composed of the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the desired force can be accurately tracked using the ANFIS technique and the semi-active controller can achieve competitive performance as that of active suspension.

  17. A variable hydraulic damper for vibration reduction in helicopter blades

    NASA Astrophysics Data System (ADS)

    Gan, Quan

    This study investigates the potential aeronautical application of structural control technology developed in earthquake engineering to reduce the vibration of helicopter blades. The major objective is to evaluate and to apply the semi-active control method. Reducing vibrations for helicopter blades is quite similar to the approach of earthquake protective systems. We need not regulate the displacement of blades to a certain value, or to force the blade vibration to track given time histories. Instead, we only want to limit the vibration level within an acceptable range. Conventional blade vibration reduction by adding passive damping is ineffective. In this study, the concept of semi-active control is developed and successfully applied. The control philosophy is, first, to change the system stiffness so as to avoid resonance, to reduce input energy, and to lower the blade's displacement. The damping is applied to further reduce the response, to dissipate the imposed energy, and to minimize the structural damage. The semi-active control system originally developed for earthquake engineering application is modified to reduce the blade vibration. As the essential element of semi-active control technology, a variable hydraulic damper is designed. Simulations are carried out to develop a mechanical model for the variable hydraulic damper. In the simulation, several nonlinearities are considered such as Karnopp friction model and cubic stiffness model. The superior performance by a variable damper is quantitatively observed from damper component tests, damper fatigue tests, and blade dynamic tests. The simulation results correlate well with experiments in both the force-displacement relation and the force-velocity relation. Based on the mechanical model, a Kelvin-Voigt type of analytical model is developed, which is used in the finite element analysis of the blade with the variable damper. It is shown that the analytical model predicts the behavior of the damper measured

  18. Optimal damper location in the vibration control of large space structures

    NASA Technical Reports Server (NTRS)

    Wang, B. P.; Pilkey, W. D.

    1981-01-01

    The problem of finding the optimal location of active dampers for the vibration control of space structures is investigated. The optimal location is where maximum damping can be introduced to a particular vibration mode. To this end, classical root locus techniques are used to study the effect on eigenvalues of placing a damper on an undamped structure. An efficient formulation is derived which avoids the solution of the damped eigenvalue problem. Based on the observation of the results for a free-free beam model, a Minimum Constrained Frequency Criterion (MCFC) for locating the optimal damper location is proposed.

  19. Damping force control of frictionless MR damper associated with hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Seong, M. S.; Choi, S. B.; Kim, C. H.

    2013-02-01

    This study presents hysteresis modelling and damping force control of the frictionless magnetorheological (MR) damper for semiconductor manufacturing stage. The vibration sources of the semiconductor stage can be classified as two. The one is environmental vibration from the floor, and the other is transient vibration occurred from the stage moving. The transient vibration has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore, in this research, the semi-active MR damper which can control the transient vibration is devised. In addition, the stage needs to be isolated from tiny vibration to achieve high grade vibration level. At the high frequency range, MR damper acts like a rigid body if the dry friction exists. So the tiny vibration is transferred to the stage directly. Therefore, a dry friction of the MR damper must be removed. In order to achieve this goal, a frictionless MR damper is originally designed. After then, a designed MR damper is manufactured and it's damping force characteristics and hysteresis behaviors are evaluated by experiment. The biviscous hysteresis model of MR damper is formulated and its accuracies are evaluated. Finally, damping force control performances using the hysteresis model is experimentally evaluated.

  20. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  1. Eddy Current Damper for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Crosno, Fred

    2002-09-01

    This presentation considers the following topics: the need for cryogenic energy absorption, high speed damper characteristics, gearbox characteristics, composite assembly characteristics, performance tests, simulation models.

  2. Regenerative magnetorheological dampers for vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zou, Li; Liao, Wei-Hsin

    2015-04-01

    Magnetorheological (MR) dampers are promising for vehicle suspensions, by virtue of their adaptive properties. During the everyday use of vehicles, a lot of energy is wasted due to the energy dissipation by dampers under the road irregularities. On the other hand, extra batteries are required for the current MR damper systems. To reduce the energy waste and get rid of the dependence on extra batteries, in this paper, regenerative MR dampers are proposed for vehicle suspensions, which integrate energy harvesting and controllable damping functions. The wasted vibration energy can be converted into electrical energy and power the MR damper coil. A regenerative MR damper for vehicle suspensions is developed. Damping force and power generation characteristics of the regenerative MR damper were modeled and analyzed. Then the damper is applied to a 2 DOF suspension system for system simulation under various road conditions. Simulation results show that riding comfort can be significantly improved, while harvesting energy for other use in addition to supply power for the controlled MR damper.

  3. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    NASA Astrophysics Data System (ADS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-07-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0-238 N s m-1 through the viscous and electromagnetic components, respectively.

  4. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  5. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  6. Damper Spring For Omega Seal

    NASA Technical Reports Server (NTRS)

    Maclaughlin, Scott T.; Montgomery, Stuart K.

    1993-01-01

    Damper spring reduces deflections of omega-cross-section seal, reducing probability of failure and extending life of seal. Spring is split ring with U-shaped cross section. Placed inside omega seal and inserted with seal into seal cavity. As omega seal compressed into cavity, spring and seal make contact near convolution of seal, and spring becomes compressed also. During operation, when seal dynamically loaded, spring limits deflection of seal, reducing stress on seal.

  7. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  8. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  9. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    NASA Astrophysics Data System (ADS)

    Heo, G.; Joonryong, Jeon

    2014-07-01

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively.

  10. Principle and validation of modified hysteretic models for magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Chen, Peng; Qian, Li-Jun

    2015-08-01

    Magnetorheological (MR) dampers, semi-active actuators for vibration and shock control systems, have attracted increasing attention during the past two decades. However, it is difficult to establish a precise mathematical model for the MR dampers and their control systems due to their intrinsic strong nonlinear hysteretic behavior. A phenomenological model based on the Bouc-Wen model can be used to effectively describe the nonlinear hysteretic behavior of the MR dampers, but the structure of the phenomenological model is complex and the Bouc-Wen model is functionally redundant. In this paper, based on the phenomenological model, (1) a normalized phenomenological model is derived through incorporating a ‘normalization’ concept, and (2) a restructured model, also incorporating the ‘normalization’ concept, is proposed and realized. In order to demonstrate this, a multi-islands genetic algorithm (GA) is employed to identify the parameters of the restructured model, the normalized phenomenological model, and the phenomenological model. The performance of the three models for describing and predicting the damping force characteristics of the MR dampers are compared and analyzed using the identified parameters. The research results indicate that, as compared with the phenomenological model and the normalized phenomenological model, (1) the restructured model can not only effectively decrease the number of the model parameters and reduce the complexity of the model, but can also describe the nonlinear hysteretic behavior of MR dampers more accurately, and (2) the meanings of several model parameters of the restructured model are clearer and the initial ranges of the model parameters are more explicit, which is of significance for parameter identification.

  11. Transverse instability digital damper for the Recycler

    SciTech Connect

    Balbekov, V.; /Fermilab

    2006-02-01

    Transverse beam instability of a coasting beam with a digital damper is examined. Threshold of instability is calculated in specific cases with Landau damping taken into account. The results are applied to the Fermilab Recycler Ring. Some improvement of existing RR damper is proposed.

  12. Improved syncom-type fluid damper

    NASA Technical Reports Server (NTRS)

    Evans, J.

    1974-01-01

    Two efficient types of fluid nutation dampers that are simple, reliable, and inexpensive have been developed. In use, either damper may be mounted on a spinning body, parallel to the spin axis of the body and radially displaced from it, to eliminate nutation.

  13. Damper mechanism for nuclear reactor control elements

    DOEpatents

    Taft, William Elwood

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

  14. Characterizing wind turbine system response to lightning activity

    SciTech Connect

    McNiff, B.; LaWhite, N.; Muljadi, E.

    1998-07-01

    A lightning protection research program was instituted by National Renewable Energy Laboratory to minimize lightning damage to wind turbines and to further the understanding of effective damage mitigation techniques. To that end, a test program is under way to observe lightning activity, protection system response, and damage at a wind power plant in the Department of Energy (DOE) and Electric Power Research Institute (EPRI) Turbine Verification Program. The authors installed Lightning activated surveillance cameras along with a special storm tracking device to observe the activity in the wind plant area. They instrumented the turbines with lightning and ground current detection devices to log direct and indirect strike activity at each unit. They installed a surge monitor on the utility interface to track incoming activity from the transmission lines. Maintenance logs are used to verify damage and determine downtime and repair costs. Actual strikes to turbines were recorded on video and ancillary devices. The test setup and some results are discussed in this paper.

  15. Design and vibration control of military vehicle suspension system using magnetorheological damper and disc spring

    NASA Astrophysics Data System (ADS)

    Ha, Sung Hoon; Seong, Min-Sang; Choi, Seung-Bok

    2013-06-01

    This paper proposes a new type of magnetorheological (MR) fluid based suspension system and applies it to military vehicles for vibration control. The suspension system consists of a gas spring, a MR damper and a safety passive damper (disc spring). Firstly, a dynamic model of the MR damper is derived by considering the pressure drop due to the viscosity and the yield stress of the MR fluid. A dynamic model of the disc spring is then established for its evaluation as a safety damper with respect to load and pressure. Secondly, a full military vehicle is adopted for the integration of the MR suspension system. A skyhook controller associated with a semi-active actuating condition is then designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, a computer simulation is undertaken showing the vibration control performance of such properties as vertical displacement and pitch angle, evaluated for a bumpy road profile.

  16. Experimental study of a self-powered and sensing MR-damper-based vibration control system

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2011-10-01

    The paper deals with a semi-active vibration control system based on a magnetorheological (MR) damper. The study outlines the model and the structure of the system, and describes its experimental investigation. The conceptual design of this system involves harvesting energy from structural vibrations using an energy extractor based on an electromagnetic transduction mechanism (Faraday's law). The system consists of an electromagnetic induction device (EMI) prototype and an MR damper of RD-1005 series manufactured by Lord Corporation. The energy extracted is applied to control the damping characteristics of the MR damper. The model of the system was used to prove that the proposed vibration control system is feasible. The system was realized in the semi-active control strategy with energy recovery and examined through experiments in the cases where the control coil of the MR damper was voltage-supplied directly from the EMI or voltage-supplied via the rectifier, or supplied with a current control system with two feedback loops. The external loop used the sky-hook algorithm whilst the internal loop used the algorithm switching the photorelay, at the output from the rectifier. Experimental results of the proposed vibration control system were compared with those obtained for the passive system (MR damper is off-state) and for the system with an external power source (conventional system) when the control coil of the MR damper was supplied by a DC power supply and analogue voltage amplifier or a DC power supply and a photorelay. It was demonstrated that the system is able to power-supply the MR damper and can adjust itself to structural vibrations. It was also found that, since the signal of induced voltage from the EMI agrees well with that of the relative velocity signal across the damper, the device can act as a 'velocity-sign' sensor.

  17. Comparisons of the dynamic characteristics of magnetorheological and hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Oyadiji, S. O.

    2015-04-01

    A magnetorheological (MR) damper can adapt its dynamic performance to the vibration environment by controlling the current applied. Compared to other types of dampers, the MR damper has a wider range of dynamic characteristics. Two different dampers: hydraulic, and MR dampers were tested under forced sinusoidal excitations of low to high frequencies. Also, different currents were applied on the MR damper to investigate its performance under varying electromagnetic fields. The results reveal that the two dampers have nonlinear dynamic characteristics and that characteristics of the hydraulic damper are different from those of the MR damper. The hydraulic damper provides slight nonlinear damping force whereas the MR damper shows a strong nonlinear property. In addition, the hydraulic damper is designed to provide an asymmetric damping force of rebound and compression whereas the MR damper provides a symmetric damping force. In the experiments conducted, the excitation frequency was varied from 3 Hz to 11 Hz and the amplitude from 2.5 mm to 12 mm. For the hydraulic damper, the lowest compression damping force only increases by about 0.54 kN while the rebound force increases by about 1.9 kN. In contrast, the variations of compression and rebound forces of the MR damper are 1.9 and 2.0 kN, respectively. Furthermore, the damping force of the MR damper increases as the current increases from 0 to 0.75 A.

  18. Solar wind and coronal rotation during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    The properties of the solar wind flow are strongly affected by the time-varying strength and geometry of the global background magnetic field. The wind velocity and mass flux depend directly on the size and position of the wind sources at the surface, and on the geometry of the magnetic flux-tubes along which the wind flows. We address these problems by performing numerical simulations coupling a kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal MHD code (DIP) covering an 11 yr activity cycle. The latitudinal distribution of the calculated wind velocities agrees with in-situ (ULYSSES, HELIO) and radio measurements (IPS). The transition from fast to slow wind flows can be explained in terms of the high overall flux-tube superradial expansion factors in the vicinities of coronal streamer boundaries. We found that the Alfvén radii and the global Sun's mass loss rate vary considerably throughout the cycle (by a factor 4.5 and 1.6, respectively), leading to strong temporal modulations of the global angular momentum flux and magnetic braking torque. The slowly varying magnetic topology introduces strong non-uniformities in the coronal rotation rate in the first few solar radii. Finally, we point out directions to assess the effects of surface transient phenomena on the global properties of the solar wind.

  19. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  20. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    A recently developed concept for a damper was improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Also, an experimental damper was built using a three-inch stroke in place of the standard one-inch stroke. The analog controller initially used was replaced by an independent digital controller slaved to a TRS-80 Model I computer, which also serves as a highly effective, low-cost development system. An overall system concept for the use of proof-mass dampers is presented.

  1. Analysis of Train Suspension System Using MR dampers

    NASA Astrophysics Data System (ADS)

    RamaSastry, DVA; Ramana, K. V.; Mohan Rao, N.; Siva Kumar, SVR; Priyanka, T. G. L.

    2016-09-01

    This paper deals with introducing MR dampers to the Train Suspension System for improving the ride comfort of the passengers. This type of suspension system comes under Semi-active suspension system which utilizes the properties of MR fluid to damp the vibrations. In case of high speed trains, the coach body is subjected to vibrations due to vertical displacement, yaw and pitch movements. When the body receives these disturbances from the ground,the transmission of vibrations to the passenger increases which affect the ride comfort. In this work, the equations of motion of suspension system are developed for both conventional passive system and semi-active system and are modelled in Matlab/Simulink and analysis has been carried out. The passive suspension system analysis shows that it is taking more time to damp the vibrations and at the same time the transmissibility of vibrations is more.Introducing MR dampers,vertical and angular displacements of the body are computed and compared. The results show that the introduction of MR dampers into the train suspension system improves ride comfort.

  2. Proportional-plus-integral semiactive control using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Aguirre, N.; Ikhouane, F.; Rodellar, J.

    2011-05-01

    Magnetorheological (MR) dampers are a promising alternative to structural active actuators as they provide adjustable damping over a wide range of frequencies without large power requirements. However, the complex dynamics that characterizes these devices makes it difficult to formulate control laws based on the MR damper model. Instead, many semiactive control strategies proposed in the literature have been based on the idea of "clipping" the voltage signal so that the MR damper force "tracks" a desired active control force which is computed on-line. With this idea many algorithms have been proposed using, among others, techniques such as optimal control, H∞ control, sliding mode control, backstepping and QFT. This work presents a semiactive control strategy based on the same idea of "clipping" the voltage signal but using a simpler PI design. The proportional and integral gains of the controller are calculated so that the controller guarantees stability, minimization of the closed loop response and robustness against modeling errors. Effectiveness of the control strategy is compared to some others techniques and passive cases as well. Simulation results shows that this simple strategy can effectively improve the structural responses and achieve performance index comparable to that of more complex algorithms.

  3. Wind in the Willows--Theatre Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    Part of the New York City Board of Education's Early Stages program, and intended for elementary and secondary school teachers who wish to include a unit on theater in their classes, this guide offers suggestions for lessons and activities to accompany viewing a performance of "Wind in the Willows" at the Nederlander Theater. Part one of the guide…

  4. Discussion - Winds and magnetic fields of active OB stars

    NASA Astrophysics Data System (ADS)

    Bouret, Jean-Claude; Cidale, Lydia

    2011-07-01

    The discussion on winds and magnetic fields of active OB stars was carried out by S. Owoki, G. Wade, M. Cantiello, O. Kochukhov, M. Smith, C. Neiner, T. Rivinius, H. Henrichs and R. Townsend. The topics were the ability to detect small and large scale magnetic fields in massive stars and the need to consider limits on photometric variability of the star surface brightness.

  5. Fermilab Recycler damper requirements and design

    SciTech Connect

    Crisp, J.; Hu, M.; Tupikov, V.; /Fermilab

    2005-05-01

    The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements where used to identify the requirements. The digital approach being implemented is presented.

  6. Squeeze-film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Mclean, L. J.; Hahn, E. J.

    1984-01-01

    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

  7. SHM of wind turbine blades using piezoelectric active-sensors

    SciTech Connect

    Park, Gyuhae; Taylor, Stuart G; Farinholt, Kevin M; Farrar, Charles R

    2010-01-01

    This paper presents a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric active-sensors, used to determine the structural integrity of wind turbine blades. Specifically, Lamb wave propagations, frequency response functions, and time series based methods are utilized to estimate the condition of wind turbine blades. For experiments, a 1m section of a 9m CX100 blade is used. Overall, these three methods yielded a sufficient damage detection capability to warrant further investigation into field deployment. A full-scale fatigue test of a CX-100 wind turbine blade is also conducted. This paper summarizes considerations needed to design such SHM systems, experimental procedures and results, and practical implementation issues that can be used as guidelines for future investigations.

  8. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  9. Investigation of squeeze-film dampers

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dogan, M.

    1982-01-01

    Squeeze film dampers are a means of curing instabilities in rotating shaft assemblies. Their efficiency depends very much on the condition of the oil, which in turn depends on inlet and outlet arrangements, on damper geometry and on the flexibility of the rotor and surrounding structure. Rig investigations in which structural flexibility is included experimentally are discussed. Comparisons are made between measured and predicted results.

  10. Over-driven control for large-scale MR dampers

    NASA Astrophysics Data System (ADS)

    Friedman, A. J.; Dyke, S. J.; Phillips, B. M.

    2013-04-01

    As semi-active electro-mechanical control devices increase in scale for use in real-world civil engineering applications, their dynamics become increasingly complicated. Control designs that are able to take these characteristics into account will be more effective in achieving good performance. Large-scale magnetorheological (MR) dampers exhibit a significant time lag in their force-response to voltage inputs, reducing the efficacy of typical controllers designed for smaller scale devices where the lag is negligible. A new control algorithm is presented for large-scale MR devices that uses over-driving and back-driving of the commands to overcome the challenges associated with the dynamics of these large-scale MR dampers. An illustrative numerical example is considered to demonstrate the controller performance. Via simulations of the structure using several seismic ground motions, the merits of the proposed control strategy to achieve reductions in various response parameters are examined and compared against several accepted control algorithms. Experimental evidence is provided to validate the improved capabilities of the proposed controller in achieving the desired control force levels. Through real-time hybrid simulation (RTHS), the proposed controllers are also examined and experimentally evaluated in terms of their efficacy and robust performance. The results demonstrate that the proposed control strategy has superior performance over typical control algorithms when paired with a large-scale MR damper, and is robust for structural control applications.

  11. Feasibility study of self-powered magnetorheological damper systems

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-04-01

    This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.

  12. Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Cooperman, Aubryn Murray

    Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple

  13. Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Egger, Philipp; Caracoglia, Luca

    2015-09-01

    Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.

  14. Efficiency of the motion amplification device with viscous dampers and its application in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Huang, Henry C.

    2009-12-01

    After nearly a decade of application and investigation, a motion amplification device with viscous dampers for energy dissipation has been recognized as an effective solution to mitigate wind or seismic excitation, especially for stiff structural systems. As a result of compensation of amplified motion, it has been proved that the efficiency of viscous damper largely depends on the motion amplification device configuration, particularly for device stiffness. In this paper, a “scissor-jack” type of motion amplification device, called a “toggle brace damper” system, is studied. It is demonstrated that the efficiency of such a device reflected by its amplification factor is not merely a function of its geometric configuration, but is highly dependent on the support elements’ stiffness as well, similar to the mechanism of a leverage arm. Accordingly, a mathematical model in terms of complex modulus of the viscous damper with consideration of the support brace’s stiffness is established. The results indicate that the efficiency of the motion amplification device with viscous dampers significantly depends on the stiffness of the support elements. Other parameters, such as toggle brace configuration and damping values of the viscous damper, are studied and compared. As an application example, numerical analyses are conducted to study the dynamic performance of a 39-story office tower installed with toggle brace dampers constructed on soft soil in a reclaimed area, under a combined effect of the vortex shedding of an adjacent existing 52-story building and earthquakes. The results show that viscous dampers with a motion amplification system using a properly designed toggle brace device proved to be an effective solution to alleviate the external excitations.

  15. Dynamic behavior of the mercury damper

    NASA Technical Reports Server (NTRS)

    Crout, P. D.; Newkirk, H. L.

    1971-01-01

    The dynamic behavior of the mercury nutation damper is investigated. Particular attention is paid to the eccentric annular mercury configuration, which is the final continuous ring phase that occurs in the operation of all mercury dampers. In this phase, damping is poorest, and the system is closely linear. During the investigation, the hydrodynamic problem is treated as three dimensional, and extensive use is made of a variational principle of least-viscous frictional power loss. A variational principle of least-constraint is also used to advantage. Formulas for calculating the behavior of the mercury damper are obtained. Some confirmatory experiments were performed with transparent ring channels on a laboratory gyroscope. Selected movie frames taken during wobble damping are shown along with the results of film measurements.

  16. An integrated approach for friction damper design

    NASA Technical Reports Server (NTRS)

    Cameron, T. M.; Griffin, J. H.; Hoosac, T. M.; Kielb, R. E.

    1987-01-01

    A procedure is outlined for determining the optimal design of friction dampers for high speed turbomachinery blading. The procedure includes: an integration of bench test results with finite element analysis and a single mode blade model to ensure accuracy of the analytical model and improve reliability of the friction damper design; an extension of the single mode blade model to predict the engine behavior of friction dampers; and a new way of viewing analytical and experimental results to determine optimal design parameters when the levels of excitation and damping in the system are unknown. Analysis and experiments are performed on a test disk in order to demonstrate and verify the accuracy of the design procedure.

  17. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Zhou, Lily L.

    2006-09-01

    This study presents a design strategy based on genetic algorithms (GA) for semi-active fuzzy control of structures that have magnetorheological (MR) dampers installed to prevent damage from severe dynamic loads such as earthquakes. The control objective is to minimize both the maximum displacement and acceleration responses of the structure. Interactive relationships between structural responses and input voltages of MR dampers are established by using a fuzzy controller. GA is employed as an adaptive method for design of the fuzzy controller, which is here known as a genetic adaptive fuzzy (GAF) controller. The multi-objectives are first converted to a fitness function that is used in standard genetic operations, i.e. selection, crossover, and mutation. The proposed approach generates an effective and reliable fuzzy logic control system by powerful searching and self-learning adaptive capabilities of GA. Numerical simulations for single and multiple damper cases are given to show the effectiveness and efficiency of the proposed intelligent control strategy.

  18. Improvements for rotary viscous dampers used in spacecraft deployment mechanisms

    NASA Technical Reports Server (NTRS)

    Stewart, Alphonso; Powers, Charles; Lyons, Ron

    1998-01-01

    During component level thermal-vacuum deployment testing of eight rotary viscous dampers for the Tropical Rainfall Measuring Mission (TRMM) satellite, all the dampers failed to provide damping during a region of the deployment. Radiographic examination showed that air in the damping fluid caused the undamped motion when the dampers were operated in a vacuum environment. Improvements in the procedure used to fill the dampers with damping fluid, the installation of a Viton vacuum seal in the damper cover, and improved screening techniques eliminated the problem.

  19. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  20. Geographic Information Systems in Support of Wind Energy Activities at NREL: Preprint

    SciTech Connect

    Heimiller, D. M.; Haymes, S. R.

    2001-09-18

    The National Renewable Energy Laboratory (NREL) uses Geographic Information Systems (GIS) to further the development of wind energy resources in support of the U.S. Department of Energy (DOE) Wind Energy Program and its Wind Powering America Initiative. Some of the elements of NREL's GIS data used in wind energy activities include wind measurement sites, transmission lines, federal facility information, and modeled wind resources. More complex GIS analyses can define relationships among the mapped wind energy resources, potential energy load characterization, and utility integration problems. A GIS is an outstanding tool for wind energy activities because data can be readily updated and the results of the GIS analyses can be expressed as charts, tables, and maps. These outputs are in digital formats that allow the results of GIS analyses to be quickly and efficiently distributed to the wind energy industry.

  1. Direct voltage control of magnetorheological damper for vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Du, Haiping; Lam, James; Cheung, K. C.; Li, Weihua; Zhang, Nong

    2013-10-01

    The paper presents a study on the direct voltage control of a magnetorheological (MR) damper for application in vehicle suspensions. As MR damper dynamics is highly nonlinear, the direct control system design for an MR damper is difficult. Representing an MR damper by a Takagi-Sugeno (TS) fuzzy model enables the linear control theory to be directly applied to design the MR damper controller. In this paper, first the MR damper dynamics is represented by a TS fuzzy model, and then an H∞ controller that considers the suspension performance requirements and the constraint on the input voltage for the MR damper is designed. Furthermore, considering the case that not all the state variables are measurable in practice, the design of an H∞ observer with immeasurable premise variables and the design of a robust controller are proposed, respectively. Numerical simulations are used to validate the effectiveness of the proposed approaches.

  2. Analysis of Diurnal, Planetary and Mean Wind Activity using TIMED, MF and Meteor Radar Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Riggin, Dennis R.

    2003-01-01

    The goals of this research are: 1) To validate TIMED Doppler Interferometer (TIDI) winds using ground-based MF and meteor winds; and 2) To examine short-term (i. e., day-to-day and week-to-week) variability of the diurnal tide. This objective was to have originally been met using comparisons of short-term diurnal tidal determinations from ground-based (GB) winds with planetary-scale diurnal nonmigrating tidal definitions from TIDI winds.

  3. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  4. A magnetorheological damper with an integrated self-powered displacement sensor

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Hua; Bai, Xian-Xu

    2013-07-01

    In this paper, aiming at self-powering the integrated relative displacement sensor (IRDS) and the corresponding electronic system of an integrated relative displacement self-sensing magnetorheological (MR) damper (IRDSMRD) based semi-active system, the principle of an MR damper with an integrated self-powered displacement sensor is proposed and realized. The prototype of the MR damper with an integrated self-powered displacement sensor is designed and fabricated. In this MR damper, a coil evenly wound on the piston simultaneously acts as the exciting coil for the MR fluid and the IRDS, while a coil evenly wound on the cylinder simultaneously acts as the induction coil (i.e., pick-up coil) for the IRDS and the pick-up coil for the energy harvesting device. On one hand, both the MR fluid and the IRDS are simultaneously magnetized by a mixed signal, in which the carrier signal for the IRDS and the current for the MR fluid with different frequencies are superposed by a superposition circuit. That is, the exciting coil is frequency division multiplexed. On the other hand, when the exciting coil of the MR damper is energized by the carrier signal for the IRDS and the current for the MR fluid, the induced voltage in the pick-up coil not only can be harvested by the energy harvesting circuit to power the IRDS and the corresponding electronic system of the IRDSMRD, but also can be demodulated to obtain the relative displacement of the piston relative to the cylinder. That is, the induction coil for the IRDS and the pick-up coil for the energy harvesting device are functionally multiplexed. The characteristics of the fabricated MR damper with an integrated self-powered displacement sensor, including the energy harvested by the pick-up coil, the relative displacement sensed by the IRDS, and the controllable damping force, are modeled, analyzed, and tested. The feasibility and capability of the proposed principle are validated theoretically and experimentally.

  5. Resonance modeling and control via magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Letelier, Mario F.; Siginer, Dennis A.; Stockle, Juan S.

    2016-08-01

    A method to model and minimize resonant structural oscillations using magnetorheological dampers is presented. The response of the magnetorheological fluid flowing in a circular tube under a pressure gradient to the applied variable magnetic field is tailored to determine the optimum stress field in the fluid to mitigate resonance effects.

  6. Viscous-pendulum damper suppresses structural vibrations

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1964-01-01

    The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.

  7. Viscoelastic Vibration Dampers for Turbomachine Blades

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2003-01-01

    Simple viscoelastic dampers have been invented for use on the root attachments of turbomachine blades. These dampers suppress bending- and torsion-mode blade vibrations, which are excited by unsteady aerodynamic forces during operation. In suppressing vibrations, these dampers reduce fatigue (thereby prolonging blade lifetimes) while reducing noise. These dampers can be installed in new turbomachines or in previously constructed turbomachines, without need for structural modifications. Moreover, because these dampers are not exposed to flows, they do not affect the aerodynamic performances of turbomachines. Figure 1 depicts a basic turbomachine rotor, which includes multiple blades affixed to a hub by means of dovetail root attachments. Prior to mounting of the blades, thin layers of a viscoelastic material are applied to selected areas of the blade roots. Once the blades have been installed in the hub and the rotor is set into rotation, centrifugal force compresses these layers between the mating load-bearing surfaces of the hub and the blade root. The layers of viscoelastic material provide load paths through which the vibration energy of the blade can be dissipated. The viscoelasticity of the material converts mechanical vibration energy into shear strain energy and then from shear strain energy to heat. Of the viscoelastic materials that have been considered thus far for this application, the one of choice is a commercial polyurethane that is available in tape form, coated on one side with an adhesive that facilitates bonding to blade roots. The thickness of the tape can be chosen to suit the specific application. The typical thickness of 0.012 in. (.0.3 mm) is small enough that the tape can fit in the clearance between the mating blade-root and hub surfaces in a typical turbomachine. In an experiment, a blade was mounted in a test fixture designed to simulate the blade-end conditions that prevail in a turbocompressor. Vibrations were excited in the blade by

  8. 77 FR 5560 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... project proposals on those leases) in identified Wind Energy Areas (WEAs) on the OCS offshore New Jersey... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... site assessment plans (SAPs) on those leases. BOEM may issue one or more commercial wind energy...

  9. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the.... BOEM may issue one or more commercial wind energy leases in the WEA. The competitive lease process...

  10. Numerical modeling of pendulum dampers in torsional systems

    SciTech Connect

    Johnston, P.R.; Shusto, L.M.

    1986-01-01

    Centrifugal pendulum-design dampers are utilized in torsional systems to reduce the vibration amplitude at certain objectionable torsional speeds. The damper is tuned by proper design of its mass, dimensions, and position on a carrier disk, which is rigidly attached to the torsional system. The effects of the pendulum damper on the response of the torsional system may be included by modifying the structural model to include a separate damper element representing each order of the pendulum damper. The stiffness and mass matrices for a damper element are dependent upon the order of vibration being dampened, the mass, and the geometry of the damper. A general form of the mass and stiffness equations for a simple centrifugal pendulum damper are derived from first principles using Lagrange's equations of motion. The analysis of torsional systems with pendulum dampers utilizing the mass and stiffness properties developed is included in the program SHAMS. SHAMS calculates the steady-state response of a system of springs and masses to harmonic loads using modal superposition. The response of a crankshaft system with and without the pendulum dampers are included as a case study.

  11. Hybrid magnetorheological fluid elastomeric lag dampers for helicopter stability augmentation

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Wereley, Norman M.

    2008-08-01

    A laboratory demonstration of a hybrid magnetorheological fluid-elastomeric (MRFE) damper is investigated for adjustable or programmable lag mode damping in helicopters, so that damping requirements can be varied as a function of different flight conditions. The laboratory demonstration of this hybrid MRFE lag damper consists of a double lap shear elastomeric damper in parallel with two magnetorheological (MR) flow mode dampers. This is compared to a damper where only elastomeric materials are implemented, i.e., a double lap shear specimen. The relationship between the output force and the quasi-steady harmonic displacement input to a flow mode MR damper is exploited, where the output force can be adjusted as a function of applied magnetic field. Equivalent viscous damping is used to compare the damping characteristics of the hybrid damper to a conventional elastomeric damper under steady-state sinusoidal displacement excitation. To demonstrate feasibility, a hybrid MRFE damper test setup is designed, and single frequency (lag frequency or rotor in-plane bending frequency) and dual frequency (lag frequency and rotor frequency) tests are conducted under different magnetic fields. The hybrid MRFE damper exhibits amplitude-dependent damping behavior. However, with application of a magnetic field, the damping level is controlled to a specific damping level objective as a function of displacement amplitude. Similarly, under dual frequency conditions, damping degradation at the lag frequency, because of lag motion at the rotor frequency, can also be recovered by increasing magnetic field. A time-domain analysis is developed to study the nonlinear dynamic behavior of the hybrid MRFE damper. Using rate-dependent elasto-slides, the amplitude-dependent behavior of the hybrid MRFE damper is accurately reconstructed using both constant and current-dependent (i.e. controllable) parameters. The analysis is physically motivated and can be applied to the elastomer and MR fluid

  12. Influence of playing wind instruments on activity of masticatory muscles.

    PubMed

    Gotouda, A; Yamaguchi, T; Okada, K; Matsuki, T; Gotouda, S; Inoue, N

    2007-09-01

    The aim of this study was to elucidate the influence of change in sound tone of playing wind instruments on activity of jaw-closing muscles and the effect of sustained playing for a long time on fatigue of jaw-closing muscles. Electromyograms (EMG) of 19 brass instrument players and 14 woodwind instrument players were measured while playing instruments in tuning tone and high tone and under other conditions. Nine brass instrument players and nine woodwind instrument players played instruments for 90 min. Before and after the exercise, power spectral analyses of EMG from masseter muscles at 50% of maximum voluntary clenching level were performed and mean power frequency (MPF) were calculated. Root mean square (RMS) of EMG in masseter and temporal muscles while playing were slightly larger than those at rest but extremely small in comparison with those during maximum clenching. Root mean square in orbicularis oris and digastric muscles were relatively large when playing instruments. In the brass instrument group, RMS in high tone was significantly higher than that in tuning tone in all muscles examined. In the woodwind instrument group, RMS in high tone was not significantly higher than that in tuning tone in those muscles. Mean power frequency was not decreased after sustained playing in both instrument groups. These findings indicate that contractive load to jaw-closing muscles when playing a wind instrument in both medium and high tone is very small and playing an instrument for a long time does not obviously induce fatigue of jaw-closing muscles.

  13. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  14. Basic Wind Tech Course - Lesson Plans and Activities

    SciTech Connect

    Swapp, Andy

    2011-07-01

    The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.

  15. Application of particle damper on electronic packages for spacecraft

    NASA Astrophysics Data System (ADS)

    Veeramuthuvel, P.; Shankar, K.; Sairajan, K. K.

    2016-10-01

    Particle damping is an effective method of passive vibration control, which is of recent research interest. This paper presents a novel application of particle damper on an electronic package of a spacecraft, tested at ISRO Satellite Centre. The effectiveness of particle damper on the random vibration response of electronic package for spacecraft application exposed to random vibration environments experienced during the launch is studied. The use of particle damper under shock environments are also demonstrated. Optimal particle damper parameters were used based on the design guidelines derived from previous publications of the authors. The comparison of particle damper effectiveness under random vibration loads with respect to the shape of the particle damper capsule and packing ratio are also examined.

  16. Study on coupled shock absorber system using four electromagnetic dampers

    NASA Astrophysics Data System (ADS)

    Fukumori, Y.; Hayashi, R.; Okano, H.; Suda, Y.; Nakano, K.

    2016-09-01

    Recently, the electromagnetic damper, which is composed of an electric motor, a ball screw, and a nut, was proposed. The electromagnetic damper has high responsiveness, controllability, and energy saving performance. It has been reported that it improved ride comfort and drivability. In addition, the authors have proposed a coupling method of two electromagnetic dampers. The method enables the characteristics of bouncing and rolling or pitching motion of a vehicle to be tuned independently. In this study, the authors increase the number of coupling of electromagnetic dampers from two to four, and propose a method to couple four electromagnetic dampers. The proposed method enables the characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. Basic experiments using proposed circuit and motors and numerical simulations of an automobile equipped with the proposed coupling electromagnetic damper are carried out. The results indicate the proposed method is effective.

  17. Configuration optimization of dampers for adjacent buildings under seismic excitations

    NASA Astrophysics Data System (ADS)

    Bigdeli, Kasra; Hare, Warren; Tesfamariam, Solomon

    2012-12-01

    Passive coupling of adjacent structures is known to be an effective method to reduce undesirable vibrations and structural pounding effects. Past results have shown that reducing the number of dampers can considerably decrease the cost of implementation and does not significantly decrease the efficiency of the system. The main objective of this study was to find the optimal arrangement of a limited number of dampers to minimize interstorey drift. Five approaches to solving the resulting bi-level optimization problem are introduced and examined (exhaustive search, inserting dampers, inserting floors, locations of maximum relative velocity and a genetic algorithm) and the numerical efficiency of each method is examined. The results reveal that the inserting damper method is the most efficient and reliable method, particularly for tall structures. It was also found that increasing the number of dampers does not necessarily increase the efficiency of the system. In fact, increasing the number of dampers can exacerbate the dynamic response of the system.

  18. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  19. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  20. Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper

    SciTech Connect

    Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John; Ackers, Ben; Arora, Dhiraj; Park, Semiung

    2015-09-25

    Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not be available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.

  1. DOE/NREL supported wind energy activities in Alaska

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  2. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  3. Stochastic seismic response of building with super-elastic damper

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik

    2016-05-01

    Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.

  4. Non-linear identification of a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Stanway, Roger; Mottershead, John; Firoozian, Riaz

    1987-01-01

    Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.

  5. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    SciTech Connect

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.; McIntyre, Gary T.; Wu, Qiong; Seberg, Scott; Bellavia, Steve

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  6. BNL 56 MHz HOM damper prototype fabrication at JLAB

    SciTech Connect

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  7. A magnetic damper for first mode vibration reduction in multimass flexible rotors

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.

    1989-01-01

    Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.

  8. String vibration dampers do not reduce racket frame vibration transfer to the forearm.

    PubMed

    Li, F X; Fewtrell, D; Jenkins, M

    2004-01-01

    In this study, we examined the effect of string vibration damping devices on reducing racket frame vibration transfer to the forearm. Twenty participants volunteered to hold a tennis racket stationary in a forehand and backhand stroking position while tennis balls were fired at 20 m x s(-1) towards two impact locations, the node of vibration and the dead spot. A three-way analysis of variance with repeated measures on damping condition, impact location and stroke condition was performed on the data. The resonant frequency of the hand-held racket was found to be approximately 120 Hz. No significant differences in amplitude of vibration at the resonant frequency were found for the wrist or the elbow when damped and non-damped impacts were compared. Impacts at the dead spot produced greater amplitudes of vibration (P < 0.01) but no interaction between impact location and string dampers was evident. The string dampers had no effect on the grip force used or the muscle electrical activity in the forearm after impact. In conclusion, we found that string dampers do not reduce the amount of racket frame vibration received at the forearm. We suggest that string dampers remain a popular accessory among tennis players because of their acoustic effects and psychological support rather than any mechanical advantage. PMID:15801498

  9. String vibration dampers do not reduce racket frame vibration transfer to the forearm.

    PubMed

    Li, F X; Fewtrell, D; Jenkins, M

    2004-01-01

    In this study, we examined the effect of string vibration damping devices on reducing racket frame vibration transfer to the forearm. Twenty participants volunteered to hold a tennis racket stationary in a forehand and backhand stroking position while tennis balls were fired at 20 m x s(-1) towards two impact locations, the node of vibration and the dead spot. A three-way analysis of variance with repeated measures on damping condition, impact location and stroke condition was performed on the data. The resonant frequency of the hand-held racket was found to be approximately 120 Hz. No significant differences in amplitude of vibration at the resonant frequency were found for the wrist or the elbow when damped and non-damped impacts were compared. Impacts at the dead spot produced greater amplitudes of vibration (P < 0.01) but no interaction between impact location and string dampers was evident. The string dampers had no effect on the grip force used or the muscle electrical activity in the forearm after impact. In conclusion, we found that string dampers do not reduce the amount of racket frame vibration received at the forearm. We suggest that string dampers remain a popular accessory among tennis players because of their acoustic effects and psychological support rather than any mechanical advantage.

  10. The partially filled viscous ring damper.

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  11. Influence of solar wind variability on geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Dessler, A. J.; Hill, T. W.

    1974-01-01

    A statistical study of solar wind data from the Explorer 33 satellite shows that interplanetary magnetic field irregularities are enhanced in the interaction region where a fast solar wind stream overtakes a slower solar wind stream. Comparison with geomagnetic AE and ap indexes further shows that these interplanetary irregularities enhance the level of geomagnetic disturbances. Thus while substorm occurrence is highly correlated with the dawn-dusk component of the solar wind electric field, the amplitude of the substorms is an increasing function of the variance in the interplanetary field. This result can be interpreted as a capacitative effect of the magnetopause that allows a time-varying solar wind electric field to penetrate the magnetosphere more effectively than a static solar wind electric field.

  12. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  13. An innovative magnetorheological damper for automotive suspension: from design to experimental characterization

    NASA Astrophysics Data System (ADS)

    Sassi, Sadok; Cherif, Khaled; Mezghani, Lotfi; Thomas, Marc; Kotrane, Asma

    2005-08-01

    The development of a powerful new magnetorheological fluid (MRF), together with recent progress in the understanding of the behavior of such fluids, has convinced researchers and engineers that MRF dampers are among the most promising devices for semi-active automotive suspension vibration control, because of their large force capacity and their inherent ability to provide a simple, fast and robust interface between electronic controls and mechanical components. In this paper, theoretical and experimental studies are performed for the design, development and testing of a completely new MRF damper model that can be used for the semi-active control of automotive suspensions. The MR damper technology presented in this paper is based on a completely new approach where, in contrast to in the conventional solutions where the coil axis is usually superposed on the damper axis and where the inner cylindrical housing is part of the magnetic circuit, the coils are wound in a direction perpendicular to the damper axis. The paper investigates approaches to optimizing the dynamic response and provides experimental verification. Both experimental and theoretical results have shown that, if this particular model is filled with an 'MRF 336AG' MR fluid, it can provide large controllable damping forces that require only a small amount of energy. For a magnetizing system with four coils, the damping coefficient could be increased by up to three times for an excitation current of only 2 A. Such current could be reduced to less than 1 A if the magnetizing system used eight small cores. In this case, the magnetic field will be more powerful and more regularly distributed. In the presence of harmonic excitation, such a design will allow the optimum compromise between comfort and stability to be reached over different intervals of the excitation frequencies.

  14. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... Activities on the Atlantic OCS Offshore RI and MA'' to: Program Manager, Office of Renewable Energy...

  15. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  16. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  17. Application of impact dampers in vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Butt, Aamir S.

    1995-01-01

    Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact

  18. Using magnetorheological fluids in an innovative hybrid bicycle damper

    NASA Astrophysics Data System (ADS)

    Shiao, Y. J.; Nguyen, T. S.

    2015-12-01

    Magnetorheological fluids are capable of changing their viscosity quickly. This can provide good controllability and fast dynamic response. A conventional passive suspension system with air spring or hydraulic damper has simple design and financial benefit for bicycles, but its operation is uncontrollable and non-adaptive. This paper presented a semi-active hybrid bicycle suspension system which combines conventional air spring and a new magnetorheological damping brake together to reduce vibration of a bicycle. A multi-layer magnetorheological brake and linkage mechanism are connected to bike fork to form the adaptive damping part of the innovative hybrid suspension system. The simulation results proved that the semi-active suspension system can reduce bike vibration effectively.

  19. Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2016-09-01

    The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.

  20. Design of dry-friction dampers for turbine blades

    NASA Technical Reports Server (NTRS)

    Ancona, W.; Dowell, E. H.

    1983-01-01

    A study is conducted of turbine blade forced response, where the blade has been modeled as a cantilever beam with a generally dry friction damper attached, and where the minimization of blade root strain as the excitation frequency is varied over a given range is the criterion for the evaluation of the effectiveness of the dry friction damper. Attempts are made to determine the location of the damper configuration best satisfying the design criterion, together with the best damping force (assuming that the damper location has been fixed). Results suggest that there need not be an optimal value for the damping force, or an optimal location for the dry friction damper, although there is a range of values which should be avoided.

  1. Testing and certification of fire and smoke dampers

    SciTech Connect

    Parikh, J.S. )

    1992-11-01

    The fatalities, injuries and damage associated with fire can increase dramatically if smoke and flame are allowed to spread uncontrolled by way of a building's ventilation system. As a result, the fire protection community and many others have invested considerable energy and resources to restrict the spread of fire and smoke through air duct systems. Fire dampers are used to protect openings in heating, ventilating and air conditioning (HVAC) duct system passing through fire resistive walls, partitions or floors. Leakage rated dampers (or smoke dampers) are used to restrict or control the movement of smoke through opening in smoke barriers (either vertical or horizontal) or in engineered smoke control systems. In cooperation with the damper, HVAC and other related industries, Underwriters Laboratories Inc. (UL) certifies a variety of products and equipment for use in HVAC duct systems. This article describes the tests that fire and leakage rated dampers must pass to be certified.

  2. A prosthetic knee using magnetorhelogical fluid damper for above-knee amputees

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Choi, Seung-Bok

    2015-04-01

    A prosthetic knee for above-knee (AK) amputees is categorized into two types; namely a passive and an active type. The passive prosthetic knee is generally made by elastic materials such as carbon fiber reinforced composite material, titanium and etc. The passive prosthetic knee easy to walk. But, it has disadvantages such that a knee joint motion is not similar to ordinary people. On the other hand, the active prosthetic knee can control the knee joint angle effectively because of mechanical actuator and microprocessor. The actuator should generate large damping force to support the weight of human body. But, generating the large torque using small actuator is difficult. To solve this problem, a semi-active type prosthetic knee has been researched. This paper proposes a semi-active prosthetic knee using a flow mode magneto-rheological (MR) damper for AK amputees. The proposed semi-active type prosthetic knee consists of the flow mode MR damper, hinge and prosthetic knee body. In order to support weight of human body, the required energy of MR damper is smaller than actuator of active prosthetic leg. And it can control the knee joint angle by inducing the magnetic field during the stance phase.

  3. On a Self-Tuning Impact Vibration Damper for Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Bagley, Ronald L.; Mehmed, Oral; Choi, Ben (Technical Monitor)

    2000-01-01

    A self-tuning impact damper is investigated analytically and experimentally as a device to inhibit vibration and increase the fatigue life of rotating components in turbomachinery. High centrifugal loads in rotors can inactivate traditional impact dampers because of friction or misalignment of the damper in the g-field. Giving an impact damper characteristics of an acceleration tuned-mass damper enables the resulting device to maintain damper mass motion and effectiveness during high-g loading. Experimental results presented here verify that this self-tuning impact damper can be designed to follow an engine order line. damping rotor component resonance crossings.

  4. Seismic Risk Mitigation of Historical Minarets Using SMA Wire Dampers

    NASA Astrophysics Data System (ADS)

    El-Attar, Adel G.; Saleh, Ahmed M.; El-Habbal, Islam R.

    2008-07-01

    This paper presents the results of a research program sponsored by the European Commission through project WIND-CHIME (Wide Range Non-INtrusive Devices toward Conservation of HIstorical Monuments in the MEditerranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, two outstanding Egyptian Mamluk-Style minarets, are investigated. The first is the southern minaret of Al-Sultaniya (1340 A.D, 739 Hijri Date (H.D.)), the second is the minaret of Qusun minaret (1337 A.D, 736 H.D.), both located within the city of Cairo. Based on previous studies on the minarets by the authors, a seismic retrofit technique is proposed. The technique utilizes shape memory alloy (SMA) wires as dampers for the upper, more flexible, parts of the minarets in addition to vertical pre-stressing of the lower parts found to be prone to tensile cracking under ground excitation. The effectiveness of the proposed technique is numerically evaluated via nonlinear transient dynamic analyses. The results indicate the effectiveness of the technique in mitigating the seismic hazard, demonstrated by the effective reduction in stresses and in dynamic response.

  5. Seismic Risk Mitigation of Historical Minarets Using SMA Wire Dampers

    SciTech Connect

    El-Attar, Adel G.; Saleh, Ahmed M.; El-Habbal, Islam R.

    2008-07-08

    This paper presents the results of a research program sponsored by the European Commission through project WIND-CHIME (Wide Range Non-INtrusive Devices toward Conservation of HIstorical Monuments in the MEditerranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, two outstanding Egyptian Mamluk-Style minarets, are investigated. The first is the southern minaret of Al-Sultaniya (1340 A.D, 739 Hijri Date (H.D.)), the second is the minaret of Qusun minaret (1337 A.D, 736 H.D.), both located within the city of Cairo. Based on previous studies on the minarets by the authors, a seismic retrofit technique is proposed. The technique utilizes shape memory alloy (SMA) wires as dampers for the upper, more flexible, parts of the minarets in addition to vertical pre-stressing of the lower parts found to be prone to tensile cracking under ground excitation. The effectiveness of the proposed technique is numerically evaluated via nonlinear transient dynamic analyses. The results indicate the effectiveness of the technique in mitigating the seismic hazard, demonstrated by the effective reduction in stresses and in dynamic response.

  6. Fuzzy logic and genetic algorithms for intelligent control of structures using MR dampers

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Zhou, Lily L.

    2004-07-01

    Fuzzy logic control (FLC) and genetic algorithms (GA) are integrated into a new approach for the semi-active control of structures installed with MR dampers against severe dynamic loadings such as earthquakes. The interactive relationship between the structural response and the input voltage of MR dampers is established by using a fuzzy controller rather than the traditional way by introducing an ideal active control force. GA is employed as an adaptive method for optimization of parameters and for selection of fuzzy rules of the fuzzy control system, respectively. The maximum structural displacement is selected and used as the objective function to be minimized. The objective function is then converted to a fitness function to form the basis of genetic operations, i.e. selection, crossover, and mutation. The proposed integrated architecture is expected to generate an effective and reliable fuzzy control system by GA"s powerful searching and self-learning adaptive capability.

  7. Semiactive field-controllable magneto-rheological fluid dampers for mountain bicycles

    NASA Astrophysics Data System (ADS)

    Breese, Darrell G.; Gordaninejad, Faramarz

    2000-06-01

    This paper presents the development and evaluation of field- controllable, semi-active magneto-rheological fluid (MRF) shock absorbers for a mountain bicycle. Recent trends in the bicycle industry show a movement towards semi-active suspension systems. Two new MRF dampers are designed and tested with the intent of being used on the front and rear suspension of a modern mountain bicycle. The MRF shock absorbers are designed to emulate the performance of the original equipment manufacturer shock absorbers in passive mode. Application of an input electric current to the MRF shock absorber causes a dramatic increase in the damping capacity. Procedures and results are presented for the design and experimental characterization of these MRF dampers.

  8. Simplified design method for shear-valve magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Zhang, Lu; Zhu, Haitao; Li, Zhongxian

    2014-12-01

    Based on the Bingham parallel-plate model, a simplified design method of shear-valve magnetorheological (MR) dampers is proposed considering the magnetic circuit optimization. Correspondingly, a new MR damper with a full-length effective damping path is proposed. The prototype dampers are also fabricated and studied numerically and experimentally. According to the test results, the Bingham parallel-plate model is further modified to obtain a damping force prediction model of the proposed MR dampers. This prediction model considers the magnetic saturation phenomenon. The study indicates that the proposed simplified design method is simple, effective and reliable. The maximum damping force of the proposed MR dampers with a full-length effective damping path is at least twice as large as those of conventional MR dampers. The dynamic range of damping force increases by at least 70%. The proposed damping force prediction model considers the magnetic saturation phenomenon and it can realize the actual characteristic of MR fluids. The model is able to predict the actual damping force of MR dampers precisely.

  9. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  10. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  11. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  12. Active region upflow plasma: its relation to small activity and the solar wind

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Culhane, J. Leonard; Cristiani, Germán; Vásquez, Alberto; Van Driel-Gesztelyi, Lidia; Baker, Deborah; Pick, Monique; Demoulin, Pascal; Nuevo, Federico

    Recent studies show that active region (AR) upflowing plasma, observed by the Hinode EUV Imaging Spectrometer (EIS), can gain access to open field lines and be released into the solar wind via magnetic interchange reconnection occurring below the source surface at magnetic null-points in pseudo-streamer configurations. When only one simple bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, like AR 10978 on December 2007, it seems unlikely that the upflowing AR plasma could find its way into the slow solar wind. However, signatures of plasma with AR composition at 1 AU that appears to originate from the West of AR 10978 were recently found by Culhane and coworkers. We present a detailed topology analysis of AR 10978 based on a linear force-free magnetic field model at the AR scale, combined with a global PFSS model. This allows us, on one hand, to explain the variations observed in the upflows to the West of the AR as the result of magnetic reconnection at quasi-separatrix layers (QSLs). While at a global scale, we show that reconnection, occurring in at least two main steps, first at QSLs and later at a high-altitude coronal null-point, allows the AR plasma to get around the topological obstacle of the streamer separatrix and be released into the solar wind.

  13. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.

  14. Characteristic analysis of the lower limb muscular strength training system applied with MR dampers.

    PubMed

    Yu, Chang Ho; Piao, Young Jun; Kim, Kyung; Kwon, Tae Kyu

    2014-01-01

    A new training system that can adjust training intensity and indicate the center pressure of a subject was proposed by applying controlled electric current to the Magneto-Rheological damper. The experimental studying on the muscular activities were performed in lower extremities during maintaining and moving exercises, which were processed on an unstable platform with Magneto rheological dampers and recorded in a monitor. The electromyography (EMG) signals of the eight muscles in lower extremities were recorded and analyzed in certain time and frequency domain. Muscles researched in this paper were rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastuslateralis (VL), vastusmedialis (VM), gastrocnemius (Ga), tibialis anterior (TA), and soleus (So). Differences of muscular activities during four moving exercises were studied in our experimental results. The rate of the increment of the muscular activities was affected by the condition of the unstable platform with MR dampers, which suggested the difference of moving exercises could selectively train each muscle with varying intensities. Furthermore, these findings also proposed that this training system can improve the ability of postural balance.

  15. Response of ventilation dampers to large airflow pulses

    SciTech Connect

    Gregory, W.S.; Smith, P.R.

    1985-04-01

    The results of an experiment program to evaluate the response of ventilation system dampers to simulated tornado transients are reported. Relevant data, such as damper response time, flow rate and pressure drop, and flow/pressure vs blade angle, were obtained, and the response of one tornado protective damper to simulated tornado transients was evaluated. Empirical relationships that will allow the data to be integrated into flow dynamics codes were developed. These flow dynamics codes can be used by safety analysts to predict the response of nuclear facility ventilation systems to tornado depressurization. 3 refs., 21 figs., 6 tabs.

  16. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  17. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  18. Performance and robustness of hybrid model predictive control for controllable dampers in building models

    NASA Astrophysics Data System (ADS)

    Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.

    2016-04-01

    A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.

  19. Shock and vibration control systems using a self-sensing magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Wang, Dai-Hua

    2014-04-01

    The theoretical analysis and the prototype testing of the integrated relative displacement self-sensing magnetorheological damper (IRDSMRD) indicate that the controllable damping force performance and the relative displacement sensing performance influence each other for varying applied currents. Aiming at verifying the feasibility and capability of the IRDSMRD to constitute semi-active shock and vibration control systems, this study presents a single-degree-of-freedom (SDOF) shock and vibration control system based on the IRDSMRD. The mathematical model of the IRDSMRD, including the control damping force and the linearity of the integrated relative displacement sensor (IRDS), is established, and the governing equation for the SDOF system based on the IRDSMRD is derived. A skyhook control algorithm is utilized to improve the shock and vibration control performance of the SDOF semi-active control systems. The simulated control performances of the SDOF systems individually using the IRDSMRD without any extra-set dynamic sensor, the conventional MR damper with a linear variable differential transformer (LVDT), and the passive damper, under shock loads due to vertical pulses (the maximum initial velocity is as high as 10 m/s), and sinusoidal vibrations with a frequency range of 0-25 Hz, are evaluated, compared, and analyzed.

  20. NASA Common Research Model Test Envelope Extension With Active Sting Damping at NTF

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Balakrishna, S.

    2014-01-01

    The NASA Common Research Model (CRM) high Reynolds number transonic wind tunnel testing program was established to generate an experimental database for applied Computational Fluid Dynamics (CFD) validation studies. During transonic wind tunnel tests, the CRM encounters large sting vibrations when the angle of attack approaches the second pitching moment break, which can sometimes become divergent. CRM transonic test data analysis suggests that sting divergent oscillations are related to negative net sting damping episodes associated with flow separation instability. The National Transonic Facility (NTF) has been addressing remedies to extend polar testing up to and beyond the second pitching moment break point of the test articles using an active piezoceramic damper system for both ambient and cryogenic temperatures. This paper reviews CRM test results to gain understanding of sting dynamics with a simple model describing the mechanics of a sting-model system and presents the performance of the damper under cryogenic conditions.

  1. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  2. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  3. HOM damping with coaxial dampers in the storage ring cavities of the Advanced Photon Source

    SciTech Connect

    Kang, Y.W.; Kustom, R.L.

    1994-08-01

    Coaxial dampers with E-probe and H-loop couplers are used to damp higher-order modes (HOM) in a 352-MHz single cell cavity for the storage ring of the Advanced Photon Source (APS). Measurements have been made with three different types of dampers such as E-probe dampers, small H-loop dampers, and H-loop dampers with {lambda}/4 short stub. Two dampers are used in each type. The dampers without fundamental frequency rejection filters are positioned to have a minimum deQing at the fundamental frequency: the E-probe dampers are used at the equatorial plane of the cavity, and the small H-loop dampers are used in the end wall of the cavity. The fundamental mode decoupling can be done by positioning the loop plane in the direction of the H-field of the mode.

  4. Active Circulation Control for Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  5. Dynamic behavior of stay cables with passive negative stiffness dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye; Li, Jin-Yang; Spencer, Billie F., Jr.

    2016-07-01

    This paper systematically investigates the dynamic behavior of stay cables with passive negative stiffness dampers (NSD) installed close to the cable end. A passive NSD is modeled as a combination of a negative stiffness spring and a viscous damper. Through both analytical and numerical approaches, parametric analysis of negative stiffness and viscous damping are conducted to systematically evaluate the vibration control performance of passive NSD on stay cables. Since negative stiffness is an unstable element, the boundary of passive negative stiffness for stay cables to maintain stability is also derived. Results reveal that the asymptotic approach is only applicable to passive dampers with positive or moderate negative stiffness, and loses its accuracy when a passive NSD possesses significant negative stiffness. It has been found that the performance of passive NSD can be much better than those of conventional viscous dampers. The superior control performance of passive NSD in cable vibration mitigation is validated through numerical simulations of a full-scale stay cable.

  6. 66. INTERIOR VIEW OF THE COOLING BUILDING, LOOKING AM DAMPERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. INTERIOR VIEW OF THE COOLING BUILDING, LOOKING AM DAMPERS, HIGH TEMPERATURE AND LOW TEMPERATURE COOLERS. APRIL 11, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  7. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  8. Advanced magnetorheological damper with a spiral channel bypass valve

    NASA Astrophysics Data System (ADS)

    McLaughlin, G.; Hu, W.; Wereley, N. M.

    2014-05-01

    Magnetorheological (MR) fluid has a yield stress that is readily controllable using an applied magnetic field. MR dampers adjust this yield stress in a magnetic valve to accommodate a wide range of shock or vibration loads. In this study, the performance of an MR damper with a spiral channel bypass valve is examined. Three bypass damper configurations, i.e., a spiral channel, a spiral channel with beads, and a straight channel with beads, are subject to sinusoidal forcing at constant amplitude, while varying frequency, and applied field (current). These configurations are characterized using tortuosity and porosity parameters. The spiral channel without beads had the largest porosity and smallest tortuosity, which produced the smallest damper force, but the widest controllable damping range. The spiral channel with beads had the smallest porosity, and a comparable tortuosity, which produced the largest damping force, but similar controllable damping range to the straight channel with beads.

  9. 1. PLENUM WALL, SHOWING BALL AND STRING DAMPER CONTROLS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PLENUM WALL, SHOWING BALL AND STRING DAMPER CONTROLS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. A novel eddy current damper: theory and experiment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid

    2009-04-01

    A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.

  11. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  12. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  13. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  14. Final Report 02-ERD-056 Active Load Control& Mitigation Using Microtabs: A Wind Energy Application

    SciTech Connect

    Nakafuji, D Y

    2003-02-24

    With public concern over the security and reliability of our existing electricity infrastructure and the resurgence of wind energy, the wind industry offers an immediate, first point of entry for the application and demonstration of an active load control technology. An innovative microtab approach is being investigated and demonstrated for active aerodynamic load control applications under the mid-year LDRD (June-Sept. 2002) effort. With many of these million dollar turbines failing at only half the design lifespans, conventional techniques for stiffening rotors, enlarging generators and gearboxes, and reinforcing towers are insufficient to accommodate the demands for bigger, taller and more powerful turbines. The DOE through the National Renewable Energy Laboratory (NREL) supports R&D efforts to develop lighter, more efficient and longer lasting wind turbines and advance turbine components. However, as wind turbine systems continue to increase in size and complexity, fundamental research and technology development has not kept pace with needs. New technologies to increase turbine life spans and to reduce costs are needed to realize wind electricity generation potentials. It is becoming quite evident that without a better understanding of static and dynamic response to normal and abnormal operating loads coupled with sophisticated flow analysis and control techniques, large turbine operating life and component life will be severely limited. Promising technologies include active load control and load alleviation systems to mitigate peak loads from damaging key components. This project addresses science and engineering challenges of developing enabling technologies for active load control for turbine applications using an innovative, translational microtab approach. Figure 1.1 illustrates the microtabs as applied on a wind turbine system. Extending wind turbine operating life is a crucial component for reducing the cost of wind-generated electricity, enabling wind

  15. Nonlinear modeling of a rotational MR damper via an enhanced Bouc-Wen model

    NASA Astrophysics Data System (ADS)

    Miah, Mohammad S.; Chatzi, Eleni N.; Dertimanis, Vasilis K.; Weber, Felix

    2015-10-01

    The coupling of magnetorheological (MR) dampers with semi-active control schemes has proven to be an effective and failsafe approach for vibration mitigation of low-damped structures. However, due to the nonlinearities inherently relating to such damping devices, the characterization of the associated nonlinear phenomena is still a challenging task. Herein, an enhanced phenomenological modeling approach is proposed for the description of a rotational-type MR damper, which comprises a modified Bouc-Wen model coupled with an appropriately selected sigmoid function. In a first step, parameter optimization is performed on the basis of individual models in an effort to approximate the experimentally observed response for varying current levels and actuator force characteristics. In a second step, based on the previously identified parameters, a generalized best-fit model is proposed by performing a regression analysis. Finally, model validation is carried out via implementation on different sets of experimental data. The proposed model indeed renders an improved representation of the actually observed nonlinear behavior of the tested rotational MR damper.

  16. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  17. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study

    PubMed Central

    Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.

    2015-01-01

    Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667

  18. Reverberation Mapping of Accretion Disk Winds in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mangham, S.

    2015-09-01

    Reverberation mapping is commonly used for determining black holes masses in AGN from the delayed response of the Broad Line Region (BLR) to fluctuations in the intensity of the AGN continuum source. However, it can also be an effective tool for investigating the structure and kinematics of the BLR itself. Much prior work has been performed to simulate the transfer functions associated with a range of basic geometries (e.g. Keplerian disks, Hubble-like outflows, etc). One promising model for the BLR is that the emission lines are formed in an equatorial accretion disk wind. Here, we predict the reverberation signatures expected from such a model, by modifying the radiative transfer and ionisation code Python that has previously been used to model broad absorption line quasars. This allows to account self-consistently for ionization and radiative transfer effects in the predicted BLR response, which are normally ignored in such calculations. We discuss the agreement between our results and prior work and consider the possibility of detecting the signature of rotating equatorial disk winds in observations obtained by velocity-resolved reverberation mapping campaigns.

  19. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  20. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.

    PubMed

    Eslamy, Mahdy; Grimmer, Martin; Rinderknecht, Stephan; Seyfarth, Andre

    2013-06-01

    In this paper we investigated on peak power (PP) and energy (ER) requirements for different active ankle actuation concepts that can have both elasticity and damping characteristics. A lower PP or ER requirement is an important issue because it will lead to a smaller motor or battery. In addition to spring, these actuation concepts are assumed to have (passive) damper in series (series elastic-damper actuator SEDA) or parallel (parallel elastic-damper actuator PEDA) to the motor. For SEA (series elastic actuator), SEDA and PEDA, we calculated the required minimum motor PP and ER in different human gaits: normal level walking, ascending and descending the stairs. We found that for level walking and ascending the stairs, the SEA concept, and for descending, the SEDA, were the favorable concepts to reduce required minimum PP and ER in comparison to a DD (direct drive) concept. In SEDA concept, the minimum PP could be reduced to half of what SEA would require. Nevertheless, it was found that spring was always required, however damper showed 'task specific' advantages. As a result, if a simple design perspective is in mind, from PP-ER viewpoint, SEA could be the best compromise to be used for different above-mentioned gaits. For SEDA or PEDA concepts, a controllable damper should be used. In addition, our results show that it is beneficial to select spring stiffness in SEA, based on level walking gait. The PP and ER requirements would increase very slightly for stairs ascending, and to some extent (10.5%) for descending as a consequence of this selection. In contrast, stiffness selection based on stair ascending or descending, increases the PP requirements of level walking more noticeably (17-24%).

  1. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds

    PubMed Central

    Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao

    2016-01-01

    The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows. PMID:27752047

  2. Field-Aligned Current Sheet Motion and Its Correlation with Solar Wind Conditions and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Le, G.; Boardsen, S. A.; Slavin, J. A.; Strangeway, R. J.

    2008-05-01

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission and their corresponding solar wind conditions to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times.

  3. Significant Attenuation of Lightly Damped Resonances Using Particle Dampers

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Knight, Joseph Brent

    2015-01-01

    When equipment designs must perform in a broad band vibration environment it can be difficult to avoid resonances that affect life and performance. This is especially true when an organization seeks to employ an asset from a heritage design in a new, more demanding vibration environment. Particle dampers may be used to provide significant attenuation of lightly damped resonances to assist with such a deployment of assets by including only a very minor set of modifications. This solution may be easier to implement than more traditional attenuation schemes. Furthermore, the cost in additional weight to the equipment can be very small. Complexity may also be kept to a minimum, because the particle dampers do not require tuning. Attenuating the vibratory response with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned mass dampers. The paper will illustrate the use of an "equivalent resonance test jig" that can assist designers in verifying the potential resonance attenuation that may be available to them during the early trade stages of the design. An approach is suggested for transforming observed attenuation in the jig to estimated performance in the actual service design. KEY WORDS: Particle Damper, Performance in Vibration Environment, Damping, Resonance, Attenuation, Mitigation of Vibration Response, Response Estimate, Response Verification.

  4. Force-electrical characteristics of a novel mini-damper

    NASA Astrophysics Data System (ADS)

    Li, Junhui; Li, Fei; Tian, Qing; Zhou, Can; Xiao, Chengdi; Huang, Liutian; Wang, Wei; Zhu, Wenhui

    2016-10-01

    In order to develop small loading and small damping, a small magneto-rheological fluid (MRF) damper with built-in magnetic coils is researched, and the dynamics model of new mini-damper is established based on testing the mechanical properties of the damper. It is found that the damping landing force adjustable range will be best when the damping gap is 1.5 mm. The loading force of the mini-damper is only 1.95 N-8.25 N by adjusting the coil current from 0 A-0.8 A. The smooth damping force is the third-order function with the current by polynomial fitting of the experimental data. The result of dynamics tests shows hysteresis damping characteristics, and an improved nonlinear dynamic model is proposed by combining with the structure characteristics. The parameters of the improved dynamic model are identified by using parameter identification and regression fitting. It will provide the basis for the application of the mini-MRF damper.

  5. Mechanical design handbook for elastomers. [the design of elastomer dampers for application in rotating machinery

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1981-01-01

    A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.

  6. Granular dampers: does particle shape matter?

    NASA Astrophysics Data System (ADS)

    Pourtavakoli, Hamzeh; Parteli, Eric J. R.; Pöschel, Thorsten

    2016-07-01

    By means of particle-based numerical simulations using the discrete element method, we address the question of how the performance of granular dampers is affected by the shape of the granular particles. In consistence with previous experiments performed with nearly spherical particles we find that independently of the particles’ shape, the granular system is characterized by a gas-like regime for small amplitudes of the container’s oscillation and by a collect-and-collide regime for large amplitude forcing. Both regimes are separated by an optimal operation mode—the critical amplitude of the damping oscillation for which the energy dissipation is maximal—which is independent of the particle shape for given conditions of particle mass, material properties and number of particles. However, in the gas-like regime, we find that spherical particles lead to more efficient energy dissipation compared to complex shaped particles of the same mass. In this regime, a dependence on the damper’s efficiency on the particle shape is found.

  7. Improved Model of a Mercury Ring Damper

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarma, Ravishankar

    2009-01-01

    A short document discusses the general problem of mathematical modeling of the three-dimensional rotational dynamics of rigid bodies and of the use of Euler parameters to eliminate the singularities occasioned by the use of Euler angles in such modeling. The document goes on to characterize a Hamiltonian model, developed by the authors, that utilizes the Euler parameters and, hence, is suitable for use in computational simulations that involve arbitrary rotational motion. In this formulation unlike in prior Euler-parameter-based formulations, there are no algebraic constraints. This formulation includes a general potential energy function, incorporates a minimum set of momentum variables, and takes an explicit state-space form convenient for numerical implementation. Practical application of this formulation has been demonstrated by the development of a new and simplified model of the rotational motion of a rigid rotor to which is attached a partially filled mercury ring damper. Models like this one are used in guidance and control of spin-stabilized spacecraft and gyroscope-stabilized seekers in guided missiles.

  8. On the high correlation between long-term averages of solar wind speed and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Feynman, J.; Gosling, J. T.

    1977-01-01

    Six-month and yearly averages of solar-wind speed from 1962 to 1975 are shown to be highly correlated with geomagnetic activity as measured by averages of the Ap index. On the same time scale the correlation between the southward component of the interplanetary magnetic field and geomagnetic activity is poor. Previous studies with hourly averages gave opposite results. The better correlation with the southward component on an hourly time scale is explained by its large variation compared with the relatively constant solar-wind speed. However, on a yearly time scale the magnitude of the variations in both parameters are about the same. This problem can be solved by invoking an energy transfer mechanism which is proportional to the first power of the southward component and a higher power of the solar-wind speed.

  9. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  10. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  11. Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Bottasso, Carlo L.; Bettini, Paolo

    2014-06-01

    In the research described in this paper, a scaled wind turbine model featuring individual pitch control (IPC) capabilities, and equipped with aero-elastically scaled blades featuring passive load reduction capabilities (bend-twist coupling, BTC), was constructed to investigate, by means of wind tunnel testing, the load alleviation potential of BTC and its synergy with active load reduction techniques. The paper mainly focus on the design of the aero-elastic blades and their dynamic and static structural characterization. The experimental results highlight that manufactured blades show desired bend-twist coupling behavior and are a first milestone toward their testing in the wind tunnel.

  12. The design of the fundamental mode damper and the HOM dampers for the 56 MHz SRF cavity

    SciTech Connect

    Choi,E.M.; Hahn, H.; Bellavia, S.; Ben-Zvi, I.

    2009-05-04

    A 56 MHz Superconducting RF cavity is under development for the Relativistic Heavy Ion Collider (RHIC) aiming at luminosity enhancement The 56 MHz SRF cavity can adiabatically rebucket the beam from the 28 MHz accelerating cavities, provide shorter bunches and significantly enhance the luminosity. The 56 MHz SRF cavity will be turned on at store, therefore, the fundamental mode should be damped while the beam is injected and accelerated. The feature requires a fundamental mode damper (FD). The mechanical design of the FD is challenging since the fundamental mode damper has to be physically withdrawn while the cavity is turned on. This motion introduces a frequency change of the cavity. Since for stability the cavity frequency must be kept below the beam frequency in this phase, we chose a judicious axial placement of the FD to minimize the frequency shift. Various studies of the FD were done with prototype cavity tests and numerical simulations. The engineering issues were addressed. Higher-order mode (HOM) dampers are necessary for stable operation of RHIC with the 56 MHz SRF cavity. The physics study of the HOM dampers will be presented in the paper. Based on the stability criteria of the cavity, the HOMs are properly damped by having two HOM dampers. The fundamental mode is filtered out by a 5 element high pass filter. The HOMs were identified and the external Q factors were obtained from tests of the prototype cavity and compared to simulations with the CST Microwave Studio{reg_sign} program.

  13. Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI)

    NASA Astrophysics Data System (ADS)

    Giaralis, Agathoklis; Marian, Laurentiu

    2016-04-01

    This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) visà- vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It is shown that the TMDI achieves the same level of performance as an unconventional "large mass" TMD for seismic protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same attached mass.

  14. Study on eliminating fire dampers to maintain process confinement

    SciTech Connect

    Walling, R.C.; Patel, J.B.; Strunk, A.J.

    1991-12-31

    The DOE General Design Criteria for the Defense Waste Processing Facility (DWPF) at the Westinghouse Savannah River Site (WSRS) requires the NFPA National Fire Codes to be incorporated into the design and simultaneously maintain process confinement integrity to prevent the release of radioactivity. Although the NFPA Standard for the Installation of Air Conditioning and Ventilation Systems, NFPA 90, requires fire dampers (FD) in HVAC duct penetrations of two hour rated fire barriers, closure of fire dampers at DWPF may compromise the integrity of the process confinement system. This leads to the need for an overall risk assessment to determine the value of 39 fire dampers that are identified later in the study as capable of a confinement system upset.

  15. Study on eliminating fire dampers to maintain process confinement

    SciTech Connect

    Walling, R.C.; Patel, J.B.; Strunk, A.J.

    1991-01-01

    The DOE General Design Criteria for the Defense Waste Processing Facility (DWPF) at the Westinghouse Savannah River Site (WSRS) requires the NFPA National Fire Codes to be incorporated into the design and simultaneously maintain process confinement integrity to prevent the release of radioactivity. Although the NFPA Standard for the Installation of Air Conditioning and Ventilation Systems, NFPA 90, requires fire dampers (FD) in HVAC duct penetrations of two hour rated fire barriers, closure of fire dampers at DWPF may compromise the integrity of the process confinement system. This leads to the need for an overall risk assessment to determine the value of 39 fire dampers that are identified later in the study as capable of a confinement system upset.

  16. A nonlinear auxetic structural vibration damper with metal rubber particles

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie

    2013-08-01

    The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.

  17. Design and application of squeeze film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Allaire, P. E.

    1975-01-01

    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.

  18. Method for evaluating gravity effects in the testing of nutation dampers. [on single or dual spin satellites

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1975-01-01

    A method is developed for determining the effect of gravity in the testing of nutation dampers on symmetric single or dual spin satellites. The basic theory is developed and then applied to the partially filled viscous ring damper and the spring-mass-dashpot damper. A comparison with test results for the viscous ring damper is also given.-

  19. 76 FR 80891 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... that NOAA ask the Department of the Interior (DOI) to defer further action on offshore wind leasing... IHA (76 FR 56735, September 14, 2011). The activities to be conducted have not changed between the IHA... proposed IHA notice (76 FR 56735, September 14, 2011), the application, and associated documents...

  20. 78 FR 31517 - Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind Turbines); Brighton, Denver, Pueblo, and Windsor, Colorado Vestas Nacelles America, Inc. (Vestas), operator of Subzone...

  1. DARHT-II Injector Transients and the Ferrite Damper

    SciTech Connect

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  2. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    NASA Astrophysics Data System (ADS)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  3. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  4. SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design

    NASA Technical Reports Server (NTRS)

    Montgomery, S. K.

    1999-01-01

    During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode

  5. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  6. The "wind of 120 days" and dust storm activity over the Sistan Basin

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Zawar-Reza, P.; Sturman, A.

    2014-06-01

    Mesoscale features play a critical role in creating the strong "wind of 120 days" common in eastern Iran and western Afghanistan. The Weather Research and Forecasting with Chemistry (WRF/Chem) model is used with the available observations to investigate the "wind of 120 days", dust storm activity over the Sistan Basin, and major sources of dust influencing Iran. The winds are strong from mid-May to mid-September when a persistent high-pressure system over the high mountains of the Hindu Kush in northern Afghanistan, combined with a summertime thermal low over desert lands of eastern Iran and western Afghanistan, produce a strong pressure gradient. The winds become accelerated by the channeling effect of the surrounding orography. A northerly low level jet (LLJ) along the Iran-Afghanistan border has a peak at 300-500 m and is strongest in July with the nighttime monthly averaged wind speed of 20 m s- 1, and extends across a broad latitudinal area along the Iran-Afghanistan border. The strong near-surface wind speed along with the LLJ results in substantial dust emission from the Sistan Basin and subsequent long-range meridional transport. Dried Hamoun Lake in the Sistan Basin contains large amounts of erodible sediment that is required for dust entrainment. The LLJ is persistent throughout the night, but is weakened during the day. A pronounced diurnal cycle in the near-surface wind speed has been identified with a peak in the mid-morning in association with momentum transfer from the jet level down to the surface as the daytime mixed layer evolves.

  7. An inverse model for magnetorheological dampers based on a restructured phenomenological model

    NASA Astrophysics Data System (ADS)

    Qian, Li-Jun; Liu, Bo; Chen, Peng; Bai, Xian-Xu

    2016-04-01

    Magnetorheological dampers (MRDs), a semi-active actuator based on MR effect, have great potential in vibration/shock control systems. However, it is difficult to establish its inverse model due to its intrinsic strong nonlinear hysteresis behaviors, and sequentially the precise, fast and effective control could not be realized effectively. This paper presents an inverse model for MRDs based on a restructured phenomenological model with incorporation of the "normalization" concept. The proposed inverse model of MRDs is validated by the simulation of the force tracking. The research results indicate that the inverse model could be applied for the damping force control with consideration of the strong nonlinear hysteresis behaviors of the MRDs.

  8. Analytical investigation of squeeze film dampers

    NASA Astrophysics Data System (ADS)

    Bicak, Mehmet Murat Altug

    literature and in-house experimental procedures including comparison against viscoelastic dampers.

  9. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  10. Magneto-rheological (MR) damper for landing gear system

    NASA Astrophysics Data System (ADS)

    Khani, Mahboubeh

    2010-11-01

    Depending on the different sink speeds, angles of attack and masses; aircraft landing gears could face a wide range of impact conditions which may possibly cause structural damage or failure. Thus, in hard landing scenarios, the landing gear must absorb sufficient energy in order to minimize dynamic stress on the aircraft airframe. Semi-active control systems are the recent potential solutions to overcome these limitations. Among semi-active control strategies, those based on smart fluids such as magneto-rheological (MR) fluids have received recent attraction as their rheological properties can be continuously controlled using magnetic or electric field and they are not sensitive to the contaminants and the temperature variation and also require lower powers. This thesis focuses on modeling of a MR damper for landing gear system and analysis of semi-active controller to attenuate dynamic load and landing impact. First, passive landing gear of a Navy aircraft is modeled and the forces associated with the shock strut are formulated. The passive shock strut is then integrated with a MR valve to design MR shock strut. Here, MR shock strut is integrated with the landing gear system modeled as the 2DOF system and governing equations of motion are derived in order to simulate the dynamics of the system under different impact conditions. Subsequently the inverse model of the MR shock strut relating MR yield stress to the MR shock strut force and strut velocity is formulated. Using the developed governing equations and inverse model, a PID controller is formulated to reduce the acceleration of the system. Controlled performance of the simulated MR landing gear system is demonstrated and compared with that of passive system.

  11. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  12. Development of steel dampers for bridges to allow large displacement through a vertical free mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Yan, Hong; Wang, Tao; Xu, Peizhen; Xie, Qiang

    2014-09-01

    Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.

  13. Seismic design of steel structures with lead-extrusion dampers as knee braces

    NASA Astrophysics Data System (ADS)

    monir, Habib Saeed; Naser, Ali

    2008-07-01

    One of the effective methods in decreasing the seismic response of structure against dynamic loads due to earthquake is using energy dissipating systems. Lead-extrusion dampers (LED)are one of these systems that dissipate energy in to one lead sleeve because of steel rod movement. Hysteresis loops of these dampers are approximately rectangular and acts independent from velocity in frequencies that are in the seismic frequency rang. In this paper lead dampers are considered as knee brace in steel frames and are studied in an economical view. Considering that lead dampers don't clog structural panels, so this characteristic can solve brace problems from architectural view. The behavior of these dampers is compared with the other kind of dampers such as XADAS and TADAS. The results indicate that lead dampers act properly in absorbing the induced energy due to earthquake and good function in controlling seismic movements of multi-story structures

  14. Seismic design of steel structures with lead-extrusion dampers as knee braces

    SciTech Connect

    Monir, Habib Saeed; Naser, Ali

    2008-07-08

    One of the effective methods in decreasing the seismic response of structure against dynamic loads due to earthquake is using energy dissipating systems. Lead-extrusion dampers (LED) are one of these systems that dissipate energy in to one lead sleeve because of steel rod movement. Hysteresis loops of these dampers are approximately rectangular and acts independent from velocity in frequencies that are in the seismic frequency rang. In this paper lead dampers are considered as knee brace in steel frames and are studied in an economical view. Considering that lead dampers don't clog structural panels, so this characteristic can solve brace problems from architectural view. The behavior of these dampers is compared with the other kind of dampers such as XADAS and TADAS. The results indicate that lead dampers act properly in absorbing the induced energy due to earthquake and good function in controlling seismic movements of multi-story structures.

  15. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Meléndez, M.; Veilleux, S.; Reeves, J. N.; González-Alfonso, E.; Reynolds, C. S.

    2015-03-01

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  16. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  17. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  18. Analysis of the partially filled viscous ring damper. [application as nutation damper for spinning satellite

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.

  19. Experimental Study on a Tuned-Mass Damper of Offshore for Vibration Reduction

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Zhao, Xilu; Zheng, Rencheng

    2016-09-01

    With the development of industry, oceanic oil production is one of the most important energy resources. Normally, offshore platform, located in the hostile environment, is easily subjected to unstable environmental loading, such as wind, wave, ice, and earthquake, and it becomes a critical problem to ensure the stability of offshore platform for safely engineering operations. In recent years, tuned-mass damper (TMD) technology has been adopted to reduce vibrations from wind and earthquake influences. Due to the complexity of earthquake excitations, most of researchers were focused on controlling response of structures under wind loads; however, less attention has been put on controlling earthquake response. Therefore, this study concentrates on the seismic reduction of offshore platform by application of a TMD system, and a comprehensively experimental study was processed to validate its effectiveness exposed to different earthquake. A 4-column offshore platform was built according to the actual size of approximately 1:200 ratios, and a TMD system was prepared for the experiment. By the different performance analyses, experimental results indicated that the proposed TMD system can effectively suppress the earthquake stimulus and keep the stability of offshore platform.

  20. Stove having auxiliary damper operably connected to access door

    SciTech Connect

    Webb, J.E.

    1981-07-28

    A stove of the wood burning type is provided with a smoke passage having a main opening adjacent the access door of the stove and an auxiliary opening therein which is located further away from the access door and more closely adjacent the rear portion of the smoke passage and the chimney than the main opening. A regulator damper controls the rate of flow of products of combustion from the combustion chamber through the main opening and the smoke passage to the chimney, and an auxiliary damper normally closes the auxiliary opening when the access door is in a normally closed position. Apparatus is operably associated with the auxiliary damper and the stove access door for effecting movement of the auxiliary damper from the normally closed position to the opened position prior to the access door being opened for redirecting the products of combustion through the auxiliary opening and thus further away from the access door so as to thereby prevent the escapement of smoke through the stove access opening when the access door is opened.

  1. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  2. Damper reduces effects of resonance on force transducer

    NASA Technical Reports Server (NTRS)

    Postma, R. W.

    1966-01-01

    Viscous-film damper eliminates response lag of resonance generated noise when inserted into the thrust measuring system. This technique can be applied to automated devices when pulsed force or low order impact is involved, and where signal noise is produced by stopping or reversal of mechanical travel or by water hammer.

  3. Superelastic viscous dampers for seismically resilient steel frame structures

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Meguira, B.

    2014-04-01

    This study proposes a passive control device based on superelastic behavior of shape memory alloys (SMAs) and investigates the device performance for improving response of steel frame structures subjected to multi-level seismic hazards. The device, named as Superelastic Viscous Damper (SVD), exhibits both re-centering and energy-dissipating capabilities and consists of SMA elements and a viscoelastic (VE) damper. SMA elements are mainly used as recentering unit and the viscoelastic damper is employed as energy dissipation unit. The VE damper consists of two layers of VE material bonded with three steel plates. Energy is dissipated through the shear deformation of VE material. Each SMA element forms a continuous loop; wrapping the loops around the outer two plates improves compactness and efficiency. An analytical model of a three-story benchmark steel building with the installed SVDs is developed to determine the response of the structure under a ground motion input. A neuro-fuzzy model is used to capture nonlinear behavior of the SMA elements of the SVD. Nonlinear response history analyses are conducted at MCE level seismic hazard. A suite of 22 ground motion records is employed in dynamic analysis. Peak interstory drift, peak absolute floor acceleration, and residual story drift are selected as the primary demand parameters. Results shows that SVDs can effectively mitigate dynamic response of steel frame structures under strong ground motions and enhance their post-earthquake functionality.

  4. Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Zeinali, Mohammadjavad; Amri Mazlan, Saiful; Choi, Seung-Bok; Imaduddin, Fitrian; Hamidah Hamdan, Lailatul

    2016-05-01

    This work presents a 2D simulation study of a mixed-mode magnetorheological (MR) damper in which the influence of the geometric elements of the piston and magnetic coil on the MR damper’s performance is investigated by using the Ansoft Maxwell software tool. Four results of the simulation, which are magnetic flux density (B), MR fluid yield stress (τ 0), {τ }0{L}a and W{τ }0{L}a, are used to compare the performance of the MR damper. Multiplication of the yield stress by the active operating mode length ({τ }0{L}a) represents the variable portion of the active (on-state) damping force of the flow mode motion, while the value of W{τ }0{L}a represents the active damping force of the shear mode motion. The contribution of each operating mode (shear and flow) is related to the mixed-mode geometry and piston velocity. Therefore, each operating mode is evaluated separately. In this work, a total of 154 simulations are done in which 74, 20 and 60 simulations are conducted to analyse the effect of the piston radius, coil dimensions (width and length) and coil boundary lengths, respectively, on the performance of the MR damper. The simulation results show that increasing the piston radius can increase the W{τ }0{L}a value and reduce the value. For a given area of magnetic coil housing, a greater housing length in the axial direction of the piston can increase the achieved yield stress of the MR fluid and hence consequently the performance of the MR damper. A minimum boundary length is needed around the magnetic coil in order to attain a supreme magnetic field distribution. However, there is an optimised value for axial coil boundary lengths, which are the lengths of the upper and lower mixed-mode areas.

  5. Active region plasma outflows as sources of slow/intermediate solar wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  6. Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation

    NASA Astrophysics Data System (ADS)

    Ngatu, Grum T.

    Most advanced helicopter rotors are typically fitted with lag dampers, such as elastomeric or hybrid fluid-elastomeric (FE) lag dampers, which have lower parts counts, are lighter in weight, easier to maintain, and more reliable than conventional hydraulic dampers. However, the damping and stiffness properties of elastomeric and fluid elastomeric lag dampers are non-linear functions of lag/rev frequency, dynamic lag amplitude, and operating temperature. It has been shown that elastomeric damping and stiffness levels diminish markedly as amplitude of damper motion increases. Further, passive dampers tend to present severe damping losses as damper operating temperature increases either due to in-service self-heating or hot atmospheric conditions. Magnetorheological (MR) dampers have also been considered for application to helicopter rotor lag dampers to mitigate amplitude and frequency dependent damping behaviors. MR dampers present a controllable damping with little or no stiffness. Conventional MR dampers are similar in configuration to linear stroke hydraulic type dampers, which are heavier, occupy a larger space envelope, and are unidirectional. Hydraulic type dampers require dynamic seal to prevent leakage, and consequently, frequent inspections and maintenance are necessary to ensure the reliability of these dampers. Thus, to evaluate the potential of combining the simplicity and reliability of FE and smart MR technologies in augmenting helicopter lag mode stability, an adaptive magnetorheological fluid-elastomeric (MRFE) lag damper is developed in this thesis as a retrofit to an actual fluid-elastomeric (FE) lag damper. Consistent with the loading condition of a helicopter rotor system, single frequency (lag/rev) and dual frequency (lag/rev at 1/rev) sinusoidal loading were applied to the MRFE damper at varying temperature conditions. The complex modulus method was employed to linearly characterize and compare the performance of the MRFE damper with the

  7. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.

    1989-01-01

    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  8. Cable vibration control with both lateral and rotational dampers attached at an intermediate location

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Sun, Limin; Nagarajaiah, Satish

    2016-09-01

    Lateral dampers have been extensively studied and implemented for supplementing modal damping in cable vibration mitigation. When considering the cable flexural stiffness that is actually present, albeit small, there is another degree of freedom of the cable at the lateral damper, namely the rotation, that can be constrained by a rotational damper to achieve larger additional damping. This is of particular significance for long cables where the near-anchorage lateral damper alone is usually insufficient. The problem of a cable with bending stiffness, attached with both lateral and rotational dampers at an intermediate point, is therefore considered in this study. The characteristic equation of the resulting system is formulated by assembling the dynamic stiffness from the two segments divided by the damper, which is subsequently solved using argument principle method. Dynamics of the controlled system is thus discussed in general through parametric analysis. For the case where the damper location is close to the anchorage, asymptotic solutions for complex frequency and damping ratio are provided; explicit formulas for determining the optimal damper coefficients are also derived. It is found that when the lateral and rotational damper coefficients are properly balanced, the proposed strategy can achieve up to 30 percent damping enhancement compared to the case with only the lateral damper, in practical cable bending stiffness range.

  9. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  10. Wind for Schools: A National Data and Curricula Development Activity for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2011-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America?s Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community 'host' schools. 3) Implementing teacher training with interactive curricula at each host school.

  11. Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) project is part of NASA Langley Research Center s Benchmark Models Program for studying transonic aeroelastic phenomena. In January of 1996 the BACT wind-tunnel model was used to successfully demonstrate the application of robust multivariable control design methods (H and -synthesis) to flutter suppression. This paper addresses the design and experimental evaluation of robust multivariable flutter suppression control laws with particular attention paid to the degree to which stability and performance robustness was achieved.

  12. Plasma outflows at the border of active regions and the solar wind

    NASA Astrophysics Data System (ADS)

    Nuevo, F. A.; Mandrini, C. H.; Vásquez, A. M.; Deumoulin, P.; Van Driel-Gesztely, L.; Baker, D.; Cristiani, G. D.; Pick, M.; Culhane, J. L.

    We present a detailed topological analysis of active region (AR) 10978; based on a Potential Field Source Surface (PFSS) model. AR 10978 is a standard bipolar region which appears fully covered by the magnetic field lines of a coronal streamer. Despite this simple magnetic configuration; our analysis shows that it is possible for the AR plasma; contained in the outflows observed at the AR borders; to be released into the solar wind via magnetic reconnection.

  13. The Damper Spring Unit of the Sentinel 1 Solar Array

    NASA Technical Reports Server (NTRS)

    Doejaaren, Frans; Ellenbroek, Marcel

    2012-01-01

    The Damper Spring Unit (DSU, see Figure 1) has been designed to provide the damping required to control the deployment speed of the spring driven solar array deployment in an ARA Mk3 or FRED based Solar Array in situations where the standard application of a damper at the root-hinge is not feasible. The unit consists of four major parts: a main bracket, an eddy current damper, a spring unit, an actuation pulley which is coupled via Kevlar cables to a synchro-pulley of a hinge. The damper slows down the deployment speed and prevents deployment shocks at deployment completion. The spring unit includes 4 springs which overcome the resistances of the damper and the specific DSU control cable loop. This means it can be added to any spring driven deployment system without major modifications of that system. Engineering models of the Sentinel 1 solar array wing have been built to identify the deployment behavior, and to help to determine the optimal pulley ratios of the solar array and to finalize the DSU design. During the functional tests, the behavior proved to be very sensitive for the alignment of the DSU. This was therefore monitored carefully during the qualification program, especially prior to the TV cold testing. During TV "Cold" testing the measured retarding torque exceeded the max. required value: 284 N-mm versus the required 247 N-mm. Although this requirement was not met, the torque balance analysis shows that the 284 N-mm can be accepted, because the spring unit can provide 1.5 times more torque than required. Some functional tests of the DSU have been performed without the eddy current damper attached. It provided input data for the ADAMS solar array wing model. Simulation of the Sentinel-1 deployment (including DSU) in ADAMS allowed the actual wing deployment tests to be limited in both complexity and number of tests. The DSU for the Sentinel-1 solar array was successfully qualified and the flight models are in production.

  14. Analytical and experimental study on mild steel dampers with non-uniform vertical slits

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Li, Aiqun; Guo, Tong

    2015-03-01

    This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.

  15. Experimental development and control of magnetorheological damper towards smart energy absorption of composite structures

    NASA Astrophysics Data System (ADS)

    Lim, Shen Hin; Prusty, B. Gangadhara; Lee, Ann; Yeoh, Guan Heng

    2013-08-01

    Experimental investigation and efficient control of magnetorheological (MR) damper towards smart energy absorption of composite structures are presented in this paper. The evaluation of an existing MR damper based on the damping force presented in our earlier work is limited by the experiment configuration setup. Using two arms configuration, an experimental test rig is designed to overcome this limitation and enabled the MR damper to be investigated throughout its full velocity range capability. A controller is then developed based on the MR damper investigation to provide automated variable control of induced current with a set crushing force and available data of composite tube crushing force. The controller is assessed numerically and shows that MR damper is controlled to provide consistent crushing force despite oscillation from the composite tube crushing force. This, thus, shows promise of MR damper integration towards smart energy absorption of composite structures.

  16. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    SciTech Connect

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro; Greene, Jenny; Barth, Aaron J.

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  17. Application of piezoelectric active-sensors for SHM of wind turbine blades

    SciTech Connect

    Park, Gyuhae; Taylor, Stuart G.; Farinholt, Kevin M; Farrar, Charles R

    2010-10-04

    The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

  18. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Dutta, Saikat; Choi, Seung-Bok

    2016-03-01

    It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.

  19. Cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr.; Bradshaw, J. F.; Rush, H. F., Jr.; Wallace, J. W.; Watkins, V. E., Jr.

    1984-01-01

    This paper summarizes the current cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center. These research and development activities are being conducted in support of the design and fabrication of models for the new National Transonic Facility (NTF). The scope and current status of major research and development work is described and where available, data are presented from various investigations conducted to date. In addition, design and fabrication experience for existing developmental models to be tested in the NTF is discussed.

  20. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  1. Computational studies of the effects of active and passive circulation enhancement concepts on wind turbine performance

    NASA Astrophysics Data System (ADS)

    Tongchitpakdee, Chanin

    With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the

  2. APPLICATION EFFECT OF SHEAR PANEL DAMPERS TO SEISMIC RETROFIT OF A NETWORK ARCH BRIDGE

    NASA Astrophysics Data System (ADS)

    Sugioka, Koichi; Shima, Kenji; Matsushita, Hiroaki

    This article describes seismic response control design using shear panel dampers for a network arch bridge. Three-dimensional non-linear dynamic time history analyses were carried out considering site-specific earthquake ground motions, to examine the correlation between shear panel damper arrangements and seismic response reductions. Different effects on seismic response reduction were significantly confirmed by the shear panel damper arrangements, and also compared between two arch bridges with different natural periods.

  3. Predictability of dune activity in real dune fields under unidirectional wind regimes

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2015-02-01

    We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Año Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.

  4. Seismic performance of RC shear wall structure with novel shape memory alloy dampers in coupling beams

    NASA Astrophysics Data System (ADS)

    Mao, Chenxi; Dong, Jinzhi; Li, Hui; Ou, Jinping

    2012-04-01

    Shear wall system is widely adopted in high rise buildings because of its high lateral stiffness in resisting earthquakes. According to the concept of ductility seismic design, coupling beams in shear wall structure are required to yield prior to the damage of wall limb. However, damage in coupling beams results in repair cost post earthquake and even in some cases it is difficult to repair the coupling beams if the damage is severe. In order to solve this problem, a novel passive SMA damper was proposed in this study. The coupling beams connecting wall limbs are split in the middle, and the dampers are installed between the ends of the two cantilevers. Then the relative flexural deformation of the wall limbs is transferred to the ends of coupling beams and then to the SMA dampers. After earthquakes the deformation of the dampers can recover automatically because of the pseudoelasticity of austenite SMA material. In order to verify the validity of the proposed dampers, seismic responses of a 12-story coupled shear wall with such passive SMA dampers in coupling beams was investigated. The additional stiffness and yielding deformation of the dampers and their ratios to the lateral stiffness and yielding displacements of the wall limbs are key design parameters and were addressed. Analytical results indicate that the displacement responses of the shear wall structure with such dampers are reduced remarkably. The deformation of the structure is concentrated in the dampers and the damage of coupling beams is reduced.

  5. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    NASA Astrophysics Data System (ADS)

    Yu, M.; Wang, S. Q.; Fu, J.; Peng, Y. X.

    2013-02-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  6. Design and experiments of a novel magneto-rheological damper featuring bifold flow mode

    NASA Astrophysics Data System (ADS)

    Kim, Kyongsol; Chen, Zhaobo; Yu, Dong; Rim, Changhyon

    2016-07-01

    This study presents design and fabrication of a novel magneto-rheological (MR) damper with bifold flow mode gap to improve damping performance. The proposed MR damper is featured by inner flow mode gap connected to the outer flow mode gap through the feedback hole. A mathematical model of the damping force is established for the proposed MR damper and the magnetic circuit has been analyzed with the finite element method, which is used to validate the principle of the proposed MR damper. A conventional MR damper is fabricated with the same dimensions (radius, length) of the piston and is experimentally compared to confirm advantages of the proposed MR damper. The mechanical performance of the proposed MR damper is experimentally investigated and compared with the results by mathematical model and finite element analysis. The research results show that the controllable damping force and equivalent damping of the MR damper with bifold flow mode gap are much larger than those of the conventional MR damper.

  7. A comparative analysis of passive twin tube and skyhook MRF dampers for motorcycle front suspensions

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Gravatt, John

    2004-07-01

    A comparative analysis between conventional passive twin tube dampers and skyhook-controlled magneto-rheological fluid (MRF) dampers for motorcycle front suspensions is provided, based on single axis testing in a damper test rig and suspension performance testing in road trials. Performance motorcycles, while boasting extremely light suspension components and competition-ready performance, have an inherent weakness in comfort, as the suspension systems are designed primarily for racing purposes. Front suspension acceleration and shock loading transmit directly through the front suspension triple clamp into the rider's arms and shoulders, causing rapid fatigue in shoulder muscles. Magneto-rheological fluid dampers and skyhook control systems offer an alternative to conventional sport motorcycle suspensions - both performance and comfort can be combined in the same package. Prototype MRF dampers designed and manufactured specifically for this application require no more space than conventional twin tube designs while adding only 1.7 pounds total weight to the system. The MRF dampers were designed for high controllability and low power consumption, two vital considerations for a motorcycle application. The tests conducted include the dampers' force-velocity curve testing in a damper test rig and suspension performance based on damper position, velocity, and acceleration measurement. Damper test rig results show the MRF dampers have a far greater range of adjustability than the test vehicle's OEM dampers. Combined with a modified sky-hook control system, the MRF dampers can greatly decrease the acceleration and shock loading transmitted to the rider through the handlebars while contributing performance in manners such as anti-dive under braking. Triple clamp acceleration measurements from a variety of staged road conditions, such as sinusoidal wave inputs, will be compared to subjective test-rider field reports to establish a correlation between rider fatigue and the

  8. Hysteresis modeling and experimental validation of a magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Chen, Peng; Qian, Li-Jun; Zhu, An-Ding

    2015-04-01

    In this paper, for modeling the MR dampers, based on the phenomenological model, a normalized phenomenological model is derived through incorporating a "normalization" concept and a restructured model is proposed and realized also with incorporation of the "normalization" concept. In order to demonstrate, a multi-islands genetic algorithm (GA) is employed to identify the parameters of the restructured model, the normalized phenomenological model as well as the phenomenological model. The research results indicate that, as compared with the phenomenological model and the normalized phenomenological model, (1) the restructured model not only can effectively decrease the number of the model parameters and reduce the complexity of the model, but also can describe the nonlinear hysteretic behavior of MR dampers more accurately, and (2) the normalized phenomenological model can improve the model efficiency as compared with the phenomenological model, although not as good as the restructured model.

  9. Stability of a dual-spin satellite with two dampers

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  10. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  11. A novel form of damper for turbo-machinery

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Hart, J. A.

    1987-01-01

    Anti-swirl vanes are used by some manufacturers to delay the full development of half speed circulation in annular clearance spaces. The objective is to reduce the aerodynamic cross-coupling in the forward direction. The novel feature of a jet damper is a number of tangential nozzles discharging against the rotor surface speed. Some preliminary results on a 33.9 Kg rotor demonstrate that significant reductions in amplitude are obtained at the synchronous critical speeds.

  12. Combined High-Resolution Active and Passive Imaging of Ocean Surface Winds from Aircraft

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Piepmeier, J. R.; McIntosh, R. E.; Swift, C. T.; Carswell, J. R.; Donnelly, W. J.; Knapp, E.; Westwater, E. R.; Irisov, V. I.; Fedor, L. S.; Vandemark, D. C.

    1997-01-01

    A unique complement of passive and active microwave imaging and sensing instruments for observing ocean surface emission and scattering signatures were integrated onto the NASA Wallops Flight Facility's Orion P-3B aircraft (N426NA) for the purpose of studying the signature of ocean surface winds. The complement included: (1) a, four-band (X, K, Ka, and W) tri-polarimetric scanning radiometer (PSR), (2) a C-band ocean surface scatterometer (CSCAT), (3) a Ka-band conical-scanning polarimetric radiometer (KASPR), (4) a nadir-viewing Ka-band polarimetric radiometer, (KAPOL), (5) a 21- and 31-GHz zenith-viewing cloud and water vapor radiometer (CWVR), and (6) a radar ocean wave spectrometer (ROWS). The above Ocean Winds Imaging (OWI) complement was flown during January-March, 1997 over the Labrador Sea. Conically-scanned brightness temperature and backscatter imagery were observed over open ocean for a variety of wind speeds and cloud conditions. Presented herein are the results of a preliminary intercomparison of data from several of the OWI instruments.

  13. A novel magnetorheological damper based parallel planar manipulator design

    NASA Astrophysics Data System (ADS)

    Hoyle, A.; Arzanpour, S.; Shen, Y.

    2010-05-01

    This paper presents a novel parallel planar robot design which is low cost and simple in structure. The design addresses some of the problems, such as concentration of excessive load on the links and joints, due to wrong commanding signals being given by the controller. In this application two of the conventional actuators are replaced by magnetorheological (MR) dampers, and only one actuator is used to generate motion. The design paradigm is based on the concept that a moving object 'intuitively' follows the path with minimum resistance to its motion. This implies that virtual adoptable constraints can be used effectively to define motion trajectories. In fact, motion generation and adaptive constraints are two elements essential to implementing this strategy. In this paper, MR dampers are used to provide adjustable constraints and to guide the platform that is moved by the linear motor. The model of the MR dampers is derived using the Bouc-Wen model. This model is then used for manipulator simulation and controller design. Two controllers are developed for this manipulator: (1) a closed loop on/off one and (2) a proportional-derivative controller. Also, three different trajectories are defined and used for both the simulations and experiments. The results indicate a good agreement between the simulations and experiments. The experimental results also demonstrate the capability of the manipulator for following sophisticated trajectories.

  14. High specialty stainless steels and nickel alloys for FGD dampers

    SciTech Connect

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K.; Starke, K.

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  15. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  16. Exact H2 optimal tuning and experimental verification of energy-harvesting series electromagnetic tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Liu, Yilun; Zuo, Lei; Lin, Chi-Chang; Parker, Jason

    2016-04-01

    Energy-harvesting series electromagnetic tuned mass dampers (EMTMDs) have been recently proposed for dual-functional energy harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. In this paper, we derive ready-to-use analytical tuning laws for the energy-harvesting series EMTMD system when the primary structure is subjected to force or ground excitations, like wind loads or earthquakes. Both vibration mitigation and energy harvesting performances are optimized using H2 criteria to minimize root-mean-square values of the deformation of the primary structure, or maximize the average harvestable power. These analytical tuning laws can easily guide the design of series EMTMDs under various ambient loadings. Later, extensive numerical analysis is presented to show the effectiveness of the series EMTMDs. The numerical analysis shows that the series EMTMD is superior to mitigate the vibration of the primary structure nearly across the whole frequency spectrum, as compared to that of classic TMDs. Simultaneously, the series EMTMD can better harvest the energy due to broader bandwidth effect. Beyond simulations, this paper also experimentally verifies the effectiveness of the energy-harvesting series electromagnetic TMDs in both vibration mitigation and energy harvesting.

  17. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  18. Performance of viscoelastic dampers (VED) under various temperatures and application of magnetorheological dampers (MRD) for seismic control of structures

    NASA Astrophysics Data System (ADS)

    Bhatti, Abdul Qadir

    2013-08-01

    A number of studies have been carried out to investigate the performance of viscoelastic dampers (VEDs) and magnetorheological dampers (MRDs) in controlling the seismic response of buildings, but very few of them regarding the effect of temperature on the behavior of those dampers. The energy absorption properties of the VEDs are dependent on the ambient temperature, excitation frequency and strain amplitude. Several mathematical models have been investigated for reproducing the experimental behavior of single degree of freedom VEDs and MEDs. Of these, only the fractional derivative model can reflect the influence of temperature which is, however, so complex that it is difficult to apply in structural analysis. In order to verify the effect of temperature, two case studies of structural element have been conducted: once using VED and once using MRD. Kelvin-Voigt mathematical model applied, they were investigated and after analyzing the results, the force vs. displacement showed that MRD achieved a high force capacity and a better performance than VED. Furthermore, the effect of the temperature in case of VED observed via plotting the dissipated energy hysteresis at different temperatures. These results validate the effect of the temperature as the lower the temperature the more viscous the dashpot element becomes, hence improving damping, but this is up to a specific low temperature.

  19. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    NASA Technical Reports Server (NTRS)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  20. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  1. Bat mortality and activity at a Northern Iowa wind resource area

    USGS Publications Warehouse

    Jain, A.A.; Koford, Rolf R.; Hancock, A.W.; Zenner, G.G.

    2011-01-01

    We examined bat collision mortality, activity and species composition at an 89-turbine wind resource area in farmland of north-central Iowa from mid-Apr. to mid-Dec., 2003 and mid-Mar. to mid-Dec., 2004. We found 30 bats beneath turbines on cleared ground and gravel access areas in 2003 and 45 bats in 2004. After adjusting for search probability, search efficiency and scavenging rate, we estimated total bat mortality at 396 ?? 72 (95 ci) in 2003 and 636 ?? 112 (95 ci) in 2004. Although carcasses were mostly migratory tree bats, we found a considerable proportion of little brown bats (Myotis lucifugus). We recorded 1465 bat echolocation call files at turbine sites ( 34.88 call files/detector-night) and 1536 bat call files at adjacent non-turbine sites ( 36.57 call files/detector-night). Bat activity did not differ significantly between turbine and non-turbine sites. A large proportion of recorded call files were made by Myotis sp. but this may be because we detected activity at ground level only. There was no relationship between types of turbine lights and either collision mortality or echolocation activity. The highest levels of bat echolocation activity and collision mortality were recorded during Jul. and Aug. during the autumn dispersal and migration period. The fatality rates for bats in general and little brown bats in particular were higher at the Top of Iowa Wind Resource Area than at other, comparable studies in the region. Future efforts to study behavior of bats in flight around turbines as well as cumulative impact studies should not ignore non-tree dwelling bats, generally regarded as minimally affected. ?? 2011, American Midland Naturalist.

  2. Development of Optimal Viscous Dampers for RC Structures in Near Field Ground Motions

    SciTech Connect

    Puthanpurayil, Arun M.; Reynolds, Paul

    2008-07-08

    Recent researches show that more than 50% of the economic loss in earthquakes is due to damage of non-structural elements: $8 billion loss in the 1989 Loma Prieta earthquake and $18.5 billion in the 1994 Northridge earthquake. An approach to reduce the economic loss during a seismic event without compromising the structural safety aspect is to incorporate special mechanical devices like fluid viscous dampers in the parent structural system. A recent study carried out to assess the efficacy of viscous dampers in reducing nonstructural damage of low, medium and high rise structures shows that; linear dampers are well suited for low rise category whereas the medium and high rise category requires nonlinear dampers. In this paper an analytical approach is adopted to derive the optimal combination of damper design parameters for all the three categories of structure subjected to near field ground motion. Linear time history analysis by direct time integration was carried out for the linear viscous dampers, while the parameters of the nonlinear viscous dampers were obtained using nonlinear modal time history analysis (Fast Nonlinear analysis). The results of the study are presented in the form of a set of design curves which can be used for the initial selection of parameters for Damper design.

  3. Analytical modeling of a simple passive electromagnetic eddy current friction damper

    NASA Astrophysics Data System (ADS)

    Amjadian, Mohsen; Agrawal, Anil K.

    2016-04-01

    This paper presents analytical modeling of a novel type of passive friction damper for seismic hazard mitigation of structural systems. This seismic protective device, which is termed as Passive Electromagnetic Eddy Current Friction Damper (PEMECFD), utilizes a solid-friction mechanism in parallel with an eddy current damping system to dissipate a larger amount of input seismic energy than that by a device with based on solid friction only. In this passive damper, friction force is produced through a magnetic repulsive action between two permanent magnets (PMs) magnetized in the direction normal to the friction surface. The eddy current damping force in the damper is generated because of the motion of the PMS in the vicinity of a conductor. Friction and eddy current damping parts of the damper are able to produce ideal rectangular and elliptical hysteresis loops individually. Seismic hazard mitigation effectiveness of the proposed damper has been demonstrated through an implementation on a two-degree-of-freedom frame building structure. Numerical results show that the proposed damper is more efficient in dissipating input seismic energy than a Passive Linear Viscous Damper (PLVD) with same force capacity.

  4. Nonlinear modeling of adaptive magnetorheological landing gear dampers under impact conditions

    NASA Astrophysics Data System (ADS)

    Ahuré Powell, Louise A.; Choi, Young T.; Hu, Wei; Wereley, Norman M.

    2016-11-01

    Adaptive landing gear dampers that can continuously adjust their stroking load in response to various operating conditions have been investigated for improving the landing performance of a lightweight helicopter. In prior work, adaptive magnetorheological (MR) landing gear dampers that maintained a constant peak stroking force of 4000 lbf across sink rates ranging from 6 to 12 ft s‑1 were designed, fabricated and successfully tested. In this follow-on effort, it is desired to expand the high end of the sink rate range to hold the peak stroking load constant for sink rates ranging from 6 to 26 ft s‑1, thus extending the high end of the speed range from 12 (in the first study) to 26 ft s‑1. To achieve this increase, a spring-based relief valve MR landing gear damper was developed. In order to better understand the MR landing gear damper behavior, a modified nonlinear Bingham Plastic model was formulated, and it incorporates Darcy friction, viscous forces across the MR and relief valves to better account for the damper force behavior at higher speeds. In addition, gas pressure inside the MR damper piston is considered so the total damper force includes a gas force. The MR landing gear damper performance is characterized using drop tests, and the experiments are used to validate model predictions data at low and high nominal impact speeds up to 26 ft s‑1 (shaft velocity of 9.6 ft s‑1).

  5. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems.

    PubMed

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  6. Viscous rotary vane actuator/damper. [for Mariner and Viking programs

    NASA Technical Reports Server (NTRS)

    Harper, J. D.

    1976-01-01

    A compact viscous rotary actuator/damper for use on the Mariner '71 and Viking Programs was developed. Several functions were combined into this single mechanism to control the deployment, latching, and damping of the solar panel arrays used on these space vehicles. The design, development, and testing of the actuator/damper are described, and major problems encountered are discussed.

  7. Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

    PubMed Central

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  8. ERS-1 scatterometer calibration and validation activities at ECMWF. B: From radar backscatter characteristics to wind vector solutions

    NASA Technical Reports Server (NTRS)

    Stoffelen, AD; Anderson, David L. T.; Woiceshyn, Peter M.

    1992-01-01

    Calibration and validation activities for the ERS-1 scatterometer were carried out at ECMWF (European Center for Medium range Weather Forecast) complementary to the 'Haltenbanken' field campaign off the coast of Norway. At a Numerical Weather Prediction (NWP) center a wealth of verifying data is available both in time and space. This data is used to redefine the wind retrieval procedure given the instrumental characteristics. It was found that a maximum likelihood estimation procedure to obtain the coefficients of a reformulated sigma deg to wind relationship should use radar measurements in logarithmic rather than physical space, and use winds as the wind components rather than wind speed and direction. Doing this, a much more accurate transfer function than the one currently operated by ESA was derived. Sigma deg measurement space shows no signature of a separation in an upwind solution cone and a downwind solution cone. As such signature was anticipated in ESA's wind direction ambiguity removal algorithm, reconsideration of the procedure is necessary. Despite the fact that revisions have to be made in the process of wind retrieval; a grid potential is shown for scatterometry in meteorology and climatology.

  9. Recent wind resource characterization activities at the National Renewable Energy Laboratory

    SciTech Connect

    Elliott, D L; Schwartz, M N

    1997-07-01

    The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

  10. A new magnetorheological damper with improved displacement differential self-induced ability

    NASA Astrophysics Data System (ADS)

    Hu, Guoliang; Zhou, Wei; Li, Weihua

    2015-08-01

    This work is an extension of our previous study on the development of a linear variable differential sensor (LVDS)-based magnetorheological (MR) damper with self-sensing capability, where a new MR damper integrated with LVDS technology was developed and prototyped, then its self-induced performance under static and dynamic working conditions was experimentally evaluated. The results of the static and dynamic experiments indicated that the self-induced voltage was proportional to the displacement of the damper. Moreover, the damping performance of this new MR damper was also evaluated through an experimental study. Compared with our previous study, the new MR damper performed better in terms of its self-induced sensing ability and damping capacity.

  11. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications

    PubMed Central

    Pan, Qiang; Cho, Chongdu

    2007-01-01

    Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its unique characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. This study presents a shape memory alloy based micro-damper, which exploits the pseudoelasticity of NiTi wires for energy dissipation. The mechanical model and functional principle of the micro-damper are explained in detail. Moreover, the mechanical behavior of NiTi wires subjected to various temperatures, strain rates and strain amplitudes is observed. Resulting from those experimental results, the damping properties of the micro-damper involving secant stiffness, energy dissipation and loss factor are analyzed. The result indicates the proposed NiTi based micro-damper exhibits good energy dissipation ability, compared with conventional materials damper.

  12. Heat transfer measurements in ONERA supersonic and hypersonic wind tunnels using passive and active infrared thermography

    NASA Astrophysics Data System (ADS)

    Balageas, D.; Boscher, D.; Deom, A.; Gardette, G.

    Over the past few years, a major intellectual and technical investment has been made at ONERA to use data acquisition systems and data reduction procedures using an infrared camera as a detector under routine wind tunnel conditions. This allows a really quantitative mapping of heat transfer rate distributions on models in supersonic and hypersonic flows. Sufficient experience has now been acquired to allow us to give an overview of: (1) the systems and data reduction procedures developed for both passive and active methods; (2) typical results obtained on various configurations such as supersonic axisymmetrical flow around an ogival body (passive and active thermography), heat flux modulation in the reattachment zone of a flap in hypersonic regime, transitional heating on very slightly blunted spheroconical bodies in hypersonic flows, and materials testing in high-enthalpy hypersonic flow (passive thermography).

  13. Simultaneous optimization of force and placement of friction dampers under seismic loading

    NASA Astrophysics Data System (ADS)

    Fleck Fadel Miguel, Letícia; Fleck Fadel Miguel, Leandro; Holdorf Lopez, Rafael

    2016-04-01

    It is known that the use of passive energy-dissipation devices, such as friction dampers, reduces considerably the dynamic response of a structure subjected to earthquake ground motions. Nevertheless, the parameters of each damper and the best placement of these devices remain difficult to determine. Some articles on optimum design of tuned mass dampers and viscous dampers have been published; however, there is a lack of studies on optimization of friction dampers. The main contribution of this article is to propose a methodology to simultaneously optimize the location of friction dampers and their friction forces in structures subjected to seismic loading, to achieve a desired level of reduction in the response. For this purpose, the recently developed backtracking search optimization algorithm (BSA) is employed, which can deal with optimization problems involving mixed discrete and continuous variables. For illustration purposes, two different structures are presented. The first is a six-storey shear building and the second is a transmission line tower. In both cases, the forces and positions of friction dampers are the design variables, while the objective functions are to minimize the interstorey drift for the first case and to minimize the maximum displacement at the top of the tower for the second example. The results show that the proposed method was able to reduce the interstorey drift of the shear building by more than 65% and the maximum displacement at the top of the tower by approximately 55%, with only three friction dampers. The proposed methodology is quite general and it could be recommended as an effective tool for optimum design of friction dampers for structural response control. Thus, this article shows that friction dampers can be designed in a safe and economic way.

  14. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  15. Study of magnetic activity effects on the thermospheric winds in the low ionosphere. Master`s thesis

    SciTech Connect

    Davila, R.C.

    1994-09-01

    The purpose of this thesis is to examine the effects of magnetic activity on the low latitude F-region thermospheric winds. The F-region (120-1600 km) is a partially ionized medium where O+ and O are the major ion and neutral species, respectively. The thermospheric winds at these altitudes are driven primarily by pressure gradient forces resulting from the solar heating during the day and cooling at night. For this study, the author used measured Fabry-Perot Interferometer (FPI) winds at Arequipa (16.5 deg S, 71.5 deg W) and measured FPI and incoherent Scatter Radar (ISR) winds at Arecibo (18.6 deg N, 66.8 deg W).

  16. High-resolution wind speed measurements using actively heated fiber optics

    NASA Astrophysics Data System (ADS)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  17. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  18. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  19. Active Vibration Control of an S809 Wind Turbine Blade Using Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Boucher, Matthew; Ostman, Rebecca; Amitay, Michael

    2009-11-01

    Active flow control via synthetic jet actuators was implemented to improve the aeroelastic performance of a small scale S809 airfoil wind turbine blade model in a wind tunnel. Blade vibration performance was explored for a range of steady post-stall angles of attack, as well as various unsteady pitching motions for a chord based Reynolds number range of 1.29x10^5 to 3.69x10^5. Blade tip deflection was measured using a pair of calibrated strain gauges mounted at the root of the model. Using flow control, significant vibration reduction was observed for some steady post-stall angles of attack, while for dynamic pitching motions, vibration reduction was more pronounced (for a given angle of attack) on the pitch up motion compared to the pitch down motion of the blade cycle. This effect was attributed to the phenomenon known as dynamic stall, where the shedding of a leading edge vortex during the pitch up motion contributes to elevated values of lift (compared to static angles of attack) and lower values of lift when the blade is pitched down. This effect was also quantified through the use of Particle Image Velocimetry.

  20. Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control

    NASA Astrophysics Data System (ADS)

    Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark

    2015-11-01

    The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.

  1. 77 FR 5830 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... of involving Federal agencies, states, tribes, local governments, offshore wind energy developers... initiative offshore Massachusetts. The purpose of the ``Smart from the Start'' wind energy initiative is to... potential future wind energy leasing offshore Massachusetts (Call Area). This Call Area is identified in...

  2. 77 FR 74218 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... agencies, states, tribes, local governments, offshore wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind energy initiative offshore North Carolina... for potential future wind energy leasing offshore North Carolina (Call Areas). These Call Areas...

  3. Optimal member damper controller design for large space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Groom, N. J.

    1980-01-01

    Consideration is given to the selection of velocity feedback gains for individual dampers for the members of a structurally controlled large flexible space structure. The problem is formulated as an optimal output feedback regulator problem, and necessary conditions are derived for minimizing a quadratic performance function. The diagonal nature of the gain matrix is taken into account, along with knowledge of noise covariances. It is pointed out that the method presented offers a systematic approach to the design of a class of controllers for enhancing structural damping, which have significant potential if used in conjunction with a reduced-order optimal controller for rigid-body modes and selected structural modes.

  4. Computational issues in optimal tuning and placement of passive dampers

    NASA Technical Reports Server (NTRS)

    Chu, C. C.; Milman, M. H.

    1993-01-01

    The effectiveness of viscous elements in introducing damping in a structure is a function of several variables including their number, their location in the structure, and their physical properties. In this paper, the optimal damper placement and tuning problem is posed to optimize these variables. Both discrete and continuous optimization problems are formulated and solved corresponding, respectively, to the problems of placement of passive elements and to the tuning of their parameters. The paper particularly emphasizes the critical computational issues resulting from the optimization formulations. Numerical results involving a lightly damped testbed structure are presented.

  5. Vibration Characteristics of Squeeze Film Damper during Maneuver Flight

    NASA Astrophysics Data System (ADS)

    Wang, Siji; Liao, Mingfu; Li, Wei

    2015-05-01

    The rotor systems of an aero engine will endure additional centrifugal force and gyroscopic moment during maneuver flight. A maneuver fly mechanical simulator is designed and experimental investigations on dynamics of squeeze film damper (SFD) under the different additional centrifugal force and gyroscopic moment are carried out. The results show that the maneuver flight weaken effectiveness of the SFD, the additional centrifugal force and gyroscopic moment caused by maneuver flight will change film damping, film stiffness. And the influence of maneuver flight can be effective relieved by increasing the film clearance.

  6. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011

    NASA Astrophysics Data System (ADS)

    Verbanac, G.; Pierrard, V.; Bandić, M.; Darrouzet, F.; Rauch, J.-L.; Décréau, P.

    2015-10-01

    Taking advantage of the Cluster satellite mission and especially the observations made by the instrument WHISPER to deduce the electron number density along the orbit of the satellites, we studied the relationships between the plasmapause positions (LPP) and the following LPP indicators: (a) solar wind coupling functions Bz (Z component of the interplanetary magnetic field vector, B, in GSM system), BV (related to the interplanetary electric field; B is the magnitude of the interplanetary magnetic field vector, V is solar wind velocity), and dΦmp/dt (which combines different physical processes responsible for the magnetospheric activity) and (b) geomagnetic indices Dst, Ap and AE. The analysis is performed separately for three magnetic local time (MLT) sectors (Sector1 - night sector (01:00-07:00 MLT); Sector2 - day sector (07:00-16:00 MLT); Sector3 - evening sector (16:00-01:00 MLT)) and for all MLTs taken together. All LPP indicators suggest the faster plasmapause response in the postmidnight sector. Delays in the plasmapause responses (hereafter time lags) are approximately 2-27 h, always increasing from Sector1 to Sector3. The obtained fits clearly resolve the MLT structures. The variability in the plasmapause is the largest for low values of LPP indicators, especially in Sector2. At low activity levels,LPP exhibits the largest values on the dayside (in Sector2) and the smallest on the postmidnight side (Sector1). Displacements towards larger values on the evening side (Sector3) and towards lower values on the dayside (Sector2) are identified for enhanced magnetic activity. Our results contribute to constraining the physical mechanisms involved in the plasmapause formation and to further study the still not well understood related issues.

  7. The field-dependent shock profiles of a magnetorhelogical damper due to high impact: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Kim, Hwan-Choong; Oh, Jong-Seok; Choi, Seung-Bok

    2015-02-01

    This work proposes a new damper featuring magnetorheological fluid (MR damper) and presents its field-dependent damping forces due to high impact. To achieve this goal, a large MR damper, which can produce a damping force of 100 kN at 6 A, is designed and manufactured based on the analysis of the magnetic flux intensity of the damper. After identifying the field-dependent damping force levels of the manufactured MR damper, a hydraulic horizontal shock tester is established. This shock testing system consists of a velocity generator, impact mass, shock programmer, and test mass. The MR damper is installed at the end of the wall in the shock tester and tested under four different experimental conditions. The shock profile characteristics of the MR damper due to different impact velocities are investigated at various input current levels. In addition, the inner pressure of the MR damper during impact, which depends on the input’s current level, is evaluated at two positions that can represent the pressure drop that generates the damping force of the MR damper. It is demonstrated from this impact testing that the shock profiles can be changed by the magnitude of the input current applied to the MR damper. It directly indicates that a desired shock profile can be achieved by installing the MR damper associated with appropriate control logics to adjust the magnitude of the input current.

  8. Wind for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  9. 2014 Wind Technologies Market Report

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Daghouth, Naim; Hoen, Ben; Mills, Andrew; Hamachi LaCommare, Kristina; Millstein, Dev; Hansen, Dana; Porter, Kevin; Widiss, Rebecca; Buckley, Michael; Oteri, Frank; Smith, Aaron; Tegen, Suzanne

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  10. Solar activity linked variabilities in the Thermospheric meridional winds and their control on the occurrence of Equatorial Spread-F

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Jyoti, N.; Devasia, C.

    The thermospheric wind system, through interactions with the ionospheric layers control many of the electrodynamic processes of the equatorial ionosphere thermosphere system; the occurrence of equatorial Spread F (ESF) being a manifestation of one of these processes. One of the important aspects of a plausible linkage of Thermospheric meridional winds with the ESF has recently been identified as through the polarity of the winds just before the onset of ESF. The importance of winds of equatorward/poleward polarity would matter only in relation with the Fregion base height as to whether it is below or above a characteristic- critical height. It is found that there is a strong solar cycle modulation of the critical base height of the F-region by as much as +/-50km for the occurrence of ESF with the associated meridional winds also responding to the solar variabilities. The solar activity dependence of the meridional wind characteristics and the F-region critical height variations are discussed in detail in relation to their possible roles in the variations of ESF occurrence.

  11. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  12. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  13. Wind as an abiotic factor of Colorado potato beetle (Coleoptera: Chrysomelidae) flight take-off activity under field conditions.

    PubMed

    Boiteau, G; Mccarthy, P C; MacKinley, P D

    2010-10-01

    The flight take-off activity of Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), was significantly higher at a landscape-protected than at semiexposed and exposed sites in a 2-yr field study. In both years, mean daylight temperature, solar radiation, and relative humidity were generally similar at all sites, but wind speed was lower at the protected site than at the exposed sites. Results suggest that wind was the limiting abiotic factor for flight take-off at the exposed site. Caged beetles exposed to constant wind speeds of 3.4, 4.7, and 7.0 m/s showed a significant corresponding decrease in number of flight take-off. There was no cumulative effect of wind exposure on the readiness of the beetles to fly, suggesting that wind acts as a physical barrier to flight take-off. It should be possible to reduce Colorado potato beetle flight dispersal by selecting fields most exposed to wind over landscape-protected fields when rotating potato, Solanum tuberosum L., crops.

  14. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  15. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.

    2016-10-01

    This paper presents the development of an innovative seat suspension working with a rotary magnetorheological (MR) fluid damper. Compared with a conventional linear MR damper, the well-designed rotary MR damper possesses several advantages such as usage reduction of magnetorheological fluid, low sealing requirements and lower costs. This research starts with the introduction of the seat suspension structure and the damper design, followed by the property test of the seat suspension using an MTS machine. The field-dependent property, amplitude-dependent performance, and the frequency-dependent performance of the new seat suspension are measured and evaluated. This research puts emphasis on the evaluation of the vibration reduction capability of the rotary MR damper by using both simulation and experimental methods. Fuzzy logic is chosen to control the rotary MR damper in real time and two different input signals are considered as vibration excitations. The experimental results show that the rotary MR damper under fuzzy logic control is effective in reducing the vibrations.

  16. Medium to long term behavior of MR dampers for structural control

    NASA Astrophysics Data System (ADS)

    Caterino, N.; Azmoodeh, B. M.; Occhiuzzi, A.

    2014-10-01

    The medium to long term behavior of a prototype magnetorheological (MR) damper for structural control of earthquake induced vibrations is investigated herein. Unlike some applications for which MR devices experience frequent dynamic loads, seismic dampers might not be used for most of their life, staying dormant for a long period until an earthquake hits the hosting structure. This work aims to evaluate the effectiveness of a MR damper after years of inactivity. A MR device has been tested twice, first in 2008 and then in 2013, after five years of absolute inactivity. The comparison between the results of the two tests is made in terms of force-displacement loops. It is shown that, after a 5-year rest, only part of the first stroke of the damper is characterized by an unexpected response of the damper. After half a stroke, the damper quickly returned to behave like in 2008, even if a slight non-reversible decrease of the reacting force has been recorded. The latter is found to be more evident (5-7%) for larger currents, less visible in the case of zero magnetic field. From the point of view of civil engineering, this decay of performance is definitely acceptable, being largely bounded within the limits of the uncertainties typically involved and taken into account in the structural design. Finally, starting from a literature review, the paper discusses the possible causes of the observed changes in the mechanical response of the damper over time.

  17. Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2015-01-01

    This study extends dynamic understanding of a taut cable with a viscous damper at arbitrary location to that with a general linear viscoelastic (VE) damper portrayed by a five-parameter fractional derivative model (FDM). The FDM is able to describe a generalized relationship between force and deformation of viscoelastic dampers (material) in a wide frequency range, which can simulate a practical damper including its support condition or a secondary tie between neighboring cables. Free vibrations of the passively controlled cable system have then been formulated analytically through complex modal analysis. For the restricted case that the FDM is installed close to one cable anchorage, asymptotic solutions for the system complex frequency and modal damping are presented; explicit formulas have also been derived to determine the maximal attainable damping and corresponding optimum FDM parameters, based on which effects of frequency-dependent damper properties are appreciated. Considering the FDM located at arbitrary location, the three distinct regimes of frequency evolutions observed for a cable with a viscous damper have been generalized to that with a VE damper; also, new characteristics of the regime diagram and the frequency evolution in each regime are observed.

  18. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  19. Users experience in Denmark: Developments, achievements and experience of the Danish activities in wind energy utilization, 1974 - 1981

    NASA Astrophysics Data System (ADS)

    Pedersen, B. M.

    Denmark initiated activities to investigate the possibility of using wind energy as a supplement to the electricity supply. This would eventually alleviate the burden of increasing prices of fossil fuel and also add to the security of supply of energy to the nation. The activities followed two main streams. A governmental R&D programme was formulated and implemented, whereas at the same time private industry embarked on the development of small scale wind energy converting systems (SWECS) for the private user. Two large scale (630 kW) demonstration wind turbines were completed and are now in fully automatic operation. More than 400 SWECS were put into operation, most of them producing electricity for the owners own use but selling surplus power to the utilities.

  20. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  1. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  2. Gusev crater: direction of active winds derived from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Gorevan, S.; Thompson, S. D.; Whelley, P.; Squyres, S.; Arvidson, R.

    2004-05-01

    The Mars Exploration Rovers (MERs) are not instrumented to measure winds directly, but might be able to give insight into wind directions using other techniques. The Rock Abrasion Tool (RAT) on the Instrument Deployment Device (IDD) on the Mars rover, Spirit, was used to remove dust and cut into a basaltic rock named Adirondack in Gusev crater on Sol 34 of mission operations. The rock abrasion operation occurred between about 1223 hr and 1518 hr in the afternoon (local solar time) and left a cavity 2.68 mm deep. An image taken after the abrasion operation showed that the rock cuttings were asymmetrically distributed around the cavity and over the rock in a direction suggesting that the cuttings were transported away from the cavity by winds. The distribution pattern (and the inferred wind) is being compared with results from wind tunnel simulations conducted prior to the mission to assess the wind-flow patterns as a function of rock, rover, and IDD positions with respect to the wind. The wind direction inferred from the RAT cuttings are also being compared with wind directions suggested by aeolian bedforms and albedo patterns seen from MER and from orbit, and with directions predicted by a model of the atmosphere for winds at mid-day in Gusev crater.

  3. Whirl Motion of a Seal Test Rig with Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    This paper presents the experimental behavior and dynamic analysis of a high speed test rig with rolling element bearings mounted in squeeze film oil damper bearings. The test rotor is a double overhung configuration with rolling element ball bearings mounted in uncentered squeeze-film oil dampers. The damper design is similar to that employed with various high-speed aircraft HP gas turbines. The dynamic performance of the test rig with the originally installed dampers with an effective damper length of length 0.23-inch was unacceptable. The design speed of 40,000 RPM could not be safely achieved as nonsynchronous whirling at the overhung seal test disk and high amplitude critical speed response at the drive spline section occurred at 32,000 RPM. In addition to the self excited stability and critical speed problems, it was later seen from FFT data analysis, that a region of supersynchronous dead band whirling occurs between 10,000 to 15,000 RPM which can lead to bearing distress and wear. The system was analyzed using both linear and nonlinear techniques. The extended length damper design resulting from the analysis eliminated the rotor subsynchronous whirling, high amplitude critical speed, and the dead band whirling region allowing the system to achieve a speed of 45,000 RPM. However, nonlinear analysis shows that damper lockup could occur with high rotor unbalance at 33,000 RPM, even with the extended squeeze-film dampers. The control of damper lockup will be addressed in a future paper.

  4. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  5. Active Vertical Tail Buffeting Alleviation on a Twin-Tail Fighter Configuration in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1997-01-01

    A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.

  6. Active Vertical Tail Buffeting Alleviation on an F/A-18 Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1999-01-01

    A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.

  7. Off-design correlation for losses due to part-span dampers on transonic rotors

    NASA Technical Reports Server (NTRS)

    Roberts, W. B.; Crouse, J. E.; Sandercock, D. M.

    1980-01-01

    Experimental data from 10 transonic fan rotors were used to correlate losses created by part-span dampers located near the midchord position on the rotor blades. The design tip speed of these rotors varied from 419 to 425 m/sec, and the design pressure ratio varied from 1.6 to 2.0. Additional loss caused by the dampers for operating conditions between 50 and 100 percent of design speed were correlated with relevant aerodynamic and geometric parameters. The resulting correlation predicts the variation of total-pressure-loss coefficient in the damper region to a good approximation.

  8. Forced response of a cantilever beam with a dry friction damper attached. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Schwartz, H. B.

    1983-01-01

    A theoretical and experimental study of the forced vibration response of a cantilevered beam with Coulomb damping nonlinearity is described. Viscous damping in the beam is neglected. Beam and dry friction damper configurations of interest for applications to turbine blade vibrations are considered. It is shown that the basic phenomena found by Dowell (1983) for a simply supported beam with an attached dry friction damper of specific geometry also apply to a cantilevered beam and a more general representation of the dry friction damper and its associated mass and stiffness.

  9. Calculation of multi-layer plate damper under one-axial load

    NASA Astrophysics Data System (ADS)

    Hui, Yan; Lu, Zhang; Hong-Yuan, Jiang; Alexander, M. Ulanov

    2016-02-01

    A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too. Project supported by the Programme of Introducing Talents of Discipline to Universities (Grant No. B07018).

  10. Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl

    NASA Technical Reports Server (NTRS)

    Brewe, David E.

    1988-01-01

    Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.

  11. Nonlinear longitudinal oscillations of fuel in rockets feed lines with gas-liquid damper

    NASA Astrophysics Data System (ADS)

    Avramov, K. V.; Filipkovsky, S.; Tonkonogenko, A. M.; Klimenko, D. V.

    2016-03-01

    The mathematical model of the fuel oscillations in the rockets feed lines with gas-liquid dampers is derived. The nonlinear model of the gas-liquid damper is suggested. The vibrations of fuel in the feed lines with the gas-liquid dampers are considered nonlinear. The weighted residual method is applied to obtain the finite degrees of freedom nonlinear model of the fuel oscillations. Shaw-Pierre nonlinear normal modes are applied to analyze free vibrations. The forced oscillations of the fuel at the principle resonances are analyzed. The stability of the forced oscillations is investigated. The results of the forced vibrations analysis are shown on the frequency responses.

  12. Some observed effects of part-span dampers on rotating blade row performance near design point

    NASA Technical Reports Server (NTRS)

    Esgar, G. M.; Sandercock, D. M.

    1973-01-01

    Detailed measured radial distributions of flow parameters for eight rotors with part-span dampers are used to study the effects of dampers on rotor performance and flow parameters at near design operation. All rotors had a blade tip diameter of about 20 in. and operated at a blade tip speed of about 1400 ft/sec. Several examples demonstrate that, when the local loss variations in the damper flow region are included in an aerodynamic design or analysis procedure, the computed spanwise distributions of flow parameters compare closely with measured distributions.

  13. Near-surface meteorological conditions associated with active resuspension of dust by wind erosion

    SciTech Connect

    Hodgin, C.R.

    1982-01-01

    The meteorological conditions associated with extreme winds in the lee of the Colorado Rocky Mountains were studied from the viewpoint of dust resuspension and dispersion. Wind, dispersion, temperature, and dew point conditions occurring near the surface were discussed in detail for a selected event. Near-surface wind speeds were compared to observations made at a standard sampling height. These field data were developed to aid in validation and interpretation of wind tunnel observations and application of dispersion models to wind erosion resuspension. Three conclusions can immediately be drawn from this investigation. First, wind storms in nature are quite gusty, with gusts exceeding the mean speed by 50 percent or more. However, wind direction variations are small by comparison. Thus, wind tunnel studies should be able to simulate the large along-flow turbulence, while keeping cross-flow turbulence to a moderate level. This also has an application to the puff modeling of high winds. Puff models normally assume that the along-flow dispersion coefficient is equal to the cross-flow value. This study suggests that the along-flow coefficient should be much larger than its cross-flow counterpart. Another conclusion involves the usual assumption of Pasquill-Gifford stability class D. In the event studied here, the atmosphere was well mixed with near-neutral thermal stability, yet the horizontal dispersion stability class varied from G to A. Thus, an assumption of Class D horizontal dispersion during high winds would not have been valid during this case. A final conclusion involves the widely applied assumption of a logarithmic wind speed profile during high wind events. This study has indicated that such an assumption is appropriate.

  14. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    PubMed

    Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat. PMID:22859969

  15. Experimental Evidence for the Effect of Small Wind Turbine Proximity and Operation on Bird and Bat Activity

    PubMed Central

    Minderman, Jeroen; Pendlebury, Chris J.; Pearce-Higgins, James W.; Park, Kirsty J.

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6–18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0–5 m), bat activity (measured as the probability of a bat “pass” per hour) decreases from 84% (71–91%) to 28% (11–54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20–25 m) from operating turbines (activity decreases from 80% (65–89%) to 59% (32–81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat. PMID:22859969

  16. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    PubMed

    Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  17. A parametric sensitivity and optimization study for the active flexible wing wind-tunnel model flutter characteristics

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1991-01-01

    In this paper an effort is made to improve the analytical open-loop flutter predictions for the Active Flexible Wing wind-tunnel model using a sensitivity based optimization approach. The sensitivity derivatives of the flutter frequency and dynamic pressure of the model with respect to the lag terms appearing in the Roger's unsteady aerodynamics approximations are evaluated both analytical and by finite differences. Then, the Levenberg-Marquardt method is used to find the optimum values for these lag-terms. The results obtained here agree much better with the experimental (wind tunnel) results than those found in the previous studies.

  18. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    SciTech Connect

    Higginbottom, Nick; Knigge, Christian; Matthews, James H.; Proga, Daniel; Long, Knox S.; Sim, Stuart A.

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  19. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Yumoto, Kiyohumi; Claudepierre, Seth G.; Sanchez, Ennio R.; Troshichev, Oleg A.; Janzhura, Alexander S.

    2012-04-01

    We have studied the dependence of the amplitude of magnetic field variations in the Pc5 band (1.6-6.7 mHz) on the solar wind and solar activity. Solar wind parameters considered are the bulk velocity Vsw and the variation of the solar wind dynamic pressure δPsw. The solar activity dependence is examined by contrasting observations made in 2001 (solar activity maximum) and 2006 (solar activity declining phase). We calculated hourly Pc5 amplitude using data from geostationary satellites at L = 6.8 and ground stations covering 1 < L < 9. The amplitude is positively correlated with both Vsw and δPsw, but the degree of correlation varies with L and magnetic local time. As measured by the correlation coefficient, the amplitude dependence on both Vsw and δPsw is stronger on the dayside than on the nightside, and the dependence on Vsw (δPsw) tends to be stronger at higher (lower) L, with the relative importance of the two solar wind parameters switching at L ˜ 5. We attribute the Vsw control to the Kelvin-Helmholtz instability on the magnetopause, occurring both at high and low latitudes, and the δPsw control to buffeting of the magnetosphere by variation of solar wind dynamic pressure. The GOES amplitude is higher at the solar maximum at all local times and the same feature is seen on the ground in the dawn sector at L > 6. A radial shift of the fast mode wave turning point, associated with the solar cycle variation of magnetosphere mass density, is a possible cause of this solar activity dependence.

  20. The stellar wind as a key to the understanding of the spectral activity of IN Com

    NASA Astrophysics Data System (ADS)

    Kozlova, O. V.; Alekseev, I. Yu.

    2014-06-01

    We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.

  1. Radar observations of high-latitude lower-thermospheric and upper-mesospheric winds and their response to geomagnetic activity

    SciTech Connect

    Johnson, R.M.

    1987-01-01

    Observations made by the Chatanika, Alaska, incoherent scatter radar during the summer months of 1976 to 1081 are analyzed to obtain high resolution lower-thermospheric neutral winds. Average winds and their tidal components are presented and compared to previous observational and model results. Upper-mesospheric neutral-wind observations obtained by the Poke Flat, Alaska Mesosphere-Stratosphere-Troposphere (MST) radar during the summer months of 1980 to 1982 are investigated statistically for evidence of variations due to geomagnetic activity. Observation of upper-mesospheric neutral winds made during two energetic Solar Proton Events (SPEs) by the Poker Flat, MST radar are presented. These results allow the low-altitude limits of magnetospheric coupling to the neutral atmosphere to be determined. Lower-thermospheric neutral winds are coupled to the ion convection driven by typical magnetospheric forcing above about 100 km. Coupling to lower atmospheric levels does not occur except during intervals of extreme disturbance of the magnetosphere-ionosphere-thermosphere system which are also accompanied by dramatically increased ionization in the high-latitude mesosphere, such as SPEs.

  2. Field-Aligned Current Dynamics and Its Correlation with Solar Wind Conditions and Geomagnetic Activities From Space Technology 5 Observations

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Boardsen, Scott; Le, Guan; Slavin, James; Strangeway, Robert J.

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times. Detailed examination of FAC current sheet speed during two major storms in the ST-5 mission will also be given to illustrate the temporal evolution of the FAC dynamics with geomagnetic storm.

  3. Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods

    NASA Astrophysics Data System (ADS)

    Pereira, R.; van Bussel, G. J. W.; Timmer, W. A.

    2014-12-01

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall control to regulate power production in replacement of the pitch system. A feasibility study is conducted using a blade element momentum code and taking the National Renewable Energy Laboratory 5 MW turbine as baseline case. Considering half of the blade span is equipped with actuators, the required change in the lift coefficient to regulate power was estimated in ΔCl = 0.7. Three actuation technologies are investigated, namely Boundary Layer Transpiration, Trailing Edge Jets and Dielectric Barrier Discharge actuators. Results indicate the authority of the actuators considered is not sufficient to regulate power, since the change in the lift coefficient is not large enough. Active stall control of Horizontal Axis Wind Turbines appears feasible only if the rotor is re-designed from the start to incorporate active-stall devices.

  4. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  5. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  6. Membrane-type resonator as an effective miniaturized tuned vibration mass damper

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min; Tang, Suet To; Yang, Zhiyu; Sheng, Ping

    2016-08-01

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factor to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.

  7. Vibration suppression of printed circuit boards using an external particle damper

    NASA Astrophysics Data System (ADS)

    Veeramuthuvel, P.; Sairajan, K. K.; Shankar, K.

    2016-03-01

    Particle damping is an effective method of passive vibration control, of recent research interest. The novel use of particle damper capsule on a Printed Circuit Board (PCB) and the development of Radial Basis Function neural network to accurately predict the acceleration response is presented here. The prediction of particle damping using this neural network is studied in comparison with the Back Propagation Neural network. Extensive experiments are carried out on a PCB for different combinations of particle damper parameters such as particle size, particle density, packing ratio, and the input force during the primary modes of vibration and the obtained results are used for training and testing of neural networks. Based on the prediction from the better trained network, useful design guidelines for the particle damper suitable for PCB are arrived at. The effectiveness of particle dampers for vibration suppression of PCB under random vibration environment is demonstrated based on these design guidelines.

  8. Development of a novel variable stiffness and damping magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel

    2015-08-01

    This paper reports a novel magnetorheological fluid (MRF)-based damper, which synergizes the attributes of variable stiffness and damping through the compact assembly of two MRF damping units and a spring. The magnetic field densities of the two damping units were analyzed. After the prototype of the new MRF damper, a hydraulically actuated MTS machine was used to test the damper’s performance, including stiffness variability and damping variability, amplitude-dependent responses and frequency-dependent responses. A new mathematical model was developed to describe the variable stiffness and damping MRF damper. The successful development, experimental testing and modeling of this innovative variable stiffness and damping MRF damper make the true design and implementation of the concept of variable stiffness and damping feasible.

  9. A magnetic flux leakage study of a self-decoupling magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Du, Chengbin; Wan, Faxue; Yu, Guojun

    2011-06-01

    The self-decoupling magnetorheological (SDMR) damper is a type of sensitive device with distinct damping characteristics at different amplitudes. This paper first describes the independently designed SDMR damper and its magnetic circuit structure. Then, through the combination of finite element analysis and experimental study, it discusses the magnetic flux leakage (MFL) of the magnetic circuits of the main piston and the sub-piston. The results show that large errors exist between the finite element analysis and the experimental results. Thus, in the magnetic circuit design phase, the impact of MFL should be properly considered. For the SDMR damper in this paper, setting the MFL factor at 2.2 for the magnetic circuit of the main piston and at 2.4 for the magnetic circuit of the sub-piston, the finite element simulation results and experimental results are in good agreement, and the results can be used as a reference for the design of similar dampers.

  10. Design and analysis of a self-powered, self-sensing magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2011-03-01

    In this paper, we proposed and investigated a self-powered, self-sensing magnetorheological (MR) damper, which integrates energy harvesting, sensing and MR damping capabilities into one device. This multifunctional integration would bring great benefits such as energy saving, high reliability, size and weight reduction, lower cost, and less maintenance for the use of MR damper systems. A prototype of the self-powered, self-sensing MR damper was designed, fabricated and tested. The power generator hardware could serve as the power generation and velocity sensing simultaneously. Analyses on the generated electrical voltages and power were performed and validated experimentally. A combined magnetic-field isolation method was developed and analyzed. A novel velocity-sensing method was proposed and experimentally validated to extract the velocity information from the signals of the power generator. This method requires real-time signal processing while extra mechanical mechanism is not needed. The damping force characteristic of the separate MR damper was also investigated.

  11. Experimental evaluation of a tuned electromagnetic damper for vibration control of cryogenic turbopump rotors

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo; Brown, Gerald V.

    1990-01-01

    Experiments were performed on a passive tuned electromagnetic damper that could be used for damping rotor vibrations in cryogenic turbopumps for rocket engines. The tests were performed in a rig that used liquid nitrogen to produce cryogenic turbopump temperatures. This damper is most effective at cryogenic temperatures and is not a viable damper at room temperature. The unbalanced amplitude response of the rotor shaft was measured for undamped (baseline) and damped conditions at the critical speeds of the rotor (approx. 5900 to 6400 rpm) and the data were compared. The tests were performed for a speed range between 900 and 10 000 rpm. The tests revealed that the damper is very effective for damping single-mode narrow bandwidth amplitude response but is less effective in damping broadband response or multimode amplitude response.

  12. Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Lee, Dae-Young; Shprits, Yuri

    2015-02-01

    Accurate knowledge of the global distribution of plasmaspheric hiss is essential for the radiation belt modeling because it provides a direct link to understanding the radiation belt loss in the slot region. In this paper, we study the dependence of hiss activity on solar wind parameters and geomagnetic activity indices using Time History of Events and Macroscale Interactions during Substorms hiss measurements made from 1 July 2008 to 30 June 2012 based on a correlation analysis. We find that hiss amplitudes are well correlated with the preceding solar wind speed VSW, interplanetary magnetic field (IMF) BZ, and interplanetary electric field (IEF) EY with delay times of 5-6 h for VSW and 3-4 h for IMF BZ and IEF EY, while the best correlation with the geomagnetic indices, AE, Kp, and SYM-H, occurs at a delay time of 2-3 h for AE and SYM-H and 3-4 h for Kp. Of the solar wind parameters, the dawn-to-dusk component of IEF EY yields the best correlation with the variation of hiss wave. More interestingly, the global distribution of hiss waves shows a significant dependence on the VSW and IMF BZ: the most intense hiss region tends to occur at prenoon sector for a more southward IMF BZ, while the tendency is opposite with increasing VSW. This implies different origins of hiss activity. Also, we employ an artificial neural network technique to develop models of the global distribution of hiss amplitudes based on the solar wind parameters and geomagnetic indices. The solely solar wind parameter-based model generally results in a higher correlation between the measured and modeled hiss amplitudes than any other models based on the geomagnetic indices. Finally, we use the solar wind parameter-based model to investigate hiss activity during storm events by distinguishing between coronal mass ejection-driven storms and corotating interaction region-driven storms. The result shows that in spite of the differences in the behavior of solar wind parameters between the two storm

  13. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  14. Stability of a dual-spin spacecraft with spherical dampers

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Likins, P. W.; Sirlin, S.

    1984-01-01

    The present investigation is concerned with the stability characteristics of a specific dual-spin satellite configuration marked by a high degree of symmetry. The configuration includes a platform and a rotor. Both components contain arbitrarily located internal spherical dampers. The symmetry of the system configuration makes it possible to illustrate clearly the relationship between Routhian analysis, energy sink analysis, and digital simulation of the full nonlinear equations. Although the dual-spin spacecraft configuration contains energy dissipating devices on both platform and rotor, it is still possible to employ the rigorous, but relatively simple, Routh stability method. This method, unlike Floquet theory, has the potential of producing closed-form stability criteria. The energy sink method is capable of providing a closed-form stability criterion. Numerical simulation is a necessary requirement in the latter stages of design when the realistic perturbation environment must be considered.

  15. Differential-damper topologies for actuators in rehabilitation robotics.

    PubMed

    Tucker, Michael R; Gassert, Roger

    2012-01-01

    Differential-damper (DD) elements can provide a high bandwidth means for decoupling a high inertia, high friction, non-backdrivable actuator from its output and can enable high fidelity force control. In this paper, a port-based decomposition is used to analyze the energetic behavior of such actuators in various physical domains. The general concepts are then applied to a prototype DD actuator for illustration and discussion. It is shown that, within physical bounds, the output torque from a DD actuator can be controlled independently from the input speed. This concept holds the potential to be scaled up and integrated in a compact and lightweight package powerful enough for incorporation with a portable lower limb orthotic or prosthetic device. PMID:23366576

  16. Cavitation effects on the pressure distribution of a squeeze film damper bearing

    NASA Technical Reports Server (NTRS)

    Zeidan, Fouad Y.; Vance, John M.

    1989-01-01

    High speed motion pictures have revealed several operating regimes in a squeeze film damper. Pressure measurements corresponding to these distinct regimes were made to examine their effect on the performance of such dampers. Visual observation also revealed the means by which the pressure in the feed groove showed higher amplitudes than the theory predicts. Comparison between vapor and gaseous cavitation are made based on their characteristic pressure wave, and the effect this has on the total force and its phase.

  17. Study, Development, and Design of Replaceable Shear Yielding Steel Panel Damper

    SciTech Connect

    Murakami, Katsuhide; Keii, Michio

    2008-07-08

    For middle-high rise buildings, vibration controlled structures to reduce the damage of main frames are recently becoming general in Japan. A steel material damper is low price and excellent in the energy absorption efficiency at a large earthquake. Though the exchange of the dampers are necessary when an excessive accumulation of plasticity deformation occurs, a steel material damping system, which received an excessive accumulation of plasticity deformation after a large earthquake, can recover a seismic-proof performance and property value of the building after the replacement. In the paper, shear yielding steel panel dampers installed in the web of a beam connected with high tension bolt joint is introduced. This damper is made of low-yield point steel, and the advantages of this system are low cost, easy-production and easy-replacement. For this steel panel damper, the finite element method (FEM) analysis using the shell element model adjusted to 1/2 of 6.4 m beam span is executed to make the design most effective. Yielding property of the beam installing this damper, shape of the splice plate and the bolt orientation for the connecting are examined in this analysis. As a result, we found that the plastic strain extends uniformly to the entire damping panel when making the splice plate a trapezoidal shape. The basic performance confirmation examination was also done using the real scale examination model besides the FEM analysis, and the performance of the system was confirmed. In addition, design of a high rise building in which the steel shear-yielding panel dampers and oil dampers were adopted without disturbing an architectural plan is also introduced.

  18. Effectiveness of large booms as nutation dampers for spin stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Eke, F. O.

    1991-01-01

    The issue of using long slender booms as pendulous nutation damping devices on spinning aircraft is discussed. Motivation comes from experience with the Galileo Spacecraft, whose magnetometer boom also serves as a passive nutation damper for the spacecraft. Performance analysis of a spacecraft system equipped with such systems are relatively insensitive to changes in the damping constant of the device. However, the size and arrangement of such a damper raises important questions concerning spacecraft stability in general.

  19. The Effects of Manufacturing Tolerances on the Vibration of Aero-engine Rotor-damper Assemblies

    NASA Technical Reports Server (NTRS)

    Sykes, J. E. H.; Holmes, R.

    1991-01-01

    A range of rotor assemblies incorporating one and two squeeze film dampers with various static misalignments is investigated. Waterfall diagrams are constructed which demonstrate the effects of such misalignment and damper support flexibility on the nature and severity of subsynchronous resonance and jump phenomena. Vibration signatures of similar rotor-bearing assemblies are shown to contrast strongly due to different accumulations of tolerances during manufacture, fitting, and operation.

  20. Damping performance of bean bag dampers in zero gravity environments

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Chen, Tianning; Wang, Xiaopeng

    2016-06-01

    Bean bag dampers (BBDs), developed from impact damping technology, have been widely applied in engineering field to attenuate the vibration of a structural system. The damping effect of a BBD on vibration control in ground gravity environments is good, but its performance in zero gravity environments is not clear, and there are few studies on it. Therefore, the damping effect of BBDs in zero gravity environments was investigated based on the discrete element method (DEM) in this paper. Firstly, a three-dimensional DEM model of a BBD was established, and the damping effects of the single degree of freedom (SDOF) systems with BBDs and non-obstructive particle dampers (NOPDs) in zero gravity environments were compared. Moreover, the influences of the diameter of the inner ball, the tightness of BBD, the vibration frequency of SDOF system and the gap between BBD and cavity on the vibration reduction effect of BBD in zero gravity environments were also studied, and the results were compared with the system with BBD in ground gravity environments. There are optimum ranges of the diameter of the inner ball, tightness and gap for BBD, and the effects of these parameters on the damping performances of BBD in gravity and zero gravity environments are similar in evolving trends, and the values are without big differences in the optimum ranges. Thereby the parameter selection in BBD design in zero gravity environments is similar to that in gravity environments. However, the diameter of BBD should be a slightly larger than the size of the cavity when the structures with BBD work in zero gravity environments. The BBD is supposed to be picked tightly when the vibration frequency is high, and the BBD has better to be picked more tightly in zero gravity environments. These results can be used as a guide in the design of BBDs in zero gravity environments.

  1. Design and testing of a MRF rotational damper for vehicle applications

    NASA Astrophysics Data System (ADS)

    Giorgetti, A.; Baldanzini, N.; Biasiotto, M.; Citti, P.

    2010-06-01

    Adaptive dampers are an interesting solution for conjugating the necessity of controllable devices and low power consumption. Magneto-rheological fluids (MRF) can be profitably employed in adaptive dampers because of the significant variation of fluid parameters with magnetic field properties. This paper focuses on the design process of an innovative rotational MR damper specifically created to be placed in the front-wheel suspension of a compact car. The advantages of the rotational damper and the definition of the optimal design are described. The proposed damper significantly reduces several key problems associated with MR devices: the quantity of fluid required, the sedimentation of ferromagnetic particles in the suspension and the abrasion of the seals. In fact, with this solution, low average working pressure, low flow velocity through valves, a wide range of variable damping characteristics, and high durability of the damper can be achieved. Thanks to this innovative component, different new architectures for adaptive suspension systems can be developed to have a planar distribution of the suspension components with a consequent space optimization and size reduction in the vertical direction.

  2. Testing coupled rotor blade lag damper vibration using real-time dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Wallace, M. I.; Wagg, D. J.; Neild, S. A.; Bunniss, P.; Lieven, N. A. J.; Crewe, A. J.

    2007-11-01

    In this paper, we present new results from laboratory tests of a helicopter rotor blade coupled with a lag damper from the EH101 helicopter. Previous modelling of this combined system has been purely numerical. However, this has proved challenging due to the nonlinear behaviour of the dampers involved—the fluid filled lag damper is known to have approximate piecewise linear force-velocity characteristics, due to blow-off valves which are triggered at a certain force level, combined with a strongly hysteretic dynamic profile. The novelty of the results presented here, is that the use of a hybrid numerical-experimental testing technique called real-time dynamic substructuring, allowed a numerical model of the rotor to be combined with the physical testing of a flight certified lag damper unit. These hybrid tests, which are similar in concept to hardware-in-the-loop, were carried out in real-time such that there is bi-directional coupling between the numerical blade model and the experimental lag damper. The new results obtained from these tests (for steady-state flight conditions) reveal how the inclusion of a real damper produces a more realistic representation of the dynamic characteristics of the overall blade system (during operational flight conditions) than numerical modelling alone.

  3. Development of a long-stroke MR damper for a building with tuned masses

    NASA Astrophysics Data System (ADS)

    Zemp, René; de la Llera, Juan Carlos; Saldias, Hernaldo; Weber, Felix

    2016-10-01

    This article deals with the development of a long-stroke MR-damper aimed to control, by reacting on a tuned mass (TM), the earthquake performance of an existing 21-story office building located in Santiago, Chile. The ±1 m stroke MR-damper was designed using the nominal response of the building equipped with two 160 ton pendular masses tuned to the fundamental lateral vibration mode of the structure. An extended physical on-off controller, a special current driver, a new real-time structural displacement sensor, and an MR-damper force sensor were all developed for this application. The physical damper and control were experimentally validated using a suite of cyclic and seismic signals. The real-time displacement sensor developed was validated by first using a scaled down building prototype subjected to shaking table tests, and then a real-scale free vibration test on the sensor installed horizontally at the foundation level of a building. It is concluded that the proposed TM and MR-damper solution is technically feasible, and for an equivalent key performance index also defined herein, more economical than a solution based on passive viscous dampers.

  4. Research on seismic performance of slotted RC walls with replaceable damper

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ou, Jinping; Huo, Lianfeng

    2015-04-01

    Structural walls are important components of resisting the lateral loads for high-rise structures. However, the traditional walls are difficult to repair or replace in post-earthquake events. Hence, over the past few years, a research was made of several kinds of replaceable structures such as replaceable coupling beam and replaceable wall toe. In this paper, a new seismic energy dissipation wall structure is proposed. The new wall is one with purposely build-in vertical slits within the wall panel, and metallic dampers are installed on the vertical slits so that the seismic performance of the structure can be controlled. Moreover, the metallic damper is easy to be replaced in post-earthquake events. The proposed metallic damper is with a serial of diamond-shaped holes and designed based on the lateral deformation of the wall. The yielding scheme of the metallic damper is proposed in order to achieve the ductility and energy dissipation demand of the walls. The mechanical model of the metallic damper is established. Finally, the numerical simulations of the metallic damper based on the finite element software ABAQUS are presented to validate the effectiveness of the proposed mathematic model.

  5. Performance-based Design of RC Frame Buildings with Metallic and Friction Dampers

    NASA Astrophysics Data System (ADS)

    Chaudhury, Deepsikha; Singh, Yogendra

    2014-12-01

    Supplemental energy dissipation is a technique of earthquake resistant design and for improving the seismic performance of existing buildings. In the present study, a comprehensive design methodology for performance based design of frame buildings with metallic and friction dampers has been proposed. In this study, the target performance level is aimed to achieve both in terms of inter-storey drift and plastic hinge rotation. A non-iterative step-by-step design procedure is proposed to achieve the target performance level. The methodology provides the design yield forces in case of metallic dampers, and slip forces in case of friction dampers. A satisfactory distribution of both types of dampers along the height of the building is also provided in the methodology. The efficiency of the proposed design methodology is validated by applying to a ten storey building and performing nonlinear time history analysis. The building, with and without dampers, is subjected to five spectrum compatible time histories with peak ground acceleration of 0.24 g and the relative performance of the building with the two types of dampers is studied.

  6. Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, L.; Culhane, J. L.; Baker, D.; Démoulin, P.; Mandrini, C. H.; DeRosa, M. L.; Rouillard, A. P.; Opitz, A.; Stenborg, G.; Vourlidas, A.; Brooks, D. H.

    2012-11-01

    During 2 - 18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer.

  7. A Long Neglected Damper in the El Niño—Typhoon Relationship: a ‘Gaia-Like’ Process

    PubMed Central

    Zheng, Zhe-Wen; Lin, I.-I.; Wang, Bin; Huang, Hsiao-Ching; Chen, Chi-Hong

    2015-01-01

    Proposed in the early 1970’s, the Gaia hypothesis suggests that our planet earth has a self-regulating ability to maintain a stable condition for life. Tropical cyclone (TC) is one of the earth’s most hazardous disasters; it is intriguing to explore whether ‘Gaia-like’ processes may exist in nature to regulate TC activities. El Niño can shift the forming position of the Western Pacific typhoons away from land. This shift enables typhoons to travel longer distances over ocean and is known to be a positive process to promote TCs to achieve higher intensity. What is neglected, however, is that there co-exists a negative process. Here we show that during El Niño, typhoons intensify over region undergoing strong ocean subsurface shoaling where upper ocean heat content can drop by 20–50%. This ‘worsen’ ocean pre-condition can effectively reduce ocean’s energy supply for typhoon intensification during typhoon-ocean interaction. We find this an elegant, ‘Gaia-like’ process demonstrating nature’s self-regulating ability. Though during El Niño, typhoons can take advantage of the longer travelling distance over ocean to achieve higher intensity, nature is also providing a damper to partially cancel this positive impact. Without the damper, the situation could be even worse. PMID:26194789

  8. A Long Neglected Damper in the El Niño--Typhoon Relationship: a 'Gaia-Like' Process.

    PubMed

    Zheng, Zhe-Wen; Lin, I-I; Wang, Bin; Huang, Hsiao-Ching; Chen, Chi-Hong

    2015-07-21

    Proposed in the early 1970's, the Gaia hypothesis suggests that our planet earth has a self-regulating ability to maintain a stable condition for life. Tropical cyclone (TC) is one of the earth's most hazardous disasters; it is intriguing to explore whether 'Gaia-like' processes may exist in nature to regulate TC activities. El Niño can shift the forming position of the Western Pacific typhoons away from land. This shift enables typhoons to travel longer distances over ocean and is known to be a positive process to promote TCs to achieve higher intensity. What is neglected, however, is that there co-exists a negative process. Here we show that during El Niño, typhoons intensify over region undergoing strong ocean subsurface shoaling where upper ocean heat content can drop by 20-50%. This 'worsen' ocean pre-condition can effectively reduce ocean's energy supply for typhoon intensification during typhoon-ocean interaction. We find this an elegant, 'Gaia-like' process demonstrating nature's self-regulating ability. Though during El Niño, typhoons can take advantage of the longer travelling distance over ocean to achieve higher intensity, nature is also providing a damper to partially cancel this positive impact. Without the damper, the situation could be even worse.

  9. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird's Year-Round Activity Budgets.

    PubMed

    Pistorius, Pierre A; Hindell, Mark A; Tremblay, Yann; Rishworth, Gavin M

    2015-01-01

    How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators.

  10. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird’s Year-Round Activity Budgets

    PubMed Central

    Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M.

    2015-01-01

    How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. PMID:26581108

  11. Present wind activity on Mars - Relation to large latitudinally zoned sediment deposits

    NASA Technical Reports Server (NTRS)

    Thomas, P.

    1982-01-01

    The relation of present Martian winds to large latitudinally zoned sediment deposits has been investigated using global wind streak data and mapping of large sand and dust deposits. Dune sand deposits occur primarily in three latitude belts: north polar (74-85 degrees North), low latitude (5 degrees North-20 degrees South), and south polar (40-80 degrees South). Comparison with wind streak data shows the high-latitude dunes to be in areas of seasonally reversing winds. The present winds can form latitudinal dune belts from a variety of initial dune distributions, including uniform distribution and a polar source. The presence of dune sand within the polar layered deposits, the erosional state of the deposits, and the present surface wind flow away from the poles indicate that both polar dune concentrations have been derived from erosion of the layered deposits. The low-latitude dunes are topographically confined in canyons and craters; they are probably subject to long-term reversal of orientations with climate cycles.

  12. Design and characterization of axial flux permanent magnet energy harvester for vehicle magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Dong, Xiaomin

    2016-01-01

    An axial flux permanent magnet energy harvester (AFPMEH) is proposed and analyzed for a vehicle magneto-rheological (MR) damper. The relationship between the output voltage and the input excitations are analytically developed. Under different constant rotation speeds and sinusoidal excitations, the harvesting energy is numerically computed for different loads of pure resistance and coil in the MR damper. To check the performance of the proposed AFPMEH for the MR damper, the AFPMEH and MR damper are fabricated individually. Experiments are performed to measure the harvesting energy of the AFPMEH and the damping characteristics of the MR damper under different excited conditions. The excited conditions include three constant rotation speeds and sinusoidal inputs. Load inputs of the pure resistance and the coil of the MR damper are considered. The results show that the time history of the generated voltage of the AFPMEH in experiment is agreed well with that of the AFPMEH in simulation. Under constant rotation speeds, the root mean square (rms) of loaded voltage will increase with the increment of load, whereas the rms of power will be affected by the amplitude of load. The MR damper powered by the AFPMEH can almost obtain the similar damping characteristics of that external power supply. Under sinusoidal inputs, the rms of loaded voltage will increase with the increment of external loads, whereas the rms of power will be almost kept as a constant. The damping range of the MR damper can also be enlarged over 30% comparing to off-state damping force. A quarter car model with an MR damper powered by the AFPMEH is developed to investigate the control performance. The on-off skyhook control is adopted to tune the input current of the MR damper. The vibration performance of the MR suspension is investigated under different roads and vehicle speeds. The numerical results show that the MR suspension with the AFPMEH under on-off skyhook control can achieve better ride comfort

  13. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  14. Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.

    1995-01-01

    Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The

  15. Statistical study of the effect of wind characteristics on the main shaft loadings of an active-stall controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Oh, Sho

    2016-09-01

    The dynamic loadings of the wind turbine main shafts are important for drivetrain components as external excitation force, and the evaluation of their dependence on wind characteristics is necessary for both the understanding of the drivetrain bahavior and the extrapolation of the loadings at different sites. In this study, the load measurements of the wind turbine main shafts were performed along with the wind field measurement. Next the multivariate regression analysis was utilized to identify the influential wind parameters that affect the statistics of the dynamic loadings of the shaft. Finally, the dependence of the load statistics on the identified wind parameters was evaluated qualitatively using the observed data. Obtained regression results showed that there were more effects of wind field parameters on shaft loadings at low and middle wind speed regions than at the high wind speed region. Among the identified parameters, the incline angle and the vertical turbulence were found to be dominant for most of the shaft loadings, though the turbulence intensity is the parameter that is generally used for characterization of a wind field. For the mean tilt bending moment and the standard deviation of the torque, which are recognized as the influential factors for the loadings of drivetrain component, the differences the identified parameters caused were about 15% and 100% respectively.

  16. Wind River watershed restoration: Annual report of U.S. Geological Survey activities November 2010 – October 2011

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.

    2012-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during November 2010 through October 2011 under Bonneville Power Administration (BPA) contract 40481. The primary focus of USGS activities during this contract was on tagging of juvenile steelhead Oncorhynchus mykiss with Passive Integrated Transponder (PIT) tags, and working toward a network of instream PIT tag detection systems to monitor movements and life histories of these fish.

  17. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  18. MLT dependence in the relationship between plasmapause, solar wind, and geomagnetic activity based on CRRES: 1990-1991

    NASA Astrophysics Data System (ADS)

    Bandić, Mario; Verbanac, Giuli; Moldwin, Mark B.; Pierrard, Viviane; Piredda, Giovanni

    2016-05-01

    Using the database of CRRES in situ observations of the plasmapause crossings, we develop linear and more complex plasmapause models parametrized by (a) solar wind parameters V (solar wind velocity), BV (where B is the magnitude of the interplanetary magnetic field (IMF)), and dΦmp/dt (which combines different physical mechanisms which run magnetospheric activity), and (b) geomagnetic indices Dst, Ap, and AE. The complex models are built by including a first harmonic in magnetic local time (MLT). Our method based on the cross-correlation analyses provides not only the plasmapause shape for different levels of geomagnetic activity but additionally yields the information of the delays in the MLT response of the plasmapause. All models based on both solar wind parameters and geomagnetic indices indicate the maximal plasmapause extension in the postdusk side at high geomagnetic activity. The decrease in the convection electric field places the bulge toward midnight. These results are compared and discussed in regard to past works. Our study shows that the time delays in the plasmapause response are a function of MLT and suggests that the plasmapause is formed by the mechanism of interchange instability motion. We observed that any change quickly propagates across dawn to noon, and then at lower rate toward midnight. The results further indicate that the instability may propagate much faster during solar maximum than around solar minimum. This study contributes to the determination of the MLT dependence of the plasmapause and to constrain physical mechanism by which the plasmapause is formed.

  19. How Can Active Region Plasma Escape into the Solar Wind from Below a Closed Helmet Streamer?

    NASA Astrophysics Data System (ADS)

    Mandrini, C. H.; Nuevo, F. A.; Vásquez, A. M.; Démoulin, P.; van Driel-Gesztelyi, L.; Baker, D.; Culhane, J. L.; Cristiani, G. D.; Pick, M.

    2014-11-01

    Recent studies show that active-region (AR) upflowing plasma, observed by the EUV-Imaging Spectrometer (EIS) onboard Hinode, can gain access to open-field lines and be released into the solar wind (SW) via magnetic-interchange reconnection at magnetic null-points in pseudo-streamer configurations. When only one bipolar AR is present on the Sun and is fully covered by the separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely that the upflowing AR plasma can find its way into the slow SW. However, signatures of plasma with AR composition have been found at 1 AU by Culhane et al. ( Solar Phys. 289, 3799, 2014) that apparently originated west of AR 10978. We present a detailed topology analysis of AR 10978 and the surrounding large-scale corona based on a potential-field source-surface (PFSS) model. Our study shows that it is possible for the AR plasma to move around the streamer separatrix and be released into the SW via magnetic reconnection, which occurs in at least two main steps. We analyse data from the Nançay Radioheliograph (NRH) in a search for evidence of the chain of magnetic reconnections that we propose. We find a noise storm above the AR and several varying sources at 150.9 MHz. Their locations suggest that they might be associated with particles accelerated during the first-step reconnection process at a null point well outside of the AR. We find no evidence of the second reconnection step in the radio data, however. Our results demonstrate that even when it appears highly improbable for the AR plasma to reach the SW, indirect channels involving a sequence of reconnections can make it possible.

  20. On the Response of Polar Cap Dynamics to Its Solar Wind and Magnetotail Drivers at High Levels of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Ye

    In this thesis, I investigate how polar cap dynamics, quantified by the northern polar cap (PCN) index, respond to solar wind direct driving and magnetotail energy unloading during intervals of strong solar wind driving. Using 53 one to two-day intervals with high cross polar cap potential subintervals, I find that, among 11 candidate coupling functions including the electric field of Kan and Lee (1979) and the universal coupling function of Newell et al. (2007), the PCN index correlates most closely with the electric field (EK-R) of Kivelson and Ridley (2008), a form in which the electric field imposed on the ionosphere by low-latitude magnetopause reconnection saturates at high levels of geomagnetic activity. It is found that magnetotail activity, as represented by an unloading AL index (ALU), makes a significant contribution to the PCN index. A linear model is constructed to relate the PCN index to its solar wind and magnetotail drivers. Based on this model, it is estimated that the portion of the PCN index directly driven by the solar wind electric field outweighs the contribution arising from energy release in the magnetotail by roughly a factor of 2. The solar wind dynamic pressure (pdyn) does not play a key role in controlling the PCN index. However, under intense solar wind driving, the number density (n) can influence the solar wind-magnetosphere coupling by changing the solar wind Alfvén conductance, which is incorporated in EK-R. The validity of the linear model is verified by comparing its results with those obtained from a more general, non-linear model, termed additive model. It is found that, except in anomalous events during which the auroral oval expanded poleward to the latitude of the PCN index station and the index increased because of proximity to auroral zone currents, the linear model is a good approximation, since more than 70% of the variation in the PCN index is explained by the linear model. Thus, this linear model provides a useful tool

  1. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  2. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  3. Rheological properties of bi-dispersed magnetorheological fluids based on plate-like iron particles with application to a small-sized damper

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Xuan Phu, Do; Choi, Seung-Bok

    2014-05-01

    In this study, the rheological properties and an application of bi-dispersed magnetorheological fluid (MRF) based on plate-like iron particles are experimentally investigated. A bi-dispersed MR Fluid is prepared using two different micron-scale sizes of plate-like iron particles. In the absence of a magnetic field, the properties of the fluid are isotropic. Upon the application of a magnetic field, the magnetized particles form a chain aligned in the direction of the field, which promotes the appearance of a yield stress. The reversible transition from solid to liquid is the basic requirement of MR applications. Due to the anisotropy in the shape and formation of a less compact structure in the iron plate-like particles, weak sedimentation and good redispersibility of the proposed MR fluid are created. The physical properties of the proposed MR fluids are evaluated and applied to the design of a small-sized controllable MR vibration damper, which can be used for vibration control of a washing machine. The MR damper is a semi-active device that dissipates energy during vibration motion to increase the stability of the application system. Three different weight fractions of the bi-dispersed MR fluids are prepared, and their rheological properties are presented and discussed. Based on their rheological properties, the figures of merit of the proposed MR fluids are derived. A comparison of these figures of merit gives the nominal behavior of the MR fluids, which are important in the design of the application device. A stability test is also performed to check the settling rate of MR fluids per day. The change in damping force due to the problem of particles settling in the MRF and the field-dependent damping force are measured with the MR damper operated just after filling the MRF and with the MR damper operated after waiting for 48 h after filling. With basic rheological properties and outstanding mechanical properties, it is clearly demonstrated that the proposed MR

  4. Wind power today

    SciTech Connect

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  5. Lightning activity and its relationship with typhoon intensity and vertical wind shear for Super Typhoon Haiyan (1330)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Qie, Xiushu; Liu, Dongxia; Shi, Haifeng; Srivastava, Abhay

    2016-02-01

    Super Typhoon Haiyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan were analyzed by using the lightning data from the World Wide Lightning Location Network, typhoon intensity and position data from the China Meteorological Administration, and horizontal wind data from the ECMWF. Three distinct regions were identified in the spatial distribution of daily average lightning density, with the maxima in the inner core and the minima in the inner rainband. The lightning density in the intensifying stage of Haiyan was greater than that in its weakening stage. During the time when the typhoon intensity measured with maximum sustained wind speed was between 32.7 and 41.4 ms-1, the storm had the largest lightning density in the inner core, compared with other intensity stages. In contrast to earlier typhoon studies, the eyewall lightning burst out three times. The first two eyewall lightning outbreaks occurred during the period of rapid intensification and before the maximum intensity of the storm, suggesting that the eyewall lightning activity could be used to identify the change in tropical cyclone intensity. The flashes frequently occurred in the inner core, and in the outer rainbands with the black body temperature below 220 K. Combined with the ECMWF wind data, the influences of vertical wind shear (VWS) on the azimuthal distribution of flashes were also analyzed, showing that strong VWS produced downshear left asymmetry of lightning activity in the inner core and downshear right asymmetry in the rainbands.

  6. Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents

    NASA Astrophysics Data System (ADS)

    Berardengo, M.; Cigada, A.; Guanziroli, F.; Manzoni, S.

    2015-08-01

    Tuned mass dampers have long since been used to attenuate vibrations. The need to make them adaptive in order to function even after changes of the dynamic characteristics of the system to be controlled has led to using many different technologies with the aim of improving adaptation performances. Shape memory alloys have already been proven to have properties suitable for creating adaptive tuned mass dampers for light structures. However, the literature has evidenced a number of issues concerning tuned mass dampers based on shape memory alloys, for instance the limited range of adaptation for the eigenfrequency of the damper. The present paper proposes a new layout for adaptive tuned mass dampers based on shape memory alloys, which allows to overcome many of the limitations and to reach a wide range of adaptation for the eigenfrequency. This layout relies on the use of shape memory alloy wires, so that the change of eigenfrequency is achieved by changing the axial load acting on these wires. The new tuned mass damper is then made fully adaptive by including a device that uses the principle of eddy currents, which allows also to change the damping of the tuned mass damper. Indeed, this new kind of damper is designed to dampen vibrations in systems excited by a random disturbance. The paper illustrates the layout and the model of the whole damper and validates it. This model moreover evidences all the advantages allowed by the new layout proposed. Finally, two different strategies to control the dynamic characteristics of the new adaptive tuned mass damper are presented and compared, both numerically as well as experimentally, so to illustrate strengths and drawbacks of each. The experiments and the simulations show that this new damper is fully capable of functioning when random excitation acts as disturbance on the system to control.

  7. Application of two passive strategies on the load mitigation of large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Shirzadeh, Rasoul; Kühn, Martin

    2016-09-01

    This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.

  8. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  9. The distant future of solar activity: A case study of Beta Hydri. III - Transition region, corona, and stellar wind

    NASA Technical Reports Server (NTRS)

    Dravins, D.; Linde, P.; Ayres, T. R.; Linsky, J. L.; Monsignori-Fossi, B.; Simon, T.; Wallinder, F.

    1993-01-01

    The paper investigates the secular decay of solar-type activity through a detailed comparison of the present sun with the very old solar-type star, Beta Hyi, taken as a proxy of the future sun. Analyses of successive atmospheric layers are presented, with emphasis of the outermost parts. The FUV emission lines for the transition zone are among the faintest so far seen in any solar-type star. The coronal soft X-ray spectrum was measured through different filters on EXOSAT and compared to simulated X-ray observations of the sun seen as a star. The flux from Beta Hyi is weaker than that from the solar corona and has a different spectrum. It is inferred that a thermally driven stellar wind can no longer be supported, which removes the mechanism from further rotational braking of the star through a magnetic stellar wind.

  10. Vibration Reduction of Helicopter Blade Using Variable Dampers: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Lee, George C.; Liang, Zach; Gan, Quan; Niu, Tiecheng

    2002-01-01

    In the report, the investigation of controlling helicopter-blade lead-lag vibration is described. Current practice of adding passive damping may be improved to handle large dynamic range of the blade with several peaks of vibration resonance. To minimize extra-large damping forces that may damage the control system of blade, passive dampers should have relatively small damping coefficients, which in turn limit the effectiveness. By providing variable damping, a much larger damping coefficient to suppress the vibration can be realized. If the damping force reaches the maximum allowed threshold, the damper will be automatically switched into the mode with smaller damping coefficient to maintain near-constant damping force. Furthermore, the proposed control system will also have a fail-safe feature to guarantee the basic performation of a typical passive damper. The proposed control strategy to avoid resonant regions in the frequency domain is to generate variable damping force in combination with the supporting stiffness to manipulate the restoring force and conservative energy of the controlled blade system. Two control algorithms are developed and verified by a prototype variable damper, a digital controller and corresponding algorithms. Primary experiments show good potentials for the proposed variable damper: about 66% and 82% reductions in displacement at 1/3 length and the root of the blade respectively.

  11. Damping force control of a vehicle MR damper using a Preisach hysteretic compensator

    NASA Astrophysics Data System (ADS)

    Seong, Min-Sang; Choi, Seung-Bok; Han, Young-Min

    2009-07-01

    This paper presents damping force control performances of a magnetorheological (MR) damper via a new control strategy considering hysteretic behavior of the field-dependent damping force. In order to achieve this goal, a commercial MR damper, Delphi Magneride™ which is applicable to a high-class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. The MR damper has two types of damping force hysteretic behavior. The first is velocity-dependent hysteresis and the other is field-dependent hysteresis. Since the magnetic field is directly connected with control input, the field-dependent hysteresis largely affects the control performances of the MR damper system. To consider the field-dependent hysteretic behavior of the MR damper, a Preisach hysteresis model is established and its first-order descending (FOD) curves are experimentally identified. Subsequently, a feedforward hysteretic compensator associated with the biviscous model and inverse Bingham model is formulated to achieve the desired damping force. The control algorithm is experimentally implemented and damping force controllability for sinusoidal and arbitrary trajectories is evaluated in terms of accuracy and input magnitude. In addition, vibration control performances of the MR suspension system are experimentally evaluated with a quarter-vehicle test facility.

  12. Optimal design of a shear magnetorheological damper for turning vibration suppression

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, Y. L.

    2013-09-01

    The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.

  13. Development and performance evaluation of an MR squeeze-mode damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan; Gołdasz, Janusz

    2015-11-01

    In this paper the authors present results of a magnetorheological (MR) damper prototype development and performance evaluation study. The damper is a device functioning in the so-called squeeze-mode of MR fluid flow regime of operation. By principle, in a squeeze-mode damper the control (working) gap height varies according to the prescribed displacement or force input profile. Such hardware has been claimed to be well suited to small-amplitude vibration damping applications. However, it is still in its infancy. Its potential seems appealing yet unclear. Accordingly, the authors reveal performance figures of the damper complemented by numerical finite-element simulations of the electro-magnetic circuit of the device. The numerical results are presented in the form of maps of averaged magnetic flux density versus coil current and gap height as well as magnetic flux, inductance, and cogging force calculations, respectively. The simulated data are followed by experimental evaluation of the damper performance incorporating plots of force versus piston displacement (velocity) across a prescribed range of excitation inputs. Moreover, some insight into transient (unsteady) characteristics of the device is provided through testing results involving transient currents.

  14. Design and novel type of a magnetorheological damper featuring piston bypass hole

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Oh, Jong-Seok; Choi, Seung-Bok

    2015-03-01

    This work proposes a novel type of magnetorheological (MR) damper configuration from which an excellent ride comfort can be achieved without using a sophisticated controller scheme. The proposed novel MR damper is featured by piston bypass holes to achieve low slope of the damping force in the pre-yield (low-piston-velocity) region and high magnitude of the damping force in the post-yield (high-piston-velocity) region. A mathematical model for the damping force of the proposed MR damper is formulated followed by the investigation on damping characteristics with respect to several geometrical design parameters such as the number of piston bypass hole, the diameter of the hole, the gap size of the orifice, the orifice length, the diameter of the bobbin, and the height of the coil. After selecting the main design parameters from the simulation results, numerical simulations for the damping force characteristics are conducted with eight design parameter sets to evaluate the significant effect on the damping force performance. The proposed MR dampers are then manufactured with the same design parameter sets and the damping force characteristics are experimentally obtained and compared with the analytical simulation results. It is identified from the parametric investigations that the size and the number of the piston bypass hole are very important on damping force characteristics of the proposed MR damper.

  15. Dissipativity analysis of the base isolated benchmark structure with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Erkus, Baris; Johnson, Erik A.

    2011-10-01

    This paper investigates the dissipativity and performance characteristics of the semiactive control of the base isolated benchmark structure with magnetorheological (MR) fluid dampers. Previously, the authors introduced the concepts of dissipativity and dissipativity indices in the semiactive control of structures with smart dampers and studied the dissipativity characteristics of simple structures with idealized dampers. To investigate the effects of semiactive controller dissipativity characteristics on the overall performance of the base isolated benchmark building, a clipped optimal control strategy with a linear quadratic Gaussian (LQG) controller and a 20 ton MR fluid damper model is used. A cumulative index is proposed for quantifying the overall dissipativity of a control system with multiple control devices. Two control designs with different dissipativity and performance characteristics are considered as the primary controller in clipped optimal control. Numerical simulations reveal that the dissipativity indices can be classified into two groups that exhibit distinct patterns. It is shown that the dissipativity indices identify primary controllers that are more suitable for application with MR dampers and provide useful information in the semiactive design process that complements other performance indices. The computational efficiency of the proposed dissipativity indices is verified by comparing computation times.

  16. Potential of viscous dampers for vibration mitigation of transmission overhead lines

    NASA Astrophysics Data System (ADS)

    Bassam, A.; Soltani, Amir

    2015-04-01

    One of the important parameters in the design of transmission lines is the evaluation of the susceptibility of these cables to vibrations and if necessary, providing proper means to mitigate these vibrations. Transmission lines are especially susceptible to vibrations as a result of their light weight. Viscous dampers are one of the tools that can be applied to mitigate cable vibrations. However, the damping ratio obtained by these dampers is very limited. The present study provides a finite element formulation for an isoparametric cable element. A comparison is made between the results of presented approach with finite series method to validate the model. Additionally, a comparison is made between linear and non-linear behavior of a cable under sweep sinusoidal excitations with different amplitudes. Finally, a case study is conducted to investigate the potential of additional damping provided by a third viscous damper for the case in which two rubber bushings are already attached to the cable near the anchorages. Based on this case study, the dependency between the third damper location and optimum viscosity for maximum vibration mitigation that can be given to a cable with rubber bushings is investigated. The results of the present study show that although rubber bushings may help mitigating vibrations, they reduce the effect of additional damping devices. Additionally, for non-sagged cables, the nonlinearity is negligible in moderate vibrations. Lastly, if the third damper viscosity is selected properly, it can be very effective in further mitigating the vibrations amplitudes.

  17. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  18. Numerical simulation for designing tuned liquid dampers to damp out double-pendulum oscillations

    NASA Astrophysics Data System (ADS)

    Pinot, P.; Genevès, G.

    2011-06-01

    This paper presents a simplified dynamic analytical model based on the Lagrangian formalism to describe the annular sloshing damper behavior used to damp out free oscillations of a double-pendulum system. A simulation program using this model has been developed with the mathematical software MATLAB®. This simulation method is applied to design dampers for the mass and coil suspensions of the French watt balance experiment. The motion of each suspension is equivalent to a double-pendulum motion having two main natural frequencies for each configuration considered. The shape of the damper used is a ring composed of one or two concentric annular channels partially filled with a liquid (water for instance). The depth of the liquid must be adjusted in each channel in order to tune the resonance frequency of the liquid to a natural frequency of the suspension. Two corrective parameters determined experimentally have been added to our model in order to yield results in fair agreement with experiment. The numerical simulation based on our analytical model has provided useful information for designing annular sloshing dampers as efficient as possible for the experiment concerned. Furthermore, this method can be used to study any pendulous load system behavior and to design appropriate sloshing dampers.

  19. A review of acoustic dampers applied to combustion chambers in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Li, X. Y.

    2015-04-01

    In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.

  20. An analysis of screen arrangements for a tuned liquid damper

    NASA Astrophysics Data System (ADS)

    Crowley, S.; Porter, R.

    2012-10-01

    Tuned liquid dampers (TLDs) have been installed in large engineering structures to suppress unwanted motions. They function by allowing fluid to slosh in a tank which is mounted rigidly to the structure and contain devices for dissipating energy. In this paper, the TLD is composed of a rectangular tank fitted with an arbitrary configuration of vertical slatted screens to provide damping when the fluid is in motion.The influence of the fluid motion in the tank is analysed by adopting classical linearised water wave theory and a boundary value problem formulated with linearised conditions both on the free surface and across the screens. These latter linearised screen conditions are designed to capture accurately both the added inertia effects of a slatted screen and the damping effects from an equivalent non-linear turbulent drag law, whose successful implementation has been reported earlier by Crowley and Porter.The rectangular tank TLD is coupled to a simple mechanical model for the displacement of an externally forced structure of large mass. Advantage is taken of the linearised theory used to demonstrate analytically key qualitative features of TLD systems.Numerical predictions are shown to compare very well with experimental results for particular screen arrangements. Different screen configurations are then considered to indicate general criteria for ‘optimising’ the TLD performance by reducing overall displacement across all forcing frequencies, by altering the number, placement and porosity of the slatted screens in the tank.

  1. Innovative modeling of Tuned Liquid Column Damper motion

    NASA Astrophysics Data System (ADS)

    Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A.

    2015-06-01

    In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Since the apparent effect of sloshing is the deviation of the natural frequency from the theoretical one, the authors propose a fractional differential equation of motion. The latter choice is supported by the fact that the introduction a fractional derivative of order α alters simultaneously both the resonant frequency and the degree of damping of the system. It will be shown, through an extensive experimental analysis, how the proposed model accurately describes liquid surface displacements.

  2. Improvement of Digital Filter for the FNAL Booster Transverse Dampers

    SciTech Connect

    Zolkin, Timofey; Eddy, N.; Lebedev, V.

    2013-09-26

    Fermilab Booster has two transverse dampers which independently suppress beam instabilities in the horizontal and vertical planes. A suppression of the common mode signal is achieved by digital notch filter which is based on subtracting beam positions for two consecutive turns. Such system operates well if the orbit position changes sufficiently slow. Unfortunately it is not the case for FNAL Booster where the entire accelerating cycle consists of about 20000 turns, and successful transition crossing requires the orbit drifts up to about 10 μm/turn, resulting in excessive power, power amplifier saturation and loss of stability. To suppress this effect we suggest an improvement of the digital filter which can take into account fast orbit changes by using bunch positions of a few previous turns. To take into account the orbit change up toN-th order polynomial in time the system requires (N + 3) turns of “prehistory”. In the case of sufficiently small gain the damping rate and the optimal digital filter coefficients are obtained analytically. Numerical simulations verify analytical theory for the small gain and predict a system performance with gain increase.

  3. Contributions to modeling functionality of a high frequency damper system

    NASA Astrophysics Data System (ADS)

    Sirbu, E. A.; Horga, S.; Vrabioiu, G.

    2016-08-01

    Due to the necessity of improving the handling performances of a motor vehicle, it is imperative to understand the suspensions properties that affects ride and directional respons.The construction of a fero-magnetic shock absorber is based on two bellows interconnected by a pipe-line. Through this pipe-line the fero-magnetic fluid is carried between the two bellows. The damping characteristic of the shock absorber is affected by the viscosity of the fero-magnetic fluid. The viscosity of the fluid, is controlled through a electric coil mounted on the bellows connecting pipe-line. Modifying the electrical field of the coil, the viscosity of the fluid will change, finally affecting the damping characteristic of the shock absorber. A recent system called „CCD Pothole Suspension” is implemented on Ford vehicles. By modifying the dampning characteristic of the shock absorbers, vehicle daynamics can be improved; also the risk of damaging the suspension will be decreased. The approach of this paper is to analyze the behaviour of the fero magnetic damper, thus determining how it will affect the performances of the vehicle suspensions. The experimental research will provide a better understanding of the behavior of the fero-magnetic shock absorber, and the possible advantages of using this system.

  4. 2012 wind technologies market report

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Weaver, Samantha; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Tegen, Suzanne

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  5. An aeroelastician's perspective of wind tunnel and flight experiences with active control of structural response and stability

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1984-01-01

    Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.

  6. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  7. 76 FR 40925 - Commercial Wind Lease Issuance and Site Characterization Activities on the Atlantic Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... CONTACT: Michelle Morin, BOEMRE Office of Offshore Alternative Energy Programs, 381 Elden Street, MS 4090... Offshore Alternative Energy Programs (MS 4090), Bureau of Ocean Energy Management, Regulation and... Bureau of Ocean Energy Management, Regulation and Enforcement Commercial Wind Lease Issuance and...

  8. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  9. 78 FR 7402 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... includes a construction and anchoring corridor, as part of the wind farm's area of potential effect. The... 1 to 1.5 m beneath the water's surface. Sources such as the chirp are considered non-impulsive... water's surface. Unlike the chirp, the boomer emits an impulse sound, characterized by a...

  10. A calculation method for torsional vibration of a crankshafting system with a conventional rubber damper by considering rubber form

    SciTech Connect

    Kodama, Tomoaki; Honda, Yasuhiro; Wakabayashi, Katsuhiko; Iwamoto, Shoichi

    1996-09-01

    The cheap and compact rubber dampers of shear-type have been widely employed as the torsional vibration control of the crankshaft system of high-speed, automobile diesel engines. The conventional rubber dampers have various rubber forms owing to the thorough investigation of optimum dampers in the design stage. Their rubber forms can be generally grouped into three classes such as the disk type, the bush type and the composite type. The disk type and the bush type rubber dampers are called the basic-pattern rubber dampers hereafter. The composite type rubber part is supposed to consist of the disk type and the bush type parts, regarded respectively as the basic patterns of the rubber part, at large. The dynamic characteristics of the vibration isolator rubber depend generally on temperature, frequency, strain amplitude, shape and size effect,s so it is difficult to estimate accurately their characteristics. With the present technical level, it is also difficult to determine the suitable rubber geometry which optimizes the vibration control effect. The study refers to the calculation method of the torsional vibration of a crankshaft system with a shear-type rubber damper having various rubber forms in order to offer the useful method for optimum design. In this method, the rheological formula of the three-element Maxwell model, from which the torsional stiffness and the damping coefficient of the damper rubber part in the equivalent vibration system are obtained, are adopted in order to decide the dynamic characteristics of the damper rubber part.

  11. Optimal design of viscous damper connectors for adjacent structures using genetic algorithm and Nelder-Mead algorithm

    NASA Astrophysics Data System (ADS)

    Bigdeli, Kasra; Hare, Warren; Tesfamariam, Solomon

    2012-04-01

    Passive dampers can be used to connect two adjacent structures in order to mitigate earthquakes induced pounding damages. Theoretical and experimental studies have confirmed efficiency and applicability of various connecting devices, such as viscous damper, MR damper, etc. However, few papers employed optimization methods to find the optimal mechanical properties of the dampers, and in most papers, dampers are assumed to be uniform. In this study, we optimized the optimal damping coefficients of viscous dampers considering a general case of non-uniform damping coefficients. Since the derivatives of objective function to damping coefficients are not known, to optimize damping coefficients, a heuristic search method, i.e. the genetic algorithm, is employed. Each structure is modeled as a multi degree of freedom dynamic system consisting of lumped-masses, linear springs and dampers. In order to examine dynamic behavior of the structures, simulations in frequency domain are carried out. A pseudo-excitation based on Kanai-Tajimi spectrum is used as ground acceleration. The optimization results show that relaxing the uniform dampers coefficient assumption generates significant improvement in coupling effectiveness. To investigate efficiency of genetic algorithm, solution quality and solution time of genetic algorithm are compared with those of Nelder-Mead algorithm.

  12. Sensitivity of the Earth's magnetosphere to solar wind activity: Three-dimensional macroparticle model

    NASA Astrophysics Data System (ADS)

    Baraka, S.; Ben-Jaffel, L.

    2007-06-01

    A new approach is proposed to study the sensitivity of the Earth's magnetosphere to the variability of the solar wind bulk velocity. The study was carried out using a three-dimensional electromagnetic particle-in-cell code, with the microphysics interaction processes described by Maxwell and Lorentz equations, respectively, for the fields and particles. Starting with a solar wind with zero interplanetary magnetic field (IMF) impinging upon a magnetized Earth, the formation of the magnetospheric cavity and its elongation around the planet were modeled over time until a steady state structure of a magnetosphere was attained. The IMF was then added as a steady southward magnetic field. An impulsive disturbance was applied to the system by changing the bulk velocity of the solar wind to simulate a decrease in the solar wind dynamic pressure, followed by its recovery, for both zero and southward IMF. In response to an imposed drop in the solar wind drift velocity, a gap (air pocket) in the incoming solar wind plasma appeared moving toward Earth. The orientation of the cusps was highly affected by the depression of the solar wind for all orientation of IMF. The magnetotail lobes flared out with zero IMF due to the "air pocket" effect. With the nonzero IMF, as soon as the gap hit the initial shock of the steady magnetosphere, a reconnection between the Earth's magnetic field and the IMF was noticed at the dayside magnetopause. During the expansion phase of the system, the outer boundary of the dayside magnetopause broke up in the absence of the IMF, yet it sustained its bullet shape when a southward IMF was included. The expansion/contraction of the magnetopause nose is almost linear in the absence of the IMF but evolves nonlinearly with a southward IMF. The system recovered its initial state on the dayside soon after the impulsive disturbance was beyond Earth for both cases of zero and nonzero IMF. Comparison with existing observations from Cluster and Interball-1 seems

  13. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  14. Evaluation of Seismic Performance and Effectiveness of Multiple Slim-Type Damper System for Seismic Response Control of Building Structures

    PubMed Central

    Kim, David; Sung, Eun Hee; Park, Kwan-Soon; Park, Jaegyun

    2014-01-01

    This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures. PMID:25301387

  15. Evaluation of seismic performance and effectiveness of multiple slim-type damper system for seismic response control of building structures.

    PubMed

    Kim, David; Sung, Eun Hee; Park, Kwan-Soon; Park, Jaegyun

    2014-01-01

    This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures.

  16. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Kimura, Tomoki; Tao, Chihiro; Tsuchiya, Fuminori; Misawa, Hiroaki; Sakanoi, Takeshi; Kasaba, Yasumasa; Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-07-01

    While the Jovian magnetosphere is known to have the internal source for its activity, it is reported to be under the influence of the solar wind as well. Here we report the statistical relationship between the total power of the Jovian ultraviolet aurora and the solar wind properties found from long-term monitoring by the spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board the Hisaki satellite. Superposed epoch analysis indicates that auroral total power increases when an enhanced solar wind dynamic pressure hits the magnetosphere. Furthermore, the auroral total power shows a positive correlation with the duration of a quiescent interval of the solar wind that is present before a rise in the dynamic pressure, more than with the amplitude of dynamic pressure increase. These statistical characteristics define the next step to unveil the physical mechanism of the solar wind control on the Jovian magnetospheric dynamics.

  17. Design and analysis of an innovative combined magneto-rheological damper-mount

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Chung, Jye Ung; Choi, Seung Bok

    2015-04-01

    In this paper, a new innovative modified high-loaded magneto-rheological fluid (MR in short) damper-mount is presented. The proposed damper-mount is designed based on two modes of MR fluid such as flow mode and shear mode, and it includes two separated electric coil for establishing magnetic field. The damping force of the damper-mount is analyzed based on the difference pressure between upper chamber and lower chamber. After analyzing the mathematical function of damping force, the proposed mount is optimized following the maximal damping force by using ANSYS software. Besides, there is a laboratorial MR fluid using in this optimization such as plate-like fluid MRF140. Results of optimization show that the requirement of damping force is obtain and the saturation of materials is in range of limitation.

  18. Semiactive Control Using MR Dampers of a Frame Structure under Seismic Excitation

    SciTech Connect

    Gattulli, Vincenzo; Lepidi, Marco; Potenza, Francesco; Carneiro, Rubia

    2008-07-08

    The paper approaches the multifaceted task of semiactively controlling the seismic response of a prototypal building model, through interstorey bracings embedding magnetorheological dampers. The control strategy is based on a synthetic discrete model, purposely formulated in a reduced space of significant dynamic variables, and consistently updated to match the modal properties identified from the experimental response of the modeled physical structure. The occurrence of a known eccentricity in the mass distribution, breaking the structural symmetry, is also considered. The dissipative action of two magnetorheological dampers is governed by a clipped-optimal control strategy. The dampers are positioned in order to deliver two eccentric and independent forces, acting on the first-storey displacements. This set-up allows the mitigation of the three-dimensional motion arising when monodirectional ground motion is imposed on the non-symmetric structure. Numerical investigations on the model response to natural accelerograms are presented. The effectiveness of the control strategy is discussed through synthetic performance indexes.

  19. Dynamics of a spacecraft with large flexible appendage constrained by multi-strut passive damper

    NASA Astrophysics Data System (ADS)

    Jia, Ying-Hong; Xu, Shi-Jie; Hu, Quan

    2013-04-01

    This paper is concerned with the dynamics of a spacecraft with multi-strut passive damper for large flexible appendage. The damper platform is connected to the spacecraft by a spheric hinge, multiple damping struts and a rigid strut. The damping struts provide damping forces while the rigid strut produces a motion constraint of the multibody system. The exact nonlinear dynamical equations in reducedorder form are firstly derived by using Kane's equation in matrix form. Based on the assumptions of small velocity and small displacement, the nonlinear equations are reduced to a set of linear second-order differential equations in terms of independent generalized displacements with constant stiffness matrix and damping matrix related to the damping strut parameters. Numerical simulation results demonstrate the damping effectiveness of the damper for both the motion of the spacecraft and the vibration of the flexible appendage, and verify the accuracy of the linear equations against the exact nonlinear ones.

  20. Analysis of start-up transient for a powertrain system with a nonlinear clutch damper

    NASA Astrophysics Data System (ADS)

    Li, Laihang; Singh, Rajendra

    2015-10-01

    The transient vibration phenomenon in a vehicle powertrain system during the start-up (or shut-down) process is studied with a focus on the nonlinear characteristics of a multi-staged clutch damper. First, a four-degree-of-freedom torsional model with multiple discontinuous nonlinearities under flywheel motion input is developed, and the powertrain transient event is validated with a vehicle start-up experiment. Second, the role of the nonlinear torsional path on the transient event is investigated in the time and time-frequency domains; interactions between the clutch damper and the transmission transients are estimated by using two metrics. Third, the harmonic balance method is applied to examine the nonlinear characteristics of clutch damper during a slowly varying non-stationary process in a simplified and validated single-degree-of-freedom powertrain system model. Finally, analytical formulas are successfully developed and verified to approximate the nonlinear amplification level for a rapidly varying process.

  1. Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network

    NASA Astrophysics Data System (ADS)

    Ekkachai, Kittipong; Tungpimolrut, Kanokvate; Nilkhamhang, Itthisek

    2013-11-01

    An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption.

  2. Self-Tuning Impact Dampers Designed for Turbomachinery Blade Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Mehmed, Oral

    2002-01-01

    Turbomachinery blades are subject to aerodynamic forces that can lead to high-cycle-fatigue (HCF) failures. These failures will only increase as engineers begin to design blades without shrouds or as integrally bladed disks (blisks). These new designs will decrease blade damping significantly because the mechanical damping from shroud and blade joints will be eliminated. Also, it is difficult to design dampers for the engine environment with its extremely high centrifugal loads and high temperatures. The self-tuning impact damper has been designed to provide the additional damping required to avoid HCF while withstanding the harsh engine environment. In addition, the damper is placed within the engine blade itself rather than external to it.

  3. H∞ control of railway vehicle suspension with MR damper using scaled roller rig

    NASA Astrophysics Data System (ADS)

    Shin, Yu-Jeong; You, Won-Hee; Hur, Hyun-Moo; Park, Joon-Hyuk

    2014-09-01

    In this paper, a magneto-rheological (MR) damper was applied to the secondary suspension to reduce the vibration of a car body. The control performance of the MR damper was verified by numerical analysis with a 1/5 scale railway vehicle model in accordance with the similarity law. The analysis results were then validated in tests. In particular, the objective of the study was to understand how the control performance affected the dynamic characteristics of a railway vehicle and to systematically analyze the relationship between control performance and dynamic characteristics depending on various running speeds. To achieve this, experimental results for the dynamic characteristics of the scaled MR damper designed for the 1/5 scale railway vehicle model were applied to the railway vehicle model. The H∞ control method was applied to the controller. The means of designing the railway vehicle body vibration controller and the effectiveness of its results were studied.

  4. EFFECTS OF AN ACCRETION DISK WIND ON THE PROFILE OF THE BALMER EMISSION LINES FROM ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Flohic, Helene M. L. G.; Eracleous, Michael; Bogdanovic, Tamara E-mail: mce@astro.psu.edu

    2012-07-10

    We explore the connection between active galactic nuclei (AGNs) with single- and double-peaked broad Balmer emission lines by using models dealing with radiative transfer effects through a disk wind. Our primary goal is to assess the applicability of the Murray and Chiang model by making an extensive and systematic comparison of the model predictions with data. In the process, we also verify the original derivation and evaluate the importance of general relativistic effects. As the optical depth through the emission layer increases, the peaks of a double-peaked profile move closer and eventually merge, producing a single peak. The properties of the emission line profile depend as sensitively on the geometric parameters of the line-emitting portion of the disk as they do on the disk-wind parameters. Using a parameter range that encompasses the expected characteristics of the broad-line regions in AGNs, we construct a database of model profiles and measure a set of diagnostic properties. Comparisons of the model profiles with emission lines from a subset of Sloan digital Sky Survey quasars show that observed lines are consistent with moderately large optical depth in the disk wind and a range of disk inclinations i {approx}< 45 Degree-Sign . Including relativistic effects is necessary to produce the asymmetries of observed line profiles.

  5. Optimum connecting dampers to reduce the seismic responses of parallel structures

    NASA Astrophysics Data System (ADS)

    Zhu, H. P.; Ge, D. D.; Huang, X.

    2011-04-01

    Parameters of connecting dampers between two adjacent structures and twin-tower structure with large podium are optimized through theoretical analysis. The connecting visco-elastic damper (VED) is represented by the Kelvin model and the connecting viscous fluid damper (VFD) is represented by the Maxwell model. Two optimization criteria are selected to minimize the vibration energy of the primary structure and to minimize the vibration energy of both structures. Two representative numerical examples of adjacent structures and one three-dimensional finite element model of a twin-tower with podium structure are used to verify the correctness of the theoretical approach. On the one hand, by means of theoretical analysis, the first natural circular frequencies and total mass of the two structures can be taken as parameters in the general formula to get the optimal parameters of the coupling dampers. On the other hand, using the Kanai-Tajimi filtered white-noise ground motion model and several actual earthquake records, the appropriate parameters of two types of linking dampers are obtained through extensive parametric studies. By comparison, it can be found that the results of parametric studies are consistent with the results of theoretical studies for the two types of dampers under the two optimization criteria. The effectiveness of VED and VFD is investigated in terms of the seismic response reduction of the neighboring structures. The numerical results demonstrate that the seismic response and vibration energy of parallel structures are mitigated significantly. The performances of VED and VFD are comparable to one another. The explicit formula of VED and VFD can help engineers in application of coupled structure control strategies.

  6. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    NASA Astrophysics Data System (ADS)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  7. Tidal wind as a possible link of coupling between atmospheric waves activity and sporadic E formation

    NASA Astrophysics Data System (ADS)

    Dalakishvili, Giorgi; Didebulidze, Goderdzi G.; Matiashvili, Giorgi

    2016-04-01

    The horizontal tidal wind in the mesosphere lower thermosphere region (MLT) is considered as a source of atmospheric gravity waves (AGWs) and vortical type perturbations generation. It is shown that at mid-latitude these atmospheric waves, evolving in the tidal wind, can lead to vertical convergence of heavy metallic ions of this region and Formation of sporadic E (Es) layer. The process of sporadic E formation by short-period AGWs (close to Bunt-Vaisala period) and by the stationary type vortical perturbations with the same spatial scale, excited in the horizontal shear flow is demonstrated using numerical simulations. The possibility of oscillation of Es layers electron/ions density by period less than BV period under influence of short-period AGWs is shown and the possible coupling of these processes with quasi-periodic echoes is also noted. In our numerical experiment the mid-latitude nighttime Es layers formed under influence of these atmospheric waves, which are possibly generated by horizontal tidal wind, mostly move downward, this is an observed phenomena. It is noted that investigation of sporadic E formation by atmospheric waves evolving in the tidal wind is important for study of the in situ developing processes in the lower thermosphere determining atmosphere-ionosphere dynamical coupling as well as for revealing their possible dynamical coupling with lower atmosphere. Acknowledgements: This work has been supported by Shota Rustaveli National Science Foundation grant No 31/81 and the Shota Rustaveli National Science Foundation grant No FR/51/6-300/14.

  8. OVATION Prime -2013: Solar Wind Driven Precipitation Model Extended to Higher Geomagnetic Activity Levels (Invited)

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Zhang, Y.; Paxton, L.; Sotirelis, T.; Mitchell, E. J.

    2013-12-01

    OVATION Prime is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power far better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each MLATxMLT bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input (as indeed they do). We here introduce OVATION Prime-2013, an upgrade to the 2008 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 12,000 (nT2/3 (km/s)4/3 which roughly corresponds to Kp = 5+ or 6-). The range of validity is thought to be about 0 < dΦMP/dt = 30000 (say Kp = 8 or 8+). Other upgrades include a reduced susceptibility to salt and pepper noise, and smoother interpolation across the postmidnight data gap. We will also provide a comparison of the advantages and disadvantages of other current precipitation models, especially OVATION-SuperMAG, which produces particularly good estimates for total auroral power, at the expense of working best on an historical basis. OVATION Prime-2013, for high solar wind driving, as TIMED GUVI data takes over from DMSP

  9. Non-linear performance of a three-bearing rotor incorporating a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dede, M.

    1987-01-01

    This paper is concerned with the non-linear vibration performance of a rigid rotor supported on three bearings, one being surrounded by a squeeze-film damper. This damper relies on the pressure built up in the squeeze film to help counter-act external forces arising from unbalance and other effects. As a result a vibration orbit of a certain magnetude results. Such vibration orbits illustrate features found in other non-linear systems, in particular sub-harmonic resonances and jump phenomena. Comparisons between theoretical prediction and experimental observations of these phenomena are made.

  10. Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.

    1975-01-01

    A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.

  11. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  12. Dynamics of the non-ideal autoparametric system with MR damper

    NASA Astrophysics Data System (ADS)

    Sado, Danuta

    2012-11-01

    The nonlinear response of a three degree of freedom autoparametric system with a double pendulum, including the magneto-rheological (MR) damper when the excitation comes from a DC motor which works with limited power supply, has been examined. The non-ideal source of power adds one degree of freedom which makes the system have four degrees of freedom. The influence of damping force in MR damper on the phenomenon of energy transfer has been studied. Near the internal and external resonance region, except periodic vibration also chaotic vibration has been observed.

  13. OVATION Prime -2013: Solar Wind Driven Precipitation Model Extended to Higher Geomagnetic Activity Levels

    NASA Astrophysics Data System (ADS)

    Newell, Patrick; Liou, Kan; Zhang, Yongliang; Sotirelis, Thomas; Paxton, Larry; Mitchell, Elizabeth

    2014-05-01

    OVATION Prime is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power far better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each MLATxMLT bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input (as indeed they do). We here introduce OVATION Prime-2013, an upgrade to the 2008 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 12,000 (nT2/3 (km/s)4/3 which roughly corresponds to Kp = 5+ or 6-). The range of validity is thought to be about 0 < dΦMP/dt = 30000 (say Kp = 8 or 8+). Other upgrades include a reduced susceptibility to salt and pepper noise, and smoother interpolation across the postmidnight data gap. We will also provide a comparison of the advantages and disadvantages of other current precipitation models, especially OVATION-SuperMAG, which produces particularly good estimates for total auroral power, at the expense of working best on an historical basis.

  14. Topside ionosphere bubbles, seen as He+ density depletions: connection with ESF, vertical plasma drift, thermosphere wind and solar activity

    NASA Astrophysics Data System (ADS)

    Sidorova, Larissa

    He+ density depletions, considered as originating from equatorial plasma bubbles (PB), or as possible fossil bubble signatures, were involved in this study. He+ density depletions were observed during a high solar activity (1978-79, F10.7 200) at the topside ionosphere altitudes deeply inside the plasmasphere (L 1.3-3) (Karpachev and Sidorova, ASR, 2002; Sidorova, ASR, 2004, 2007). It is suggested that the equatorial F region irregularities, their post sunset development, evolution, and decay processes are controlled by the sunset electrodynamics of the equatorial region. The He+ density depletion peculiarities were considered in connection with equatorial F-spread (ESF) and vertical plasma drift. The depletion values as function of local time (evening-night hours) were compared with the vertical plasma drift velocity variations, obtained for the same periods (1978-79, F10.7 200; AE-E, IS radar, Jicamarca). Striking similarity in development dynamics was revealed for the different seasons. The monthly mean PB occurrence probability, plotted in local time versus month, was compared with the similar plots for global ESF occurrence probability, derived from ISS-b data (1978-79). Good seasonal correlation (R=0.6) was obtained. Moreover, the comparison of the regional maps, derived from ground-based ionograms, obtained over Brazilian regions (Abdu et al., ASR, 2000) for period with the similar solar activity (1980-81, F10.7 230), shows very well correlation (R=0.67). It is also suggested, that the PBs, produced by Rayleigh-Taylor (R-T) instability at the bottomside of ionosphere and transported up to the topside ionosphere/plasmasphere, could be strong affected by meridional wind during a generation due to inhibiting the growth of R-T instability and flux tube integrated conductivity. For better understanding competing/complementary roles of thermospheric winds in the development of PBs, seen as He+ density depletions, the evaluation of the possible influence of the

  15. A new algorithm quantifies the roles of wind and midge flight activity in the bluetongue epizootic in northwest Europe.

    PubMed

    Sedda, Luigi; Brown, Heidi E; Purse, Bethan V; Burgin, Laura; Gloster, John; Rogers, David J

    2012-06-22

    The 2006 bluetongue (BT) outbreak in northwestern Europe had devastating effects on cattle and sheep in that intensively farmed area. The role of wind in disease spread, through its effect on Culicoides dispersal, is still uncertain, and remains unquantified. We examine here the relationship between farm-level infection dates and wind speed and direction within the framework of a novel model involving both mechanistic and stochastic steps. We consider wind as both a carrier of host semio-chemicals, to which midges might respond by upwind flight, and as a transporter of the midges themselves, in a more or less downwind direction. For completeness, we also consider midge movement independent of wind and various combinations of upwind, downwind and random movements. Using stochastic simulation, we are able to explain infection onset at 94 per cent of the 2025 affected farms. We conclude that 54 per cent of outbreaks occurred through (presumably midge) movement of infections over distances of no more than 5 km, 92 per cent over distances of no more than 31 km and only 2 per cent over any greater distances. The modal value for all infections combined is less than 1 km. Our analysis suggests that previous claims for a higher frequency of long-distance infections are unfounded. We suggest that many apparent long-distance infections resulted from sequences of shorter-range infections; a 'stepping stone' effect. Our analysis also found that downwind movement (the only sort so far considered in explanations of BT epidemics) is responsible for only 39 per cent of all infections, and highlights the effective contribution to disease spread of upwind midge movement, which accounted for 38 per cent of all infections. The importance of midge flight speed is also investigated. Within the same model framework, lower midge active flight speed (of 0.13 rather than 0.5 m s(-1)) reduced virtually to zero the role of upwind movement, mainly because modelled wind speeds in the area

  16. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  17. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  18. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  19. A new energy-harvesting device system for wireless sensors, adaptable to on-site monitoring of MR damper motion

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Peng, Youxiang; Wang, Siqi; Fu, Jie; Choi, S. B.

    2014-07-01

    Under extreme service conditions in vehicle suspension systems, some defects exist in the hardening, bodying, and poor temperature stability of magnetorheological (MR) fluid. These defects can cause weak and even invalid performance in the MR fluid damper (MR damper for short). To ensure the effective validity of the practical applicability of the MR damper, one must implement an online state-monitoring sensor to monitor several performance factors, such as acceleration. In this empirical work, we propose a new energy-harvesting device system for the wireless sensor system of an MR damper. The monitoring sensor system consists of several components, such as an energy-harvesting device, energy-management circuit, and wireless sensor node. The electrical energy harvested from the kinetic energy of the MR fluid that flows within the MR damper can be automatically charged and discharged with the help of an energy-management circuit for the wireless sensor node. After verifying good performance from each component, an experimental apparatus is built to evaluate the feasibility of the proposed self-powered wireless sensor system. The measured results of pressure, temperature, and acceleration data within the MR damper clearly demonstrate the practical applicability of monitoring the operating work states of the MR damper when it is subjected to sinusoidal excitation.

  20. Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment system

    NASA Astrophysics Data System (ADS)

    Wen, Mingfu; Yu, Miao; Fu, Jie; Wu, Zhengzhong

    2015-02-01

    This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It's the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.

  1. Nonlinear Whirl Response of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2005-01-01

    Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.

  2. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; Szabo, A.; Ogilvie, K. W.; Luhman, J. G.; Osherovich, V. A.

    2012-01-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared

  3. Prototyping design and experimental validation of membranous dual-cavity based amplitude selective damper

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxin; Guo, Konghui; Li, Shengbo Eben; Shao, Xiong; Zheng, Meiyu

    2016-08-01

    This paper designs a membranous dual-cavity based amplitude sensitive damper (shorted as MASD) for road vehicle suspension to better compromise ride comfort and driving safety. A specially designed sleeve, separated into two cavities by a rubber membrane, is centrally placed along the main piston of conventional twin-tube damper. The volume change of dual-cavity caused by membrane deformation accommodates partial oil flow in the condition of small piston displacement, which results in a reduced damping ratio. Due to the attached rubber embossments on both sides of rubber membrane, this MASD can switch smoothly between low and high damping forces at the final stage of membrane deformation. This design prevents the damper from additional impact when switching between higher damping ratio to lower one. After elaborating the working principle of MASD, its dynamic model is derived by combining first-principle modeling of hydraulic components and empirical modeling of membranous valve. A prototyping MASD is finally developed and tested on a damper test rig to demonstrate its effectiveness.

  4. Use of piezoelectric dampers for improving the feel of golf clubs

    NASA Astrophysics Data System (ADS)

    Bianchini, Emanuele; Spangler, Ronald L., Jr.; Pandell, Tracy

    1999-06-01

    Several sports are based upon a tool (club, bat, stick) striking an object (ball, puck) across a field of play. Anytime two structures collide, vibration is created by the impact of the two. The impact of the objects excites the structural modes of the tool, creating a vibration that can be felt by the player, especially if the hit is not at a `sweet spot'. Vibration adversely affects both feel and performance. This paper explains how piezoelectric dampers were developed to reduce vibration and improve the feel of ball-impact sporting goods such as golf clubs. The paper describes how the dynamic characteristics of a golf club were calculated, at first in the free-free condition, and then during its operation conditions (the swing of the club, and the impact with the ball). The dynamic characteristics were used to develop a damper that addressed a specific, or multiple, modes of interest. The damper development and testing are detailed in this paper. Both objective laboratory tests and subjective player tests were performed to evaluate the effectiveness of the piezoelectric dampers. The results of the tests, along with published medical data on the sensitivity of the human body, were used to draw a correlation between human feel and vibration reduction.

  5. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  6. Smart damper using the combination of magnetic friction and pre-compressed rubber springs

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Choi, Gyuchan; Kim, Hong-Taek; Youn, Heejung

    2015-09-01

    This paper proposes a new concept of a smart damper using the combination of magnetic friction and rubber springs. The magnet provides energy dissipation, and the rubber springs with precompression contribute to increasing the recentering capacity of the damper. To verify their performance, dynamic tests of magnet frictional dampers and precompressed rubber springs were conducted. For this purpose, hexahedron neodymium (NdFeB) magnets and polyurethane rubber cylinders were used. In the dynamic tests, the loading frequency was varied from 0.1 to 2.0 Hz. The magnets showed almost perfect rectangular behavior in the force-deformation curve, and the frictional coefficient of the magnets was estimated through averaging and regression. The rubber springs were tested with and without precompression. The rubber springs showed different loading path from the second cycle and residual deformation that was not recovered immediately. The rubber springs showed greater rigid force with increasing precompression. Finally, this paper discusses the combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine magnets and rubber springs to obtain flag-shaped behavior. The performance of the magnets and precompressed rubber springs was verified through analytical models.

  7. A passive pendulum wobble damper for a low spin rate Jupiter flyby spacecraft

    NASA Technical Reports Server (NTRS)

    Fowler, R. C.

    1972-01-01

    When the spacecraft has a low spin rate and precise pointing requirements, the wobble angle must be damped in a time period equivalent to a very few wobble cycles. The design, analysis, and test of a passive pendulum wobble damper are described.

  8. A new vibration isolation bed stage with magnetorheological dampers for ambulance vehicles

    NASA Astrophysics Data System (ADS)

    Chae, Hee Dong; Choi, Seung-Bok

    2015-01-01

    The vibration experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from providing emergency care. In this study, with the goal of resolving this problem, a new vibration isolation bed stage associated with magnetorheological (MR) dampers is proposed to ensure ride quality as well as better care for the patient while he/she is being transported. The bed stage proposed in this work can isolate vibrations in the vertical, rolling and pitching directions to reflect the reality that occurs in the ambulance. Firstly, an appropriate-sized MR damper is designed based on the field-dependent rheological properties of MR fluid, and the damping force characteristics of a MR damper are evaluated as a function of the current. A mechanical model of the proposed vibration isolation bed stage is then established to derive the governing equations of motion. Subsequently, a sliding mode controller is formulated to control the vibrations caused from the imposed excitation signals; those signals are directly measured using a real ambulance subjected to bump-and-curve road conditions. Using the controller based on the dynamic motion of the bed stage, the vibration control performance is evaluated in both the vertical and pitch directions. It is demonstrated that the magnitude of the vibration in the patient compartment of the ambulance can be significantly reduced by applying an input current to the MR dampers installed for the new bed stage.

  9. The effect of tennis racket string vibration dampers on racket handle vibrations and discomfort following impacts.

    PubMed

    Stroede, C L; Noble, L; Walker, H S

    1999-05-01

    In this study, we evaluated the effect of the use of tennis racket string vibration dampers on racket handle vibrations, and perceptions of hand and arm discomfort experienced by tennis players owing to stationary racket impacts. Twenty tennis players (10 males, 10 females) aged 18-29 years volunteered for the study. Two different racket models were impacted at the geometric centre of the racket face and 100 mm distal to the centre both with and without string vibration dampers in place. The participants could neither see nor hear the impacts, and they indicated their discomfort immediately after each impact using a visual analogue scale. An analysis of variance (2 x 2 x 2 factorial) was performed on the scaled discomfort ratings with the factors damping condition, racket type and impact location. No significant differences in discomfort ratings between damped and undamped impacts or between the two racket types were found. Also, central impacts were found to be more comfortable than impacts 100 mm distal to the centre (P< 0.05). There were no significant interaction effects. Vibration traces from an accelerometer mounted on the racket handle revealed that string vibration dampers quickly absorbed high-frequency string vibration without attenuating the lower-frequency frame vibration. In conclusion, we found no evidence to support the contention that string vibration dampers reduce hand and arm impact discomfort.

  10. Transverse digital damper system for the Fermilab anti-proton recycler

    SciTech Connect

    Eddy, N.; Crisp, J.; /Fermilab

    2006-05-01

    A transverse damping system is used in the Recycler at Fermilab to damp beam instabilities which arise from large beam intensities with electron cooling. Initial tests of electron cooling demonstrated beam loss due to transverse beam motion when the beam was cooled past the beam density threshold. The transverse damper system consists of two horizontal and two vertical pickups whose signals are amplified and passed into an analog hybrid to generate a difference signal from each pickup. The difference signals are input to a custom digital damper board which digitizes the analog signals at 212mhz, performs digital processing of the signals inside a large Altera Stratix II FPGA, then provides analog output at 212mhz via digital to analog converters. The digital damper output is sent to amplifiers which drive one horizontal and one vertical kicker. An initial prototype digital damper board has been successfully used in the Recycler for over six months. Currently, work is underway to replace the prototype board with an upgraded VME version.

  11. The spectral analysis of an aero-engine assembly incorporating a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dede, M. M.

    1989-01-01

    Aero-engine structures have very low inherent damping and so artificial damping is often introduced by pumping oil into annular gaps between the casings and the outer races of some or all of the rolling-element bearings supporting the rotors. The thin oil films so formed are called squeeze film dampers and they can be beneficial in reducing rotor vibration due to unbalance and keeping to reasonable limits the forces transmitted to the engine casing. However, squeeze-film dampers are notoriously non-linear and as a result can introduce into the assembly such phenomena as subharmonic oscillations, jumps and combination frequencies. The purpose of the research is to investigate such phenomena both theoretically and experimentally on a test facility reproducing the essential features of a medium-size aero engine. The forerunner of this work was published. It was concerned with the examination of a squeeze-film damper in series with housing flexibility when supporting a rotor. The structure represented to a limited extent the essentials of the projected Rolls Royce RB401 engine. That research demonstrated the ability to calculate the oil-film forces arising from the squeeze film from known motions of the bearing components and showed that the dynamics of a shaft fitted with a squeeze film bearing can be predicted reasonably accurately. An aero-engine will normally have at least two shafts and so in addition to the excitation forces which are synchronous with the rotation of one shaft, there will also be forces at other frequencies from other shafts operating on the squeeze-film damper. Theoretical and experimental work to consider severe loading of squeeze-film dampers and to include these additional effects are examined.

  12. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  13. Wind Simulation

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  14. South Pole all-sky imager observations of dayside aurora activity induced by a solar wind dynamic pressure enhancement

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Kadokura, A.; Ebihara, Y.; Sato, N.

    2008-12-01

    Ground observations of the optical aurora in the dayside cusp region have the distinct advantages of continuity of coverage and sufficient temporal-spatial sensitivity to monitor dayside signatures of solar wind/magnetosphere/ionosphere interaction mechanisms. The South Pole Station (SP, geomagnetic latitude (GMLat) = -74.3 degs, magnetic local time = UT-3.5 h) in Antarctica is a unique place for dayside aurora observations during austral winter season. We present the detailed features of enhancements of dayside aurora activity induced by a sudden increase in the solar wind dynamic pressure (Psw), using a ground-based all-sky imager (ASI) at SP. The interplanetary magnetic field (IMF) was northward during the Psw enhancement. Just after the arrival of the Psw enhancement on the Earth"fs magnetosphere, the 557.7 nm aurora activity on the dayside is suddenly intensified almost in the whole field of view of ASI. Further a few minutes later, the intensity of the auroral emissions shows a maximum, and then decays within about 5 minutes. Even after decay of the transient aurora activity at lower latitudes, the newly formed auroral emissions from the dayside cusp to the polar cap (GMLat -76 to -80 degs) develop during the Psw enhancement lasting about an hour. The polar aurora intensifications seem to be associated with lobe reconnection under the northward IMF conditions as well as the Psw enhancement. In this talk, two cases have been studied and the possible generation mechanisms will be discussed by comparing the ASI data at SP with other instruments.

  15. Wind Program Newsletter: October 2014 Edition (Newsletter)

    SciTech Connect

    Not Available

    2014-10-01

    The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

  16. Impact of wind erosion on detecting active tectonics from geomorphic indexes in extremely arid areas: a case study from the Hero Range, Qaidam Basin, NW China

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Xiao, Ancheng; Yang, Shufeng

    2014-11-01

    Geomorphologic analysis has been used widely to detect active tectonics in regions where fluvial incision is the major erosional process. In this paper, however, we assess the feasibility of utilizing these frequently-used geomorphic indexes (e.g., hypsometric curves, longitudinal channel profiles, normalized stream length-gradient (SLK) index) to determine active tectonics in extremely arid areas where wind erosion also plays an important role. The case study is developed on the Hero Range in the western Qaidam Basin, one of the driest regions on Earth with severe wind erosion since late Pliocene. The result shows that in the west and south sectors, as well as the western part of the east sector, of the Hero Range where fluvial incision prevails, these geomorphic indexes are good indicators of active faulting and consistent with the geological result based on study of fault traces, scarps, faulted Holocene fans and historical seismicity within the past four decades. In contrast, along the northeastern margin (the NE and the SE parts of the east sector) of the range where wind erosion is also important, the results from the geomorphic indexes show quite active tectonics, contrary with the geological evidence favoring weakly active tectonics. Moreover, the positive SLK anomaly lies oblique to the fault trace and the anticline axis but parallel to the wind direction. To reconcile the contradiction, we propose that wind erosion caused by northwestern winds has a tendency to make geomorphic indexes exhibit anomalous values that indicate higher activities, by way of (1) lowering the base-level to generate knickpoints on the longitudinal channel profiles and therefore positive SLK anomalies, and (2) lateral erosion of the mountain front making the hypsometric curves and even the longitudinal channel profiles more convex, and producing obvious slope breaks.

  17. Using the transverse digital damper as a real-time tune monitor for the Booster synchrotron at Fermilab

    SciTech Connect

    Eddy, N.; Lysenko, O.; /FERMILAB

    2011-08-01

    The Fermilab Booster is a fast ramping (15Hz) synchrotron which accelerates protons from 400MeV to 8GeV. During commissioning of a transverse digital damper system, it was shown that the damper could provide a measurement of the machine tune throughout the cycle by exciting just 1 of the 84 bunches with minimal impact on the machine operation. The algorithms used to make the measurement have been incorporated into the damper FPGA firmware allowing for real-time tune monitoring of all Booster cycles. A new Booster tune monitor was implemented in the digital damper which has minimal impact on the Booster operation. The tune measures the tunes in two planes over the energy ramping cycle with an accuracy of 0.01 in real time.

  18. On the uniqueness of linear moving-average filters for the solar wind-auroral geomagnetic activity coupling

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.

    1995-01-01

    The relation between the solar wind input to the magetosphere, VB(sub South), and the auroral geomagnetic index AL is modeled with two linear moving-average filtering methods: linear prediction filters and a driven harmonic oscillator in the form of an electric circuit. Although the response of the three-parameter oscillator is simpler than the filter's, the methods yield similar linear timescales and values of the prediction-observation correlation and the prediction Chi(exp 2). Further the filter responses obtained by the two methods are similar in their long-term features. In these aspects the circuit model is equivalent to linear prediction filtering. This poses the question of uniqueness and proper interpretation of detailed features of the filters such as response peaks. Finally, the variation of timescales and filter responses with the AL activity level is discussed.

  19. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  20. Modelling the effect of rail dampers on wheel-rail interaction forces and rail roughness growth rates

    NASA Astrophysics Data System (ADS)

    Croft, B. E.; Jones, C. J. C.; Thompson, D. J.

    2009-06-01

    Trains generate rolling noise because of the roughness of the wheel and rail running surfaces. Special acoustic grinding programmes have been introduced on some railways specifically to control rolling noise. Rail dampers are also used to reduce rolling noise; this paper studies rail damping as a possible mechanism to slow the rate of development of roughness on the surface of rails. This would reduce noise further over time or reduce the required frequency of grinding. High roughness growth on the rail occurs in situations with stiff vertical structural dynamics of the track. In particular the antiresonance above a sleeper at the pinned-pinned frequency has been identified as a wavelength fixing mechanism for short pitch corrugation. Rail dampers change the dynamic response of the rail, shifting the pinned-pinned frequency and smoothing the track receptance. Here, a simple time-stepping model is applied to calculate the interaction forces between wheel and rail for a track with and without rail dampers. The calculations show that rail dampers reduce dynamic interaction forces and shift the force spectrum to longer wavelengths. The interaction forces are used as input to an abrasive wear model to predict the roughness growth rate and the change in roughness after many wheel passages. Track without rail dampers is predicted to develop corrugation at the wavelength corresponding to the pinned-pinned frequency. With rail dampers the corrugation growth is reduced and shifted to a longer wavelength where its significance is diminished.