Science.gov

Sample records for active degradation zones

  1. The Calhoun Critical Zone Observatory: understanding the evolution of the critical zone after centuries of anthropogenic degradation

    NASA Astrophysics Data System (ADS)

    Mallard, J. M.; McGlynn, B. L.; Richter, D., Jr.

    2014-12-01

    The Piedmont region of the southeastern United States is characterized by rolling topography, high precipitation, heavily weathered soils, and, after the immigration of European settlers, heavy anthropogenic degradation. Starting in the early eighteenth century and lasting until the early twentieth, intensive cultivation of cotton and tobacco dramatically altered the physical and biogeochemical landscape. Over roughly two centuries it has been estimated that the southern Piedmont lost 17 cm of soil to erosion due to the aforementioned cultivation, combined with poor erosion controls and annual precipitation of 1300 mm. The 20 km2 Calhoun Experimental Forest was opened in 1947 as a unit of the Sumter National Forest in upstate South Carolina to study what we would now term restoration ecology on such a heavily degraded landscape, which it did until it was closed as an active research site in the 1960's. It left behind an extensive hydrologic and climatologic record in four small watersheds over the roughly twenty year period of active research, flow gauging infrastructure in the form of four v-notch weirs, and a compelling but currently incomplete story of the critical zone lying at the intersection of long-term critical zone evolution and rapid, anthropogenic degradation of that same critical zone. With the designation of Calhoun as the newest Critical Zone Observatory we now begin to address the questions originally sought by the Calhoun experimental forest: how the critical zone evolves after centuries of heavy degradation and to what degree that evolution could be considered recovery. Here we present preliminary findings derived from historic data and from the initial stages of a multi-faceted field campaign including soil and geophysical surveys, spatially distributed soil and stream hydrologic measurements, and high-resolution terrain analysis to characterize the spatial extent of degradation or recovery and begin to constrain the temporal trajectory of this

  2. [Impact of depth and moisture to diesel degradation in sand layer of vadose zone].

    PubMed

    Wang, Bing; Zhao, Yong-Sheng; Qu, Zhi-Hui; Zheng, Wei; Zhu, Wei; Long, Bei-Sheng; Jiao, Li-Na; Xu, Chao

    2011-02-01

    Through the experiment simulated sand columns, the biodegradation characteristics of diesel in sand layers (including fine sand, medium sand and coarse sand) with different depths and moisture contents were studied. The results show that the depth and moisture content of medium are important factors in affecting the efficiency of diesel degradation. In the same medium conditions, the higher moisture content of the medium, the higher biological activity, and biological degradation efficiency of diesel are observed. The nature of medium affects the efficiency of diesel degradation in vadose zone. The finer particles of the medium, the higher ability of diesel degradation is. It is expressed as: fine sand > medium sand > coarse sand. Volatilization and biodegradation are important factors in affecting natural attenuation of diesel in vadose zone.

  3. Degradation of Surfactants in Hydroponic Wheat Root Zones

    NASA Astrophysics Data System (ADS)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  4. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana

    USGS Publications Warehouse

    Bayless, E.R.

    2001-01-01

    The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.

  5. Hydrology and Nitrogen Biogeochemistry in the Hyporheic Zone of a Geomorphically Degraded Urban Stream

    EPA Science Inventory

    Few studies have investigated the relationship between hydrology and nitrogen biogeochemistry in hyporheic zones of degraded urban streams despite significant national efforts to restore such streams. We examined relationships between hydrology and biogeochemistry in Minebank Ru...

  6. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis.

    PubMed

    Damgaard, Ida; Bjerg, Poul L; Bælum, Jacob; Scheutz, Charlotte; Hunkeler, Daniel; Jacobsen, Carsten S; Tuxen, Nina; Broholm, Mette M

    2013-03-01

    The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) to 1,2-cis-dichloroethene (cis-DCE) and 1,1-dichloroethane, respectively, had developed in most of the clay till matrix. Dehalobacter dominated over Dehalococcoides (Dhc) in the clay till matrix corresponding with stagnation of sequential dechlorination at cis-DCE. Sporadically distributed bioactive zones with partial degradation to ethene were identified in the clay till matrix (thickness from 0.10 to 0.22 m). In one sub-section profile the presence of Dhc with the vcrA gene supported the occurrence of degradation of cis-DCE and VC, and in another enriched δ(13)C for TCE, cis-DCE and VC documented degradation. Highly enriched δ(13)C for 1,1,1-TCA (25‰) and cis-DCE (-4‰) suggested the occurrence of abiotic degradation in a third sub-section profile. Due to fine scale heterogeneity the identification of active degradation zones in the clay till matrix depended on high resolution subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system.

  7. Determination of Acid Dissociation Constant of Pravastatin under Degraded Conditions by Capillary Zone Electrophoresis.

    PubMed

    Takayanagi, Toshio; Amiya, Mika; Shimakami, Natsumi; Yabutani, Tomoki

    2015-01-01

    The acid dissociation constant of pravastatin was determined under degraded conditions. Pravastatin was degraded in an acidic solution (pH = 2.0) for 5 h, and the degradation solution was subjected to the measurement of the effective electrophoretic mobility by capillary zone electrophoresis. Although the amount of pravastatin decreased by the acid degradation, its acid dissociation constant was successfully determined with the residual pravastatin through its effective electrophoretic mobility. The determined acid dissociation constant value agreed well with the one obtained with freshly prepared solution and with some reported values.

  8. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  9. Presynaptic active zones in invertebrates and vertebrates.

    PubMed

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-08-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.

  10. Presynaptic active zones in invertebrates and vertebrates

    PubMed Central

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-01-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses. PMID:26160654

  11. Degradation of forest soils near an industrial zone

    NASA Astrophysics Data System (ADS)

    Pavlů, Lenka; Drábek, Ondřej; Borůvka, Luboš

    2014-05-01

    Forest soils near industrial zones could be endangered by acid deposition and by contamination by potentially toxic elements (PTEs). The Silesian Beskids represents a feasible example of these two types of forest soils damage. Soils of this area are strongly acid. The surface enrichment by several studied PTEs (Cd, Cu, Pb, Zn) reflects anthropogenic contamination. Moreover, acid character of soils enables presence of dangerous forms of Al. Two forms of all these PTEs were evaluated; potentially mobilized and mobile - the most danger form. Negligible amounts of Cu, Pb, and Al3+ are found in the mobile form. These elements represent just a potential risk for the system. The mobile forms of Cd, Zn, and Mn account for approximately 30 % of potentially mobilized forms in organic horizons. In the mineral horizon, Cd and Zn represent only about 20 % and Mn less than 10 % of potentially mobilized forms. These elements could pose a problem to ecosystem vitality. Cadmium is phytotoxic in small concentrations and its content in mobilized form approaches the critical load. For this reason, Cd could be considered as the most dangerous element in the studied area. While the distribution of mobile Cd is control by cation exchange capacity and hydrolytic acidity in the mineral horizon, stabilization of Cd in potentially mobilized form in organic horizons is enhanced by organic matter quality. A limiting nutrient could be P. Phosphorus plays an important role in the immobilization of toxic Al forms by creation of stable complexes as it was proven by a factor analysis in the H horizon. Negative aspect of this fact is decrease of bioavailability of P for plants. With regard to decreasing emissions, it is important to focus on the stabilization of PTEs deposited into the soil in the past. It is necessary to keep a relatively high quality of organic matter (connected to high CEC), higher pH, and higher nutrient content. This state could be temporarily achieved by the chemical

  12. Synaptic Vesicle Proteins and Active Zone Plasticity.

    PubMed

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  13. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  14. [Molecular mechanism at the presynaptic active zone].

    PubMed

    Ohtsuka, Toshihisa

    2011-07-01

    Our higher brain functions such as learning and memory, emotion, and consciousness depend on the precise regulation of complicated neural networks in the brain. Neurons communicate with each other through the synapse, which comprise 3 regions: the presynapse, synaptic cleft, and postsynapse. The active zone (AZ) beneath the presynaptic membrane is the principal site for Ca2+ -dependent neurotransmitter release: AZ is involved in determining the site for docking and synaptic vesicle fusion. Presently, the full molecular composition of AZ is unclear, but it is known to contain several AZ-specific proteins, including cytomatrix of the active zone-associated protein (CAST)/ERC2, ELKS, RIM1, Munc13-1, Piccolo/Aczonin, and Bassoon. CAST and ELKS are novel active zone proteins that directly bind to Rab3-interacting molecules (RIMs), Bassoon, and Piccolo, and are thought to play a role in neurotransmitter release by binding these to AZ proteins. In this review, current advances in studies on AZ structure and function have been summarized, and the focus is mainly on protein-protein interactions among the AZ proteins.

  15. In situ determination of the rate of unassisted degradation of saturated-zone hydrocarbon contamination

    SciTech Connect

    Kerfoot, H.B.

    1994-07-01

    A method to measure the in situ degradation rate of dissolved hydrocarbon contamination has been developed and applied at two locations at a field site. The method uses the rates of downward diffusion of oxygen and upward diffusion of carbon dioxide through the unsaturated zone, as calculated from vertical soil-gas concentration gradients, combined with stoichiometry to obtain two degradation rates in hydrocarbon mass per water table surface area per time. Values of 0.385 gram per m{sup 2} per day and 0.52 gram per m{sup 2} per day (based upon oxygen data) and 0.056 gram per m{sup 2} per day and 0.12 gram per m{sup 2} per day (based upon carbon dioxide data) were calculated at a field site with dissolved fuel contamination. This result of lower values from ground-air carbon dioxide concentrations is consistent with a significant fraction of the carbon dioxide produced being lost to the aqueous phase. Based upon a single-stage equilibrium phase-transfer model, gas/water volume ratios of 0.02 and 0.2 for the capillary fringe were calculated. Groundwater carbon dioxide fugacities and soil-gas carbon dioxide concentrations were used at the two locations and a third to determine whether the source of elevated soil carbon dioxide concentrations were unsaturated-zone hydrocarbon degradation or a saturated-zone process. 11 refs., 2 figs., 2 tabs.

  16. [Construction of degradation diagnosis system for the ecosystems in Dongtan coastal zone of Chongming, Shanghai].

    PubMed

    Zhu, Yan-Ling; Guo, Zhong-Yang; Ye, Shu-Feng; Li, Xiao-Dong; Wang, Dan

    2011-02-01

    Based on the "pressure-state-response (PSR)" concept model, a degradation evaluation index system was constructed for the cropland, wetland, and inshore ecosystems in Dongtan coastal zone of Chongming. By using multiplication synthesis, a combination of analytic hierarchy process and entropy weight method, the weights of each evaluation index were obtained, and, through geographical space index quantification and spatial clustering, the degradation degree of each ecological system was analyzed. The results showed that the degradation degree of Dongtan coastal ecosystems in 2005 could be spatially classified into four classes, i.e., class I, class II, class III and class IV, with the degradation degree aggravated increasingly. For the cropland, wetland, and inshore ecosystems, the weight of heavy metals was the largest, being 0.65, 0.20, and 0.26, respectively. Bird diversity index, land use degree, and Spartina alterniflora coverage also had greater effects on wetland ecosystem, and their weights were 0.26, 0.16, and 0.10, respectively. For cropland ecosystem, land use degree was also an important affecting factor, with the weight of 0.22. PMID:21608269

  17. [Construction of degradation diagnosis system for the ecosystems in Dongtan coastal zone of Chongming, Shanghai].

    PubMed

    Zhu, Yan-Ling; Guo, Zhong-Yang; Ye, Shu-Feng; Li, Xiao-Dong; Wang, Dan

    2011-02-01

    Based on the "pressure-state-response (PSR)" concept model, a degradation evaluation index system was constructed for the cropland, wetland, and inshore ecosystems in Dongtan coastal zone of Chongming. By using multiplication synthesis, a combination of analytic hierarchy process and entropy weight method, the weights of each evaluation index were obtained, and, through geographical space index quantification and spatial clustering, the degradation degree of each ecological system was analyzed. The results showed that the degradation degree of Dongtan coastal ecosystems in 2005 could be spatially classified into four classes, i.e., class I, class II, class III and class IV, with the degradation degree aggravated increasingly. For the cropland, wetland, and inshore ecosystems, the weight of heavy metals was the largest, being 0.65, 0.20, and 0.26, respectively. Bird diversity index, land use degree, and Spartina alterniflora coverage also had greater effects on wetland ecosystem, and their weights were 0.26, 0.16, and 0.10, respectively. For cropland ecosystem, land use degree was also an important affecting factor, with the weight of 0.22.

  18. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    PubMed

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  19. Contaminant transport in a three-zone wetland: Dispersion and ecological degradation

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Huai, Wenxin; Wang, Ping

    2016-03-01

    To further understand the fate of contaminant transport in real waterways interacting with riparian buffers and adjacent aquatic vegetation, solute dispersion is analytically explored for three-zone wetland flows with usually high Péclet number in this paper. Ecological effects are also taken into account. Environmental dispersion is addressed independently via an exponential transformation of the basic formulation of mass transfer in the context of porous media flow. After rigorously generalizing Taylor's classical analysis, asymptotic analysis was used instead of the method of concentration moment or multi-scale analysis to simplify the examination. The mean concentration expansion base in Gill's method is adopted to model concentration deviations produced in the lateral-average operation. With a previously derived velocity profile, environmental dispersivity is obtained, effectively illustrating the effects of critical dimensionless parameters. Analytical expressions for evolution of the lateral mean concentration and critical length of the contaminant cloud are determined by combining the effects of both hydraulic dispersion and ecological degradation. An application example is provided to illustrate the evolution of contaminant cloud in terms of the critical length and duration with concentration greater than a given environmental standard level. Results show that for three-zone wetlands, the duration is clearly increased while the region affected by the contaminant cloud is slightly smaller than that for two-zone wetland flows.

  20. Regeneration of the active zone at the frog neuromuscular junction

    PubMed Central

    1984-01-01

    The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze- fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per

  1. Analysis of atrazine and four degradation products in the pore water of the vadose zone, central Indiana

    USGS Publications Warehouse

    Panshin, S.Y.; Carter, D.S.; Bayless, E.R.

    2000-01-01

    A new method is described for the analysis of atrazine and four of its degradation products (desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine) in water. This method uses solid- phase extraction on a graphitized carbon black cartridge, derivatization of the eluate with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and analysis by gas chromatography/mass spectrometry (GC/MS). This method was used to analyze lysimeter samples collected from a field in central Indiana in 1994 and 1995. Atrazine and its degradation products were transported rapidly through the vadose zone. Maximum values of atrazine ranged from 2.61 to 8.44 ??g/L and occurred from 15 to 57 days after application. Maximum concentrations of the degradation products occurred from 11 to 140 days after atrazine application. The degradation products were more persistent than atrazine in pore water. Desethylatrazine was the dominant degradation product detected in the first year, and didealkylatrazine was the dominant degradation product detected in the second year. Concentrations of atrazine and the degradation products sorbed onto soil were estimated; maximum concentrations ranged from 7.3 to 24 ??g/kg for atrazine and were less than 5 ??g/kg for all degradation products. Degradation of atrazine and transport of all five compounds were simulated by the vadose zone flow model LEACHM. LEACHM was run as a Darcian-flow model and as a non-Darcian-flow model.

  2. Contaminant transport in a two-zone wetland: Dispersion and ecological degradation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2013-04-01

    SummaryUnderstanding the fate of contaminant in wetland flows is essential in applications such as ecological risk assessment and environmental hydraulic design. Presented in this paper is an analytical study on the dispersion of contaminant in a two-zone wetland, with the effect of ecological degradation taken into consideration. Environmental dispersion is discussed separately via an exponential transformation for the general formulation of contaminant transport. Taylor's classical analysis for solute dispersion in a long and thin tube flow is rigorously generalized for the dispersion of the lateral mean contaminant concentration in the longitudinal direction. A method of asymptotic analysis is adopted instead of the concentration moment method in order to simplify the process of deduction and the expression of the analytical solution. Gill's method of mean concentration expansion is applied to model the concentration deviation terms produced in an averaging operation. With the velocity profile obtained previously, the enhancement of the environmental dispersivity under long time evolution is determined and shown to be consistent with that obtained by the method of concentration moment. Analytical solutions for the evolution of the contaminant concentration and the influenced region of the contaminant cloud are obtained by combining both the hydraulic and the ecological effects. For typical pollutant as the heavy metal Hg, the evolution of contaminant cloud is illustrated by critical length and duration in an application with concentration beyond some given environmental standard level. Results show that for wetland flows with a two-zone structure, the influenced region is reduced evidently while the duration of the contaminant cloud remains nearly unchanged, compared with that for the single-zone wetland flow.

  3. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    SciTech Connect

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  4. Activation Domain-dependent Degradation of Somatic Wee1 Kinase*

    PubMed Central

    Owens, Laura; Simanski, Scott; Squire, Christopher; Smith, Anthony; Cartzendafner, Jeff; Cavett, Valerie; Caldwell Busby, Jennifer; Sato, Trey; Ayad, Nagi G.

    2010-01-01

    Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway. PMID:20038582

  5. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed Central

    Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition

  6. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed

    Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition

  7. Active zones of mammalian neuromuscular junctions: formation, density, and aging

    PubMed Central

    Nishimune, Hiroshi

    2012-01-01

    Presynaptic active zones are synaptic vesicle release sites that playessential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization utilize presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2, and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. PMID:23252894

  8. Calpain secreted by activated human lymphoid cells degrades myelin.

    PubMed

    Deshpande, R V; Goust, J M; Hogan, E L; Banik, N L

    1995-10-01

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination. PMID:8568927

  9. Activity-related redistribution of presynaptic proteins at the active zone.

    PubMed

    Tao-Cheng, J-H

    2006-09-01

    Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.

  10. Wildfire Induced Degradation of Woody Vegetation in Dry Zone of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Terekhov, A.

    2011-08-01

    Small bushy tree species dominate the semi-arid areas of Kazakhstan. In the course of their life cycle, they form a layer of litter that is resistant to wind transport. This small shrub species with its own litter play a significant role in the spectral characteristics of the Earth surface. Changes in the density of shrub canopy forms or replacing them with herbaceous species is accompanied by significant changes in the spectral characteristics in the visible and near infrared spectral bands in the autumn. These changes can be recorded from satellite data. LANDSAT-TM images during 1985-2007 years and MODIS data (USGS: MOD09Q1, 2000-2010) used to diagnose changes in relation between woodyherbaceous vegetation species in the dry zone of Kazakhstan. It was found that over the past 10 years, spreading small shrub forms of semi-arid vegetation significantly decreased. There is a persistent expansion of herbal forms, leading to the semi-steppe formation areas. The mechanism of repression of wood forms constructed through the accumulation of dry plant mass during wet years, with its subsequent burnout during wildfires. In the case of a strong fire, a complete destruction of species is observed. The restoration of small shrub cover demands more than 20 years. Comparative analysis of LANDSAT-TM images showed a 10 times increasing of the fire scar areas in the test area in the central part of Kazakhstan between 1985 and 2007. According MOD09Q1 was conducted mapping small shrub forms of degradation in Kazakhstan. Reducing the area occupied by woody vegetation, semi-desert was about 30 million hectares or over 30% of their total range in Kazakhstan.

  11. Photocatalytic degradation of sunscreen active ingredients mediated by nanostructured materials

    NASA Astrophysics Data System (ADS)

    Soto-Vazquez, Loraine

    Water scarcity and pollution are environmental issues with terrible consequences. In recent years several pharmaceutical and personal care products, such as sunscreen active ingredients, have been detected in different water matrices. Its recalcitrant behavior in the environment has caused controversies and generated countless questions about its safety. During this research, we employed an advanced oxidation process (photocatalysis) to degrade sunscreen active ingredients. For this study, we used a 3x3 system, evaluating three photocatalysts and three different contaminants. From the three catalysts employed, two of them were synthesized. ZnO nanoparticles were obtained using zinc acetate dihydrated as the precursor, and TiO2 nanowires were synthesized from titanium tetrachloride precursor. The third catalyst employed (namely, P25) was obtained commercially. The synthesized photocatalysts were characterized in terms of the morphology, elemental composition, crystalline structure, elemental oxidation states, vibrational modes and surface area, using SEM-EDS, XRD, XPS, Raman spectroscopy and BET measurements, respectively. The photocatalysts were employed during the study of the degradation of p-aminobenzoic acid, phenylbenzimidazole sulfonic acid, and benzophenone-4. In all the cases, at least 50% degradation was achieved. P25 showed degradation efficiencies above 90%, and from the nine systems, 7 of them degraded at least 86%.

  12. Aspartame degradation as a function of "water activity".

    PubMed

    Bell, L N; Labuza, T P

    1991-01-01

    The incorporation of aspartame into an increasing number of foods necessitates evaluation of its degradation kinetics as a function of "water activity" (aw). The kinetics of degradation were followed in model systems as a function of initial pH, temperature, and aw. An increase in aw, for each 0.1 units in the 0.3 to 0.7 range, resulted in about a 30-80% increase in degradation rate, which then decreased only slowly up to dilute solution. The presence of oil increased the degradation rate at high aw, but glucose had no effect on the rate of aspartame loss. The activation energies for loss ranged from 25 to 20 kcal/mole, decreasing as aw increased, as expected. The rates as a function of pH showed that the actual pH of the water in the condensed phase, based on the Bronsted relationship, may be very different than the initial pH. This caused a shift in the pH at which the fastest rate of degradation occurred, as aw increased.

  13. Peroxymonosulfate activation by phosphate anion for organics degradation in water.

    PubMed

    Lou, Xiaoyi; Wu, Liuxi; Guo, Yaoguang; Chen, Chuncheng; Wang, Zhaohui; Xiao, Dongxue; Fang, Changling; Liu, Jianshe; Zhao, Jincai; Lu, Shuyu

    2014-12-01

    Activation of peroxygens is a critical method to generate oxidative species, but often consumes additional chemical reagents and/or energy. Here we report a novel and efficient activation reaction for peroxymonosulfate (PMS) by phosphate anions (PBS). The PBS/PMS coupled system, at neutral pH, is able to decompose efficiently even mineralize a variety of organic pollutants, such as Acid Orange 7, Rhodamine B and 2,4,6-trichlorophenol. In contrast, no measurable degradation was observed when the PMS was replaced by other peroxygens (i.e. hydrogen peroxide and peroxydisulfate). Both PMS and PBS are indispensable for the oxidative degradation of pollutants. Increasing pH and concentrations of PMS and PBS significantly accelerate the degradation of organics. It is proposed that OH would be the major radical for contamination degradation at pH 7.0 through the radical quenching experiments. This work provides a new way of PMS activation for decontamination at neutral pH, in particular for phosphate-rich wastewater treatment.

  14. Subsurface biological activity zone detection using genetic search algorithms

    SciTech Connect

    Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.

    1999-12-01

    Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.

  15. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products. PMID:26910999

  16. Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge.

    PubMed Central

    van Groenestijn, J W; Bentvelsen, M M; Deinema, M H; Zehnder, A J

    1989-01-01

    Polyphosphate-degrading enzymes were studied in Acinetobacter spp. and activated sludge. Polyphosphate: AMP phosphotransferase activity in Acinetobacter strain 210A decreased with increasing growth rates. The activity of this enzyme in cell extracts of Acinetobacter strain 210A was maximal at a pH of 8.5 and a temperature of 40 degrees C and was stimulated by (NH4)2SO4. The Km for AMP was 0.6 mM, and the Vmax was 60 nmol/min per mg of protein. Cell extracts of this strain also contained polyphosphatase, which was able to degrade native polyphosphate and synthetic magnesium polyphosphate and was strongly stimulated by 300 to 400 mM NH4Cl. A positive correlation was found between polyphosphate:AMP phosphotransferase activity, adenylate kinase activity, and phosphorus accumulation in six Acinetobacter strains. Significant activities of polyphosphate kinase were detected only in strain P, which contained no polyphosphate:AMP phosphotransferase. In samples of activated sludge from different plants, the activity of adenylate kinase correlated well with the ability of the sludge to remove phosphate biologically from wastewater. PMID:2539774

  17. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability.

    PubMed

    Abe, Fumiaki; Muto, Masamichi; Yaeshima, Tomoko; Iwatsuki, Keiji; Aihara, Hiroaki; Ohashi, Yuji; Fujisawa, Tomohiko

    2010-04-01

    Although probiotic-containing nutrient formulas for infants and toddlers have become very popular, some adverse effects related to translocation of probiotic strains have been reported. We assessed the safety of probiotic bifidobacteria that have been used in clinical investigations and proven to have beneficial effects, by analyzing mucin degradation activity and translocation ability. Mucin degradation activities of three probiotic bifidobacteria strains; Bifidobacterium longum BB536, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, were evaluated by three in vitro tests comprising growth in liquid medium, SDS-PAGE analysis of degraded mucin residues, and degradation assay in Petri dish. All test strains and control type strains failed to grow in the liquid medium containing mucin as the only carbon source, although good growth was obtained from fecal sample. In the SDS-PAGE analyses of mucin residues and observation of mucinolytic zone in agar plate, the three test strains also showed no mucin degradation activity as the type strains, although fecal sample yielded positive results. In another study, a high dose of B. longum BB536 was administered orally to conventional mice to examine the translocation ability. No translocation into blood, liver, spleen, kidney and mesenteric lymph nodes was observed and no disturbance of epithelial cells and mucosal layer in the ileum, cecum and colon was detected, indicating that the test strain had no translocation ability and induced no damage to intestinal surface. These results resolve the concern about bacterial translocation when using bifidobacteria strains as probiotics, which have been tested in various clinical trials, supporting the continuous use of these probiotic strains without anxiety.

  18. Activated persulfate for organic chemical degradation: A review.

    PubMed

    Matzek, Laura W; Carter, Kimberly E

    2016-05-01

    Activated persulfate reactions have widespread application for groundwater and environmental remediation, as many of these reactions involve destruction of environmental contaminants. Within the last five years, knowledge of activated persulfate degradation reactions has grown to include novel means of activating persulfate for enhanced removal of organic species. These current studies cover a long list of organic analytes, including pharmaceuticals, pesticides, halogenated compounds and dyes. An extensive review of recently published experimental parameters and results for the destruction of organic compounds via activated persulfate is presented. Focus is placed on emerging methodologies and manipulation of traditional activation techniques. Knowledge gaps are identified and discussed, as despite the number of publications on this subject, more broad-reaching guidelines are needed for optimizing applications of activated persulfate in water treatment.

  19. Denitrification Potential, Root Biomass and Organic Matter in Degraded and Restored Urban Riparian Zones

    EPA Science Inventory

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitroge...

  20. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones

    EPA Science Inventory

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitrogen...

  1. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  2. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  3. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  4. Environmental Dissolved Organic Matter Governs Biofilm Formation and Subsequent Linuron Degradation Activity of a Linuron-Degrading Bacterial Consortium

    PubMed Central

    Horemans, Benjamin; Breugelmans, Philip; Hofkens, Johan; Smolders, Erik

    2013-01-01

    It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium's integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations. PMID:23666338

  5. Environmental dissolved organic matter governs biofilm formation and subsequent linuron degradation activity of a linuron-degrading bacterial consortium.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Hofkens, Johan; Smolders, Erik; Springael, Dirk

    2013-08-01

    It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium's integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter(-1) or 100 μg liter(-1). Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter(-1), the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter(-1) linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter(-1) linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations. PMID:23666338

  6. Proteomics reliability for micropollutants degradation insight into activated sludge systems.

    PubMed

    Buttiglieri, Gianluigi; Collado, Neus; Casas, Nuria; Comas, Joaquim; Rodriguez-Roda, Ignasi

    2015-01-01

    Little information is available on pharmaceutical trace compounds degradation pathways in wastewater. The potential of the proteomics approach has been evaluated to extract information on activated sludge microbial metabolism in degrading a trace concentration of a pharmaceutical compound (ibuprofen). Ibuprofen is one of the most consumed pharmaceuticals, measured in wastewater at very high concentrations and, despite its high removal rates, found in different environmental compartments. Aerated and completely mixed activated sludge batch tests were spiked with ibuprofen at 10 and 1,000 μg L(-1). Ibuprofen concentrations were determined in the liquid phase: 100% removal was observed and the kinetics were estimated. The solid phase was sampled for proteomics purposes. The first objective was to apply proteomics to evaluate protein profile variations in a complex matrix such as activated sludge. The second objective was to determine, at different ibuprofen concentrations, which proteins followed pre-defined trends. No newly expressed proteins were found. Nonetheless, the obtained results suggest that proteomics itself is a promising methodology to be applied in this field. Statistical and comparative studies analyses provided, in fact, useful information on biological reproducibility and permitted us to detect 62 proteins following coherent and plausible expected trends in terms of presence and intensity change. PMID:26360747

  7. Proteomics reliability for micropollutants degradation insight into activated sludge systems.

    PubMed

    Buttiglieri, Gianluigi; Collado, Neus; Casas, Nuria; Comas, Joaquim; Rodriguez-Roda, Ignasi

    2015-01-01

    Little information is available on pharmaceutical trace compounds degradation pathways in wastewater. The potential of the proteomics approach has been evaluated to extract information on activated sludge microbial metabolism in degrading a trace concentration of a pharmaceutical compound (ibuprofen). Ibuprofen is one of the most consumed pharmaceuticals, measured in wastewater at very high concentrations and, despite its high removal rates, found in different environmental compartments. Aerated and completely mixed activated sludge batch tests were spiked with ibuprofen at 10 and 1,000 μg L(-1). Ibuprofen concentrations were determined in the liquid phase: 100% removal was observed and the kinetics were estimated. The solid phase was sampled for proteomics purposes. The first objective was to apply proteomics to evaluate protein profile variations in a complex matrix such as activated sludge. The second objective was to determine, at different ibuprofen concentrations, which proteins followed pre-defined trends. No newly expressed proteins were found. Nonetheless, the obtained results suggest that proteomics itself is a promising methodology to be applied in this field. Statistical and comparative studies analyses provided, in fact, useful information on biological reproducibility and permitted us to detect 62 proteins following coherent and plausible expected trends in terms of presence and intensity change.

  8. Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment.

    PubMed

    Kim, Yong-Hak; Cha, Chang-Jun; Engesser, Karl-Heinrich; Kim, Sang-Jong

    2008-11-01

    Various substrate specificity groups of alkyl ether (AE)-degrading Actinobacteria coexisted in activated sewage sludge of a mixed wastewater treatment. There were substrate niche overlaps including diethyl ether between linear AE- and cyclic AE-degrading strains and phenetole between monoalkoxybenzene- and linear AE-degrading strains. Representatives of each group showed different substrate specificities and degradation pathways for the preferred substrates. Determining the rates of initial reactions and the initial metabolite(s) from whole cell biotransformation helped us to get information about the degradation pathways. Rhodococcus sp. strain DEE5311 and Rhodococcus rhodochrous strain 117 both were able to degrade anisole and phenetole through aromatic 2-monooxygenation to form 2-alkoxyphenols. In contrast, diethyl ether-oxidizing strain DEE5311 capable of degrading a broad range of linear AE, dibenzyl ether and monoalkoxybenzenes initially transformed anisole and phenetole to phenol via direct O-dealkylation. Compared to this, cyclic AE-degrading Rhodococcus sp. strain THF100 preferred tetrahydrofuran (265 ± 35 nmol min(-1)mg(-1) protein) to diethyl ether (<30), but it cannot oxidize bulkier AE than diethyl ether. Otherwise, 1,4-diethoxybenzene-degrading Rhodococcus sp. strain DEOB100 and Gordonia sp. strain DEOB200 transformed 1,3-/1,4-dialkoxybenzenes to 3-/4-alkoxyphenols by similar manners in the order of rates (nmol min(-1) mg(-1) protein): 1,4-diethoxybenzene (11.1 vs. 3.9)>1,4-dimethoxybenzene (1.6 vs. 2.6)>1,3-dimethoxybenzene (0.6 vs. 0.6). This study suggests that the AE-degrading Actinobacteria can orchestrate various substrate specificity responses to the degradation of various categories of AE pollutants in activated sludge communities.

  9. Distribution and degradation of diesel oil in the unsaturated zone following an oil spill on a chalk aquifer

    NASA Astrophysics Data System (ADS)

    Ashley, R. P.; Lerner, D. N.; Lloyd, J. W.

    1994-07-01

    In 1976, there occurred a substantial loss of diesel oil from a storage facility at Royston in eastern England. The site is on the outcrop of the important Chalk aquifer, which is protected by an unsaturated zone 24-30 m thick. In 1986, a cored borehole was drilled through the site of the spillage to investigate the fate of the contaminants. The core samples were analysed by physical and chemical methods to determine the physical structure of the rock, and the characteristics and distribution of the oil. The chemically analysed samples included pore water extracts, scrapings from fracture surfaces, and non-fracture (matrix) samples. The results indicate that oil accumulated within a few millimetres of major fissure surfaces, and entry into the rock matrix was limited by the small size of pores and the presence of water. Oil may also have migrated along microscopic channels away from the major fissures. There was no evidence of downward migration of oil since the initial phase of movement. The adoption of certain assumptions regarding degradation, evaporation and dissolution processes allows the estimation of oil depletion caused by these processes. Physical weathering and degradation were found to have been extensive, but highly variable. Both processes occurred on the major fissure surfaces but, in the matrix, degradation appears to have been restricted. The conclusions have implications for the investigation and remediation of fissured Chalk aquifers contaminated by oil.

  10. Optimizing the growth process of the active zone in GaN based laser structures for the long wavelength region

    NASA Astrophysics Data System (ADS)

    Rossow, U.; Kruse, A.; Jönen, H.; Hoffmann, L.; Ketzer, F.; Langer, T.; Buss, R.; Bremers, H.; Hangleiter, A.; Mehrtens, T.; Schowalter, M.; Rosenauer, A.

    2013-05-01

    InxGaN/GaN quantum well (QW) structures grown on c-plane surfaces for long wavelength laser structures have been investigated. We found that temperature ramping in the barriers improves the layer structure in avoiding V-pit formation and improves the homogeneity of indium incorporation. In choosing proper temperature profiles degradation of the QWs can be avoided. We demonstrate optical gain for wavelengths larger than 500 nm using structures with an active zone grown in such way.

  11. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  12. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  13. Controlling Protein Activity and Degradation Using Blue Light.

    PubMed

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  14. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    PubMed

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  15. Ozone degradation by fluoride onto plasma-treated activated carbon in CF{sub 4}

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Ohue, Takashi; Torii, Yasuhiro

    1997-06-15

    The ozone degradation of fluorine was investigated using the tetrafluoromethane plasma-treated activated carbon (PT-AC). The ozone in the stratosphere has been degraded by the chloride and bromide radicals which are produced from chlorofluorocarbons and bromofluorocarbons, respectively. However, the authors believe that fluorine also was related to the ozone degradation. The fluoride was introduced onto the activated carbon surface by tetrafluoromethane plasma treatment. The breakthrough curve of ozone onto PT-AC was measured to elucidate the relationship between the ozone and the fluoride. The amount of ozone adsorbed/degraded onto the PT-AC was larger than the amount that was adsorbed/degraded onto the untreated activated carbon. The amount of fluoride ion eluted from the PT-AC before the adsorption/degradation of ozone was larger than that which eluted after the adsorption/degradation of ozone. These results indicated that the ozone was degraded by the fluoride on the PT-AC surface.

  16. Formation of Golgi-derived active zone precursor vesicles.

    PubMed

    Maas, Christoph; Torres, Viviana I; Altrock, Wilko D; Leal-Ortiz, Sergio; Wagh, Dhananjay; Terry-Lorenzo, Ryan T; Fejtova, Anna; Gundelfinger, Eckart D; Ziv, Noam E; Garner, Craig C

    2012-08-01

    Vesicular trafficking of presynaptic and postsynaptic components is emerging as a general cellular mechanism for the delivery of scaffold proteins, ion channels, and receptors to nascent and mature synapses. However, the molecular mechanisms leading to the selection of cargos and their differential transport to subneuronal compartments are not well understood, in part because of the mixing of cargos at the plasma membrane and/or within endosomal compartments. In the present study, we have explored the cellular mechanisms of active zone precursor vesicle assembly at the Golgi in dissociated hippocampal neurons of Rattus norvegicus. Our studies show that Piccolo, Bassoon, and ELKS2/CAST exit the trans-Golgi network on a common vesicle that requires Piccolo and Bassoon for its proper assembly. In contrast, Munc13 and synaptic vesicle proteins use distinct sets of Golgi-derived transport vesicles, while RIM1α associates with vesicular membranes in a post-Golgi compartment. Furthermore, Piccolo and Bassoon are necessary for ELKS2/CAST to leave the Golgi in association with vesicles, and a core domain of Bassoon is sufficient to facilitate formation of these vesicles. While these findings support emerging principles regarding active zone differentiation, the cellular and molecular analyses reported here also indicate that the Piccolo-Bassoon transport vesicles leaving the Golgi may undergo further changes in protein composition before arriving at synaptic sites.

  17. Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback.

    PubMed

    Sugie, Atsushi; Hakeda-Suzuki, Satoko; Suzuki, Emiko; Silies, Marion; Shimozono, Mai; Möhl, Christoph; Suzuki, Takashi; Tavosanis, Gaia

    2015-05-01

    Neural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery.

  18. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  19. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions.

  20. 78 FR 14963 - Foreign-Trade Zone 163-Ponce, Puerto Rico; Authorization of Production Activity; Zimmer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Foreign-Trade Zones Board Foreign-Trade Zone 163--Ponce, Puerto Rico; Authorization of Production Activity; Zimmer Manufacturing BV (Medical Devices); Ponce, Puerto Rico On November 1, 2012, CODEZOL, C.D., grantee of FTZ 163, submitted a notification of proposed production activity to the Foreign-Trade Zones...

  1. 78 FR 52759 - Foreign-Trade Zone 265-Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... Foreign-Trade Zones Board Foreign-Trade Zone 265--Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing Inc. (Foundation Casings and Tools/Accessories for Pile Drivers and Boring Machinery... of proposed production activity to the Foreign-Trade Zones (FTZ) Board on behalf of...

  2. Growth of the active zone in nitride based long wavelength laser structures

    NASA Astrophysics Data System (ADS)

    Rossow, U.; Jönen, H.; Brendel, M.; Dräger, A.; Langer, T.; Hoffmann, L.; Bremers, H.; Hangleiter, A.

    2011-01-01

    In xGa 1- xN/GaN quantum well (QW) structures grown on c-plane surfaces for long wavelength light emitters have been investigated intended. We reached indium concentrations of xIn≥0.35 with good optical and structural quality. For QW thicknesses dQW≤2 nm a fully strained layer structure is observed. QWs of such high indium concentrations, however, are very sensitive to the growth conditions of the subsequent layers and thermal stability/degradation becomes an important issue. We modified the growth of the QWs to avoid or minimize V-pit formation without temperature ramping in the barriers and showed that their properties were unchanged when used in the active zone of a laser structure.

  3. 77 FR 26737 - Foreign-Trade Zone 235-Lakewood, NJ: Notification of Proposed Production Activity; Cosmetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 235--Lakewood, NJ: Notification of Proposed Production Activity; Cosmetic Essence Innovations, LLC (Fragrance Bottling); Holmdel, NJ Cosmetic Essence...

  4. Depth-Resolved Quantification of Anaerobic Toluene Degraders and Aquifer Microbial Community Patterns in Distinct Redox Zones of a Tar Oil Contaminant Plume▿

    PubMed Central

    Winderl, Christian; Anneser, Bettina; Griebler, Christian; Meckenstock, Rainer U.; Lueders, Tillmann

    2008-01-01

    Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate—an important electron acceptor—meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota. PMID:18083871

  5. Super-resolution microscopy of the synaptic active zone.

    PubMed

    Ehmann, Nadine; Sauer, Markus; Kittel, Robert J

    2015-01-01

    Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins.

  6. Super-resolution microscopy of the synaptic active zone

    PubMed Central

    Ehmann, Nadine; Sauer, Markus; Kittel, Robert J.

    2015-01-01

    Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins. PMID:25688186

  7. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis and genomic stability

    PubMed Central

    Belaid, Amine; Cerezo, Michaël; Chargui, Abderrahman; Corcelle–Termeau, Elisabeth; Pedeutour, Florence; Giuliano, Sandy; Ilie, Marius; Rubera, Isabelle; Tauc, Michel; Barale, Sophie; Bertolotto, Corinne; Brest, Patrick; Vouret-Craviari, Valérie; Klionsky, Daniel J.; Carle, Georges F.; Hofman, Paul; Mograbi, Baharia

    2013-01-01

    Degradation of signaling proteins is one of the most powerful tumor suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes, and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act in part as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance. PMID:23704209

  9. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    NASA Astrophysics Data System (ADS)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  10. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    PubMed

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  11. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this part. (b) Only for this part, the boundary between Activities Far East and Activities Europe... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  12. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this part. (b) Only for this part, the boundary between Activities Far East and Activities Europe... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  13. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this part. (b) Only for this part, the boundary between Activities Far East and Activities Europe... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  14. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this part. (b) Only for this part, the boundary between Activities Far East and Activities Europe... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  15. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this part. (b) Only for this part, the boundary between Activities Far East and Activities Europe... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Activities Far East Marine... ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  16. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system.

    PubMed

    Xu, Minhui; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Miao, Zhouwei; Zang, Xueke; Wu, Xiaoliang

    2015-04-01

    Thermal activation of persulfate (PS) has been identified to be effective in the destruction of organic pollutants. The feasibility of carbon tetrachloride (CT) degradation in the thermally activated PS system was evaluated. The experimental results showed that CT could be readily degraded at 50 °C with a PS concentration of 0.5M, and CT degradation and PS consumption followed the pseudo-first order kinetic model. Superoxide radical anion (O2(*-)) was the predominant radical species responsible for CT degradation and the split of CCl was proposed as the possible reaction pathways for CT degradation. The process of CT degradation was accelerated by higher PS dose and lower initial CT concentration. No obvious effect of the initial pH on the degradation of CT was observed in the thermally activated PS system. Cl(*-), HCO3(*-), and humic acid (HA) had negative effects on CT degradation. In addition, the degradation of CT in the thermally activated PS system could be significantly promoted by the solvents addition to the solution. In conclusion, the thermally activated PS process is a promising option in in-situ chemical oxidation/reduction remediation for degrading highly oxidized organic contaminants such as CT that is widely detected in contaminated sites.

  17. The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar

    NASA Astrophysics Data System (ADS)

    Raes, M.; de Troch, M.; Ndaro, S. G. M.; Muthumbi, A.; Guilini, K.; Vanreusel, A.

    2007-03-01

    Nematode genus assemblages were identified from four locations in coral degradation zones (CDZs) along the African east coast: Watamu and Tiwi Beach (Kenya) and Matemwe and Makunduchi (Zanzibar). Three microhabitat types were distinguished: coralline sediment, coral gravel and coral fragments. Nematode community composition was comparable to that of other studies dealing with the same habitat. The presence of a common genus pool in CDZs was reflected in the considerable similarities between samples. The addition of coral fragments as a habitat for nematodes resulted in an increased importance of taxa typical for coarse sediments and large substrata. Local and regional turnover were of the same order of magnitude. The structuring effect of microhabitat type clearly overrode the effect on a local and regional scale. Differences in sediment characteristics were more important in structuring the nematode assemblages than differences between the coralline sediment and coral fragments. No effect related to the three-dimensional structure of coral fragments was found. Differences between nematode assemblages in the coralline sediment and on coral fragments were attributed to the exposed nature of the latter habitat, its large surface area and its microbial or algal cover. Differences in available food sources were reflected in nematode trophic composition.

  18. 78 FR 20091 - Foreign-Trade Zone 26-Atlanta, Georgia, Authorization of Production Activity, Perkins Shibaura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 26--Atlanta, Georgia, Authorization of Production Activity, Perkins Shibaura Engines, LLC (Diesel Engines), Griffin, Georgia On November 29, 2012, Georgia Foreign-Trade Zone, Inc., grantee of FTZ 26,...

  19. 78 FR 28801 - Foreign-Trade Zone 117-Orange, TX, Authorization of Production Activity, Signal International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... notice in the Federal Register inviting public comment (78 FR 4383, 1-22-2013). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 117--Orange, TX, Authorization of Production Activity, Signal International Texas GP, LLC (Shipbuilding), Orange, TX On January 10, 2013, the Foreign Trade Zone of...

  20. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  1. DYNAMICS OF NASCENT AND ACTIVE ZONE ULTRASTRUCTURE AS SYNAPSES ENLARGE DURING LTP IN MATURE HIPPOCAMPUS

    PubMed Central

    Bell, Maria Elizabeth; Bourne, Jennifer N.; Chirillo, Michael A.; Mendenhall, John M.; Kuwajima, Masaaki; Harris, Kristen M.

    2014-01-01

    Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation and comparisons were made to control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ~35% of synapses in perfusion-fixed hippocampus and as many as ~50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased without significant change in synapse area, suggesting that presynaptic vesicles were recruited to pre-existing nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed that glutamate receptors can be found in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170±5 nm in perfusion-fixed hippocampus to 251±4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that falloff in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP. PMID:25043676

  2. Maturation of active zone assembly by Drosophila Bruchpilot

    PubMed Central

    Fouquet, Wernher; Owald, David; Wichmann, Carolin; Mertel, Sara; Depner, Harald; Dyba, Marcus; Hallermann, Stefan; Kittel, Robert J.; Eimer, Stefan

    2009-01-01

    Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains. PMID:19596851

  3. Methyl tert-butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    NASA Astrophysics Data System (ADS)

    Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.

    2001-02-01

    Atmospheric methyl tert-butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half-lives from a few months to a couple of years. Tert-butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated-zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated-zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated-zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long-term effect of MTBE releases.

  4. Methyl tert-butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    USGS Publications Warehouse

    Baehr, A.L.; Charles, E.G.; Baker, R.J.

    2001-01-01

    Atmospheric methyl tert-butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half-lives from a few months to a couple of years. Tert-butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated-zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated-zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated-zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long-term effect of MTBE releases.

  5. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  6. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  7. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is

  8. The role of degradant profiling in active pharmaceutical ingredients and drug products.

    PubMed

    Alsante, Karen M; Ando, Akemi; Brown, Roland; Ensing, Janice; Hatajik, Todd D; Kong, Wei; Tsuda, Yoshiko

    2007-01-10

    Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product (DP) stability, and to provide information about degradation pathways and degradation products. In order to fulfill development and regulatory needs, this publication provides a roadmap for when and how to perform studies, helpful tools in designing rugged scientific studies, and guidance on how to record and communicate results. PMID:17187892

  9. Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere

    NASA Astrophysics Data System (ADS)

    Horsfield, B.; Schenk, H. J.; Zink, K.; Ondrak, R.; Dieckmann, V.; Kallmeyer, J.; Mangelsdorf, K.; di Primio, R.; Wilkes, H.; Parkes, R. J.; Fry, J.; Cragg, B.

    2006-06-01

    Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m 2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been

  10. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Liu, Chongbin; Li, Jingfen

    2016-10-01

    The mucilage polysaccharide was extracted from Dioscorea opposita in cold water and then degraded in two reagents hydrogen peroxide and ascorbic acid. Three low-molecular-weight-samples were prepared, and their antioxidant and antimutagenic activity were investigated. Chemical composition analysis indicated that the degradation action was in a concentration dependent manner. Total sugars content of three degraded samples were significantly higher than raw sample. The uronic acid content in the degraded sample LP3 was significantly higher than other samples. LP3 processed the higher scavenging effect on hydroxyl and superoxide radicals than other two degraded samples because of its lower molecular weight and more uronic acid. LP3 processed the excellent antimutagenic activity and higher anti-lipid peroxidation in garlic roots. There maybe a certain relationship between the two activities. The present results indicated this mucilage could be a potential candidate of the natural antimutagen. PMID:27312633

  11. Active zone impact on deformation state of non-rigid pavement

    NASA Astrophysics Data System (ADS)

    Mandula, Ján

    2014-06-01

    The paper deals with the design of non-rigid pavement, with emphasis on the effect of active zone on its deformation state. The concepts of determination of active zone are described. The results of numerical modelling of pavement laying on elastic subgrade are presented in the paper

  12. Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone

    PubMed Central

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H.; Inagaki, Fumio

    2013-01-01

    Halogenated organic matter buried in marine subsurface sediment may serve as a source of electron acceptors for anaerobic respiration of subseafloor microbes. Detection of a diverse array of reductive dehalogenase-homologous (rdhA) genes suggests that subseafloor organohalide-respiring microbial communities may play significant ecological roles in the biogeochemical carbon and halogen cycle in the subseafloor biosphere. We report here the spatial distribution of dehalogenation activity in the Nankai Trough plate-subduction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation experiments with slurries of sediment collected at various depths and locations showed that degradation of several organohalides tested only occurred in the shallow sedimentary basin, down to 4.7 metres below the seafloor, despite detection of rdhA in the deeper sediments. We studied the phylogenetic diversity of the metabolically active microbes in positive enrichment cultures by extracting RNA, and found that Desulfuromonadales bacteria predominate. In addition, for the isolation of genes involved in the dehalogenation reaction, we performed a substrate-induced gene expression screening on DNA extracted from the enrichment cultures. Diverse DNA fragments were obtained and some of them showed best BLAST hit to known organohalide respirers such as Dehalococcoides, whereas no functionally known dehalogenation-related genes such as rdhA were found, indicating the need to improve the molecular approach to assess functional genes for organohalide respiration. PMID:23479745

  13. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  14. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane.

  15. Unc-51 controls active zone density and protein composition by downregulating ERK signaling

    PubMed Central

    Wairkar, Yogesh P.; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; DiAntonio, Aaron

    2009-01-01

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability. PMID:19144852

  16. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    PubMed

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  17. The fate and transport of nitroglycerin in the unsaturated zone at active and legacy anti-tank firing positions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia; Poulin, Isabelle

    2012-11-01

    The environmental fate of nitroglycerin (NG) in the unsaturated zone was evaluated in the context of double-base propellant residue deposition at anti-tank training ranges. Fresh propellant residues were collected during live anti-tank training. Surface soils, sub-surface soils and water samples from the unsaturated zone were collected at an active anti-tank range, and at a legacy site where NG-based propellants have been used. Results show that the residues are composed of intact propellant particles, as well as small quantities of NG, dinitroglycerin (DNG) and nitrate which are rapidly dissolved by precipitation, resulting in sporadic pulses of those compounds in water from the unsaturated zone after rain/snow melt events. The dissolved NG and DNG can be progressively degraded in the unsaturated zone, releasing nitrate as an end-product. Over a period of several years, small propellant particles located at the soil surface can be carried downward through the soil pore system by infiltration water, which explains the presence of NG in sub-surface soils at the legacy site, more than 35 years after site closure. NG is no longer leached from these old particles, therefore the detection of NG in sub-surface soils does not signify that groundwater is at risk of contamination by NG.

  18. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  19. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease.

    PubMed

    Leffler, Jonatan; Martin, Myriam; Gullstrand, Birgitta; Tydén, Helena; Lood, Christian; Truedsson, Lennart; Bengtsson, Anders A; Blom, Anna M

    2012-04-01

    Ongoing inflammation including activation of the complement system is a hallmark of systemic lupus erythematosus (SLE). Antimicrobial neutrophil extracellular traps (NETs) are composed of secreted chromatin that may act as a source of autoantigens typical for SLE. In this study, we investigated how complement interacts with NETs and how NET degradation is affected by complement in SLE patients. We found that sera from a subset of patients with active SLE had a reduced ability to degrade in vitro-generated NETs, which was mostly restored when these patients were in remission. Patients that failed to degrade NETs had a more active disease and they also displayed lower levels of complement proteins C4 and C3 in blood. We discovered that NETs activated complement in vitro and that deposited C1q inhibited NET degradation including a direct inhibition of DNase-I by C1q. Complement deposition on NETs may facilitate autoantibody production, and indeed, Abs against NETs and NET epitopes were more pronounced in patients with impaired ability to degrade NETs. NET-bound autoantibodies inhibited degradation but also further increased C1q deposition, potentially exacerbating the disease. Thus, NETs are a potent complement activator, and this interaction may play an important role in SLE. Targeting complement with inhibitors or by removing complement activators such as NETs could be beneficial for patients with SLE.

  20. Differential expression of active zone proteins in neuromuscular junctions suggests functional diversification.

    PubMed

    Juranek, Judyta; Mukherjee, Konark; Rickmann, Michael; Martens, Henrik; Calka, Jaroslaw; Südhof, Thomas C; Jahn, Reinhard

    2006-12-01

    Nerve terminals of the central nervous system (CNS) contain specialized release sites for synaptic vesicles, referred to as active zones. They are characterized by electron-dense structures that are tightly associated with the presynaptic plasma membrane and organize vesicle docking and priming sites. Recently, major protein constituents of active zones have been identified, including the proteins Piccolo, Bassoon, RIM, Munc13, ERCs/ELKs/CASTs and liprins. While it is becoming apparent that each of these proteins is essential for synaptic function in the CNS, it is not known to what extent these proteins are involved in synaptic function of the peripheral nervous system. Somatic neuromuscular junctions contain morphologically and functionally defined active zones with similarities to CNS synapses. In contrast, sympathetic neuromuscular varicosities lack active zone-like morphological specializations. Using immunocytochemistry at the light and electron microscopic level we have now performed a systematic investigation of all five major classes of active zone proteins in peripheral neuromuscular junctions. Our results show that somatic neuromuscular endplates contain a full complement of all active zone proteins. In contrast, varicosities of the vas deferens contain a subset of active zone proteins including Bassoon and ELKS2, with the other four components being absent. We conclude that Bassoon and ELKS2 perform independent and specialized functions in synaptic transmission of autonomic synapses.

  1. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone.

    PubMed

    Holderith, Noemi; Lorincz, Andrea; Katona, Gergely; Rózsa, Balázs; Kulik, Akos; Watanabe, Masahiko; Nusser, Zoltan

    2012-06-10

    Cortical synapses have structural, molecular and functional heterogeneity; our knowledge regarding the relationship between their ultrastructural and functional parameters is still fragmented. Here we asked how the neurotransmitter release probability and presynaptic [Ca(2+)] transients relate to the ultrastructure of rat hippocampal glutamatergic axon terminals. Two-photon Ca(2+) imaging-derived optical quantal analysis and correlated electron microscopic reconstructions revealed a tight correlation between the release probability and the active-zone area. Peak amplitude of [Ca(2+)] transients in single boutons also positively correlated with the active-zone area. Freeze-fracture immunogold labeling revealed that the voltage-gated calcium channel subunit Cav2.1 and the presynaptic protein Rim1/2 are confined to the active zone and their numbers scale linearly with the active-zone area. Gold particles labeling Cav2.1 were nonrandomly distributed in the active zones. Our results demonstrate that the numbers of several active-zone proteins, including presynaptic calcium channels, as well as the number of docked vesicles and the release probability, scale linearly with the active-zone area.

  2. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  3. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  4. Development and Validation of a Model to Predict Aerosol Breathing Zone Concentrations During Common Outdoor Activities

    EPA Science Inventory

    Research has been conducted on aerosol emission rates during various activities as well as aerosol transport into the breathing zone under idealized conditions. However, there has been little effort to link the two into a model for predicting a person’s breathing zone concentrat...

  5. 77 FR 48127 - Foreign-Trade Zone 20-Suffolk, VA; Notification of Proposed Production Activity, Usui...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 20--Suffolk, VA; Notification of Proposed Production Activity, Usui International Corporation, (Diesel Engine Fuel Lines), Chesapeake, VA The Virginia Port Authority, grantee of FTZ 20, submitted a...

  6. [Degradation of diuron by persulfate oxidation activated by EDTA-ferrous ion in aqueous system].

    PubMed

    Zhang, Jin-Feng; Yang, Xi; Zheng, Wei; Kong, Ling-Ren; Wang, Lian-Hong

    2008-05-01

    The method of diuron [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] degradation by persulfate oxidation activated by EDTA-ferrous ion in aqueous system was conducted. Based on both of the degradation performance and the operating costs, optimal reaction condition was proposed. Operating at K2S2O8 initial concentration 2.0 mmol x L(-1), Fe(II) initial concentration 1.0 mmol x L(-1), EDTA initial concentration 0.5 mmol x L(-1), reaction time 300 min and pH = 7.0, about 67.6% of 0.1 mmol x L(1) diuron was degradation. Hydroxyl radicals and sulfate radicals produced in the system were determined by molecular probes (ethanol and tert-butanol) methods. The degradation products of diuron were identified with LC/MS methods and the degradation pathways of diuron were discussed.

  7. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    PubMed

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  8. [Differences of activations in visual and associative zones during figurative and verbal activity].

    PubMed

    Nagornova, Zh V; Shemiakina, N V

    2014-04-01

    The study considers correlates of figurative and verbal tasks performance during attention paid to visual stimuli. There are 34 subjects (20 female, mean age 21, 2.5 [SD]) took parts in the study. During subjects performance of the task, there was carried out EEG registration from 19 sites according to 10-20%. Performance of the figurative creative task in comparison with control non-creative task of the same modality was accompanied by activation of occipital and parietal zones of the cerebral cortex (decrease of EEG spectral power in alpha 1 (7.5-9.5 Hz) and alpha2 (10-12.5 Hz) frequency bands was observed) whereas performance of a verbal creative task in the similar test-control comparison was accompanied by decrease of activation in occipital zones (revealed through increase of EEG spectral in alphal and alpha2 frequency bands). As visual stimuli were shown during the whole time of the creative and control tasks fulfilment was made an assumption observed distinction can be connected with redistribution of attention focus at various types of creative activity (figurative or verbal).

  9. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  10. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.

  11. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant. PMID:26407712

  12. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity.

    PubMed

    Shi, Mei-Jia; Wei, Xiaoyi; Xu, Jie; Chen, Bing-Jie; Zhao, De-Yin; Cui, Shuai; Zhou, Tao

    2017-01-15

    In order to improve the bioactivities of the polysaccharide from Enteromorpha prolifera (PE), crude PE (Mw 1400kDa) was degraded to low molecular weight polysaccharide (44kDa) in the presence of hydrogen peroxide/ascorbic acid, followed by carboxymethylation. The reaction conditions for carboxymethylation of degraded polysaccharide (DPE) were optimized by Response Surface Methodology. The carboxymethyled degraded polysaccharide (CDPE) obtained under optimized conditions, with a degree of carboxymethylation of 0.849, was characterized by FT-IR and (13)C NMR. The molecular weight of CDPE was measured to be 53.7kDa. CDPE was evaluated for its antioxidant activity by determining the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals, and by determining the ferric reducing power. The antioxidant activity of CDPE was found to be greatly improved in comparison with degraded polysaccharide (DPE) and crude polysaccharide from Enteromorpha prolifera (PE). PMID:27542452

  13. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function.

    PubMed

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C; Hell, Stefan W; Scheiffele, Peter; Walter, Alexander M; Loll, Bernhard; Sigrist, Stephan J

    2015-10-16

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis.

  14. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function

    PubMed Central

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A.; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D.; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C.; Hell, Stefan W.; Scheiffele, Peter; Walter, Alexander M.; Loll, Bernhard; Sigrist, Stephan J.

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  15. Group Problem Solving as a Zone of Proximal Development activity

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  16. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  17. Active anthocyanin degradation in Brunfelsia calycina (yesterday--today--tomorrow) flowers.

    PubMed

    Vaknin, Hila; Bar-Akiva, Ayelet; Ovadia, Rinat; Nissim-Levi, Ada; Forer, Izhak; Weiss, David; Oren-Shamir, Michal

    2005-09-01

    Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants. PMID:15918029

  18. Active anthocyanin degradation in Brunfelsia calycina (yesterday--today--tomorrow) flowers.

    PubMed

    Vaknin, Hila; Bar-Akiva, Ayelet; Ovadia, Rinat; Nissim-Levi, Ada; Forer, Izhak; Weiss, David; Oren-Shamir, Michal

    2005-09-01

    Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants.

  19. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  20. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release.

    PubMed

    Fejtova, Anna; Gundelfinger, Eckart D

    2006-01-01

    At chemical synapses, neurotransmitter is released at a restricted region of the presynaptic plasma membrane, called the active zone. At the active zone, a matrix of proteins is assembled, which is termed the presynaptic grid or cytomatrix at the active zone (CAZ). Components of the CAZ are thought to localize and organize the synaptic vesicle cycle, a series of membrane trafficking events underlying regulated neurotransmitter exocytosis. This review is focused on a set of specific proteins involved in the structural and functional organization of the CAZ. These include the multi-domain Rab3-effector proteins RIM1alpha and RIM2alpha; Bassoon and Piccolo, two multi-domain CAZ scaffolding proteins of enormous size; as well as members of the CAST/ERC family of CAZ-specific structural proteins. Studies on ribbon synapses of retinal photoreceptor cells have fostered understanding the molecular design of the CAZ. In addition, the analysis of the delivery pathways for Bassoon and Piccolo to presynaptic sites during development has produced new insights into assembly mechanisms of brain synapses during development. Based on these studies, the active zone transport vesicle hypothesis was formulated, which postulates that active zones, at least in part, are pre-assembled in neuronal cell bodies and transported as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of synaptogenesis. Several PTVs can fuse on demand with the presynaptic membrane to rapidly form an active zone.

  1. PP2A and GSK-3beta act antagonistically to regulate active zone development.

    PubMed

    Viquez, Natasha M; Füger, Petra; Valakh, Vera; Daniels, Richard W; Rasse, Tobias M; DiAntonio, Aaron

    2009-09-16

    The synapse is composed of an active zone apposed to a postsynaptic cluster of neurotransmitter receptors. Each Drosophila neuromuscular junction comprises hundreds of such individual release sites apposed to clusters of glutamate receptors. Here, we show that protein phosphatase 2A (PP2A) is required for the development of structurally normal active zones opposite glutamate receptors. When PP2A is inhibited presynaptically, many glutamate receptor clusters are unapposed to Bruchpilot (Brp), an active zone protein required for normal transmitter release. These unapposed receptors are not due to presynaptic retraction of synaptic boutons, since other presynaptic components are still apposed to the entire postsynaptic specialization. Instead, these data suggest that Brp localization is regulated at the level of individual release sites. Live imaging of glutamate receptors demonstrates that this disruption to active zone development is accompanied by abnormal postsynaptic development, with decreased formation of glutamate receptor clusters. Remarkably, inhibition of the serine-threonine kinase GSK-3beta completely suppresses the active zone defect, as well as other synaptic morphology phenotypes associated with inhibition of PP2A. These data suggest that PP2A and GSK-3beta function antagonistically to control active zone development, providing a potential mechanism for regulating synaptic efficacy at a single release site.

  2. Functional heterogeneity of rat hepatocytes: predominance of aryl hydrocarbon hydroxylase activity in perivenular zone.

    PubMed

    Tazawa, J; Endou, H; Sato, A; Hasumura, Y; Takeuchi, J

    1988-06-01

    To elucidate the hepatic intralobular distribution of aryl hydrocarbon hydroxylase (AHH) activity biochemically, periportal (PP) and perivenular hepatocytes (PV) from male Sprague-Dawley rats were separated by a fluorescence-activated cell sorter after labeling the PP zone with fluorescein diacetate and the perivenular zone with fluorescein isothiocyanate. AHH activity was higher in PV than in PP. The enzyme activity was induced about 6-fold in hepatocytes of rats pretreated with 3-methyl-cholanthrene, and the induction was more prominent in PP than in PV. Neither phenobarbital pretreatment nor altered lipid content of the diet induced the change in the enzyme activity.

  3. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    PubMed

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration.

  4. Frozen Martian lahars? Evaluation of morphology, degradation and geologic development in the Utopia-Elysium transition zone

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B. M.

    2013-09-01

    Regional coverage of high-resolution data from the CTX camera has permitted new, detailed morphologic analysis of the enigmatic Utopia-Elysium flows which dominate the transition zone between Elysium volcanic province and Utopia Planitia. Based on topographic and morphologic analysis of the Galaxias region, this study supports the lahar hypothesis put forth by previous works and suggests that the center and the margins of the outflow deposits have very diverse morphologies that can be explained by varying degrees of water drainage and freezing. Regular channel and flood plain deposits are found in the central part of the outflow deposits, whereas the marginal deposits are interpreted to contain significant amount of ice because of their distinct morphological properties (smooth, lobate flow-fronts with upward convex snouts, unusual crater morphologies, raised rim fractures and localized flow fronts indicating rheomorphism). Thus, this study suggest that, unlike terrestrial lahars, lahar emplacement under Martian conditions only drain in the central parts, whereas the water in the margins of the outflow deposit (∼75% of the total outflow deposit in the Galaxias region) freezes up resulting in a double-layered deposit consisting of ice-rich core with an ice-poor surface layer. It is here furthermore suggested that continued intrusive volcanic activity was highly affected by the presence of the ice-rich lahar deposits, generating ground-ice-volcano interactions resulting in a secondary suite of morphologies. These morphologies include seventeen ridges that are interpreted to be möberg ridges (due to their NW-SE orientation, distinct ridge-crests and association with fractures and linear ridges) and depressions with nested faults interpreted to be similar to terrestrial ice-cauldrons, which form by enhanced subglacial geothermal activity including subglacial volcanic eruptions. These sub-lahar intrusions caused significant volatile loss in the ice-rich core of the

  5. Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro.

    PubMed Central

    Kammer, G M; Sapolsky, A I; Malemud, C J

    1985-01-01

    Destruction of articular cartilage is the hallmark of inflammatory arthritides. Enzymes elaborated by mononuclear cells infiltrating the synovium mediate, in part, the degradation of the cartilage extracellular matrix. Since mononuclear cells are the dominant cell type found in chronic inflammatory synovitis, we investigated whether interaction of immune mononuclear cells with antigen initiated the synthesis and secretion of a proteoglycan-degrading enzyme activity. Proteoglycan-degrading enzyme activity was monitored by the capacity of murine spleen cell conditioned medium to release [3H]serine/35SO4 incorporated into rabbit cartilage proteoglycan monomer fraction (A1D1), and by the relative change in specific viscosity of bovine nasal cartilage proteoglycan monomer. The results demonstrated that both virgin and immune mononuclear cells spontaneously generated proteoglycan-degrading enzyme activity and that cellular activation and proliferation induced by the antigen keyhole limpet hemocyanin or the mitogen phytohemagglutinin was not required. Kinetic studies demonstrated stable release of the enzyme activity over 72 h. Cell separation studies showed that T lymphocytes, a thymoma line, and macrophages separately produced proteoglycan-degrading enzyme activity. The enzyme activity has been partially characterized and appears to belong to a class of neutral pH metal-dependent proteinases. These observations, the first to demonstrate that T lymphocytes secrete an enzyme capable of degrading cartilage proteoglycan, raise the possibility that this enzyme activity contributes to cartilage extracellular matrix destruction in vivo. Moreover, these data support the conclusion that production of this enzyme by T lymphocytes is independent of an antigen-specific stimulus. PMID:3897284

  6. Control of Death-associated Protein Kinase (DAPK) Activity by Phosphorylation and Proteasomal Degradation*

    PubMed Central

    Jin, Yijun; Blue, Emily K.; Gallagher, Patricia J.

    2010-01-01

    Activation of death-associated protein kinase (DAPK) occurs via dephosphorylation of Ser-308 and subsequent association of calcium/calmodulin. In this study, we confirmed the existence of the alternatively spliced human DAPK-β, and we examined the levels of DAPK autophosphorylation and DAPK catalytic activity in response to tumor necrosis factor or ceramide. It was found that DAPK is rapidly dephosphorylated in response to tumor necrosis factor or ceramide and then subsequently degraded via proteasome activity. Dephosphorylation and activation of DAPK are shown to temporally precede its subsequent degradation. This results in an initial increase in kinase activity followed by a decrease in DAPK expression and activity. The decline in DAPK expression is paralleled with increased caspase activity and cell apoptosis. These results suggest that the apoptosis regulatory activities mediated by DAPK are controlled both by phosphorylation status and protein stability. PMID:17056602

  7. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  8. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge.

    PubMed

    Ma, Jing; Xu, Li; Jia, Lingyun

    2013-07-01

    Using pyrene as a sole carbon, a new polycyclic aromatic hydrocarbons (PAHs)-degrading bacterial strain was isolated from the active sewage sludge. This strain was identified as Pseudomonas sp. Jpyr-1 by 16S rRNA gene sequence analysis. The maximum degradation rate of pyrene was 3.07 mg L(-1)h(-1) in 48 h incubation with initial pyrene concentration of 200 mg L(-1). Moreover, in binary system consisting of pyrene and another PAH, the enzyme system of Jpyr-1 showed a preference toward pyrene. Furthermore, competitive inhibition of pyrene degradation by other PAH compounds occurred in the binary system. Jpyr-1 could also rapidly degrade other PAHs, such as benzanthracene, chrysene and benzo[a]pyrene. Moreover, several metabolites were detected during pyrene degradation which indicated that Jpyr-1 degraded pyrene through the o-phthalate pathway. Taken together, these results indicated that Pseudomonas sp. Jpyr-1 was a new PAHs-degrading strain that might be useful in the bioremediation of sites contaminated with PAHs.

  9. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  10. [Sodium peroxydisulfate activation by heat and Fe(II) for the degradation of 4-CP].

    PubMed

    Zhao, Jin-ying; Zhang, Yao-bin; Quan, Xie; Zhao, Ya-zhi

    2010-05-01

    The heat and ferrous ion-activated sodium peroxydisulfate (PDS) for the oxidation of 4-chlorophenol (4-CP) was investigated. These processes are based on the generation of sulfate radicals, which are powerful oxidizing species found in nature. The effects of temperature, pH, the initial concentrations of Fe (II), PDS and citric acid on the degradation efficiencies of 4-CP were studied. The results show that the degradAtion efficiency of 4-CP is significantly enhanced as temperature increases. The degradation efficiencies of 4-CP are 2.5% and 43.5% within 4 h at 30 degrees C and 50 degrees C, respectively. Moreover, 4-CP is degraded completely at 60 degrees C. The degradation efficiency of 4-CP follows the order: pH 4.0 > pH 7.0 > pH 10.0. In the PDS/Fe (II) system, ferrous ion played an important role in generating sulfate radicals at ambient temperature. The optimum experimental condition is established and the addition of probe compounds proves the formation of sulfate radicals. Furthermore, the iron availability in the aqueous solution is manipulated with the optimum amount of citric acid, as a chelating agent. The degradation efficiency of 4-CP is 50.9% in the PDS/Fe (II)/citric acid system, which is superior to 43.5% at 50 degrees C under the same initial concentration of PDS.

  11. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  12. Factors affecting carbon-14 activity of unsaturated zone CO2 and implications for groundwater dating

    NASA Astrophysics Data System (ADS)

    Wood, Cameron; Cook, Peter G.; Harrington, Glenn A.; Meredith, Karina; Kipfer, Rolf

    2014-11-01

    Unsaturated zone processes may influence the carbon-14 (14C) activity of infiltrating groundwater and thus introduce error in derived groundwater residence times. However unsaturated zone 14C activities are rarely measured and there is little understanding of how they may vary spatially in a groundwater basin. In this study we measured 14C activity in unsaturated zone gas at five sites with different watertable depths (8.2-31.5 m) in the arid Ti Tree Basin, central Australia. We observed a relatively uniform decrease in 14C activity of unsaturated zone gas with depth at most sites, with variation in unsaturated zone depths leading to variation in 14C activities directly above the watertable at each site (ranging from 54 to 106 percent Modern Carbon (pMC)). Through modelling we show that the profiles are influenced by CO2 production at different depths from sources with different isotopic ratios, including production of ‘modern' CO2 in the root zone and production of ‘old' CO2 above the watertable. Scenario modelling showed that these processes are independent of recharge when recharge is low (0-10 mm y-1) but that higher recharge rates (>100 mm y-1) result in more advective transport of atmospheric CO2 to the watertable. The variation in 14C above the watertable was more sensitive to watertable depth and shallow and deep CO2 production rates. These findings offer insight into how unsaturated zone 14C activities may vary spatially and provide guidance as to when 14C depletion in unsaturated zone CO2 may become important for groundwater dating, particularly in arid settings.

  13. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test.

  14. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie; Yuan, Zhiguo

    2015-02-01

    Methanethiol (MT) is considered one of the predominant odorants in sewer systems. Therefore, understanding MT transformation in sewers is essential to sewer odor assessment and abatement. In this study, we investigated the degradation of MT in laboratory anaerobic sewers. Experiments were carried out in seven anaerobic sewer reactors with biofilms at different stages of development. MT degradation was found to be strongly dependent on the methanogenic activity of sewer biofilms. The MT degradation rate accelerated with the increase of methanogenic activity of sewer biofilms, resulting in MT accumulation (i.e. net production) in sewer reactors with relatively low methanogenic activities, and MT removal in reactors with higher methanogenic activities. A Monod-type kinetic expression was developed to describe MT degradation kinetics in anaerobic sewers, in which the maximum degradation rate was modeled as a function of the maximum methane production rate through a power function. It was also found that MT concentration had a linear relationship with acetate concentration, which may be used for preliminary assessment of MT presence in anaerobic sewers. PMID:25437340

  15. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs.

    PubMed

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-09-24

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study.

  16. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs.

    PubMed

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-01-01

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study. PMID:26400011

  17. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  18. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.

    PubMed

    Hamre, Anne Grethe; Eide, Kristine B; Wold, Hanne H; Sørlie, Morten

    2015-04-30

    For decades, the enzymatic conversion of recalcitrant polysaccharides such as cellulose and chitin was thought to solely rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. Here, we have examined the initial rate enhancement an LPMO (CBP21) has on the hydrolytic enzymes (ChiA, ChiB, and ChiC) of the chitinolytic machinery of Serratia marcescens through determinations of apparent k(cat) (k(cat)(app)) values on a β-chitin substrate. k(cat)(app) values were determined to be 1.7±0.1 s(-1) and 1.7±0.1 s(-1) for the exo-active ChiA and ChiB, respectively and 1.2±0.1 s(-1) for the endo-active ChiC. The addition of CBP21 boosted the k(cat)(app) values of ChiA and ChiB giving values of 11.1±1.5 s(-1) and 13.9±1.4 s(-1), while there was no effect on ChiC (0.9±0.1 s(-1)).

  19. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.

    PubMed

    Franje, Catherine A; Chang, Shao-Kuang; Shyu, Ching-Lin; Davis, Jennifer L; Lee, Yan-Wen; Lee, Ren-Jye; Chang, Chao-Chin; Chou, Chi-Chung

    2010-12-01

    Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe.

  20. Absence of functional active zone protein Bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis.

    PubMed

    Regus-Leidig, Hanna; tom Dieck, Susanne; Brandstätter, Johann Helmut

    2010-06-01

    The retinal photoreceptor ribbon synapse is a structurally and functionally unique type of chemical synapse, specialized for tonic release of neurotransmitter in the dark. It is characterized by the presynaptic ribbon, an electron-dense organelle at the active zone, which is covered by hundreds of synaptic vesicles. Recently we showed that photoreceptor ribbon complexes are assembled from non-membranous, spherical densities--the precursor spheres--during the first two postnatal weeks of photoreceptor synaptogenesis. A core component of the precursor spheres and a key player in attaching the ribbon to the active zone is the presynaptic cytomatrix protein Bassoon. In this study, we examined in a comprehensive light and electron microscopic analysis whether Bassoon plays a role in the formation of the precursor spheres using Bassoon mutant mice lacking functional Bassoon. We report that developing Bassoon mutant photoreceptors contain fewer and smaller precursor spheres and that transport of precursor spheres to nascent synapses is delayed compared to wild-type controls. Moreover, western blot analyses of homogenates from postnatal day 0 (P0) to P14 Bassoon mutant retinae exhibit lower RIBEYE and Piccolo protein levels compared to the wild type, indicating elevated protein degradation in the absence of Bassoon. Our findings reveal a novel function of Bassoon in the early formation and delivery of precursor spheres to nascent ribbon synaptic sites in addition to its known role in ribbon anchoring during later stages of photoreceptor ribbon synaptogenesis.

  1. Active volcanism on Venus in the Ganiki Chasma rift zone

    NASA Astrophysics Data System (ADS)

    Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W.

    2015-06-01

    Venus is known to have been volcanically resurfaced in the last third of solar system history and to have undergone a significant decrease in volcanic activity a few hundred million years ago. However, fundamental questions remain: Is Venus still volcanically active today, and if so, where and in what geological and geodynamic environment? Here we show evidence from the Venus Express Venus Monitoring Camera for transient bright spots that are consistent with the extrusion of lava flows that locally cause significantly elevated surface temperatures. The very strong spatial correlation of the transient bright spots with the extremely young Ganiki Chasma, their similarity to locations of rift-associated volcanism on Earth, provide strong evidence for their volcanic origin and suggests that Venus is currently geodynamically active.

  2. Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater.

    PubMed

    Yadav, Trilok Chandra; Pal, Rajesh Ramavadh; Shastri, Sunita; Jadeja, Niti B; Kapley, Atya

    2015-01-01

    This study demonstrates the diverse degradative capacity of activated biomass, when exposed to different levels of total dissolved solids (TDS) using a comparative metagenomics approach. The biomass was collected at two time points to examine seasonal variations. Four metagenomes were sequenced on Illumina Miseq platform and analysed using MG-RAST. STAMP tool was used to analyse statistically significant differences amongst different attributes of metagenomes. Metabolic pathways related to degradation of aromatics via the central and peripheral pathways were found to be dominant in low TDS metagenome, while pathways corresponding to central carbohydrate metabolism, nitrogen, organic acids were predominant in high TDS sample. Seasonal variation was seen to affect catabolic gene abundance as well as diversity of the microbial community. Degradation of model compounds using activated sludge demonstrated efficient utilisation of single aromatic ring compounds in both samples but cyclic compounds were not efficiently utilised by biomass exposed to high TDS.

  3. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera).

    PubMed

    Hsu, Chin-Yuan; Chuang, Yu-Lung; Chan, Yu-Pei

    2014-02-01

    The trophocytes and fat cells of honeybees (Apis mellifera) have been used in cellular senescence studies, but the changes of cellular degradation activity with aging in workers are unknown. In this study, cellular degradation activity was evaluated in the trophocytes and fat cells of young and old workers reared in a field hive. The results showed the following: (1) 20S proteosome activity decreased with aging, whereas its expression increased with aging; (2) the expression of microtubule-associated protein 1 light chain 3-II (LC3-II) and the 70 kD heat shock cognate protein (Hsc70) decreased with aging; (3) the size and number of autophagic vacuoles decreased with aging; (4) p62/SQSTM1 and polyubiquitin aggregate expression decreased with aging; (5) lysosomal efficiency decreased with aging; and (6) molecular target of rapamycin (mTOR) expression increased with aging. These results indicate that young workers have higher levels of cellular degradation activity than old workers and that aging results in a decline in the cellular degradation activity in worker honeybees.

  4. Concentric zones of active RhoA and Cdc42 around single cell wounds

    PubMed Central

    Benink, Hélène A.; Bement, William M.

    2005-01-01

    Rho GTPases control many cytoskeleton-dependent processes, but how they regulate spatially distinct features of cytoskeletal function within a single cell is poorly understood. Here, we studied active RhoA and Cdc42 in wounded Xenopus oocytes, which assemble and close a dynamic ring of actin filaments (F-actin) and myosin-2 around wound sites. RhoA and Cdc42 are rapidly activated around wound sites in a calcium-dependent manner and segregate into distinct, concentric zones around the wound, with active Cdc42 in the approximate middle of the F-actin array and active RhoA on the interior of the array. These zones form before F-actin accumulation, and then move in concert with the closing array. Microtubules and F-actin are required for normal zone organization and dynamics, as is crosstalk between RhoA and Cdc42. Each of the zones makes distinct contributions to the organization and function of the actomyosin wound array. We propose that similar rho activity zones control related processes such as cytokinesis. PMID:15684032

  5. Active zone density is conserved during synaptic growth but impaired in aged mice.

    PubMed

    Chen, Jie; Mizushige, Takafumi; Nishimune, Hiroshi

    2012-02-01

    Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5-18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein, Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm(2) , while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging.

  6. Investigation of cell exudates active in carbon tetrachloride and chloroform degradation.

    PubMed

    Koons, B W; Baeseman, J L; Novak, P J

    2001-07-01

    Contamination of groundwater by chlorinated solvents such as carbon tetrachloride (CCl4) and chloroform (CHCl3) is a widespread problem. The cell exudates from the methanogen Methanosarcina thermophila are active in the degradation of CCl4 and CHCl3. This research was performed to characterize these exudates. Examination of the influence of pH indicated that activity was greater under alkaline conditions. Rapid CCl4 degradation occurred from 35-65 degrees C, with first-order degradation rate coefficients increasing as temperature increased. It was found that proteins were not responsible for CCl4 degradation. The active agents in the cell exudates were <10 kDa in size, with degradation activity present in both 1-10 kDa and <1 kDa size ranges. Upon purification of the <10 kDa size range of the cell exudates on a C(18) chromatography column, 17 fractions (out of 100) degraded >50% of the added CCl4 in 8 h. These 17 fractions were pooled into three samples based on their elution time from the C(18) column. One of these pooled samples contained elevated levels of cobalt, zinc, and iron, at 2, 3, and 13 times the levels measured in similarly fractionated and pooled samples of medium, respectively. The UV-visible spectrum of this pooled sample had an absorption maximum at 560-580 nm, which is similar to the absorption maxima of heme (approximately 550 and 575 nm). The two other pooled samples contained elevated levels of zinc at 11 and 22 times the concentration measured in similarly fractionated and pooled samples of medium, respectively, and also contained very low levels of nickel, cobalt, and iron. This research suggests that the cell exudates from M. thermophila contain porphorinogen-type molecules capable of dechlorination, possibly excreted corrinoids, hemes, and zinc-containing molecules.

  7. Detection and location of OP-degrading activity: A model to integrate education and research.

    PubMed

    Iyer, Rupa; Smith, Kevin; Kudrle, Bill; Leon, Alex

    2015-06-25

    The Environmental Sampling Research Module (ESRM) is an investigative/discovery module that provides undergraduate research experiences for students as part of an interdisciplinary research-based biotechnology curriculum at the University of Houston campus. As part of the ESRM, students collect soil samples from various locations to test for the presence of organophosphorous (OP) degrading bacteria. At the end of this research project students submit a research paper on their field and laboratory activities and discuss their experimental data and observations. Students also record the date, location of collection, and the results of testing the sample for the degradation of two pesticides, methyl parathion or paraoxon, in an electronic laboratory notebook (ELN). Each collection site is recorded on a Google Maps module and the data from student research activities is made available to other undergraduate students. This data is then used to generate a microorganism database of pesticide degrading activity and promote reading, critical thinking, and analytical skills as part of the curriculum. Our sampling of agricultural sites and wastewater within and around the city of Houston has identified seven distinct genera of OP degrading organisms, including Pseudomonas, Stenotrophomonas, Exiguobacterium, Delftia, Agrobacterium, Aeromonas, and Rhizobium. Collected strains exhibit phosphotriesterase-like enzymatic activity with isolates of Pseudomonas putida and Stenotrophomonas maltophilia capable of degrading both the phosphotriester paraoxon and the phosphorothioate methyl parathion. Using this collection of OP-degrading microorganisms, undergraduate students have evaluated their potential for enhancing the removal of harmful organophosphates and their toxic metabolites from contaminated agricultural soil and adjacent bodies of water. This analytical data can potentially be utilized for environmental and industrial applications in bioremediation and ecology providing an

  8. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  9. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity During Stress

    PubMed Central

    Rainbolt, T. Kelly; Lebeau, Justine; Puchades, Cristina; Wiseman, R. Luke

    2016-01-01

    SUMMARY The mitochondrial inner membrane proteases YME1L and OMA1 are critical regulators of essential mitochondrial functions including inner membrane proteostasis maintenance and mitochondrial dynamics. Here, we show that YME1L and OMA1 are reciprocally degraded in response to distinct types of cellular stress. OMA1 is degraded through a YME1L-dependent mechanism in response to toxic insults that depolarize the mitochondrial membrane. Alternatively, insults that depolarize mitochondria and deplete cellular ATP stabilize active OMA1 and promote YME1L degradation. We show that the differential degradation of YME1L and OMA1 alters their proteolytic processing of the dynamin-like GTPase OPA1, a critical regulator of mitochondrial inner membrane morphology, which influences the recovery of tubular mitochondria following membrane depolarization-induced fragmentation. Our results reveal the differential stress-induced degradation of YME1L and OMA1 as a mechanism to sensitively adapt mitochondrial inner membrane protease activity and function in response to distinct types of cellular insults. PMID:26923599

  10. Degradation of cis- and trans-(4-methylcyclohexyl) methanol in activated sludge.

    PubMed

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea M; Zhang, Husen

    2016-04-01

    Crude (4-methylcyclohexyl)methanol (MCHM) caused extensive contamination of drinking water, wastewater, and the environment during the 2014 West Virginia Chemical Spill. However, information related to the environmental degradation of cis- and trans-4-MCHM, the main components of the crude 4-MCHM mixture, remains largely unknown. This study is among the first to investigate the degradation kinetics and transformation of 4-MCHM isomers in activated sludge. The 4-MCHM loss was mainly due to biodegradation to form carbon dioxide (CO2), plus acetic, propionic, isobutyric, and isovaleric acids with little contribution from adsorption. The biodegradation of 4-MCHM isomers followed the first-order kinetic model with half-lives higher than 0.50 days. Nitrate augmented the degradation of 4-MCHM isomers, while glucose and acetate decreased their degradation. One 4-MCHM-degrading bacterium isolated from activated sludge was identified as Acinetobacter bouvetii strain EU40 based on 16S rRNA gene sequences. This study will enhance the prediction of the environmental fate of 4-MCHM in water treatment systems. PMID:26745518

  11. Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta

    2016-09-12

    Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions

  12. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs.

    PubMed

    Fang, Guodong; Gao, Juan; Dionysiou, Dionysios D; Liu, Cun; Zhou, Dongmei

    2013-05-01

    There has been considerable interest in the use of persulfate for in situ chemical oxidation of organic contaminants in soils, sediments, and groundwater. Since humic acid (HA) exists ubiquitously in these environmental compartments, its redox active functional moieties, such as quinones, may play an important role in the oxidation processes of persulfate treatments. Understanding the effects of HA, especially the quinone functional groups on the degradation of pollutants by persulfate and the production of sulfate radicals (SO4(•-)) from persulfate, is beneficial for devising effective and economically feasible remediation strategies. In this study, the effects of model quinone compounds and HA on the degradation of 2,4,4'-trichlorobiphenyl (PCB28) by persulfate and the production of SO4(•-) from persulfate were investigated. It was found that quinones and HA can efficiently activate persulfate for the degradation of PCB28. The mechanism of persulfate activation was elucidated by quenching and electron paramagnetic resonance (EPR) studies. The results indicated that production of SO4(•-) from persulfate and quinones was semiquinone radical-dependent. The effects of quinone concentrations were also studied. The findings of this study elucidated a new pathway of persulfate activation, which could degrade environmental contaminants efficiently and provide useful information for the remediation of contaminated soil and water by persulfate.

  13. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  14. Quantitative determination of G6Pase activity in histochemically defined zones of the liver acinus.

    PubMed

    Teutsch, H F

    1978-12-13

    Qualitative histochemical G6Pase distribution patterns obtained with an improved method (Teutsch, 1978) served as the basis for a zonal microdissection of the liver acinus. G6Pase activity was determined quantitatively in tissue samples of zones 1 and 3 by a microfluorometric method (Burch et al., 1978). Using a correlation system it could be demonstrated that the histochemical distribution pattern obtained with the improved method was in better agreement with quantitatively estimated zonal differences of G6Pase activity, both in fed and starved female rats, than with the Wachstein and Meisel medium (1956). From a total of 50 tissue samples analyzed the following average G6Pase activities were calculated: in fed animals 15.36 +/- 3.48 U/g dry weight in zone 1, and 9.28 +/- 2.15 U/g dry weight in zone 3; in starved female rats 42.50 +/- 8.20 U/g dry weight in zone 1, and 29.25 +/- 5.68 U/g dry weight in zone 3. The qualitative histochemical as well as quantitative zonal differences of G6Pase activities are taken as further support for the hypothesis of metabolic zonation of liver parenchyma.

  15. Alternative interpretation for the active zones of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez, Mario Octavio Cotilla

    2014-11-01

    An alternative explanation to the seismoactivity of Cuban faults is presented. The model is a consequence of the interaction between Caribbean and North American plates. It is made with 12 geodynamic cells form by a set of 13 active faults and their 14 areas of intersection. These cells are recognized morpho-structural blocks. The area between Eastern Matanzas and Western Cauto-Nipe is excluded because of the low level of seismic information. Cuba has two types of seismogenetic structures: faults and intersection of faults.

  16. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  17. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1

    PubMed Central

    Wagh, Dhananjay; Terry-Lorenzo, Ryan; Waites, Clarissa L.; Leal-Ortiz, Sergio A.; Maas, Christoph; Reimer, Richard J.; Garner, Craig C.

    2015-01-01

    The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1. PMID:25897839

  18. Beyond the zone: protein needs of active individuals.

    PubMed

    Lemon, P W

    2000-10-01

    There has been debate among athletes and nutritionists regarding dietary protein needs for centuries. Although contrary to traditional belief, recent scientific information collected on physically active individuals tends to indicate that regular exercise increases daily protein requirements; however, the precise details remain to be worked out. Based on laboratory measures, daily protein requirements are increased by perhaps as much as 100% vs. recommendations for sedentary individuals (1.6-1.8 vs. 0.8 g/kg). Yet even these intakes are much less than those reported by most athletes. This may mean that actual requirements are below what is needed to optimize athletic performance, and so the debate continues. Numerous interacting factors including energy intake, carbohydrate availability, exercise intensity, duration and type, dietary protein quality, training history, gender, age, timing of nutrient intake and the like make this topic extremely complex. Many questions remain to be resolved. At the present time, substantial data indicate that the current recommended protein intake should be adjusted upward for those who are physically active, especially in populations whose needs are elevated for other reasons, e.g., growing individuals, dieters, vegetarians, individuals with muscle disease-induced weakness and the elderly. For these latter groups, specific supplementation may be appropriate, but for most North Americans who consume a varied diet, including complete protein foods (meat, eggs, fish and dairy products), and sufficient energy the increased protein needs induced by a regular exercise program can be met in one's diet.

  19. Effects of LB broth, naphthalene concentration, and acetone on the naphthalene degradation activities by Pseudomonas putida G7.

    PubMed

    Chang, Su-Yun; Liu, Xue-Gong; Ren, Bi-Qiong; Liu, Bo; Zhang, Kai; Zhang, Honggui; Wan, Yao

    2015-01-01

    Luria-Bertani broth and acetone were usually used in naphthalene degradation experiments as nutrient and solvent. However, their effect on the degradation was seldom mentioned. In this work, we investigated the effect of LB, naphthalene concentration, and acetone on the degradation of naphthalene by Pseudomonas putida G7, which is useful for the degradation of naphthalene on future field remediation. By adding LB, the naphthalene degradation efficiencies and naphthalene dioxygenase were both decreased by 98%, while the catechol dioxygenase was decreased by 90%. Degradation of naphthalene was also inhibited when naphthalene concentration was 56 ppm and higher, which was accompanied with the accumulation of orange-colored metabolism products. However, acetone can stimulate the degradation of naphthalene, and the stimulation was more obvious when naphthalene concentration was lower than 2000 ppm. By assaying the enzyme activities of naphthalene dioxygenase and catechol dioxygenase, it was thought that the degradation efficiency was depending on the more sensitive enzymes on the complicated conditions.

  20. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.

    PubMed

    Blunk, Aline D; Akbergenova, Yulia; Cho, Richard W; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J Troy

    2014-07-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.

  1. Spontaneous and Evoked Release Are Independently Regulated at Individual Active Zones

    PubMed Central

    Melom, Jan E.; Akbergenova, Yulia; Gavornik, Jeffrey P.

    2013-01-01

    Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals. PMID:24174659

  2. Mild salinization stimulated glyphosate degradation and microbial activities in a riparian soil from Chongming Island, China.

    PubMed

    Yang, Changming; Shen, Shuo; Wang, Mengmeng; Li, Jianhua

    2013-04-01

    An incubation experiment was conducted to investigate the effects of simulated saltwater treatment with different percentages of artificial seawater on degradation dynamics of herbicide glyphosate and microbial activities in a riparian soil in Chongming Island, China. The results showed that 10% seawater treatment showed significantly enhancing effects on degradation efficiency of glyphosate with the lowest residual concentration among all the treatments. However, glyphosate degradation was markedly decreased in the riparian soil with 20% and 50% seawater treatments. The half-lives for 20% and 50% seawater treatments were prolonged by 12.1 and 39.0%, respectively, as compared to control. Microbial investigation indicated that 10% seawater treatment significantly stimulated microbial activities in the glyphosate-spiked riparian soil throughout the incubation period. At 42 day of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the glyphosate-spiked riparian soil with 10% seawater were 59.2, 42.5 and 31.8% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities. Especially, FDA hydrolysis rate, microbial ATP and BSR were decreased by 66.4, 58.6 and 66.8%, respectively, as compared to control. The results indicate that levels of simulated saltwater can exert variable effects on herbicide degradation dynamics and microbial parameters in the riparian soil.

  3. A Suite of Activity-Based Probes for Cellulose Degrading Enzymes

    PubMed Central

    Chauvigné-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-01-01

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose degrading systems, and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  4. Synthesis of TiO2 /CNT Composites and its Photocatalytic Activity Toward Sudan (I) Degradation.

    PubMed

    Miribangul, Amat; Ma, Xiaoli; Zeng, Chen; Zou, Huan; Wu, Yahui; Fan, Tengpeng; Su, Zhi

    2016-07-01

    Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2 , the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2 /CNT photocatalysts were characterized by PXRD, TEM and UV-Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV-Vis light. Introducing 0.1-0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2 . The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol(-1) from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed.

  5. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    SciTech Connect

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  6. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-01

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.

  7. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    NASA Astrophysics Data System (ADS)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  8. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities

    PubMed Central

    Helmerhorst, Eva J.; Wei, Guoxian

    2015-01-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement. PMID:26113763

  9. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical. PMID:27564590

  10. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical.

  11. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms

    PubMed Central

    Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y.; Perkins, Matthew J.; Field, Jennifer; Sogin, Mitchell L.; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M.; Joye, Samantha B.

    2015-01-01

    During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985

  12. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms.

    PubMed

    Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y; Perkins, Matthew J; Field, Jennifer; Sogin, Mitchell L; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M; Joye, Samantha B

    2015-12-01

    During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985

  13. Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress

    PubMed Central

    Fang, Nancy N.; Zhu, Mang; Rose, Amalia; Wu, Kuen-Phon; Mayor, Thibault

    2016-01-01

    Elimination of misfolded proteins is crucial for proteostasis and to prevent proteinopathies. Nedd4/Rsp5 emerged as a major E3-ligase involved in multiple quality control pathways that target misfolded plasma membrane proteins, aggregated polypeptides and cytosolic heat-induced misfolded proteins for degradation. It remained unclear how in one case cytosolic heat-induced Rsp5 substrates are destined for proteasomal degradation, whereas other Rsp5 quality control substrates are otherwise directed to lysosomal degradation. Here we find that Ubp2 and Ubp3 deubiquitinases are required for the proteasomal degradation of cytosolic misfolded proteins targeted by Rsp5 after heat-shock (HS). The two deubiquitinases associate more with Rsp5 upon heat-stress to prevent the assembly of K63-linked ubiquitin on Rsp5 heat-induced substrates. This activity was required to promote the K48-mediated proteasomal degradation of Rsp5 HS-induced substrates. Our results indicate that ubiquitin chain editing is key to the cytosolic protein quality control under stress conditions. PMID:27698423

  14. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms.

    PubMed

    Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y; Perkins, Matthew J; Field, Jennifer; Sogin, Mitchell L; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M; Joye, Samantha B

    2015-12-01

    During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates.

  15. Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO.

    PubMed

    Chen, Jiabin; Qian, Yajie; Liu, Hongmei; Huang, Tianyin

    2016-02-01

    Diclofenac (DCF), one of the typically recalcitrant pharmaceuticals, has been frequently detected in groundwater in recent years. This work investigated the performance of DCF degradation by thermally activated persulfate (PS) to further understand its application in in situ chemical oxidation (ISCO) for DCF-contaminated groundwater. The effects of various factors, including activation temperature, solution pH, PS/DCF ratio, and common constitutes, e.g., HCO3(-), Cl(-) and humic acid, and the toxicity of transformation products were evaluated. The results indicated that the oxidation of DCF was well-fitted with a pseudo-first-order kinetic model, and the rate constants increased with the elevated temperatures. The rate constants from 50-70 °C were further fitted to the Arrhenius equation, yielding an activation energy of 157.63 kJ·mol(-1). In addition, the oxidation of DCF was highly pH-dependent, with the rate constants rapidly decreased from pH 5 to 7, then slightly increased at the alkaline pH. The presence of a low dosage of Cl(-)(0-10 mM) promoted the degradation of DCF, whereas high Cl(-) addition (>10 mM) inhibited DCF degradation. HCO3(-) exhibited a negligible effect on DCF removal, while natural organic matters, e.g., humic acids, lightly inhibited DCF degradation. The rapid degradation of DCF was also confirmed in the real groundwater sample, which might be attributed to the pH drop during the reaction. Moreover, the radical quenching experiments revealed that sulfate radicals (SO4·-)) was the dominant reactive species for DCF oxidation. Finally, the acute toxicity of the DCF solution, as tested with a bioluminescent assay, was gradually decreased during the reaction, indicating that a thermally activated PS oxidation was a promising alternative approach for DCF-contaminated groundwater remediation.

  16. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    PubMed

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  17. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  18. The Climate-Population Nexus in the East African Horn: Emerging Degradation Trends in Rangeland and Pastoral Livelihood Zones

    NASA Astrophysics Data System (ADS)

    Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.

    2014-12-01

    Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected

  19. Retaining and recovering enzyme activity during degradation of TCE by methanotrophs.

    PubMed

    Palumbo, A V; Strong-Gunderson, J M; Carroll, S

    1997-01-01

    To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. PMID:18576132

  20. Retaining and recovering enzyme activity during degradation of TCE by methanotrophs

    SciTech Connect

    Palumbo, A.V.; Strong-Gunderson, J.M.; Carroll, S.

    1997-12-31

    To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. 19 refs., 3 figs.

  1. Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust

    PubMed Central

    Fernandes, Nona A.; Isikhuemhen, Omoanghe S.; Ohimain, Elijah I.

    2011-01-01

    Fourteen strains of Grifola frondosa (Dicks.) S. F. Gray, originating from different regions (Asia, Europe and North America) were tested for lignin degradation, ligninolytic enzyme activities, protein accumulation and exopolysaccharide production during 55 days of cultivation on oak sawdust. Lignin degradation varied from 2.6 to7.1 % of dry weight of the oak sawdust substrate among tested strains. The loss of dry matter in all screened fungi varied between 11.7 and 33.0%, and the amount of crude protein in the dry substrate varied between 0.94 to 2.55%. The strain, MBFBL 596, had the highest laccase activity (703.3 U/l), and the maximum peroxidase activity of 22.6 U/l was shown by the strain MBFBL 684. Several tested strains (MBFBL 21, 638 and 662) appeared to be good producers of exopolysaccharides (3.5, 3.5 and 3.2 mg/ml respectively). PMID:24031728

  2. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone.

    PubMed

    Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping

    2014-09-01

    Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2

  3. Photocatalytic activity of multielement doped TiO 2 in the degradation of congo red

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, R.; Kalaivani, S.; Amala Infant Joice, J.; Sivakumar, T.

    2012-01-01

    TiO2 although considered a promising photocatalyst for the degradation of aqueous pollutants, it suffers from poor absorption in the visible region and hence requires ultraviolet (UV) light for activation. To make TiO2 a visible active photocatalyst, multielement (C, N, B, and F) doping has been done. The synthesised CNBF/TiO2 catalysts were calcined at different temperatures and characterized by XRD, BET surface area, UV DRS, XPS, HRSEM-EDAX, and TEM techniques. These catalysts found to show less band gap values when compared to bare TiO2. These catalysts were tested for their catalytic activity towards the degradation of a textile dye - congo red (CR) under different reaction conditions. It was found that the photocatalytic activity was dependent on both doping of multielement and the calcination temperature of CNBF/TiO2. The co-doped catalysts which were calcined at 400 °C and 600 °C (100% intensity in anatase phase) were found to be the best catalysts (100% decolourisation of CR in 21/2 h and 2 h respectively). TOC analysis carried out for the samples at the reaction time of 5 h showed very high percentage (83%) degradation of CR over CNBF/TiO2 catalysts calcined at 600 °C when compared to the other catalysts calcined at different temperatures. CNBF/TiO2 (1000 °C) showed very less photocatalytic activity due to the formation of rutile phase.

  4. Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation.

    PubMed

    Filipkowska, Anna; Kowalewska, Grażyna; Pavoni, Bruno

    2014-02-01

    Sediment samples were collected in the Gulf of Gdańsk, and the Vistula and Szczecin Lagoons-all located in the coastal zone of the Southern Baltic Sea-just after the total ban on using harmful organotins in antifouling paints on ships came into force, to assess their butyltin and phenyltin contamination extent. Altogether, 26 sampling stations were chosen to account for different potential exposure to organotin pollution and environmental conditions: from shallow and well-oxygenated waters, shipping routes and river mouths, to deep and anoxic sites. Additionally, the organic carbon content, pigment content, and grain size of all the sediment samples were determined, and some parameters of the near-bottom water (oxygen content, salinity, temperature) were measured as well. Total concentrations of butyltin compounds ranged between 2 and 182 ng Sn g(-1) d.w., whereas phenyltins were below the detection limit. Sediments from the Gulf of Gdańsk and Vistula Lagoon were found moderately contaminated with tributyltin, whereas those from the Szczecin Lagoon were ranked as highly contaminated. Butyltin degradation indices prove a recent tributyltin input into the sediments adjacent to sites used for dumping for dredged harbor materials and for anchorage in the Gulf of Gdańsk (where two big international ports are located), and into those collected in the Szczecin Lagoon. Essential factors affecting the degradation and distribution of organotins, based on significant correlations between butyltins and environmental variables, were found in the study area.

  5. Drosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation

    PubMed Central

    Wang, Shiuan; Srivastava, Mayank; Broemer, Meike; Meier, Pascal; Bergmann, Andreas

    2011-01-01

    Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. PMID:21909282

  6. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics.

    PubMed

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  7. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation.

    PubMed

    Fath, A; Bethke, P C; Jones, R L

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  8. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation

    PubMed

    Fath; Bethke; Jones

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevents PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmarks of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. GA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  9. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    NASA Astrophysics Data System (ADS)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  10. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity.

    PubMed

    Peres, M S; Maniero, M G; Guimarães, J R

    2015-03-01

    Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).

  11. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon.

    PubMed

    Wang, Yu-Ping; Wang, Lian-Jun; Peng, Pan-Ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 x 10(-3) mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%. The catalyst was reused 6 times and its degradation efficiency hardly changed.

  12. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. PMID:27351899

  13. HIV-1 reduces Aβ-degrading enzymatic activities in primary human mononuclear phagocytes1

    PubMed Central

    Lan, Xiqian; Xu, Jiqing; Kiyota, Tomomi; Peng, Hui; Zheng, Jialin C.; Ikezu, Tsuneya

    2011-01-01

    The advent and wide introduction of antiretroviral therapy (ART) has greatly improved the survival and longevity of HIV-infected patients. Unfortunately, despite ART treatment, these patients are still afflicted with many complications including cognitive dysfunction. There is a growing body of reports indicating accelerated deposition of amyloid plaques, which are composed of amyloid-β peptide (Aβ), in HIV-infected brains. Though how HIV viral infection precipitates Aβ accumulation is poorly understood. It is suggested that viral infection leads to increased production and impaired degradation of Aβ. Mononuclear phagocytes (macrophages and microglia) that are productively infected by HIV in brains play a pivotal role in Aβ degradation through the expression and execution of two endopeptidases: neprilysin (NEP) and insulin-degrading enzyme (IDE). Here we report that NEP has the dominant endopeptidase activity towards Aβ in macrophages. Further, we demonstrate that monomeric Aβ degradation by primary cultured macrophages and microglia was significantly impaired by HIV infection. This was accompanied with great reduction of NEP endopeptidase activity, which might be due to the diminished transport of NEP to cell surface and intracellular accumulation at the endoplasmic reticulum and lysosomes. Therefore, these data suggest that malfunction of NEP in infected macrophages may contribute to acceleration of beta amyloidosis in HIV-inflicted brains and modulation of macrophages may be a potential preventative target of Aβ-related cognitive disorders in HIV-affected patients. PMID:21551363

  14. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed.

  15. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.

    PubMed

    Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions (S2O8(2-)) for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5 h by using 5 g L(-1) magnetite and 63 mM S2O8(2-), indicating the effectiveness of the process for TCE removal. Various factors of the process, including. (S2O8(2-) and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing S2O8(2-) and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with α-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that •SO4- and •OH were the major radicals responsible for TCE degradation, whereas •O2- contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation.

  16. Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones

    SciTech Connect

    Kulikovsky, A.A.; Divisek, J.; Kornyshev, A.A.

    1999-11-01

    A two-dimensional model of the cathode compartment of a polymer electrolyte fuel cell has been developed. The existence of gas channels in the current collector is taken into account. The model is based on continuity equations for concentrations of the gases and Poisson's equations for potentials of membrane and carbon phase, coupled by Tafel relation for reaction kinetics. Stefan-Maxwell and Knudsen diffusion of gases are taken into account. The simulations were performed for high and low values of carbon phase conductivity. The results revealed (i) for a low value of carbon phase conductivity, a dead zone in the active layer in front of the gas channel is formed, where the reaction rate is small. The catalyst may be removed from this zone without significant loss in cell performance; (ii) For a high carbon phase conductivity value, such a zone is absent, but removal of the catalyst from the same part of the active layer forces the reaction to proceed more rapidly in the remaining parts, with only marginal losses in performance. This conclusion is valid for high diffusivity of oxygen. For low diffusivity, dead zones are formed in front of the current collector, so that catalyst can be removed from these zones. The results, thus, show the possibilities for a considerable reduction of the amount of catalyst.

  17. 77 FR 47429 - Agency Information Collection Activities; Petroleum Refineries in Foreign Trade Sub-zones

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities; Petroleum Refineries... concerning the Petroleum Refineries in Foreign Trade Sub-zones. This request for comment is being made... CBP is soliciting comments concerning the following information collection: Title:...

  18. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    PubMed

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  19. Probabilistic secretion of quanta: spontaneous release at active zones of varicosities, boutons, and endplates.

    PubMed Central

    Bennett, M R; Gibson, W G; Robinson, J

    1995-01-01

    The amplitude-frequency histogram of spontaneous miniature endplate potentials follows a Gaussian distribution at mature endplates. This distribution gives the mean and variance of the quantum of transmitter. According to the vesicle hypothesis, this quantum is due to exocytosis of the contents of a single synaptic vesicle. Multimodal amplitude-frequency histograms are observed in varying degrees at developing endplates and at peripheral and central synapses, each of which has a specific active zone structure. These multimodal histograms may be due to the near synchronous exocytosis of more than one vesicle. In the present work, a theoretical treatment is given of the rise of intraterminal calcium after the stochastic opening of a calcium channel within a particular active zone geometry. The stochastic interaction of this calcium with the vesicle-associated proteins involved in exocytosis is then used to calculate the probability of quantal secretions from one or several vesicles at each active zone type. It is shown that this procedure can account for multiquantal spontaneous release that may occur at varicosities and boutons, compared with that at the active zones of motor nerve terminals. PMID:7669909

  20. 78 FR 49255 - Foreign-Trade Zone 158-Vicksburg/Jackson, Mississippi; Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Production Activity; Extension of Production Authority; Lane Furniture Industries, Inc. (Upholstered Furniture); Belden, Saltillo, and Verona, Mississippi On February 28, 2013, the Greater Mississippi Foreign... Foreign-Trade Zones (FTZ) Board on behalf of Lane Furniture Industries, Inc., in Belden, Saltillo,...

  1. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    EPA Science Inventory

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  2. RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction

    PubMed Central

    Graf, Ethan R.; Valakh, Vera; Wright, Christina M.; Wu, Chunlai; Liu, Zhihua; Zhang, Yong Q.; DiAntonio, Aaron

    2012-01-01

    Summary Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca2+ channels and proteins that influence Ca2+ channel accumulation at release sites. Here we identify Drosophila RIM and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission, due to a significant reduction in both the clustering of Ca2+ channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Since RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca2+ channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca2+ channel accumulation but is not a Rab3 effector for release machinery distribution across release sites. PMID:23175814

  3. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone

    PubMed Central

    Ullrich, Alexander; Böhme, Mathias A.; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J.; Noé, Frank

    2015-01-01

    Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029

  4. Fenofibrate activates Nrf2 through p62-dependent Keap1 degradation

    SciTech Connect

    Park, Jeong Su; Kang, Dong Hoon; Lee, Da Hyun; Bae, Soo Han

    2015-09-25

    Peroxisome proliferator-activated receptor α (PPARα) activates the β-oxidation of fatty acids in the liver. Fenofibrate is a potent agonist of PPARα and is used in the treatment of hyperlipidemia. Fenofibrate treatment often induces the production of intracellular reactive oxygen species (ROS), leading to cell death. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is an essential component of the defense mechanism against oxidative stress. However, the molecular mechanism underlying the regulation of the Nrf2-Keap1 pathway in fenofibrate-induced cell death is not known. In this study, we demonstrated that fenofibrate induces Keap1 degradation and Nrf2 activation. This fenofibrate-mediated Keap1 degradation is partly dependent on autophagy. Furthermore, fenofibrate-induced Keap1 degradation followed by Nrf2 activation is mainly mediated by p62, which functions as an adaptor protein in the autophagic pathway. Consistent with these findings, ablation of p62 increased fenofibrate-mediated apoptotic cell death associated with ROS accumulation. These results strongly suggest that p62 plays a crucial role in preventing fenofibrate-induced cell death. - Highlights: • Fenofibrate induces cell death by increasing ROS production. • The underlying defense mechanism against this effect is unknown. • Fenofibrate induces autophagy-dependent Keap1 degradation and Nrf2 activation. • This process is p62-dependent; lack of p62 enhanced fenofibrate-mediated apoptosis. • p62 plays a crucial role in preventing fenofibrate-induced cell death.

  5. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    PubMed Central

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Background Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. Methodology/Principal Findings In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. Conclusion/Significance This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible. PMID:22355395

  6. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme

    PubMed Central

    Chou, Ying-Hao; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Goldman, Robert D.

    2009-01-01

    The intermediate filament (IF) protein nestin coassembles with vimentin and promotes the disassembly of these copolymers when vimentin is hyperphosphorylated during mitosis. The aim of this study is to determine the function of these nonfilamentous particles by identifying their interacting partners. In this study, we report that these disassembled vimentin/nestin complexes interact with insulin degrading enzyme (IDE). Both vimentin and nestin interact with IDE in vitro, but vimentin binds IDE with a higher affinity than nestin. Although the interaction between vimentin and IDE is enhanced by vimentin phosphorylation at Ser-55, the interaction between nestin and IDE is phosphorylation independent. Further analyses show that phosphorylated vimentin plays the dominant role in targeting IDE to the vimentin/nestin particles in vivo, while the requirement for nestin is related to its ability to promote vimentin IF disassembly. The binding of IDE to either nestin or phosphorylated vimentin regulates IDE activity differently, depending on the substrate. The insulin degradation activity of IDE is suppressed ∼50% by either nestin or phosphorylated vimentin, while the cleavage of bradykinin-mimetic peptide by IDE is increased 2- to 3-fold. Taken together, our data demonstrate that the nestin-mediated disassembly of vimentin IFs generates a structure capable of sequestering and modulating the activity of IDE.—Chou, Y.-H., Kuo, W.-L., Rich Rosner, M., Tang, W.-J., Goldman, R. D. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. PMID:19584300

  7. Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces.

    PubMed

    Singh, Surender; Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-01-01

    Cellulose degrading bacteria from koala faeces were isolated using caboxymethylcellulose-Congo red agar, screened in vitro for different hydrolytic enzyme activities and phylogenetically characterized using molecular tools. Bacillus sp. and Pseudomonas sp. were the most prominent bacteria from koala faeces. The isolates demonstrated good xylanase, amylase, lipase, protease, tannase and lignin peroxidase activities apart from endoglucanase activity. Furthermore many isolates grew in the presence of phenanthrene, indicating their probable application for bioremediation. Potential isolates can be exploited further for industrial enzyme production or in bioremediation of contaminated sites.

  8. Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces.

    PubMed

    Singh, Surender; Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-01-01

    Cellulose degrading bacteria from koala faeces were isolated using caboxymethylcellulose-Congo red agar, screened in vitro for different hydrolytic enzyme activities and phylogenetically characterized using molecular tools. Bacillus sp. and Pseudomonas sp. were the most prominent bacteria from koala faeces. The isolates demonstrated good xylanase, amylase, lipase, protease, tannase and lignin peroxidase activities apart from endoglucanase activity. Furthermore many isolates grew in the presence of phenanthrene, indicating their probable application for bioremediation. Potential isolates can be exploited further for industrial enzyme production or in bioremediation of contaminated sites. PMID:26290743

  9. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Winer, Jesse L; Corbett, Christopher J; Robinson, Shenandoah

    2016-01-01

    Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies. PMID:26551007

  10. Influence of increasing active-layer depth and continued permafrost degradation on carbon, water and energy fluxes over two forested permafrost landscapes in the Taiga Plains, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Baltzer, J.; Chasmer, L. E.; Detto, M.; Marsh, P.; Quinton, W. L.

    2012-12-01

    Recent research suggests an increase in active-layer depth (ALD) in the continuous permafrost zone and degradation of the discontinuous permafrost zone into seasonally frozen. Increasing ALD and continued permafrost degradation will have far-reaching consequences for northern ecosystems including altered regional hydrology and the exposure of additional soil organic carbon (C) to microbial decomposition. These changes might cause positive or negative net feedbacks to the climate system by altering important land surface properties and/or by releasing stored soil organic C to the atmosphere as CO2 and/or CH4. Knowledge gaps exist regarding the links between increasing ALD and/or permafrost degradation, regional hydrology, vegetation composition and structure, land surface properties, and CO2 and CH4 sink-source strengths. The goal of our interdisciplinary project is to shed light on these links by providing a mechanistic understanding of permafrost-thawing consequences for hydrological, ecophysiological and biogeochemical processes at two forested permafrost landscapes in the Taiga Plains, NWT, Canada: Scotty Creek and Havikpak Creek in the discontinuous and in the continuous permafrost zones, respectively (Fig.). The sites will be equipped with identical sets of instrumentation (start: 2013), to measure landscape-scale net exchanges of CO2, CH4, water and energy with the eddy covariance technique. These measurements will be complemented by repeated surveys of surface and frost table topography and vegetation, by land cover-type specific fluxes of CO2 and CH4 measured with a static chamber technique, and by remote sensing-based footprint analysis. With this research we will address the following questions: What is the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system? How do these two different types of feedback differ between the discontinuous and continuous permafrost zones? Is the decrease (increase) in net CO

  11. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  12. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  13. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2- PMID:27433681

  14. DNA damage-induced activation of CUL4B targets HUWE1 for proteasomal degradation.

    PubMed

    Yi, Juan; Lu, Guang; Li, Li; Wang, Xiaozhen; Cao, Li; Lin, Ming; Zhang, Sha; Shao, Genze

    2015-05-19

    The E3 ubiquitin ligase HUWE1/Mule/ARF-BP1 plays an important role in integrating/coordinating diverse cellular processes such as DNA damage repair and apoptosis. A previous study has shown that HUWE1 is required for the early step of DNA damage-induced apoptosis, by targeting MCL-1 for proteasomal degradation. However, HUWE1 is subsequently inactivated, promoting cell survival and the subsequent DNA damage repair process. The mechanism underlying its regulation during this process remains largely undefined. Here, we show that the Cullin4B-RING E3 ligase (CRL4B) is required for proteasomal degradation of HUWE1 in response to DNA damage. CUL4B is activated in a NEDD8-dependent manner, and ubiquitinates HUWE1 in vitro and in vivo. The depletion of CUL4B stabilizes HUWE1, which in turn accelerates the degradation of MCL-1, leading to increased induction of apoptosis. Accordingly, cells deficient in CUL4B showed increased sensitivity to DNA damage reagents. More importantly, upon CUL4B depletion, these phenotypes can be rescued through simultaneous depletion of HUWE1, consistent with the role of CUL4B in regulating HUWE1. Collectively, these results identify CRL4B as an essential E3 ligase in targeting the proteasomal degradation of HUWE1 in response to DNA damage, and provide a potential strategy for cancer therapy by targeting HUWE1 and the CUL4B E3 ligase.

  15. Neutron activation analysis of nickel purified by floating zone-refining and anion exchange.

    PubMed

    Isshiki, M; Yakushiji, K; Kikuchi, T; Sato, M; Yanagisawa, E; Igaki, K; Mizohata, A; Mamuro, T; Tsujimoto, T

    1981-04-01

    Nondestructive neutron activation analysis was performed on the nickel purified by floating zone-refining and anion exchange. It is found that floating zone-refining in vacuum is effective to remove Na, Sc, Cr, Zn, As, Ag, Sb and Hg through vaporization in addition to elimination of Se, Sb, Ta, Sm and Tb through segregation. Anion exchange method is also effective to separate Fe, Co, Zn, Mo, Hg, Th and U usually contained in the commercial nickel sources. It is concluded that combination of these two purification methods is required to obtain high purity nickel, since floating zone-refining is known ineffective to eliminate Fe and Co, main impurities in commercial nickel sources. PMID:7291628

  16. Small-Molecule Activators of Insulin-Degrading Enzyme Discovered through High-Throughput Compound Screening

    PubMed Central

    Cabrol, Christelle; Huzarska, Malwina A.; Dinolfo, Christopher; Rodriguez, Maria C.; Reinstatler, Lael; Ni, Jake; Yeh, Li-An; Cuny, Gregory D.; Stein, Ross L.; Selkoe, Dennis J.; Leissring, Malcolm A.

    2009-01-01

    Background Hypocatabolism of the amyloid β-protein (Aβ) by insulin-degrading enzyme (IDE) is implicated in the pathogenesis of Alzheimer disease (AD), making pharmacological activation of IDE an attractive therapeutic strategy. However, it has not been established whether the proteolytic activity of IDE can be enhanced by drug-like compounds. Methodology/Principal Findings Based on the finding that ATP and other nucleotide polyphosphates modulate IDE activity at physiological concentrations, we conducted parallel high-throughput screening campaigns in the absence or presence of ATP and identified two compounds—designated Ia1 and Ia2—that significantly stimulate IDE proteolytic activity. Both compounds were found to interfere with the crosslinking of a photoaffinity ATP analogue to IDE, suggesting that they interact with a bona fide ATP-binding domain within IDE. Unexpectedly, we observed highly synergistic activation effects when the activity of Ia1 or Ia2 was tested in the presence of ATP, a finding that has implications for the mechanisms underlying ATP-mediated activation of IDE. Notably, Ia1 and Ia2 activated the degradation of Aβ by ∼700% and ∼400%, respectively, albeit only when Aβ was presented in a mixture also containing shorter substrates. Conclusions/Significance This study describes the first examples of synthetic small-molecule activators of IDE, showing that pharmacological activation of this important protease with drug-like compounds is achievable. These novel activators help to establish the putative ATP-binding domain as a key modulator of IDE proteolytic activity and offer new insights into the modulatory action of ATP. Several larger lessons abstracted from this screen will help inform the design of future screening campaigns and facilitate the eventual development of IDE activators with therapeutic utility. PMID:19384407

  17. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH.

    PubMed

    Grasso, Giuseppe; Satriano, Cristina; Milardi, Danilo

    2015-01-01

    Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.

  18. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Le, C.; Ikazaki, K.; Siriguleng; Kadono, A.; Kosaki, T.

    2014-02-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia.

  19. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots.

    PubMed

    Wang, Chunyan; Fan, Longquan; Gao, Hongbo; Wu, Xiaolei; Li, Jingrui; Lv, Guiyun; Gong, Binbin

    2014-09-01

    We detected physiological change and gene expression related to PA metabolism in melon roots under controlled and hypoxic conditions with or without 5 mM GABA. Roots with hypoxia treatment showed a significant increase in glutamate decarboxylase (GAD) activity and endogenous GABA concentration. Concurrently, PA biosynthesis and degradation accelerated with higher gene expression and enzymes activity. However, endogenous GABA concentrations showed a large and rapid increase in Hypoxia + GABA treated roots. This led to a marked increase in Glu concentration by feedback inhibition of GAD activity. Hypoxia + GABA treatment enhanced arginine (Arg), ornithine (Orn) and methionine (Met) levels, promoting enzyme gene expression levels and arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities in roots. Hypoxia + GABA treatment significantly increased concentrations of free putrescine (Put), spermidine (Spd) and spermine (Spm) from day two to eight, promoting the PA conversion to soluble conjugated and insoluble bound forms. However, PA degradation was significantly inhibited in hypoxia + GABA treated roots by significantly decreasing gene expression and activity of diamine oxidase (DAO) and polyamine oxidase (PAO). However, exogenous GABA showed a reduced effect in control compared with hypoxic conditions. Our data suggest that alleviating effect of exogenous GABA to hypoxia is closely associated with physiological regulation of PA metabolism. We propose a potential negative feedback mechanism of higher endogenous GABA levels from combined effects of hypoxia and exogenous GABA, which alleviate the hypoxia damage by accelerating PA biosynthesis and conversion as well as preventing PA degradation in melon plants.

  20. Collagen degradation and MMP9 activation by Enterococcus faecalis contributes to intestinal anastomotic leak

    PubMed Central

    Shogan, B. D.; Belogortseva, N.; Luong, P. M.; Zaborin, A.; Lax, S.; Bethel, Cindy; Ward, M.; Muldoon, J. P.; Singer, M.; An, G.; Umanskiy, K.; Konda, V.; Shakhsheer, B.; Luo, J.; Klabbers, R.; Hancock, L. E.; Gilbert, J.; Zaborina, O.; Alverdy, J. C.

    2016-01-01

    Even under the most expert care, a properly constructed intestinal anastomosis can fail to heal resulting in leakage of its contents, peritonitis and sepsis. The cause of anastomotic leak remains unknown and its incidence has not changed in decades. Here, we demonstrate that the commensal bacterium Enterococcus faecalis contributes to the pathogenesis of anastomotic leak through its capacity to degrade collagen and to activate tissue matrix metalloprotease-9 (MMP9) in host intestinal tissues. We demonstrate in rats that leaking anastomotic tissues were colonized by E. faecalis strains that showed an increased collagen-degrading activity and also an increased ability to activate host MMP9, both of which contributed to anastomotic leakage. We demonstrate that the E. faecalis genes gelE and sprE were required for E. faecalis-mediated MMP9 activation. Either elimination of E. faecalis strains through direct topical antibiotics applied to rat intestinal tissues or pharmacological suppression of intestinal MMP9 activation prevented anastomotic leak in rats. In contrast, the standard recommended intravenous antibiotics used in patients undergoing colorectal surgery did not eliminate E. faecalis at anastomotic tissues nor did they prevent leak in our rat model. Finally, we show in humans undergoing colon surgery and treated with the standard recommended intravenous antibiotics, that their anastomotic tissues still contained E. faecalis and other bacterial strains with collagen-degrading/MMP9 activity. We suggest that intestinal microbes with the capacity to produce collagenases and to activate host metalloproteinase MMP9 may break down collagen in the gut tissue contributing to anastomotic leak. PMID:25947163

  1. Bioavailable Carbon and the Relative Degradation State of Organic Matter in Active Layer and Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.

    2015-12-01

    The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons

  2. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  3. Suite of activity-based probes for cellulose-degrading enzymes.

    PubMed

    Chauvigné-Hines, Lacie M; Anderson, Lindsey N; Weaver, Holly M; Brown, Joseph N; Koech, Phillip K; Nicora, Carrie D; Hofstad, Beth A; Smith, Richard D; Wilkins, Michael J; Callister, Stephen J; Wright, Aaron T

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome-producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry and to increase enzyme active site inclusion for liquid chromatography-mass spectrometry (LC-MS) analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose-degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose-degrading systems and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  4. In-situ Activation of Persulfate by Iron Filings and Degradation of 1,4-dioxane

    PubMed Central

    Zhong, Hua; Brusseau, Mark L; Wang, Yake; Yan, Ni; Quig, Lauren; Johnson, Gwynn R

    2015-01-01

    Activation of persulfate by iron filings and subsequent degradation of 1,4-dioxane (dioxane) was studied in both batch-reactor and column systems to evaluate the potential of a persulfate-enhanced permeable reactive barrier (PRB) system for combined oxidative-reductive removal of organic contaminants from groundwater. In batch experiments, decomposition of persulfate to sulfate and degradation of dioxane both occurred rapidly in the presence of iron filings. Conversely, dioxane degradation by persulfate was considerably slower in the absence of iron filings. For the column experiments, decomposition and retardation of persulfate was observed for transport in the columns packed with iron filings, whereas no decomposition or retardation was observed for transport in columns packed with a reference quartz sand. Both sulfate production and dioxane degradation were observed for the iron-filings columns, but not for the sand column. The pH of the column effluent increased temporarily before persulfate breakthrough, and significant increases in both ferrous and ferric iron coincided with persulfate breakthrough. Multiple species of free radicals were produced from persulfate activation as determined by electron paramagnetic resonance (EPR) spectroscopy. The impact of the oxidation process on solution composition and iron-filings surface chemistry was examined using ICP-MS, SEM-EDS, and XRD analyses. A two-stage reaction mechanism is proposed to describe the oxidation process, consisting of a first stage of rapid, solution-based, radical-driven, decomposition of dioxane and a second stage governed by rate-limited surface reaction. The results of this study show successful persulfate activation using iron filings, and the potential to apply an enhanced PRB method for improving in-situ removal of organic contaminants from groundwater. PMID:26141426

  5. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water. PMID:26162447

  6. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation.

    PubMed

    Shostak, K; Patrascu, F; Göktuna, S I; Close, P; Borgs, L; Nguyen, L; Olivier, F; Rammal, A; Brinkhaus, H; Bentires-Alj, M; Marine, J-C; Chariot, A

    2014-05-01

    Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels. PMID:24488098

  7. Water quality degradation effects on freshwater availability: Impacts to human activities

    USGS Publications Warehouse

    Peters, N.E.; Meybeck, Michel

    2000-01-01

    The quality of freshwater at any point on the landscape reflects the combined effects of many processes along water pathways. Human activities on all spatial scales affect both water quality and quantity. Alteration of the landscape and associated vegetation has not only changed the water balance, but typically has altered processes that control water quality. Effects of human activities on a small scale are relevant to an entire drainage basin. Furthermore, local, regional, and global differences in climate and water flow are considerable, causing varying effects of human activities on land and water quality and quantity, depending on location within a watershed, geology, biology, physiographic characteristics, and climate. These natural characteristics also greatly control human activities, which will, in turn, modify (or affect) the natural composition of water. One of the most important issues for effective resource management is recognition of cyclical and cascading effects of human activities on the water quality and quantity along hydrologic pathways. The degradation of water quality in one part of a watershed can have negative effects on users downstream. Everyone lives downstream of the effects of some human activity. An extremely important factor is that substances added to the atmosphere, land, and water generally have relatively long time scales for removal or clean up. The nature of the substance, including its affinity for adhering to soil and its ability to be transformed, affects the mobility and the time scale for removal of the substance. Policy alone will not solve many of the degradation issues, but a combination of policy, education, scientific knowledge, planning, and enforcement of applicable laws can provide mechanisms for slowing the rate of degradation and provide human and environmental protection. Such an integrated approach is needed to effectively manage land and water resources.

  8. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed

    Jasin, H E

    1983-12-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract.

  9. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  10. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  11. Comparison of Degradative Ability, Enzymatic Activity, and Palatability of Aquatic Hyphomycetes Grown on Leaf Litter

    PubMed Central

    Suberkropp, Keller; Arsuffi, Thomas L.; Anderson, John P.

    1983-01-01

    Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores. PMID:16346343

  12. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    PubMed

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides.

  13. Modelling ecogeomorphological feedback mechanisms for the analysis of land degradation patterns of a semi-arid shrubland-grassland transition zone

    NASA Astrophysics Data System (ADS)

    Mueller, Eva Nora; Tietjen, Britta; Turnbull, Laura

    2013-04-01

    Land degradation through water erosion is driven by ecogeomorphological processes which may alter transfer paths at the hillslope, the soil-hydraulic conditions of the upper soil layers and the vegetation structure of the hillslope. These processes are interlinked with each other through augmenting feedback mechanisms in such a way that a small change in land use (e.g. temporary overgrazing, cattle trails) may result in a re-organisation of the affected landscape. A grassland-shrubland transition zone in the south-western United States is being investigated here for soil-vegetation-transfer feedback mechanisms. For this purpose, an ecogeomorphological, process-based model has been developed which simulates the redistribution of sediments and nutrients during high-intensity rainstorms in 1-sec time steps, the soil moisture and transpiration dynamics in daily time steps, and the vegetation dynamics (establishment, growth, mortality) in 14-day time steps for a high-resolution grid of 1x1 m2. Through long-term modelling and the modelling of extremes (prolonged droughts or overgrazing), the numerical approach is employed to analyse which types of feedbacks may occur and may trigger persistent vegetation change and land degradation of the hillslope. Using this model it is for the first time possible to couple the occurrence of self-organisational patterns of moisture and soil resource availability of a hillslope with redistribution processes that occur during high-intensity storms. The model thus closes the gap of current modelling approaches that either investigate only individual extreme events or models the long-term dynamics of a landscape without including the detailed erosion processes.

  14. Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity

    PubMed Central

    Haller, Martina; Hock, Andreas K; Giampazolias, Evangelos; Oberst, Andrew; Green, Douglas R; Debnath, Jayanta; Ryan, Kevin M; Vousden, Karen H; Tait, Stephen W G

    2015-01-01

    During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12–ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12. PMID:25629932

  15. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity.

    PubMed

    Hadi, Faranak; Mousavi, Amir; Noghabi, Kambiz Akbari; Tabar, Hadi Ghaderi; Salmanian, Ali Hatef

    2013-01-01

    Thirty bacterial strains with various abilities to utilize glyphosate as the sole phosphorus source were isolated from farm soils using the glyphosate enrichment cultivation technique. Among them, a strain showing a remarkable glyphosate-degrading activity was identified by biochemical features and 16S rRNA sequence analysis as Ochrobactrum sp. (GDOS). Herbicide (3 mM) degradation was induced by phosphate starvation, and was completed within 60 h. Aminomethylphosphonic acid was detected in the exhausted medium, suggesting glyphosate oxidoreductase as the enzyme responsible for herbicide breakdown. As it grew even in the presence of glyphosate concentrations as high as 200 mM, Ochrobactrum sp. could be used for bioremediation purposes and treatment of heavily contaminated soils.

  16. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKY(Y115E) phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  17. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. PMID:24779765

  18. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.

  19. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  20. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Nishino, S.; Mizoguchi, K.; Hirose, T.; Uehara, S.; Sato, K.; Tanikawa, W.; Shimamoto, T.

    2004-02-01

    The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10 -20 m 2. Water permeability as low as 10 -20 m 2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.

  1. Readily releasable vesicles recycle at the active zone of hippocampal synapses.

    PubMed

    Schikorski, Thomas

    2014-04-01

    During the synaptic vesicle cycle, synaptic vesicles fuse with the plasma membrane and recycle for repeated exo/endocytic events. By using activity-dependent N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide dye uptake combined with fast (<1 s) microwave-assisted fixation followed by photoconversion and ultrastructural 3D analysis, we tracked endocytic vesicles over time, "frame by frame." The first retrieved synaptic vesicles appeared 4 s after stimulation, and these endocytic vesicles were located just above the active zone. Second, the retrieved vesicles did not show any sign of a protein coat, and coated pits were not detected. Between 10 and 30 s, large labeled vesicles appeared that had up to 5 times the size of an individual synaptic vesicle. Starting at around 20 s, these large labeled vesicles decreased in number in favor of labeled synaptic vesicles, and after 30 s, labeled vesicles redocked at the active zone. The data suggest that readily releasable vesicles are retrieved as noncoated vesicles at the active zone.

  2. Holocene activity of the Rose Canyon fault zone in San Diego, California

    NASA Astrophysics Data System (ADS)

    Lindvall, Scott C.; Rockwell, Thomas K.

    1995-12-01

    The Rose Canyon fault zone in San Diego, California, has many well-expressed geomorphic characteristics of an active strike-slip fault, including scarps, offset and deflected drainages and channel walls, pressure ridges, a closed depression, and vegetation lineaments. Geomorphic expression of the fault zone from Mount Soledad south to Mission Bay indicates that the Mount Soledad strand is the most active. A network of trenches excavated across the Mount Soledad strand in Rose Creek demonstrate a minimum of 8.7 m of dextral slip in a distinctive early to middle Holocene gravel-filled channel that crosses the fault zone. The gravel-filled channel was preserved within and east of the fault but was removed west of the fault zone by erosion or possibly grading during development. Consequently, the actual displacement of the channel could be greater than 8.7 m. Radiocarbon dates on detrital charcoal recovered from the sediments beneath the channel yield a maximum calibrated age of about 8.1±0.2 kyr. The minimum amount of slip along with the maximum age yield a minimum slip rate of 1.07±0.03 mm/yr on this strand of the Rose Canyon fault zone for much of Holocene time. Other strands of the Rose Canyon fault zone, which are east and west of our site, may also have Holocene activity. Based on an analysis of the geomorphology of fault traces within the Rose Canyon fault zone, along with the results of our trenching study, we estimate the maximum likely slip rate at about 2 mm/yr and a best estimate of about 1.5 mm/yr. Stratigraphie evidence of at least three events is present during the past 8.1 kyr. The most recent surface rupture displaces the modern A horizon (topsoil), suggesting that this event probably occurred within the past 500 years. Stratigraphie and structural relationships also indicate the occurrence of a scarp-forming event at about 8.1 kyr, prior to deposition of the gravel-filled channel that was used as a piercing line. A third event is indicated by the

  3. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    PubMed

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  4. CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone.

    PubMed

    Hida, Yamato; Ohtsuka, Toshihisa

    2010-08-01

    Cytomatrix at the active zone-associated structural protein (CAST) was first purified from rat brain. It belongs to a protein family with the protein ELKS being its close relative. In nerve terminals, these proteins are specifically localized in the active zone (AZ). They have been shown to directly interact with other AZ proteins, including RIM1, Piccolo and Bassoon, and indirectly with Munc13-1 through RIM1, forming a large molecular complex at AZ. Moreover, the direct interaction of CAST with RIM1 and Bassoon appears to be involved in the release of neurotransmitters. However, it still remains elusive how CAST and ELKS regulate the assembly and function of AZ during synapse maturation. This review focuses on recent findings about the ELKS/CAST family revealed by biochemical strategies and genetic studies, and discusses the potential roles of this protein family in the function and organization of the presynaptic AZ.

  5. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    PubMed

    Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano

    2012-01-01

    The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  6. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation.

    PubMed

    Fang, Guodong; Liu, Cun; Gao, Juan; Dionysiou, Dionysios D; Zhou, Dongmei

    2015-05-01

    This study investigated the effects of metals (Fe3+, Cu2+, Ni2+, and Zn2+) and phenolic compounds (PCs: hydroquinone, catechol, and phenol) loaded on biomass on the formation of persistent free radicals (PFRs) in biochar. It was found that metal and phenolic compound treatments not only increased the concentrations of PFRs in biochar but also changed the types of PFRs formed, which indicated that manipulating the amount of metals and PCs in biomass may be an efficient method to regulate PFRs in biochar. These results provided direct evidence to elucidate the mechanism of PFR formation in biochar. Furthermore, the catalytic ability of biochar toward persulfate activation for the degradation of contaminants was evaluated. The results indicated that biochar activates persulfate to produce sulfate radicals (SO4•-) and degraded polychlorinated biphenyls (PCBs) efficiently. It was found that both the concentration and type of PFRs were the dominant factors controlling the activation of persulfate by biochar and that superoxide radical anions account for 20-30% of sulfate radical generation in biochar/persulfate. This conclusion was supported by linear correlations between the concentration of PFRs consumed and the formation of SO4•- and between λ (λ=[formed sulfate radicals]/[consumed PFRs]) and g-factors. The findings of this study provide new methods to manipulate PFR concentration in biochar for the transformation of contaminants and development of new alternative activators for persulfate-based remediation of contaminated soils.

  7. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    PubMed

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-01

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  8. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities. PMID:26790432

  9. Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge.

    PubMed

    Collado, Neus; Buttiglieri, Gianluigi; Kolvenbach, Boris A; Comas, Joaquim; Corvini, Philippe F-X; Rodríguez-Roda, Ignasi

    2013-02-01

    A significant percentage of bisphenol A and nonylphenol removal in municipal wastewater treatment plants relies on biodegradation. Nonetheless, incomplete information is available concerning their degradation pathways performed by microbial communities in activated sludge systems. Hydroquinone dioxygenase (HQDO) is a specific degradation marker enzyme, involved in bisphenol A and nonylphenol biodegradation, and it can be produced by axenic cultures of the bacterium Sphingomonas sp. strain TTNP3. Proteomics, a technique based on the analysis of microbial community proteins, was applied to this strain. The bacterium proteome map was obtained and a HQDO subunit was successfully identified. Additionally, the reliability of the applied proteomics protocol was evaluated in activated sludge samples. Proteins belonging to Sphingomonas were searched at decreasing biomass ratios, i.e. serially diluting the bacterium in activated sludge. The protein patterns were compared and Sphingomonas proteins were discriminated against the ones from sludge itself on 2D-gels. The detection limit of the applied protocol was defined as 10(-3) g TTNP3 g(-1) total suspended solids (TSSs). The results proved that proteomics can be a promising methodology to assess the presence of specific enzymes in activated sludge samples, however improvements of its sensitivity are still needed.

  10. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies.

    PubMed

    Ablain, Julien; Leiva, Magdalena; Peres, Laurent; Fonsart, Julien; Anthony, Elodie; de Thé, Hugues

    2013-04-01

    In PML/RARA-driven acute promyelocytic leukemia (APL), retinoic acid (RA) induces leukemia cell differentiation and transiently clears the disease. Molecularly, RA activates PML/RARA-dependent transcription and also initiates its proteasome-mediated degradation. In contrast, arsenic, the other potent anti-APL therapy, only induces PML/RARA degradation by specifically targeting its PML moiety. The respective contributions of RA-triggered transcriptional activation and proteolysis to clinical response remain disputed. Here, we identify synthetic retinoids that potently activate RARA- or PML/RARA-dependent transcription, but fail to down-regulate RARA or PML/RARA protein levels. Similar to RA, these uncoupled retinoids elicit terminal differentiation, but unexpectedly fail to impair leukemia-initiating activity of PML/RARA-transformed cells ex vivo or in vivo. Accordingly, the survival benefit conferred by uncoupled retinoids in APL mice is dramatically lower than the one provided by RA. Differentiated APL blasts sorted from uncoupled retinoid-treated mice retain PML/RARA expression and reinitiate APL in secondary transplants. Thus, differentiation is insufficient for APL eradication, whereas PML/RARA loss is essential. These observations unify the modes of action of RA and arsenic and shed light on the potency of their combination in mice or patients.

  11. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  12. A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    PubMed Central

    Vergni, Davide; Castiglione, Filippo; Briani, Maya; Middei, Silvia; Alberdi, Elena; Reymann, Klaus G.; Natalini, Roberto; Volonté, Cinzia; Matute, Carlos; Cavaliere, Fabio

    2009-01-01

    We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies. PMID:19390597

  13. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide. PMID:22773147

  14. Light-activated photocurrent degradation and self-healing in perovskite solar cells.

    PubMed

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad A; Sfeir, Matthew Y; Katan, Claudine; Even, Jacky; Tretiak, Sergei; Crochet, Jared J; Gupta, Gautam; Mohite, Aditya D

    2016-01-01

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 °C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.

  15. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad A.; Sfeir, Matthew Y.; Katan, Claudine; Even, Jacky; Tretiak, Sergei; Crochet, Jared J.; Gupta, Gautam; Mohite, Aditya D.

    2016-05-01

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 °C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.

  16. Light-activated photocurrent degradation and self-healing in perovskite solar cells.

    PubMed

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad A; Sfeir, Matthew Y; Katan, Claudine; Even, Jacky; Tretiak, Sergei; Crochet, Jared J; Gupta, Gautam; Mohite, Aditya D

    2016-01-01

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 °C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies. PMID:27181192

  17. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    PubMed Central

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad A.; Sfeir, Matthew Y.; Katan, Claudine; Even, Jacky; Tretiak, Sergei; Crochet, Jared J.; Gupta, Gautam; Mohite, Aditya D.

    2016-01-01

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 °C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies. PMID:27181192

  18. Resistance to Degradation and Cellular Distribution are Important Features for the Antitumor Activity of Gomesin

    PubMed Central

    Buri, Marcus V.; Domingues, Tatiana M.; Paredes-Gamero, Edgar J.; Casaes-Rodrigues, Rafael L.; Rodrigues, Elaine Guadelupe; Miranda, Antonio

    2013-01-01

    Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity. PMID:24312251

  19. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities.

    PubMed

    Li, Xiaolei; Li, Dan; Park, Kwan-Hwa

    2013-06-01

    A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s(-1) mL mg(-1)) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH 5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-β-CD were [6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus β-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase. PMID:23001056

  20. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities.

    PubMed

    Li, Xiaolei; Li, Dan; Park, Kwan-Hwa

    2013-06-01

    A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s(-1) mL mg(-1)) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH 5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-β-CD were [6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus β-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase.

  1. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  2. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Busato, L.; Vanella, D.; Consoli, S.; Binley, A. M.

    2015-12-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  3. On interrelation between seismic activity and the Earth crust deformations of Vrancea zone

    NASA Astrophysics Data System (ADS)

    Dultsev, A.; Pronyshyn, R.; Siejka, Z.; Serant, O.; Tretyak, K.; Zablotskyj, F.

    2009-04-01

    An investigated territory covers the whole seismically active zone of Vrancea mountains (Romania). It is located between 43° and 47° parallels in latitude and 23° and 29° meridians in longitude. The weekly solutions of coordinates of six permanent stations (BACA, BAIA, BUCU, COST, DEVA, IGEO) allocated on the territories of Romania and Moldova have been used as the initial data for carrying out of the investigations. These initial data were obtained during 2007-2008. The results of determination of the earthquake parameters (coordinates, focal depth, magnitude and energy) have been obtained from a network of seismic stations. An analysis of the temporal earthquake distribution in 2007-2008 showed the alternation of the periods of seismic activity and its absence. The duration of these periods ranges from one to three weeks. The Earth crust deformation parameters between the recurrent periods of seismic activity and its absence have been calculated on basis of weekly solutions for the territory bounded by GPS-permanent stations. The accumulative values of the earthquake energy and magnitude were calculated for the periods of seismic activity. It had been ascertained that the territory of Vrancea zone undergoes the permanent stretching into northeast and southwest directions as well as the compressing into northwest and southeast ones. In fact, the more fast attenuation of the seismic waves occurs in the direction of the contraction axis and the slowest attenuation of ones occurs in the direction of the axis of elongation. The parameters of total amplitude and earthquake energy in the periods of seismic activity have high-degree correlation with difference of the deformations of next periods of seismic activity and its absence. It enables to predict a change of the deformation increment in the zone of earthquake focuses of Vrancea territory by means of the earthquake total force.

  4. Modeling Activity of Very-Low-Frequency Earthquakes in Shallow Subduction Zone Considering Splay Faults and High Pore Pressure Zones

    NASA Astrophysics Data System (ADS)

    Shibazaki, B.; Ito, Y.; Ujiie, K.

    2010-12-01

    Recent observations reveal that very-low-frequency (VLF) earthquakes occur in the shallow subduction zones in the Nankai trough, Hyuganada, and off the coast of Tokachi, Japan (Obara and Ito, 2005; Asano et al., 2008; Obana and Kodaira, 2009). The ongoing super drilling project, Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), involves sampling the core of seismogenic faults and conducting analyses, experiments, and in-situ borehole measurements at the Nankai trough where VLF earthquakes occur. The data obtained in this project will be used to develop a model of VLF earthquakes that integrates seismological observations, laboratory experimental results, and geological observations. In the present study, first, we perform 2D quasi-dynamic modeling of VLF earthquakes in an elastic half-space on the basis of a rate- and state-dependent friction law. We set a local unstable zone in a shallow stable zone. To explain very low stress drops and short recurrence intervals of VLF earthquakes, the effective stress is assumed to be around 0.2 MPa. The results indicate that VLF earthquakes are unstable slips that occur under high pore pressure conditions. The probable causes for the high pore pressure along the faults of VLF earthquakes are the sediment compaction and dehydration that occur during smectite-to-illite transition in the shallow subduction zone. Then, we model the generation process of VLF earthquakes by considering splay faults and the occurrences of large subduction earthquakes. We set the local unstable zones with high pore pressure in the stable splay fault zones. We assume the long-term average slip velocity of the splay faults, and that the shear stress is accumulated by the delay of the fault slip from the long-term slip motion. Depending on the frictional properties of the shallow splay faults, two types of VLF earthquakes can occur. When the effective stress is low all over the splay faults, the rupture of large earthquakes propagates to the

  5. Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate.

    PubMed

    Diaz Kirmser, Elena M; Mártire, Daniel O; Gonzalez, Mónica C; Rosso, Janina A

    2010-12-22

    Activated sodium peroxydisulfate has the potential to in situ destruct many organic contaminants because of the generation of the stronger oxidant sulfate radical. From photochemical activation of peroxydisulfate in flash-photolysis experiments, the bimolecular rate constants for the reaction of sulfate radical with glyphosate (1.6 × 10(8) M(-1) s(-1)) and paraquat (1.2 × 10(9) M(-1) s(-1)) at 25 °C were obtained. Thermal activation of peroxydisulfate was shown to degrade the herbicides clomazone, paraquat, and glyphosate. Although the herbicide degradation was observed to take place in less than 1 h, the mineralization of the organic carbon required longer reaction times, because of the formation of stable organic intermediates. For similar initial total organic carbon (TOC) values, TOC profiles were similar for experiments with different substrates (the herbicides, humic acids, and a mixture of glyphosate and humic acids), which indicates that the mineralization of all of the samples is limited by the production of SO(4)(•) (-) radicals. A linear correlation between the initial amount of SO(4)(•) (-) needed per mole of C and the average oxidation state was found.

  6. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  7. Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium.

    PubMed

    Tang, Jin; Nie, Jing; Li, Danping; Zhu, Wenjun; Zhang, Shaopeng; Ma, Fang; Sun, Qiao; Song, Jia; Zheng, Yonglian; Chen, Ping

    2014-05-25

    Poria cocos F.A.Wolf is a Chinese traditional medicine used to treat chronic gastritis, edema, nephrosis, gastric atony, and acute gastroenteric catarrh. Polysaccharides are the main active component of P. cocos. We obtained polysaccharides PCP-1, PCP-2, and PCP-3 from the degradation of P. cocos polysaccharides (PCP) with different concentrations of H2O2 solution. Molecular weights were determined by high performance size exclusion chromatography. HPLC analysis of monosaccharide composition confirmed that PCP-1, PCP-2, and PCP-3 are heteropolysaccharides composed of glucose and arabinose. IR spectra indicated obvious characteristic peaks of polysaccharides. The antioxidant activities of these polysaccharides were evaluated by established in vitro systems, including scavenging activity of hydroxyl radicals, ABTS radicals, and ferrous ions. The degradation polysaccharides exhibited obvious and concentration-dependent antioxidant properties. In addition, DNA binding analysis showed that PCP-1 had a stronger capacity than other polysaccharides to interact with DNA. However, each polysaccharide had a certain capacity for DNA damage protection.

  8. Insulin-degrading enzyme is activated by the C-terminus of α-synuclein.

    PubMed

    Sharma, Sandeep K; Chorell, Erik; Wittung-Stafshede, Pernilla

    2015-10-16

    The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid β and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein α-synuclein that resulted in dual effects: arrested α-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of α-synuclein. Whereas a peptide containing the first 97 residues of α-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of α-synuclein increased IDE proteolysis to the same degree as full-length α-synuclein. Because the α-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.

  9. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  10. Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of β-CASP ribonucleases.

    PubMed

    Clouet-d'Orval, Béatrice; Phung, Duy Khanh; Langendijk-Genevaux, Petra S; Quentin, Yves

    2015-11-01

    β-CASP ribonucleases are widespread in all three domains of life. They catalyse both 5'-3' exoribonucleolytic RNA trimming and/or endoribonucleolytic RNA cleavage using a unique active site coordinated by two zinc ions. These fascinating enzymes have a key role in 3' end processing in Eukarya and in RNA decay and ribosomal RNA maturation in Bacteria. The recent recognition of β-CASP ribonucleases as major players in Archaea is an important contribution towards identifying RNA-degrading enzymes in the third domain of life. Three β-CASP orthologous groups, aCPSF1, aCPSF2, aCPSF1b, are closely related to the eukaryal CPSF73 termination factor and one, aRNase J, is ortholog of the bacterial RNase J. The endo- and 5'-3' exoribonucleolytic activities carried by archaeal β-CASP enzymes are strictly conserved throughout archaeal phylogeny suggesting essential roles in maturation and/or degradation of RNA. The recent progress in understanding the prevalence, activities and functions of archaeal β-CASP ribonucleases is the focus of this review. The current status of our understanding of RNA processing pathways in Archaea is covered in light of this new knowledge on β-CASP ribonucleases.

  11. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Chen, Rong; Lipka, Stephen M.; Yang, Fuqian

    2016-05-01

    Activated carbon microspheres (ACSs), which are prepared using hydrothermal synthesis and ammonia activation, are used as the active materials in the anode and cathode of electric double layer capacitors (EDLCs). The ACS-based EDLCs of symmetrical electrodes exhibit good stability and a high degree of reversibility over 2000 charge-discharge cycles for electric current up to 10 A g-1. The ACSs maintain a nongraphitized carbon structure after over 2000 charge-discharge cycles. Nanoindentation experiments are performed on the ACSs, which are electrochemically cycled in a voltage window of 0-1 V at three electric currents of 0.5, 5, and 10 A g-1. For the same indentation load, both the contact modulus and indentation hardness of the ACSs decrease with the increase of the electric current used in the electrical charging and discharging. These results suggest that there exists strength degradation introduced by the electric current. A larger electric current will cause more strength degradation than a smaller electric current.

  12. Visible Light Active Cu2+/TiO2 Nanocatalyst for Degradation of Dichlorvos

    NASA Astrophysics Data System (ADS)

    Segne, Teshome Abdo; Tirukkovalluri, Siva Rao; Challapalli, Subrahmanyam

    2012-10-01

    The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol-gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+. The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption-desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.

  13. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  14. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  15. Microearthquake activity on the Orozco Fracture Zone: Preliminary results from Project ROSE

    SciTech Connect

    Not Available

    1981-05-10

    We present preliminary hypocenter determinations for 52 earthquakes recorded by a large multiinstitutional network of ocean bottom seismometers and ocean bottom hydrophones in the Orozco Fracture Zone in the eastern Pacific during late February to mid-March 1979. The network was deployed as part of the Rivera Ocean Seismic Experiment, also known as Project ROSE. The Orozco Fracture Zone is Physiographically complex, and the pattern of microearthquake hypocenters at least partly reflects this complexity. All of the well-located epicenters lie within the active transform fault segment of the fracture zone. About half of the recorded earthquakes were aligned along a narrow trough that extends eastward from the northern rise crest intersection in the approximate direction of the Cocos-Pacific relative plate motion; these events appear to be characterized by strike-slip faulting. The second major group of activity occurred in the central portion of the transform fault; the microearthquakes in this group do not display a preferred alignment parallel to the direction of spreading, and several are not obviously associated with distinct topographic features. Hypocentral depth was well resolved for many of the earthquakes reported here. Nominal depths range from 0 to 17 km below the seafloor.

  16. Microearthquake activity on the Orozco Fracture Zone: Preliminary results from Project ROSE

    NASA Astrophysics Data System (ADS)

    Scientists, Project Rose

    1981-05-01

    We present preliminary hypocenter determinations for 52 earthquakes recorded by a large multi-institutional network of ocean bottom seismometers and ocean bottom hydrophones in the Orozco Fracture Zone in the eastern Pacific during late February to mid-March 1979. The network was deployed as part of the Rivera Ocean Seismic Experiment, also known as Project ROSE. The Orozco Fracture Zone is physiographically complex, and the pattern of microearthquake hypocenters at least partly reflects this complexity. All of the well-located epicenters lie within the active transform fault segment of the fracture zone. About half of the recorded earthquakes were aligned along a narrow trough that extends eastward from the northern rise crest intersection in the approximate direction of the Cocos-Pacific relative plate motion; these events appear to be characterized by strike-slip faulting. The second major group of activity occurred in the central portion of the transform fault; the microearthquakes in this group do not display a preferred alignment parallel to the direction of spreading, and several are not obviously associated with distinct topographic features. Hypocentral depth was well resolved for many of the earthquakes reported here. Nominal depths range from 0 to 17 km below the seafloor.

  17. Microearthquake activity on the Orozco Fracture Zone: Preliminary results from Project ROSE

    NASA Astrophysics Data System (ADS)

    1981-05-01

    We present preliminary hypocenter determinations for 52 earthquakes recorded by a large multiinstitutional network of ocean bottom seismometers and ocean bottom hydrophones in the Orozco Fracture Zone in the eastern Pacific during late February to mid-March 1979. The network was deployed as part of the Rivera Ocean Seismic Experiment, also known as Project ROSE. The Orozco Fracture Zone is Physiographically complex, and the pattern of microearthquake hypocenters at least partly reflects this complexity. All of the well-located epicenters lie within the active transform fault segment of the fracture zone. About half of the recorded earthquakes were aligned along a narrow trough that extends eastward from the northern rise crest intersection in the approximate direction of the Cocos-Pacific relative plate motion; these events appear to be characterized by strike-slip faulting. The second major group of activity occurred in the central portion of the transform fault; the microearthquakes in this group do not display a preferred alignment parallel to the direction of spreading, and several are not obviously associated with distinct topographic features. Hypocentral depth was well resolved for many of the earthquakes reported here. Nominal depths range from 0 to 17 km below the seafloor.

  18. 78 FR 7395 - Foreign-Trade Zone 129-Bellingham, WA; Notification of Proposed Production Activity; T.C. Trading...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Foreign-Trade Zones Board Foreign-Trade Zone 129--Bellingham, WA; Notification of Proposed Production..., grantee of FTZ 129, submitted a notification of proposed production activity on behalf of T.C. Trading... notification (as described below) and subsequently authorized by the FTZ Board. Production under FTZ...

  19. 78 FR 56655 - Foreign-Trade Zone (FTZ) 203-Moses Lake, Washington; Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 203--Moses Lake, Washington; Notification of Proposed..., grantee of FTZ 203, submitted a notification of proposed production activity to the FTZ Board on behalf of... is located within Site 4 of FTZ 203. The facility is used for the processing of components into...

  20. 78 FR 66330 - Foreign-Trade Zone (FTZ) 235-Lakewood, New Jersey, Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 235--Lakewood, New Jersey, Notification of Proposed Production Activity, Cosmetic Essence Innovations, LLC, (Fragrance Bottling), Holmdel, New Jersey...

  1. 77 FR 63290 - Foreign-Trade Zone 74-Baltimore, MD, Authorization of Production Activity, J.D. Neuhaus LP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... public comment (77 FR 39209, 7/2/2012). The FTZ Board has determined that no further review of the... Foreign-Trade Zones Board Foreign-Trade Zone 74--Baltimore, MD, Authorization of Production Activity, J.D... of J.D. Neuhaus LP, located in Sparks, Maryland. The notification was processed in accordance...

  2. 78 FR 79390 - Foreign-Trade Zone (FTZ) 265-Conroe, Texas, Notification of Proposed Production Activity, Bauer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 265--Conroe, Texas, Notification of Proposed Production... production activity to the FTZ Board on behalf of Bauer Manufacturing Inc. (Bauer), located in Conroe, Texas..., and tools and accessories for pile drivers and boring machinery within Site 1 of FTZ 265. The...

  3. 78 FR 7394 - Foreign-Trade Zone 41-Milwaukee, WI; Notification of Proposed Production Activity; CNH America...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Foreign-Trade Zones Board Foreign-Trade Zone 41--Milwaukee, WI; Notification of Proposed Production... Milwaukee, grantee of FTZ 41, submitted a notification of proposed production activity on behalf of CNH... are used for the production of tractors and tractor/combine components. Pursuant to 15 CFR...

  4. 77 FR 75406 - Foreign-Trade Zone 26-Atlanta, GA; Notification of Proposed Production Activity; Perkins Shibaura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 26--Atlanta, GA; Notification of Proposed Production Activity; Perkins Shibaura Engines LLC, (Diesel Engines), Griffin, GA Perkins Shibaura Engines LLC (Perkins Shibaura), an operator of FTZ 26, submitted...

  5. 78 FR 58995 - Foreign-Trade Zone (FTZ) 138-Columbus, Ohio; Notification of Proposed Production Activity; Rolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 138--Columbus, Ohio; Notification of Proposed Production Activity; Rolls Royce Energy Systems, Inc. (Industrial Gas Turbines, Power Generation Turbines, and Generator Sets); Mount Vernon, Ohio...

  6. 78 FR 40427 - Foreign-Trade Zone (FTZ) 183-Austin, Texas; Notification of Proposed Production Activity; Samsung...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 183--Austin, Texas; Notification of Proposed Production Activity; Samsung Austin Semiconductor, LLC (Semiconductors); Austin, Texas Samsung Austin Semiconductor... the FTZ Board for its facility in Austin, Texas. The notification conforming to the requirements...

  7. 78 FR 65963 - Foreign-Trade Zone 44-Mt. Olive, New Jersey; Authorization of Production Activity; Givaudan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... notice in the Federal Register inviting public comment (78 FR 39707, 07-02-2013). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 44--Mt. Olive, New Jersey; Authorization of Production Activity; Givaudan Fragrances Corporation (Fragrance and Flavor Products); Mt. Olive, New Jersey On June...

  8. Pathogenesis of mucosal injury in the blind loop syndrome. Brush border enzyme activity and glycoprotein degradation.

    PubMed

    Jonas, A; Flanagan, P R; Forstner, G G

    1977-12-01

    The effect of intestinal bacterial over-growth on brush border hydrolases and brush border glycoproteins was studied in nonoperated control rats, control rats with surgically introduced jejunal self-emptying blind loops, and rats with surgically introduced jejunal self-filling blind loops. Data were analyzed from blind loop segments, segments above and below the blind loops, and three corresponding segments in the nonoperated controls. Rats with self-filling blind loops had significantly greater fat excretion than controls and exhibited significantly lower conjugated:free bile salt ratios in all three segments. Maltase, sucrase, and lactase activities were significantly reduced in homogenates and isolated brush borders from the self-filling blind loop, but alkaline phosphatase was not affected. The relative degradation rate of homogenate and brush border glycoproteins was assessed by a double-isotope technique involving the injection of d-[6-(3)H]glucosamine 3 h and d-[U-(14)C]glucosamine 19 h before sacrifice, and recorded as a (3)H:(14)C ratio. The relative degradation rate in both homogenate and brush border fractions was significantly greater in most segments from rats with self-filling blind loops. In the upper and blind loop segments from rats with self-filling blind loops, the (3)H:(14)C ratios were higher in the brush border membrane than in the corresponding homogenates, indicating that the increased rates of degradation primarily involve membrane glycoproteins. Incorporation of d-[6-(3)H]glucosamine by brush border glycoproteins was not reduced in rats with self-filling blind loops, suggesting that glycoprotein synthesis was not affected. Polyacrylamide gel electrophoresis of brush border glycoproteins from the contaminated segments indicated that the large molecular weight glycoproteins, which include many of the surface hydrolases, were degraded most rapidly. Brush border maltase, isolated by immunoprecipitation, had (3)H:(14)C ratios characteristic of

  9. Atrial natriuretic peptide degradation by CPA47 cells - Evidence for a divalent cation-independent cell-surface proteolytic activity

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Chen, Y. M.; Whitson, P. A.

    1992-01-01

    Atrial natriuretic peptide (ANP) is rapidly cleared and degraded in vivo. Nonguanylate-cyclase receptors (C-ANPR) and a metalloproteinase, neutral endopeptidase (EC 3.4.24.11) (NEP 24.11), are thought to be responsible for its metabolism. We investigated the mechanisms of ANP degradation by an endothelial-derived cell line, CPA47. CPA47 cells degraded 88 percent of 125I-ANP after 1 h at 37 degrees C as determined by HPLC. Medium preconditioned by these cells degraded 41 percent of the 125I-ANP, and this activity was inhibited by a divalent cation chelator, EDTA. Furthermore, a cell-surface proteolytic activity degraded 125I-ANP in the presence of EDTA when receptor-mediated endocytosis was inhibited either by low temperature (4 degrees C) or by hyperosmolarity at 37 degrees C. The metalloproteinase, NEP 24.11, is unlikely to be the cell-surface peptidase because 125I-ANP is degraded by CPA47 cells at 4 degrees C in the presence of 5 mM EDTA. These data indicate that CPA47 cells can degrade ANP by a novel divalent cation-independent cell-surface proteolytic activity.

  10. Fibronectin-Degrading Activity of Trypanosoma cruzi Cysteine Proteinase Plays a Role in Host Cell Invasion

    PubMed Central

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz

    2014-01-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. PMID:25267835

  11. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.; Warren, Steven D.

    1994-01-01

    Cryptobiotic soil crusts are an important component of semiarid and arid ecosystems. An important role of these crusts is the contribution of fixed nitrogen to cold‐desert ecosystems. This study examines the residual effects of various intensities and combinations of different surface disturbances (raking, scalping, and tracked vehicles) on nitrogenase activity, chlorophyll content, and chlorophyll degradation in these soil crusts. Nine months after disturbance chlorophyll content of disturbed soils was not statistically different from undisturbed controls, except in the scalped treatments, indicating recovery of this characteristic is fairly quick unless surface material is removed. Differences in chlorophyll degradation among treatments were not statistically significant. However, nitrogenase activity in all treatments showed tremendous reductions, ranging from 77–97%, when compared to the control, indicating this characteristic is slow to recover. Consequently, assessment of crustal recovery from disturbance must include not only visual and biomass characteristics but other physiological measurements as well. Areas dominated by these crusts should be managed conservatively until the implications of crustal disturbance is better understood.

  12. Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid.

    PubMed

    van der Gast, Christopher J; Whiteley, Andrew S; Thompson, Ian P

    2004-03-01

    In order for established bioreactors to be effective for treating chemically mixed wastes such as metal working fluids (MWF) it is essential that they harbour microbial populations that can maintain sufficient active biomass and degrade each of the chemical constituents present. In this study we investigated the effectiveness of a bacterial consortium composed of four species (Clavibacter michiganensis, Methylobacterium mesophilicum, Rhodococcus erythropolis and Pseudomonas putida), assembled on the basis of their apparent ubiquity in waste MWF, degradation ability and tolerance to fluctuating chemistry of the waste. The temporal dynamics of the inoculum and its effects on the fate of individual chemical components of the waste were studied, by regular sampling, over 400 h. Using a complementary approach of culture with chemotaxonomic (FAME) analysis and applying group specific probes (FISH), the inoculum was found to represent a significant component of the community in bioreactors with and without presence of indigenous MWF populations. In addition, the reduction in the COD by the consortium was approximately 85% of the total pollution load, and 30-40% more effectively than any other treatment (indigenous MWF community alone or activated sludge). Furthermore, all the chemical constituents, including the biocide (a formaldehyde release agent) demonstrated > 60% reduction. Many chemical components of the MWF proved to be recalcitrant in the other treatments. The results of this study confirm that assemblage of an inoculum, based on a comprehensive knowledge of the indigenous microbial community, in the target habitat, is a highly effective way of selecting microbial populations for bioaugmentation of bioreactors.

  13. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia.

    PubMed

    Yan, Jing-Kun; Wang, Yao-Yao; Ma, Hai-Le; Wang, Zhen-Bin

    2016-03-01

    In this study, a high-molecular-weight polysaccharide PL-N isolated from the alkaline extract of Phellinus linteus mycelia was degraded by ultrasound. Results showed that ultrasound treatment at different ultrasonic intensities decreased the intrinsic viscosity and molecular weight of PL-N, as well as narrowed the molecular weight distribution. A larger reduction in intrinsic viscosity and molecular weight was caused by a higher ultrasonic intensity. The degradation kinetics model was fitted to (1/Mt-1/M0)=k·t, and the reaction rate constant (k) increased with increasing ultrasonic intensity. Ultrasound degradation did not change the primary structure of PL-N, and scanning electron microscopy analysis indicated that the morphology of the original PL-N was different from that of degraded PL-N fractions. Antioxidant activity assays in vitro indicated that the degraded PL-N fraction with low molecular weight had stronger hydroxyl radical scavenging capacity and higher TEAC and FRAP values.

  14. Regulation of Synaptic Vesicle Docking by Different Classes of Macromolecules in Active Zone Material

    PubMed Central

    Szule, Joseph A.; Harlow, Mark L.; Jung, Jae Hoon; De-Miguel, Francisco F.; Marshall, Robert M.; McMahan, Uel J.

    2012-01-01

    The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10–15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles’ distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry. PMID:22438915

  15. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system.

  16. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  17. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system. PMID:27422015

  18. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution.

    PubMed

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.

  19. Photocatalytic activity of TiO2 nanomaterials for methylene blue dye degradation

    NASA Astrophysics Data System (ADS)

    Lee, Deuk Yong; Son, Siwon; Jeon, Min-Seok; Lee, Myung-Hyun; Kim, Bae-Yeon

    2016-04-01

    TiO2 nanomaterials were prepared by a sol-gel derived electrospinning, calcination from 500°C to 650°C, and subsequent mechanical grinding to investigate the effect of calcination temperature on crystal structure, crystallinity, and photocatalytic activity of methylene blue (MB). XRD results indicated that TiO2 nanorods calcined at 500°C is composed of anatase TiO2 only. However, mixed crystals of anatase and rutile were observed for TiO2 calcined above 550°C. Higher MB degradation was found for the TiO2 nanorods calcined at 550°C probably due to the mixed crystals and larger surface area. However, the improved photocatalytic activity was achieved for TiO2 nanotube due to the synergic combinations of mixed crystals, larger specific surface area, and light trapping effect.

  20. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution

    PubMed Central

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism. PMID:26186340

  1. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  2. Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis.

    PubMed

    Yang, Yang; Feng, Yuyao; Zhang, Xiaowei; Nakajima, Takero; Tanaka, Naoki; Sugiyama, Eiko; Kamijo, Yuji; Aoyama, Toshifumi

    2016-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways. In fact, the first and last reactions in the sulfatide synthesis pathway are regulated by PPARα. Therefore, we also measured the expression levels of enzymes involved in sulfatide metabolism and the regulation of cellular sulfatide content. The levels of these enzymes and cellular sulfatide content both increased in a PPARα-dependent manner. These results indicate that PPARα activation plays defensive and compensative roles by reducing cellular toxicity associated with fatty acids and sulfuric acid. PMID:27644403

  3. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium

    PubMed Central

    Lier, Johanna Maria; Burmühl, Stephan; Struchtrup, Andreas; Deutschmann, Kathleen; Vetter, Maik; Leu, Tristan; Reeg, Sandra; Grune, Tilman; Rüther, Ulrich

    2015-01-01

    Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2. PMID:26150391

  4. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction.

    PubMed

    Chen, Shirui; Gendelman, Hannah K; Roche, John P; Alsharif, Peter; Graf, Ethan R

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function.

  5. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Roche, John P.; Alsharif, Peter; Graf, Ethan R.

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909

  6. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    SciTech Connect

    Lee, Sang-Myeong; Kleiboeker, Steven B. . E-mail: KleiboekerS@Missouri.edu

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradation of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.

  7. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Novitasari

    2016-02-01

    Synthesis of TiO2-ZnO and its activity test in Sono photocatalysis degradation of phenol has been conducted. The synthesis was performed by the sol-gel mechanism by using titanium isopropoxide and zinc acetate as precursors with the Ti: Zn ratio of 5:1. Characterization of material were conducted by x-ray diffraction analysis, surface area analysis and also diffuse reflectance UV-Visible spectrophotometry. The material obtained from the synthesis was tested in photocatalysis, Sono catalysis and Sono photocatalysis degradation of phenol solution. Results showed that material exhibited the activity of varied mechanism o- phenol degradation. In advance, the Sono photocatalysis degradation produced the synergy index of 1.169 compared to both photocatalysis and Sono catalysis.

  8. Labrenzia sp. BM1: a quorum quenching bacterium that degrades N-acyl homoserine lactones via lactonase activity.

    PubMed

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.

  9. Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

    PubMed Central

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action. PMID:24995373

  10. Palaeoseismological evidence for Holocene activity on the Manisa Fault Zone,Western Anatolia

    NASA Astrophysics Data System (ADS)

    Özkaymak, Ç.; Sözbilir, H.; Uzel, B.; Akyüz, H. S.

    2009-04-01

    Manisa Fault Zone (MFZ) is an active structural discontinuity that is geomorphologically expressed as a trace of north-facing Quaternary fault scarps bounding the southern margin of the Manisa basin which is subsidiary to the Gediz Graben. We note that the present-day fault trace is over 50 km long from Manisa city in the northwest to the Turgutlu town in the southeast. The MFZ consists of two major sections: (i) eastern section that strikes NW-SE direction in the south and bends into an approximately E-W direction around Manisa to the northwest, (ii) an approximately 10-km-long western section that strikes approximately WNW-ESE direction from Manisa city in the east to the Akgedik town in the west. In this study, we present the geologic, geomorphologic, and palaeoseismologic observations indicating Holocene activity on the western section of the fault zone. We identify that the MFZ, at its western end, consists of three fault segments which are en échelon arranged in left step; the fault segments show evidence for linkage and breaching at the relay ramps. One of them is named as the Manastir Fault. In front of this fault, two Holocene colluvial fans older of which is uncorformity bounded are cut and displaced by the syntethic faults. Palaeoseismologic data show that the syntethic fault segments correspond to the surface ruptures of the historical earthquakes. As a result of detailed stratigraphic, sedimentologic and structural observations on the trench walls, some evidences for at least two earthquakes are recorded which are supported by radio-carbon dating. Besides this, an archaic aqueduct that were used to transport water from Emlakdere town, located on the hanging wall of the Manastir Fault, to the basin is cut and displaced by the syntethic fault egments. It is known that this archaic architecture were in use after 11. century by the Ottomans. On the basis of the mentioned data, fault segments which are belong to the western part of the Manisa Fault Zone

  11. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone

    PubMed Central

    Gundelfinger, Eckart D.; Reissner, Carsten; Garner, Craig C.

    2016-01-01

    Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function. PMID:26793095

  12. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone.

    PubMed

    Gundelfinger, Eckart D; Reissner, Carsten; Garner, Craig C

    2015-01-01

    Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca(2+) channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function.

  13. Determination of nitroaromatic explosives and their degradation products in unsaturated-zone water samples by high-performance liquid chromatography with photodiode-array, mass spectrometric, and tandem mass spectrometric detection

    USGS Publications Warehouse

    Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.

    1996-01-01

    Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.

  14. Aminopeptidase activity in rat brain synaptosomes - 2-mercaptoethanol stimulation and Arg-vasopressin degradation

    SciTech Connect

    Simmons, W.H.; Orawski, A.T.

    1986-03-05

    Rat brain synaptic plasma membranes contain an amastatin-inhibited aminopeptidase activity which degrades Arg-vaso-pressin (AVP). The pH optimum for AVP cleavage was found to be 6.8, similar to that reported for oxytocin. The ability of other peptides and arylamides such as oxytocin, Tyr-Phe-Met-Arg-Phe-NH/sub 2/ and Arg-Arg-..beta..NA to inhibit cleavage of (/sup 3/H-Tyr/sup 2/)-AVP suggests that the enzyme may not be specific for AVP. The AVP-cleaving activity has been solubilized and partially characterized. Synaptosomes were lysed with hypotonic buffer, washed, and extracted with 1% Nonidet P-40 detergent. The solubilized protein was chromatographed by gel filtration HPLC on Superose 6. A single peak of activity was found with a M.W. = 117,000 which could hydrolyze 1mM Ala-..beta..NA, Arg-..beta..NA, Arg-Arg-..beta..NA, Phe-Met and Phe-Arg as well as slowly cleave AVP with the ultimate release of /sup 3/H-Tyr. 2-Mercaptoethanol (3.9mM) (ME) stimulated activity 3.6 to 6.6-fold for arylamide and dipeptide substrates, but 35-fold for labelled AVP, possibly owing to reduction of the AVP disulfide bond. All activities in the presence of ME were completely inhibited by 0.2mM amastatin.

  15. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.

    PubMed

    Kamiyama, Masumi; Moon, Joon-Kwan; Jang, Hae Won; Shibamoto, Takayuki

    2015-02-25

    Antioxidant activities of brewed coffees prepared from six commercial brands ranged from 63.13 ± 1.01 to 96.80 ± 1.68% at the highest levels tested. Generally, the degree of antioxidant activity of the brewed coffee was inversely proportional to the total chlorogenic acid concentration. A sample obtained from the major chlorogenic acid, 5-caffeoylquinic acid (5-CQA), heated at 250 °C exhibited potent antioxidant activity (79.12 ± 2.49%) at the level of 10 μg/mL, whereas unheated 5-CQA showed only moderate antioxidant activity (44.41 ± 0.27%) at the level of 100 μg/mL. Heat produced relatively high levels of pyrocatechol (2,809.3 μg/g) and 2-methoxy-4-vinylphenol (46.4 μg/g) from 5-CQA, and their antioxidant activity levels were 76.57 ± 3.00 and 98.63 ± 0.01%, respectively. The results of the present study suggest that roasting degrades chlorogenic acids to form potent antioxidants and thus plays an important role in the preparation of high-antioxidant low-acid coffee. PMID:25658375

  16. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  17. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity.

    PubMed

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection - induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone's antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  18. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324

    PubMed Central

    Vatsyayan, Preety; Goswami, Pranab

    2016-01-01

    A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km) of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS). PMID:27057351

  19. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  20. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible. PMID:26688976

  1. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    PubMed

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria. PMID:23906496

  2. Screening of lignocellulose-degrading superior mushroom strains and determination of their CMCase and laccase activity.

    PubMed

    Fen, Li; Xuwei, Zhu; Nanyi, Li; Puyu, Zhang; Shuang, Zhang; Xue, Zhao; Pengju, Li; Qichao, Zhu; Haiping, Lin

    2014-01-01

    In order to screen lignocellulose-degrading superior mushroom strains ten strains of mushrooms (Lentinus edodes939, Pholiota nameko, Lentinus edodes868, Coprinus comatus, Macrolepiota procera, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Pleurotus nebrodensis, and Shiraia bambusicola) were inoculated onto carboxymethylcellulose agar-Congo red plates to evaluate their ability to produce carbomethyl cellulase (CMCase). The results showed that the ratio of transparent circle to mycelium circle of Hericium erinaceus was 8.16 (P < 0.01) higher than other strains. The filter paper culture screening test showed that Hericium erinaceus and Macrolepiota procera grew well and showed extreme decomposition of the filter paper. When cultivated in guaiacol culture medium to detect their abilities to secrete laccase, Hericium erinaceus showed the highest ability with the largest reddish brown circles of 4.330 cm. CMCase activity determination indicated that Coprinus comatus and Hericium erinaceus had the ability to produce CMCase with 33.92 U/L on the 9th day and 22.58 U/L on the 10th day, respectively, while Coprinus comatus and Pleurotus nebrodensis had the ability to produce laccase with 496.67 U/L and 489.17 U/L on the 16th day and 18th day. Based on the results, Coprinus comatus might be the most promising lignocellulose-degrading strain to produce both CMCase and laccase at high levels.

  3. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

    NASA Astrophysics Data System (ADS)

    Whitehead, Kathryn A.; Dorkin, J. Robert; Vegas, Arturo J.; Chang, Philip H.; Veiseh, Omid; Matthews, Jonathan; Fenton, Owen S.; Zhang, Yunlong; Olejnik, Karsten T.; Yesilyurt, Volkan; Chen, Delai; Barros, Scott; Klebanov, Boris; Novobrantseva, Tatiana; Langer, Robert; Anderson, Daniel G.

    2014-06-01

    One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg-1). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.

  4. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis.

    PubMed

    Cazanave, S C; Wang, X; Zhou, H; Rahmani, M; Grant, S; Durrant, D E; Klaassen, C D; Yamamoto, M; Sanyal, A J

    2014-08-01

    Non-alcoholic steatohepatitis is characterized by hepatic steatosis, elevated levels of circulating free fatty acids (FFA) and hepatocyte lipoapoptosis. This lipoapoptosis requires increased JNK phosphorylation and activation of the pro-apoptotic BH3-only proteins Bim and PUMA. Kelch-like ECH-associated protein (Keap)-1 is a BTB/Kelch protein that can regulate the expression of Bcl-2 protein and control apoptotic cell death. Yet, the role of Keap1 in hepatocyte lipotoxicity is unclear. Here we demonstrate that Keap1 protein was rapidly degraded in hepatocytes, through autophagy in a p62-dependent manner, in response to the toxic saturated FFA palmitate, but not following incubation with the non-toxic FFA oleic acid. Stable knockdown of Keap1 expression, using shRNA technology, in hepatocarcinoma cell lines induced spontaneous cell toxicity that was associated with JNK1-dependent upregulation of Bim and PUMA protein levels. Also, Keap1 knockdown further sensitized hepatocytes to lipoapoptosis by palmitate. Likewise, primary hepatocytes isolated from liver-specific Keap1(-/-) mice displayed higher Bim and PUMA protein levels and demonstrated increased sensitivity to palmitate-induced apoptosis than wild-type mouse hepatocytes. Finally, stable knockdown of Bim or PUMA expression prevented cell toxicity induced by loss of Keap1. These results implicate p62-dependent autophagic degradation of Keap1 by palmitate as a mechanism contributing to hepatocyte lipoapoptosis.

  5. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver.

    PubMed

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-05-01

    The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio-MnOx), biogenic silver nanoparticles (Bio-Ag(0)) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2-anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio-MnOx, Bio-Ag(0) and Ag(+) separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio-MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese-free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co-metabolic removal during active Mn(2+) oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio-MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  6. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.

    PubMed

    Huo, Yanwu; Nam, Ki Hyun; Ding, Fang; Lee, Heejin; Wu, Lijie; Xiao, Yibei; Farchione, M Daniel; Zhou, Sharleen; Rajashankar, Kanagalaghatta; Kurinov, Igor; Zhang, Rongguang; Ke, Ailong

    2014-09-01

    CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids, using an RNA-mediated interference mechanism. Interference in type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine, Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Thermobifida fusca Cas3 bound to single-stranded (ss) DNA substrate and show that it is an obligate 3'-to-5' ssDNase that preferentially accepts substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ssDNA cleavage. We demonstrate ATP coordination and conformational flexibility of the SF2-type helicase domain. Cas3 is specifically guided toward Cascade-bound target DNA by a PAM sequence, through physical interactions with both the nontarget substrate strand and the CasA protein. The sequence of recognition events ensures well-controlled DNA targeting and degradation of foreign DNA by Cascade and Cas3.

  7. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    PubMed Central

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio‐MnOx, Bio‐Ag0 and Ag+ separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio‐MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese‐free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co‐metabolic removal during active Mn2+ oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio‐MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  8. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates.

    PubMed

    Rentz, Jeremy A; Alvarez, Pedro J J; Schnoor, Jerald L

    2004-06-01

    The phenanthrene-degrading activity (PDA) of Pseudomonas putida ATCC 17484 was repressed after incubation with plant root extracts of oat (Avena sativa), osage orange (Maclura pomifera), hybrid willow (Salix alba x matsudana), kou (Cordia subcordata) and milo (Thespesia populnea) and plant root exudates of oat (Avena sativa) and hybrid poplar (Populus deltoides x nigra DN34). Total organic carbon content of root extracts ranged from 103 to 395 mg l(-1). Characterization of root extracts identified acetate (not detectable to 8.0 mg l(-1)), amino acids (1.7-17.3 mg l(-1)) and glucose (1.6-14.0 mg l(-1)), indicating a complex mixture of substrates. Repression was also observed after exposure to potential root-derived substrates, including organic acids, glucose (carbohydrate) and glutamate (amino acid). Carbon source regulation (e.g. catabolite repression) was apparently responsible for the observed repression of P. putida PDA by root extracts. However, we showed that P. putida grows on root extracts and exudates as sole carbon and energy sources. Enhanced growth on root products may compensate for partial repression, because larger microbial populations are conducive to faster degradation rates. This would explain the commonly reported increase in phenanthrene removal in the rhizosphere.

  9. Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination.

    PubMed

    Takasugi, Toshiyuki; Minegishi, Seiji; Asada, Akiko; Saito, Taro; Kawahara, Hiroyuki; Hisanaga, Shin-ichi

    2016-02-26

    Cdk5 is a versatile protein kinase that is involved in various neuronal activities, such as the migration of newborn neurons, neurite outgrowth, synaptic regulation, and neurodegenerative diseases. Cdk5 requires the p35 regulatory subunit for activation. Because Cdk5 is more abundantly expressed in neurons compared with p35, the p35 protein levels determine the kinase activity of Cdk5. p35 is a protein with a short half-life that is degraded by proteasomes. Although ubiquitination of p35 has been previously reported, the degradation mechanism of p35 is not yet known. Here, we intended to identify the ubiquitination site(s) in p35. Because p35 is myristoylated at the N-terminal glycine, the possible ubiquitination sites are the lysine residues in p35. We mutated all 23 Lys residues to Arg (p35 23R), but p35 23R was still rapidly degraded by proteasomes at a rate similar to wild-type p35. The degradation of p35 23R in primary neurons and the Cdk5 activation ability of p35 23R suggested the occurrence of ubiquitin-independent degradation of p35 in physiological conditions. We found that p35 has the amino acid sequence similar to the ubiquitin-independent degron in the NKX3.1 homeodomain transcription factor. An Ala mutation at Pro-247 in the degron-like sequence made p35 stable. These results suggest that p35 can be degraded by two degradation pathways: ubiquitin-dependent and ubiquitin-independent. The rapid degradation of p35 by two different methods would be a mechanism to suppress the production of p25, which overactivates Cdk5 to induce neuronal cell death.

  10. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    SciTech Connect

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-04-05

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. Over time, water infiltrates the wastes, and releases metals and radionuclides causing transport into the surrounding environment. We propose that fermentative microorganisms are active in these sites and may control metal and radionuclide migration from source zones (Figure 1). The following overarching hypothesis will drive our research: 'Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic compounds can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms.' The objective of our research is to determine the effect of carbon and energy flow through simulated waste environments on metal and radionuclide migration from waste pits and trenches across the DOE complex. Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Cellulolytic and non-cellulolytic fermentative microorganisms have been chosen as the focus of this research because their activity is a critical first step that we hypothesize will control subsequent fate and transport in contaminated natural systems. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These

  11. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    PubMed

    Busk, Peter K; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls. PMID:25461894

  12. Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature

    PubMed Central

    Busk, Peter K.; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls. PMID:25461894

  13. Xanthine degradation and related enzyme activities in leaves and fruits of two coffea species differing in caffeine catabolism.

    PubMed

    Vitória, A P; Mazzafera, P

    1999-05-01

    The degradation of xanthine was studied in young and aged leaves and in immature and mature fruits of Coffea arabica and Coffea dewevrei, which differ with respect to caffeine catabolism. Radioisotope feeding experiments showed that leaves degraded xanthine more readily than fruits but that mature fruits and aged leaves were less efficient than younger tissues. In all cases, a significant part of the recovered radioactivity was in the ureides. Xanthine dehydrogenase was characterized as the enzyme responsible for xanthine degradation, and its activity and that of uricase were consistent with the results obtained in the radioisotope feeding experiments. Activities of allantoinase and allantoate amidohydrolase could not be detected. Considerable levels of endogenous allantoin and allantoic acid were found in fruits and leaves. Therefore, ureide accumulation might be a consequence of low enzyme activity. There was no positive correlation between urease activity and the data from the radioisotope feeding experiments.

  14. Serpentinite in Active Suprasubduction-Zone Regions and Preserved Terrestrial Sections: Observations; Modeling; and Implications

    NASA Astrophysics Data System (ADS)

    Fryer, P.

    2012-12-01

    Exposures of serpentinized mantle of the overriding plate in the trench-proximal regions of nonaccretionary, intraoceanic forearcs have been extensively studied. Deposits of what were formerly called "sedimentary" serpentinite bodies on land are well documented all over the world. The deposits are variously categorized as mylonitized peridotite that was metamorphosed after obduction of an ophiolite section; olistostromes derived from sections of fault-exposed, serpentinized mantle; diapiric intrusions from point sources or along faults (as ridges); and flows from serpentinite mud volcanoes. The structures and compositions of serpentinite exposures help to differentiate between potential origins and protoliths. Theoretical studies of dehydration reactions, coupled with models of the thermal structure of subduction zones, provide constraints on the nature of fluids liberated from the subducting slab for various convergence angles and rates. These fluids are the source for serpentinization of the suprasubduction-zone mantle. The parameters for degree and distribution of serpentinite in such environments must be, however, constrained in each instance by the forcing functions operating within a given convergent margin. Spatial, i.e., down-dip increases in temperature and pressure vary with convergence angle and rate. Whereas most models assume continuous dehydration of the slab, in reality dehydration events are likely episodic and thus temporal effects must also be considered. We know that suprasubduction-zone serpentinization can begin early in the evolution of a convergent margin and that extensive faulting of a forearc region is necessary for emplacement of serpentinite deposits on the seafloor in active margins. Recent studies of Archean exposures of serpentinized peridotitic deposits suggest that the processes we observe in today's active convergent margins likely also took place during the earliest stages of tectonic cycling of the Earth's lithosphere. The

  15. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones.

    PubMed

    Seidel, Véronique; Peyfoon, Elham; Watson, David G; Fearnley, James

    2008-09-01

    Propolis is a natural substance produced by honeybees upon collection and transformation of resins and exudates from plants. Comparative studies on propolis collected from a wide range of countries are crucial for linking its provenance to antibacterial activity and thus ensuring that the beneficial properties of propolis are used more efficiently by the general public. This study reports the in vitro screening of ethanol extracts of propolis (n = 40), collected from a wide range of countries within the tropical, subtropical and temperate zones, and on the comparison of their activity against a range of Gram-positive and Gram-negative bacteria using a broth microdilution assay. The results obtained revealed that propolis extracts were mostly active against Gram-positive bacteria. The samples were subjected to principal component analysis (PCA) in order to model their activity against Gram-positive microorganisms. Three distinct clusters were distinguished in the PCA mapping based on MIC values, categorizing samples with strong (MIC range 3.9-31.25 mg/L), moderate (MIC range 31.25-> or =500 mg/L) and weak antibacterial activity or inactivity (MIC > or = 500 mg/L only). It is hypothesized that for samples of tropical provenance differences in the activity profiles may depend on the climatic characteristics of the collection sites. High antibacterial activity was observed for samples from locations characterized by a wet-tropical rainforest-type climate.

  16. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength

    PubMed Central

    Zhang, Peng; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength. PMID:26503494

  17. Hypolipidemic activity of okra is mediated through inhibition of lipogenesis and upregulation of cholesterol degradation.

    PubMed

    Wang, Hong; Chen, Gu; Ren, Dandan; Yang, Shang-Tian

    2014-02-01

    Little is known about the hypolipidemic activity of okra; therefore, we investigated the hypolipidemic activity of okra and its interaction with gene expression of several key components involved in lipid homeostasis. Male C57BL/6 mice were randomly divided into three groups and fed with hyperlipidemic diet or two hyperlipidemic diets supplemented with 1% or 2% okra powder for eight weeks. Results demonstrated that okra dose-dependently decreased serum and hepatic total cholesterol and triglyceride, and enhanced fecal excretion of bile acids. Gene expression analysis revealed that okra upregulated cholesterol 7α-hydroxylase (CYP7A1) expression, downregulated expression of sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthase (FAS), with no effect on sterol regulatory element-binding protein 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), low-density lipoprotein receptor (LDLR) and carnitine palmitoyltransferase-1A (CPT1A). It was suggested that hypolipidemic activity of okra was mediated most likely by upregulation of cholesterol degradation through CYP7A1 and by inhibition of lipogenesis through SREBP1c and FAS. Okra raw and fractionated polysaccharide showed strong bile acid binding capacity in vitro, which may contribute to the hypolipidemic activity observed. In conclusion, okra has potential application in the management of hyperlipidemia and its associated metabolic disorders.

  18. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    PubMed

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined. PMID:24866947

  19. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels.

    PubMed

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  20. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants.

    PubMed

    Qi, Chengdu; Liu, Xitao; Ma, Jun; Lin, Chunye; Li, Xiaowan; Zhang, Huijuan

    2016-05-01

    Increasing attention has been paid to environmentally friendly activation methods of peroxymonosulfate (PMS) in advanced oxidation processes (AOPs) for organic pollutant elimination. This work demonstrates that Base can be applied as a novel activator for PMS. The Base/PMS system, at ambient temperature, was able to degrade a variety of organic pollutants, including acid orange 7 (AO7), phenol and bisphenol A. In subsequent experiments with AO7, the decolorization rates for AO7 followed pseudo-first-order kinetics, with rate constant values ranging from 0.0006 to 0.1749 min(-1) depending on the operating parameters (initial PMS, Base, AO7 concentrations and reaction temperature). Furthermore, the mechanism for PMS activation by the Base was elucidated by radical scavenger (tert-butyl alcohol, methanol, sodium azide and p-benzoquinone) and electron spin resonance trapping studies. The results revealed that superoxide anion radical and singlet oxygen other than sulfate radical were the primary reactive oxygen species in the Base/PMS system. The findings of this study present a new pathway for PMS activation and provide useful information for the treatment of wastewater. PMID:26946115

  1. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels

    PubMed Central

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  2. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  3. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion.

    PubMed

    Wang, Chan; Li, Bo; Wang, Bo; Xie, Ningning

    2015-04-15

    The degradation characteristics of three peptides (Ser-Met, Asn-Cys-Ser, and glutathione) and their zinc-peptide complexes were studied using a two-stage in vitro digestion model. Enzyme-resistant peptides and zinc-peptide complexes, antioxidant activities, and free amino acids released by digestive enzymes, were measured in this study. The results revealed that the three peptides and their zinc-peptide complexes were resistant to pepsin but not to pancreatin. Pancreatin can partly hydrolyse both peptides and zinc-peptide complexes, but more than half of them remaining in their original form after gastrointestinal digestion. The coordination of zinc improved the enzymatic resistance of the peptide due to lower solubility of complexes and affected the hydrolytic site of pepsin and pancreatin. Zinc-Asn-Cys-Ser, which is highly resistant to enzymatic hydrolysis and maintains Zn in a soluble form, may have potential to improve Zn bioavailability.

  4. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  5. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.

    PubMed

    Cardenas-Robles, Arely; Martinez, Eduardo; Rendon-Alcantar, Idelfonso; Frontana, Carlos; Gonzalez-Gutierrez, Linda

    2013-01-01

    A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour. PMID:23128299

  6. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  7. Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat.

    PubMed

    Juranek, Judyta Karolina; Mukherjee, Konark; Siddiqui, Tabrez J; Kaplan, Benjamin J; Li, Jia Yi; Ahnert-Hilger, Gudrun; Jahn, Reinhard; Calka, Jaroslaw

    2013-07-01

    Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called "active zones." Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-α/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly.

  8. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed1[OPEN

    PubMed Central

    Magallanes-Lundback, Maria; Lipka, Alexander E.; Angelovici, Ruthie; DellaPenna, Dean

    2016-01-01

    Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224

  9. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation. PMID:24218864

  10. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation.

  11. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. PMID:25442296

  12. 78 FR 60826 - Foreign-Trade Zone 155-Calhoun/Victoria Counties, Texas; Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... (78 FR 35604, 06/13/2013). The FTZ Board has determined that no further review of the activity is... Production Activity; Caterpillar, Inc. (Excavator and Frame Assembly Production); Victoria, Texas On May 29... proposed production activity to the Foreign-Trade Zones (FTZ) Board on behalf of Caterpillar, Inc.,...

  13. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  14. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  15. Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Hüpers, Andre; Kasemann, Simone A.; Kopf, Achim J.; Meixner, Anette; Toki, Tomohiro; Shinjo, Ryuichi; Wheat, C. Geoffrey; You, Chen-Feng

    2016-11-01

    Compositional changes, dehydration reactions and fluid flow in subducted sediments influence seismogenesis and arc magmatism in subduction zones. To identify fluid flow and water-rock interaction processes in the western Nankai Trough subduction zone (SW Japan) we analyzed boron concentration and boron isotope composition (δ11B) of pore fluids sampled across the subduction zone forearc from depths of up to ∼922 m below seafloor during four Integrated Ocean Drilling Program (IODP) Expeditions. The major structural regimes that were sampled by coring include: (1) sedimentary inputs, (2) the frontal thrust zone, (3) the megasplay fault zone, and (4) the forearc basin. From mass balance consideration we find that consumption of boron (B) by ash alteration and desorption of B from the solid phase, mediated by organic matter degradation, produces a net decrease in B concentrations with depth down to ∼120 μM and variable δ11B values in the range of ∼+20‰ and +49‰. Interstitial water in sediments on the incoming oceanic plate are influenced by more efficient mobilization of exchangeable B from the solid phase due to higher temperatures and alteration of the oceanic crust that acts as a sink for 10B. At the tip of the megasplay fault zone, elevated B concentration and B isotopic composition suggest that underthrust coarse-grained slope sediments provide a pathway for fluids out of the upper (<2 km) accretionary prism. Silt and sand layers in the underthrust section of the downgoing plate favor fluid escape in seaward direction from depths equivalent to the temperature range of 60-150 °C. At both locations the δ11B signature evolves during updip migration through re-adsorption. Mass balance considerations suggest a shallower fluid source depth compared to pore fluids sampled previously near the décollement zone along the central portion of the Nankai margin.

  16. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100 μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30 μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment.

  17. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation.

    PubMed

    Nuhn, Lutz; Vanparijs, Nane; De Beuckelaer, Ans; Lybaert, Lien; Verstraete, Glenn; Deswarte, Kim; Lienenklaus, Stefan; Shukla, Nikunj M; Salyer, Alex C D; Lambrecht, Bart N; Grooten, Johan; David, Sunil A; De Koker, Stefaan; De Geest, Bruno G

    2016-07-19

    Agonists of Toll-like receptors (TLRs) are potent activators of the innate immune system and hold promise as vaccine adjuvant and for anticancer immunotherapy. Unfortunately, in soluble form they readily enter systemic circulation and cause systemic inflammatory toxicity. Here we demonstrate that by covalent ligation of a small-molecule imidazoquinoline-based TLR7/8 agonist to 50-nm-sized degradable polymeric nanogels the potency of the agonist to activate TLR7/8 in in vitro cultured dendritic cells is largely retained. Importantly, imidazoquinoline-ligated nanogels focused the in vivo immune activation on the draining lymph nodes while dramatically reducing systemic inflammation. Mechanistic studies revealed a prevalent passive diffusion of the nanogels to the draining lymph node. Moreover, immunization studies in mice have shown that relative to soluble TLR7/8 agonist, imidazoquinoline-ligated nanogels induce superior antibody and T-cell responses against a tuberculosis antigen. This approach opens possibilities to enhance the therapeutic benefit of small-molecule TLR agonist for a variety of applications. PMID:27382168

  18. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  19. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    PubMed

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms.

  20. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  1. Nuclear degraded sperm subpopulation is affected by poor chromatin compaction and nuclease activity.

    PubMed

    Ribas-Maynou, J; García-Peiró, A; Martínez-Heredia, J; Fernández-Encinas, A; Abad, C; Amengual, M J; Navarro, J; Benet, J

    2015-04-01

    There is an interest in the nuclear degraded sperm subpopulation because, although it is present in a low percentage in all semen samples, patient groups such as varicocele and rearranged genome carriers show high levels of these degraded spermatozoa. This study is designed with two objectives in mind: first, incubations of H2 O2 and nuclease on DTT-treated and untreated samples to show the aetiology of this subpopulation and second, assessment of the correlation between the protamine ratio and nuclear degraded spermatozoa. A very high increase in the nuclear degraded subpopulation has been found with nuclease incubation, and it is even higher when it has been merged with nuclear decompaction using DTT. Alternatively, incubation with H2 O2 with and without DTT did not show such a significant increase in nuclear degraded spermatozoa. The protamine ratio correlated with this subpopulation, showing, in patients, that poor nuclear compaction would turn the sperm susceptible to degradation. Then, the assessment of nuclear degraded spermatozoa might not be only a measure of DNA degradation but also an indicator of chromatin compaction in the spermatozoa. Different patient groups would fit this model for sperm nuclear degradation, such as varicocele patients, who show a high percentage of immature spermatozoa and nuclear degraded spermatozoa, and reorganised genome carriers, where reorganisation might also cause poor chromatin compaction on the sperm nucleus.

  2. Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing.

    PubMed

    tom Dieck, Susanne; Specht, Dana; Strenzke, Nicola; Hida, Yamato; Krishnamoorthy, Vidhyasankar; Schmidt, Karl-Friedrich; Inoue, Eiji; Ishizaki, Hiroyoshi; Tanaka-Okamoto, Miki; Miyoshi, Jun; Hagiwara, Akari; Brandstätter, Johann H; Löwel, Siegrid; Gollisch, Tim; Ohtsuka, Toshihisa; Moser, Tobias

    2012-08-29

    How size and shape of presynaptic active zones are regulated at the molecular level has remained elusive. Here we provide insight from studying rod photoreceptor ribbon-type active zones after disruption of CAST/ERC2, one of the cytomatrix of the active zone (CAZ) proteins. Rod photoreceptors were present in normal numbers, and the a-wave of the electroretinogram (ERG)--reflecting their physiological population response--was unchanged in CAST knock-out (CAST(-/-)) mice. Using immunofluorescence and electron microscopy, we found that the size of the rod presynaptic active zones, their Ca(2+) channel complement, and the extension of the outer plexiform layer were diminished. Moreover, we observed sprouting of horizontal and bipolar cells toward the outer nuclear layer indicating impaired rod transmitter release. However, rod synapses of CAST(-/-) mice, unlike in mouse mutants for the CAZ protein Bassoon, displayed anchored ribbons, normal vesicle densities, clustered Ca(2+) channels, and essentially normal molecular organization. The reduction of the rod active zone size went along with diminished amplitudes of the b-wave in scotopic ERGs. Assuming, based on the otherwise intact synaptic structure, an unaltered function of the remaining release apparatus, we take our finding to suggest a scaling of release rate with the size of the active zone. Multielectrode-array recordings of retinal ganglion cells showed decreased contrast sensitivity. This was also observed by optometry, which, moreover, revealed reduced visual acuity. We conclude that CAST supports large active zone size and high rates of transmission at rod ribbon synapses, which are required for normal vision.

  3. In situ comparison of activity in two deep-sea scavenging fishes occupying different depth zones

    PubMed Central

    Collins, M. A.; Priede, I. G.; Bagley, P. M.

    1999-01-01

    The activity of two scavenging deep-sea fishes occupying the same niche in overlapping depth zones were compared by in situ measurements of swimming speeds, tail-beat frequencies and by arrival time at baits. At 4800 m on the Porcupine Abyssal Plain, the grenadier Coryphaenoides (Nematonurus) armatus was the dominant scavenger, arriving at baits after 30 min, and swimming at relatively slow speeds of 0.17 body lengths (BL) sec-1. At 2500 m in the relatively food rich Porcupine Seabight both C. (N.) armatus and the blue-hake, Antimora rostrata, were attracted to bait, but A. rostrata was always the first to arrive and most of the bait was consumed before the C. (N.) armatus arrived. A. rostrata swam at mean speeds of 0.39 BL sec-1, similar to related shallow water species at equivalent temperatures. Observations on tail-beat frequency from video sequences confirmed the greater activity of A. rostrata. The data indicate that, given sufficient food supply, high pressure and low temperature do not limit activity levels of demersal deep-sea fishes. Low activity of C. (N.) armatus is an adaptation to poor food supply in the abyss, where these fishes dominate, but prevents it competing with the more active A. rostrata in shallower depths.

  4. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyn’s star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets—Kapteyn b (P = 48 days)—resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn’s star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of “planet b,” and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  5. Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia.

    PubMed

    Romanko, Michael J; Zhu, Changlian; Bahr, Ben A; Blomgren, Klas; Levison, Steven W

    2007-11-01

    Perinatal hypoxia/ischemia (H/I) is the leading cause of neurological injury resulting from birth complications and pre-maturity. Our studies have demonstrated that this injury depletes the subventricular zone (SVZ) of progenitors. In this study, we sought to reveal which cell death pathways are activated within these progenitors after H/I. We found that calpain activity is detected as early as 4 h of reperfusion and is sustained for 48 h, while caspase 3 activation does not occur until 8 h and peaks at 24 h post-insult. Activated calpains and caspase 3 co-localized within precursors situated in the lateral aspects of the SVZ (which coincides with progenitor cell death), whereas neither enzyme was activated in the medial SVZ (which harbors the neural stem cells that are resilient to this insult). These studies reveal targets for neuroprotective agents to protect precursors from cell death towards the goal of restoring normal brain development after H/I.

  6. Nonmicrobial Nitrophenol Degradation via Peroxygenase Activity of Dehaloperoxidase-Hemoglobin from Amphitrite ornata.

    PubMed

    McCombs, Nikolette L; D'Antonio, Jennifer; Barrios, David A; Carey, Leiah M; Ghiladi, Reza A

    2016-05-01

    The marine hemoglobin dehaloperoxidase (DHP) from Amphitrite ornata was found to catalyze the H2O2-dependent oxidation of nitrophenols, an unprecedented nonmicrobial degradation pathway for nitrophenols by a hemoglobin. Using 4-nitrophenol (4-NP) as a representative substrate, the major monooxygenated product was 4-nitrocatechol (4-NC). Isotope labeling studies confirmed that the O atom incorporated was derived exclusively from H2O2, indicative of a peroxygenase mechanism for 4-NP oxidation. Accordingly, X-ray crystal structures of 4-NP (1.87 Å) and 4-NC (1.98 Å) bound to DHP revealed a binding site in close proximity to the heme cofactor. Peroxygenase activity could be initiated from either the ferric or oxyferrous states with equivalent substrate conversion and product distribution. The 4-NC product was itself a peroxidase substrate for DHP, leading to the secondary products 5-nitrobenzene-triol and hydroxy-5-nitro-1,2-benzoquinone. DHP was able to react with 2,4-dinitrophenol (2,4-DNP) but was unreactive against 2,4,6-trinitrophenol (2,4,6-TNP). pH dependence studies demonstrated increased reactivity at lower pH for both 4-NP and 2,4-DNP, suggestive of a pH effect that precludes the reaction with 2,4,6-TNP at or near physiological conditions. Stopped-flow UV-visible spectroscopic studies strongly implicate a role for Compound I in the mechanism of 4-NP oxidation. The results demonstrate that there may be a much larger number of nonmicrobial enzymes that are underrepresented when it comes to understanding the degradation of persistent organic pollutants such as nitrophenols in the environment.

  7. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for

  8. Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking.

    PubMed

    Harlow, Mark L; Szule, Joseph A; Xu, Jing; Jung, Jae Hoon; Marshall, Robert M; McMahan, Uel J

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron's axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle's luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly's chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly's shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking

  9. Rab3-GEF Controls Active Zone Development at the Drosophila Neuromuscular Junction1,2,3

    PubMed Central

    Bae, Haneui; Chen, Shirui; Roche, John P.; Ai, Minrong; Wu, Chunlai

    2016-01-01

    Abstract Synaptic signaling involves the release of neurotransmitter from presynaptic active zones (AZs). Proteins that regulate vesicle exocytosis cluster at AZs, composing the cytomatrix at the active zone (CAZ). At the Drosophila neuromuscular junction (NMJ), the small GTPase Rab3 controls the distribution of CAZ proteins across release sites, thereby regulating the efficacy of individual AZs. Here we identify Rab3-GEF as a second protein that acts in conjunction with Rab3 to control AZ protein composition. At rab3-GEF mutant NMJs, Bruchpilot (Brp) and Ca2+ channels are enriched at a subset of AZs, leaving the remaining sites devoid of key CAZ components in a manner that is indistinguishable from rab3 mutant NMJs. As the Drosophila homologue of mammalian DENN/MADD and Caenorhabditis elegans AEX-3, Rab3-GEF is a guanine nucleotide exchange factor (GEF) for Rab3 that stimulates GDP to GTP exchange. Mechanistic studies reveal that although Rab3 and Rab3-GEF act within the same mechanism to control AZ development, Rab3-GEF is involved in multiple roles. We show that Rab3-GEF is required for transport of Rab3. However, the synaptic phenotype in the rab3-GEF mutant cannot be fully explained by defective transport and loss of GEF activity. A transgenically expressed GTP-locked variant of Rab3 accumulates at the NMJ at wild-type levels and fully rescues the rab3 mutant but is unable to rescue the rab3-GEF mutant. Our results suggest that although Rab3-GEF acts upstream of Rab3 to control Rab3 localization and likely GTP-binding, it also acts downstream to regulate CAZ development, potentially as a Rab3 effector at the synapse. PMID:27022630

  10. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability.

    PubMed

    Li, Huanxuan; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Chen, Xi; Guan, Zeyu

    2016-11-15

    In this work, a new effective and relatively stable heterogeneous catalyst of Metal-Organic Framework Co3(BTC)2·12H2O (Co-BTC) has been synthesized and tested to activate peroxymonosulfate (PMS) for removal of refractory dibutyl phthalate (DBP). Co-BTC(A) and Co-BTC(B) were synthesized by different methods, which resulted in different activity towards PMS. The results indicated that Co-BTC(A) showed better performance on DBP degradation. The highest degradation rate of 100% was obtained within 30min. The initial pH showed respective level on DBP degradation with a rank of 5.0>2.75>9.0>7.0>11.0 in PMS/Co-BTC(A) system. No remarkable reduction of DBP was observed in the catalytic activity of Co-BTC(A) at 2nd run as demonstrated by recycling. However, the DBP degradation efficiency decreased by 8.26%, 10.9% and 25.6% in the 3rd, 4th, and 5th runs, respectively. The loss of active catalytic sites of Co(II) from Co-BTC(A) is responsible for the activity decay. Sulfate radicals (SO4(-)) and hydroxyl radicals (OH) were found at pH 2.75. Here, we propose the possible mechanism for activation of PMS by Co-BTC(A), which is involved in homogeneous and heterogeneous reactions in the solutions and the surface of Co-BTC(A), respectively. PMID:27420387

  11. Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm.

    PubMed

    Breugelmans, Philip; Horemans, Benjamin; Hofkens, Johan; Springael, Dirk

    2010-10-01

    We sought to determine whether the pesticide-degrading performance of a multi-species bacterial biofilm is affected by co-occurrence of multiple nutrient sources. Thus, the 3-(3,4-dichlorophenyl)-1-methoxy-1-methyl urea (linuron)-degrading activity of a triple-species linuron-degrading consortium, cultivated in continuous flow biofilm systems, was monitored when exposed to mixed substrate feeds which contained, in addition to linuron, readily assimilated carbon (i.e. citrate and trypticase soy broth) and/or nitrogen (i.e. ammonium) sources. The addition of alternative carbon sources at different concentrations resulted in diminished linuron degradation efficiency. In addition, the efficiency of removal of the linuron metabolite 3,4-dichloroaniline was affected. These effects might be attributed to catabolic repression of the linuron metabolic pathway in the presence of alternative carbon substrates. Moreover, each nutrient condition resulted in a particular biofilm composition and a particular spatial and structural organization, which might also be related to the performance of the biofilm community. Results show that the activity of pesticide-degrading biofilms strongly depends on prevailing nutrient conditions and that the ideal biofilm configuration and activity, as observed under selective conditions, does not exist in real-life environmental conditions where mixtures of substrates are often present. PMID:20600856

  12. Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media

    SciTech Connect

    Gerlach, Robin

    2014-10-31

    Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamic porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and

  13. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation

    PubMed Central

    Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng

    2013-01-01

    Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol–furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8–9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance. PMID:24145581

  14. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    NASA Astrophysics Data System (ADS)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  15. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities.

    PubMed

    Li, Bing; Liu, Song; Xing, Ronge; Li, Kecheng; Li, Rongfeng; Qin, Yukun; Wang, Xueqin; Wei, Zhenhua; Li, Pengcheng

    2013-02-15

    The effects of degradation on molecular weights (Mws) of polysaccharides from Enteromorpha prolifera were investigated. Microwave-assistance could highly accelerate reaction rate. Six representative sulfated polysaccharides (Mw 446.5, 247.0, 76.1, 19.0, 5.0 and 3.1 KDa) were prepared by a microwave-assistance acid hydrolysis method. Chemical analysis and FT-IR spectrum showed only glycosidic linkages were cleft without breaking significant structural units. Antioxidant activities of representative polysaccharides revealed that all samples showed great inhibitory effects on superoxide radical at a low concentration compared to Vitamin C and samples with high Mws exhibited higher inhibitory effects. On the contrary, samples with low Mws possessed stronger inhibitory effects on hydroxyl radical, IC(50) of Mw 3.1 KDa was 0.39 mg/mL. The chelating effect of Mw 3.1 KDa was 77.3% at 5mg/mL, which was twice more than initial polysaccharide. The study indicated Mw was the most significant factor to influence antioxidant activities of polysaccharides from E. prolifera.

  16. Immobilization of degradative bacteria in polyurethane-based foams: embedding efficiency and effect on bacterial activity

    SciTech Connect

    Wilde, E.W.; Radway, J.C.; Hazen, T.C.; Hermann, P.

    1996-09-03

    The immobilization of TCE-degrading bacterium Burkholderia cepacia was evaluated using hydrophilic polyurethane foam. The influence of several foam formulation parameters upon cell retention was examined. Surfactant type was a major determinant of retention, with a lecithin- based compound retaining more cells than pluronic or silicone based surfactants. Excessive amounts of surfactant led to increased washout of bacteria. Increasing the biomass concentration from 4.8% to 10.5% caused fewer cells to be washed out. Embedding at reduced temperature did not significantly affect retention, while the use of a silane binding agent gave inconsistent results. The optimal formulation retained all but 0.2% of total embedded cells during passage of 2 liters of water through columns containing 2 g of foam. All foam formulations tested reduced the culturability of embedded cells by several orders of magnitude. However, O{sub 2} and CO{sub 2} evolution rates of embedded cells were never less than 50% of unembedded cells. Nutrient amendments stimulated an increase in cell volume and ribosomal activity as indicated by hybridization studies using fluorescently labeled ribosomal probes. these results indicated that, although immobilized cells were nonculturable, they were metabolically active and thus could be used for biodegradation of toxic compounds.

  17. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation

    NASA Astrophysics Data System (ADS)

    Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng

    2013-10-01

    Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol-furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8-9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance.

  18. Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids

    SciTech Connect

    Baker, C.A.; Claus, G.W.; Taylor, P.A.

    1983-01-01

    For the first time, an activated sludge reactor, established for the degradation of cutting fluids, was examined for predominant bacteria. In addition, both total and viable numbers of bacteria in the reactor were determined so that the percentage of each predominant type in the total reactor population could be determined. Three samples were studied, and a total of 15 genera were detected. In each sample, the genus Pseudomonas and the genus Microcyclus were present in high numbers. Three other genera, Acinetobacter, Alcaligenes, and Corynebacterium, were also found in every sample but in lower numbers. In one sample, numerous appendage bacteria were present, and one of these, the genus Seliberia, was the most predominant organism in that sample. However, in the other two samples no appendage bacteria were detected. Six genera were found in this reactor which have not been previously reported in either cutting fluids in use or in other activated sludge systems. These genera were Aeromonas, Hyphomonas, Listeria, Microcyclus, Moraxella, and Spirosoma. None of the predominant bacterial belonged to groups of strict pathogens. 22 references, 6 figures, 3 tables.

  19. JAB1/CSN5 inhibits the activity of Luman/CREB3 by promoting its degradation

    PubMed Central

    DenBoer, Lisa M.; Iyer, Aarti; McCluggage, Adam R.R.; Li, Yu; Martyn, Amanda C.; Lu, Ray

    2016-01-01

    Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound transcription factor that has been implicated in the ER stress response. In this study, we used the region of Luman containing the basic DNA-binding domain as bait in a yeast two-hybrid screen and identified the Jun activation domain-binding protein 1 (JAB1) or the COP9 signalosome complex unit 5 (CSN5) as an interacting protein. We confirmed their direct binding by glutathione S-transferase pull-down assays, and verified the existence of such interaction in the cellular environment by mammalian two-hybrid and co-immunoprecipitation assays. Deletion mapping studies revealed that the MPN domain in JAB1 was essential and sufficient for the binding. JAB1 also colocalized with Luman in transfected cells. More interestingly, the nuclear form of Luman was shown to promote the translocation of JAB1 into the nucleus. We found that overexpression of JAB1 shortened the half-life of Luman by 67%, and repressed its transactivation function on GAL4 and unfolded protein response element (UPRE)-containing promoters. We therefore propose that JAB1 is a novel binding partner of Luman, which negatively regulates the activity of Luman by promoting its degradation. PMID:23583719

  20. Activation of peroxymonosulfate by BiVO4 under visible light for degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Guo, Hongguang; Zhang, Yongli; Tang, Weihong; Cheng, Xin; Liu, Hongwei

    2016-06-01

    A photocatalytic system involving visible light and BiVO4 (Vis/BiVO4) in the presence of peroxymonosulfate (PMS) has been developed to oxidize the target pollutant Rhodamine B (RhB) in aqueous solution. It was found that PMS could enhance the photocatalytic efficiency of BiVO4 and could be activated to promote the removal of RhB with sulfate radicals, hydroxyl radicals and superoxide radicals. Critical impacting factors in the Vis/BiVO4/PMS system were investigated concerning the influence of PMS concentration, solution pH, catalyst dosage, initial concentration of RhB and the presence of anions (Cl- and CO32-). In addition, by using isopropanol, tert-butanol, 1,4-benzoquinone and ethylenediamine tetraacetic acid disodium salt as probe compounds, the main active species were demonstrated including radSO4-, radOH and radO2- in the system, and a detail photocatalytic mechanism for the Vis/BiVO4/PMS system was proposed. Finally, up to 10 intermediate products of RhB were identified by GC/MS, included benzenoid organic compounds, organic acids and three nitrogenous organic compounds. This study provides a feasible way to degrade organic pollutants in wastewater using BiVO4 with PMS under visible light.

  1. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  2. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 8 Table 8 to Part 679—Harvest Zone Codes for Use With Vessel... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Harvest Zone Codes for Use With...

  3. Activities of adenine nucleotide and nucleoside degradation enzymes in platelets of rats infected by Trypanosoma evansi.

    PubMed

    Oliveira, Camila B; Da Silva, Aleksandro S; Vargas, Lara B; Bitencourt, Paula E R; Souza, Viviane C G; Costa, Marcio M; Leal, Claudio A M; Moretto, Maria B; Leal, Daniela B R; Lopes, Sonia T A; Monteiro, Silvia G

    2011-05-31

    Nucleotide and nucleoside-degrading enzymes, such as nucleoside triphosphate diphosphohydrose (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are present in the surface membranes of platelets, involved in clotting disturbances of Trypanosoma evansi-infected animals. Thus, this study was aimed at evaluating the activities of these enzymes in platelets of rats experimentally infected with T. evansi. Animals were divided into four groups, according to the level of parasitemia. Blood samples were collected on days 3 (group A: at the beginning of parasitemia), 5 (group B: high parasitemia) and 15 (group C: chronic infection), post-infection. Group D (control group) was composed of non-infected animals for platelet count, separation and enzymatic assays. Animals from groups A and B showed marked thrombocytopenia, but platelet count was not affected in chronically infected rats. NTPDase, 5'-nucleotidase and ADA activities decreased (p<0.05) in platelets from rats of groups A and B, when compared to the control group. In group C, only NTPDase and 5'-nucleoside activities decreased (p<0.001). The correlations between platelet count and nucleotide/nucleoside hydrolysis were positive and statistically significant (p<0.05) in groups A and B. Platelet aggregation was decreased in all infected groups, in comparison to the control group (p<0.05). It is concluded that the alterations observed in the activities of NTPDase, 5'-nucleotidase and ADA in platelets of T. evansi-infected animals might be related to thrombocytopenia, that by reducing the number of platelets, there was less release of ATP and ADP. Another possibility being suggested is that changes have occurred in the membrane of these cells, decreasing the expression of these enzymes in the cell membrane.

  4. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression.

    PubMed

    Mochida, Sumiko; Hida, Yamato; Tanifuji, Shota; Hagiwara, Akari; Hamada, Shun; Abe, Manabu; Ma, Huan; Yasumura, Misato; Kitajima, Isao; Sakimura, Kenji; Ohtsuka, Toshihisa

    2016-09-13

    Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation. PMID:27626661

  5. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression.

    PubMed

    Mochida, Sumiko; Hida, Yamato; Tanifuji, Shota; Hagiwara, Akari; Hamada, Shun; Abe, Manabu; Ma, Huan; Yasumura, Misato; Kitajima, Isao; Sakimura, Kenji; Ohtsuka, Toshihisa

    2016-09-13

    Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation.

  6. Diabatic heating profiles over the continental convergence zone during the monsoon active spells

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Rajib; Sur, Sharmila; Joseph, Susmitha; Sahai, A. K.

    2013-07-01

    The present paper aims to bring out the robust common aspects of spatio-temporal evolution of diabatic heating during the monsoon intraseasonal active phases over the continental tropical convergence zone (CTCZ). The robustness of spatio-temporal features is determined by comparing the two state-of-the art reanalyses: NCEP Climate Forecast System reanalysis and Modern ERA Retrospective Analysis. The inter-comparison is based on a study period of 26 years (1984-2009). The study confirms the development of deep heating over the CTCZ region during the active phase and is consistent between the two datasets. However, the detailed temporal evolution of the vertical structure (e.g., vertical tilts) of heating differs at times. The most important common feature from both the datasets is the significant vertical redistribution of heating with the development of shallow (low level) heating and circulation over the CTCZ region 3-7 days after the peak active phase. The shallow circulation is found to be associated with increased vertical shear and relative vorticity over certain regions in the subcontinent. This increased vertical shear and relative vorticity in the lower levels could be crucial in the sustenance of rainfall after the peak active phase. Model experiments with linear dynamics affirm the role of shallow convection in increasing the lower level circulation as observed.

  7. Fast Activity Evoked by Intracranial 50 Hz Electrical Stimulation as a Marker of the Epileptogenic Zone.

    PubMed

    Bellistri, Elisa; Sartori, Ivana; Pelliccia, Veronica; Francione, Stefano; Cardinale, Francesco; de Curtis, Marco; Gnatkovsky, Vadym

    2015-08-01

    Epilepsy is a disease characterized by aberrant connections between brain areas. The altered activity patterns generated by epileptic networks can be analyzed with intracerebral electrodes during pre-surgical stereo-electroencephalographic (EEG) monitoring in patients candidate to epilepsy surgery. The responses to high frequency stimulation (HFS) at 50 Hz performed for diagnostic purposes during SEEG were analyzed with a new algorithm, to evaluate signal parameters that are masked to visual inspection and to define the boundaries of the epileptogenic network. The analysis was focused on 60-80 Hz activity that represented the largest frequency component evoked by HFS. The distribution of HFS-evoked fast activity across all (up to 162) recording contacts allowed to define different clusters of contacts that retrospectively correlated to the epileptogenic zone identified by the clinicians on the basis of traditional visual analysis. The study demonstrates that computer-assisted analysis of HFS-evoked activities may contribute to the definition of the epileptogenic network on intracranial recordings performed in a pre-surgical setting.

  8. The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses

    PubMed Central

    Scimemi, Annalisa; Diamond, Jeffrey S.

    2013-01-01

    Fast synaptic transmission requires tight co-localization of Ca2+ channels and neurotransmitter vesicles. It is generally thought that Ca2+ channels are expressed abundantly in presynaptic active zones, that vesicles within the same active zone have similar release properties and that significant vesicle depletion only occurs at synapses with high release probability. Here we show, at excitatory CA3→CA1 synapses in mouse hippocampus, that release from individual vesicles is generally triggered by only one Ca2+ channel and that only few functional Ca2+ channels may be spread in the active zone at variable distances to neighboring neurotransmitter vesicles. Using morphologically realistic Monte Carlo simulations, we show that this arrangement leads to a widely heterogeneous distribution of release probability across the vesicles docked at the active zone, and that depletion of the vesicles closest to Ca2+ channels can account for the Ca2+-dependence of short term plasticity at these synapses. These findings challenge the prevailing view that efficient synaptic transmission requires numerous presynaptic Ca2+ channels in the active zone, and indicate that the relative arrangement of Ca2+ channels and vesicles contributes to the heterogeneity of release probability within and across synapses and to vesicle depletion at small central synapses with low average release probability. PMID:23238730

  9. Assessment of the biological activity of soils in the subtropical zone of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Babaev, M. P.; Orujova, N. I.

    2009-10-01

    The enzymatic activity; the microbial population; and the intensities of the nitrification, ammonification, CO2emission, and cellulose decomposition were studied in gray-brown, meadow-sierozemic, meadow-forest alluvial, and yellow (zheltozem) gley soils in the subtropical zone of Azerbaijan under natural vegetation, crop rotation systems with vegetables, and permanent vegetable crops. On this basis, the biological diagnostics of these soils were suggested and the soil ecological health was evaluated. It was shown that properly chosen crop rotation systems on irrigated lands make it possible to preserve the fertility of the meadow-forest alluvial and zheltozem-gley soils and to improve the fertility of the gray-brown and meadow-sierozemic soils.

  10. Prospecting with ground radar in an active creep-fault zone

    NASA Astrophysics Data System (ADS)

    Ibanez Garduno, Dolores; Lorenzo Cimadevila, Henrique; Alvarez Bejar, Roman; Garduno Monroy, Victor H.

    2000-04-01

    In different places of Morelia, Michoacan, Mexico, there are evidences of four active geologic creep-faults system in. These events have damages (cracking and landslides) in the civil building (Garduno M., et. al, 1998; Garduno M., et. al, 1999; Lermo S., et. al., 1999). In order to find these structures in the first 10 m of depth, region where we have the influence in civil building, we carried out a geophysical study with georadar technique. We made 15 sounding in the fault zone to join the results to preliminar geologic studies in order to improve the security rules in the high risk places. In this work we show the results of three sounds with georadar, as well as the final Bidimensional Model effected with the technique of tracing of ray.

  11. Seismic evidence for active underplating below the megathrust earthquake zone in Japan.

    PubMed

    Kimura, Hisanori; Takeda, Tetsuya; Obara, Kazushige; Kasahara, Keiji

    2010-07-01

    Determining the structure of subduction zones is important for understanding mechanisms for the generation of interplate phenomena such as megathrust earthquakes. The peeling off of the uppermost part of a subducting slab and accretion to the bottom of an overlying plate (underplating) at deep regions has been inferred from exhumed metamorphic rocks and deep seismic imaging, but direct seismic evidence of this process is lacking. By comparing seismic reflection profiles with microearthquake distributions in central Japan, we show that repeating microearthquakes occur along the bottom interface of the layer peeling off from the subducting Philippine Sea plate. This region coincides with the location of slow-slip events that may serve as signals for monitoring active underplating.

  12. Strontium-90 and caesium-137 activity concentrations in bats in the Chernobyl exclusion zone.

    PubMed

    Gashchak, Sergey; Beresford, Nicholas Anthony; Maksimenko, Andrey; Vlaschenko, Anton S

    2010-11-01

    Bats are a protected species and as such may be an object of protection in radiological assessments of the environment. However, there have previously been only few radioecological studies of species of bats. In this paper, results for >140 measurements of (90)Sr and (137)Cs in 10 species of bats collected within the Chernobyl zone are presented. There was some indication of a decreasing transfer of (90)Sr with increasing deposition, although this was inconsistent across species and explained little of the observed variability. There was no difference between male and female bats in the transfer (expressed as the ratio of whole-body activity concentrations to those in soil) of either radionuclide. There was considerable variability in transfer across all species groups. At two sites where there were sufficient data, Eptesicus serotinus was found to have higher transfer than other species.

  13. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release.

    PubMed

    Liu, Karen S Y; Siebert, Matthias; Mertel, Sara; Knoche, Elena; Wegener, Stephanie; Wichmann, Carolin; Matkovic, Tanja; Muhammad, Karzan; Depner, Harald; Mettke, Christoph; Bückers, Johanna; Hell, Stefan W; Müller, Martin; Davis, Graeme W; Schmitz, Dietmar; Sigrist, Stephan J

    2011-12-16

    The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery. PMID:22174254

  14. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states

    NASA Astrophysics Data System (ADS)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.

    2014-08-01

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  15. Active zone protein CAST is a component of conventional and ribbon synapses in mouse retina.

    PubMed

    Deguchi-Tawarada, Maki; Inoue, Eiji; Takao-Rikitsu, Etsuko; Inoue, Marie; Kitajima, Isao; Ohtsuka, Toshihisa; Takai, Yoshimi

    2006-04-01

    CAST is a novel cytomatrix at the active zone (CAZ)-associated protein. In conventional brain synapses, CAST forms a large molecular complex with other CAZ proteins, including RIM, Munc13-1, Bassoon, and Piccolo. Here we investigated the distribution of CAST and its structurally related protein, ELKS, in mouse retina. Immunofluorescence analyses revealed that CAST and ELKS showed punctate signals in the outer and inner plexiform layers of the retina that were well-colocalized with those of Bassoon and RIM. Both proteins were found presynaptically at glutamatergic ribbon synapses, and at conventional GABAergic and glycinergic synapses. Moreover, immunoelectron microscopy revealed that CAST, like Bassoon and RIM, localized at the base of synaptic ribbons, whereas ELKS localized around the ribbons. Both proteins also localized in the vicinity of the presynaptic plasma membrane of conventional synapses in the retina. These results indicated that CAST and ELKS were novel components of the presynaptic apparatus of mouse retina.

  16. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles.

    PubMed

    Shapira, Mika; Zhai, R Grace; Dresbach, Thomas; Bresler, Tal; Torres, Viviana I; Gundelfinger, Eckart D; Ziv, Noam E; Garner, Craig C

    2003-04-24

    Recent studies indicate that active zones (AZs)-sites of neurotransmitter release-may be assembled from preassembled AZ precursor vesicles inserted into the presynaptic plasma membrane. Here we report that one putative AZ precursor vesicle of CNS synapses-the Piccolo-Bassoon transport vesicle (PTV)-carries a comprehensive set of AZ proteins genetically and functionally coupled to synaptic vesicle exocytosis. Time-lapse imaging reveals that PTVs are highly mobile, consistent with a role in intracellular transport. Quantitative analysis reveals that the Bassoon, Piccolo, and RIM content of individual PTVs is, on average, half of that of individual presynaptic boutons and shows that the synaptic content of these molecules can be quantitatively accounted for by incorporation of integer numbers (typically two to three) of PTVs into presynaptic membranes. These findings suggest that AZs are assembled from unitary amounts of AZ material carried on PTVs.

  17. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina.

    PubMed

    Dick, Oliver; tom Dieck, Susanne; Altrock, Wilko Detlef; Ammermüller, Josef; Weiler, Reto; Garner, Craig Curtis; Gundelfinger, Eckart Dieter; Brandstätter, Johann Helmut

    2003-03-01

    The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.

  18. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states.

    PubMed

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; DiAntonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J

    2014-08-18

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  19. Determination of dissociation constants of pharmacologically active xanthones by capillary zone electrophoresis with diode array detection.

    PubMed

    Wu, Xiaomu; Gong, Suxuan; Bo, Tao; Liao, Yiping; Liu, Huwei

    2004-12-24

    In this article, the dissociation constants (pKa) of 10 pharmacologically active xanthones isolated from herbal medicine Securidaca inappendiculata were determined by capillary zone electrophoresis with diode array detection. The pKa values determined by the method based on the electrophoretic mobilities (calculated from migration times) have been proved by the method based on UV absorbance calculated from the online spectra corresponding peaks. No conspicuous difference was observed between the two methods with acceptable reproducibility. Two pKa values (pKa1 and pKa2) were found for four xanthones while generally the 10 compounds possess the pKa values ranging from 6.4 to 9.2. PMID:15641365

  20. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states

    PubMed Central

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; DiAntonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.

    2014-01-01

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure. PMID:25130366

  1. TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions.

    PubMed

    Kundu, Soumen; Chanda, Arani; Khetan, Sushil K; Ryabov, Alexander D; Collins, Terrence J

    2013-05-21

    TAML activators are well-known for their ability to activate hydrogen peroxide to oxidize persistent pollutants in water. The trinitroaromatic explosives, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB), are often encountered together as persistent, toxic pollutants. Here we show that an aggressive TAML activator with peroxides boosts the effectiveness of the known surfactant/base promoted breakdown of TNT and transforms the surfactant induced nondestructive binding of base to TNB into an extensive multistep degradation process. Treatment of basic cationic surfactant solutions of either TNT or TNB with TAML/peroxide (hydrogen peroxide and tert-butylhydroperoxide, TBHP) gave complete pollutant removal for both in <1 h with >75% of the nitrogen and ≥20% of the carbon converted to nitrite/nitrate and formate, respectively. For TNT, the TAML advantage is to advance the process toward mineralization. Basic surfactant solutions of TNB gave the colored solutions typical of known Meisenheimer complexes which did not progress to degradation products over many hours. However with added TAML activator, the color was bleached quickly and the TNB starting compound was degraded extensively toward minerals within an hour. A slower surfactant-free TAML activator/peroxide process also degrades TNT/TNB effectively. Thus, TAML/peroxide amplification effectively advances TNT and TNB water treatment giving reason to explore the environmental applicability of the approach.

  2. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.

    PubMed

    Ji, Yuefei; Ferronato, Corinne; Salvador, Arnaud; Yang, Xi; Chovelon, Jean-Marc

    2014-02-15

    The wide occurrence of antibiotics in groundwater raised great scientific interest as well as public awareness in recent years due to their potential ability to spread antibiotic resistant gene and pose risk to humans. The present study investigated the ferrous ion (Fe(II)) activated decomposition of persulfate (S2O8(2-)), as a potential in situ chemical oxidation (ISCO) approach, for remediation of groundwater contaminated by antibiotics. Fe(II)-persulfate mediated ciprofloxacin (CIP) degradation was found to be more efficient than sulfamethoxazole (SMX) at near neutral pH (pH6.0), probably due to the higher electric density in CIP molecule and its ability to form complex with Fe(II) as a ligand. Hydroxyl (HO) and sulfate radical (SO4(-)) were determined to be responsible for the degradation of CIP and SMX in Fe(II)-persulfate system by molecular probes. No enhancement in the degradation of CIP was observed when citrate (CA), ethylenediaminetetraacetate (EDTA) and (S,S)-ethylenediamine-N,N'-disuccinate (EDDS) were used as Fe(II) chelating agents in Fe(II)-persulfate system. For SMX, CA and EDTA accelerated the degradation by Fe(II)-persulfate. Degradation of antibiotics in river water matrix was nearly the same as that in Milli-Q water, implying the possibility of using Fe(II)-persulfate for antibiotics depletion under environmentally relevant condition. A comparison of the degradation efficiency of SMX with other sulfonamides and sulfanilic acid indicated that the heterocyclic ring has a large impact on the degradation of sulfonamides. Transformation products of CIP and SMX by Fe(II)-persulfate were analyzed by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) technique. Based on the intermediate products, Fe(II)-persulfate mediated CIP degradation pathways were tentatively proposed.

  3. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    PubMed

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-04-01

    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  4. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  5. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone

    PubMed Central

    Mueller, Benjamin F.; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N.; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-01-01

    The hallmarks of Alzheimer’s disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  6. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  7. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone

  8. 78 FR 45181 - Foreign-Trade Zone 230-Piedmont Triad Area, North Carolina, Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... inviting public comment (78 FR 23220, 4-18-2013). The FTZ Board has determined that no further review of... Production Activity, Oracle Flexible Packaging, Inc., (Foil-Backed Paperboard), Winston-Salem, North Carolina... proposed production activity to the Foreign-Trade Zones (FTZ) Board on behalf of Oracle Flexible...

  9. Thermal degradation of cereal straws in air and nitrogen

    SciTech Connect

    Ghaly, A.E.; Ergundenler, A.

    1991-12-31

    The termogravimetric behavior of four cereal straws (wheat, barley, oats, and rye) was examined at three heating rates (10, 20, and 50{degrees}C/min) in air and nitrogen atmospheres. The thermal degradation rate in active and passive pyrolysis zones, the initial degradation temperature, and the residual weight at 600{degrees}C were determined for these straws in both atmospheres. Increasing the heating rate increased the thermal degradation rate, and decreased both the initial degradation temperature and the residual weight at 600{degrees}C. The higher the cellulosic content of the straw, the higher the thermal degradation rate and the initial degradation temperature. Also, higher ash content in the straw resulted in higher residual weight at 600{degrees}C. The thermal degradation rate in active pyrolysis zone was lower in air atmosphere than in nitrogen atmosphere, whereas the thermal degradation rate in passive pyrolysis zone and the residual weight at 600{degrees}C were higher in nitrogen atmosphere than in air atmosphere.

  10. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy.

    PubMed

    Zhao, Jinghui; Zhai, Bo; Gygi, Steven P; Goldberg, Alfred Lewis

    2015-12-29

    Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440-443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth. PMID:26669439

  11. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  12. Significant foreshock activities of M>7.5 earthquakes in the Kuril subduction zone

    NASA Astrophysics Data System (ADS)

    Harada, T.; Yokoi, S.; Satake, K.

    2014-12-01

    In the Kuril subduction zone, some M>7.5 earthquakes are accompanied by significant foreshock activities, providing a good opportunity to understand the characteristics of foreshocks for large interplate events such as occur along the Japan Trench and Nankai Trough etc. Some preliminary results from our examination of the foreshock sequences are as follows. Relocated foreshocks tend to migrate with time toward the trench axis. Foreshock distributions of the interplate earthquakes do not overlap with the large coseismic slips (asperities) of the mainshocks. Foreshocks of the 2007 northern Kuril outer-rise event, however, were distributed on the entire rupture area. Foreshock sequences seem to be limited in the regions where the background seismicity rates are relatively high. The foreshock activities were found in the examination of the space-time pattern of M>7 events along the northern Japan to Kuril trench since 1913 (e.g. Harada, Satake, and Ishibashi, 2011:AGU, 2012:AOGS). The large earthquakes preceded by active foreshock sequences are: the 2006 (M8.3), 2007 (M8.1) offshore Simushir earthquakes, the 1963 (M8.5), 1991 (M7.6), 1995 (M7.9) offshore Urup events, the 1978 (M7.8) offshore Iturup events, the 1969 (M8.2) offshore Shikotan event. In contrast, M>7.5 interplate earthquakes offshore Hokkaido (1952 (M8.1), 1973 (M7.8), 2003 (M8.1)) and intraslab earthquakes (1958 (M8.3), 1978 (M7.8), 1993 (M7.6), 1994 (M8.3)) had few or no foreshocks. In the examination of the active foreshocks, we relocated foreshocks by the Modified JHD method (Hurukawa, 1995), compared relocated foreshock areas with mainshock coseismic slip distributions estimated by the teleseismic body-wave inversion (Kikuchi and Kanamori, 2003), and examined the relation between active foreshock sequences and regional background seismicity. This study was supported by the MEXT's "New disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zones".

  13. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  14. Removal of steroid estrogens from waste activated sludge using Fenton oxidation: influencing factors and degradation intermediates.

    PubMed

    Li, Yongmei; Zhang, Ai

    2014-06-01

    The presence of endocrine disrupting compounds (EDCs) in waste activated sludge (WAS) is raising concerns about their influence on animals and the overall food cycle. Traditional sludge stabilization processes cannot remove EDCs effectively. The main objective of this work was to study the removal of four estrogens (estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2)) in waste activated sludge treated with Fenton oxidation. The effects of H₂O₂ dosage, initial pH, reaction time, and Fe(II) to H₂O₂ molar ratio were investigated. Base on both the removal of estrogens and the solubilization of WAS, the proper reaction conditions were recommended as follows: H₂O₂ dosage=15.62 mmol g(-1), initial pH=3, reaction time=60 min, Fe(II) to H₂O₂ molar ratio=0.167. Under these conditions, the removal efficiencies of E1, E2, EE2, and E3 were 70%, 90%, 84% and 98%, respectively; compared with non-Fenton treatment, a 24-fold increase in STOC was achieved, and the extent of solubilization of TSS and VSS was close to 13 and 20%, respectively. The degradation intermediates were detected using GC/MS. Results showed that the phenol structures of targets were mostly oxidized to cyclohexenone moieties and quinone-like structures, which indicated that estrogenic activity was weakened. Pregn-4-ene-3,20-dione and pregn-4-en-20-yn-3-one were observed for the first time. Fenton oxidation was shown to offer a promising alternative method of removing EDCs from sludge in pretreatment applications.

  15. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    PubMed Central

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J.

    2010-01-01

    Background Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. Methodology/Principal Findings We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are ∼106 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's “closed,” inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes. PMID:20498699

  16. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    SciTech Connect

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J.

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  17. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    PubMed

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value. PMID:27295438

  18. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    PubMed

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  19. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle.

    PubMed

    Watt, Matthew J; Holmes, Anna G; Steinberg, Gregory R; Mesa, Jose L; Kemp, Bruce E; Febbraio, Mark A

    2004-07-01

    Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased (P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 +/- 0.07; NA, 0.10 +/- 0.01 mM). The decreased plasma FFA during NA was associated with decreased (P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 +/- 2.5, NA: 9.1 +/- 3.0 nmol.min(-1).mg protein(-1)). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 +/- 0.8; NA, 6.3 +/- 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 +/- 0.07; 180 min: 0.17 +/- 0.04 nmol.min(-1).mg protein(-1)). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)alpha1 activity was not affected by exercise or NA, whereas AMPKalpha2 activity was increased (P < 0.05) from rest during exercise in NA and was greater (P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of

  20. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    , which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  1. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis

    PubMed Central

    Kohansal-Nodehi, Mahdokht; Chua, John JE; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.14530.001 PMID:27115346

  2. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate.

    PubMed

    Ding, Yaobin; Tang, Hebin; Zhang, Shenghua; Wang, Songbo; Tang, Heqing

    2016-11-01

    Microscaled CuFeO2 particles (micro-CuFeO2) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO2 was of pure phase and a rhombohedral structure with size in the range of 2.8±0.6μm. The micro-CuFeO2 efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO4-), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO2 was observed to be 6.9 and 25.3 times that of micro-Cu2O and micro-Fe2O3, respectively. The enhanced activity of micro-CuFeO2 for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO2 can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu2O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO2 was effective in the studied actual aqueous environmental systems.

  3. Probing Microbial Activity in a Perched Water Body Located in a Deep Vadose Zone

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Taylor, J. L.; Henriksen, J. R.; Delwiche, M.; Gebrehiwet, T.; Hubbard, S. S.; Spycher, N.; Weathers, T. S.; Ginn, T. R.; Pfiffner, S. M.; Smith, R. W.

    2011-12-01

    Waste releases to the vadose zone are a legacy of past activities at a number of Department of Energy (DOE) facilities. At the Idaho National Laboratory (INL), 90Sr has been detected in perched water bodies underlying the Idaho Nuclear Technology and Engineering Center (INTEC) facility. Microbially induced calcite precipitation (MICP) using urea-hydrolyzing microbes is one proposed approach for immobilization of 90Sr in the subsurface. The sequestration mechanism is co-precipitation in calcite, promoted by the production of carbonate alkalinity from ureolysis. In order to assess the potential efficacy of MICP at INTEC a field study was conducted at the INL Vadose Zone Research Park (VZRP). The VZRP is located approximately 3 km from INTEC and shares many of the same hydrologic and lithologic features but in a non-contaminated setting. We conducted experiments over two field seasons in a perched water body located approximately 15 meters below land surface, using a 5-spot wellfield design. During the first season amendments (molasses and urea) were injected into the central well and water was extracted from two wells on either side, located along a diagonal. Water samples were characterized for microbial abundance, ureolytic activity and ureC gene numbers, along with solution composition. Before, during and after the injections cross-borehole geophysical imaging was performed, using various combinations of the available wells. During the second field season in situ static experiments were conducted to specifically characterize attached and unattached microbial communities, using surrogate substrates colonized during a 12 week incubation. Based on the field data a first order in situ urea hydrolysis rate constant of 0.034 d-1 was estimated. This was more than an order of magnitude higher than rate constants estimated above-ground using water samples, suggesting that attached microorganisms were responsible for >90% of the observed urea hydrolysis activity. The

  4. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates.

    PubMed Central

    Bennett, M R; Gibson, W G; Robinson, J

    1997-01-01

    A quantum of transmitter may be released upon the arrival of a nerve impulse if the influx of calcium ions through a nearby voltage-dependent calcium channel is sufficient to activate the vesicle-associated calcium sensor protein that triggers exocytosis. A synaptic vesicle, together with its calcium sensor protein, is often found complexed with the calcium channel in active zones to form what will be called a "synaptosecretosome." In the present work, a stochastic analysis is given of the conditions under which a quantum is released from the synaptosecretosome by a nerve impulse. The theoretical treatment considers the rise of calcium at the synaptosecretosome after the stochastic opening of a calcium channel at some time during the impulse, followed by the stochastic binding of calcium to the vesicle-associated protein and the probability of this leading to exocytosis. This allows determination of the probabilities that an impulse will release 0, 1, 2,... quanta from an active zone, whether this is in a varicosity, a bouton, or a motor endplate. A number of experimental observations of the release of transmitter at the active zones of sympathetic varicosities and boutons as well as somatic motor endplates are described by this analysis. These include the likelihood of the secretion of only one quantum at an active zone of endplates and of more than one quantum at an active zone of a sympathetic varicosity. The fourth-power relationship between the probability of transmitter release at the active zones of sympathetic varicosities and motor endplates and the external calcium concentration is also explained by this approach. So, too, is the fact that the time course of the increased rate of quantal secretion from a somatic active zone after an impulse is invariant with changes in the amount of calcium that enters through its calcium channel, whether due to changes consequent on the actions of autoreceptor agents such as adenosine or to facilitation. The increased

  5. Degradative actions of microbial xylanolytic activities on hemicelluloses from rhizome of Arundo donax

    PubMed Central

    2014-01-01

    Polysaccharidases from extremophiles are remarkable for specific action, resistance to different reaction conditions and other biotechnologically interesting features. In this article the action of crude extracts of thermophilic microorganisms (Thermotoga neapolitana, Geobacillus thermantarcticus and Thermoanaerobacterium thermostercoris) is studied using as substrate hemicellulose from one of the most interesting biomass crops, the giant reed (Arundo donax L.). This biomass can be cultivated without competition and a huge amount of rhizomes remains in the soil at the end of cropping cycle (10–15 years) representing a further source of useful molecules. Optimization of the procedure for preparation of the hemicellulose fraction from rhizomes of Arundo donax, is studied. Polysaccharidases from crude extracts of thermophilic microorganisms revealed to be suitable for total degradative action and/or production of small useful oligosaccharides from hemicelluloses from A. donax. Xylobiose and interesting tetra- and pentasaccharide are obtained by enzymatic action in different conditions. Convenient amount of raw material was processed per mg of crude enzymes. Raw hemicelluloses and pretreated material show antioxidant activity unlike isolated tetra- and pentasaccharide. The body of results suggest that rhizomes represent a useful raw material for the production of valuable industrial products, thus allowing to increase the economic efficiency of A. donax cultivation. PMID:25024928

  6. Unique coupling of mono- and dioxygenase chemistries in a single active site promotes heme degradation

    PubMed Central

    Matsui, Toshitaka; Nambu, Shusuke; Goulding, Celia W.; Takahashi, Satoshi; Fujii, Hiroshi; Ikeda-Saito, Masao

    2016-01-01

    Bacterial pathogens must acquire host iron for survival and colonization. Because free iron is restricted in the host, numerous pathogens have evolved to overcome this limitation by using a family of monooxygenases that mediate the oxidative cleavage of heme into biliverdin, carbon monoxide, and iron. However, the etiological agent of tuberculosis, Mycobacterium tuberculosis, accomplishes this task without generating carbon monoxide, which potentially induces its latent state. Here we show that this unusual heme degradation reaction proceeds through sequential mono- and dioxygenation events within the single active center of MhuD, a mechanism unparalleled in enzyme catalysis. A key intermediate of the MhuD reaction is found to be meso-hydroxyheme, which reacts with O2 at an unusual position to completely suppress its monooxygenation but to allow ring cleavage through dioxygenation. This mechanistic change, possibly due to heavy steric deformation of hydroxyheme, rationally explains the unique heme catabolites of MhuD. Coexistence of mechanistically distinct functions is a previously unidentified strategy to expand the physiological outcome of enzymes, and may be applied to engineer unique biocatalysts. PMID:27006503

  7. Degradation of extracellular chondroitin sulfate delays recovery of network activity after perturbation

    PubMed Central

    Hudson, Amber E.; Gollnick, Clare; Gourdine, Jean-Philippe

    2015-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are widely studied in vertebrate systems and are known to play a key role in development, plasticity, and regulation of cortical circuitry. The mechanistic details of this role are still elusive, but increasingly central to the investigation is the homeostatic balance between network excitation and inhibition. Studying a simpler neuronal circuit may prove advantageous for discovering the mechanistic details of the cellular effects of CSPGs. In this study we used a well-established model of homeostatic change after injury in the crab Cancer borealis to show first evidence that CSPGs are necessary for network activity homeostasis. We degraded CSPGs in the pyloric circuit of the stomatogastric ganglion with the enzyme chondroitinase ABC (chABC) and found that removal of CSPGs does not influence the ongoing rhythm of the pyloric circuit but does limit its capacity for recovery after a networkwide perturbation. Without CSPGs, the postperturbation rhythm is slower than in controls and rhythm recovery is delayed. In addition to providing a new model system for the study of CSPGs, this study suggests a wider role for CSPGs, and perhaps the extracellular matrix in general, beyond simply plastic reorganization (as observed in mammals) and into a foundational regulatory role of neural circuitry. PMID:26108956

  8. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    PubMed

    Munir, Riffat I; Schellenberg, John; Henrissat, Bernard; Verbeke, Tobin J; Sparling, Richard; Levin, David B

    2014-01-01

    Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  9. Degradation of extracellular chondroitin sulfate delays recovery of network activity after perturbation.

    PubMed

    Hudson, Amber E; Gollnick, Clare; Gourdine, Jean-Philippe; Prinz, Astrid A

    2015-08-01

    Chondroitin sulfate proteoglycans (CSPGs) are widely studied in vertebrate systems and are known to play a key role in development, plasticity, and regulation of cortical circuitry. The mechanistic details of this role are still elusive, but increasingly central to the investigation is the homeostatic balance between network excitation and inhibition. Studying a simpler neuronal circuit may prove advantageous for discovering the mechanistic details of the cellular effects of CSPGs. In this study we used a well-established model of homeostatic change after injury in the crab Cancer borealis to show first evidence that CSPGs are necessary for network activity homeostasis. We degraded CSPGs in the pyloric circuit of the stomatogastric ganglion with the enzyme chondroitinase ABC (chABC) and found that removal of CSPGs does not influence the ongoing rhythm of the pyloric circuit but does limit its capacity for recovery after a networkwide perturbation. Without CSPGs, the postperturbation rhythm is slower than in controls and rhythm recovery is delayed. In addition to providing a new model system for the study of CSPGs, this study suggests a wider role for CSPGs, and perhaps the extracellular matrix in general, beyond simply plastic reorganization (as observed in mammals) and into a foundational regulatory role of neural circuitry. PMID:26108956

  10. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    PubMed Central

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  11. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal.

    PubMed

    Stevens, Jan F; Reed, Ralph L; Alber, Susan; Pritchett, Larry; Machado, Stephen

    2009-03-11

    Meadowfoam ( Limnanthes alba ) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate glucolimnanthin. This study investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome ( Bromus tectorum ) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO(4) (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile, and the thioamide, as a total, correlated with an increase of herbicidal potency of the seed meal (r(2) = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  12. Climatological conditions of enhanced Arctic storm activity in relation to permafrost degradation in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Nakamura, T.; PARK, H.; Fedorov, A. N.

    2015-12-01

    The last decade (2000-2010) was the warmest on record at high northern latitudes. Surface air temperature anomalies and associated sea level pressure fields in Arctic exhibited different spatial patterns at the beginning of the 21st century than they did throughout the majority of the 20th century. In eastern Siberia, the abrupt soil warming within upper permafrost layer and deepening active layer thickness has observed in response to increasing in soil moisture under wet hydro-climatic conditions during the warming period of 2000s. According to climatological analyses, the large positive anomalies of both rainfall and snow accumulation in eastern Siberia are caused by strengthened cyclonic pattern in these years which induce more water vapor advection. These anomalies are more enhanced than those before 1990s and continuously appear after 2004. Long-term simulation of permafrost temperature and active layer thickness using a sophisticated land surface model (CHANGE) was carried out. The correlations between precipitation in late summer and soil temperature showed that the most regions exhibited either negative or not significant correlations between precipitation and soil temperature during the past period (1961-1980), whereas positive correlations were observed during the recent period (1991-2009). A region of significantly positive correlation was observed along the Siberian coast and in eastern Siberia and could have corresponded with areas of increased storm activity. The soil warming is thus due to not only increasing in snow accumulation which is well-known relationship by previous studies but also increasing in rainfall in late summer which furthermore accelerates the warming due to changes in hydro-thermal properties within the active layer. The precipitation increase in the last decade led to deepening active layer accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that

  13. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  14. A new approach towards modelling of the carbon degradation cycle at two-stage activated sludge plants.

    PubMed

    Winkler, S; Müller-Rechberger, H; Nowak, O; Svardal, K; Wandl, G

    2001-01-01

    A pilot plant has been operated in order to investigate the performance and operating characteristics of the plant concept developed for the extension of the main Vienna STP. Due to the different operational modes included in the plant concept, modelling of the carbon degradation becomes of crucial importance. A new activated sludge model is introduced which combines parts of the carbon degradation model concepts as they have been released in the ASM1-model and the ASM3-model, respectively. A method is presented which utilises results from mass balance calculations and sludge stabilisation experiments to reduce the uncertainty in the determination of the values of the simulation model parameters. PMID:11385846

  15. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam.

    PubMed

    Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To

    2016-01-01

    This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds. PMID:26654204

  16. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam.

    PubMed

    Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To

    2016-01-01

    This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.

  17. Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera; Singh, Shashi Bala

    2016-08-01

    The study reports the effect of Inderprastha (IP) and Badarpur (BP) fly ashes on degradation of metolachlor and atrazine in Inceptisol and Alfisol soils. Metolachlor dissipated at faster rate in Alfisol (t1/2 8.2-8.6 days) than in Inceptisol (t1/2 13.2-14.3 days). The fly ashes enhanced the persistence of metolachlor in both the soils; however, the extent of effect was more in Inceptisol (t1/2 16.6-33.8 days) than Alfisol (t1/2 8.4-12 days) and effect increased with fly ash dose. 2-Ethyl-6-methylacetanilide was detected as the only metabolite of metolachlor. Atrazine was more persistent in flooded soils (t1/2 10.8-20.3 days) than nonflooded soils (t1/2 3.7-12.6 days) and fly ash increased its persistence, but effect was more pronounced in the flooded Inceptisol (t1/2 23.7-31 days) and nonflooded Alfisol (t1/2 6.3-10.1 days). Increased herbicide sorption in the fly ash-amended soils might have contributed to the increased pesticide persistence. The IP fly ash inhibited microbial biomass carbon at 5 % amendment levels in both the soils, while BP fly ash slightly increased microbial biomass carbon (MBC) content. Dehydrogenase activity was inhibited by both fly ashes in both the soils with maximum inhibition observed in the IP fly ash-amended Alfisol. No significant effect of fly ash amendment was observed on the fluorescein diacetate activity. PMID:27456695

  18. Substrate-bound Structures of Benzylsuccinate Synthase Reveal How Toluene Is Activated in Anaerobic Hydrocarbon Degradation*

    PubMed Central

    Funk, Michael A.; Marsh, E. Neil G.; Drennan, Catherine L.

    2015-01-01

    Various bacteria perform anaerobic degradation of small hydrocarbons as a source of energy and cellular carbon. To activate non-reactive hydrocarbons such as toluene, enzymes conjugate these molecules to fumarate in a radical-catalyzed, C—C bond-forming reaction. We have determined x-ray crystal structures of the glycyl radical enzyme that catalyzes the addition of toluene to fumarate, benzylsuccinate synthase (BSS), in two oligomeric states with fumarate alone or with both substrates. We find that fumarate is secured at the bottom of a long active site cavity with toluene bound directly above it. The two substrates adopt orientations that appear ideal for radical-mediated C—C bond formation; the methyl group of toluene is positioned between fumarate and a cysteine that forms a thiyl radical during catalysis, which is in turn adjacent to the glycine that serves as a radical storage residue. Toluene is held in place by fumarate on one face and tight packing by hydrophobic residues on the other face and sides. These hydrophobic residues appear to become ordered, thus encapsulating toluene, only in the presence of BSSβ, a small protein subunit that forms a tight complex with BSSα, the catalytic subunit. Enzymes related to BSS are able to metabolize a wide range of hydrocarbons through attachment to fumarate. Using our structures as a guide, we have constructed homology models of several of these “X-succinate synthases” and determined conservation patterns that will be useful in understanding the basis for catalysis and specificity in this family of enzymes. PMID:26224635

  19. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins

    PubMed Central

    Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi

    2016-01-01

    Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed. PMID:26999203

  20. Peculiarities of ULF electromagnetic disturbances before strong earthquakes in seismic active zone of Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y. A.; Ismagilov, V. S.; Schekotov, A.; Molchanov, O.; Chebrov, V.; Raspopov, O. M.

    2006-12-01

    Regular observations of ULF electromagnetic disturbances and acoustic emissions at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out during 2001-2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three-component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~1 pT) in the whole investigated frequency range (0.2-5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. An increasing of acoustic emissions (F=30 Hz) was observed during the same period. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the acoustic and ULF electromagnetic disturbances.

  1. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone

    PubMed Central

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  2. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.

    PubMed

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.

  3. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  4. Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon.

    PubMed

    Tsuriel, Shlomo; Fisher, Arava; Wittenmayer, Nina; Dresbach, Thomas; Garner, Craig C; Ziv, Noam E

    2009-01-14

    Presynaptic sites typically appear as varicosities (boutons) distributed along axons. Ultrastructurally, presynaptic boutons lack obvious physical barriers that separate them from the axon proper, yet activity-related and constitutive dynamics continuously promote the "reshuffling" of presynaptic components and even their dispersal into flanking axonal segments. How presynaptic sites manage to maintain their organization and individual characteristics over long durations is thus unclear. Conceivably, presynaptic tenacity might depend on the active zone (AZ), an electron-dense specialization of the presynaptic membrane, and particularly on the cytoskeletal matrix associated with the AZ (CAZ) that could act as a relatively stable "core scaffold" that conserves and dictates presynaptic organization. At present, however, little is known on the molecular dynamics of CAZ molecules, and thus, the factual basis for this hypothesis remains unclear. To examine the stability of the CAZ, we studied the molecular dynamics of the major CAZ molecule Bassoon in cultured hippocampal neurons. Fluorescence recovery after photobleaching and photoactivation experiments revealed that exchange rates of green fluorescent protein and photoactivatable green fluorescent protein-tagged Bassoon at individual presynaptic sites are very low (tau > 8 h). Exchange rates varied between boutons and were only slightly accelerated by stimulation. Interestingly, photoactivation experiments revealed that Bassoon lost from one synapse was occasionally assimilated into neighboring presynaptic sites. Our findings indicate that Bassoon is engaged in relatively stable associations within the CAZ and thus support the notion that the CAZ or some of its components might constitute a relatively stable presynaptic core scaffold.

  5. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  6. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  7. [Correlation analysis between meteorological factors, biomass, and active components of Salvia miltiorrhiza in different climatic zones].

    PubMed

    Zhang, Chen-lu; Liang, Zong-suo; Guo, Hong-bo; Liu, Jing-ling; Liu, Yan; Liu, Feng-hua; Wei, Lang-zhu

    2015-02-01

    In this study, the growth and accumulation of active components of Salvia miltiorrhiza in twenty two experimental sites which crossing through three typical climate zones. The S. miltiorrhiza seedlings with the same genotype were planted in each site in spring, which were cultivated in fields with uniform management during their growing seasons till to harvest. The diterpene ketones (dihydrotanshinone, cryptotanshinone, tanshinone I and tanshinone II(A)) in S. miltiorrhiza root samples were determined by using high-performance liquid chromatography (HPLC) method. The biomass of root (root length, number of root branches, root width and dry weight) was also measured. The results showed that tanshinone II(A) in all samples of each site were higher than the standards required by China Pharmacopoeia. It has been found there is a relationship between root shape and climate change. The correlation analysis between active components and meteorological factors showed that the accumulation of tanshinones were effected by such meteorological factors as average relative humidity from April to October > average vapor pressure from April to October > average temperature difference day and night from April to October > annual average temperature and so on. The correlation analysis between root biomass and meteorological factors exhibited that root shape and accumulation of dry matter were affected by those factors, such as average annual aboveground (0-20 cm) temperature from April to October > annual average temperature > average vapor pressure from April to October > annual active accumulated temperature > annual average temperature > average vapor pressure from April to October. The accumulation of tanshinones and biomass was increased with the decrease of latitude. At the same time, the dry matter and diameter of root decreased if altitude rises. In addition, S. miltiorrhiza required sunlight is not sophisticated, when compared with humid and temperature. To sum up, S

  8. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide.

    PubMed

    Govindan, Kadarkarai; Raja, Mohan; Noel, Michael; James, E J

    2014-05-15

    The present study is to investigate the reactivity of free radicals (SO4(-) and HO) generated from common oxidants (peroxomonosulfate (PMS), peroxodisulfate (PDS) and hydrogen peroxide (HP)) activated by electrochemically generated Fe(2+)/Fe(3+) ions which furthermore are evaluated to destroy pentachlorophenol (PCP) in aqueous solution. The effect of solution pH and amount of oxidants (PMS, PDS and HP) in electrocoagulation (EC) on PCP degradation is analyzed in detail. The experimental results reveal that, optimum initial solution pH is 4.5 and PMS is more efficient oxidant addition in EC. 75% PCP degradation is achieved at 60min electrolysis time from PMS assisted EC. According to the first order rate constant, faster PCP degradation rate is obtained by PMS assisted EC. The PCP degradation rate by oxidant assisted EC is observed in the following order: EC/PMS>EC/PDS>EC/HP>EC. Further to identify the influences of experimental factors involved in PCP degradation by oxidant assisted EC, an experimental design based on an orthogonal array (OA) L9 (3(3)) is proposed using Taguchi method. The factors that most significantly affect the process robustness are identified as A (oxidant) and B (pH) which together account for nearly 86% of the variance.

  9. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I.; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.; Kostevich, Valeria A.; Gusev, Alexandr A.; Gusev, Sergey A.; Melnikova, Viktoriya I.; Lobach, Anatolii S.

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  10. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice. PMID:26662563

  11. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  12. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    PubMed

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation.

  13. Stress-activated mitogen-activated protein kinases c-Jun NH2-terminal kinase and p38 target Cdc25B for degradation.

    PubMed

    Uchida, Sanae; Yoshioka, Katsuji; Kizu, Ryoichi; Nakagama, Hitoshi; Matsunaga, Tsukasa; Ishizaka, Yukihito; Poon, Randy Y C; Yamashita, Katsumi

    2009-08-15

    Cdc25 dual specificity phosphatases positively regulate the cell cycle by activating cyclin-dependent kinase/cyclin complexes. Of the three mammalian Cdc25 isoforms, Cdc25A is phosphorylated by genotoxic stress-activated Chk1 or Chk2, which triggers its SCFbeta-TrCP-mediated degradation. However, the roles of Cdc25B and Cdc25C in cell stress checkpoints remain inconclusive. We herein report that c-Jun NH2-terminal kinase (JNK) induces the degradation of Cdc25B. Nongenotoxic stress induced by anisomycin caused rapid degradation of Cdc25B as well as Cdc25A. Cdc25B degradation was dependent mainly on JNK and partially on p38 mitogen-activated protein kinase (p38). Accordingly, cotransfection with JNK1, JNK2, or p38 destabilized Cdc25B. In vitro kinase assays and site-directed mutagenesis experiments revealed that the critical JNK and p38 phosphorylation site in Cdc25B was Ser101. Cdc25B with Ser101 mutated to alanine was refractory to anisomycin-induced degradation, and cells expressing such mutant Cdc25B proteins were able to override the anisomycin-induced G2 arrest. These results highlight the importance of a novel JNK/p38-Cdc25B axis for a nongenotoxic stress-induced cell cycle checkpoint.

  14. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    SciTech Connect

    Sawada, Kenji; Adachi, Sadao

    2015-09-14

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decay dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.

  15. Characterization of naphthalene degradation by Streptomyces sp. QWE-5 isolated from active sludge.

    PubMed

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Hou, Baolin; Jia, Shengyong

    2014-01-01

    A bacterial strain, QWE-5, which utilized naphthalene as its sole carbon and energy source, was isolated and identified as Streptomyces sp. It was a Gram-positive, spore-forming bacterium with a flagellum, with whole, smooth, convex and wet colonies. The optimal temperature and pH for QWE-5 were 35 °C and 7.0, respectively. The QWE-5 strain was capable of completely degrading naphthalene at a concentration as high as 100 mg/L. At initial naphthalene concentrations of 10, 20, 50, 80 and 100 mg/L, complete degradation was achieved within 32, 56, 96, 120 and 144 h, respectively. Kinetics of naphthalene degradation was described using the Andrews equation. The kinetic parameters were as follows: qmax (maximum specific degradation rate) = 1.56 h⁻¹, Ks (half-rate constant) = 60.34 mg/L, and KI (substrate-inhibition constant) = 81.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed. In this pathway, monooxygenation of naphthalene yielded naphthalen-1-ol. Further degradation by Streptomyces sp. QWE-5 produced acetophenone, followed by adipic acid, which was produced as a combination of decarboxylation and hydroxylation processes.

  16. Cateslytin, a Chromogranin A Derived Peptide Is Active against Staphylococcus aureus and Resistant to Degradation by Its Proteases

    PubMed Central

    Aslam, Rizwan; Marban, Céline; Corazzol, Christian; Jehl, François; Delalande, François; Van Dorsselaer, Alain; Prévost, Gilles; Haïkel, Youssef; Taddei, Corinne; Schneider, Francis; Metz-Boutigue, Marie-Hélène

    2013-01-01

    Innate immunity involving antimicrobial peptides represents an integrated and highly effective system of molecular and cellular mechanisms that protects host against infections. One of the most frequent hospital-acquired pathogens, Staphylococcus aureus, capable of producing proteolytic enzymes, which can degrade the host defence agents and tissue components. Numerous antimicrobial peptides derived from chromogranins, are secreted by nervous, endocrine and immune cells during stress conditions. These kill microorganisms by their lytic effect at micromolar range, using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. In this study, we tested antimicrobial activity of chromogranin A-derived peptides (catestatin and cateslytin) against S. aureus and analysed S. aureus-mediated proteolysis of these peptides using HPLC, sequencing and MALDI-TOF mass spectrometry. Interestingly, this study is the first to demonstrate that cateslytin, the active domain of catestatin, is active against S. aureus and is interestingly resistant to degradation by S. aureus proteases. PMID:23894389

  17. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  18. UV-H2O2 degradation of methyl orange catalysed by H3PW12O40/activated clay.

    PubMed

    Wei, Guangtao; Zhang, Linye; Wei, Tengyou; Luo, Qiyu; Tong, Zhangfa

    2012-01-01

    A catalyst consisting of phosphotungstic acid (H3PW12O40) combined with activated clay was prepared by the impregnation method, and an experiment was carried out to evaluate the catalytic activity of the H3PW12O40/activated clay for the degradation of methyl orange (MO) in the UV-H2O2 process. The degradation ratio of MO can be affected by H2O2 concentration, reaction time, catalyst dosage, pH and temperature. The reaction temperature should be controlled at less than 70 degrees C, and the catalyst has a wide applicable pH range in the UV-H2O2 process. Hydroxyl radicals were generated in the UV-H2O2 system under the action of H3PW12O40/activated clay, and MO was degraded by hydroxyl radicals. Compared with traditional catalysts used in UV-H2O2 systems, H3PW12O40/activated clay has certain advantages for its practical application.

  19. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  20. An Active Area Model of Rapid Infiltration Response at Substantial Depth in the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Nimmo, J. R.

    2011-12-01

    In a porous medium subject to preferential flow, response to surface water infiltration can occur rapidly even at substantial depth in the unsaturated zone. In a ponding experiment at the Idaho National Laboratory (INL) the profile of undisturbed natural soil, seasonally dry at the start, was observed to approach field saturation throughout a 2 meter depth within 6 hours (Nimmo and Perkins, 2007). Traditional use of Richards' equation would require an unrealistically large unsaturated hydraulic conductivity of 40 m/day to capture the observed non-classic wetting behavior. Here we present a model for rapid flow using an active area concept similar to the active fracture model (Liu and others, 1998, WRR 34:2633-2646). The active area concept is incorporated within the preferential flow domain (which allows rapid downward movement) of a dual-domain model that also contains a diffuse-flow domain in which flow can be described by Richards' equation. Development of the active area model is motivated by observation of rapid wetting at substantial depth, as well as a phenomenon in which deep flow is observed before shallow flow. In this model water movement in the preferential domain can be physically conceptualized as laminar flow in free-surface films of constant average thickness. For a given medium, the preferential domain is characterized by an effective areal density (area per unit bulk volume) that describes the free-surface film capacity of the domain as a function of depth. The active area is defined as a portion of the effective areal density that dictates the depth and temporal distribution of domain-exchange and new infiltration within the preferential domain. With the addition of the active area concept, the model is capable of simulating non-diffusive vertical transport patterns. Advantages of the model include simulating rapid response for a variety of infiltration types, including ponding and rain events, as well as modeling relatively rapid aquifer

  1. Long-term degradation of resin-based cements in substances present in the oral environment: influence of activation mode

    PubMed Central

    da SILVA, Eduardo Moreira; NORONHA-FILHO, Jaime Dutra; AMARAL, Cristiane Mariote; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes

    2013-01-01

    Indirect restorations in contact with free gingival margins or principally within the gingival sulcus, where the presence of organic acids produced by oral biofilm is higher, may present faster degradation of the resin-based cement pellicle. Objectives: To investigate the degradation of four resin-based cements: Rely X ARC (R), Variolink II (V), enforce (E) and All Cem (A), after immersion in distilled water (DW), lactic acid (LA) and artificial saliva (AS) and to analyze the influence of the activation mode on this response. Material and Methods: Two activation modes were evaluated: chemical (Ch) and dual (D). In the dual activation, a two-millimeter thick ceramic disk (IPS empress System) was interposed between the specimen and light-curing unit tip. Specimens were desiccated, immersed in distilled water, artificial saliva and lactic acid 0.1 M at 37ºC for 180 days, weighed daily for the first 7 days, and after 14, 21, 28, 90 and 180 days and were desiccated again. Sorption and solubility (µg/mm3) were calculated based on ISO 4049. The data were submitted to multifactor analysis of variance (MANOVA) and Tukey's HSD test for media comparisons (α=0.05). Results: Sorption was higher after immersion in LA (p<0.05) and increased significantly with time (p<0.05). Sorption was influenced by the activation mode: Ch>D (p<0.05). The lowest solubility was presented by R (p<0.05). Conclusions: Lactic acid increased the degradation of resin-based cements. Moreover, the physical component of activation, i.e., light-activation, contributed to a low degradation of resin-based cements. PMID:23857651

  2. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation.

    PubMed

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E; Gong, Yunchen; Hug, Laura A; Raskin, Lutgarde; Edwards, Elizabeth A

    2014-07-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor.

  3. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol.

    PubMed

    Esatbeyoglu, Tuba; Ulbrich, Katrin; Rehberg, Clemens; Rohn, Sascha; Rimbach, Gerald

    2015-03-01

    Curcumin is a secondary plant metabolite present in Curcuma longa L. Since curcumin is widely used as a food colorant in thermally processed food it may undergo substantial chemical changes which in turn could affect its biological activity. In the current study, curcumin was roasted at 180 °C up to 70 minutes and its kinetic of degradation was analyzed by means of HPLC-PDA and LC-MS, respectively. Roasting of curcumin resulted in the formation of the degradation products vanillin, ferulic acid, and 4-vinyl guaiacol. In cultured hepatocytes roasted curcumin as well as 4-vinyl guaiacol enhanced the transactivation of the redox-regulated transcription factor Nrf2, known to be centrally involved in cellular stress response and antioxidant defense mechanisms. The antioxidant enzyme paraoxonase 1 was induced by roasted curcumin and 4-vinyl guaiacol. Furthermore, roasted curcumin and 4-vinyl guaiacol decreased interleukin-6 gene expression in lipopolysaccharide stimulated murine macrophages. Current data suggest that curcumin undergoes degradation due to roasting and its degradation product exhibit significant biological activity in cultured cells.

  4. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  5. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water.

    PubMed

    Zhang, Yao Jun; Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long

    2012-03-30

    A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na(+) ions in the matrix of Na,Ca-cementitious material were replaced by Ni(2+) ions at room temperature. The new hydrated products of metahalloysite (Si(2)Al(2)O(5)(OH)(4)) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni(2+) and negative charge of [AlO(4)](5-) tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni(2+) ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca(2)Fe(2)O(5)) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  6. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice

    PubMed Central

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-01-01

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography. PMID:27321892