Science.gov

Sample records for active demethylation process

  1. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis

    PubMed Central

    Lee, Jiyoon; Jang, Hosung; Shin, Hosub; Choi, Woo Lee; Mok, Young Geun; Huh, Jin Hoe

    2014-01-01

    DNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3′-phosphor-α, β-unsaturated aldehyde and 3′-phosphate by successive β- and δ-eliminations, respectively. The kinetic studies revealed that these 3′-blocking lesions persist for a significant amount of time and at least two different enzyme activities are required to immediately process them. We demonstrate that Arabidopsis AP endonucleases APE1L, APE2 and ARP have distinct functions to process such harmful lesions to allow nucleotide extension. DME expression is toxic to E. coli due to excessive 5mC excision, but expression of APE1L or ARP significantly reduces DME-induced cytotoxicity. Finally, we propose a model of base excision repair and DNA demethylation pathway unique to plants. PMID:25228464

  2. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases. PMID:26928226

  3. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  4. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    PubMed Central

    Meng, Huan; Chen, Guiquan; Gao, Hui-Ming; Song, Xiaoyu; Shi, Yun; Cao, Liu

    2014-01-01

    The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET) methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS) and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons. PMID:25490140

  5. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    PubMed

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  6. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    PubMed

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. PMID:27506345

  7. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected].

    PubMed

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  8. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation.

    PubMed Central

    De Smet, C; De Backer, O; Faraoni, I; Lurquin, C; Brasseur, F; Boon, T

    1996-01-01

    Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692960

  9. The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action.

    PubMed

    Alaghband, Yasaman; Bredy, Timothy W; Wood, Marcelo A

    2016-06-20

    Active DNA modification is a major epigenetic mechanism that regulates gene expression in an experience-dependent manner, which is thought to establish stable changes in neuronal function and behavior. Recent discoveries regarding the Ten eleven translocation (Tet1-3) family of DNA hydroxylases have provided a new avenue for the study of active DNA demethylation, and may thus help to advance our understanding of how dynamic DNA modifications lead to long-lasting changes in brain regions underlying learning and memory, as well as drug-seeking and propensity for relapse following abstinence. Drug addiction is a complex, relapsing disorder in which compulsive drug-seeking behavior can persist despite aversive consequences. Therefore, understanding the molecular mechanisms that underlie the onset and persistence of drug addiction, as well as the pronounced propensity for relapse observed in addicts, is necessary for the development of selective treatments and therapies. In this mini-review, we provide an overview of the involvement of active DNA demethylation with an emphasis on the Tet family of enzymes and 5-hydroxymethylcytosine (5-hmC) in learning and memory, as well as in drug-seeking behavior. Memory and addiction share overlapping molecular, cellular, and circuit functions allowing research in one area to inform the other. Current discrepancies and directions for future studies focusing on the dynamic interplay between DNA methylation and demethylation, and how they orchestrate gene expression required for neuronal plasticity underlying memory formation, are discussed. PMID:26806038

  10. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation

    PubMed Central

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-01-01

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes, but there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells. PMID:24898766

  11. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  12. Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4'-O-substituted isoxanthohumols.

    PubMed

    Anioł, Mirosław; Swiderska, Anna; Stompor, Monika; Zołnierczyk, Anna Katarzyna

    2012-12-01

    Several analogues of 7-O- and 4'-O-substituted isoxanthohumol and 8-prenylnaringenin, the strongest known phytoestrogen and potential anticancerogenic agent, were synthesized. Acyl, alkyl, and allyl derivatives of isoxanthohumol underwent the demethylation process using MgI(2 )× 2Et(2)O in anhydrous THF with the yields of 61-89%. Some of the compounds approached the international criteria of antiproliferative activity (4 μg/ml) for synthetic agents against the human cancer cell lines. PMID:23087590

  13. Demethylation-linked Activation of uPA is Involved in Progression of Prostate Cancer

    PubMed Central

    Pulukuri, Sai MuraliKrishna; Estes, Norman; Patel, Jitendra; Rao, Jasti S.

    2006-01-01

    Increased expression of urokinase plasminogen activator (uPA) has been reported in various malignancies including prostate cancer. However, the mechanism by which uPA is abnormally expressed in prostate cancer remains elusive. Here, we show that uPA is aberrantly expressed in a high-percentage of human prostate cancer tissues, but rarely expressed either in tumor-matched, non-neoplastic adjacent tissues (NNAT) or benign prostatic hyperplasia (BPH) samples. This aberrant expression is associated with cancer-linked demethylation of the uPA promoter. Furthermore, treatment with demethylation inhibitor S-Adenosylmethionine (Ado-Met) or stable expression of uPA shRNA significantly inhibits uPA expression and tumor cell invasion in vitro and tumor growth and incidence of lung metastasis in vivo. Collectively, these findings strongly suggest that DNA demethylation is a common mechanism underlying the abnormal expression of uPA and is a critical contributing factor to the malignant progression of human prostate tumors. PMID:17283123

  14. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation.

    PubMed

    Grin, Inga; Ishchenko, Alexander A

    2016-05-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  15. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation

    PubMed Central

    Grin, Inga; Ishchenko, Alexander A.

    2016-01-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  16. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.

    PubMed

    Choi, Chang-Sun; Sano, Hiroshi

    2007-05-01

    To examine the relationship between gene expression and DNA methylation, transcriptionally activated genes were screened in hypomethylated transgenic tobacco plants expressing an anti-DNA methyltransferase sequence. Among 16 genes initially identified, one clone was found to encode a glycerophosphodiesterase-like protein (NtGPDL), earlier reported to be responsive to aluminium stress. When detached leaves from wild type tobacco plants were treated with aluminium, NtGPDL transcripts were induced within 6 h, and corresponding genomic loci were demethylated at CCGG sites within 1 h. Direct bisulfite methylation mapping revealed that CG sites in coding regions were selectively demethylated, and that promoter regions were totally unmethylated regardless of the stress. Salt and low temperature treatments also induced similar demethylation patterns. Such effects could be attributable to oxidative stress, since reactive oxygen species generated by paraquat efficiently induced the same pattern of demethylation at coding regions. Pathogen infection induced neither transcripts nor genomic demethylation. These results suggested a close correlation between methylation and expression of NtGPDL upon abiotic stresses with a cause-effect relationship. Since DNA methylation is linked to histone modification, it is conceivable that demethylation at coding regions might induce alteration of chromatin structure, thereby enhancing transcription. We propose that environmental responses of plants are partly mediated through active alteration of the DNA methylation status. PMID:17273870

  17. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver.

    PubMed

    Ehara, Tatsuya; Kamei, Yasutomi; Yuan, Xunmei; Takahashi, Mayumi; Kanai, Sayaka; Tamura, Erina; Tsujimoto, Kazutaka; Tamiya, Takashi; Nakagawa, Yoshimi; Shimano, Hitoshi; Takai-Igarashi, Takako; Hatada, Izuho; Suganami, Takayoshi; Hashimoto, Koshi; Ogawa, Yoshihiro

    2015-03-01

    The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid β-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid β-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway. PMID:25311726

  18. Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae.

    PubMed

    Ingvarsdottir, Kristin; Edwards, Chris; Lee, Min Gyu; Lee, Jung Shin; Schultz, David C; Shilatifard, Ali; Shiekhattar, Ramin; Berger, Shelley L

    2007-11-01

    In mammalian cells, histone lysine demethylation is carried out by two classes of enzymes, the LSD1/BHC110 class and the jumonji class. The enzymes of the jumonji class in the yeast Saccharomyces cerevisiae have recently also been shown to have lysine demethylation activity. Here we report that the protein encoded by YJR119c (termed KDM5), coding for one of five predicted jumonji domain proteins in yeast, specifically demethylates trimethylated histone H3 lysine 4 (H3K4me3), H3K4me2, and H3K4me1 in vitro. We found that loss of KDM5 increased mono-, di-, and trimethylation of lysine 4 during activation of the GAL1 gene. Interestingly, cells deleted of KDM5 also displayed a delayed reduction of K4me3 upon reestablishment of GAL1 repression. These results indicate that K4 demethylation has two roles at GAL1, first to establish appropriate levels of K4 methylation during gene activation and second to remove K4 trimethylation during the attenuation phase of transcription. Thus, analysis of lysine demethylation in yeast provides new insight into the physiological roles of jumonji demethylase enzymes. PMID:17875926

  19. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements.

    PubMed

    Schlesinger, Felix; Smith, Andrew D; Gingeras, Thomas R; Hannon, Gregory J; Hodges, Emily

    2013-10-01

    Deep sequencing of mammalian DNA methylomes has uncovered a previously unpredicted number of discrete hypomethylated regions in intergenic space (iHMRs). Here, we combined whole-genome bisulfite sequencing data with extensive gene expression and chromatin-state data to define functional classes of iHMRs, and to reconstruct the dynamics of their establishment in a developmental setting. Comparing HMR profiles in embryonic stem and primary blood cells, we show that iHMRs mark an exclusive subset of active DNase hypersensitive sites (DHS), and that both developmentally constitutive and cell-type-specific iHMRs display chromatin states typical of distinct regulatory elements. We also observe that iHMR changes are more predictive of nearby gene activity than the promoter HMR itself, and that expression of noncoding RNAs within the iHMR accompanies full activation and complete demethylation of mature B cell enhancers. Conserved sequence features corresponding to iHMR transcript start sites, including a discernible TATA motif, suggest a conserved, functional role for transcription in these regions. Similarly, we explored both primate-specific and human population variation at iHMRs, finding that while enhancer iHMRs are more variable in sequence and methylation status than any other functional class, conservation of the TATA box is highly predictive of iHMR maintenance, reflecting the impact of sequence plasticity and transcriptional signals on iHMR establishment. Overall, our analysis allowed us to construct a three-step timeline in which (1) intergenic DHS are pre-established in the stem cell, (2) partial demethylation of blood-specific intergenic DHSs occurs in blood progenitors, and (3) complete iHMR formation and transcription coincide with enhancer activation in lymphoid-specified cells. PMID:23811145

  20. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements

    PubMed Central

    Schlesinger, Felix; Smith, Andrew D.; Gingeras, Thomas R.; Hannon, Gregory J.; Hodges, Emily

    2013-01-01

    Deep sequencing of mammalian DNA methylomes has uncovered a previously unpredicted number of discrete hypomethylated regions in intergenic space (iHMRs). Here, we combined whole-genome bisulfite sequencing data with extensive gene expression and chromatin-state data to define functional classes of iHMRs, and to reconstruct the dynamics of their establishment in a developmental setting. Comparing HMR profiles in embryonic stem and primary blood cells, we show that iHMRs mark an exclusive subset of active DNase hypersensitive sites (DHS), and that both developmentally constitutive and cell-type-specific iHMRs display chromatin states typical of distinct regulatory elements. We also observe that iHMR changes are more predictive of nearby gene activity than the promoter HMR itself, and that expression of noncoding RNAs within the iHMR accompanies full activation and complete demethylation of mature B cell enhancers. Conserved sequence features corresponding to iHMR transcript start sites, including a discernible TATA motif, suggest a conserved, functional role for transcription in these regions. Similarly, we explored both primate-specific and human population variation at iHMRs, finding that while enhancer iHMRs are more variable in sequence and methylation status than any other functional class, conservation of the TATA box is highly predictive of iHMR maintenance, reflecting the impact of sequence plasticity and transcriptional signals on iHMR establishment. Overall, our analysis allowed us to construct a three-step timeline in which (1) intergenic DHS are pre-established in the stem cell, (2) partial demethylation of blood-specific intergenic DHSs occurs in blood progenitors, and (3) complete iHMR formation and transcription coincide with enhancer activation in lymphoid-specified cells. PMID:23811145

  1. SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells.

    PubMed

    Moriyama, Taishi; Fujimitsu, Yuka; Yoshikai, Yushi; Sasano, Takashi; Yamada, Koji; Murakami, Masataka; Urano, Takeshi; Sugasawa, Kaoru; Saitoh, Hisato

    2014-05-01

    Thymine DNA glycosylase (TDG) is a base excision repair enzyme that interacts with the small ubiquitin-related modifier (SUMO)-targeted ubiquitin E3 ligase RNF4 and functions in the active DNA demethylation pathway. Here we showed that both SUMOylated and non-modified forms of endogenous TDG fluctuated during the cell cycle and in response to drugs that perturbed cell cycle progression, including hydroxyurea and nocodazole. Additionally, we detected a SUMOylation-independent association between TDG and RNF4 in vitro as well as in vivo, and observed that both forms of TDG were efficiently degraded in RNF4-depleted cells when arrested at S phase. Our findings provide insights into the in vivo dynamics of TDG SUMOylation and further clarify the TDG-RNF4 interaction. PMID:24727457

  2. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone.

    PubMed

    Jin, Jong-Sik; Zhao, Yu-Feng; Nakamura, Norio; Akao, Teruaki; Kakiuchi, Nobuko; Hattori, Masao

    2007-05-01

    Plant lignans, such as pinoresinol diglucoside, secoisolariciresinol diglucoside and arctiin, are metabolized to mammalian lignans, enterolactone or enterodiol, by human intestinal bacteria. Their metabolic processes include deglucosylation, ring cleavage, demethylation, dehydroxylation and oxidation. Here we isolated an intestinal bacterium capable of demethylating arctigenin, an aglycone of arctiin, to 2,3-bis(3,4-dihydroxybenzyl)butyrolactone (1) from human feces, and identified as an Eubacterium species (E. sp. ARC-2), which is similar to Eubacterium limosum on the basis of morphological and biochemical properties and 16S rRNA gene sequencing. By incubating with E. sp. ARC-2, arctigenin was converted to 1 through stepwise demethylation. Demethylation of arctigenin by E. sp. ARC-2 was tetrahydrofolate- and ATP-dependent, indicating that the reaction was catalyzed by methyltransferase. Moreover, E. sp. ARC-2 transformed secoisolariciresinol to 2,3-bis(3,4-dihydroxybenzyl)-1,4-butanediol by demethylation. PMID:17473433

  3. H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium

    PubMed Central

    Liu, Shi; Suflita, Joseph M.

    1993-01-01

    The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N2-CO2 atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H2-CO2 but not a N2-CO2 or N2 atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H2 and CO2 in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C7H3O3(OCH3)n- + nHCO3- + nH2 → C7H3O3(OH)n- + nCH3COO- + nH2O. Images PMID:16348928

  4. Gadd45a promotes DNA demethylation through TDG.

    PubMed

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Schär, Primo; Xu, Guo-Liang

    2015-04-30

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)-initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway. PMID:25845601

  5. Gadd45a promotes DNA demethylation through TDG

    PubMed Central

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R.; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Schär, Primo; Xu, Guo-Liang

    2015-01-01

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway. PMID:25845601

  6. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    SciTech Connect

    Li, Yan; Ohms, Stephen J.; Shannon, Frances M.; Sun, Chao; Fan, Jun Y.

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  7. Methyl-CpG-binding domain protein MBD7 is required for active DNA demethylation in Arabidopsis.

    PubMed

    Wang, Chunlei; Dong, Xiaomei; Jin, Dan; Zhao, Yusheng; Xie, Shaojun; Li, Xiaojie; He, Xinjian; Lang, Zhaobo; Lai, Jinsheng; Zhu, Jian-Kang; Gong, Zhizhong

    2015-03-01

    Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis. PMID:25593350

  8. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism

    PubMed Central

    Weber, Alain R.; Krawczyk, Claudia; Robertson, Adam B.; Kuśnierczyk, Anna; Vågbø, Cathrine B.; Schuermann, David; Klungland, Arne; Schär, Primo

    2016-01-01

    Cytosine methylation in CpG dinucleotides is an epigenetic DNA modification dynamically established and maintained by DNA methyltransferases and demethylases. Molecular mechanisms of active DNA demethylation began to surface only recently with the discovery of the 5-methylcytosine (5mC)-directed hydroxylase and base excision activities of ten–eleven translocation (TET) proteins and thymine DNA glycosylase (TDG). This implicated a pathway operating through oxidation of 5mC by TET proteins, which generates substrates for TDG-dependent base excision repair (BER) that then replaces 5mC with C. Yet, direct evidence for a productive coupling of TET with BER has never been presented. Here we show that TET1 and TDG physically interact to oxidize and excise 5mC, and proof by biochemical reconstitution that the TET–TDG–BER system is capable of productive DNA demethylation. We show that the mechanism assures a sequential demethylation of symmetrically methylated CpGs, thereby avoiding DNA double-strand break formation but contributing to the mutability of methylated CpGs. PMID:26932196

  9. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism.

    PubMed

    Weber, Alain R; Krawczyk, Claudia; Robertson, Adam B; Kuśnierczyk, Anna; Vågbø, Cathrine B; Schuermann, David; Klungland, Arne; Schär, Primo

    2016-01-01

    Cytosine methylation in CpG dinucleotides is an epigenetic DNA modification dynamically established and maintained by DNA methyltransferases and demethylases. Molecular mechanisms of active DNA demethylation began to surface only recently with the discovery of the 5-methylcytosine (5mC)-directed hydroxylase and base excision activities of ten-eleven translocation (TET) proteins and thymine DNA glycosylase (TDG). This implicated a pathway operating through oxidation of 5mC by TET proteins, which generates substrates for TDG-dependent base excision repair (BER) that then replaces 5mC with C. Yet, direct evidence for a productive coupling of TET with BER has never been presented. Here we show that TET1 and TDG physically interact to oxidize and excise 5mC, and proof by biochemical reconstitution that the TET-TDG-BER system is capable of productive DNA demethylation. We show that the mechanism assures a sequential demethylation of symmetrically methylated CpGs, thereby avoiding DNA double-strand break formation but contributing to the mutability of methylated CpGs. PMID:26932196

  10. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation

    PubMed Central

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  11. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation.

    PubMed

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  12. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2.

    PubMed

    Fan, H; Zhang, H; Pascuzzi, P E; Andrisani, O

    2016-02-11

    Chronic hepatitis B virus (HBV) infection is a major risk factor for developing hepatocellular carcinoma (HCC), and HBV X protein (HBx) acts as cofactor in hepatocarcinogenesis. In liver tumors from animals modeling HBx- and HBV-mediated hepatocarcinogenesis, downregulation of chromatin regulating proteins SUZ12 and ZNF198 induces expression of several genes, including epithelial cell adhesion molecule (EpCAM). EpCAM upregulation occurs in HBV-mediated HCCs and hepatic cancer stem cells, by a mechanism not understood. Herein we demonstrate HBx induces EpCAM expression via active DNA demethylation. In hepatocytes, EpCAM is silenced by polycomb repressive complex 2 (PRC2) and ZNF198/LSD1/Co-REST/HDAC1 chromatin-modifying complexes. Cells with stable knockdown of SUZ12, an essential PRC2 subunit, upon HBx expression demethylate a CpG dinucleotide located adjacent to NF-κB/RelA half-site. This NF-κB/RelA site is in a CpG island downstream from EpCAM transcriptional start site (TSS). Chromatin immunoprecipitation (ChIP) assays demonstrate HBx-dependent RelA occupancy of NF-κB half-site, whereas RelA knockdown suppresses CpG demethylation and EpCAM expression. Tumor necrosis factor-α activates RelA, propagating demethylation to nearby CpG sites, shown by sodium bisulfite sequencing. RelA-dependent demethylation occurring upon HBx expression requires methyltrasferase EZH2, TET2 a key factor in cytosine demethylation and inactive DNMT3L, shown by knockdown assays and sodium bisulfite sequencing. Co-immunoprecipitations and sequential ChIP assays demonstrate that RelA in the presence of HBx forms a complex with EZH2, TET2 and DNMT3L, although the role of DNMT3L remains to be understood. Interestingly, the human EpCAM gene also has a CpG island downstream from its TSS, and a NF-κB-binding site flanked by CpGs. HepG2 cells derived from human HCC exhibit demethylation of these NF-κB-flanking CpG sites, and HBV replication propagates demethylation to nearby CpG sites. DLK

  13. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis

    PubMed Central

    Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K.; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W. Andy; Zhu, Jian-Kang

    2015-01-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. PMID:26492035

  14. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis.

    PubMed

    Duan, Cheng-Guo; Wang, Xingang; Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W Andy; Zhu, Jian-Kang

    2015-10-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. PMID:26492035

  15. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    PubMed

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. PMID:27156884

  16. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells.

    PubMed

    Wheldon, Lee M; Abakir, Abdulkadir; Ferjentsik, Zoltan; Dudnakova, Tatiana; Strohbuecker, Stephanie; Christie, Denise; Dai, Nan; Guan, Shengxi; Foster, Jeremy M; Corrêa, Ivan R; Loose, Matthew; Dixon, James E; Sottile, Virginie; Johnson, Andrew D; Ruzov, Alexey

    2014-06-12

    5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain. PMID:24882006

  17. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq.

    PubMed

    Wu, Hao; Wu, Xiaoji; Zhang, Yi

    2016-06-01

    A complete understanding of the function of the ten-eleven translocation (TET) family of dioxygenase-mediated DNA demethylation requires new methods to quantitatively map oxidized 5-methylcytosine (5mC) bases at high resolution. We have recently developed a methylase-assisted bisulfite sequencing (MAB-seq) method that allows base-resolution mapping of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), two oxidized 5mC bases indicative of active DNA demethylation events. In standard bisulfite sequencing (BS-seq), unmodified C, 5fC and 5caC are read as thymine; thus 5fC and 5caC cannot be distinguished from C. In MAB-seq, unmodified C is enzymatically converted to 5mC, allowing direct mapping of rare modifications such as 5fC and 5caC. By combining MAB-seq with chemical reduction of 5fC to 5hmC, we also developed caMAB-seq, a method for direct 5caC mapping. Compared with subtraction-based mapping methods, MAB-seq and caMAB-seq require less sequencing effort and enable robust statistical calling of 5fC and/or 5caC. MAB-seq and caMAB-seq can be adapted to map 5fC/5caC at the whole-genome scale (WG-MAB-seq), within specific genomic regions enriched for enhancer-marking histone modifications (chromatin immunoprecipitation (ChIP)-MAB-seq), or at CpG-rich sequences (reduced-representation (RR)-MAB-seq) such as gene promoters. The full protocol, including DNA preparation, enzymatic treatment, library preparation and sequencing, can be completed within 6-8 d. PMID:27172168

  18. 4'-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells.

    PubMed

    Zilla, Mahesh K; Nayak, Debasis; Amin, Hina; Nalli, Yedukondalu; Rah, Bilal; Chakraborty, Souneek; Kitchlu, Surender; Goswami, Anindya; Ali, Asif

    2014-12-01

    We investigated the root of Podophyllum hexandrum as a potential source of lead bioactive metabolites with anticancer activity. The present study led to the isolation of six known aryltetralin-type lignans designated as 4'-demethyl-deoxypodophyllotoxin (1), podophyllotoxin (2), 4'-demethyl-podophyllotoxin (3), podophyllotoxin-4-O-β-d-glucopyranoside (4), 4'-demethyl-deoxypodophyllotoxin-4-O-β-d-glucopyranoside (5), 4'-demethyl-podophyllotoxin-4-O-β-d-glucopyranoside (6), along with three known flavones Kaempferol (7), Quercetin (8), Astragalin (9) from the root of P. hexandrum. Compounds (1-9) exhibited the remarkable cytotoxic potential in diverse cancer cell lines. 5 therapeutic potential was extensively studied first time which exhibiting antiproliferative and ROS generating activity than its non-glycoside analogue 1. Furthermore, 5 augmented the apoptotic cascades in MCF-7 breast cancer cells, viz. nuclear condensation, membrane blebbing, probably by destabilizing the micro-tubular protein tubulin. Strikingly, our docking study and in vitro assays demonstrate that 5 binds to and modulate checkpoint kinase-2, a key cell cycle regulatory protein in normal and cancer cells. PMID:25446499

  19. PPARα activation drives demethylation of the CpG islands of the Gadd45b promoter in the mouse liver.

    PubMed

    Kim, Jung-Hwan; Wahyudi, Lilik Duwi; Kim, Kee K; Gonzalez, Frank J

    2016-08-01

    Growth arrest and DNA damage-inducible beta (GADD45b) plays a pivotal role in many intracellular events in both cell survival- and cell death-related signaling. To date, the study of GADD35b has mainly focused on investigation of its function, as well as interacting molecules. However, studies of Gadd45b gene regulation are limited. In this study, we investigated the transcriptional regulation mechanism of Gadd45b. Since Gadd45b mRNA is highly induced by the PPARα agonist Wy-14,643 in the mouse liver, we analyzed the Gadd45b promoter using an in vivo reporter assay. Interestingly, the naked Gadd45b-luciferase construct strongly induced luciferase activity without any stimulant in our in vivo system. Therefore, we investigated the epigenetic changes in the Gadd45b promoter region using mouse liver genomic DNA, the methylation-specific restriction enzyme (HpaII), and disulfide conversion. Our results showed that two possible CpG methylation sites were methylated and demethylated by Wy-14,643 treatment. This study indicates that epigenetic change at the Gadd45b promoter is critical for Gadd45b induction. PMID:27233605

  20. Anaerobic O-demethylation of phenylmethylethers

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1990-01-01

    Anaerobic O-demethylation (AOD) of phenylmethylethers is a process of both basic and applied significance. The aryl-O-methyl ethers are abundant in natural products, particularly as components of lignin. They are present as methoxylated lignin monomers in anaerobic environments and can be completely degraded there by mixed microbial populations. AOD is an essential early step in this process, and it is also a key reaction in the utilization of the O-methyl substituent as a C-one substrate by acetogens. An understanding of the AOD reaction mechanism might suggest new ways in which chemicals could be derived from lignocellulosic materials. The biochemical mechanism for the anaerobic cleavage of the aryl-O-methyl ether bond is an intriguing, but relatively unexplored process. In contrast to aerobic O-demethylating enzymes, AOD appears to involve methyl group transfer. Thus, novel biochemical information on an important biotransformation reaction will be gained from the research proposed. Recently, we have shown that AOD activity is inducible and have developed an assay for detecting AOD activity in cell-free extracts of Acetobacterium woodii. AOD activity is stimulated in vitro by the addition of ATP (1mM) and pyruvate (30 mM), the K{sub M} for vanillate being 0.4 mM. In collaboration with protein purification experts, we proposed to purify the AOD enzyme and characterize the protein(s) and the enzymatic reaction involved. 8 figs., 5 tabs.

  1. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function.

    PubMed

    Orlanski, Shari; Labi, Verena; Reizel, Yitzhak; Spiro, Adam; Lichtenstein, Michal; Levin-Klein, Rena; Koralov, Sergei B; Skversky, Yael; Rajewsky, Klaus; Cedar, Howard; Bergman, Yehudit

    2016-05-01

    There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events. This lack of demethylation affects the expression of nearby B-cell lineage genes by impairing enhancer activity, thus causing defects in B-cell differentiation and function. Thus, tissue-specific DNA demethylation appears to be necessary for proper somatic cell development in vivo. PMID:27091986

  2. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  3. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    SciTech Connect

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  4. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  5. Demethylation of methylarsonic acid by a microbial community

    PubMed Central

    Yoshinaga, Masafumi; Cai, Yong; Rosen, Barry P.

    2013-01-01

    Summary Arsenic is one of the most widespread environmental carcinogens and has created devastating human health problems worldwide, yet little is known about mechanisms of biotransformation in contaminated regions. Methylarsonic acid [MAs(V)], extensively utilized as an herbicide, is largely demethylated to more toxic inorganic arsenite, which causes environmental problems. To understand the process of demethylation of methylarsenicals, soil samples commonly used on Florida golf courses were studied. Several soil extracts were found to demethylate MAs(V) to inorganic arsenite [As(III)]. From these extracts, a bacterial isolate was capable of reducing MAs(V) to MAs(III) but not of demethylating to As(III). A second bacterial isolate was capable of demethylating MAs(III) to As(III) but not of reducing MAs(V). A mixed culture could carry out the complete process of reduction and demethylation, demonstrating that demethylation of MAs(V) to As(III) is a two-step process. Analysis of the 16S ribosomal DNA sequences of the two organisms identified the MAs(V)-reducing and the MAs(III)-demethylating isolates as belong to Burkholderia and Streptomyces species respectively. This is the first report of a novel pathway of degradation of a methylarsenical herbicide by sequential reduction and demethylation in a microbial soil community, which we propose plays a significant role in the arsenic biogeocycle. PMID:21272184

  6. DNA Methylation and Demethylation in Plant Immunity.

    PubMed

    Deleris, A; Halter, T; Navarro, L

    2016-08-01

    Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive. PMID:27491436

  7. Production of Hydrolysable Tannin-Like Structures During the Microbial Demethylation of lignin: An Assessment Using13C-Labeled Tetramethylammonium Hydroxide Thermochemolysis.

    NASA Astrophysics Data System (ADS)

    Filley, T.; Blanchette, R.; Nierop, K.; Gamblin, D.

    2003-12-01

    Phenolic compounds in soils are important mediators of microbial activity, metal mobility, soil redox, and soil organic matter building processes. Direct tannin input and the microbial decomposition of lignin in litter and soil are important contributors to this pool of phenols. The ability to accurately assess the relative differences in lignin decay (which are initiated by demethylation and side chain oxidation) among synapyl, coniferyl, and p-coumaryl components of detrital lignin requires the ability to determine microbial demethylation within the complex soil residues. Differentiating between hydrolysable tannins and contributions from advanced lignin decay can be problematic for many of the most common molecular techniques such as alkaline CuO oxidation, pyrolysis GC, and tetramethylammonium hydroxide thermochemolysis because of either the masking effects of derivatizing agents, oxidative damage to ortho-phenols or low volatility of lignin monomers. In this study we investigate lignin demethylation and polyhydroxyl-aromatic production in BC and C horizons of sandy forest soils dominated by oak, the A horizon from a red spruce forest, and controlled microbial inoculation studies of woody tissue using in-line 13C-labeled tetramethylammonium hydroxide thermochemolysis. Both white-rot and brown-rot decay resulted in syringyl demethylation, with the latter exhibiting more aggressive demethylation chemistry, while coniferyl monomer demethylation was essentially restricted to brown-rot decay. In a typical brown-rot sequence demethylation of syringyl components occurs more rapidly than coniferyl units within the same tissue and lower molecular weight fragments are likewise more demethylated than lignin monomers containing the full glycerol side chain. Demethylation of both methoxyl groups in the syringyl monomer is evident in soil horizons as well as laboratory inoculations. The latter may suggest demethylation after lignin depolymerization. Low molecular weight

  8. Pharmacological DNA demethylation: Implications for cancer immunotherapy

    PubMed Central

    Roulois, David; Yau, Helen Loo; De Carvalho, Daniel D.

    2016-01-01

    ABSTRACT Recent studies have demonstrated that DNA demethylation agents can mimic a viral infection by induction of dsRNAs. This viral mimicry leads to an antiviral response mediated by the cytosolic pattern recognition receptor MDA5, followed by MAVS (IPS1) activation, IRF7 nuclear translocation and upregulation of type III Interferon and interferon-stimulated genes. PMID:27141349

  9. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma.

    PubMed

    Amodio, Nicola; Leotta, Marzia; Bellizzi, Dina; Di Martino, Maria Teresa; D'Aquila, Patrizia; Lionetti, Marta; Fabiani, Fernanda; Leone, Emanuela; Gullà, Anna Maria; Passarino, Giuseppe; Caraglia, Michele; Negrini, Massimo; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2012-10-01

    Aberrant DNA methylation plays a relevant role in multiple myeloma (MM) pathogenesis. MicroRNAs (miRNAs) are a class of small non-coding RNAs that recently emerged as master regulator of gene expression by targeting protein-coding mRNAs. However, miRNAs involvement in the regulation of the epigenetic machinery and their potential use as therapeutics in MM remain to be investigated. Here, we provide evidence that the expression of de novo DNA methyltransferases (DNMTs) is deregulated in MM cells. Moreover, we show that miR-29b targets DNMT3A and DNMT3B mRNAs and reduces global DNA methylation in MM cells. In vitro transfection of MM cells with synthetic miR-29b mimics significantly impairs cell cycle progression and also potentiates the growth-inhibitory effects induced by the demethylating agent 5-azacitidine. Most importantly, in vivo intratumor or systemic delivery of synthetic miR-29b mimics, in two clinically relevant murine models of human MM, including the SCID-synth-hu system, induces significant anti-tumor effects. All together, our findings demonstrate that aberrant DNMTs expression is efficiently modulated by tumor suppressive synthetic miR-29b mimics, indicating that methyloma modulation is a novel matter of investigation in miRNA-based therapy of MM. PMID:23100393

  10. Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial.

    PubMed Central

    Robertson, K D; Hayward, S D; Ling, P D; Samid, D; Ambinder, R F

    1995-01-01

    The Epstein-Barr Virus (EBV) latency C promoter (Cp) is the origin of transcripts for six viral proteins. The promoter is active in lymphoblastoid B-cell lines but silent in many EBV-associated tumors and tumor cell lines. In these latter cell lines, the viral episome is hypermethylated in the vicinity of this promoter. We show that in such a cell line (Rael, a Burkitt's lymphoma line), 5-azacytidine inhibits DNA methyltransferase, brings about demethylation of EBV genomes, activates Cp transcription, and induces the expression of EBNA-2. Investigation of the phenomenon demonstrates the importance of the methylation status of a particular CpG site for the regulation of the Cp: (i) genomic sequencing shows that this site is methylated when the Cp is inactive and is not methylated when the promoter is active; (ii) methylation or transition mutation at this site abolishes complex formation with a cellular binding activity (CBF2) as determined by electrophoretic mobility shift analyses, competition binding analyses, and DNase I footprinting; and (iii) a single C --> T transition mutation at this site is associated with a marked reduction (> 50-fold) of transcriptional activity in a reporter plasmid. Thus, the CBF2 binding activity is shown to be methylation sensitive and crucial to EBNA-2-mediated activation of the Cp. PMID:7565767

  11. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line.

    PubMed

    Song, Deye; Ni, Jiangdong; Xie, Hongming; Ding, Muliang; Wang, Jun

    2014-05-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  12. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line

    PubMed Central

    SONG, DEYE; NI, JIANGDONG; XIE, HONGMING; DING, MULIANG; WANG, JUN

    2014-01-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  13. DNA Demethylation Dynamics in the Human Prenatal Germline.

    PubMed

    Gkountela, Sofia; Zhang, Kelvin X; Shafiq, Tiasha A; Liao, Wen-Wei; Hargan-Calvopiña, Joseph; Chen, Pao-Yang; Clark, Amander T

    2015-06-01

    Global DNA demethylation in humans is a fundamental process that occurs in pre-implantation embryos and reversion to naive ground state pluripotent stem cells (PSCs). However, the extent of DNA methylation reprogramming in human germline cells is unknown. Here, we performed whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq) of human prenatal germline cells from 53 to 137 days of development. We discovered that the transcriptome and methylome of human germline is distinct from both human PSCs and the inner cell mass (ICM) of human blastocysts. Using this resource to monitor the outcome of global DNA demethylation with reversion of primed PSCs to the naive ground state, we uncovered hotspots of ultralow methylation at transposons that are protected from demethylation in the germline and ICM. Taken together, the human germline serves as a valuable in vivo tool for monitoring the epigenome of cells that have emerged from a global DNA demethylation event. PMID:26004067

  14. RNA-directed DNA methylation and demethylation in plants

    PubMed Central

    Viswanathan, CHINNUSAMY; Jian-Kang, ZHU

    2011-01-01

    RNA-directed DNA methylation (RdDM) is a nuclear process in which small interfering RNAs (siRNAs) direct the cytosine methylation of DNA sequences that are complementary to the siRNAs. In plants, double stranded-RNAs (dsRNAs) generated by RNA-dependent RNA polymerase 2 (RDR2) serve as precursors for Dicer-like 3 dependent biogenesis of 24-nt siRNAs. Plant specific RNA polymerase IV (Pol IV) is presumed to generate the initial RNA transcripts that are substrates for RDR2. siRNAs are loaded onto an argonaute4-containing RISC (RNA-induced silencing complex) that targets the de novo DNA methyltransferase DRM2 to RdDM target loci. Nascent RNA transcripts from the target loci are generated by another plant-specific RNA polymerase, Pol V, and these transcripts help recruit complementary siRNAs and the associated RdDM effector complex to the target loci in a transcription-coupled DNA methylation process. Small RNA binding proteins such as ROS3 may direct target-specific DNA demethylation by the ROS1 family of DNA demethylases. Chromatin remodeling enzymes and histone modifying enzymes also participate in DNA methylation and possibly demethylation. One of the well studied functions of RdDM is transposon silencing and genome stability. In addition, RdDM is important for paramutation, imprinting, gene regulation, and plant development. Locus-specific DNA methylation and demethylation, and transposon activation under abiotic stresses suggest that RdDM is also important in stress responses of plants. Further studies will help illuminate the functions of RdDM in the dynamic control of epigenomes during development and environmental stress responses. PMID:19381459

  15. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  16. Regioselective demethylation of quinoline derivatives. A DFT rationalization

    NASA Astrophysics Data System (ADS)

    Belferdi, Fatiha; Merabet, Naima; Belkhiri, Lotfi; Douara, Bachir

    2016-08-01

    Demethylation of compound 2,7-dimethoxyquinoline-3-carbaldehyde 1, is carried out using BBr3. However, all attempts led, either to the starting material or to the regioselective demethylation at position 2 affording the product 4a. The nature (donor or acceptor) and the position of the R (CHO or CN) group is likely to play a role in the preventing the demethylation at position 7. To address this phenomena, the demethylation of 2-chloro-7-methoxyquinoline-3-carbaldehyde 2 and 2,7-dimethoxyquinoline-3-carbaldehyde 3 has been carried out. To support the results obtained, theoretical computations at DFT level (vide infra) have been carried out upon compound 1. The exploration of how the gas-phase demethylation process on Quinoline can be affected at a position 7 center by stepwise substation effects using different electro-donor and attractor groups, show that demethylation process seems to be more favorable when substituent is an electro-donor. This is sustained by bond energy and thermodynamic analyses (vide infra).

  17. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.

    PubMed

    Perillo, Bruno; Ombra, Maria Neve; Bertoni, Alessandra; Cuozzo, Concetta; Sacchetti, Silvana; Sasso, Annarita; Chiariotti, Lorenzo; Malorni, Antonio; Abbondanza, Ciro; Avvedimento, Enrico V

    2008-01-11

    Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription. PMID:18187655

  18. 5-hydroxymethylcytosine-mediated DNA demethylation in stem cells and development.

    PubMed

    Sun, Wenjia; Guan, Minxin; Li, Xuekun

    2014-05-01

    The pursuit of DNA demethylation has a colorful history, but it was not until 2009 that the stars of this story, the Ten-eleven-translocation (Tet) family of proteins, were really identified. Tet proteins convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine and 5-cyboxycytosine by Tet proteins to achieve DNA demethylation. Recent studies have revealed that 5hmC-mediated DNA demethylation can play essential roles in diverse biological processes, including development and diseases. Here, we review recent discoveries in 5hmC-mediated DNA demethylation in the context of stem cells and development. PMID:24400731

  19. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem

    DOE PAGESBeta

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A.; Pierce, Eric M.; Liang, Liyuan; et al

    2016-03-28

    Two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems are microbial methylation and demethylation. Though mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjensis Bem. Here we report, for the first time, that the strain G. bemidjensis Bem can methylate inorganic Hg and degrade MeHg concurrently under anoxic conditions. Our results suggest that G. bemidjensis cells utilize a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) asmore » the major reaction product, possibly due to the presence of homologs encoding both organo-mercurial lyase (MerB) and mercuric reductase (MerA) in this organism. In addition, the cells can mediate multiple reactions including Hg/MeHg sorption, Hg reduction and oxidation, resulting in both time and concentration dependent Hg species transformations. Moderate concentrations (10 500 M) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of methylation and demethylation among anaerobic bacteria and suggest that mer-mediated demethylation may play a role in the net balance of MeHg production in anoxic water and sediments.« less

  20. Biochemistry and Occurrence of O-Demethylation in Plant Metabolism

    PubMed Central

    Hagel, Jillian M.; Facchini, Peter J.

    2010-01-01

    Demethylases play a pivitol role in numerous biological processes from covalent histone modification and DNA repair to specialized metabolism in plants and microorganisms. Enzymes that catalyze O- and N-demethylation include 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenases, cytochromes P450, Rieske-domain proteins and flavin adenine dinucleotide (FAD)-dependent oxidases. Proposed mechanisms for demethylation by 2OG/Fe(II)-dependent enzymes involve hydroxylation at the O- or N-linked methyl group followed by formaldehyde elimination. Members of this enzyme family catalyze a wide variety of reactions in diverse plant metabolic pathways. Recently, we showed that 2OG/Fe(II)-dependent dioxygenases catalyze the unique O-demethylation steps of morphine biosynthesis in opium poppy, which provides a rational basis for the widespread occurrence of demethylases in benzylisoquinoline alkaloid metabolism. PMID:21423357

  1. Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria.

    PubMed

    Jansen, M; Hansen, T A

    2001-01-01

    The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662(T), Sporomusa sphaeroides DSM 2875(T), and Acetobacterium woodii DSM 1030(T) were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h(-1)) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min(-1) mg of protein(-1), both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min(-1) mg of protein(-1) were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero. PMID:11133459

  2. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation

    SciTech Connect

    Lawrence, Paul; Conderino, Joseph S.; Rieder, Elizabeth

    2014-03-15

    Previously, RNA helicase A (RHA) re-localization from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells was shown to coincide with loss of RHA methylated arginine residues at its C-terminus. The potential interaction between RHA and Jumonji C-domain (JmjC) protein 6 (JMJD6) arginine demethylase in infected cells was investigated. Treatment with N-oxalylglycine (NOG) inhibitor of JmjC demethylases prevented FMDV-induced RHA demethylation and re-localization, and also decreased viral protein synthesis and virus titers. Physical interaction between JMJD6 and RHA was demonstrated via reciprocal co-immunoprecipitation, where RHA preferentially bound JMJD6 monomers. Nuclear efflux of demethylated RHA (DM-RHA) coincided with nuclear influx of JMJD6, which was not observed using another picornavirus. A modified biochemical assay demonstrated JMJD6 induced dose-dependent demethylation of RHA and two RHA-derived isoforms, which could be inhibited by NOG. We propose a role for JMJD6 in RHA demethylation stimulated by FMDV, that appears to facilitate virus replication. - Highlights: • We examined the role of JMJD6 in FMDV-induced RHA demethylation process. • Using an arginine demethylation assay showed that JMJD6 is involved in RHA demethylation. • A demethylases inhibitor reduced cytoplasmic accumulation of RHA and FMDV titers.

  3. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation.

    PubMed

    Ke, Xing; Zhang, Shuping; Xu, Jian; Liu, Genyan; Zhang, Lixia; Xie, Erfu; Gao, Li; Li, Daqian; Sun, Ruihong; Wang, Fang; Pan, Shiyang

    2016-05-01

    Patients with non-small-cell lung cancer (NSCLC) have immune defects that are poorly understood. Forkhead box protein P3 (Foxp3) is crucial for immunosuppression by CD4(+) regulatory T cells (Tregs). It is not well known how NSCLC induces Foxp3 expression and causes immunosuppression in tumor-bearing patients. Our study found a higher percentage of CD4(+) Tregs in the peripheral blood of NSCLC compared with healthy donors. NSCLC patients showed demethylation of eight CpG sites within the Foxp3 promoter with methylation ratios negatively correlated with CD4(+)CD25(+)Foxp3(+) T levels. Foxp3 expression in CD4(+) Tregs was directly regulated by Foxp3 promoter demethylation and was involved in immunosuppression by NSCLC. To verify the effect of tumor cells on the phenotype and function of CD4(+) Tregs, we established a coculture system using NSCLC cell line and healthy CD4(+) T cells and showed that SPC-A1 induced IL-10 and TGF-β1 secretion by affecting the function of CD4(+) Tregs. The activity of DNA methyltransferases from CD4(+) T was decreased during this process. Furthermore, eight CpG sites within the Foxp3 promoter also appeared to have undergone demethylation. Foxp3 is highly expressed in CD4(+) T cells, and this may be caused by gene promoter demethylation. These induced Tregs are highly immunosuppressive and dramatically inhibit the proliferative activity of naïve CD4(+) T cells. Our study provides one possible mechanism describing Foxp3 promoter demethylation changes by which NSCLC down-regulates immune responses and contributes to tumor progression. Foxp3 represents an important target for NSCLC anti-tumor immunotherapy. PMID:27000869

  4. Real-time dynamics of methyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy

    PubMed Central

    Cui, Yi; Cho, Il-Hoon; Chowdhury, Basudev; Irudayaraj, Joseph

    2013-01-01

    With unprecedented development in technology, epigenetics is recognized as a substantial and flexible regulatory pathway for phenotyping. Cytosine methylation and its subsequent oxidization have attracted significant attention due to their direct impact on gene regulation, in association with methyl-CpG-binding domain proteins (MBDs) and transcription related factors. In this study we record the dynamics of DNA demethylation using the recombinant MBD3-GFP protein in living cells under hypoxia and Decitabine treatment using Fluorescence Correlation Spectroscopy (FCS) by monitoring the diffusion dynamics of MBD3. Our study shows a DNA-replication-independent decrease of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) under hypoxia vs. a dependent decrease under Decitabine treatment. Further, we define a significantly faster diffusion of MBD3 in the nucleus as a precursory event for active demethylation rather than the Decitabine induced passive demethylation. By monitoring the diffusion of bound and unbound MBD3 in the nucleus we were able to identify and characterize hypoxia-sensitive cells from insensitive/tolerant cells, as well as the respective contribution to active demethylation in a time-dependent manner. Last, we quantitatively describe the concurrent decreasing trend in all of the three oxidized products of 5mC, which points to the potential involvement of ten-eleven-translocation proteins (TETs) in hypoxia induced active demethylation. Overall, for the first time we correlate the dynamic process of DNA demethylation with the biophysical properties of the corresponding DNA binding proteins in live single cells by single molecule spectroscopy. PMID:23974971

  5. A CRISPR-based approach for targeted DNA demethylation.

    PubMed

    Xu, Xingxing; Tao, Yonghui; Gao, Xiaobo; Zhang, Lei; Li, Xufang; Zou, Weiguo; Ruan, Kangcheng; Wang, Feng; Xu, Guo-Liang; Hu, Ronggui

    2016-01-01

    In mammalian cells, DNA methylation critically regulates gene expression and thus has pivotal roles in myriad of physiological and pathological processes. Here we report a novel method for targeted DNA demethylation using the widely used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system. Initially, modified single guide RNAs (sgRNAs) (sgRNA2.0) were constructed by inserting two copies of bacteriophage MS2 RNA elements into the conventional sgRNAs, which would facilitate the tethering of the Tet1 catalytic domain (Tet-CD), in fusion with dCas9 or MS2 coat proteins, to the targeted gene loci. Subsequently, such system was shown to significantly upregulate transcription of the target genes, including RANKL, MAGEB2 or MMP2, which was in close correlation to DNA demethylation of their neighboring CpGs in the promoters. In addition, the dCas9/sgRNA2.0-directed demethylation system appeared to afford efficient demethylation of the target genes with tenuous off-target effects. Applications of this system would not only help us understand mechanistically how DNA methylation might regulate gene expression in specific contexts, but also enable control of gene expression and functionality with potential clinical benefits. PMID:27462456

  6. A CRISPR-based approach for targeted DNA demethylation

    PubMed Central

    Xu, Xingxing; Tao, Yonghui; Gao, Xiaobo; Zhang, Lei; Li, Xufang; Zou, Weiguo; Ruan, Kangcheng; Wang, Feng; Xu, Guo-liang; Hu, Ronggui

    2016-01-01

    In mammalian cells, DNA methylation critically regulates gene expression and thus has pivotal roles in myriad of physiological and pathological processes. Here we report a novel method for targeted DNA demethylation using the widely used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system. Initially, modified single guide RNAs (sgRNAs) (sgRNA2.0) were constructed by inserting two copies of bacteriophage MS2 RNA elements into the conventional sgRNAs, which would facilitate the tethering of the Tet1 catalytic domain (Tet-CD), in fusion with dCas9 or MS2 coat proteins, to the targeted gene loci. Subsequently, such system was shown to significantly upregulate transcription of the target genes, including RANKL, MAGEB2 or MMP2, which was in close correlation to DNA demethylation of their neighboring CpGs in the promoters. In addition, the dCas9/sgRNA2.0-directed demethylation system appeared to afford efficient demethylation of the target genes with tenuous off-target effects. Applications of this system would not only help us understand mechanistically how DNA methylation might regulate gene expression in specific contexts, but also enable control of gene expression and functionality with potential clinical benefits. PMID:27462456

  7. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

    1991-01-01

    Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

  8. Sulfation of o-demethyl apixaban: enzyme identification and species comparison.

    PubMed

    Wang, Lifei; Raghavan, Nirmala; He, Kan; Luettgen, Joseph M; Humphreys, W Griffith; Knabb, Robert M; Pinto, Donald J; Zhang, Donglu

    2009-04-01

    Apixaban, a potent and highly selective factor Xa inhibitor, is currently under development for treatment of arterial and venous thrombotic diseases. The O-demethyl apixaban sulfate is a major circulating metabolite in humans but circulates at lower concentrations relative to parent in animals. The aim of this study was to identify the sulfotransferases (SULTs) responsible for the sulfation reaction. Apixaban undergoes O-demethylation catalyzed by cytochrome P450 enzymes to O-demethyl apixaban, and then is conjugated by SULTs to form O-demethyl apixaban sulfate. Of the five human cDNA-expressed SULTs tested, SULT1A1 and SULT1A2 exhibited significant levels of catalytic activity for formation of O-demethyl apixaban sulfate, and SULT1A3, SULT1E1, and SULT2A1 showed much lower catalytic activities. In human liver S9, quercetin, a highly selective inhibitor of SULT1A1 and SULT1E1, inhibited O-demethyl apixaban sulfate formation by 99%; 2,6-dichloro-4-nitrophenol, another inhibitor of SULT1A1, also inhibited this reaction by >90%; estrone, a competitive inhibitor for SULT1E1, had no effect on this reaction. The comparable K(m) values for formation of O-demethyl apixaban sulfate were 41.4 microM (human liver S9), 36.8 microM (SULT1A1), and 70.8 microM (SULT1A2). Because of the high level of expression of SULT1A1 in liver and its higher level of catalytic activity for formation of O-demethyl apixaban sulfate, SULT1A1 might play a major role in humans for formation of O-demethyl apixaban sulfate. O-Demethyl apixaban was also investigated in liver S9 of mice, rats, rabbits, dogs, monkeys, and humans. The results indicated that liver S9 samples from dogs, monkeys, and humans had higher activities for formation of O-demethyl apixaban sulfate than those of mice, rats, and rabbits. PMID:19131519

  9. Uracil-DNA Glycosylase UNG Promotes Tet-mediated DNA Demethylation.

    PubMed

    Xue, Jian-Huang; Xu, Gui-Fang; Gu, Tian-Peng; Chen, Guo-Dong; Han, Bin-Bin; Xu, Zhi-Mei; Bjørås, Magnar; Krokan, Hans E; Xu, Guo-Liang; Du, Ya-Rui

    2016-01-01

    In mammals, active DNA demethylation involves oxidation of 5-methylcytosine (5mC) into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by Tet dioxygenases and excision of these two oxidized bases by thymine DNA glycosylase (TDG). Although TDG is essential for active demethylation in embryonic stem cells and induced pluripotent stem cells, it is hardly expressed in mouse zygotes and dispensable in pronuclear DNA demethylation. To search for other factors that might contribute to demethylation in mammalian cells, we performed a functional genomics screen based on a methylated luciferase reporter assay. UNG2, one of the glycosylases known to excise uracil residues from DNA, was found to reduce DNA methylation, thus activating transcription of a methylation-silenced reporter gene when co-transfected with Tet2 into HEK293T cells. Interestingly, UNG2 could decrease 5caC from the genomic DNA and a reporter plasmid in transfected cells, like TDG. Furthermore, deficiency in Ung partially impaired DNA demethylation in mouse zygotes. Our results suggest that UNG might be involved in Tet-mediated DNA demethylation. PMID:26620559

  10. Oxidative demethylation of 2-picolines on vanadium oxide catalysts

    SciTech Connect

    Suvorov, B.V.; Glubokovskikh, L.K.; Demin, V.V.; Kan, I.I.

    1988-07-10

    One of the known methods for the preparation of pyridine is based on the dealkylation of alkylpyridines in the presence of vanadium-containing catalysts, molecular oxygen and steam. By using the oxidative demethylation of 2-picoline in the presence of steam on a fused vanadium(V) oxide, pyridine can be obtained in a yield of up to 88% of theory. To lower the consumption of vanadium(V) oxide and increase the thermostability of the catalyst, they studied the possible use of V/sub 2/O/sub 5/ catalysts on various carriers (diatomite, silica gel, porcelain balls), including the industrially produced brand SVD and SVS catalysts. The SVS brand catalyst has a satisfactory activity and selectivity in the oxidation demethylation of 2-picoline into pyridine. Under optimal conditions, pyridine is formed on this catalyst in a yield of 88% of the theoretical.

  11. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.

    PubMed

    Hackett, Jamie A; Sengupta, Roopsha; Zylicz, Jan J; Murakami, Kazuhiro; Lee, Caroline; Down, Thomas A; Surani, M Azim

    2013-01-25

    Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, we demonstrate that erasure of CpG methylation (5mC) in PGCs occurs via conversion to 5-hydroxymethylcytosine (5hmC), driven by high levels of TET1 and TET2. Global conversion to 5hmC initiates asynchronously among PGCs at embryonic day (E) 9.5 to E10.5 and accounts for the unique process of imprint erasure. Mechanistically, 5hmC enrichment is followed by its protracted decline thereafter at a rate consistent with replication-coupled dilution. The conversion to 5hmC is an important component of parallel redundant systems that drive comprehensive reprogramming in PGCs. Nonetheless, we identify rare regulatory elements that escape systematic DNA demethylation in PGCs, providing a potential mechanistic basis for transgenerational epigenetic inheritance. PMID:23223451

  12. Method for recovering and using lignin in adhesive resins by extracting demethylated lignin

    DOEpatents

    Schroeder, Herbert A.

    1991-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is preferably dried and stored until it is used (along with an alkali, an aldehyde and an adhesive filler) in compounding an adhesive of the type generally used in the manufacture of plywood.

  13. Method for recovering and using lignin in adhesive resins by extracting demethylated lignin

    DOEpatents

    Schroeder, Herbert A.

    1991-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.

  14. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  15. MicroRNA Mediates DNA De-methylation Events Triggered By Retinoic Acid During Neuroblastoma Cell Differentiation

    PubMed Central

    Das, Sudipto; Foley, Niamh; Bryan, Kenneth; Watters, Karen M; Bray, Isabella; Murphy, Derek M; Buckley, Patrick G; Stallings, Raymond L

    2010-01-01

    Neuroblastoma is an often fatal pediatric cancer arising from precursor cells of the sympathetic nervous system. 13-Cis retinoic acid is included in the treatment regime for patients with high-risk disease, and a similar derivative, all-trans retinoic acid (ATRA) causes neuroblastoma cell lines to undergo differentiation. The molecular signaling pathways involved with ATRA induced differentiation are complex, and the role that DNA methylation changes might play are unknown. The purpose of this study was to evaluate the genome-wide effects of ATRA on DNA methylation using methylated DNA immunoprecipitation applied to microarrays representing all known promoter and CpG islands. 402 gene promoters became demethylated, while 88 were hypermethylated post-ATRA. mRNA expression microarrays revealed that 82 of the demethylated genes were over-expressed by >2 fold, while 13 of the hyper methylated genes were under-expressed. Gene ontology analysis indicated that de-methylated and re-expressed genes were enriched for signal transduction pathways, including NOS1, which is required for neural cell differentiation. As a potential mechanism for the DNA methylation changes, we demonstrate the down-regulation of methyltransferases, DNMT1 and DNMT3B, along with the up-regulation of endogenous microRNAs targeting them. Ectopic over-expression of miR-152, targeting DNMT1, also negatively impacted cell invasiveness and anchorage independent growth, contributing in part to the differentiated phenotype. We conclude that functionally important, miRNA-mediated DNA de-methylation changes contribute to the process of ATRA induced differentiation resulting in the activation of NOS1, a critical determinant of neural cell differentiation. Our findings illustrate the plasticity and dynamic nature of the epigenome during cancer cell differentiation. PMID:20841484

  16. PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos

    PubMed Central

    Kim, Shinseog; Günesdogan, Ufuk; Zylicz, Jan J.; Hackett, Jamie A.; Cougot, Delphine; Bao, Siqin; Lee, Caroline; Dietmann, Sabine; Allen, George E.; Sengupta, Roopsha; Surani, M. Azim

    2014-01-01

    Summary Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation. PMID:25457166

  17. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  18. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  19. Demethylating Agents in the Treatment of Cancer

    PubMed Central

    Howell, Paul M.; Liu, Zixing; Khong, Hung T.

    2010-01-01

    Gene silencing resulting from aberrant DNA methylation can lead to tumorigenesis. Therefore, drugs that inhibit or interfere with DNA methylation have been used to reactivate and induce silenced gene re-expression in malignancies. Two demethylating agents, azacitidine and decitabine, are approved for the treatment of myelodysplastic syndromes (MDS) by the U.S. Food and Drug Administration (FDA), and are now considered the standard of care in MDS. In this review, we discuss clinical data, including clinical benefits and toxicities, which led to the approval of azacitidine and decitabine. We also summarize findings from clinical trials that used these two demethylating agents in the treatment of solid tumors. Lastly, we discuss some limitations in the use of azacitidine and decitabine in cancer therapy.

  20. A novel apoptosis-inducing mechanism of 5-aza-2'-deoxycitidine in melanoma cells: Demethylation of TNF-α and activation of FOXO1.

    PubMed

    Noguchi, Shunsuke; Mori, Takashi; Igase, Masaya; Mizuno, Takuya

    2015-12-28

    Melanoma is a poor-prognosis cancer in both humans and dogs, and so the anti-tumor effects of 5-aza-2'-deoxycitidine (5-aza) on solid tumors such as melanoma have gained much attention. However, its anti-tumor mechanism remains entirely unclear. This present study revealed a part of the anti-tumor effects of 5-aza, focusing on apoptosis induction, on human and canine melanoma cells. Treatment with 5-aza markedly induced obvious apoptosis in melanoma cells. 5-Aza-induced apoptosis was possibly due to induced expression of cytotoxic cytokines such as TNF-α. We revealed hypermethylation of the promoter region of TNF-α as a consequence of treatment with 5-aza. Concurrently, we evaluated the effect of 5-aza on the Akt/FOXO1 signaling cascade, which plays a pivotal role in the transcription of cytokine genes. As a result, 5-aza inactivated Akt and inversely activated FOXO1, which contributed to the up-regulation of TNF-α. Furthermore, up-regulation of TNF-α by 5-aza administration was found in in vivo experiments. These current data suggest a novel apoptosis-inducing mechanism of 5-aza and indicate that 5-aza could be a promising therapeutic agent for the treatment of human and canine melanomas. PMID:26335173

  1. Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen.

    PubMed

    Hu, Xiaoyi V; Rodrigues, Tânia M A; Tao, Haiyan; Baker, Robert K; Miraglia, Loren; Orth, Anthony P; Lyons, Gary E; Schultz, Peter G; Wu, Xu

    2010-08-24

    DNA methylation is an important epigenetic modification involved in transcriptional regulation, nuclear organization, development, aging, and disease. Although DNA methyltransferases have been characterized, the mechanisms for DNA demethylation remain poorly understood. Using a cell-based reporter assay, we performed a functional genomics screen to identify genes involved in DNA demethylation. Here we show that RNF4 (RING finger protein 4), a SUMO-dependent ubiquitin E3-ligase previously implicated in maintaining genome stability, plays a key role in active DNA demethylation. RNF4 reactivates methylation-silenced reporters and promotes global DNA demethylation. Rnf4 deficiency is embryonic lethal with higher levels of methylation in genomic DNA. Mechanistic studies show that RNF4 interacts with and requires the base excision repair enzymes TDG and APE1 for active demethylation. This activity appears to occur by enhancing the enzymatic activities that repair DNA G:T mismatches generated from methylcytosine deamination. Collectively, our study reveals a unique function for RNF4, which may serve as a direct link between epigenetic DNA demethylation and DNA repair in mammalian cells. PMID:20696907

  2. A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation

    PubMed Central

    Griffin, Patrick T.; Niederhuth, Chad E.; Schmitz, Robert J.

    2016-01-01

    The nonmethylable cytosine analogs, 5-azacytidine and zebularine, are widely used to inhibit DNA methyltransferase activity and reduce genomic DNA methylation. In this study, whole-genome bisulfite sequencing is used to construct maps of DNA methylation with single base pair resolution in Arabidopsis thaliana seedlings treated with each demethylating agent. We find that both inhibitor treatments result in nearly indistinguishable patterns of genome-wide DNA methylation and that 5-azacytidine had a slightly greater demethylating effect at higher concentrations across the genome. Transcriptome analyses revealed a substantial number of upregulated genes, with an overrepresentation of transposable element genes, in particular CACTA-like elements. This demonstrates that chemical demethylating agents have a disproportionately large effect on loci that are otherwise silenced by DNA methylation. PMID:27402357

  3. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Hines, Mark E.; Poitras, Erin N.; Covelli, Stefano; Faganeli, Jadran; Emili, Andrea; Žižek, Suzana; Horvat, Milena

    2012-11-01

    Mercury (Hg) transformation activities and sulfate (SO42-) reduction were studied in sediments of the Marano and Grado Lagoons in the Northern Adriatic Sea region as part of the "MIRACLE" project. The lagoons, which are sites of clam (Tapes philippinarum) farming, have been receiving excess Hg from the Isonzo River for centuries. Marano Lagoon is also contaminated from a chlor-alkali plant. Radiotracer methods were used to measure mercury methylation (230Hg, 197Hg), methylmercury (MeHg) demethylation (14C-MeHg) and SO42- reduction (35S) in sediment cores collected in autumn, winter and summer. Mercury methylation rate constants ranged from near zero to 0.054 day-1, generally decreased with depth, and were highest in summer. Demethylation rate constants were much higher than methylation reaching values of ˜0.6 day-1 in summer. Demethylation occurred via the oxidative pathway, except in winter when the reductive pathway increased in importance in surficial sediments. Sulfate reduction was also most active in summer (up to 1600 nmol mL-1 day-1) and depth profiles reflected seasonally changing redox conditions near the surface. Methylation and demethylation rate constants correlated positively with SO42- reduction and pore-water Hg concentrations, and inversely with Hg sediment-water partition coefficients indicating the importance of SO42- reduction and Hg dissolution on Hg cycling. Hg transformation rates were calculated using rate constants and concentrations of Hg species. In laboratory experiments, methylation was inhibited by amendments of the SO42--reduction inhibitor molybdate and by nitrate. Lagoon sediments displayed a dynamic seasonal cycle in which Hg dissolution in spring/summer stimulated Hg methylation, which was followed by a net loss of MeHg in autumn from demethylation. Sulfate-reducing bacteria (SRB) tended to be responsible for methylation of Hg and the oxidative demethylation of MeHg. However, during winter in surficial sediments, iron

  4. No Evidence for AID/MBD4-Coupled DNA Demethylation in Zebrafish Embryos

    PubMed Central

    Kaneto, Reiya; Izawa, Toshiaki; Yokoi, Hayato; Hashimoto, Naohiro; Kikuchi, Yutaka

    2014-01-01

    The mechanisms responsible for active DNA demethylation remain elusive in Metazoa. A previous study that utilized zebrafish embryos provided a potent mechanism for active demethylation in which three proteins, AID, MBD4, and GADD45 are involved. We recently found age-dependent DNA hypomethylation in zebrafish, and it prompted us to examine if AID and MBD4 could be involved in the phenomenon. Unexpectedly, however, we found that most of the findings in the previous study were not reproducible. First, the injection of a methylated DNA fragment into zebrafish eggs did not affect either the methylation of genomic DNA, injected methylated DNA itself, or several loci tested or the expression level of aid, which has been shown to play a role in demethylation. Second, aberrant methylation was not observed at certain CpG islands following the injection of antisense morpholino oligonucleotides against aid and mbd4. Furthermore, we demonstrated that zebrafish MBD4 cDNA lacked a coding region for the methyl-CpG binding domain, which was assumed to be necessary for guidance to target regions. Taken together, we concluded that there is currently no evidence to support the proposed roles of AID and MBD4 in active demethylation in zebrafish embryos. PMID:25536520

  5. Promoter DNA demethylation of Keap1 gene in diabetic cardiomyopathy

    PubMed Central

    Liu, Zhong-Zhi; Zhao, Xiang-Zhi; Zhang, Xue-Song; Zhang, Mei

    2014-01-01

    Researches have shown that the onset of diabetes is closely associated with oxidative stress and the chronic exposure leads to the development of complications such as diabetic cardiomyopathy. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. The aim of the present study was to investigate the status of Nrf2 mediated antioxidant system in myocardial biopsies of non-diabetic (NDM) and type-2 diabetic (DM-T2) cardiomyopathy patients. The western blot analysis of antioxidant proteins, real-time PCR analysis of Nrf2/Keap1 gene and bisulphate DNA sequencing analysis to study the methylation status of the CpG islands of Keap1 promoter DNA were performed. The immunoblot analysis showed the decreased level of antioxidant proteins other than Keap1 in the diabetic cardiopathy patients. Similarly, mRNA levels of Keap1 showed 5-fold increase in diabetic patients. Further analysis on promoter region of Keap1 gene revealed 80% demethylation in diabetic patients. Altogether, our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which then increases the targeting of Nrf2 for proteosomal degradation. Decreased Nrf2 activity represses the transcription of many antioxidant enzyme genes and alters the redox-balance up on diabetes. Thus, our study clearly demonstrates the failure of Nrf2 mediated antioxidant system revealed in biopsies of diabetic cardiomyopathy. PMID:25674242

  6. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  7. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  8. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses

    SciTech Connect

    Palsamy, Periyasamy; Ayaki, Masahiko; Elanchezhian, Rajan; Shinohara, Toshimichi

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer We found significant Keap1 promoter demethylation in diabetic cataractous lenses. Black-Right-Pointing-Pointer Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. Black-Right-Pointing-Pointer Elevated levels of Keap1 are known to decrease the levels of Nrf2. Black-Right-Pointing-Pointer Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is known that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2 Prime deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which

  9. Simulated vibrational spectra of aflatoxins and their demethylated products and the estimation of the energies of the demethylation reactions

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Móricz, Ágnes M.; Tyihák, Ernő; Mikosch, Hans

    2006-06-01

    The structure of four natural mycotoxins, the aflatoxin B 1, B 2, G 1 and G 2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.

  10. Simultaneous determination of the novel tyrosine kinase inhibitor meditinib and its active metabolite demethylation meditinib in monkey plasma by liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic studies.

    PubMed

    Liang, Feng; Kong, Qi; Guo, Yongqi; Wang, Yu; Sun, Dejie; Liu, Shi; Cai, Jinling; Guan, Yongbiao; Ding, Rigao

    2015-08-01

    Meditinib (ME) is a novel tyrosine kinase inhibitor used as an antichronic myeloid leukemia drug. A simple, sensitive and specific LC/MS/MS method was developed and validated for the analysis of ME and its metabolite demethylation meditinib (PI) in monkey plasma using naltrexone as the internal standard. Sample preparation involved protein precipitation with methanol. The analysis was carried out on an Agilent C8 column (3.5 µm, 2.1 × 50 mm). Elution was achieved with a mobile phase gradient varying the proportion of a water solution containing 0.1% formic acid (solvent A) and a 0.1% formic acid in methanol solution (solvent B) at a flow rate of 300 μL/min. The method had a linear calibration curve over the concentration range of 2-1000 ng/mL for ME and 2-1000 ng/mL for PI. The lower limits of quantification of ME and PI were 2 and 2 ng/mL, respectively. The intra- and inter-day precision values were <15% and accuracy values were within ±10.0%. The mean recoveries of ME and PI from plasma were >85%. The assay has been successfully used for pharmacokinetic evaluation of ME and PI using the monkey as an animal model, and those data are reported for the first time. PMID:25616210

  11. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  12. Anaerobic O-demethylation of phenylmethylethers. [und Acetobacterium woodii :a3

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1991-08-01

    Assay of O-demethylation in cell-free extracts of Acetobacterium woodii: we have shown that THF and ATP are necessary for enzyme activity and thus are probably reactants; apparent Km values were 0.65 mM for the methoxylated substrate, 0.27 mM for ATP, and 0.17 mM for DL-THF. The enzyme activity is present in the cytosol, rather than being membrane bound, and is sensitive to oxygen. There is evidence to suggest that the enzyme system involves more than one protein component. Studies using suspensions of whole cells, suggest that there are several inducible AOD systems with distinguishable substrate specificities in A. woodii. A similar phenomenon has previously been suggested for the related acetogen, Eubacterium limosum. We have developed a system for obtaining mutants that are deficient in O-demethylation (AOD{sup {minus}}) in E. limosum, by using transposon mutagenesis with Tn916. In an ancillary study, A. woodii and E. limosum, were compared with respect to their capacity to O-demethylate guaiacol and chloroguaiacols. 8 refs., 1 fig., 1 tab.

  13. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    SciTech Connect

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  14. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis

    SciTech Connect

    Spudich, E.N.; Takahashi, T.; Spudich, J.L. )

    1989-10-01

    This work demonstrates that phototaxis stimuli in the archaebacterium Halobacterium halobium control a methylation/demethylation system in vivo through photoactivation of sensory rhodopsin I (SR-I) in either its attractant or repellent signaling form as well as through the repellent receptor sensory rhodopsin II (SR-II, also called phoborhodopsin). The effects of positive stimuli that suppress swimming reversals (i.e., an increase in attractant or decrease in repellent light) and negative stimuli that induce swimming reversals (i.e., a decrease in attractant or increase in repellent light) through each photoreceptor were monitored by assaying release of volatile (3H)methyl groups. This assay has been used to measure (3H)methanol produced during the process of adaptation to chemotactic stimuli in eubacteria. In H. halobium positive photostimuli produce a transient increase in the rate of demethylation followed by a decrease below the unstimulated value, whereas negative photostimuli cause an increase followed by a rate similar to that of the unstimulated value. Photoactivation of the SR-I attractant and simultaneous photoactivation of the SR-II repellent receptors cancel in their effects on demethylation, demonstrating the methylation system is regulated by an integrated signal. Analysis of mutants indicates that the source for the volatile methyl groups is intrinsic membrane proteins distinct from the chromoproteins that share the membrane. A methyl-accepting protein (94 kDa) previously correlated in amount with the SR-I chromoprotein (25 kDa) is shown here to be missing in a recently isolated SR-I-SR-II+ mutant (Flx3b), thus confirming the association of this protein with SR-I. Photoactivated SR-II in mutant Flx3b controls demethylation, predicting the existence of a photomodulated methyl-accepting component distinct from the 94-kDa protein of SR-I.

  15. Pluripotency Transcription Factor Oct4 Mediates Stepwise Nucleosome Demethylation and Depletion

    PubMed Central

    Shakya, Arvind; Callister, Catherine; Goren, Alon; Yosef, Nir; Garg, Neha; Khoddami, Vahid; Nix, David; Regev, Aviv

    2015-01-01

    The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion. PMID:25582194

  16. Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification.

    PubMed

    Xu, Xiaohan; Zhao, Jiating; Li, Yunyun; Fan, Yuqin; Zhu, Nali; Gao, Yuxi; Li, Bai; Liu, Hanyu; Li, Yu-Feng

    2016-03-01

    Mercury (Hg) is a global pollutant that poses a serious threat to human and the environment. Rice was found as an important source for human exposure to Hg in some areas. In this study, the transportation and transformation of IHg and MeHg in rice plants exposed to IHg or MeHg were investigated. The IHg and MeHg concentrations in rice roots and shoots collected every five days were analyzed by HPLC-ICP-MS and SR-XANES. When exposed to MeHg, the percent of IHg in rice roots and shoots increased while MeHg decreased significantly, suggesting prominent demethylation of MeHg occurred. However no notable MeHg was found in both roots and shoots of rice plant when exposed to IHg. SR-XANES analysis further confirmed the demethylation of MeHg with rice. This study provides a new finding that demethylation of MeHg could occur in growing rice, which may be a self-defense process of rice plant. PMID:26708765

  17. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis.

    PubMed

    Kramlinger, Valerie M; Alvarado Rojas, Mónica; Kanamori, Tatsuyuki; Guengerich, F Peter

    2015-08-14

    Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid L-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O(3)- and the O(6)-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O(3)-demethylation and the O(6)-demethylation are members of the Fe(II)/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O(3)-demethylation. We report that demethylation of thebaine at the O(6)-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O(6)-demethylation of thebaine by an Fe(II)/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O(6)-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O(6)-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified. PMID:26157146

  18. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5.

    PubMed

    Quandt, Erik M; Hammerling, Michael J; Summers, Ryan M; Otoupal, Peter B; Slater, Ben; Alnahhas, Razan N; Dasgupta, Aurko; Bachman, James L; Subramanian, Mani V; Barrick, Jeffrey E

    2013-06-21

    The widespread use of caffeine (1,3,7-trimethylxanthine) and other methylxanthines in beverages and pharmaceuticals has led to significant environmental pollution. We have developed a portable caffeine degradation operon by refactoring the alkylxanthine degradation (Alx) gene cluster from Pseudomonas putida CBB5 to function in Escherichia coli. In the process, we discovered that adding a glutathione S-transferase from Janthinobacterium sp. Marseille was necessary to achieve N 7 -demethylation activity. E. coli cells with the synthetic operon degrade caffeine to the guanine precursor, xanthine. Cells deficient in de novo guanine biosynthesis that contain the refactored operon are ″addicted″ to caffeine: their growth density is limited by the availability of caffeine or other xanthines. We show that the addicted strain can be used as a biosensor to measure the caffeine content of common beverages. The synthetic N-demethylation operon could be useful for reclaiming nutrient-rich byproducts of coffee bean processing and for the cost-effective bioproduction of methylxanthine drugs. PMID:23654268

  19. A Specific LSD1/KDM1A Isoform Regulates Neuronal Differentiation through H3K9 Demethylation

    PubMed Central

    Laurent, Benoit; Ruitu, Lv; Murn, Jernej; Hempel, Kristina; Ferrao, Ryan; Xiang, Yang; Liu, Shichong; Garcia, Benjamin A.; Wu, Hao; Wu, Feizhen; Steen, Hanno; Shi, Yang

    2015-01-01

    Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons. PMID:25684206

  20. Lipoxygenase-mediated hydrogen peroxide-dependent N-demethylation of N,N-dimethylaniline and related compounds.

    PubMed

    Hover, C G; Kulkarni, A P

    2000-02-01

    To date, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases. In this study we investigated the ability of non-heme iron proteins, namely soybean lipoxygenase (SLO) and human term placental lipoxygenase (HTPLO) to mediate N-demethylation of N,N-dimethylaniline (DMA) and related compounds in the presence of hydrogen peroxide. In addition to being hydrogen peroxide dependent, the reaction was also dependent on incubation time, concentration of enzyme and DMA and the pH of the medium. Using Nash reagent to estimate formaldehyde production, we determined the specific activity for SLO mediated N-demethylation of DMA to be 200 + 18 nmol HCHO/min per mg protein or 23 +/- 2 nmol/min per nmol of enzyme, while that of HTPLO was 33 +/- 4 nmol HCHO/min per mg protein. Nordihydroguaiaretic acid (NDGA), a classical inhibitor of lipoxygenase (LO), as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of production of formaldehyde from DMA by SLO. Besides N,N-dimethylaniline, N-methylaniline, N,N,N',N'-tetramethylbenzidine, N,N-dimethyl-p-phenylenediamine, N,N-dimethyl-3-nitroaniline and N,N-dimethyl-p-toluidine were also demethylated by SLO. The formation of a DMA N-oxide was not detected. Preliminary experiments suggested SLO-mediated hydrogen peroxide-dependent S-dealkylation of methiocarb or O-dealkylation of 4-nitroanisole does not occur. PMID:10728778

  1. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis.

    PubMed

    Christ, Bastien; Schelbert, Silvia; Aubry, Sylvain; Süssenbacher, Iris; Müller, Thomas; Kräutler, Bernhard; Hörtensteiner, Stefan

    2012-02-01

    During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C13(2)-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol. PMID:22147518

  2. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers.

    PubMed

    Berman, M H; Frazer, A C

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 +/- 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent Km values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60 degrees C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells. PMID:1575495

  3. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers

    SciTech Connect

    Berman, M.H.; Frazer, A.C. )

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 {plus minus} 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent K{sub m} values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells.

  4. Hepatic microsomal N-oxidation and N-demethylation of N,N-dimethylaniline in red-winged blackbird compared with rat and other birds

    USGS Publications Warehouse

    Pan, H.P.; Fouts, J.R.; Devereux, T.R.

    1975-01-01

    Hepatic microsomes prepared from red-winged blackbirds and albino rats were incubated with N,N-dimethylaniline (DMA)_in complete incubation mixtures at pH 7.9 and 37?C for 10 min. Formaldehyde and N,N-dimethylaniline--oxide produced from DMA were measured. Redwings were found to have significantly lower N-demethylation activities than rats, and redwings had only marginal or no N-oxidation activities. Hepatic microsomes from redwings did not further metabolize the N-oxide. The N-oxidation and N-demethylation activities of brown-headed cowbirds, common grackles, and starlings were similar to those of redwings.

  5. Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG

    PubMed Central

    Hashimoto, Hideharu

    2014-01-01

    Two mammalian DNA glycosylases, methyl-CpG binding domain protein 4 (MBD4) and thymine DNA glycosylase (TDG), are involved in active DNA demethylation via the base excision repair pathway. Both MBD4 and TDG excise the mismatch base from G:X, where X is uracil, thymine, and 5-hydroxymethyluracil (5hmU). In addition, TDG excises 5mC oxidized bases i.e. when X is 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) not 5-hydroxymethylcytosine (5hmC). A MBD4 inactive mutant and substrate crystal structure clearly explains how MBD4 glycosylase discriminates substrates: 5mC are not able to be directly excised, but a deamination process from 5mC to thymine is required. On the other hand, TDG is much more complicated; in this instance, crystal structures show that TDG recognizes G:X mismatch DNA containing DNA and G:5caC containing DNA from the minor groove of DNA, which suggested that TDG might recognize 5mC oxidized product 5caC like mismatch DNA. In mutation studies, a N157D mutation results in a more 5caC specific glycosylase, and a N191A mutation inhibits 5caC activity while that when X=5fC or T remains. Here I revisit the recent MBD4 glycos ylase domain co-crystal structures with DNA, as well as TDG glycosylase domain co-crystal structures with DNA in conjunction with its mutation studies.

  6. Processing of Activated Core Components

    SciTech Connect

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  7. Norcantharidin blocks Wnt/β-catenin signaling via promoter demethylation of WIF-1 in glioma.

    PubMed

    Xie, Dajiang; Xie, Jixi; Wan, Yingfeng; Ma, Li; Qi, Xuchen; Wang, Kun; Yang, Shuxu

    2016-04-01

    Glioma is one of the most common primary intracranial tumors, and the prognosis is poor even though much treatment management is employed. Wnt/β-catenin signaling has been reported to be associated with glioma. Norcantharidin (NCTD) is the demethylated analog of cantharidin isolated from blister beetles, and it is reported to possess anticancer activity but less nephrotoxicity than cantharidin. Accordingly, we aimed to investigate NCTD as an anti-neoplastic drug that inhibits the Wnt/β‑catenin pathway via promoter demethylation of Wnt inhibitory factor-1 (WIF-1) in glioma growth in vitro. In the present study, we report that NCTD inhibited cell proliferation, induced apoptosis and cell cycle arrest, and suppressed cell migration and invasion in vitro. Moreover, we observed that the expression levels of WIF-1 mRNA and protein in the NCTD-treated cells were increased significantly compared with these levels in the negative control (NC) cells. Promoter demethylation was observed in the NCTD‑treated cells. In contrast, aberrant methylation was observed in the NC cells. Additionally, more investigation revealed that NCTD suppressed activity of Wnt/β-catenin signaling and transcription of β-catenin/TCF-4. Furthermore, the expression of apoptosis-related proteins Bcl-2 and cleaved caspase-3 indicated significant cell apoptosis. We provide initial evidence that NCTD reactivates WIF-1 from a methylation state, and downregulates canonical Wnt/β-catenin signaling. Our findings revealed that NCTD is effective for glioma in vitro and may be a new therapeutic option in vivo. PMID:26781164

  8. Electrophilicities and Protein Covalent Binding of Demethylation Metabolites of Colchicine.

    PubMed

    Guo, Xiucai; Lin, Dongju; Li, Weiwei; Wang, Kai; Peng, Ying; Zheng, Jiang

    2016-03-21

    Colchicine, an alkaloid existing in plants of Liliaceous colchicum, has been widely used in the treatment of gout and familial Mediterranean fever. The administration of colchicine was found to cause liver injury in humans. The mechanisms of colchicine-induced liver toxicity remain unknown. The objectives of this study were to determine the electrophilicities of demethylation metabolites of colchicine and investigate the protein adductions derived from the reactive metabolites of colchicine. Four demethylated colchicine (1-, 2-, 3-, and 10-DMCs), namely, M1-M4, were detected in colchicine-fortified microsomal incubations. Four N-acetyl cysteine (NAC) conjugates (M5-M8) derived from colchicine were detected in the microsomes in the presence of NAC. M5 and M6 were derived from 10-DMC. M7 resulted from the reaction of 2-DMC or 3-DMC with NAC, and M8 originated from 10-DMC. Microsomal protein covalent binding was observed after exposure to colchicine. Two cysteine adducts (CA-1 and CA-2) derived from 10-DMC were found in proteolytically digested microsomal protein samples after incubation with colchicine. The findings allow us to define the chemical property of demethylation metabolites of colchicine and the interaction between protein and the reactive metabolites of colchicine generated in situ. PMID:26845511

  9. Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK

    PubMed Central

    PAN, FENG-PING; ZHOU, HONG-KUN; BU, HE-QI; CHEN, ZI-QIANG; ZHANG, HAO; XU, LU-PING; TANG, JIAN; YU, QING-JIANG; CHU, YONG-QUAN; PAN, JIE; FEI, YONG; LIN, SHENG-ZHANG; LIU, DIAN-LEI; CHEN, LIANG

    2016-01-01

    5-Aza-2′-deoxycytidine (5-Aza-CdR) is currently acknowledged as a demethylation drug, and causes a certain degree of demethylation in a variety of cancer cells, including pancreatic cancer cells. Emodin, a traditional Chinese medicine (TCM), is an effective monomer extracted from rhubarb and has been reported to exhibit antitumor activity in different manners in pancreatic cancer. In the present study, we examined whether emodin caused demethylation and increased the demethylation of three tumor-suppressor genes P16, RASSF1A and ppENK with a high degree of methylation in pancreatic cancer when combined with 5-Aza-CdR. Our research showed that emodin inhibited the growth of pancreatic cancer Panc-1 cells in a dose- and time-dependent manner. Dot-blot results showed that emodin combined with 5-Aza-CdR significantly suppressed the expression of genome 5mC in PANC-1 cells. In order to verify the effect of methylation, methylation-specific PCR (MSP) and bisulfite genomic sequencing PCR (BSP) combined with TA were selected for the cloning and sequencing. Results of MSP and BSP confirmed that emodin caused faint demethylation, and 5-Aza-CdR had a certain degree of demethylation. When emodin was combined with 5-Aza-CdR, the demethylation was more significant. At the same time, fluorescent quantitative PCR and western blot analysis results confirmed that when emodin was combined with 5-Aza-CdR, the expression levels of P16, RASSF1A and ppENK were increased more significantly compared to either treatment alone. In contrast, the expression levels of DNA methyltransferase 1 (DNMT1) and DNMT3a were more significantly reduced with the combination treatment than the control or either agent alone, further proving that emodin in combination with 5-Aza-CdR enhanced the demethylation effect of 5-Aza-CdR by reducing the expression of meth-yltransferases. In conclusion, the present study confirmed that emodin in combination with 5-Aza-CdR enhanced the demethylation by 5-Aza-CdR of

  10. Quantification for total demethylation potential of environmental samples utilizing the EGFP reporter gene.

    PubMed

    Qian, Yan; Wang, Xiao-li; Lv, Zhan-lu; Tysklind, Mats; Guo, Chen; Liang, Bao; Wu, Jia-bing; Yang, Yong-jian; Yang, Yi-shu; Wang, Fei-fei; Duan, Xiao-li; Ma, Jin; Wei, Yong-jie; Wang, Chun-hui; Yang, Li-xin; Zhang, Jin-liang; Shi, Xiao-ming; Wang, Xian-liang

    2016-04-01

    The demethylation potential of pollutants is arguably an innate component of their toxicity in environmental samples. A method was developed for determining the total demethylation potential of food samples (TDQ). The demethylation epigenetic toxicity was determined using the Hep G2 cell line transfected with pEGFP-C3 plasmids containing a methylated promoter of the EGFP reporter gene. The total demethylation potential of the sample extracts (the 5-AZA-CdR demethylation toxic equivalency) can be quantified within one week by using a standard curve of the 5-AZA-CdR demethylation agent. To explore the applicability of TDQ for environmental samples, 17 groundwater samples were collected from heavy polluted Kuihe river and the total demethylation potentials of the sample extracts were measured successfully. Meaningful demethylation toxic equivalencies ranging from 0.00050 to 0.01747μM were found in all groundwater sample extracts. Among 19 kinds of inorganic substance, As and Cd played important roles for individual contribution to the total demethylation epigenetic toxicity. The TDQ assay is reliable and fast for quantifying the DNA demethylation potential of environmental sample extracts, which may improve epigenetic toxicity evaluations for human risk assessment, and the consistent consuming of groundwater alongside the Kuihe river pose unexpected epigenetic health risk to the local residents. PMID:26774982

  11. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation

    PubMed Central

    Wang, Yu; Xie, Xiaoming; Shen, Jiangang; Peng, Cheng; You, Jieshu; Peng, Fu; Tang, Hailin; Guan, Xinyuan; Chen, Jianping

    2015-01-01

    Breast cancer stem cells (CSCs) are considered as the root of mammary tumorigenesis. Previous studies have demonstrated that ISL efficiently limited the activities of breast CSCs. However, the cancer prevention activities of ISL and its precise molecular mechanisms remain largely unknown. Here, we report a novel function of ISL as a natural demethylation agent targeting WIF1 to prevent breast cancer. ISL administration suppressed in vivo breast cancer initiation and progression, accompanied by reduced CSC-like populations. A global gene expression profile assay further identified WIF1 as the main response gene of ISL treatment, accompanied by the simultaneous downregulation of β-catenin signaling and G0/G1 phase arrest in breast CSCs. In addition, WIF1 inhibition significantly relieved the CSC-limiting effects of ISL and methylation analysis further revealed that ISL enhanced WIF1 gene expression via promoting the demethylation of its promoter, which was closely correlated with the inhibition of DNMT1 methyltransferase. Molecular docking analysis finally revealed that ISL could stably dock into the catalytic domain of DNMT1. Taken together, our findings not only provide preclinical evidence to demonstrate the use of ISL as a dietary supplement to inhibit mammary carcinogenesis but also shed novel light on WIF1 as an epigenetic target for breast cancer prevention. PMID:25918249

  12. Long-term stability of demethylation after transient exposure to 5-aza-2′-deoxycytidine correlates with sustained RNA polymerase II occupancy*

    PubMed Central

    Kagey, Jacob D.; Kapoor-Vazirani, Priya; McCabe, Michael T.; Powell, Doris R.; Vertino, Paula M.

    2010-01-01

    DNA methyltransferase (DNMT) inhibitors are currently the standard of care for myelodysplastic syndrome and are in clinical trials for leukemias and solid tumors. However, the molecular basis underlying their activity remains poorly understood. Here we studied the induction and long-term stability of gene reactivation at three methylated tumor suppressor loci in response to the DNMT inhibitor 5-aza-2′-deoxycytidine (5-azaCdR)in human breast cancer cells. At the TMS/ASC locus, treatment with 5-azaCdR resulted in partial DNA demethylation, the re-engagement of RNA polymerase II (Pol II), and a shift from a repressive chromatin profile marked with H3K9me2 and H4K20me3 to an active profile enriched in H3ac and H3K4me2. Using a single molecule approach coupling chromatin immunoprecipitation with bisulfite sequencing, we show that H3ac, H3K4me2, and Pol II selectively associated with the demethylated alleles, whereas H3K9me2 preferentially marked alleles resistant to demethylation. H4K20me3 was unaffected by DNA demethylation and associated with unmethylated and methylated alleles. After drug removal, TMS1 underwent partial remethylation yet a subset of alleles remained stably demethylated for over three months. These alleles remained selectively associated with H3K4me2, H3ac, and Pol II and correlated with a sustained low level of gene expression. TMS1 alleles reacquire H3K9me2over time and those alleles that became remethylated retained H3ac. In contrast, CDH1and ESR1 were remethylated and completely silenced within ~1 week of drug removal, and failed to maintain stably unmethylated alleles. Our data suggest that the ability to maintain Pol II occupancy is a critical factor in the long-term stability of drug-induced CpG island demethylation. PMID:20587535

  13. Long-term stability of demethylation after transient exposure to 5-aza-2'-deoxycytidine correlates with sustained RNA polymerase II occupancy.

    PubMed

    Kagey, Jacob D; Kapoor-Vazirani, Priya; McCabe, Michael T; Powell, Doris R; Vertino, Paula M

    2010-07-01

    DNA methyltransferase inhibitors are currently the standard of care for myelodysplastic syndrome and are in clinical trials for leukemias and solid tumors. However, the molecular basis underlying their activity remains poorly understood. Here, we studied the induction and long-term stability of gene reactivation at three methylated tumor suppressor loci in response to the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaCdR) in human breast cancer cells. At the TMS1/ASC locus, treatment with 5-azaCdR resulted in partial DNA demethylation, the reengagement of RNA polymerase II (Pol II), and a shift from a repressive chromatin profile marked with H3K9me2 and H4K20me3 to an active profile enriched in H3ac and H3K4me2. Using a single-molecule approach coupling chromatin immunoprecipitation with bisulfite sequencing, we show that H3ac, H3K4me2, and Pol II selectively associated with the demethylated alleles, whereas H3K9me2 preferentially marked alleles resistant to demethylation. H4K20me3 was unaffected by DNA demethylation and associated with both unmethylated and methylated alleles. After drug removal, TMS1 underwent partial remethylation, yet a subset of alleles remained stably demethylated for over 3 months. These alleles remained selectively associated with H3K4me2, H3ac, and Pol II and correlated with a sustained low level of gene expression. TMS1 alleles reacquired H3K9me2 over time, and those alleles that became remethylated retained H3ac. In contrast, CDH1 and ESR1 were remethylated and completely silenced within approximately 1 week of drug removal, and failed to maintain stably unmethylated alleles. Our data suggest that the ability to maintain Pol II occupancy is a critical factor in the long-term stability of drug-induced CpG island demethylation. PMID:20587535

  14. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB

    PubMed Central

    Li, Yuan; Hu, Yanhui; Dong, Congcong; Lu, Hongchao; Zhang, Chang; Hu, Qi; Li, Shifeng; Qin, Heng; Li, Zhong; Wang, Yubang

    2016-01-01

    Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters. PMID:26745512

  15. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis.

    PubMed

    Zhao, Xu; Yang, Ying; Sun, Bao-Fa; Shi, Yue; Yang, Xin; Xiao, Wen; Hao, Ya-Juan; Ping, Xiao-Li; Chen, Yu-Sheng; Wang, Wen-Jia; Jin, Kang-Xuan; Wang, Xing; Huang, Chun-Min; Fu, Yu; Ge, Xiao-Meng; Song, Shu-Hui; Jeong, Hyun Seok; Yanagisawa, Hiroyuki; Niu, Yamei; Jia, Gui-Fang; Wu, Wei; Tong, Wei-Min; Okamoto, Akimitsu; He, Chuan; Rendtlew Danielsen, Jannie M; Wang, Xiu-Jie; Yang, Yun-Gui

    2014-12-01

    The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5'- and 3'-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis. PMID:25412662

  16. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis

    PubMed Central

    Zhao, Xu; Yang, Ying; Sun, Bao-Fa; Shi, Yue; Yang, Xin; Xiao, Wen; Hao, Ya-Juan; Ping, Xiao-Li; Chen, Yu-Sheng; Wang, Wen-Jia; Jin, Kang-Xuan; Wang, Xing; Huang, Chun-Min; Fu, Yu; Ge, Xiao-Meng; Song, Shu-Hui; Jeong, Hyun Seok; Yanagisawa, Hiroyuki; Niu, Yamei; Jia, Gui-Fang; Wu, Wei; Tong, Wei-Min; Okamoto, Akimitsu; He, Chuan; Danielsen, Jannie M Rendtlew; Wang, Xiu-Jie; Yang, Yun-Gui

    2014-01-01

    The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5′- and 3′-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis. PMID:25412662

  17. Microbial Oxidation and Demethylation Processes in the Environmental Mercury Cycle

    SciTech Connect

    Summers, Anne O.

    2000-10-30

    This project demonstrated that bacterial catalase enzymes can convert unreactive Hg(0) to highly reactive Hg(II) ion. It also demonstrated the mechanism of the organomercural lyase, a bacterial enzyme which degrades methylmercury and other organomercurials. Lastly, it demonstrated the 3-dimensional structure of this enzyme by both solution NMR and by x-ray crystallography. These structures provide insights into the catalytic mechanism of the lyase that will allow engineering of variants with improved ability to degrade methylmercury.

  18. PDGFRβ expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation

    PubMed Central

    Hewitt, Kyle J.; Shamis, Yulia; Knight, Elana; Smith, Avi; Maione, Anna; Alt-Holland, Addy; Sheridan, Steven D.; Haggarty, Stephen J.; Garlick, Jonathan A.

    2012-01-01

    Platelet-derived growth factor receptor-beta (PDGFRβ) is required for the development of mesenchymal cell types, and plays a diverse role in the function of fibroblasts in tissue homeostasis and regeneration. In this study, we characterized the expression of PDGFRβ in fibroblasts derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and showed that this expression is important for cellular functions such as migration, extracellular matrix production and assembly in 3D self-assembled tissues. To determine potential regulatory regions predictive of expression of PDGFRβ following differentiation from ESCs and iPSCs, we analyzed the DNA methylation status of a region of the PDGFRB promoter that contains multiple CpG sites, before and after differentiation. We demonstrated that this promoter region is extensively demethylated following differentiation, and represents a developmentally regulated, differentially methylated region linked to PDGFRβ expression. Understanding the epigenetic regulation of genes such as PDGFRB, and identifying sites of active DNA demethylation, is essential for future applications of iPSC-derived fibroblasts for regenerative medicine. PMID:22344267

  19. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.

    PubMed

    Wissmann, Melanie; Yin, Na; Müller, Judith M; Greschik, Holger; Fodor, Barna D; Jenuwein, Thomas; Vogler, Christine; Schneider, Robert; Günther, Thomas; Buettner, Reinhard; Metzger, Eric; Schüle, Roland

    2007-03-01

    Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities. PMID:17277772

  20. Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation.

    PubMed

    Hu, Lijuan; Uzhameckis, Dmitrijs; Hedborg, Fredrik; Blomberg, Jonas

    2016-01-01

    We studied HERV expression in cell lines after hypoxia, mitogenic stimulation, and demethylation, to better understand if hypoxia may play a role in ERV activation also within the nervous system, as represented by neuroblastoma cell lines. The level of RNA of four human ERV groups (HERVs) (HERVE, I/T, H, and W), and three housekeeping genes, of different cell lines including A549, COS-1, Namalwa, RD-L and Vero-E6, as well as human neuroblastoma cell lines SH-SY5Y, SK-N-DZ, and SK-N-AS were studied using reverse transcription and real-time quantitative PCR (QPCR). During the course of recovery from hypoxia a pronounced and selective activation of RNA expression of HERVW-like sequences, but not of HERVE, I/T, H, and three housekeeping genes, was found in the neuroblastoma cell lines, most pronounced in SK-N-DZ. In the SK-N-DZ cell line, we also tested the expression of HERVs after chemical treatments. HERVW-like sequences were selectively upregulated by 5-azacytidine, a demethylating agent. Some HERVW loci seem especially responsive to hypoxia and demethylation. HERV expression in neuroblastoma cells is selectively and profoundly influenced by some physiological and chemical stimuli. PMID:26818268

  1. Genome-wide Bisulfite Sequencing in Zygotes Identifies Demethylation Targets and Maps the Contribution of TET3 Oxidation

    PubMed Central

    Peat, Julian R.; Dean, Wendy; Clark, Stephen J.; Krueger, Felix; Smallwood, Sébastien A.; Ficz, Gabriella; Kim, Jong Kyoung; Marioni, John C.; Hore, Timothy A.; Reik, Wolf

    2014-01-01

    Summary Fertilization triggers global erasure of paternal 5-methylcytosine as part of epigenetic reprogramming during the transition from gametic specialization to totipotency. This involves oxidation by TET3, but our understanding of its targets and the wider context of demethylation is limited to a small fraction of the genome. We employed an optimized bisulfite strategy to generate genome-wide methylation profiles of control and TET3-deficient zygotes, using SNPs to access paternal alleles. This revealed that in addition to pervasive removal from intergenic sequences and most retrotransposons, gene bodies constitute a major target of zygotic demethylation. Methylation loss is associated with zygotic genome activation and at gene bodies is also linked to increased transcriptional noise in early development. Our data map the primary contribution of oxidative demethylation to a subset of gene bodies and intergenic sequences and implicate redundant pathways at many loci. Unexpectedly, we demonstrate that TET3 activity also protects certain CpG islands against methylation buildup. PMID:25497087

  2. Effects of fish CYP inducers on difloxacin N-demethylation in kidney cell of Chinese idle (Ctenopharyngodon idellus).

    PubMed

    Yu, Ling Zhi; Yang, Xian Le; Wang, Xiang Ling; Yu, Wen Juan; Hu, Kun

    2010-09-01

    A drug-drug interaction occurs when the effect of one drug is altered by the presence of another drug which is generally associated with the induction of cytochrome P450s (CYPs) activity. Thus, unexpected treatment failures often happen resulting from inappropriate coadministration in fisheries. However, little information is available about CYP induction in fish. The reaction of difloxacin (DIF) biotransformation to sarafloxacin (SAR) belongs to N-demethylation catalyzed mainly by CYP(s). In order to supply useful information on CYP induction, the present study assessed the effects of fish-specific CYP inducers on DIF N-demethylation and enzyme kinetics in kidney cell of Chinese idle (CIK; grass carp (Ctenopharyngodon idellus)) by RP-HPLC. Results demonstrated that the amounts of SAR formation and enzymatic parameters Clint and Vmax were significantly increased due to beta-naphthoflavone (BNF) pretreatment. Therefore, we suggest that CYP1A may be involved in DIF N-demethylation in CIK. This study provides instructive information to ensure treatment success via avoiding CYP induction in fisheries. PMID:19685219

  3. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  4. Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii

    PubMed Central

    Sutherland, John B.

    1986-01-01

    The actinomycete Streptomyces setonii 75Vi2 demethylates vanillic acid and guaiacol to protocatechuic acid and catechol, respectively, and then metabolizes the products by the β-ketoadipate pathway. UV spectroscopy showed that this strain could also metabolize veratrole (1,2-dimethoxybenzene). When grown in veratrole-containing media supplemented with 2,2′-dipyridyl to inhibit cleavage of the aromatic ring, S. setonii accumulated catechol, which was detected by both liquid chromatography and gas chromatography. Reduced cell extracts from veratrole-grown cultures, but not sodium succinate-grown cultures, produced a carbon monoxide difference spectrum with a peak at 450 nm that indicated the presence of soluble cytochrome P-450. Addition of veratrole or guaiacol to oxidized cell extracts from veratrole-grown cultures produced difference spectra that indicated that these compounds were substrates for cytochrome P-450. My results suggest that S. setonii produces a cytochrome P-450 that is involved in the demethylation of veratrole and guaiacol to catechol, which is then catabolized by the β-ketoadipate pathway. PMID:16347120

  5. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats.

    PubMed

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-10-01

    Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight-bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin. PMID:26049406

  6. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats

    PubMed Central

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    Abstract Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin. PMID:26049406

  7. Hydrogen atom reactions in coal liquefaction. [Demethylation of methylnaphthalene by hydrogen

    SciTech Connect

    Bockrath, B.C.; Schroeder, K.T.; Keldsen, G.L.

    1985-06-01

    Hydrogen atom reactions were investigated in the demethylation of methylnaphthalenes at 450/sup 0/C. Demethylation by the hydrogen atom at the 1-position was about 4 times faster than at the 2-position. The methylnaphthalenes were somewhat more reactive toward hydrocracking than was bibenzyl. The extent of hydrocracking was a function of hydrogen pressure and initiator concentration. 3 refs., 2 figs., 1 tab.

  8. Design and synthesis of novel 4'-demethyl-4-deoxypodophyllotoxin derivatives as potential anticancer agents.

    PubMed

    Zhu, Xiong; Fu, Junjie; Tang, Yan; Gao, Yuan; Zhang, Shijin; Guo, Qinglong

    2016-02-15

    A group of podophyllotoxin (PPT) derivatives (7a-j) were synthesized by conjugating aryloxyacetanilide moieties to the 4'-hydroxyl of 4'-demethyl-4-deoxypodophyllotoxin (DDPT), and their anticancer activity was evaluated. It was found that the most potent compound 7d inhibited the proliferation of three cancer cell lines with sub to low micromolar IC50 values. Furthermore, it was demonstrated that 7d induced cell cycle arrest in G2/M phase in MGC-803 cells, and regulated the expression of cell cycle check point proteins, such as cyclin A, cyclin B, CDK1, cdc25c, and p21. Finally, 4 mg/kg of 7d reduced the weights and volumes of HepG2 xenografts in mice. Our findings suggest that 7d might be a potential anticancer agent. PMID:26804229

  9. Crystal Structure of Dicamba Monooxygenase: A Rieske Nonheme Oxygenase that Catalyzes Oxidative Demethylation

    SciTech Connect

    Dumitru, Razvan; Jiang, Wen Zhi; Weeks, Donald P.; Wilson, Mark A.

    2009-08-28

    Dicamba (3,6-dichloro-2-methoxybenzoic acid) is a widely used herbicide that is efficiently degraded by soil microbes. These microbes use a novel Rieske nonheme oxygenase, dicamba monooxygenase (DMO), to catalyze the oxidative demethylation of dicamba to 3,6-dichlorosalicylic acid (DCSA) and formaldehyde. We have determined the crystal structures of DMO in the free state, bound to its substrate dicamba, and bound to the product DCSA at 2.10-1.75 {angstrom} resolution. The structures show that the DMO active site uses a combination of extensive hydrogen bonding and steric interactions to correctly orient chlorinated, ortho-substituted benzoic-acid-like substrates for catalysis. Unlike other Rieske aromatic oxygenases, DMO oxygenates the exocyclic methyl group, rather than the aromatic ring, of its substrate. This first crystal structure of a Rieske demethylase shows that the Rieske oxygenase structural scaffold can be co-opted to perform varied types of reactions on xenobiotic substrates.

  10. Suppression of Gluconeogenic Gene Expression by LSD1-Mediated Histone Demethylation

    PubMed Central

    Pan, Dongning; Mao, Chunxiao; Wang, Yong-Xu

    2013-01-01

    Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases. PMID:23755305

  11. Base Excision Repair Facilitates a Functional Relationship Between Guanine Oxidation and Histone Demethylation

    PubMed Central

    Li, Jianfeng; Braganza, Andrea

    2013-01-01

    Abstract Significance: Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. Recent Advances: The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. Critical Issues: One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. Future Directions: To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors. Antioxid. Redox Signal. 18, 2429–2443. PMID:23311711

  12. Fundamental Reaction Pathways for Cytochrome P450-catalyzed 5′-Hydroxylation and N-Demethylation of Nicotine

    PubMed Central

    Li, Dongmei; Wang, Yong; Han, Keli; Zhan, Chang-Guo

    2010-01-01

    The reaction pathways for 5′-hydroxylation and N-demethylation of nicotine catalyzed by cytochrome P450 were investigated by performing a series of first-principle electronic structure calculations on a catalytic reaction model system. The computational results indicate that 5′-hydroxylation of nicotine occurs through a two-state stepwise process, i.e. an initial hydrogen atom transfer from nicotine to Cpd I (i.e. the HAT step) followed by a recombination of the nicotine moiety with the iron-bound hydroxyl group (i.e. the rebound step) on both the high-spin (HS) quartet and low-spin (LS) doublet states. The HAT step is the rate-determining one. This finding represents the first case that exhibits genuine rebound transition state species on both the HS and the LS states for Cα-H hydroxylation of amines. N-demethylation of nicotine involves a N-methylhydroxylation to form N-(hydroxymethyl)nornicotine, followed by N-(hydroxymethyl)nornicotine decomposition to nornicotine and formaldehyde. The N-methylhydroxylation step is similar to 5′-hydroxylation, namely that a rate-determining HAT step followed by a rebound step. The decomposition process occurs on the deprotonated state of N-(hydroxymethyl)nornicotine assisted by a water molecule and the energy barrier is significantly lower than that of the N-methylhydroxylation process. Comparison of the rate-determining free energy barriers for the two reaction pathways predicts a preponderance of 5′-hydroxylation over the N-demethylation by roughly a factor of 18:1, which is in excellent agreement with the factor of 19:1 derived from available experimental data. PMID:20572647

  13. Moisture processes accompanying convective activity

    NASA Technical Reports Server (NTRS)

    Sienkiewicz, M. E.; Scoggins, J. R.

    1982-01-01

    A moisture budget analysis was performed on data collected during the AVE 7 (May 2 to 3, 1978) and AVE-SESAME1 (April 10 to 11, 1979) experiments. Local rates-of-change of moisture were compared with average moisture divergence in the same time period. Results were presented as contoured plots in the horizontal and as vertical cross sections. These results were used to develop models of the distribution of moisture processes in the vicinity of convective areas in two layers representing lower and middle tropospheric conditions. Good correspondence was found between the residual term of the moisture budget and actual precipitation.

  14. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows. PMID:5713453

  15. Norcantharidin inhibits Wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer.

    PubMed

    Xie, Junran; Zhang, Yaping; Hu, Xuming; Lv, Ran; Xiao, Dongju; Jiang, Li; Bao, Qi

    2015-05-01

    Wingless-type (Wnt) family of secreted glycoproteins is a group of signal molecules implicated in oncogenesis. Abnormal activation of Wnt signal pathway is associated with a variety of human cancers, including non-small cell lung cancer (NSCLC). Wnt antagonists, such as the secreted frizzled-related protein (SFRP) family, Wnt inhibitory factor-1 (WIF-1) and cerberus, inhibit Wnt signal pathway by directly binding to Wnt molecules. Norcantharidin (NCTD) is known to possess anticancer activity but less nephrotoxicity than cantharidin. In this study, we found that NCTD inhibited cell proliferation, induced apoptosis, arrested cell cycle and suppressed cell invasion/migration in vitro. Additionally, Wnt signal pathway transcription was also suppressed. NCTD treatment blocked cytoplasmic translocation of beta-catenin into the nucleus. Alterations of apoptosis-related proteins, such as Bax, cleaved caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic), had been detected. Furthermore, the expression levels of WIF-1 and SFRP1 were significantly increased in NCTD-treated groups compared with negative control (NC) groups. Abnormal methylation was observed in NC groups, while NCTD treatment promoted WIF-1 demethylation. The present study revealed that NCTD activated WIF-1 via promoter demethylation, inhibiting the canonical Wnt signal pathway in NSCLC, which may present a new therapeutic target in vivo. PMID:25814287

  16. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment. PMID:26544154

  17. Sustained exposure to the DNA demethylating agent, 2'-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy.

    PubMed

    Schnekenburger, Michael; Grandjenette, Cindy; Ghelfi, Jenny; Karius, Tommy; Foliguet, Bernard; Dicato, Mario; Diederich, Marc

    2011-02-01

    In addition to its demethylating properties, 2'-deoxy-5-azacytidine (DAC) induces cell cycle arrest, differentiation, cell sensitization to chemotherapy, and cell death. However, the mechanisms by which DAC induces antiproliferation via these processes and how they are interconnected remain unclear. In this study, we found that a clinically relevant concentration of DAC triggered erythroid and megakaryocytic differentiation in the human chronic myeloid leukemia (CML) K-562 and MEG-01 cell lines, respectively. In addition, cells showed a marked increase in cell size in both cell lines and a more adhesive cell profile for MEG-01. Furthermore, DAC treatment induced cellular senescence and autophagy as shown by β-galactosidase staining and by autophagosome formation, respectively. After prolonged DAC treatment, phosphatidyl serine exposure, nuclear morphology analysis, and caspase cleavage revealed an activation of mitochondrial-dependent apoptosis in CML cells. This activation was accompanied by a decrease of anti-apoptotic proteins and an increase of calpain activity. Finally, we showed that combinatory treatment of relatively resistant CML with DAC and either conventional apoptotic inducers or with an histone deacetylase inhibitor increased synergistically apoptosis. We therefore conclude that induction of differentiation, senescence, and autophagy in CML are a key in cell sensitization and DAC-induced apoptosis. PMID:21044612

  18. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERα ligand dependency

    PubMed Central

    Svotelis, Amy; Bianco, Stéphanie; Madore, Jason; Huppé, Gabrielle; Nordell-Markovits, Alexei; Mes-Masson, Anne-Marie; Gévry, Nicolas

    2011-01-01

    Chromatin represents a repressive barrier to the process of ligand-dependent transcriptional activity of nuclear receptors. Here, we show that H3K27 methylation imposes ligand-dependent regulation of the oestrogen receptor α (ERα)-dependent apoptotic response via Bcl-2 in breast cancer cells. The activation of BCL2 transcription is dependent on the simultaneous inactivation of the H3K27 methyltransferase, EZH2, and the demethylation of H3K27 at a poised enhancer by the ERα-dependent recruitment of JMJD3 in hormone-dependent breast cancer cells. We also provide evidence that this pathway is modified in cells resistant to anti-oestrogen (AE), which constitutively express BCL2. We show that the lack of H3K27 methylation at BCL2 regulatory elements due to the inactivation of EZH2 by the HER2 pathway leads to this constitutive activation of BCL2 in these AE-resistant cells. Our results describe a mechanism in which the epigenetic state of chromatin affects ligand dependency during ERα-regulated gene expression. PMID:21841772

  19. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts

    PubMed Central

    Palsamy, Periyasamy; Bidasee, Keshore R.; Ayaki, Masahiko; Augusteyn, Robert C.; Chan, Jefferson Y.; Shinohara, Toshimichi

    2015-01-01

    Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces the ER stress and activates the unfolded protein response leading to overproduction of ROS prior to human lens epithelial cells death. Methylglyoxal also suppresses the Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme, TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to over-expression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing of human clear lenses (n=15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n=21) lose an average of 90% of the 5-methylcytosine regardless of the age. Over-expressed Keap1 protein is responsible for decreasing the Nrf2 by proteasomal degradation, thereby suppressing the Nrf2 dependent stress protection. This study demonstrates for the first time about the associations of unfolded protein response activation, Nrf2 dependent antioxidant system failure and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, cellular redox balance is altered towards lens oxidation and cataract formation. PMID:24746615

  20. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases.

    PubMed

    Walport, Louise J; Hopkinson, Richard J; Chowdhury, Rasheduzzaman; Schiller, Rachel; Ge, Wei; Kawamura, Akane; Schofield, Christopher J

    2016-01-01

    While the oxygen-dependent reversal of lysine N(ɛ)-methylation is well established, the existence of bona fide N(ω)-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity. PMID:27337104

  1. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases

    PubMed Central

    Walport, Louise J.; Hopkinson, Richard J.; Chowdhury, Rasheduzzaman; Schiller, Rachel; Ge, Wei; Kawamura, Akane; Schofield, Christopher J.

    2016-01-01

    While the oxygen-dependent reversal of lysine Nɛ-methylation is well established, the existence of bona fide Nω-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity. PMID:27337104

  2. Processed sweet corn has higher antioxidant activity.

    PubMed

    Dewanto, Veronica; Wu, Xianzhong; Liu, Rui Hai

    2002-08-14

    Processed fruits and vegetables have been long considered to have lower nutritional value than the fresh produce due to the loss of vitamin C during processing. Vitamin C in apples has been found to contribute <0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing at 115 degrees C for 25 min significantly elevated the total antioxidant activity of sweet corn by 44% and increased phytochemical content such as ferulic acid by 550% and total phenolics by 54%, although 25% vitamin C loss was observed. Processed sweet corn has increased antioxidant activity equivalent to 210 mg of vitamin C/100 g of corn compared to the remaining 3.2 mg of vitamin C in the sample that contributed only 1.5% of its total antioxidant activity. These findings do not support the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risk of chronic diseases. PMID:12166989

  3. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells.

    PubMed

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D'Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-12-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells. PMID:24091729

  4. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells

    PubMed Central

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D’Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells. PMID:24091729

  5. DNA demethylation in normal colon tissue predicts predisposition to multiple cancers.

    PubMed

    Kamiyama, H; Suzuki, K; Maeda, T; Koizumi, K; Miyaki, Y; Okada, S; Kawamura, Y J; Samuelsson, J K; Alonso, S; Konishi, F; Perucho, M

    2012-11-29

    Some colon cancer (CC) patients present synchronous cancers at diagnosis and others develop metachronous neoplasms, but the risk factors are unclear for non-hereditary CC. We showed previously that global DNA demethylation increased with aging and correlated with genomic damage in CC, and we show now that preferentially associates to CCs with wild-type p53. This study aimed to elucidate the extent of DNA hypomethylation in patients with single and multiple CC, its relationship with aging, and its potential as predictive tool. We compared by real-time methylation-specific PCR the relative demethylation level (RDL) of long interspersed nucleotide element-1 (LINE-1) sequences in matched cancer tissues and non-cancerous colonic mucosa (NCM) from patients with single and multiple right-sided CCs. Although no RDL difference was found in NCM from single CC patients and healthy volunteers (P=0.5), there was more demethylation (higher RDL) in NCM from synchronous cancer patients (P=1.1 × 10(-5)) multiple CCs also were more demethylated than single CCs (P=0.0014). High NCM demethylation was predictive for metachronous neoplasms (P=0.003). In multivariate logistic regression analyses RDL was the only independent predictor for metachronous (P=0.02) and multiple (P=4.9 × 10(-5)) tumors. The higher LINE-1 demethylation in NCM from patients with multiple (synchronous and metachronous) tumors (P=9.6 × 10(-7)) was also very significant in patients with tumors without (P=3.8 × 10(-6)), but not with (P=0.16) microsatellite instability. NCM demethylation increased with aging in patients with single tumors, but decreased in those with multiple tumors. Moreover, the demethylation difference between patients with single vs multiple tumors appeared higher in younger (P=3.6 × 10(-4)) than in older (P=0.0016) patients. These results predict that LINE-1 hypomethylation in NCM can be used as an epigenetic predictive biomarker for multiple CC risk. The stronger association of

  6. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing

    PubMed Central

    Rondinelli, Beatrice; Schwerer, Hélène; Antonini, Elena; Gaviraghi, Marco; Lupi, Alessio; Frenquelli, Michela; Cittaro, Davide; Segalla, Simona; Lemaitre, Jean-Marc; Tonon, Giovanni

    2015-01-01

    DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3. PMID:25712104

  7. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: role of jumonji C-domain containing protein 6 in RHA demethylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported that RNA Helicase A (RHA) re-localized from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells, coincident with a reduction in methylation of arginine residues in the RHA C-terminus. To further define the mechanism of RHA demethylation in FMDV-...

  8. Demethylation of a model homogalacturonan with the salt-independent pectin methylesterase from citrus: I. effect of pH on demethylated block size and distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model homogalacturonan (HG); composed of galacturonic acid (94-97 %) and galactose (3-6 %), having a 94 % degree of esterification (DE) was used to produce a demethylated HG series by reacting it with the salt-independent pectin methylesterase (PME) from citrus fruit at pH 4.5 and 7.5. HGs with a...

  9. In vitro susceptibility of Helicobacter pylori to trospectomycin, pirlimycin (U-57930E), mirincamycin (U-24729A) and N-demethyl clindamycin (U-26767A).

    PubMed

    Westblom, T U; Midkiff, B R; Czinn, S J

    1993-07-01

    The in vitro activity of trospectomycin, pirlimycin, mirincamycin and N-demethyl clindamycin was measured against 46 clinical isolates of Helicobacter pylori using an agar dilution technique. The MIC50 and MIC90 were 4 and 64 micrograms/ml for pirlimycin and N-demethyl clindamycin, and 32 and 128 micrograms/ml for mirincamycin, respectively. All 46 strains were sensitive to trospectomycin with an MIC50 of 8 micrograms/ml and an MIC90 of 16 micrograms/ml. Of seven strains with the highest trospectomycin MICs (8 or 16 micrograms/ml) 100% were found to be resistant to metronidazole. Among ten strains with low trospectomycin MICs (2 micrograms/ml or less) 100% were sensitive to metronidazole. Possible explantations for the apparent correlation between the MICs of the two drugs are discussed. Since all metronidazole resistant strains were sensitive to trospectomycin, this drug may be useful in treating infection with metronidazole resistant Helicobacter pylori. PMID:8404921

  10. Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases

    SciTech Connect

    Krishnan, Swathi; Trievel, Raymond C.

    2013-01-08

    We found that JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D•2-oxoglutarate•H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. These studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.

  11. Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes.

    PubMed

    Ouddane, Baghdad; Monperrus, Mathilde; Kadlecova, Milada; Daye, Mirna; Amouroux, David

    2015-01-01

    The methylation-demethylation processes in sediments of the Deûle River were determined using well-established isotope experiments. For this purpose, species-specific isotopically enriched tracers in the form of inorganic mercury IHg ((199)Hg) and methylmercury MeHg (Me(201)Hg) were used to determine Hg dynamics in the Deûle River. Sediment cores were collected at two sampling locations chosen in the most polluted zone of the Deûle River (Northern France) in proximity of a Zn, Pb, Cu, and Ni smelter called "Metaleurop" that had closed in 2003. Site I was chosen in the vicinity of the historic smelter site and site II upstream of the Deûle River. The incubation was realized directly in the sediment cores during the 24 hour experiment under environmental conditions close to the real natural systems (the same temperature, pH, humidity, light/dark conditions, oxygen levels…). The enriched isotopes were injected by needle into different sections of the core. After incubation, the core was sliced and the concentration of Hg species was determined in each section. The highest methylation potentials were found at sediment depths away from the sediment-water-interface. At site I, the methylation potential varied between 0.02-0.9% and at site II between 0.001-0.2%. The demethylation potentials fluctuated between 0.001-60% at site I and between 4-53% at site II. In both sites, negative net methylation potentials were obtained in several sediment depths, representing a net sink for MeHg. The average net methylation potential in site I demonstrated a negative value of 1919 ng g(-1) day(-1). It seems that in site I the demethylation process predominates methylation. Whereas, in site II, the average net methylation potential was a positive value of 138 ng g(-1) day(-1), demonstrating the dominance of methylation over demethylation. PMID:25421488

  12. TET3 Inhibits Type I IFN Production Independent of DNA Demethylation.

    PubMed

    Xue, Shengjie; Liu, Chang; Sun, Xiujie; Li, Weiyun; Zhang, Chi; Zhou, Xin; Lu, Yao; Xiao, Jun; Li, Chunyang; Xu, Xiaoyan; Sun, Bing; Xu, Guoliang; Wang, Hongyan

    2016-07-26

    Type I interferons (IFNs) play both beneficial and harmful roles in antiviral responses. Precise regulation of host type I IFNs is thus needed to prevent immune dysregulation. Here, we find that the DNA demethylase TET3 is a negative regulator of IFN-β in response to poly(I:C) stimulation or viral infection. Deletion of TET3 enhances antiviral responses, with elevated expression of IFN-β and IFN-stimulated genes. The catalytic domain of TET3 was critical for the suppression of IFN-β production, but TET3 enzymatic activity was dispensable. Instead, the catalytic domain of TET3 interacts with HDAC1 and SIN3A, thus enhancing their binding to the Ifnb1 promoter. Our study demonstrates that TET3 negatively regulates type I IFN production independent of DNA demethylation. This not only sheds light on TET3 as a signaling protein in immune cells for gene regulation but also will help to develop strategies to prevent type I IFN-related disease. PMID:27425624

  13. Harnessing Noxa demethylation to overcome Bortezomib resistance in mantle cell lymphoma

    PubMed Central

    Leshchenko, Violetta V.; Kuo, Pei-Yu; Jiang, Zewei; Weniger, Marc A.; Overbey, Jessica; Dunleavy, Kieron; Wilson, Wyndham H.; Wiestner, Adrian; Parekh, Samir

    2015-01-01

    Bortezomib (BZM) is the first proteasome inhibitor approved for relapsed Mantle Cell Lymphoma (MCL) with durable responses seen in 30%–50% of patients. Given that a large proportion of patients will not respond, BZM resistance is a significant barrier to use this agent in MCL. We hypothesized that a subset of aberrantly methylated genes may be modulating BZM response in MCL patients. Genome-wide DNA methylation analysis using a NimbleGen array platform revealed a striking promoter hypomethylation in MCL patient samples following BZM treatment. Pathway analysis of differentially methylated genes identified molecular mechanisms of cancer as a top canonical pathway enriched among hypomethylated genes in BZM treated samples. Noxa, a pro-apoptotic Bcl-2 family member essential for the cytotoxicity of BZM, was significantly hypomethylated and induced following BZM treatment. Therapeutically, we could demethylate Noxa and induce anti-lymphoma activity using BZM and the DNA methytransferase inhibitor Decitabine (DAC) and their combination in vitro and in vivo in BZM resistant MCL cells. These findings suggest a role for dynamic Noxa methylation for the therapeutic benefit of BZM. Potent and synergistic cytotoxicity between BZM and DAC in vitro and in vivo supports a strategy for using epigenetic priming to overcome BZM resistance in relapsed MCL patients. PMID:25714012

  14. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells

    PubMed Central

    Zhou, Yang; Hu, Zhengqing

    2016-01-01

    The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination. PMID:27536218

  15. Time-course gene profiling and networks in demethylated retinoblastoma cell line

    PubMed Central

    Malusa, Federico; Taranta, Monia; Zaki, Nazar; Cinti, Caterina; Capobianco, Enrico

    2015-01-01

    Retinoblastoma, a very aggressive cancer of the developing retina, initiatiates by the biallelic loss of RB1 gene, and progresses very quickly following RB1 inactivation. While its genome is stable, multiple pathways are deregulated, also epigenetically. After reviewing the main findings in relation with recently validated markers, we propose an integrative bioinformatics approach to include in the previous group new markers obtained from the analysis of a single cell line subject to epigenetic treatment. In particular, differentially expressed genes are identified from time course microarray experiments on the WERI-RB1 cell line treated with 5-Aza-2′-deoxycytidine (decitabine; DAC). By inducing demethylation of CpG island in promoter genes that are involved in biological processes, for instance apoptosis, we performed the following main integrative analysis steps: i) Gene expression profiling at 48h, 72h and 96h after DAC treatment; ii) Time differential gene co-expression networks and iii) Context-driven marker association (transcriptional factor regulated protein networks, master regulatory paths). The observed DAC-driven temporal profiles and regulatory connectivity patterns are obtained by the application of computational tools, with support from curated literature. It is worth emphasizing the capacity of networks to reconcile multi-type evidences, thus generating testable hypotheses made available by systems scale predictive inference power. Despite our small experimental setting, we propose through such integrations valuable impacts of epigenetic treatment in terms of gene expression measurements, and then validate evidenced apoptotic effects. PMID:26143641

  16. Black Raspberry-Derived Anthocyanins Demethylate Tumor Suppressor Genes Through the Inhibition of DNMT1 and DNMT3B in Colon Cancer Cells

    PubMed Central

    Wang, Li-Shu; Kuo, Chieh-Ti; Cho, Seung-Ju; Seguin, Claire; Siddiqui, Jibran; Stoner, Kristen; Weng, Yu-I; Huang, Tim H.-M.; Tichelaar, Jay; Yearsley, Martha; Stoner, Gary D.; Huang, Yi-Wen

    2013-01-01

    We previously reported that oral administration of black raspberry powder decreased promoter methylation of tumor suppressor genes in tumors from patients with colorectal cancer. The anthocyanins (ACs) in black raspberries are responsible, at least in part, for their cancer-inhibitory effects. In the present study, we asked if ACs are responsible for the demethylation effects observed in colorectal cancers. Three days of treatment of ACs at 0.5, 5, and 25 μg/ml suppressed activity and protein expression of DNMT1 and DNMT3B in HCT116, Caco2 and SW480 cells. Promoters of CDKN2A, and SFRP2, SFRP5, and WIF1, upstream of Wnt pathway, were demethylated by ACs. mRNA expression of some of these genes was increased. mRNA expression of β-catenin and c-Myc, downstream of Wnt pathway, and cell proliferation were decreased; apoptosis was increased. ACs were taken up into HCT116 cells and were differentially localized with DNMT1 and DNMT3B in the same cells visualized using confocal laser scanning microscopy. Although it was reported that DNMT3B is regulated by c-Myc in mouse lymphoma, DNMT3B did not bind with c-Myc in HCT116 cells. In conclusion, our results suggest that ACs are responsible, at least in part, for the demethylation effects of whole black raspberries in colorectal cancers. PMID:23368921

  17. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  18. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines.

    PubMed Central

    Butler, M A; Iwasaki, M; Guengerich, F P; Kadlubar, F F

    1989-01-01

    Aromatic amines are well known as occupational carcinogens and are found in cooked foods, tobacco smoke, synthetic fuels, and agricultural chemicals. For the primary arylamines, metabolic N-oxidation by hepatic cytochromes P-450 is generally regarded as an initial activation step leading to carcinogenesis. The metabolic activation of 4-aminobiphenyl, 2-naphthylamine, and several heterocyclic amines has been shown recently to be catalyzed by rat cytochrome P-450ISF-G and by its human ortholog, cytochrome P-450PA. We now report that human hepatic microsomal caffeine 3-demethylation, the initial major step in caffeine biotransformation in humans, is selectively catalyzed by cytochrome P-450PA. Caffeine 3-demethylation was highly correlated with 4-aminobiphenyl N-oxidation (r = 0.99; P less than 0.0005) in hepatic microsomal preparations obtained from 22 human organ donors, and both activities were similarly decreased by the selective inhibitor, 7,8-benzoflavone. The rates of microsomal caffeine 3-demethylation, 4-aminobiphenyl N-oxidation, and phenacetin O-deethylation were also significantly correlated with each other and with the levels of immunoreactive human cytochrome P-450PA. Moreover, a rabbit polyclonal antibody raised to human cytochrome P-450PA was shown to inhibit strongly all three of these activities and to inhibit the N-oxidation of the carcinogen 2-naphthylamine and the heterocyclic amines, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole and 2-amino-3-methylimidazo[4,5-f]-quinoline. Human liver cytochrome P-450PA was also shown to catalyze caffeine 3-demethylation, 4-aminobiphenyl N-oxidation, and phenacetin O-deethylation. Thus, estimation of caffeine 3-demethylation activity in humans may be useful in the characterization of arylamine N-oxidation phenotypes and in the assessment of whether or not the hepatic levels of cytochrome P-450PA, as affected by environmental or genetic factors, contribute to interindividual differences in susceptibility to

  19. Damage proneness induced by genomic DNA demethylation in mammalian cells cultivated in vitro.

    PubMed

    Perticone, P; Gensabella, G; Cozzi, R

    1997-07-01

    Variations in the genomic DNA methylation level have been shown to be an epigenetic inheritable modification affecting, among other targets, the sister chromatid exchange (SCE) rate in mammalian cells in vitro. The inheritable increase in SCE rate in affected cell populations appears as a puzzling phenomenon in view of the well established relation between SCE and both mutagenesis and carcinogenesis. In the present work we demonstrate that, in a treated cell population, demethylation could be responsible for the inheritable induction of damage proneness affecting both damage induction and repair. Normal and ethionine or azacytidine treated Chinese hamster ovary cells, subclone K1 (CHO-K1), were challenged with UV light (UV) or mitomycin-C (MMC) at different times from the demethylating treatment. The SCE rate was measured with two main objects in view: (i) the induction of synergism or additivity in combined treatments, where mutagen (UV or MMC) pulse is supplied from 0 to 48 h after the end of the demethylating treatment; and (ii) the pattern of damage extinction, for the duration of up to six cell cycles after the end of the combined (demethylating agent + mutagen) treatment. Results indicate both a synergism in SCE induction by mutagens in demethylated cells even if supplied up to four cell cycles after the end of the demethylation treatment and a delay in recovery of induced damage, compared with normally methylated cells. These data are discussed in the light of the supposed mechanism of SCE increase and of the possible biological significance in terms of mutagenesis and carcinogenesis. PMID:9237771

  20. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation.

    PubMed

    Ruiz, Maria Armila; Rivers, Angela; Ibanez, Vinzon; Vaitkus, Kestis; Mahmud, Nadim; DeSimone, Joseph; Lavelle, Donald

    2015-01-01

    The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5 hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5 mC) and 5 hmC at a CCGG site within the 5' γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5 mC and 5 hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5 hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5 hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5 hmC and negatively correlated with 5 mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5 hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter. PMID:25932923

  1. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation

    PubMed Central

    Ruiz, Maria Armila; Rivers, Angela; Ibanez, Vinzon; Vaitkus, Kestis; Mahmud, Nadim; DeSimone, Joseph; Lavelle, Donald

    2015-01-01

    The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter. PMID:25932923

  2. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID

  3. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  4. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  5. The Roles of a Flavone-6-Hydroxylase and 7-O-Demethylation in the Flavone Biosynthetic Network of Sweet Basil*

    PubMed Central

    Berim, Anna; Gang, David R.

    2013-01-01

    Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin. PMID:23184958

  6. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  7. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  8. Testosterone Depletion Induces Demethylation of Murine Reelin Promoter CpG Dinucleotides: A Preliminary Study.

    PubMed

    da Silva, Victor Augusto Moraes; Dantas, Marília de Souza; Silva, Leonardo Agostinho de Castro; Carneiro, Juliana Garcia; Schamber-Reis, Bruno Luiz Fonseca

    2015-01-01

    Schizophrenia (SZ) is a debilitating mental disorder characterized by psychotic events, abnormal social behavior, false beliefs, and auditory hallucinations. Hypermethylation of the promoter region of reelin (RELN), a gene involved in regulation of neuronal positioning during telencephalic development, is strongly associated with low protein expression in several cortical structures and promoter hypermethylation in brain from postmortem SZ subjects. Recent experimental data suggests that testosterone is able to promote RELN demethylation, although no direct evidence of hormonal influence on reelin promoter methylation was obtained. We investigated if reduced levels of plasma testosterone in adult male mice lead to Reln promoter demethylation. Animals were administered with flutamide, an antiandrogenic compound, and reelin promoter methylation was assessed using methylationspecific PCR using bisulfite DNA from cerebellum. We found that flutamide was able to significantly lower plasma testosterone when compared to control mice, and treatment did not influence animal survival and body weight. We also show that low plasma testosterone was associated with demethylation of a cytosine residue located at -860 in reelin promoter region. These preliminary data suggest that androgenic hormones can influence cerebral reelin demethylation. To our knowledge, this is the first experimental approach directly linking testosterone depletion and RELN promoter methylation. PMID:26526966

  9. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  10. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration. PMID:27003077

  11. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  12. Degradation of corticosteroids during activated sludge processing.

    PubMed

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  13. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  14. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  15. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  16. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer.

    PubMed

    Fulda, S; Küfer, M U; Meyer, E; van Valen, F; Dockhorn-Dworniczak, B; Debatin, K M

    2001-09-13

    Resistance of tumors to treatment with cytotoxic drugs, irradiation or immunotherapy may be due to disrupted apoptosis programs. Here, we report in a variety of different tumor cells including Ewing tumor, neuroblastoma, malignant brain tumors and melanoma that caspase-8 expression acts as a key determinant of sensitivity for apoptosis induced by death-inducing ligands or cytotoxic drugs. In tumor cell lines resistant to TRAIL, anti-CD95 or TNFalpha, caspase-8 protein and mRNA expression was decreased or absent without caspase-8 gene loss. Methylation-specific PCR revealed hypermethylation of caspase-8 regulatory sequences in cells with impaired caspase-8 expression. Treatment with the demethylation agent 5-Aza-2'-deoxycytidine (5-dAzaC) reversed hypermethylation of caspase-8 resulting in restoration of caspase-8 expression and recruitment and activation of caspase-8 at the CD95 DISC upon receptor cross-linking thereby sensitizing for death receptor-, and importantly, also for drug-induced apoptosis. Inhibition of caspase-8 activity also inhibited apoptosis sensitization by 5-dAzaC. Similar to demethylation, introduction of caspase-8 by gene transfer sensitized for apoptosis induction. Hypermethylation of caspase-8 was linked to reduced caspase-8 expression in different tumor cell lines in vitro and, most importantly, also in primary tumor samples. Thus, these findings indicate that re-expression of caspase-8, e.g. by demethylation or caspase-8 gene transfer, might be an effective strategy to restore sensitivity for chemotherapy- or death receptor-induced apoptosis in various tumors in vivo. PMID:11593392

  17. Involvement of MicroRNA-210 Demethylation in Steroid-associated Osteonecrosis of the Femoral Head

    PubMed Central

    Yuan, Heng-feng; Christina, Von Roemeling; Guo, Chang-an; Chu, Yi-wei; Liu, Rong-hua; Yan, Zuo-qin

    2016-01-01

    Angiogenesis is an important event in steroid-associated osteonecrosis of the femoral head (SONFH). Here we performed miRNA microarray with SONFH tissues (ONs) and the adjacent normal tissues (NLs) to select the angiogenic miRNA. The results showed that miR-210 was differentially expressed in SONFH versus normal tissues. Unexpectedly, its specific transcription factor, hypoxia-inducible factor-1α, was shown of no significant changes in ONs compared with NLs. Further Bisulfite sequencing revealed that miR-210 is embedded in a CpG island and miR-210 gene has 2 CpG sites with lower methylation percentage in ONs compared with NLs. Additionally, ONs with lower miR-210 gene methylation exhibited higher miR-210 expression. Next, we found that the endothelial cells treated with demethylating agents could significantly increase the expression of miR-210, along with promoted cell viability and differentiation. Some angiogenic genes (VEGF, bFGF, TNF-α and PCNA) were up-regulated as well. In addition, the supernatant of the cells after demethylation treatment displayed an enhanced ability of recruiting new microvessels in vivo. Taken together, our study not only provides novel insights into the regulation of angiogenesis in this disease, but also reveals a therapeutic opportunity for treatment of SONFH patients with demethylating agents. PMID:26805628

  18. UTX demethylase activity is required for satellite cell–mediated muscle regeneration

    PubMed Central

    Wang, Chaochen; Nakka, Kiran; Benyoucef, Aissa; Sebastian, Soji; Zhuang, Lenan; Chu, Alphonse; Palii, Carmen G.; Camellato, Brendan; Brand, Marjorie

    2016-01-01

    The X chromosome–encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell–mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo. PMID:26999603

  19. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    SciTech Connect

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Ake; Dahlman-Wright, Karin

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  20. Degassing Processes at Persistently Active Explosive Volcanoes

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range

  1. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    PubMed Central

    La, Honggui; Ding, Bo; Mishra, Gyan P.; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guo-Liang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counteract transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli. PMID:21896764

  2. Histone demethylation and steroid receptor function in cancer.

    PubMed

    Stratmann, Antje; Haendler, Bernard

    2012-01-01

    Steroid receptors recruit various cofactors to form multi-protein complexes which locally alter chromatin structure and control DNA accessibility in order to regulate gene transcription. Some of these factors are enzymes that add or remove histone marks in the vicinity of regulatory regions of target genes. Numerous histone modifications added by specific writer enzymes and removed by eraser enzymes have been identified. Histone methylation is a modification with a complex outcome, as it can lead to gene activation or repression, depending on the modified residue and the context. Methylation marks are added by different enzyme families displaying exquisite substrate specificity. Lysine methylation is reversible and two different demethylase families have been identified in humans, the Jumonji C and the lysine-specific demethylase families. A regulatory role of histone demethylases in fine-tuning the function of steroid receptors, especially the androgen receptor and estrogen receptor, has emerged in recent years. This is mostly inferred from in vitro studies, but more recently first in vivo data have further supported this concept. This and the deregulated expression observed for several histone demethylases suggest a role in tumours such as prostate and breast cancer. PMID:21958694

  3. Demethylation profile of the TNF-α promoter gene is associated with high expression of this cytokine in Dengue virus patients.

    PubMed

    Gomes, Alessandra Vilas Boas Terra; de Souza Morais, Stella Maria; Menezes-Filho, Sergio Luiz; de Almeida, Luiz Gustavo Nogueira; Rocha, Raissa Prado; Ferreira, Jaqueline Maria Siqueira; Dos Santos, Luciana Lara; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-08-01

    Dengue is the most prevalent arthropod-borne viral illness in humans. The overexpression of cytokines by Dengue virus (DENV) infected cells is associated with the most severe forms of the disease. Unmethylated CpG islands are related to a transcriptionally active structure, whereas methylated DNA recruits methyl-binding proteins that inhibit gene expression. Several studies have described the importance of epigenetic events in the regulation and expression of many cytokines. The purpose of the present study was to evaluate the methylation status of the IFN-γ and TNF-α promoters in DNA extracted from dengue infected patients using methylation-specific polymerase chain reaction. A high frequency of demethylation was observed in the TNF-α promoter of DENV infected patients when compared to non-infected controls. The patients with an unmethylated profile showed higher expression of TNF-α mRNA than patients with the methylated status. No difference was found in the methylation frequency between the two analyzed groups regarding the IFN-γ promoter or in the expression of IFN-γ transcripts. The present study provides the first association of TNF-α promoter demethylation in DENV infected individuals and demonstrates a correlation between the methylation status of the region analyzed and the expression of TNF-α transcripts in DENV infected patients. J. Med. Virol. 88:1297-1302, 2016. © 2016 Wiley Periodicals, Inc. PMID:26792115

  4. Tissue Inhibitor of Metalloproteinase 1 Expression Associated with Gene Demethylation Confers Anoikis Resistance in Early Phases of Melanocyte Malignant Transformation1

    PubMed Central

    Ricca, Tatiana I; Liang, Gangning; Suenaga, Ana Paula M; Han, Sang W; Jones, Peter A; Jasiulionis, Miriam G

    2009-01-01

    Although anoikis resistance has been considered a hallmark of malignant phenotype, the causal relation between neoplastic transformation and anchorage-independent growth remains undefined. We developed an experimental model of murine melanocyte malignant transformation, where a melanocyte lineage (melan-a) was submitted to sequential cycles of anchorage blockade, resulting in progressive morphologic alterations, and malignant transformation. Throughout this process, cells corresponding to premalignant melanocytes and melanoma cell lines were established and show progressive anoikis resistance and increased expression of Timp1. In melan-a melanocytes, Timp1 expression is suppressed by DNA methylation as indicated by its reexpression after 5-aza-2′-deoxycytidine treatment. Methylation-sensitive single-nucleotide primer extension analysis showed increased demethylation in Timp1 in parallel with its expression along malignant transformation. Interestingly, TIMP1 expression has already been related with negative prognosis in some human cancers. Although described as a MMP inhibitor, this protein has been associated with apoptosis resistance in different cell types. Melan-a cells overexpressing Timp1 showed increased survival in suspension but were unable to form tumors in vivo, whereas Timp1-overexpressing melanoma cells showed reduced latency time for tumor appearance and increased metastatic potential. Here, we demonstrated for the first time an increment in Timp1 expression since the early phases of melanocyte malignant transformation, associated to a progressive gene demethylation, which confers anoikis resistance. In this way, Timp1 might be considered as a valued marker for melanocyte malignant transformation. PMID:19956395

  5. Automated Quantification of DNA Demethylation Effects in Cells via 3D Mapping of Nuclear Signatures and Population Homogeneity Assessment1

    PubMed Central

    Gertych, Arkadiusz; Wawrowsky, Kolja A.; Lindsley, Erik; Vishnevsky, Eugene; Farkas, Daniel L.; Tajbakhsh, Jian

    2009-01-01

    Background Today’s advanced microscopic imaging applies to the preclinical stages of drug discovery that employ high-throughput and high-content three-dimensional (3D) analysis of cells to more efficiently screen candidate compounds. Drug efficacy can be assessed by measuring response homogeneity to treatment within a cell population. In this study topologically quantified nuclear patterns of methylated cytosine and global nuclear DNA are utilized as signatures of cellular response to the treatment of cultured cells with the demethylating anti-cancer agents: 5-azacytidine (5-AZA) and octreotide (OCT). Methods Mouse pituitary folliculostellate TtT-GF cells treated with 5-AZA and OCT for 48 hours, and untreated populations, were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei (n=163). Cell images were processed utilizing an automated 3D analysis software that we developed by combining seeded watershed segmentation to extract nuclear shells with measurements of Kullback-Leibler’s (K-L) divergence to analyze cell population homogeneity in the relative nuclear distribution patterns of MeC versus DAPI stained sites. Each cell was assigned to one of the four classes: similar, likely similar, unlikely similar and dissimilar. Results Evaluation of the different cell groups revealed a significantly higher number of cells with similar or likely similar MeC/DAPI patterns among untreated cells (~100%), 5-AZA-treated cells (90%), and a lower degree of same type of cells (64%) in the OCT-treated population. The latter group contained (28%) of unlikely similar or dissimilar (7%) cells. Conclusion Our approach was successful in the assessment of cellular behavior relevant to the biological impact of the applied drugs, i.e. the reorganization of MeC/DAPI distribution by demethylation. In a comparison with other metrics, K-L divergence has

  6. Low Activity Waste Feed Process Control Strategy

    SciTech Connect

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  7. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes

    PubMed Central

    Zambrano, Pilar; Segura-Pacheco, Blanca; Perez-Cardenas, Enrique; Cetina, Lucely; Revilla-Vazquez, Alma; Taja-Chayeb, Lucía; Chavez-Blanco, Alma; Angeles, Enrique; Cabrera, Gustavo; Sandoval, Karina; Trejo-Becerril, Catalina; Chanona-Vilchis, Jose; Duenas-González, Alfonso

    2005-01-01

    Background The antihypertensive compound hydralazine is a known demethylating agent. This phase I study evaluated the tolerability and its effects upon DNA methylation and gene reactivation in patients with untreated cervical cancer. Methods Hydralazine was administered to cohorts of 4 patients at the following dose levels: I) 50 mg/day, II) 75 mg/day, III) 100 mg/day and IV) 150 mg/day. Tumor biopsies and peripheral blood samples were taken the day before and after treatment. The genes APC, MGMT; ER, GSTP1, DAPK, RARβ, FHIT and p16 were evaluated pre and post-treatment for DNA promoter methylation and gene expression by MSP (Methylation-Specific PCR) and RT-PCR respectively in each of the tumor samples. Methylation of the imprinted H19 gene and the "normally methylated" sequence clone 1.2 was also analyzed. Global DNA methylation was analyzed by capillary electrophoresis and cytosine extension assay. Toxicity was evaluated using the NCI Common Toxicity Criteria. Results Hydralazine was well tolerated. Toxicities were mild being the most common nausea, dizziness, fatigue, headache and palpitations. Overall, 70% of the pretreatment samples and all the patients had at least one methylated gene. Rates of demethylation at the different dose levels were as follows: 50 mg/day, 40%; 75 mg/day, 52%, 100 mg/day, 43%, and 150 mg/day, 32%. Gene expression analysis showed only 12 informative cases, of these 9 (75%) re-expressed the gene. There was neither change in the methylation status of H19 and clone 1.2 nor changes in global DNA methylation. Conclusion Hydralazine at doses between 50 and 150 mg/day is well tolerated and effective to demethylate and reactivate the expression of tumor suppressor genes without affecting global DNA methylation PMID:15862127

  8. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin.

    PubMed

    Walczak, Elżbieta; Andruniów, Tadeusz

    2015-07-14

    Ab initio multiconfigurational quantum chemical methodology combined with molecular mechanics (CASPT2//CASSCF/AMBER) was applied to probe impacts of retinal protonated Schiff base (RPSB) polyene methylation and/or demethylation on the mechanism of photochemical isomerization in bovine rhodopsin. We have examined structural and spectroscopic properties of wild-type rhodopsin (with 11-cis-9,13-dimethyl-RPSB) and artificial rhodopsins, hosting four 11-cis-RPSB derivatives, 13-demethyl-, 9-demethyl-, 10-methyl-13-demethyl-, and 10-methyl-RPSB, evolving along the photoisomerization coordinate. It is found that the addition of 10-methyl or/and deletion of 9-/13-methyl groups do not appear to interfere structurally with the photoisomerization pathway in the S1 excited state. Remarkably, the two-mode space-saving mechanism initiated by bond order inversion and followed by asynchronous bicycle-pedal distortion in the RPSB backbone drives the photoreaction in all rhodopsin analogues studied here. However, methylation and/or demethylation is responsible for perturbation of excess energy deposited in the conical intersection structures. The analysis of photon energy stored by bathorhodopsin in synthetic pigments reveals that it is affected by steric crowding of methyl substituents in the RPSB backbone. PMID:26074351

  9. Cell-Wide DNA De-Methylation and Re-Methylation of Purkinje Neurons in the Developing Cerebellum.

    PubMed

    Zhou, Feng C; Resendiz, Marisol; Lo, Chiao-Ling; Chen, Yuanyuan

    2016-01-01

    Global DNA de-methylation is thought to occur only during pre-implantation and gametogenesis in mammals. Scalable, cell-wide de-methylation has not been demonstrated beyond totipotent stages. Here, we observed a large scale de-methylation and subsequent re-methylation (CDR) (including 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC)) in post-mitotic cerebellar Purkinje cells (PC) through the course of normal development. Through single cell immuno-identification and cell-specific quantitative methylation assays, we demonstrate that the CDR event is an intrinsically scheduled program, occurring in nearly every PC. Meanwhile, cerebellar granule cells and basket interneurons adopt their own DNA methylation program, independent of PCs. DNA de-methylation was further demonstrated at the gene level, on genes pertinent to PC development. The PC, being one of the largest neurons in the brain, may showcase an amplified epigenetic cycle which may mediate stage transformation including cell cycle arrest, vast axonal-dendritic growth, and synaptogenesis at the onset of neuronal specificity. This discovery is a key step toward better understanding the breadth and role of DNA methylation and de-methylation during neural ontology. PMID:27583369

  10. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy*

    PubMed Central

    Farrow, Scott C.; Facchini, Peter J.

    2013-01-01

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311

  11. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  12. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  13. SIMPLIFIED INJECTION OF OXYGEN GAS INTO AN ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The Las Virgenes Municipal Water District conducted a pilot investigation of the Simplox process at their Tapia Water Reclamation Facility in Calabasas, California. The Simplox process, developed by the Cosmodyne Division of Cordon International, involves covering an activated sl...

  14. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  15. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    PubMed

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  16. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites

    PubMed Central

    Lee, Seung-Tae; Wiemels, Joseph L.

    2016-01-01

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  17. Demethylation and expression of murine mammary tumor proviruses in mouse thymoma cell lines.

    PubMed Central

    Mermod, J J; Bourgeois, S; Defer, N; Crépin, M

    1983-01-01

    Murine mammary tumor virus (MMTV) expression is analyzed in a T-lymphoid cell line (T1M1) sensitive to the killing effect of glucocorticoids and in two of its variants, one resistant (T1M1r) and one supersensitive (T1M1ss) to glucocorticoid-induced lymphocytolysis. In the T1M1 line, MMTV is expressed and induced approximately 10-fold by short treatment with dexamethasone. Southern blot analyses of restriction enzyme digests of DNA from T1M1 cells reveal three proviruses similar to those of normal C57BL mouse tissue. In the T1M1ss line, which has retained functional glucocorticoid receptors, MMTV mRNA is inducible by glucocorticoids, while induction is reduced in the T1M1r line defective in glucocorticoid receptors. Moreover, the T1M1r line expresses a strikingly elevated basal level of MMTV mRNA in the absence of hormone. No rearrangements or superinfection have occurred in the variants, but all the regions containing 5'-long terminal repeats are demethylated in the T1M1r variant although other sites of the provirus remain methylated. Because this variant was selected by prolonged treatment with dexamethasone, these observations raise the possibility that the continuous transcription of MMTV that occurred during this selection can result in glucocorticoid-induced demethylation of long-terminal-repeat sequences. Images PMID:6296860

  18. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

    PubMed Central

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2014-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  19. Histone Demethylation Maintains Prdm14 and Tsix Expression and Represses Xist in Embryonic Stem Cells

    PubMed Central

    Kamikawa, Yasunao F.; Donohoe, Mary E.

    2015-01-01

    Epigenetic reprogramming is exemplified by the remarkable changes observed in cellular differentiation and X-chromosome inactivation (XCI) in mammalian female cells. Histone 3 lysine 27 trimethylation (H3K27me3) is a modification that suppresses gene expression in multiple contexts including embryonic stem cells (ESCs) and decorates the entire inactive X-chromosome. The conversion of female somatic cells to induced pluripotency is accompanied by X-chromosome reactivation (XCR) and H3K27me3 erasure. Here, we show that the H3K27-specific demethylase Utx regulates the expression of the master regulators for XCI and XCR: Prdm14, Tsix, and Xist. Female ESC transcriptome analysis using a small molecule inhibitor for H3K27 demethylases, GSK-J4, identifies novel targets of H3K27 demethylation. Consistent with a recent report that GSK-J4 can inhibit other histone demethylase, we found that elevated H3K4me3 levels are associated with increased gene expression including Xist. Our data suggest multiple regulatory mechanisms for XCI via histone demethylation. PMID:25993097

  20. Demethylation treatment restores erectile function in a rat model of hyperhomocysteinemia

    PubMed Central

    Zhang, Zheng; Zhu, Lei-Lei; Jiang, He-Song; Chen, Hai; Chen, Yun; Dai, Yu-Tian

    2016-01-01

    Methylation modification is an important cellular mechanism of gene expression regulation. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) protein is a pivotal molecular for endothelium function. To explore the effects of 5-aza-deoxycytidine (5-aza), a demethylation agent, in hyperhomocysteinemia (hhcy)-related erectile dysfunction (ED) rats, 5-aza (1 mg kg−1) was administrated to Sprague-Dawley hhcy-rats induced by supplemented methionine chow diet. Erectile function, nitric oxide-cyclic guanosine monophosphate (NO-cGMP) levels, expression of DDAH-2 protein and promoter methylation status of DDAH-2 were studied in the corpora cavernosa. We found that supplemented methionine diet induced a high homocysteine level after 6 weeks of treatment. DDAH-2 protein was down-regulated in the corpora cavernosa while the administration of 5-aza up-regulated DDAH-2 expression and restored erectile function. The methionine-fed rats showed high methylation levels of DDAH-2 promoter region while the group treated with 5-aza demonstrated lower-methylation levels when compared to the methionine-fed group. Besides, the administration of 5-aza improved NO and cGMP levels in methionine-fed rats. Therefore, the methylation mechanism involves in ED pathogenesis, and demethylation offers a potential new strategy for ED treatment. PMID:26585696

  1. DNA Demethylation Upregulated Nrf2 Expression in Alzheimer’s Disease Cellular Model

    PubMed Central

    Cao, Huimin; Wang, Li; Chen, Beibei; Zheng, Peng; He, Yi; Ding, Yubin; Deng, Yushuang; Lu, Xi; Guo, Xiuming; Zhang, Yuping; Li, Yu; Yu, Gang

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor in the defense against oxidative stress. Cumulative evidence has shown that oxidative stress plays a key role in the pathogenesis of Alzheimer’s disease (AD). Previous animal and clinical studies had observed decreased expression of Nrf2 in AD. However, the underlying regulation mechanisms of Nrf2 in AD remain unclear. Here, we used the DNA methyltransferases (Dnmts) inhibitor 5-aza-2′-deoxycytidine (5-Aza) to test whether Nrf2 expression was regulated by methylation in N2a cells characterizing by expressing human Swedish mutant amyloid precursor protein (N2a/APPswe). We found 5-Aza treatment increased Nrf2 at both messenger RNA and protein levels via downregulating the expression of Dnmts and DNA demethylation. In addition, 5-Aza-mediated upregulation of Nrf2 expression was concomitant with increased nuclear translocation of Nrf2 and higher expression of Nrf2 downstream target gene NAD(P)H:quinone oxidoreductas (NQO1). Our study showed that DNA demethylation promoted the Nrf2 cell signaling pathway, which may enhance the antioxidant system against AD development. PMID:26779013

  2. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp

    PubMed Central

    Paice, M. G.; Reid, I. D.; Bourbonnais, R.; Archibald, F. S.; Jurasek, L.

    1993-01-01

    Previous work has shown that Trametes (Coriolus) versicolor bleaches kraft pulp brownstock with the concomitant release of methanol. In this work, the fungus is shown to produce both laccase and manganese peroxidase (MnP) but not lignin peroxidase during pulp bleaching. MnP production was enhanced by the presence of pulp and/or Mn(II) ions. The maximum level of secreted MnP was coincident with the maximum rate of fungal bleaching. Culture filtrates isolated from bleaching cultures produced Mn(II)- and hydrogen peroxide-dependent pulp demethylation and delignification. Laccase and MnP were separated by ion-exchange chromatography. Purified MnP alone produced most of the demethylation and delignification exhibited by the culture filtrates. On the basis of the methanol released and the total and phenolic methoxyl contents of the pulp, it appears that MnP shows a preference for the oxidation of phenolic lignin substructures. The extensive increase in brightness observed in the fungus-treated pulp was not found with MnP alone. Therefore, either the MnP effect must be optimized or other enzymes or compounds from the fungus are also required for brightening. Images PMID:16348850

  3. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

    PubMed

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2013-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  4. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  5. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  6. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  7. Epigenetic alteration by DNA-demethylating treatment restores apoptotic response to glucocorticoids in dexamethasone-resistant human malignant lymphoid cells

    PubMed Central

    2014-01-01

    Background Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis. Resistance to GCs can be a significant clinical problem, however, and correlates with resistance to several other major chemotherapeutic agents. Methods We analyzed the effect of treatment with the cytosine analogue 5 aza-2’ deoxycytidine (AZA) on GC resistance in two acute lymphoblastic leukemia (T or pre-T ALL) cell lines- CEM and Molt-4- and a (B-cell) myeloma cell line, RPMI 8226. Methods employed included tissue culture, flow cytometry, and assays for clonogenicity, cytosine extension, immunochemical identification of proteins, and gene transactivation. High throughput DNA sequencing was used to confirm DNA methylation status. Conclusions Treatment of these cells with AZA resulted in altered DNA methylation and restored GC-evoked apoptosis in all 3 cell lines. In CEM cells the altered epigenetic state resulted in site-specific phosphorylation of the GR, increased GR potency, and GC-driven induction of the GR from promoters that lie in CpG islands. In RPMI 8226 cells, expression of relevant coregulators of GR function was altered. Activation of p38 mitogen-activated protein kinase (MAPK), which is central to a feed-forward mechanism of site-specific GR phosphorylation and ultimately, apoptosis, occurred in all 3 cell lines. These data show that in certain malignant hematologic B- and T-cell types, epigenetically controlled GC resistance can be reversed by cell exposure to a compound that causes DNA demethylation. The results encourage studies of application to in vivo systems, looking towards eventual clinical applications. PMID:24795534

  8. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... data processing or data transmission activities beyond those described in Regulation Y, it must...

  9. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Data processing activities. 211.604 Section 211.604 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Lending Supervision Interpretations § 211.604 Data processing activities. (a)...

  10. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Data processing activities. 211.604 Section...

  11. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Data processing activities. 211.604 Section...

  12. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Data processing activities. 211.604 Section...

  13. 23 CFR 450.208 - Coordination of planning process activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Coordination of planning process activities. 450.208 Section 450.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and Programming § 450.208 Coordination of planning process activities. (a)...

  14. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  15. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  16. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    PubMed

    Yan, Xueying; Ehnert, Sabrina; Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A; Pelisek, Jaroslav; Nussler, Andreas K

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  17. 5-Azacytidine Improves the Osteogenic Differentiation Potential of Aged Human Adipose-Derived Mesenchymal Stem Cells by DNA Demethylation

    PubMed Central

    Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A.; Pelisek, Jaroslav; Nussler, Andreas K.

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  18. Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma

    PubMed Central

    2013-01-01

    Background Despite therapeutic advances in targeted therapy, metastatic renal cell carcinoma (RCC) remains incurable for the vast majority of patients. Key molecular events in the pathogenesis of RCC include inactivation of the VHL tumour suppressor gene (TSG), inactivation of chromosome 3p TSGs implicated in chromatin modification and remodelling and de novo tumour-specific promoter methylation of renal TSGs. In the light of these observations it can be proposed that, as in some haematological malignancies, demethylating agents such as azacitidine might be beneficial for the treatment of advanced RCC. Results Here we report that the treatment of RCC cell lines with azacitidine suppressed cell proliferation in all 15 lines tested. A marked response to azacitidine therapy (>50% reduction in colony formation assay) was detected in the three cell lines with VHL promoter methylation but some RCC cell lines without VHL TSG methylation also demonstrated a similar response suggesting that multiple methylated TSGs might determine the response to demethylating therapies. To identify novel candidate methylated TSGs implicated in RCC we undertook a combined analysis of copy number and CpG methylation array data. Candidate novel epigenetically inactivated TSGs were further prioritised by expression analysis of RCC cell lines pre and post-azacitidine therapy and comparative expression analysis of tumour/normal pairs. Thus, with subsequent investigation two candidate genes were found to be methylated in more than 25% of our series and in the TCGA methylation dataset for 199 RCC samples: RGS7 (25.6% and 35.2% of tumours respectively) and NEFM in (25.6% and 30.2%). In addition three candidate genes were methylated in >10% of both datasets (TMEM74 (15.4% and 14.6%), GCM2 (41.0% and 14.6%) and AEBP1 (30.8% and 13.1%)). Methylation of GCM2 (P = 0.0324), NEFM (P = 0.0024) and RGS7 (P = 0.0067) was associated with prognosis. Conclusions These findings provide preclinical evidence that

  19. Promoted Interaction of Nuclear Factor-κB With Demethylated Purinergic P2X3 Receptor Gene Contributes to Neuropathic Pain in Rats With Diabetes.

    PubMed

    Zhang, Hong-Hong; Hu, Ji; Zhou, You-Lang; Qin, Xin; Song, Zhen-Yuan; Yang, Pan-Pan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-12-01

    Painful diabetic neuropathy is a common complication of diabetes produced by mechanisms that as yet are incompletely defined. The aim of this study was to investigate the roles of nuclear factor-κB (NF-κB) in the regulation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3R) plasticity in dorsal root ganglion (DRG) neurons of rats with painful diabetes. Here, we showed that hindpaw pain hypersensitivity in streptozocin-induced diabetic rats was attenuated by treatment with purinergic receptor antagonist suramin or A-317491. The expression and function of P2X3Rs was markedly enhanced in hindpaw-innervated DRG neurons in diabetic rats. The CpG (cytosine guanine dinucleotide) island in the p2x3r gene promoter region was significantly demethylated, and the expression of DNA methyltransferase 3b was remarkably downregulated in DRGs in diabetic rats. The binding ability of p65 (an active form of NF-κB) with the p2x3r gene promoter region and p65 expression were enhanced significantly in diabetes. The inhibition of p65 signaling using the NF-κB inhibitor pyrrolidine dithiocarbamate or recombinant lentiviral vectors designated as lentiviral vector-p65 small interfering RNA remarkably suppressed P2X3R activities and attenuated diabetic pain hypersensitivity. Insulin treatment significantly attenuated pain hypersensitivity and suppressed the expression of p65 and P2X3Rs. Our findings suggest that the p2x3r gene promoter DNA demethylation and enhanced interaction with p65 contributes to P2X3R sensitization and diabetic pain hypersensitivity. PMID:26130762

  20. An acyl group makes a difference in the reactivity patterns of cytochrome P450 catalyzed N-demethylation of substituted N,N-dimethylbenzamides-high spin selective reactions.

    PubMed

    Wang, Yong; Li, Dongmei; Han, Keli; Shaik, Sason

    2010-03-01

    This paper addresses the experimentally observed mechanistic differences between the cytochrome P450-catalyzed N-demethylation of substituted N,N-dimethylanilines (DMA) and of N,N-dimethylbenzamides (DMBA). The two reactions of these substrates are initiated by C-H activation of the methyl groups on the nitrogen. Thus, the DMA reactions exhibit small deuterium kinetic isotope effects (KIEs), and these KIEs and the corresponding reaction rates exhibit a linear response to the electronic nature of the para substituent. By contrast, the DMBA reactions exhibit large KIEs; the KIEs and reaction rates do not at all respond to the nature of the para substituent. Accordingly, the present paper uses density functional theoretical calculations to address these reactivity patterns in para-substituted DMBA and compare these results to those obtained for the DMA reactions previously (Wang, Y.; Kumar, D.; Yang, C. L.; Han, K. L.; Shaik, S. J. Phys. Chem. B 2007, 111, 7700). The theoretical calculations reproduce the experimental trends of narrow variations in rates and KIEs. It is shown that the above mechanistic differences between the two reaction series of DMA and DMBA are caused by the ability of the para substituent to maintain a conjugation path between the C-H reaction center and the aryl moiety. Furthermore, the computational results show a new feature of reactivity, namely, that the N-demethylation of DMBA proceeds by a spin-selective reaction via the high spin state of the active species of the enzyme. This conclusion is reinforced by the match of the calculated and experimental KIE values. PMID:20146528

  1. The p16-specific reactivation and inhibition of cell migration through demethylation of CpG islands by engineered transcription factors.

    PubMed

    Zhang, Baozhen; Xiang, Shengyan; Zhong, Qiming; Yin, Yanru; Gu, Liankun; Deng, Dajun

    2012-10-01

    Methylation of CpG islands inactivates transcription of tumor suppressor genes including p16 (CDKN2A). Inhibitors of DNA methylation and histone deacylation are recognized as useful cancer therapeutic chemicals through reactivation of the expression of methylated genes. However, these inhibitors are not target gene-specific, so that they lead to serious side effects as regular cytotoxic chemotherapy agents. To explore the feasibility of methylated gene-specific reactivation by artificial transcription factors, we engineered a set of Sp1-like seven-finger zinc-finger proteins (7ZFPs) targeted to a 21-bp sequence of the p16 promoter and found that these 7ZFPs could bind specifically to the target p16 promoter probe. Then the p16-specific artificial transcription factors (p16ATFs) were made from these 7ZFPs and the transcription activator VP64. Results showed that transient transfection of some p16ATFs selectively up-regulated the endogenous p16 expression in the p16-active 293T cells. Moreover, the transient transfection of the representative p16ATF-6I specifically reactivated p16 expression in the p16-methylated H1299 and AGS cells pretreated with a nontoxic amount of 5'-aza-deoxycytidine (20 and 80 nM, respectively). In addition, stable transfection of the p16ATF induced demethylation of p16 CpG island and trimethylation of histone H3K4, and inhibited recruitment of DNA methyltransferase 1 and trimethylation of H3K9 and H3K27 in the p16 promoter in H1299 cells without 5'-aza-deoxycytidine pretreatment. Notably, inhibition of cell migration and invasion was observed in these p16-reactivated cells induced by transient and stable p16ATF transfection. These results demonstrate that p16ATF not only specifically reactivates p16 expression through demethylation of CpG islands, but also restores methylated p16 function. PMID:22738793

  2. Genome-wide demethylation by 5-aza-2'-deoxycytidine alters the cell fate of stem/progenitor cells.

    PubMed

    Zhou, Yang; Hu, Zhengqing

    2015-02-01

    DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) is able to cause DNA demethylation in the genome and induce the expression of silenced genes. Whether DNA demethylation can affect the gene expression of stem/progenitor cells has not been understood. Mouse utricle epithelia-derived progenitor cells (MUCs), which possess stem cell features as previously described, exhibit a potential DNA methylation status in the genome. In this study, MUCs were treated with 5-aza-CdR to determine whether DNMT inhibitor is able to induce the differentiation of MUCs. With 5-aza-CdR treatment for 72 hr, MUCs expressed epithelial genes including Cdh1, Krt8, Krt18, and Dsp. Further, hair cell genes Myo7a and Myo6 increased their expressions in response to 5-aza-CdR treatment. The decrease in the global methylated DNA values after 5-aza-CdR treatment indicated a significant DNA demethylation in the genome of MUCs, which may contribute to remarkably increased expression of epithelial genes and hair cell genes. The progenitor MUCs then turned into an epithelial-like hair cell fate with the expression of both epithelial and hair cell genes. This study suggests that stem cell differentiation can be stimulated by DNA demethylation, which may open avenues for studying stem cell fate induction using epigenetic approaches. PMID:25096638

  3. Simultaneous determination of levophencynonate and its metabolite demethyl levophencynonate in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Li, Bo; Qi, Wenyuan; Shi, Aixin; Hu, Xin; Cheng, Gang

    2016-08-01

    A sensitive and convenient high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method was developed to determine levophencynonate and demethyl levophencynonate levels in human plasma simultaneously. Chromatographic separation was achieved on a SHIMADZU Shim-Pack XR C8 column and mass spectrometric analysis was performed by an API5000 mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 358.4→156.4 and 344.5→144.2 were used to quantify levophencynonate and demethyl levophencynonate, respectively. This analytical method was fully validated with specificity, linearity, lower limit of quantitation (LLOQ), accuracy, precision, stability, matrix effect and recovery. The linearity of this method were developed to be within the concentration ranges of 10-4000pg/mL for levophencynonate and 25-8000pg/mL for demethyl levophencynonate in human plasma. This method was used in a clinical study which was administrated with single oral dose for Chinese healthy subjects to investigate the pharmacokinetics of levophencynonate and demethyl levophencynonate. PMID:27304783

  4. Demethylation kinetics of aspartame and L-phenylalanine methyl ester in aqueous solution.

    PubMed

    Skwierczynski, R D; Connors, K A

    1993-08-01

    The kinetics of demethylation of aspartame and L-phenylalanine methyl ester were studied in aqueous solution at 25 degrees C over the pH range 0.27-11.5. The pseudo-first-order rate constant for aspartame was resolved into individual contributions from methyl ester hydrolysis and diketopiperazine formation. pH-rate profiles were quantitatively described by chemically reasonable kinetic schemes. Aspartame is maximally stable at pH 4 (t90 = 53 days at 25 degrees C); phenylalanine methyl ester, at pH 3. The potentiometrically measured pKa values were pKa1 3.19 and pKa2 7.87 for aspartame and pKa 7.11 for phenylalanine methyl ester. PMID:8415404

  5. DNA methylation and demethylation events during meiotic prophase in the mouse testis.

    PubMed Central

    Trasler, J M; Hake, L E; Johnson, P A; Alcivar, A A; Millette, C F; Hecht, N B

    1990-01-01

    The genes encoding three different mammalian testis-specific nuclear chromatin proteins, mouse transition protein 1, mouse protamine 1, and mouse protamine 2, all of which are expressed postmeiotically, are marked by methylation early during spermatogenesis in the mouse. Analysis of DNA from the testes of prepubertal mice and isolated testicular cells revealed that transition protein 1 became progressively less methylated during spermatogenesis, while the two protamines became progressively more methylated; in contrast, the methylation of beta-actin, a gene expressed throughout spermatogenesis, did not change. These findings provide evidence that both de novo methylation and demethylation events are occurring after the completion of DNA replication, during meiotic prophase in the mouse testis. Images PMID:2320009

  6. Process of activation of a palladium catalyst system

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  7. ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence.

    PubMed

    Xie, H J; Li, H; Liu, D; Dai, W M; He, J Y; Lin, S; Duan, H; Liu, L L; Chen, S G; Song, X L; Valverde, B E; Qiang, S

    2015-02-01

    Cold tolerance adaption is a crucial determinant for the establishment and expansion of invasive alien plants into new cold environments; however, its evolutionary mechanism is poorly understood. Crofton weed (Ageratina adenophora), a highly invasive alien plant, is continuously spreading across subtropical areas in China, north-eastward from the first colonized south-western tropical regions, through cold tolerance evolution. Close relations between the cold tolerance levels of 34 populations, represented by 147 accessions, and the latitude, extreme lowest temperature, coldest month average temperature, and invasion period have provided direct insight into its cold tolerance divergence. A comparative study of the CBF pathway, associated with the cold tolerance enhancement of cold-susceptible CBF1-transgenic plant, among four geographically distinct crofton weed populations revealed that the CBF pathway plays a key role in the observed cold tolerance divergence. Four epialleles of the cold response regulator ICE1 ranged from 66 to 50 methylated cytosines, representing a 4.4% to 3.3% methylation rate and significantly corresponding to the lowest to highest cold tolerance levels among these different populations. The significant negative relation between the transcription levels of the primary CBF pathway members, except for CBF2, and the methylation levels among the four populations firstly demonstrates that the demethylation-upregulated transcription level of CBF pathway is responsible for this evolution. These facts, combined with the cold tolerance variation and methylation found among three native and two other introduced populations, indicate that the ICE1-demethylated upregulation of cold tolerance may be the underlying evolutionary mechanism allowing crofton weed to expand northward in China. PMID:25581031

  8. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  9. Aerosol Azacytidine Inhibits Orthotopic Lung Cancers in Mice through Its DNA Demethylation and Gene Reactivation Effects

    PubMed Central

    Qiu, Xuan; Liang, Yuanxin; Sellers, Rani S.; Perez-Soler, Roman; Zou, Yiyu

    2014-01-01

    We devised an aerosol based demethylation therapy to achieve therapeutic efficacy in premalignant or in situ lesions of lung cancer, without systemic toxicity. Optimum regimens of aerosolized azacytidine (Aza) were designed and used in orthotopic human non-small cell lung cancer xenograft models. The therapeutic efficacy and toxicity of aerosol Aza were compared with intravenously administered Aza. We observed that 80% of the droplets of the aerosol Aza measured ∼0.1–5 microns, which resulted in deposition in the lower bronchial airways. An animal model that phenocopies field carcinogeneisis in humans was developed by intratracheal inoculation of the human lung cancer cells in mice, thus resulting in their distribution throughout the entire airway space. Aerosolized Aza significantly prolonged the survival of mice bearing endo-bronchial lung tumors. The aerosol treatment did not cause any detectable lung toxicity or systemic toxicity. A pre-pharmacokinetic study in mice demonstrated that lung deposition of aerosolized Aza was significantly higher than the intravenous route. Lung tumors were resected after aerosol treatment and the methylation levels of 24 promoters of tumor-suppresser genes related to lung cancer were analyzed. Aerosol Aza significantly reduced the methylation level in 9 of these promoters and reexpressed several genes tested. In conclusion, aerosol Aza at non-cytotoxic doses appears to be effective and results in DNA demethylation and tumor suppressor gene re-expression. The therapeutic index of aerosol Aza is >100-fold higher than that of intravenous Aza. These results provide a preclinical rationale for a phase I clinical trial of aerosol Aza to be initiated at our Institution. PMID:25347303

  10. Interindividual and interethnic differences in the demethylation and glucuronidation of codeine.

    PubMed Central

    Yue, Q Y; Svensson, J O; Alm, C; Sjöqvist, F; Säwe, J

    1989-01-01

    1. The 8 h urinary excretion of codeine and seven of its metabolites was compared in 149 healthy Swedish Caucasians and 133 healthy Chinese following a single oral dose of 25 mg codeine phosphate. 2. The total 8 h urinary recovery of drug-related material was 74 +/- 24% in the Caucasians and 60 +/- 14% in the Chinese (P less than 0.001). The excretion of unchanged codeine was significantly higher in the Chinese (7.2%) compared with the Caucasians (4.3%, P less than 0.001). 3. The Caucasians excreted significantly greater proportions of codeine-6-glucuronide (C6G) (62%) than the Chinese (44%) (P less than 0.001). The frequency distribution of the log metabolic ratio (MR) for glucuronidation (codeine/C6G) was shifted towards higher values in the Chinese population. Males in both groups and Chinese smokers had significantly lower glucuronidation MRs than females and non-smokers in the respective populations (P less than 0.001). 4. The frequency distribution of the MR for O-demethylation (codeine/morphine (M) + M-3 and M-6-glucuronide (M3G and M6G) + normorphine (NM) was highly skewed in the Caucasians, suggestive of a bimodal distribution. There was a 160-fold interindividual variation in this MR. A unimodal distribution of the log O-demethylation MR was observed in Chinese. The Caucasians excreted less M and more M6G than did the Chinese (P less than 0.001). 5. Significantly more norcodeine (NC) and less NC-glucuronide (NCG) were excreted in the Chinese compared with the Caucasians (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611085

  11. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  12. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  13. Hold My Calls: An Activity for Introducing the Statistical Process

    ERIC Educational Resources Information Center

    Abel, Todd; Poling, Lisa

    2015-01-01

    Working with practicing teachers, this article demonstrates, through the facilitation of a statistical activity, how to introduce and investigate the unique qualities of the statistical process including: formulate a question, collect data, analyze data, and interpret data.

  14. Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria.

    PubMed

    Bullock, Hannah A; Reisch, Chris R; Burns, Andrew S; Moran, Mary Ann; Whitman, William B

    2014-03-01

    The organosulfur compound dimethylsulfoniopropionate (DMSP) is produced by phytoplankton and is ubiquitous in the surface ocean. Once released from phytoplankton, marine bacteria degrade DMSP by either the cleavage pathway to form the volatile gas dimethylsulfide (DMS) or the demethylation pathway, yielding methanethiol (MeSH), which is readily assimilated or oxidized. The enzyme DmdB, a methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, catalyzes the second step in the demethylation pathway and is a major regulatory point. The two forms of DmdB present in the marine roseobacter Ruegeria pomeroyi DSS-3, RPO_DmdB1 and RPO_DmdB2, and the single form in the SAR11 clade bacterium "Candidatus Pelagibacter ubique" HTCC1062, PU_DmdB1, were characterized in detail. DmdB enzymes were also examined from Ruegeria lacuscaerulensis ITI-1157, Pseudomonas aeruginosa PAO1, and Burkholderia thailandensis E264. The DmdB enzymes separated into two phylogenetic clades. All enzymes had activity with MMPA and were sensitive to inhibition by salts, but there was no correlation between the clades and substrate specificity or salt sensitivity. All Ruegeria species enzymes were inhibited by physiological concentrations (70 mM) of DMSP. However, ADP reversed the inhibition of RPO_DmdB1, suggesting that this enzyme was responsive to cellular energy charge. MMPA reversed the inhibition of RPO_DmdB2 as well as both R. lacuscaerulensis ITI-1157 DmdB enzymes, suggesting that a complex regulatory system exists in marine bacteria. In contrast, the DmdBs of the non-DMSP-metabolizing P. aeruginosa PAO1 and B. thailandensis E264 were not inhibited by DMSP, suggesting that DMSP inhibition is a specific adaptation of DmdBs from marine bacteria. PMID:24443527

  15. Biochemical activities in soil overlying Paraho processed oil shale

    SciTech Connect

    Sorensen, D.L.

    1982-01-01

    Microbial activity development in soil materials placed over processed oil shale is vital to the plant litter decomposition, cycling of nutrients, and soil organic matter accumulation and maintenance. Samples collected in the summers of 1979, 1980, and 1981 from revegetated soil 30-, 61-, and 91-cm deep overlying spent oil shale in the Piceance Basin of northwestern Colorado were assayed for dehydrogenease activity with glucose and without glucose, for phosphatase activity, and for acetylene reduction activity. Initial ammonium and nitrite nitrogen oxidation rates and potential denitrification rates were determined in 1981. Zymogenous dehydrogenase activity, phosphatase activity, nitrogenase activity, potential denitrification rates, and direct microscopic counts were lower in surface soil 30 cm deep, and were frequently lower in surface soil 61 cm deep over processed shale than in a surface-disturbed control area soil. Apparently, microbial activities are stressed in these more shallow replaced soils. Soil 61 cm deep over a coarse-rock capillary barrier separating the soil from the spent shale, frequently had improved biochemical activity. Initial ammonium and nitrite nitrogen oxidation rates were lower in all replaced soils than in the disturbed control soil. Soil core samples taken in 1981 were assayed for dehydrogenase and phosphatase activities, viable bacteria, and viable fungal propagules. In general, microbial activity decreased quickly below the surface. At depths greater than 45 cm, microbial activities were similar in buried spent shale and surface-disturbed control soil.

  16. Formal Verification of Effectiveness of Control Activities in Business Processes

    NASA Astrophysics Data System (ADS)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  17. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  18. Instructional Transaction Theory: Knowledge Relationships among Processes, Entities, and Activities.

    ERIC Educational Resources Information Center

    Merrill, M. David; And Others

    1993-01-01

    Discussion of instructional transaction theory focuses on knowledge representation in an automated instructional design expert system. A knowledge structure called PEA-Net (processes, entities, and activities) is explained; the refrigeration process is used as an example; text resources and graphic resources are described; and simulations are…

  19. 76 FR 44350 - Agency Information Collection Activities: Drawback Process Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... SECURITY U.S. CUSTOMS AND BORDER PROTECTION Agency Information Collection Activities: Drawback Process... approval in accordance with the Paperwork Reduction Act: Drawback Process Regulations (CBP Forms 7551, 7552... collection was previously published in the Federal Register (76 FR 19120) on April 6, 2011, allowing for a...

  20. 76 FR 19120 - Agency Information Collection Activities: Drawback Process Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Drawback Process... Drawback Process Regulations (CBP Forms 7551, 7552 and 7553). This request for comment is being made... CBP is soliciting comments concerning the following information collection: Title: Drawback...

  1. Cascading Activation across Levels of Representation in Children's Lexical Processing

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Snedeker, Jesse

    2011-01-01

    Recent work in adult psycholinguistics has demonstrated that activation of semantic representations begins long before phonological processing is complete. This incremental propagation of information across multiple levels of analysis is a hallmark of adult language processing but how does this ability develop? In two experiments, we elicit…

  2. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  3. Dehydrogenation processes via C-H activation within alkylphosphines.

    PubMed

    Grellier, Mary; Sabo-Etienne, Sylviane

    2012-01-01

    Phosphines are commonly used in organometallic chemistry and are present in a wide variety of catalytic systems. This feature article highlights the advances made in dehydrogenation processes occurring within alkylphosphines, with the aim of further developing catalytic processes involving C-H activation together with potential applications in the field of hydrogen storage. PMID:21956347

  4. Active Storage Processing in a Parallel File System

    SciTech Connect

    Felix, Evan J.; Fox, Kevin M.; Regimbal, Kevin M.; Nieplocha, Jarek

    2006-01-01

    By creating a processing system within a parallel file system one can harness the power of unused processing power on servers that have very fast access to the disks they are serving. By inserting a module the Lustre file system the Active Storage Concept is able to perform processing with the file system architecture. Results of using this technology are presented as the results of the Supercomputing StorCloud Challenge Application are reviewed.

  5. Mirror neuron activation is associated with facial emotion processing.

    PubMed

    Enticott, Peter G; Johnston, Patrick J; Herring, Sally E; Hoy, Kate E; Fitzgerald, Paul B

    2008-09-01

    Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facial emotion processing, a fundamental aspect of social cognition, among healthy adults (n=20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition. PMID:18554670

  6. Canada's physical activity guides: background, process, and development.

    PubMed

    Sharratt, Michael T; Hearst, William E

    2007-01-01

    This historical background paper chronicles the major events leading to the development of Canada's physical activity guides (for children, youth, adults, and older adults). The paper outlines the process and the steps used, including information (where applicable) regarding national partners, project administration, Health Canada communications, product development, endorsement, distribution and implementation, collateral activities, media relations and evaluation framework. Brief summaries of the science that led to the recommended guidelines are included. The paper also summarizes the various physical activity guide assessment and evaluation projects and their findings, particularly as they relate to research carried out on Canada's physical activity guides for children and youth (and the associated support resources). PMID:18213939

  7. [Physical activity guidelines in Canada: context, process and development].

    PubMed

    Sharratt, Michael T; Hearst, William E

    2007-01-01

    This historical background paper chronicles the major events leading to the development of Canada's physical activity guides (for children, youth, adults, and older adults). The paper outlines the process and the steps used, including information (where applicable) regarding national partners, project administration, Health Canada communications, product development, endorsement, distribution and implementation, collateral activities, media relations and evaluation framework. Brief summaries of the science that led to the recommended guidelines are included. The paper also summarizes the various physical activity guide assessment and evaluation projects and their findings, particularly as they relate to research carried out on Canada's physical activity guides for children and youth (and the associated support resources). PMID:19377535

  8. Human Enteric Microsomal CYP4F Enzymes O-Demethylate the Antiparasitic Prodrug Pafuramidine

    PubMed Central

    Wang, Michael Zhuo; Wu, Judy Qiju; Bridges, Arlene S.; Zeldin, Darryl C.; Kornbluth, Sally; Tidwell, Richard R.; Hall, James Edwin; Paine, Mary F.

    2008-01-01

    CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminoben-zotriazole and the requirement for NADPH. Apparent Km and Vmax values ranged from 0.6 to 2.4 μM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid ω-hydroxylation rates (r2 = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3–18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics. PMID:17709372

  9. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  10. Analysis of TET Expression/Activity and 5mC Oxidation during Normal and Malignant Germ Cell Development

    PubMed Central

    Nettersheim, Daniel; Heukamp, Lukas C.; Fronhoffs, Florian; Grewe, Marc J.; Haas, Natalie; Waha, Anke; Honecker, Friedemann; Waha, Andreas; Kristiansen, Glen; Schorle, Hubert

    2013-01-01

    During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the base excision repair mechanism leads to replacement of a modified cytosine by an unmodified one. In this study, we analyzed the expression/activity of TET1-3 and screened for the presence of 5mC oxidation products in adult human testis and in germ cell cancers. By analyzing human testis sections, we show that levels of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are decreasing as spermatogenesis proceeds, while 5-methylcytosine levels remain constant. These data indicate that during spermatogenesis active DNA demethylation becomes downregulated leading to a conservation of the methylation marks in mature sperm. We demonstrate that all carcinoma in situ and the majority of seminomas are hypomethylated and hypohydroxymethylated compared to non-seminomas. Interestingly, 5-formylcytosine and 5-carboxylcytosine were detectable in all germ cell cancer entities analyzed, but levels did not correlate to the 5-methylcytosine or 5-hydroxymethylcytosine status. A meta-analysis of gene expression data of germ cell cancer tissues and corresponding cell lines demonstrates high expression of TET1 and the DNA glycosylase TDG, suggesting that germ cell cancers utilize the oxidation pathway for active DNA demethylation. During xenograft experiments, where seminoma-like TCam-2 cells transit to an embryonal carcinoma-like state DNMT3B and DNMT3L where strongly upregulated, which correlated to increasing 5-methylcytosine levels. Additionally, 5-hydroxymethylcytosine levels were elevated, demonstrating that de novo methylation and active demethylation accompanies this transition

  11. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  12. Lateralized frontal activity for Japanese phonological processing during child development

    PubMed Central

    Goto, Takaaki; Kita, Yosuke; Suzuki, Kota; Koike, Toshihide; Inagaki, Masumi

    2015-01-01

    Phonological awareness is essential for reading, and is common to all language systems, including alphabetic languages and Japanese. This cognitive factor develops during childhood, and is thought to be associated with shifts in brain activity. However, the nature of this neurobiological developmental shift is unclear for speakers of Japanese, which is not an alphabetical language. The present study aimed to reveal a shift in brain functions for processing phonological information in native-born Japanese children. We conducted a phonological awareness task and examined hemodynamic activity in 103 children aged 7–12 years. While younger children made mistakes and needed more time to sort phonological information in reverse order, older children completed the task quickly and accurately. Additionally, younger children exhibited increased activity in the bilateral dorsolateral prefrontal cortex (DLPFC), which may be evidence of immature phonological processing skills. Older children exhibited dominant activity in the left compared with the right DLPFC, suggesting that they had already acquired phonological processing skills. We also found significant effects of age and lateralized activity on behavioral performance. During earlier stages of development, the degree of left lateralization appears to have a smaller effect on behavioral performance. Conversely, in later stages of development, the degree of left lateralization appears to have a stronger influence on behavioral performance. These initial findings regarding a neurobiological developmental shift in Japanese speakers suggest that common brain regions play a critical role in the development of phonological processing skills among different languages systems, such as Japanese and alphabetical languages. PMID:26236223

  13. O-Demethylation and Successive Oxidative Dechlorination of Methoxychlor by Bradyrhizobium sp. Strain 17-4, Isolated from River Sediment

    PubMed Central

    Masuda, Minoru; Sato, Kiyoshi

    2012-01-01

    O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates. PMID:22635993

  14. Electrochemically active species and multielectron processes in ionic melts

    NASA Astrophysics Data System (ADS)

    Shapoval, Viktor I.; Solov'ev, Veniamin V.; Malyshev, Viktor V.

    2001-02-01

    The model concepts for the mechanisms of formation of electrochemically active species and multielectron processes in ionic nitrate-, carbonate-, boron- and titanium-containing fluoride melts are generalised. The fundamental importance of the acid-base properties of a melt in the mechanism of formation of electrochemically active species is shown for nitrate- and carbonate-containing melts. This fact is confirmed by electrochemical measurements and by calculations of force constants for oxyanions. The optimum form of electrochemically active species has been established; their reduction abilities depend on the cationic composition of a melt, the adsorption properties of the electrode surface and the electric field strength. The bibliography includes 218 references.

  15. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5.

    PubMed

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N(6)-methyladenosine (m(6)A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m(6)A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m(6)A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  16. Suppression of TET1-Dependent DNA Demethylation is Essential for KRAS-Mediated Transformation

    PubMed Central

    Wu, Bo-Kuan

    2014-01-01

    Summary Hypermethylation-mediated tumor suppressor gene (TSG) silencing is a central epigenetic alteration in RAS-dependent tumorigenesis. Ten-eleven translocation (TET) enzymes can depress DNA methylation by hydroxylation of 5-methylcytosine (5mC) bases to 5-hydroxymethylcytosine (5hmC). Here we report that suppression of TET1 is required for KRAS-induced DNA hypermethylation and cellular transformation. In distinct non-malignant cell lines, oncogenic KRAS promotes transformation by inhibiting TET1 expression via the ERK signaling pathway. This reduces chromatin occupancy of TET1 at TSG promoters, lowers levels of 5hmC, and increases levels of 5mC and 5mC-dependent transcriptional silencing. Restoration of TET1 expression by ERK pathway inhibition or ectopic TET1 reintroduction in KRAS-transformed cells reactivates TSGs and inhibits colony formation. KRAS knockdown increases TET1 expression and diminishes colony-forming ability, while KRAS/TET1 double knockdown bypasses the KRAS dependence of KRAS-addicted cancer cells. Thus, suppression of TET1-dependent DNA demethylation is critical for KRAS-mediated transformation. PMID:25466250

  17. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5

    PubMed Central

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  18. Immunomediated Pan-cancer Regulation Networks are Dominant Fingerprints After Treatment of Cell Lines with Demethylation

    PubMed Central

    El Baroudi, Mariama; Cinti, Caterina; Capobianco, Enrico

    2016-01-01

    Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints. PMID:27147816

  19. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In situ processing activities. 785.22 Section 785.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR PERMITS...

  20. Operational Control Procedures for the Activated Sludge Process: Appendix.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…

  1. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  2. Ambient and focal visual processing of naturalistic activity.

    PubMed

    Eisenberg, Michelle L; Zacks, Jeffrey M

    2016-01-01

    When people inspect a picture, they progress through two distinct phases of visual processing: an ambient, or exploratory, phase that emphasizes input from peripheral vision and rapid acquisition of low-frequency information, followed by a focal phase that emphasizes central vision, salient objects, and high-frequency information. Does this qualitative shift occur during dynamic scene viewing? If so, when? One possibility is that shifts to exploratory processing are triggered at subjective event boundaries. This shift would be adaptive, because event boundaries typically occur when activity features change and when activity becomes unpredictable. Here, we used a perceptual event segmentation task, in which people identified boundaries between meaningful units of activity, to test this hypothesis. In two studies, an eye tracker recorded eye movements and pupil size while participants first watched movies of actors engaged in everyday activities and then segmented them into meaningful events. Saccade amplitudes and fixation durations during the initial viewings suggest that event boundaries function much like the onset of a new picture during static picture presentation: Viewers initiate an ambient processing phase and then progress to focal viewing as the event progresses. These studies suggest that this shift in processing mode could play a role in the formation of mental representations of the current environment. PMID:27002550

  3. Enhanced Passive and Active Processing of Syllables in Musician Children

    ERIC Educational Resources Information Center

    Chobert, Julie; Marie, Celine; Francois, Clement; Schon, Daniele; Besson, Mireille

    2011-01-01

    The aim of this study was to examine the influence of musical expertise in 9-year-old children on passive (as reflected by MMN) and active (as reflected by discrimination accuracy) processing of speech sounds. Musician and nonmusician children were presented with a sequence of syllables that included standards and deviants in vowel frequency,…

  4. Lidocaine Sensitizes the Cytotoxicity of Cisplatin in Breast Cancer Cells via Up-Regulation of RARβ2 and RASSF1A Demethylation

    PubMed Central

    Li, Kehan; Yang, Jianxue; Han, Xuechang

    2014-01-01

    It has been reported that lidocaine is toxic to various types of cells. And a recent study has confirmed that lidocaine exerts a demethylation effect and regulates the proliferation of human breast cancer cell lines. To recognize a potential anti-tumor effect of lidocaine, we evaluated the DNA demethylation by lidocaine in human breast cancer lines, MCF-7 and MDA-MB-231 cells, and determined the influence of demethylation on the toxicity to these cells of cisplatin, which is a commonly utilized anti-tumor agent for breast cancer. Results demonstrated that lidocaine promoted a significant global genomic demethylation, and particularly in the promoters of tumor suppressive genes (TSGs), RARβ2 and RASSF1A. Further, the lidocaine treatment increased cisplatin-induced apoptosis and enhanced cisplatin-induced cytotoxicity. The combined treatment with both lidocaine and cisplatin promoted a significantly higher level of MCF-7 cell apoptosis than singular lidocaine or cisplatin treatment. Moreover, the abrogation of RARβ2 or RASSF1A expression inhibited such apoptosis. In conclusion, the present study confirms the demethylation effect of lidocaine in breast cancer cells, and found that the demethylation of RARβ2 and RASSF1A sensitized the cytotoxicity of cisplatin in breast cancer cells. PMID:25526566

  5. Physical activity across the curriculum: year one process evaluation results

    PubMed Central

    Gibson, Cheryl A; Smith, Bryan K; DuBose, Katrina D; Greene, J Leon; Bailey, Bruce W; Williams, Shannon L; Ryan, Joseph J; Schmelzle, Kristin H; Washburn, Richard A; Sullivan, Debra K; Mayo, Matthew S; Donnelly, Joseph E

    2008-01-01

    Background Physical Activity Across the Curriculum (PAAC) is a 3-year elementary school-based intervention to determine if increased amounts of moderate intensity physical activity performed in the classroom will diminish gains in body mass index (BMI). It is a cluster-randomized, controlled trial, involving 4905 children (2505 intervention, 2400 control). Methods We collected both qualitative and quantitative process evaluation data from 24 schools (14 intervention and 10 control), which included tracking teacher training issues, challenges and barriers to effective implementation of PAAC lessons, initial and continual use of program specified activities, and potential competing factors, which might contaminate or lessen program effects. Results Overall teacher attendance at training sessions showed exceptional reach. Teachers incorporated active lessons on most days, resulting in significantly greater student physical activity levels compared to controls (p < 0.0001). Enjoyment ratings for classroom-based lessons were also higher for intervention students. Competing factors, which might influence program results, were not carried out at intervention or control schools or were judged to be minimal. Conclusion In the first year of the PAAC intervention, process evaluation results were instrumental in identifying successes and challenges faced by teachers when trying to modify existing academic lessons to incorporate physical activity. PMID:18606013

  6. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells.

    PubMed

    Gerges, Steve; Rohde, Katharina; Fulda, Simone

    2016-05-28

    Treatment resistance in acute lymphoblastic leukemia (ALL) is often caused by defects in programmed cell death, e.g. by overexpression of Inhibitor of Apoptosis (IAP) proteins. Here, we report that small-molecule Smac mimetics (i.e. BV6, LCL161, birinapant) that neutralize x-linked IAP (XIAP), cellular IAP (cIAP)1 and cIAP2 cooperate with demethylating agents (i.e. 5-azacytidine (5AC) or 5-aza-2'-deoxycytidine (DAC)) to induce cell death in ALL cells. Molecular studies reveal that induction of cell death is preceded by BV6-mediated depletion of cIAP1 protein and involves tumor necrosis factor (TNF)α autocrine/paracrine signaling, since the TNFα-blocking antibody Enbrel significantly reduces BV6/5AC-induced cell death. While BV6/5AC cotreatment induces caspase-3 activation, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) only partly rescues ALL cells from BV6/5AC-induced cell death. This indicates that BV6/5AC cotreatment engages non-apoptotic cell death upon caspase inhibition. Indeed, genetic silencing of key components of necroptosis such as Receptor-Interacting Protein (RIP)3 or mixed lineage kinase domain-like (MLKL) in parallel with administration of zVAD.fmk provides a significantly better protection against BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. Similarly, concomitant administration of pharmacological inhibitors of necroptosis (i.e. necrostatin-1s, GSK'872, dabrafenib, NSA) together with zVAD.fmk is superior in rescuing cells from BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. These findings demonstrate that in ALL cells BV6/5AC-induced cell death is mediated via both apoptotic and necroptotic pathways. Importantly, BV6/5AC cotreatment triggers necroptosis in ALL cells that are resistant to apoptosis due to caspase inhibition. This opens new perspectives to overcome apoptosis resistance with important implications for the development of new treatment strategies

  7. Competition between activating and inhibitory processes in photobiology

    NASA Astrophysics Data System (ADS)

    Friedmann, Harry; Lubart, Rachel

    1996-01-01

    We discuss light-induced stimulation and inhibition of biological activity by means of three types of competing processes. In the visible region, these competing processes are the formation by photosensitization of reactive oxygen species (ROS) which stimulate the redox activity of the respiratory chain (RC) on the one hand, and intramolecular electronic- vibrational energy transfer from an endogenous photosensitizer to an enzyme of the RC, thereby bringing this enzyme into an inactive configuration and paralyzing the RC, on the other hand. Moreover, there is competition between stimulation of the redox activity of the RC by the ROS and a slower process where the enzymes of the RC react with the ROS, again paralyzing the RC. This paralysis of the RC plays a dominant role in photodynamic therapy, where exogenous photosensitizers together with a sufficiently large visible light-energy dose lead to overproduction of ROS. Finally, in the far-red region, there is competition between reactivation of the ATPase ion pumps in the cell membrane and inhibition of the enzymes in the RC as a result of vibrational overtone excitation. Photobioactivation is shown to lead to enhanced transient Ca2+ concentration increase (calcium oscillations) in the cytosol, thereby triggering further biological activity such as afflux of intercellular messengers which open gated ion channels in neighboring cells, producing calcium waves. Addition of ROS scavengers or quenchers such as SOD in the presence of catalase neutralizes photobiomodulation induced by visible light.

  8. Gaussian Process for Activity Modeling and Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Liao, W.; Rosenhahn, B.; Yang, M. Ying

    2015-08-01

    Complex activity modeling and identification of anomaly is one of the most interesting and desired capabilities for automated video behavior analysis. A number of different approaches have been proposed in the past to tackle this problem. There are two main challenges for activity modeling and anomaly detection: 1) most existing approaches require sufficient data and supervision for learning; 2) the most interesting abnormal activities arise rarely and are ambiguous among typical activities, i.e. hard to be precisely defined. In this paper, we propose a novel approach to model complex activities and detect anomalies by using non-parametric Gaussian Process (GP) models in a crowded and complicated traffic scene. In comparison with parametric models such as HMM, GP models are nonparametric and have their advantages. Our GP models exploit implicit spatial-temporal dependence among local activity patterns. The learned GP regression models give a probabilistic prediction of regional activities at next time interval based on observations at present. An anomaly will be detected by comparing the actual observations with the prediction at real time. We verify the effectiveness and robustness of the proposed model on the QMUL Junction Dataset. Furthermore, we provide a publicly available manually labeled ground truth of this data set.

  9. Blockade of processing/activation of caspase-3 by hypoxia

    SciTech Connect

    Han, Sang Hee; Kim, Moonil; Park, Kyoungsook; Kim, Tae-Hyoung; Seol, Dai-Wu

    2008-10-31

    Tumor hypoxia, which is caused by the rapid proliferation of tumor cells and aberrant vasculature in tumors, results in inadequate supplies of oxygen and nutrients to tumor cells. Paradoxically, these unfavorable growth conditions benefit tumor cell survival, although the mechanism is poorly understood. We have demonstrated for the first time that hypoxia inhibits TRAIL-induced apoptosis by blocking translocation of Bax from cytosol to the mitochondria in tumor cells. However, it is largely unknown how hypoxia-inhibited Bax translocation attenuates TRAIL-induced apoptosis. Here, we demonstrate that despite its inhibitory activity in TRAIL-induced apoptosis, hypoxia does not affect TRAIL-triggered proximal apoptotic signaling events, including caspase-8 activation and Bid cleavage. Instead, hypoxia inhibited processing of caspase-3, leading to incomplete activation of the caspase. Importantly, hypoxia-blocked translocation of Bax to the mitochondria significantly inhibited releasing the mitochondrial factors, such as cytochrome c and Smac/DIABLO, to the cytosol in response to TRAIL. It is well-known that complete processing/activation of caspase-3 requires Smac/DIABLO released from mitochondria. Therefore, our data indicate that an engagement of the apoptotic mitochondrial events leading to caspase-3 activation is blocked by hypoxia. Our data shed new light on understanding of the apoptotic signal transduction and targets regulated by tumor hypoxia.

  10. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  11. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer

    SciTech Connect

    Tan, Min; Wu, Junjie; Cai, Yong

    2013-09-06

    Highlights: •Dnmt3A and Dnmt3B are involved in the down-regulation of WIF-1 expression in non-small-cell lung cancer. •MiR-29 family members could restore WIF-1 expression through demethylation. •MiR-29s suppress Wnt/β-catenin signaling pathway and inhibit tumor growth. •The expression of miR-29a and miR-29b could be regulated partially in a positive feedback loop. -- Abstract: Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC.

  12. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-648, an Canadian Space Agency-sponsored study of manufactured organic thin film by the physical vapor transport method, and the can on the right contains commemorative flags to be flown during the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  13. Radiation processing in india-current R & D activities

    NASA Astrophysics Data System (ADS)

    Majali, A. B.; Sabharwal, S.

    1995-09-01

    Radiation processing is an area of vigorous activity in today's India. With the indigenous expertise in Co source and irradiator technology, potentially promising applications such as sustained drug delivery systems, vulcanization of natural rubber latex (RVNRL), and degradation of polytetrafluoroethylene (PTFE) are presently investigated. Over the last four years, technologies for RVNRL and PTFE degradation have been scaled upto pilot scale operations, while radiation polymerized polymer systems have been developed for controlled release of certain drugs. With the commissioning of the 2 MeV EB machine in late 1988, a few EB based processes have also been commercially exploited. The paper briefly reviews these and presents the significant results obtained.

  14. Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers

    PubMed Central

    Philibert, Robert A.; Beach, Steven R.H.; Brody, Gene H.

    2012-01-01

    Epigenetic modifications to peripheral white blood cell DNA occur in response to a wide variety of exposures. In prior work, we and others have shown that broad changes in DNA methylation, particularly at the aryl hydrocarbon receptor repressor (AHRR) locus, occur in samples from subjects with long histories of smoking. However, given the large number of epigenetic changes that occur in response to prolonged smoking, the primacy of the response at AHRR and the sensitivity of these changes to low levels of smoking are not known. Therefore, we examined the association of smoking to genome lymphocyte DNA methylation status in a representative sample of 399 African American youths living in the rural South that includes 72 subjects with less than one half-pack year of exposure. Consistent with our prior findings, we found a stepwise effect of smoking on DNA methylation among youth with relatively brief exposure histories at a CpG residue in AHRR (cg05575921) (FDR corrected p values; 3 × 10−7 and 0.09 in the male and female samples, respectively) that was identified in previous studies and at which the effects of smoking were significant, even in those subjects with less than one half pack year exposure. We conclude that AHRR demethylation at cg05575921 in peripheral cells may serve as an early, sensitive biomarker for even low levels of exposure to tobacco smoke, providing a non-self-report alternative for nascent exposure to tobacco smoke. We also suggest that the AHRR/AHR pathway may be functional in the response of peripheral white blood cells to tobacco smoke exposure. PMID:23070629

  15. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent.

    PubMed

    Niwa, Tohru; Toyoda, Takeshi; Tsukamoto, Tetsuya; Mori, Akiko; Tatematsu, Masae; Ushijima, Toshikazu

    2013-04-01

    Suppression of aberrant DNA methylation is a novel approach to cancer prevention, but, so far, the efficacy of the strategy has not been evaluated in cancers associated with chronic inflammation. Gastric cancers induced by Helicobacter pylori infection are known to involve aberrant DNA methylation and associated with severe chronic inflammation in their early stages. Here, we aimed to clarify whether suppression of aberrant DNA methylation can prevent H. pylori-induced gastric cancers using a Mongolian gerbil model. Administration of a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), to gerbils (0.125 mg/kg for 50-55 weeks) decreased the incidence of gastric cancers induced by H. pylori infection and N-methyl-N-nitrosourea (MNU) treatment from 55.2% to 23.3% (P < 0.05). In gastric epithelial cells, DNA methylation levels of six CpG islands (HE6, HG2, SB1, SB5, SF12, and SH6) decreased to 46% to 68% (P < 0.05) of gerbils without 5-aza-dC treatment. Also, the global DNA methylation level decreased from 83.0% ± 4.5% to 80.3% ± 4.4% (mean ± SD) by 5-aza-dC treatment (P < 0.05). By 5-aza-dC treatment, Il1b and Nos2 were downregulated (42% and 58% of gerbils without, respectively) but Tnf was upregulated (187%), suggesting that 5-aza-dC treatment induced dysregulation of inflammatory responses. No obvious adverse effect of 5-aza-dC treatment was observed, besides testicular atrophy. These results showed that 5-aza-dC treatment can prevent H. pylori-induced gastric cancers and suggested that removal of induced DNA methylation and/or suppression of DNA methylation induction can become a target for prevention of chronic inflammation-associated cancers. PMID:23559452

  16. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  17. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2.

    PubMed

    Bell, Stephen G; Tan, Adrian B H; Johnson, Eachan O D; Wong, Luet-Lok

    2010-01-01

    CYP199A4 (RPB3613) from Rhodopseudomonas palustris HaA2 is a heme monooxygenase that catalyzes the hydroxylation of para-substituted benzoic acids. Monooxygenase activity of CYP199A4 can be reconstituted in a Class I electron transfer chain with an associated [2Fe-2S] ferredoxin, HaPux, (RPB3614) and the flavin-dependent reductase, HaPuR, (RPB3656) that is not associated with a CYP gene. CYP199A4 and the ferredoxin HaPux are produced in greater quantities using recombinant Escherichia coli expression systems when compared to the equivalent proteins in the closely related CYP199A2-Pux-PuR Class I system from R. palustris CGA009. HaPuR and HaPux can also replace PuR and Pux in supporting the CYP199A2 enzyme turnover with high activity. Whole-cell in vivo substrate oxidation systems for CYP199A4 and CYP199A2 with HaPux and HaPuR as the electron transfer proteins have been constructed. These E. coli systems were capable of selectively demethylating veratric acid at the para position to produce vanillic acid at rates of up to 15.3 microM (g-cdw)(-1) min(-1) and yields of up to 1.2 g L(-1). PMID:20024082

  18. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5' CpG island.

    PubMed Central

    Hansen, R S; Gartler, S M

    1990-01-01

    Hamster-human cell hybrids containing an inactive human X chromosome were treated with 5-azacytidine and derived clones were examined for phosphoglycerate kinase activity and cytosine methylation in the human PGK1 (X chromosome-linked phosphoglycerate kinase) gene. Comparisons between expressing and nonexpressing clones indicated that demethylation of several methylation-sensitive restriction sites outside of the 5' CpG island were unnecessary for expression. High-resolution polyacrylamide gel analysis of 25 Hpa II, Hha I, and Tha I sites revealed that all clones expressing PGK1 were unmethylated in a large region of the CpG island that includes the transcription start site and 400 base pairs upstream. Many nonexpressing clones had discontinuous patterns of demethylation. Remethylation was often observed in subclones of nonexpressing hybrids. These data suggest that a specific zone of methylation-free DNA within the PGK1 promoter is required for transcription. In addition, the presence of neighboring methylcytosines appears to decrease the heritable stability of unmethylated CpGs in this region. Images PMID:1693431

  19. Controlled movement processing: superior colliculus activity associated with countermanded saccades.

    PubMed

    Paré, Martin; Hanes, Doug P

    2003-07-23

    We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that was planned in response to an eccentric visual stimulus. By modeling each animal's behavioral responses, with a race between GO and STOP processes leading up to either saccade initiation or cancellation, we estimated that saccade cancellation took on average 110 msec. Neurons recorded in the superior colliculus intermediate layers during this task exhibited the discharge properties expected from neurons closely involved in behavioral control. Both saccade- and fixation-related discharged differently when saccades were counter-manded instead of executed, and the time at which they changed their activity preceded the behavioral estimate of saccade cancellation obtained from the same trials by 10 and 13 msec, respectively. Furthermore, these intervals exceed the minimal amount of time needed for SC activity to influence eye movements. The additional observation that saccade-related neurons discharged significantly less when saccades were countermanded instead of executed suggests that saccades are triggered when these neurons reach a critical activation level. Altogether, these findings provide solid evidence that the superior colliculus contains the necessary neural signals to be directly involved in the decision process that regulates whether a saccade is to be produced. PMID:12878689

  20. Materials and Process Activities for NASA's Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  1. FAME: Freeform Active Mirrors Experiment: manufacturing process development

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Venema, Lars; Schnetler, Hermine; Ferrari, Marc; Cuby, Jean-Gabriel

    2014-07-01

    Extreme freeform mirrors couple a non-axisymmetrical shape and an extreme asphericity, i.e. more than one millimeter of deviation from the best fit sphere. In astronomical instrumentation, such a large asphericity allows compact instruments, using less optical components. However, the lack of freeform mirrors manufacturing facilities is a real issue. We present the concept and development of an innovative manufacturing process based on plasticity forming which allow imprinting permanent deformations on mirrors, following a pre-defined mold. The aim of this activity, pursued in the frame of the OPTICON-FAME (Freeform Active Mirrors Experiment) project, is to demonstrate the suitability of this method for VIS/NIR/MIR applications. The process developed can operate on thin and flat polished initial substrates. Three study cases have been highlighted by FEA (Finite Element Analysis) and the real tests associated were performed on thin substrates in AISI420b stainless steel with 100 mm optical diameter. A comparison between FEA and tests is performed to study the evolution of the mechanical behaviour and the optical quality. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process to converge toward an innovative and recurrent process.

  2. Land processes distributed active archive center product lifecycle plan

    USGS Publications Warehouse

    Daucsavage, John C.; Bennett, Stacie D.

    2014-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.

  3. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  4. Locating Melody Processing Activity in Auditory Cortex with Magnetoencephalography.

    PubMed

    Patterson, Roy D; Andermann, Martin; Uppenkamp, Stefan; Rupp, André

    2016-01-01

    This paper describes a technique for isolating the brain activity associated with melodic pitch processing. The magnetoencephalograhic (MEG) response to a four note, diatonic melody built of French horn notes, is contrasted with the response to a control sequence containing four identical, "tonic" notes. The transient response (TR) to the first note of each bar is dominated by energy-onset activity; the melody processing is observed by contrasting the TRs to the remaining melodic and tonic notes of the bar (2-4). They have uniform shape within a tonic or melodic sequence which makes it possible to fit a 4-dipole model and show that there are two sources in each hemisphere--a melody source in the anterior part of Heschl's gyrus (HG) and an onset source about 10 mm posterior to it, in planum temporale (PT). The N1m to the initial note has a short latency and the same magnitude for the tonic and the melodic sequences. The melody activity is distinguished by the relative sizes of the N1m and P2m components of the TRs to notes 2-4. In the anterior source a given note elicits a much larger N1m-P2m complex with a shorter latency when it is part of a melodic sequence. This study shows how to isolate the N1m, energy-onset response in PT, and produce a clean melody response in the anterior part of auditory cortex (HG). PMID:27080677

  5. PSEN1 promoter demethylation in hyperhomocysteinemic TgCRND8 mice is the culprit, not the consequence.

    PubMed

    Fuso, Andrea; Cavallaro, Rosaria A; Cavallaroa, Rosaria A; Nicolia, Vincenzina; Scarpa, Sigfrido

    2012-06-01

    In recent years, in parallel with the growing awareness of the multifactorial nature of Late Onset Alzheimer's Disease, the possibility that epigenetic mechanisms could be involved in the onset and/or progression of the pathology assumed an increasingly intriguing and leading role in Alzheimer's research. Today, many scientific reports indicate the existence of an epigenetic drift during ageing, in particular in Alzheimer's subjects. At the same time, experimental evidences are provided with the aim to demonstrate the causative or consequential role of epigenetic mechanisms. Our research group was involved in the last ten years in studying DNA methylation, the main epigenetic modification, in relationship to altered one-carbon metabolism (namely high homocysteine and low B vitamins levels), in Alzheimer's experimental models. Our previous findings about the demethylation of Presenilin1 gene promoter in nutritionally-induced hyperhomocysteinemia in a transgenic mouse model clearly demonstrated that Presenilin1 is regulated by DNA methylation. One of the open questions raised by our studies was if the observed demethylation was solely due to the induced imbalance of one-carbon metabolism or could be a response to the massive deposition of amyloid plaques in transgenic mice. Here we analyzed old (10 months) mice under standard diet in order to evidence possible changes in Presenilin1 promoter methylation in transgenic (TgCRND8 mice, carrying a double-mutated human APP transgene) vs. wt mice (129Sv) after prolonged exposure to amyloid. We found no differences in Presenilin1 methylation despite a slight increase in gene expression; these results suggest that amyloid production is not responsible for Presenilin1 demethylation in TgCRND8 mice brain. PMID:22272624

  6. Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival

    PubMed Central

    2014-01-01

    Background The influence of natural regulatory T cells (nTregs) on the patients with colon cancer is unclear. Demethylated status of the Treg-specific demethylated region (TSDR) of the FOXP3 gene was reported to be a potential biomarker for the identification of nTregs. Methods The demethylation rate of the TSDR (TSDR-DMR) was calculated by using methylation-specific quantitative polymerase chain reaction (MS-qPCR) assay. The expression of TSDR-DMR and FOXP3 mRNA was investigated in various colorectal cancer cell lines. A total of 130 colon carcinoma samples were utilized to study the DMR at tumor sites (DMRT) and adjacent normal tissue (DMRN). The correlations between DMRs and clinicopathological variables of patients with colon cancer were studied. Results The TSDR-DMRs varied dramatically among nTregs (97.920 ± 0.466%) and iTregs (3.917 ± 0.750%). Significantly, DMRT (3.296 ± 0.213%) was higher than DMRN (1.605 ± 0.146%) (n = 130, p = 0.000). Higher DMRN levels were found in female patients (p = 0.001) and those with distant metastases (p = 0.017), and were also associated with worse recurrence-free survival in non-stage IV patients (low vs. high, p = 0.022). However, further Cox multivariate analysis revealed that the FOXP3-TSDR status does not have prognostic value. Conclusion MS-qPCR assays of FOXP3-TSDR can efficiently distinguish nTregs from non-nTregs. Abnormal recruitment of nTregs occurs in the local tumor microenvironment. Infiltration of tissue-resident nTregs may have a negative role in anti-tumor effects in patients with colon cancer; however, this role is limited and complicated. PMID:24938080

  7. Synthesis of Boronate-Based Benzo[fg]tetracene and Benzo[hi]hexacene via Demethylative Direct Borylation.

    PubMed

    Numano, Misa; Nagami, Naoto; Nakatsuka, Soichiro; Katayama, Takazumi; Nakajima, Kiichi; Tatsumi, Sou; Yasuda, Nobuhiro; Hatakeyama, Takuji

    2016-08-01

    A demethylative direct borylation is reported, which was applied to the synthesis of benzo[fg]tetracenes containing boronate ester, amide, and thioester substructures. Depending on the heteroatom adjacent to boron, the molecules showed characteristic photophysical properties, molecular arrangements, and chemical stabilities. The key to the successful synthesis is the appropriate choice of the boron source and Brønsted base. The versatility of the direct borylation was demonstrated by the synthesis of a boronate-based benzo[hi]hexacene. PMID:27321480

  8. The insulin receptor activation process involves localized conformational changes.

    PubMed

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  9. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Ramoutar, D; Cowles, R S; Requintina, E; Alm, S R

    2010-10-01

    In 2007-2008, the "annual bluegrass weevil," Listronotus maculicollis Kirby (Coleoptera: Curculionidae), a serious pest of Poa annua L. (Poales: Poaceae) on U.S. golf courses, was shown to be resistant to two pyrethroids, bifenthrin and lambda-cyhalothrin. In 2008, we showed that bifenthrin resistance was principally mediated by oxidase detoxification (cytochrome P450 [P450]). P450s can be inhibited by demethylation inhibitor fungicides and gibberellin inhibitor plant growth regulators, both of which are commonly used on golf courses. We tested these compounds for synergistic activity with bifenthin against a pyrethroid-resistant population of L. maculicollis. The LD50 value for bifenthrin was significantly reduced from 87 ng per insect (without synergists) to 9.6-40 ng per insect after exposure to the fungicides fenarimol, fenpropimorph, prochloraz, propiconazole, and pyrifenox and the plant growth regulators flurprimidol, paclobutrazol, and trinexapac-ethyl. Simulated field exposure with formulated products registered for use on turf revealed enhanced mortality when adult weevils were exposed to bifenthrin (25% mortality, presented alone) combined with field dosages of propiconizole, fenarimol, flurprimidol, or trinexapac-ethyl (range, 49-70% mortality). PMID:21061984

  10. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  11. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

    PubMed Central

    Le, Thi Hong Van; Lee, Seo Young; Kim, Tae Ryong; Kim, Jae Young; Kwon, Sung Won; Nguyen, Ngoc Khoi; Park, Jeong Hill; Nguyen, Minh Duc

    2013-01-01

    Background This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods Samples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies. Results Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenosides such as Rg3, Rg5, Rk1, Rk3, and Rh4 were increased as reported previously. However, ocotillol type saponins, which have no glycosyl moiety at the C-20 position, were relatively stable on steaming. The radical scavenging activity was increased continuously up to 20 h of steaming. Similarly, the antiproliferative activity against A549 lung cancer cells was also increased. Conclusion It seems that the antiproliferative activity is closely related to the contents of ginsenoside Rg3, Rg5, and Rk1. PMID:24748840

  12. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. The payload bay of Space Shuttle Discovery is relatively empty as installation of the Get Away Special (GAS) canisters begins. Two GAS canisters can be seen in the center of the photograph. On the left is G-648, a Canadian Space Agency-sponsored study on manufactured organic thin film by the physical vapor transport method, and on the right is a can with hundreds of commemorative flags to be flown on the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  13. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing.

    PubMed

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Avila, César

    2010-03-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  14. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing

    PubMed Central

    Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Ávila, César

    2010-01-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  15. Improved cosmetic activity by optimizing the Lithospermum erythrorhizon extraction process.

    PubMed

    Kim, Ji Seon; Seo, Yong Chang; No, Ra Hwan; Lee, Hyeon Yong

    2015-01-01

    This study was conducted to expand the use of Lithospermum erythrorhizon, which is a good source of natural dye, in skin whitening and immune activation cosmetics. The goal was to provide cosmeceutical data about the extraction yield and shikonin contents of this plant by optimizing the ultrasonic extraction and high pressure extraction conditions. Under optimal extraction conditions, which consisted of 500 MPa for 60 min and 120 kHz for 90 min, 27.49 and 3.19 % (w/w) of the highest extraction yield and shikonin contents were obtained, compared to 16.32 and 1.81 % from a conventional ethanol extract (EE) control. Hyaluronidase inhibition activity was measured as 44.24 % after adding 1.0 mg/ml of ethanol extract, but it was as high as 64.19 % when using extract produced by ultrasonication with high pressure extraction (UE + HPE). The MMP-1 expression levels from skin fibroblast cells (CCD-986sk) treated with or without UV irradiation were also lowered by as much as 110.6 % after adding 1.0 mg/ml of the UE + HPE extract, relative to 126.9 % from the EE. After UVA exposure, prostaglandin E2 production from RAW 264.7 was also lower, at 110.6 %, which also indicates that the extract from the UE + HPE process enhanced skin immune activation activities. For the skin whitening activity, tyrosinase inhibitory activity was observed at 67.15 % in the HPE + UE extract, which was ca. 20 % higher than that of the EE extract (57.48 %). To reduce melanin production in Clone M-3 cells, 79.5 % of the melanin production was estimated after adding 1.0 mg/ml of the UE + HPE extract compared to that of the control (no treatment), which was similar to the 77.4 % result found in an ascorbic acid positive control. The highest shikonin secretion was conclusively obtained under the optimal conditions and resulted in a significant improvement of the cosmetic activities of L. erythrorhizon extracts. PMID:24287611

  16. Neural activities during affective processing in people with Alzheimer's disease.

    PubMed

    Lee, Tatia M C; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    2013-03-01

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to compare the affective processing in 12 people with mild Alzheimer's disease and 12 matched controls. The main finding was that the clinical participants showed reduced activations in regions associated with the motor simulation system (the ventral premotor cortex) and in regions associated with emotional simulation-empathy (the anterior insula and adjacent frontal operculum). This regional decline in blood oxygen level-dependent signals appeared to be lateralized in the left hemisphere and was not related to any structural degeneration in the clinical participants. Furthermore, the regions that showed changes in neural activity differed for the 3 emotional facial expressions studied. Findings of our study indicate that neural changes in regions associated with the motor and emotional simulation systems might play an important role in the development of Alzheimer's disease. PMID:22840336

  17. GAIA Video Processing Embedded Algorithms: Prototyping and Validation Activities

    NASA Astrophysics Data System (ADS)

    Provost, S.; Le Roy, M.; Mamdy, B.; Flandin, G.; Paulsen, T.

    2007-08-01

    GAIA is an ambitious mission of the European Space Agency (ESA) whose spacecraft is developed by EADS Astrium. Its objective is to create the largest and most precise three dimensional chart of our Galaxy by providing unprecedented positional and radial velocity measurements for about one billion stars in our Galaxy and throughout the Local Group. The Video Processing Algorithms (VPA), embedded in the Video Processing Unit (VPU), are part of the payload, dedicated to process the raw data issued from the Focal Plane Assembly, and in charge of controlling it. VPA play a major role in terms of data reduction for GAIA. It reaches an unmatched level of autonomy that has to be functionally validated, while feasible implementation proven. While earlier activities[2] had concentrated on the prototyping and high level feasibility demonstration, the VPA study now enters into a phase of systematic validation. In this frame, the VPA have been breadboarded (VPA-RTP Real-Time Prototype), to be fully representative of the final implementation. The VPA validation test bench allows the simulation of the VPU behaviour (through the VPA-RTP) and of the Focal Plane Assembly response. It allows the validation of both scientific performances and implementation performances. Preliminary results show that the associated requirements, although stringent, can be met, at the expense of a constant trade-off between robustness and implementability.

  18. Atomistic simulations of activated processes in nanoparticles synthesis

    NASA Astrophysics Data System (ADS)

    Giberti, Federico; Galli, Giulia

    Core-shell and Janus nanopartices are promising building blocks for new, highly efficient solar cells. One of the most common synthetic pathways to produce such nanostructures is the use of cation exchange reactions. Although widely used, these procedures are not completely understood. We employed classical Molecular Dynamics and Monte Carlo simulations to understand these transformation at the molecular level; in particular we investigated the conversion from CdSe (sphalerite) to PbSe (rocksalt) NPs with 2-3 nm diameter. In order to recover the equilibrium free energy surfaces we used state of the art enhanced sampling techniques, including Metadynamics. The formation of hybrid core-shell structures resulted to be an activated process, where the limiting step is the transition of a sphalerite to a rocksalt PbSe nucleus. We found that the barrier height and the stability of the two phases depend on the size of the PbSe nucleus, suggesting that the process could proceed via a two step mechanism, where a small sphalerite nucleus is formed first, and it then transforms to a rocksalt nucleus. Our results give insight into possible manipulation processes at the molecular scale, which could be used to stabilize metastable NPs and tune their physical and chemical properties. This work was supported by the DOE Grant No. DE-FG02-06ER46262.

  19. A novel diterpene skeleton: identification of a highly aromatic, cytotoxic and antioxidant 5-methyl-10-demethyl-abietane-type diterpene from Premna serratifolia.

    PubMed

    Habtemariam, Solomon; Varghese, George K

    2015-01-01

    Premna serratifolia Linn. (syn: . P. corymbosa (Burm. f.) Merr., P. integrifolia L. and P. obtusifolia R. Br.) is a member of the Verbenaceae family that is extensively used in the Ayurvedic system of medicine in India. As part of our continuous pharmacological and phytochemical studies on medicinal plants, we have screened the methanolic extracts of leaves, root bark (RB) and root wood of P. serratifolia for cytotoxic activity against two cancer cell lines: SHSY-5Y neuroblastoma and B16 melanoma cells. The RB extract that showed promising activity was fractionated using solvents of increasing polarity followed by a combination of Sephadex LH-20 column and Combiflash chromatography as well as HPLC to afford the active principle. Comprehensive spectroscopic analysis including 1D and 2D NMR (COSY, HMQC, HMBC, NOESY) and MS analysis revealed the identity of the isolated compound as 11,12,16-trihydroxy-2-oxo-5-methyl-10-demethyl-abieta-1[10],6,8,11,13-pentene that appears to be a novel compound based on a new diterpene skeleton. The cytotoxic activity of the isolated compound was 21 and 23 times higher than the crude extract against the SHSY-5Y and B16 cells, respectively. The novel compound also possesses in vitro antioxidant effects as evidenced by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging effect where an IC50 value of 20.4 ± 1.3 μM was obtained. In comparison, the positive control, caffeic acid, showed an IC50 value of 14.4 ± 1.6 μM. PMID:25250850

  20. Source of the oxygen atom in the product of cytochrome P-450-catalyzed N-demethylation reactions.

    PubMed

    Kedderis, G L; Dwyer, L A; Rickert, D E; Hollenberg, P F

    1983-05-01

    The source of the oxygen atom in the product of the cytochrome P-450-catalyzed N-demethylation of N-methylcarbazole was determined by mass spectral analysis of the carbinolamine precursor of formaldehyde formed during incubation in oxygen 18-enriched medium. Initial experiments demonstrated that N-(hydroxymethyl)carbazole, the carbinolamine product of the metabolism of N-methylcarbazole, did not exchange oxygen with solvent water. When N-methylcarbazole was incubated in oxygen 18-enriched medium with purified cytochrome P-450 in the presence of either purified NADPH-cytochrome P-450 reductase and NADPH, cumene hydroperoxide, t-butyl hydroperoxide, or peracetic acid, there was no incorporation of oxygen 18 from the medium into N-(hydroxymethyl)carbazole. These results clearly demonstrate that the oxygen atom inserted into N-methylcarbazole by cytochrome P-450 to yield N-(hydroxymethyl)carbazole does not come from the medium and show that the N-demethylation reactions catalyzed by cytochrome P-450 proceed in a manner similar to hydroxylation reactions, with the oxygen atom in the product being derived from the oxidant. PMID:6408392

  1. Decitabine-induced demethylation of 5' CpG island in GADD45A leads to apoptosis in osteosarcoma cells.

    PubMed

    Al-Romaih, Khaldoun; Sadikovic, Bekim; Yoshimoto, Maisa; Wang, Yuzhuo; Zielenska, Maria; Squire, Jeremy A

    2008-05-01

    GADD45 genes are epigenetically inactivated in various types of cancer and tumor cell lines. To date, defects of the GADD45 gene family have not been implicated in osteosarcoma (OS) oncogenesis, and the role of this pathway in regulating apoptosis in this tumor is unknown. The therapeutic potential of Gadd45 in OS emerged when our previous studies showed that GADD45A was reexpressed by treatment with the demethylation drug decitabine. In this study, we analyze the OS cell lines MG63 and U2OS and show that on treatment with decitabine, a significant loss of DNA methylation of GADD45A was associated with elevated expression and induction of apoptosis. In vivo affects of decitabine treatment in mice showed that untreated control xenografts exhibited low nuclear staining for Gadd45a protein, whereas the nuclei from xenografts in decitabine-treated mice exhibited increased amounts of protein and elevated apoptosis. To show the specificity of this gene for decitabine-induced apoptosis in OS, GADD45A mRNAs were disrupted using short interference RNA, and the ability of the drug to induce apoptosis was reduced. Understanding the role of demethylation of GADD45A in reexpression of this pathway and restoration of apoptotic control is important for understanding OS oncogenesis and for more targeted therapeutic approaches. PMID:18472964

  2. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  3. Dynamical Theory of Activated Processes in Globular Proteins

    NASA Astrophysics Data System (ADS)

    Northrup, Scott H.; Pear, Michael R.; Lee, Chyuan-Yih; McCammon, J. Andrew; Karplus, Martin

    1982-07-01

    A methos is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An ``umbrella sampling'' simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface.

  4. Dynamical theory of activated processes in globular proteins.

    PubMed Central

    Northrup, S H; Pear, M R; Lee, C Y; McCammon, J A; Karplus, M

    1982-01-01

    A method is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An "umbrella sampling" simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface. PMID:6955788

  5. Activated sludge process performance using a multistage tower aeration tank

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-07-01

    This study's objective was to clarify both experimentally and theoretically whether a vertical multistage tower aeration tank system is advantageous as compared with a completely mixed system, particularly with respect to purification efficiency, sludge settleability, and excess sludge production. In comparing the two systems: (1) purification efficiency in the multistage tower aeration system with partial fluid mixing with a large Peclet number was higher than in a corresponding completely mixed system for all applied organic loadings; (2) the multistage tower aeration system had some definite advantages with respect to sludge settleability and excess sludge production; and (3) the activated sludge system's higher performance with partial fluid mixing was shown quantitatively with the axial dispersion model in conjunction with growth kinetics which involved rapid uptake such as biosorption and subsequent oxidative biodegradation processes of organic substances.

  6. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  7. AVIRIS and TIMS data processing and distribution at the land processes distributed active archive center

    NASA Technical Reports Server (NTRS)

    Mah, G. R.; Myers, J.

    1993-01-01

    The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial

  8. Chito-Oligosaccharide Inhibits the De-Methylation of a ‘CpG’ Island within the Leptin (LEP) Promoter during Adipogenesis of 3T3-L1 Cells

    PubMed Central

    Bahar, Bojlul; O’Doherty, John V.; O’Doherty, Alan M.; Sweeney, Torres

    2013-01-01

    Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a ‘CpG’ island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum. PMID:23544120

  9. [Effects of quantum nonlocality in the water activation process].

    PubMed

    Zatsepina, O V; Stekhin, A A; Yakovleva, G V

    2014-01-01

    The dynamic alterations of the magnetic flux density of the water volume, activated with structurally stressed calcium carbonate in micellar form have been investigated. The phase of the associated water was established to exhibit electrical and magnetic properties, recorded by in B&E meter in the frequency range of 5Hz - 2kHz. Alterations in water Eh (redox) potential and the magnetic flux density B testify to synchronous auto-oscillatory changes. This gives evidence of non-linearity of the relationship between auto-oscillatory processes excited in the water; and reflects the nonlocal in time the relationship between the states of water, manifesting in a change of water activity on the 1st and 2nd day in negative time. The mechanism of action of associated water phase is shown to be described by de Broglie concept of matter waves with taking into account delocalized in time states of phase of electron wave packet in accordance with the transactional interpretation of quantum physics. PMID:24749297

  10. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein

    PubMed Central

    Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.

    2015-01-01

    Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356

  11. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  12. Digital Signal Processing System for Active Noise Reduction

    NASA Astrophysics Data System (ADS)

    Edmonson, William W.; Tucker, Jerry

    2002-12-01

    different adaptive noise cancellation algorithms and provide an operational prototype to understand the behavior of the system under test. DSP software was required to interface the processor with the data converters using interrupt routines. The goal is to build a complete ANC system that can be placed on a flexible circuit with added memory circuitry that also contains the power supply, sensors and actuators. This work on the digital signal processing system for active noise reduction was completed in collaboration with another ASEE Fellow, Dr. Jerry Tucker from Virginia Commonwealth University, Richmond, VA.

  13. Mild Glucose Starvation Induces KDM2A-Mediated H3K36me2 Demethylation through AMPK To Reduce rRNA Transcription and Cell Proliferation

    PubMed Central

    Tanaka, Yuji; Yano, Hirohisa; Ogasawara, Sachiko; Yoshioka, Sho-ichi; Imamura, Hiromi; Okamoto, Kengo

    2015-01-01

    Environmental conditions control rRNA transcription. Previously, we found that serum and glucose deprivation induces KDM2A-mediated H3K36me2 demethylation in the rRNA gene (rDNA) promoter and reduces rRNA transcription in the human breast cancer cell line MCF-7. However, the molecular mechanism and biological significance are still unclear. In the present study, we found that glucose starvation alone induced the KDM2A-dependent reduction of rRNA transcription. The treatment of cells with 2-deoxy-d-glucose, an inhibitor of glycolysis, reduced rRNA transcription and H3K36me2 in the rDNA promoter, both of which were completely dependent on KDM2A in low concentrations of 2-deoxy-d-glucose, that is, mild starvation conditions. The mild starvation induced these KDM2A activities through AMP-activated kinase (AMPK) but did not affect another AMPK effector of rRNA transcription, TIF-IA. In the triple-negative breast cancer cell line MDA-MB-231, the mild starvation also reduced rRNA transcription in a KDM2A-dependent manner. We detected KDM2A in breast cancer tissues irrespective of their estrogen receptor, progesterone receptor, and HER2 status, including triple-negative cancer tissues. In both MCF-7 and MDA-MB-231 cells, mild starvation reduced cell proliferation, and KDM2A knockdown suppressed the reduction of cell proliferation. These results suggest that under mild glucose starvation AMPK induces KDM2A-dependent reduction of rRNA transcription to control cell proliferation. PMID:26416883

  14. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer.

    PubMed

    Tan, Min; Wu, Junjie; Cai, Yong

    2013-09-01

    Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC. PMID:23939044

  15. Demethylation of a model homogalacturonan with a citrus salt-independent pectin methylesterase: Effect of pH on block size and number and resulting functionality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A demethylation series with predicted degrees of methylesterification (DM) of 90, 80, 70, 60 and 50 % was produced from a model homogalacturonan (HG) by reacting it with a citrus salt-independent pectin methylesterase (PME) at pH 4.5 and 7.5. HG structural properties were probed by performing a limi...

  16. Clinical evaluation of spermatogenic activity of processed Shilajit in oligospermia.

    PubMed

    Biswas, T K; Pandit, S; Mondal, S; Biswas, S K; Jana, U; Ghosh, T; Tripathi, P C; Debnath, P K; Auddy, R G; Auddy, B

    2010-02-01

    The safety and spermatogenic activity of processed Shilajit (PS) were evaluated in oligospermic patients. Initially, 60 infertile male patients were assessed and those having total sperm counts below 20 million ml(-1) semen were considered oligospermic and enrolled in the study (n = 35). PS capsule (100 mg) was administered twice daily after major meals for 90 days. Total semenogram and serum testosterone, luteinising hormone and follicle-stimulating hormone were estimated before and at the end of the treatment. Malondialdehyde (MDA), a marker for oxidative stress, content of semen and biochemical parameters for safety were also evaluated. Twenty-eight patients who completed the treatment showed significant (P < 0.001) improvement in spermia (+37.6%), total sperm count (+61.4%), motility (12.4-17.4% after different time intervals), normal sperm count (+18.9%) with concomitant decrease in pus and epithelial cell count compared with baseline value. Significant decrease of semen MDA content (-18.7%) was observed. Moreover, serum testosterone (+23.5%; P < 0.001) and FSH (+9.4%; P < 0.05) levels significantly increased. HPLC chromatogram revealed inclusion of PS constituents in semen. Unaltered hepatic and renal profiles of patients indicated that PS was safe at the given dose. The present findings provide further evidence of the spermatogenic nature of Shilajit, as attributed in Ayurvedic medicine, particularly when administered as PS. PMID:20078516

  17. Active microchannel fluid processing unit and method of making

    DOEpatents

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2002-12-10

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  18. Active microchannel fluid processing unit and method of making

    DOEpatents

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2001-01-01

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  19. Edge effect modeling and experiments on active lap processing.

    PubMed

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-01

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL. PMID:24921777

  20. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process.

    PubMed

    Zhou, Yang; Jiang, Jin; Gao, Yuan; Ma, Jun; Pang, Su-Yan; Li, Juan; Lu, Xue-Ting; Yuan, Li-Peng

    2015-11-01

    The reactions between peroxymonosulfate (PMS) and quinones were investigated for the first time in this work, where benzoquinone (BQ) was selected as a model quinone. It was demonstrated that BQ could efficiently activate PMS for the degradation of sulfamethoxazole (SMX; a frequently detected antibiotic in the environments), and the degradation rate increased with solution pH from 7 to 10. Interestingly, quenching studies suggested that neither hydroxyl radical (•OH) nor sulfate radical (SO4•-) was produced therein. Instead, the generation of singlet oxygen (1O2) was proved by using two chemical probes (i.e., 2,2,6,6-tetramethyl-4-piperidinol and 9,10-diphenylanthracene) with the appearance of 1O2 indicative products detected by electron paramagnetic resonance spectrometry and liquid chromatography mass spectrometry, respectively. A catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PMS and BQ and the subsequent decomposition of this intermediate into 1O2. Accordingly, a kinetic model was developed, and it well described the experimental observation that the pH-dependent decomposition rate of PMS was first-order with respect to BQ. These findings have important implications for the development of novel nonradical oxidation processes based on PMS, because 1O2 as a moderately reactive electrophile may suffer less interference from background organic matters compared with nonselective •OH and SO4•-. PMID:26452059

  1. Ether Cleavage Re-Investigated: Elucidating the Mechanism of BBr3-Facilitated Demethylation of Aryl Methyl Ethers

    PubMed Central

    Kosak, Talon M; Conrad, Heidi A; Korich, Andrew L; Lord, Richard L

    2015-01-01

    One of the most well-known, highly utilized reagents for ether cleavage is boron tribromide (BBr3), and this reagent is frequently employed in a 1:1 stoichiometric ratio with ethers. Density functional theory calculations predict a new mechanistic pathway involving charged intermediates for ether cleavage in aryl methyl ethers. Moreover, these calculations predict that one equivalent of BBr3 can cleave up to three equivalents of anisole, producing triphenoxyborane [B(OPh)3] prior to hydrolysis. These predictions were validated by gas chromatography analysis of reactions where the BBr3:anisole ratio was varied. Not only do we confirm that sub-stoichiometric equivalents may be used for ether demethylation, but the findings also support our newly proposed three cycle mechanism for cleavage of aryl methyl ethers. PMID:26693209

  2. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmprocess. PMID:25203235

  3. Methods for Individualized Determination of Methylmercury Elimination Rate and De-Methylation Status in Humans Following Fish Consumption.

    PubMed

    Rand, Mathew D; Vorojeikina, Daria; van Wijngaarden, Edwin; Jackson, Brian P; Scrimale, Thomas; Zareba, Grazyna; Love, Tanzy M; Myers, Gary J; Watson, Gene E

    2016-02-01

    Methylmercury (MeHg) exposure via fish in the diet remains a priority public health concern. Individual variation in response to a given MeHg exposure and the biotransformation of MeHg that follows complicate our understanding of this issue. MeHg elimination from the human body occurs slowly (elimination rate (kel) approximately 0.01 day(-1) or approximately 70 days half-life [t1/2]) and is a major determinant of the Hg body burden resulting from fish consumption. The underlying mechanisms that control MeHg elimination from the human body remain poorly understood. We describe here improved methods to obtain a MeHg elimination rate via longitudinal Hg analysis in hair using laser ablation-inductively coupled plasma-mass spectrometry. We measured MeHg elimination rates in eight individuals following the consumption of 3 fish meals in two 75-day trials separated by a 4-month washout period. In addition, since MeHg biotransformation to inorganic Hg (I-Hg) is associated with Hg excretion, we speciated Hg in feces samples to estimate individual MeHg de-methylation status. We observed a wide range of MeHg elimination rates between individuals and within individuals over time (kel = 0.0163-0.0054 day(-1); estimated t1/2 = 42.5-128.3 days). The ratio of MeHg and I-Hg in feces also varied widely among individuals. While the %I-Hg in feces was likely influenced by dental amalgams, findings with subjects who lacked amalgams suggest that faster MeHg elimination is associated with a higher %I-Hg in feces indicating more complete de-methylation. We anticipate these methods will contribute to future investigations of genetic and dietary factors that influence MeHg disposition in people. PMID:26572661

  4. Combination of lenalidomide with vitamin D3 induces apoptosis in mantle cell lymphoma via demethylation of BIK

    PubMed Central

    Brosseau, C; Dousset, C; Touzeau, C; Maïga, S; Moreau, P; Amiot, M; Le Gouill, S; Pellat-Deceunynck, C

    2014-01-01

    Mantle cell lymphoma (MCL) is a currently incurable B-cell malignancy. Lenalidomide (Len) has been demonstrated to be one of the most efficient new treatment options. Because Len and 1α,25-dihydroxyvitamin (VD3) synergize to kill breast cancer cells, we investigated whether VD3 could increase the ability of Len to induce MCL cell death. While MCL cells were weakly sensitive to Len (1 μM), the addition of VD3 at physiological dose (100 nM) strongly increased cell death, accompanied by slowdown in cell cycle progression in MCL cell lines (n=4 out of 6) and primary samples (n=5 out of 7). The Len/VD3 treatment markedly increased the expression of the BH3-only BCL2-interacting killer (Bik) without affecting the expression of other Bcl-2 molecules. Immunoprecipitation assays demonstrated that Bik was free from anti-apoptotic partners, Bcl-2 and Bcl-xL, in treated cells. Moreover, silencing of BIK prevented apoptosis induced by Len/VD3, confirming the direct involvement of Bik in cell death. Bik accumulation induced by Len/VD3 was related to an increase in BIK mRNA levels, which resulted from a demethylation of BIK CpG islands. The sensitivity of MCL cells to Len/VD3 was similar to the response to 5-azacytidine, which also induced demethylation of BIK CpG islands. These preclinical data provide the rationale to investigate the role of VD3 in vivo in the response to Len. PMID:25165875

  5. Effects of fish cytochromes P450 inducers and inhibitors on difloxacin N-demethylation in kidney of Chinese idle (Ctenopharyngodon idellus).

    PubMed

    Yu, Ling Zhi; Yang, Xian Le

    2010-05-01

    Cytochromes P450 (CYPs) play key roles in drug metabolism which are widely distributed in kidney in aquatic organisms. CYP(s) mainly catalyzed the N-demethylation reaction of difloxacin (DIF) biotransformation to sarafloxacin (SAR). However, limited information is available about CYP investigation in fish. In order to supply useful information on CYP(s) characterization for DIF N-demethylation, the present study assessed the effects of fish potent CYP inducers and inhibitors on DIF N-demethylation and the inductive and inhibitive enzyme kinetics in kidney of Chinese idle (Ctenopharyngodon idellus) by reversed-phase high-performance liquid chromatography (RP-HPLC). Results demonstrated that the amounts of SAR formation pretreated by β-naphthoflavone (BNF) increased by 1.1-fold and α-naphthoflavone (ANF) inhibited SAR formation level by 0.6-fold at the third day. Enzymatic parameters V(max) and Cl(int) of DIF N-demethylase were increased by 0.56- and 0.38-fold due to β-naphthoflavone (BNF) pretreatment. DIF N-demethylation inhibition by varying ANF concentrations represented a mixed-type inhibition with the value of the inhibition constants (K(i)) 12.9mg/kg. BNF and ANF are the separate typical inducer and inhibitor for CYP1A in fish. Thus, we suggest that CYP1A may be responsible for DIF N-demethylation in kidney. This study provides instructive information to ensure treatment success in fisheries medication with two or more drugs. PMID:21787603

  6. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent.

    PubMed

    Jichan Nie; Xishi Liu; Guo, Sun-Wei

    2010-11-01

    Adenomyosis is a fairly common gynecologic disease with unknown pathogenesis. We sought to investigate as to whether the promoter of progesterone receptor isoform B (PR-B) is hypermethylated in adenomyosis and to investigate the treatment of ectopic endometrial stromal cells with trichostatin A (TSA), a histone deacetylase inhibitor (HDI), and 5-aza-2-deoxycytidine (ADC), a demethylation agent, on PR-B gene and protein expression, and on cell viability. Ectopic endometrial tissue specimens were obtained from 9 women with adenomyosis whereas control endometrial tissue samples were obtained from 8 women with surgically diagnosed benign ovarian cysts but without any clinical history of endometriosis/adenomyosis/ myoma. Endometrial stromal cells were isolated, purified, cultured, and analyzed by methylation-specific polymerase chain reaction (PCR), real-time reverse transcriptase PCR (RT-PCR), and Western blot analysis, cell viability assays, and fluorescence-activated cell sorting. We found that none of the normal endometrial stromal cells had PR-B promoter methylation. In contrast, 2 out of 3 ectopic endometrial stromall cells had PR-B hypermethylation (P < .05). The treatment with both TSA and ADC elevated PR-B gene and protein expression in ectopic, but not in normal, endometrial stromal cells. Both TSA and ADC treatment dose-dependently reduced cell viability of ectopic endometrial stromal cells. Trichostatin A and ADC treatment also suppressed the cell cycle progression in ectopic endometrial stromal cells. Thus, this study provides the first piece of evidence that adenomyosis has epigenetic aberration and may also be an epigenetic disease amenable to rectification by pharmacological means. This perspective may shed new light onto the pathogenesis of adenomyosis and lead to novel ways to treat the disease. PMID:20697142

  7. APPRAISAL OF POWDERED ACTIVATED CARBON PROCESSES FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    Powdered activated carbon has been the subject of several developmental efforts directed towards producing improved methods for treating municipal wastewaters. Granular activated carbon has proven itself as an effective means of reducing dissolved organic contaminant levels, but ...

  8. Hypomethylation at the Regulatory T Cell–Specific Demethylated Region in CD25hi T Cells Is Decoupled from FOXP3 Expression at the Inflamed Site in Childhood Arthritis

    PubMed Central

    Pesenacker, Anne M.; Ursu, Simona; Wu, Qiong; Lom, Hannah; Thirugnanabalan, Balathas; Wedderburn, Lucy R.

    2014-01-01

    The maintenance of FOXP3 expression in CD25hi regulatory T cells (Tregs) is crucial to the control of inflammation and essential for successful Treg transfer therapies. Coexpression of CD25 and FOXP3 in combination with a hypomethylated region within the FOXP3 gene, called the Treg-specific demethylated region (TSDR), is considered the hallmark of stable Tregs. The TSDR is an epigenetic motif that is important for stable FOXP3 expression and is used as a biomarker to measure Treg lineage commitment. In this study, we report that, unlike in peripheral blood, CD4+ T cell expression of CD25 and FOXP3 is frequently dissociated at the inflamed site in patients with juvenile idiopathic arthritis, which led us to question the stability of human Tregs in chronic inflammatory environments. We describe a novel CD4+CD127loCD25hi human T cell population that exhibits extensive TSDR and promoter demethylation in the absence of stable FOXP3 expression. This population expresses high levels of CTLA-4 and can suppress T conventional cell proliferation in vitro. These data collectively suggest that this population may represent a chronically activated FOXP3lo Treg population. We show that these cells have defects in IL-2 signaling and reduced expression of a deubiquitinase important for FOXP3 stability. Clinically, the proportions of these cells within the CD25hi T cell subset are increased in patients with the more severe courses of disease. Our study demonstrates, therefore, that hypomethylation at the TSDR can be decoupled from FOXP3 expression in human T cells and that environment-specific breakdown in FOXP3 stability may compromise the resolution of inflammation in juvenile idiopathic arthritis. PMID:25092890

  9. A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches

    PubMed Central

    Stiborová, Marie; Bárta, František; Levová, Kateřina; Hodek, Petr; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2015-01-01

    Aristolochic acid I (AAI) is a plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is detoxified by cytochrome P450 (CYP)-mediated O-demethylation to 8-hydroxyaristolochic acid I (aristolochic acid Ia, AAIa). We previously investigated the efficiencies of human and rat CYPs in the presence of two other components of the mixed-functions-oxidase system, NADPH:CYP oxidoreductase and cytochrome b5, to oxidize AAI. Human and rat CYP1A are the major enzymes oxidizing AAI. Other CYPs such as CYP2C, 3A4, 2D6, 2E1, and 1B1, also form AAIa, but with much lower efficiency than CYP1A. Based on velocities of AAIa formation by examined CYPs and their expression levels in human and rat livers, here we determined the contributions of individual CYPs to AAI oxidation in these organs. Human CYP1A2 followed by CYP2C9, 3A4 and 1A1 were the major enzymes contributing to AAI oxidation in human liver, while CYP2C and 1A were most important in rat liver. We employed flexible in silico docking methods to explain the differences in AAI oxidation in the liver by human CYP1A1, 1A2, 2C9, and 3A4, the enzymes that all O-demethylate AAI, but with different effectiveness. We found that the binding orientations of the methoxy group of AAI in binding centers of the CYP enzymes and the energies of AAI binding to the CYP active sites dictate the efficiency of AAI oxidation. Our results indicate that utilization of experimental and theoretical methods is an appropriate study design to examine the CYP-catalyzed reaction mechanisms of AAI oxidation and contributions of human hepatic CYPs to this metabolism. PMID:26593908

  10. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  11. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    PubMed Central

    Kumar, Dhiraj; Dua, Raina; Srikanth, Ravichandran; Jayaswal, Shilpi; Siddiqui, Zaved; Rao, Kanury VS

    2008-01-01

    Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR) under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile. PMID:18798986

  12. Demethylation drug 5-Aza-2′-deoxycytidine-induced upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell renal cell carcinoma in vitro

    PubMed Central

    JIANG, JUAN; YI, BO; DING, SIQING; SUN, JIAN; CAO, WEI; LIU, MENGZI

    2016-01-01

    The microRNA (miR)-200 family has been found to be involved in the process of mesenchymal-epithelial transition during renal development. Deregulation of miR-200c has been suggested to be involved in clear cell renal cell carcinoma (ccRCC). However, the precise role of miR-200c in the regulation of ccRCC metastasis has not been previously reported. In the present study, it was observed that miR-200c was frequently downregulated in ccRCC tissue compared with matched adjacent normal tissue. The expression of miR-200c was additionally reduced in ccRCC cell lines when compared with levels in normal renal cells. The DNA demethylation drug 5-Aza-2′-deoxycytidine (Aza) was used to treat several ccRCC cell lines, and it was observed that the expression of miR-200c was significantly increased following Aza treatment. Furthermore, treatment with Aza markedly inhibited ccRCC cell invasion and migration, while treatment with miR-200c inhibitor significantly enhanced invasion and migration of ccRCC cells. In addition, Aza treatment significantly promoted expression of E-cadherin and inhibited the expression of N-cadherin, while the inhibition of miR-200c downregulated E-cadherin and upregulated the expression of N-cadherin, suggesting that miR-200c has a suppressive role in epithelial-mesenchymal transition (EMT) of ccRCC cells. In conclusion, it was suggested that demethylation drug Aza-induced upregulation of miR-200c may inhibit migration, invasion and EMT in ccRCC cells. PMID:27123083

  13. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  14. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  15. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  16. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    ERIC Educational Resources Information Center

    Elman, Jeffrey L.; McClelland, James L.

    Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…

  17. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  18. Active-Learning Processes Used in US Pharmacy Education

    PubMed Central

    Brown, Stacy D.; Clavier, Cheri W.; Wyatt, Jarrett

    2011-01-01

    Objective To document the type and extent of active-learning techniques used in US colleges and schools of pharmacy as well as factors associated with use of these techniques. Methods A survey instrument was developed to assess whether and to what extent active learning was used by faculty members of US colleges and schools of pharmacy. This survey instrument was distributed via the American Association of Colleges of Pharmacy (AACP) mailing list. Results Ninety-five percent (114) of all US colleges and schools of pharmacy were represented with at least 1 survey among the 1179 responses received. Eighty-seven percent of respondents used active-learning techniques in their classroom activities. The heavier the teaching workload the more active-learning strategies were used. Other factors correlated with higher use of active-learning strategies included younger faculty member age (inverse relationship), lower faculty member rank (inverse relationship), and departments that focused on practice, clinical and social, behavioral, and/or administrative sciences. Conclusions Active learning has been embraced by pharmacy educators and is used to some extent by the majority of US colleges and schools of pharmacy. Future research should focus on how active-learning methods can be used most effectively within pharmacy education, how it can gain even broader acceptance throughout the academy, and how the effect of active learning on programmatic outcomes can be better documented. PMID:21769144

  19. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  1. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  2. Presupposition Processing and the (Re)activation of Negated Concepts

    ERIC Educational Resources Information Center

    Autry, Kevin S.; Levine, William H.

    2014-01-01

    Negated words take longer to recognize than non-negated words following sentences with negation, suggesting that negated concepts are less active. The present experiments tested the possibility that this reduced activation would not persist beyond immediate testing. Experiment 1 used a probe task and materials similar to those used in previous…

  3. Dreaming: Cognitive Processes during Cortical Activation and High Afferent Thresholds.

    ERIC Educational Resources Information Center

    Antrobus, John

    1991-01-01

    Current theories and research on distributed activation in sleep are reviewed, and a neurocognitive theory of sleep is presented that is based on distributed activation. Neural and cognitive relationships described by the theory are translated into connectionist models, and simulations are described. (SLD)

  4. A Multiscale Survival Process for Modeling Human Activity Patterns

    PubMed Central

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications. PMID:27023682

  5. Sensory processing and world modeling for an active ranging device

    NASA Technical Reports Server (NTRS)

    Hong, Tsai-Hong; Wu, Angela Y.

    1991-01-01

    In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.

  6. DESIGN PROCEDURES FOR DISSOLVED OXYGEN CONTROL OF ACTIVATED SLUDGE PROCESSES

    EPA Science Inventory

    This report presents design procedures and guidelines for the selection of aeration equipment and dissolved (DO) control systems for activated sludge treatment plants. Aeration methods, equipment and application techniques are examined and selection procedures offered. Various DO...

  7. Impact of Non-Poissonian Activity Patterns on Spreading Processes

    NASA Astrophysics Data System (ADS)

    Vazquez, Alexei; Rácz, Balázs; Lukács, András; Barabási, Albert-László

    2007-04-01

    Halting a computer or biological virus outbreak requires a detailed understanding of the timing of the interactions between susceptible and infected individuals. While current spreading models assume that users interact uniformly in time, following a Poisson process, a series of recent measurements indicates that the intercontact time distribution is heavy tailed, corresponding to a temporally inhomogeneous bursty contact process. Here we show that the non-Poisson nature of the contact dynamics results in prevalence decay times significantly larger than predicted by the standard Poisson process based models. Our predictions are in agreement with the detailed time resolved prevalence data of computer viruses, which, according to virus bulletins, show a decay time close to a year, in contrast with the 1 day decay predicted by the standard Poisson process based models.

  8. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  9. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment. PMID:26901714

  10. The Roles of Structured Input Activities in Processing Instruction and the Kinds of Knowledge They Promote

    ERIC Educational Resources Information Center

    Marsden, Emma; Chen, Hsin-Ying

    2011-01-01

    This study aimed to isolate the effects of the two input activities in Processing Instruction: referential activities, which force learners to focus on a form and its meaning, and affective activities, which contain exemplars of the target form and require learners to process sentence meaning. One hundred and twenty 12-year-old Taiwanese learners…

  11. Angiotensin processing activities in the venom of Thalassophryne nattereri.

    PubMed

    Tenório, Humberto de Araújo; Marques, Maria Elizabeth da Costa; Machado, Sonia Salgueiro; Pereira, Hugo Juarez Vieira

    2015-05-01

    The venom of marine animals is a rich source of compounds with remarkable functional specificity and diversity. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. This venom presents characterized components such as proteases (Natterins 1-4) and a lectin (Nattectin) with complex effects on the human organism. A specific inhibitor of tissue kallikrein (TKI) reduces the nociception and the edema caused by the venom in mice. Our study sought to investigate the proteolytic activities against vasopeptides Angiotensin I, Angiotensin II, Angiotensin 1-9 and Bradykinin. The venom indicated angiotensin conversion against angiotensin I, as well as kininase against bradykinin. Captopril conducted the total inhibition of the converting activity, featuring the first report of ACE activity in fish venoms. PMID:25702959

  12. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  13. Basic Science Process Skills. An Inservice Workshop Kit: Outlines and Activities.

    ERIC Educational Resources Information Center

    Rowland, Paul; And Others

    A science process skill project was developed to help elementary teachers meet competency standards in New Mexico for teaching the process approach in their science classes. An outline of the process skills along with recommended activities are presented in this document. Performance objectives are identified and a sample activity form is…

  14. Biological activated carbon process for treatment of potato processing wastewater for in-plant reuse. Technical completion report

    SciTech Connect

    Hung, Y.T.; Priebe, B.D.

    1981-10-01

    Like many other food processing industries, potato processing could create a serious pollution problem. An average-sized processing plant, producing french fries and dehydrated potatoes, can generate a waste load equivalent to a city of 200,000 people. Any discharge of wastes into these waters would immediately result in detrimental effects to the environment. In a plant processing 15,000 tons of potatoes per year, 60 million gallons of water are required. With proper treatment, a large percentage of the wastewater could be reclaimed and reused in the potato processing plant. The scope of the study includes the operation of completely mixed activated sludge (CMAS) reactors as secondary treatment, and anaerobic upflow continuous biological activated carbon (BAC) and biological sand columns as tertiary treatment for potato processing wastewaters.

  15. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  16. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  17. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  18. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  19. A STUDY OF NITRATE RESPIRATION IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    In an experimental, 570-cum/day (0.15-mgd) activated sludge plant treating domestic wastewater from a correctional facility, 76 to 87 percent nitrogen removal was obtained via sludge synthesis and biological denitrification using endogenous H-donors in a compartmentalized reactor...

  20. An Activity to Teach Students about Schematic Processing

    ERIC Educational Resources Information Center

    Isbell, Linda M.; Tyler, James M.; Burns, Kathleen C.

    2007-01-01

    We designed a classroom activity to foster students' understanding of what schemas are and how they function. We used a video of the instructor as an infant to illustrate how schemas influence gender stereotyping. Before the video, we told students that the baby was either a boy or a girl. After the video, students rated whether the baby would…

  1. Age-Related Variability in Cortical Activity during Language Processing

    ERIC Educational Resources Information Center

    Fridriksson, Julius; Morrow, K. Leigh; Moser, Dana; Baylis, Gordon C.

    2006-01-01

    Purpose: The present study investigated the extent of cortical activity during overt picture naming using functional magnetic resonance imaging (fMRI). Method: Participants comprised 20 healthy, adult participants with ages ranging from 20 to 82 years. While undergoing fMRI, participants completed a picture-naming task consisting of 60…

  2. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  3. English for Everyday Activities: A Picture Process Dictionary.

    ERIC Educational Resources Information Center

    Zwier, Lawrence J.

    These books are designed to help English-as-a-Second-Language (ESL) students learn the skills they need to communicate the step-by-step aspects of daily activities. Unlike most picture dictionaries, this is a verb-based multi-skills program that uses a student text with a clear and colorful pictorial detail as a starting point and focuses on the…

  4. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  5. Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation.

    PubMed

    Kondo, Hiroshi; Miura, Takashi; Wada, Kaede C; Takeno, Kiyotoshi

    2007-11-01

    The flower-inducing effect of 5-azacytidine, a DNA demethylating reagent, was examined in several plant species with a stable or unstable photoperiodically induced flowering state under non-inductive photoperiodic conditions. The long day plant Silene armeria, whose flowering state is stable and the short day plant Pharbitis nil, whose flowering state is unstable were induced to flower by 5-azacytidine under a non-inductive condition. Thus, the replacement of photoinduction by 5-azacytidine treatment is not specific to Perilla frutescens. On the other hand, 5-azacytidine did not induce flowering in Xanthium strumarium whose flowering state is stable and Lemna paucicostata whose flowering state is unstable. Thus, epigenetics caused by DNA demethylation may be involved in the regulation of photoperiodic flowering irrespective of the stability of the photoperiodically induced flowering state. PMID:18251884

  6. Deoxyribonucleic acid methyl transferases 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation.

    PubMed

    Gallais, Rozenn; Demay, Florence; Barath, Peter; Finot, Laurence; Jurkowska, Renata; Le Guével, Rémy; Gay, Frédérique; Jeltsch, Albert; Métivier, Raphaël; Salbert, Gilles

    2007-09-01

    Transcriptional activation of silent genes can require the erasure of epigenetic marks such as DNA methylation at CpGs (cytosine-guanine dinucleotide). Active demethylation events have been observed, and associated processes are repeatedly suspected to involve DNA glycosylases such as mCpG binding domain protein 4, thymine DNA glycosylase (TDG), Demeter, and repressor of silencing 1. A complete characterization of the molecular mechanisms occurring in metazoan is nonetheless awaited. Here, we report that activation of the endogenous vitronectin gene in P19 cells by the nuclear receptor chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is observed in parallel with the recruitment of TDG and p68 RNA helicase, two components of a putative demethylation complex. Interestingly, when activated, the vitronectin gene was loaded with DNA methyltransferases 3a and 3b (Dnmt3a/b), and a strand-biased decrease in CpG methylation was detected. Dnmt3a was further found to associate with COUP-TFI and TDG in vivo, and cotransfection experiments demonstrated that Dnmt3a/b can enhance COUP-TFI-mediated activation of a methylated reporter gene. These results suggest that Dnmt3a/b could cooperate with the orphan receptor COUP-TFI to regulate transcription of the vitronectin gene. PMID:17579209

  7. Digital active material processing platform effort (DAMPER), SBIR phase 2

    NASA Technical Reports Server (NTRS)

    Blackburn, John; Smith, Dennis

    1992-01-01

    Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.

  8. Adding Structure to the Transition Process to Advanced Mathematical Activity

    ERIC Educational Resources Information Center

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  9. A Model for Speech Processing in Second Language Listening Activities

    ERIC Educational Resources Information Center

    Zoghbor, Wafa Shahada

    2016-01-01

    Teachers' understanding of the process of speech perception could inform practice in listening classrooms. Catford (1950) developed a model for speech perception taking into account the influence of the acoustic features of the linguistic forms used by the speaker, whereby the listener "identifies" and "interprets" these…

  10. Informal Learning in the Workplace: Key Activities and Processes

    ERIC Educational Resources Information Center

    Cunningham, John; Hillier, Emilie

    2013-01-01

    Purpose: The purpose of this study is to define characteristics and processes that enhance informal learning in a public sector workplace. Design/methodology/approach: Based on interviews and questionnaires, the authors solicited examples of informal learning practices that 40 supervisors experienced during their careers. The examples were content…

  11. Active Processes on the Sun and their Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Porfir'eva, G. A.; Yakunina, G. V.

    2014-10-01

    Results of observations during last decades are revised to analyze relations between properties of flares and Coronal Mass Ejections (CMEs) accompanied by geomagnetic storms. The mass, width and velocity of CME is statistically related with flare flux. Solar Proton Events (SPEs) happen often in super active regions (SARs) with betaγδ magnetic configuration. Variations of direction and velocity of a CME, propagating through the heliosphere, influence on its geoeffectiveness are reviewed.

  12. Application of statistical process control and process capability analysis procedures in orbiter processing activities at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Safford, Robert R.; Jackson, Andrew E.; Swart, William W.; Barth, Timothy S.

    1994-01-01

    Successful ground processing at KSC requires that flight hardware and ground support equipment conform to specifications at tens of thousands of checkpoints. Knowledge of conformance is an essential requirement for launch. That knowledge of conformance at every requisite point does not, however, enable identification of past problems with equipment, or potential problem areas. This paper describes how the introduction of Statistical Process Control and Process Capability Analysis identification procedures into existing shuttle processing procedures can enable identification of potential problem areas and candidates for improvements to increase processing performance measures. Results of a case study describing application of the analysis procedures to Thermal Protection System processing are used to illustrate the benefits of the approaches described in the paper.

  13. High salt promotes autoimmunity by TET2-induced DNA demethylation and driving the differentiation of Tfh cells.

    PubMed

    Wu, Haijing; Huang, Xin; Qiu, Hong; Zhao, Ming; Liao, Wei; Yuan, Shuguang; Xie, Yubing; Dai, Yong; Chang, Christopher; Yoshimura, Akihiko; Lu, Qianjin

    2016-01-01

    Follicular helper T cells (Tfh) have been well documented to play a critical role in autoimmunity, such as systemic lupus erythematosus (SLE), by helping B cells. In this study, high salt (sodium chloride, NaCl), under physiological conditions, was demonstrated to increase the differentiation of Tfh. A high-salt diet markedly increased lupus features in MRL/lpr mice. The mechanism is NaCl-induced DNA demethylation via the recruitment of the hydroxytransferase Ten-Eleven Translocation 2 (TET2). Gene silencing of TET2 obviously diminished NaCl-induced Tfh cell polarization in vitro. In addition, the gene expression of sh2d1a, map3k1, spn and stat5b was enhanced after NaCl treatment, consistent with the findings in lupus CD4(+)T cells. However, only spn was directly regulated by TET2, and spn was not the sole target for NaCl. Our findings not only explain the epigenetic mechanisms of high-salt induced autoimmunity but also provide an attractive molecular target for intervention strategies of patients. PMID:27325182

  14. Upregulation of p27Kip1 by demethylation sensitizes cisplatin-resistant human ovarian cancer SKOV3 cells.

    PubMed

    Zhao, Yan; Li, Qiaoyan; Wu, Xiaoying; Chen, Puxiang

    2016-08-01

    Ovarian cancer has a poor prognosis due to its chemoresistance, and p27Kip1 (p27) has been implicated in tumor prognosis and drug-resistance. However, the regulatory mechanisms of p27 in drug‑resistance in ovarian cancer remain unknown. The current study successfully established chemoresistant cell lines using paclitaxel (TAX), cisplatin (DDP) and carboplatin (CBP) in SKOV3 ovarian cancer cells. The results indicated that the expression levels of p27 were dramatically downregulated in chemoresistant cells. However, 5-aza-2'-deoxycytidine (5-aza) treatment restored p27 expression in DDP-resistant cells, and increased their sensitivity to DDP. In addition, it was observed that the methylation of DDP‑resistant cells, which was downregulated by 5‑aza treatment, was significantly higher compared with SKOV3 cells. Additionally, the overexpression of p27 arrested the cell cycle in S phase and promoted an apoptotic response to DDP. In conclusion, p27 was involved in chemoresistance of SKOV3 cells. Upregulated p27 expression induced by demethylation may enhance sensitivity to DDP through the regulation of the cell cycle. PMID:27314502

  15. High salt promotes autoimmunity by TET2-induced DNA demethylation and driving the differentiation of Tfh cells

    PubMed Central

    Wu, Haijing; Huang, Xin; Qiu, Hong; Zhao, Ming; Liao, Wei; Yuan, Shuguang; Xie, Yubing; Dai, Yong; Chang, Christopher; Yoshimura, Akihiko; Lu, Qianjin

    2016-01-01

    Follicular helper T cells (Tfh) have been well documented to play a critical role in autoimmunity, such as systemic lupus erythematosus (SLE), by helping B cells. In this study, high salt (sodium chloride, NaCl), under physiological conditions, was demonstrated to increase the differentiation of Tfh. A high-salt diet markedly increased lupus features in MRL/lpr mice. The mechanism is NaCl-induced DNA demethylation via the recruitment of the hydroxytransferase Ten-Eleven Translocation 2 (TET2). Gene silencing of TET2 obviously diminished NaCl-induced Tfh cell polarization in vitro. In addition, the gene expression of sh2d1a, map3k1, spn and stat5b was enhanced after NaCl treatment, consistent with the findings in lupus CD4+T cells. However, only spn was directly regulated by TET2, and spn was not the sole target for NaCl. Our findings not only explain the epigenetic mechanisms of high-salt induced autoimmunity but also provide an attractive molecular target for intervention strategies of patients. PMID:27325182

  16. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression.

    PubMed

    Tan, Youhua; Tajik, Arash; Chen, Junwei; Jia, Qiong; Chowdhury, Farhan; Wang, Lili; Chen, Junjian; Zhang, Shuang; Hong, Ying; Yi, Haiying; Wu, Douglas C; Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Seong, Jihye; Singh, Rishi; Lin, Li-Jung; Doğanay, Sultan; Li, Yong; Jia, Haibo; Ha, Taekjip; Wang, Yingxiao; Huang, Bo; Wang, Ning

    2014-01-01

    Tumour-repopulating cells (TRCs) are a self-renewing, tumorigenic subpopulation of cancer cells critical in cancer progression. However, the underlying mechanisms of how TRCs maintain their self-renewing capability remain elusive. Here we show that relatively undifferentiated melanoma TRCs exhibit plasticity in Cdc42-mediated mechanical stiffening, histone 3 lysine residue 9 (H3K9) methylation, Sox2 expression and self-renewal capability. In contrast to differentiated melanoma cells, TRCs have a low level of H3K9 methylation that is unresponsive to matrix stiffness or applied forces. Silencing H3K9 methyltransferase G9a or SUV39h1 elevates the self-renewal capability of differentiated melanoma cells in a Sox2-dependent manner. Mechanistically, H3K9 methylation at the Sox2 promoter region inhibits Sox2 expression that is essential in maintaining self-renewal and tumorigenicity of TRCs both in vitro and in vivo. Taken together, our data suggest that 3D soft-fibrin-matrix-mediated cell softening, H3K9 demethylation and Sox2 gene expression are essential in regulating TRC self-renewal. PMID:25099074

  17. Oxidative demethylation in monooxygenase model systems. Competing pathways for binuclear and helical multinuclear copper(I) complexes

    SciTech Connect

    Gelling, O.J.; Feringa, B.L. )

    1990-10-10

    The ligand 2,6-bis(N-(2-pyridylethyl)formimidoyl)-1-methoxybenzene (2,6-BPB-1-OCH{sub 3}) (4) reacts with Cu-(CH{sub 3}CN){sub 4}BF{sub 4} to form novel binuclear copper(I) complexes (Cu{sub 2}(2,6-BPB-1-OCH{sub 3})(BF{sub 4}){sub 2}(CH{sub 3}CN){sub 4}) (11) and (Cu{sub 2}(2,6-BPB-1-OCH{sub 3})(BF{sub 4}){sub 2}(CH{sub 2}Cl{sub 2}){sub 0.5}) (14), or the helical polynuclear copper(I) complex (Cu(2,6-BPB-1-OCH{sub 3})(BF{sub 4})){sub n} (16). The complexes mimic certain monooxygenases as they rapidly take up O{sub 2} followed by demethylation of the anisole moiety (up to 95% yield). {sup 18}O experiments are provided that show competing aryl-oxygen ({ge}60%) and alkyl-oxygen (20%) bond cleavage pathways. Introduction of a p-methoxy substituent in the arene moiety of complex 11 decreases the oxygenation rate and led to an unprecedented O{sub 2} induced arene-OCH{sub 3}-OCD{sub 3} exchange at 20{degree}C in CD{sub 3}OD. A mechanistic rational is given.

  18. AGE-induced keratinocyte MMP-9 expression is linked to TET2-mediated CpG demethylation.

    PubMed

    Zhang, Jinglu; Yang, Chuan; Wang, Chuan; Liu, Dan; Lao, Guojuan; Liang, Ying; Sun, Kan; Luo, Hengcong; Tan, Qin; Ren, Meng; Yan, Li

    2016-05-01

    Studies have documented that unusually high expression of matrix metalloproteinase-9 (MMP-9) suppresses wound healing during the late stages of diabetic foot ulcers. Recently, it has been reported that the presence of advanced glycation end products-bovine serum albumin (AGE-BSA) resulted in a higher expression of MMP-9 in skin primary keratinocytes. The aim of the present study was to elucidate the molecular machinery that is responsible for the inappropriately high AGE-BSA-induced expression of MMP-9. It has been demonstrated that site-specific DNA demethylation played an important role in MMP-9 expression in AGE-BSA-stimulated keratinocytes. Ten-eleven translocation-2 (TET2) was up-regulated, whereas the percentage of methylation in the MMP-9 promoter was reduced. Furthermore, TET2 directly bound to a fragment surrounding the transcriptional start site in the MMP-9 promoter region, contributing to the regulation of MMP-9 expression. In addition, evidence indicated that TET2 affected the migration and proliferation in vitro of cultured skin primary keratinocytes. These findings indicated that TET2 directly interacted with the promoter region of MMP-9 in diabetic tissues and may be a novel master regulator of wound healing. PMID:26913994

  19. Growth Arrest and DNA-Damage-Inducible, Beta (GADD45b)-Mediated DNA Demethylation in Major Psychosis

    PubMed Central

    Gavin, David P; Sharma, Rajiv P; Chase, Kayla A; Matrisciano, Francesco; Dong, Erbo; Guidotti, Alessandro

    2012-01-01

    Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions. PMID:22048458

  20. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  1. Impact of agricultural activities on anaerobic processes in stream sediments

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Ludwig, S.; Nelson, L. C.; Porterfield, J.; Sather, K. L.; Songpitak, M.; Spawn, S.; Weigel, B.

    2013-12-01

    Streams draining agriculture watersheds are subject to significant anthropogenic impacts, including sedimentation from soil erosion and high nitrate input from heavy fertilizer application. Sedimentation degrades habitat and can reduce hydrologic exchange between surface and subsurface waters. Disconnecting surface and subsurface flow reduces oxygen input to hyporheic water, increasing the extent of anoxic zones in stream sediments and creating hotspots for anaerobic processes like denitrification and methanogenesis that can be important sources of nitrous oxide and methane, both powerful greenhouse gases. Increased nitrate input may influence greenhouse gas fluxes from stream sediments by stimulating rates of denitrification and potentially reducing rates of methanogenesis, either through direct inhibition or by increasing competition for organic substrates from denitrifying bacteria. We hypothesized that accumulation of fine sediments in stream channels would result in high rates of methanogenesis in stream sediments, and that increased nitrate input from agricultural runoff would stimulate denitrification and reduce rates of methane production. Our work focused on streams in northern and central Minnesota, in particular on Rice Creek, a small stream draining an agricultural watershed. We used a variety of approaches to test our hypotheses, including surveys of methane concentrations in surface waters of streams ranging in sediment type and nitrate concentration, bottle incubations of sediment from several sites in Rice Creek, and the use of functional gene probes and RNA analyses to determine if genes for these processes are present and being expressed in stream sediments. We found higher methane concentrations in surface water from streams with large deposits of fine sediments, but significantly less methane in these streams when nitrate concentrations were high. We also found high potential for both methanogenesis and denitrification in sediment incubations

  2. SETI-Italia: Present Activities and Future Real Time Data Processing System

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Bianchi, G.; Bartolini, M.; Mattana, A.; Monari, J.; Naldi, G.; Perini, F.; Pluchino, S.; Pupillo, G.

    2010-04-01

    A complete review of present SETI-Italia activities and data processing systems are presented. The future plan is to develop a new very powerful data processing reconfigurable platform (based on FPGAs) to implement even more powerful real time algorithms.

  3. CHEMICALLY ACTIVE FLUID BED FOR SOX CONTROL. VOLUME I. PROCESS EVALUATION STUDIES

    EPA Science Inventory

    The report describes selected process evaluation studies supporting the development of an atmospheric-pressure, fluidized-bed, chemically active gasification process, using a regenerative limestone sulfur sorbent to produce low- to intermediate-Btu fuel gas. Limestone sorbent sel...

  4. SHS Processes in microgravity activities: first experiments in space

    NASA Astrophysics Data System (ADS)

    Merzhanov, Alexander G.

    Some data for study of self-propagating high-temperature synthesis (SHS) under microgravity are analyzed. This research direction seems to be promising because SHS is normally accompanied by such gravity-sensitive events as: melting of reagents and products, spreading of melt, coalescence of droplets, diffusion and convection in molten metals and nonmetals, buoyancy of solid particles and bubbles in the melt, nucleation of solid products, crystal growth, and sample deformation. The experiments carried out on the ground, under conditions of elevated artificial gravity, during parabolic flights, and aboard the Mir Space Station demonstrated a marked effect of gravity both on the process and products.

  5. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  6. DNA methylation/demethylation programming during peach flower bud dormancy release, development and blooming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peach flower bud development undergoes a long, complex and temperature-dependent regulation process with cessation of growth in response to cool temperatures in late fall, a slow but gradual development during the chilling period in winter, and eventually blooming in early spring. It has been demon...

  7. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  8. Epidemic process on activity-driven modular networks

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei; Li, Dandan

    2015-08-01

    In this paper, we propose two novel models of epidemic spreading by considering the activity-driven and the network modular. Firstly, we consider the susceptible-infected-susceptible (SIS) contagion model and derive analytically the epidemic threshold. The results indicate that the epidemic threshold only involves with the value of the spread rate and the recovery rate. In addition, the asymptotic refractory density of infected nodes in the different communities exhibits different trends with the change of the modularity-factor. Then, the infected-driven vaccination model is presented. Simulation results illustrate that the final density of vaccination will increase with the increase of the response strength of vaccination. Moreover, the final infected density in the original-infected-community shows different trends with the change of the response strength of vaccination and the spreading rate. The infected-driven vaccination is a good way to control the epidemic spreading.

  9. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOEpatents

    Doughty, Daniel H.; Eisenmann, Erhard T.

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  10. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  11. Predictive active disturbance rejection control for processes with time delay.

    PubMed

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516

  12. Sensor Data Acquisition and Processing Parameters for Human Activity Classification

    PubMed Central

    Bersch, Sebastian D.; Azzi, Djamel; Khusainov, Rinat; Achumba, Ifeyinwa E.; Ries, Jana

    2014-01-01

    It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes) has an impact on the classification accuracy. For Ambient Assisted Living (AAL), no clear information to select these parameters exists, hence a wide variety and inconsistency across today's literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL) event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA) based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters) and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS), Mean, Signal Magnitude Area (SMA), Signal Vector Magnitude (here SMV), Energy, Entropy, FFTPeak, Standard Deviation (STD). The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve. PMID:24599189

  13. MOMENTUM DRIVING: WHICH PHYSICAL PROCESSES DOMINATE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    SciTech Connect

    Ostriker, Jeremiah P.; Choi, Ena; Novak, Gregory S.; Ciotti, Luca; Proga, Daniel

    2010-10-10

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter {eta}= M-dot{sub outf}/ M-dot{sub acc}=2{epsilon}{sub w}c{sup 2}/v{sub w}{sup 2} where {epsilon}{sub w} ({identical_to} E-dot{sub w}/(M-dot{sub acc}c{sup 2})) is the efficiency with which accreted matter is turned into wind energy in the disk surrounding the central SMBH. The outflowing mass and momentum are proportional to {eta}, and many prior treatments have essentially assumed that {eta} = 0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to a hundred-fold increase in the mass of the SMBH to over 10{sup 10} M{sub sun}. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies that lead to the most observationally acceptable results are relatively low with {epsilon}{sub w} {approx}< 10{sup -4}.

  14. Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

    NASA Astrophysics Data System (ADS)

    Recht, Daniel

    This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold.

  15. Anaerobic oxidation of methane: an "active" microbial process.

    PubMed

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang

    2015-02-01

    The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce methane. Subsequently, it has been found that AOM can also be coupled with denitrification. The known microbes responsible for this process are Candidatus Methylomirabilis oxyfera (M. oxyfera) and Candidatus Methanoperedens nitroreducens (M. nitroreducens). Candidatus Methylomirabilis oxyfera belongs to the NC10 bacteria, can catalyze nitrite reduction through an "intra-aerobic" pathway, and may catalyze AOM through an aerobic methane oxidation pathway. However, M. nitroreducens, which is affiliated with ANME-2d archaea, may be able to catalyze AOM through the reverse methanogenesis pathway. Moreover, manganese (Mn(4+) ) and iron (Fe(3+) ) can also be used as electron acceptors of AOM. This review summarizes the mechanisms and associated microbes of AOM. It also discusses recent progress in some unclear key issues about AOM, including ANME-1 in hypersaline environments, the effect of oxygen on M. oxyfera, and the relationship of M. nitroreducens with ANME. PMID:25530008

  16. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma.

    PubMed

    Hashizume, Rintaro; Andor, Noemi; Ihara, Yuichiro; Lerner, Robin; Gan, Haiyun; Chen, Xiaoyue; Fang, Dong; Huang, Xi; Tom, Maxwell W; Ngo, Vy; Solomon, David; Mueller, Sabine; Paris, Pamela L; Zhang, Zhiguo; Petritsch, Claudia; Gupta, Nalin; Waldman, Todd A; James, C David

    2014-12-01

    Pediatric brainstem gliomas often harbor oncogenic K27M mutation of histone H3.3. Here we show that GSKJ4 pharmacologic inhibition of K27 demethylase JMJD3 increases cellular H3K27 methylation in K27M tumor cells and demonstrate potent antitumor activity both in vitro against K27M cells and in vivo against K27M xenografts. Our results demonstrate that increasing H3K27 methylation by inhibiting K27 demethylase is a valid therapeutic strategy for treating K27M-expressing brainstem glioma. PMID:25401693

  17. Skills, Activities, Matrixing System: Project SAMS. A Curriculum Process for Students with Profound Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Logan, Kent R.; And Others

    Project SAMS (Skills, Activities, Matrixing System) was designed to develop and validate a curriculum process for educating students with profound disabilities. Central to the 3-year curriculum process was matrixing, or integrating, basic developmental skills across multiple functional, age-appropriate, and integrated activities. Components…

  18. Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling

    PubMed Central

    Tsurumi, Amy; Dutta, Pranabanada; Yan, Shian-Jang; Sheng, Robin; Li, Willis X.

    2013-01-01

    The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that Drosophila Kdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters. PMID:24100631

  19. Activation of the human sensorimotor cortex during error-related processing: a magnetoencephalography study.

    PubMed

    Stemmer, Brigitte; Vihla, Minna; Salmelin, Riitta

    2004-05-13

    We studied error-related processing using magnetoencephalography (MEG). Previous event-related potential studies have documented error negativity or error-related negativity after incorrect responses, with a suggested source in the anterior cingulate cortex or supplementary motor area. We compared activation elicited by correct and incorrect trials using auditory and visual choice-reaction time tasks. Source areas showing different activation patterns in correct and error conditions were mainly located in sensorimotor areas, both ipsi- and contralateral to the response, suggesting that activation of sensorimotor circuits accompanies error processing. Additional activation at various other locations suggests a distributed network of brain regions active during error-related processing. Activation specific to incorrect trials tended to occur later in MEG than EEG data, possibly indicating that EEG and MEG detect different neural networks involved in error-related processes. PMID:15147777

  20. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation

    PubMed Central

    Jiang, Yuhui; Qian, Xu; Shen, Jianfeng; Wang, Yugang; Li, Xinjian; Liu, Rui; Xia, Yan; Chen, Qianming; Peng, Guang; Lin, Shiaw-Yih; Lu, Zhimin

    2016-01-01

    Histone methylation regulates DNA repair. However, the mechanisms that underlie the regulation of histone methylation during this repair remain to be further defined. Here, we show that ionizing radiation (IR) induces DNA-PK-dependent phosphorylation of nuclear fumarase at T236, which leads to an interaction between fumarase and the histone variant H2A.Z at DNA double-strand break (DSB) regions. Locally generated fumarate inhibits KDM2B histone demethylase activity, resulting in enhanced dimethylation of histone H3 K36; in turn, this increases the accumulation of the Ku70-containing DNA-PK at DSB regions for non-homologous end joining (NHEJ) DNA repair and cell survival. These findings reveal a feedback mechanism that underlies DNA-PK regulation by chromatin-associated fumarase and an instrumental function of fumarase in regulating histone H3 methylation and DNA repair. PMID:26237645

  1. Dynamics of H3K27me3 methylation and demethylation in plant development

    PubMed Central

    Gan, Eng-Seng; Xu, Yifeng; Ito, Toshiro

    2015-01-01

    Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases. PMID:26313233

  2. Silencing HO-1 sensitizes SKM-1 cells to apoptosis induced by low concentration 5-azacytidine through enhancing p16 demethylation.

    PubMed

    Wang, Ping; Ma, Dan; Wang, Jishi; Fang, Qin; Gao, Rui; Wu, Weibing; Lu, Tangsheng; Cao, Lu

    2015-03-01

    Heme oxygenase-1 was reported previously as a resistance target on acute myelocytic leukemia (AML). We found that HO-1 was resistant to 5-azacytidine (AZA) treatment of myelodysplastic syndrome (MDS), and explored further the relative mechanisms. Patient bone marrow mononuclear cells (n=48) diagnosed as different levels of MDS were collected. Cell growth was evaluated by MTT assay; cell cycle and apoptosis were detected by flow cytometry; mRNA expression was assessed by real-time PCR, protein expression was analyzed through western blotting. Methylation was assessed by MSP. The survival time, and weight of mice were recorded. HO-1 overexpression was observed in SKM-1 cells after AZA treatment comparing to other cell lines. The HO-1 expression in MDS patients with high-risk was higher than in low-risk patients. After HO-1 was silenced by lentivirus-mediated siRNA, the proliferation of SKM-1 cells was effectively inhibited by low concentration AZA, and the cell cycle was arrested in the G0/G1 phase. Upregulation of p16 and changing of p16-relative cell cycle protein was observed after silencing HO-1 in AZA treated SKM-1 cells. In addition, DNMT1 was downregulated following the decrease of HO-1 expression. In vivo, silencing HO-1 inhibited SKM-1 cell growth induced by AZA in a NOD/SCID mouse model. Silencing HO-1 sensitized SKM-1 cells toward AZA, which may be attributed to the influence of HO-1 on AZA-induced p16 demethylation. HO-1 may be one of the targets that enhance the therapeutic effects of AZA on MDS malignant transformation inspiring new treatment methods for high-risk and very high-risk MDS patients in clinical practice. PMID:25585641

  3. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  4. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon. PMID:25881437

  5. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.

    PubMed

    McLaughlin, Dylan; Coey, Christopher T; Yang, Wei-Chih; Drohat, Alexander C; Matunis, Michael J

    2016-04-22

    Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo. PMID:26917720

  6. Age-Dependent Demethylation of Sod2 Promoter in the Mouse Femoral Artery

    PubMed Central

    Nguyen, Albert; Leblond, François; Mamarbachi, Maya; Geoffroy, Steve; Thorin, Eric

    2016-01-01

    We studied the age-dependent regulation of the expression of the antioxidant enzyme manganese superoxide dismutase (MnSOD encoded by Sod2) through promoter methylation. C57Bl/6 mice were either (i) sedentary (SED), (ii) treated with the antioxidant catechin (CAT), or (iii) voluntarily exercised (EX) from weaning (1-month old; mo) to 9 mo. Then, all mice aged sedentarily and were untreated until 12 mo. Sod2 promoter methylation was similar in all groups in 9 mo but decreased (p < 0.05) in 12 mo SED mice only, which was associated with an increased (p < 0.05) transcriptional activity in vitro. At all ages, femoral artery endothelial function was maintained; this was due to an increased (p < 0.05) contribution of eNOS-derived NO in 12 mo SED mice only. CAT and EX prevented these changes in age-related endothelial function. Thus, a ROS-dependent epigenetic positive regulation of Sod2 gene expression likely represents a defense mechanism prolonging eNOS function in aging mouse femoral arteries. PMID:26989455

  7. Viral AlkB proteins repair RNA damage by oxidative demethylation

    PubMed Central

    van den Born, Erwin; Omelchenko, Marina V.; Bekkelund, Anders; Leihne, Vibeke; Koonin, Eugene V.; Dolja, Valerian V.; Falnes, Pål Ø.

    2008-01-01

    Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant. PMID:18718927

  8. Methods for Studying the Processes of Interaction and Collaborative Activity in Computer-Based Educational Activities

    ERIC Educational Resources Information Center

    Mercer, Neil; Littleton, Karen; Wegerif, Rupert

    2004-01-01

    Drawing on the work of researchers in several disciplines, this article describes and discusses methods which can be used for analysing joint activity during computer-based, side-by-side, collaborative activity in educational settings. It is argued that the choice of methods in any particular study should take into account the range of…

  9. Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation

    PubMed Central

    Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George

    2014-01-01

    Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714

  10. Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated {beta}-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6

    SciTech Connect

    Herraiz, Tomas . E-mail: therraiz@ifi.csic.es; Guillen, Hugo; Aran, Vicente J.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2006-11-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated {beta}-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min{sup -1} and K {sub m} of 79.36 {+-} 3 {mu}M (formation of MPTP-OH) and 18.95 min{sup -1} and K {sub m} 69.6 {+-} 2.2 {mu}M (PTP). Small amounts of dehydrogenated toxins MPDP{sup +} and MPP{sup +} were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP{sup +} and MPP{sup +} toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated {beta}-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various {beta}-carbolines were efficiently hydroxylated to hydroxy-{beta}-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role

  11. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder☆

    PubMed Central

    Leung, Rachel C.; Pang, Elizabeth W.; Cassel, Daniel; Brian, Jessica A.; Smith, Mary Lou; Taylor, Margot J.

    2014-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD. PMID:25610782

  12. Interactions of xanthines with activated carbon. I. Kinetics of the adsorption process

    NASA Astrophysics Data System (ADS)

    Navarrete Casas, R.; García Rodriguez, A.; Rey Bueno, F.; Espínola Lara, A.; Valenzuela Calahorro, C.; Navarrete Guijosa, A.

    2006-06-01

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  13. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing

    PubMed Central

    Suma Pushparaj, Florence; Urooj, Asna

    2014-01-01

    Research on the effect of processing on the retention of bioactive components with potential antioxidant activity is gaining importance. The objective of this investigation was to evaluate the effect of various processing methods (milling, boiling, pressure cooking, roasting and germination respectively) on the antioxidant components as well as the antioxidant activities in the commonly used pearl millet cultivars—Kalukombu (K) and Maharashtra Rabi Bajra (MRB). The methanolic extracts of processed pearl millet flours were analyzed for 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, reducing power assay (RPA) and ferric reducing antioxidant power (FRAP) assays respectively. The samples were also evaluated for tannin, phytic acid and flavonoid content which was then correlated with the antioxidant activity assayed using three methods. The results indicated that the bran rich fraction showed high antioxidant activity (RPA) owing to high tannin, phytic acid and flavonoid levels. Heat treatments exhibited significantly (P ≤ 0.05) higher antioxidant activity (DPPH scavenging activity and RPA) reflecting the high flavonoid content. Processing did not have any significant effect on the FRAP activity of pearl millet. The data on the correlation coefficient suggests that DPPH radical scavenging activity and reducing power assay in the K variety was largely due to the presence of flavonoid content, however in MRB, no relationship was found between antioxidant activities and antioxidant components. PMID:26784663

  14. Arsenic Induces Functional Re-Expression of Estrogen Receptor α by Demethylation of DNA in Estrogen Receptor-Negative Human Breast Cancer

    PubMed Central

    Liu, Hongxia; Jiang, Fei; Wang, Yubang; Hu, Chunyan; Qi, Hong; Zhong, Caiyun; Wang, Xinru; Li, Zhong

    2012-01-01

    Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)- 2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER–negative human breast cancer. PMID:22558281

  15. The accumulation of DNA demethylation in Sat α in normal gastric tissues with Helicobacter pylori infection renders susceptibility to gastric cancer in some individuals.

    PubMed

    Saito, Masaaki; Suzuki, Koichi; Maeda, Takafumi; Kato, Takaharu; Kamiyama, Hidenori; Koizumi, Kei; Miyaki, Yuichiro; Okada, Shinichiro; Kiyozaki, Hirokazu; Konishi, Fumio

    2012-06-01

    Helicobacter pylori (HP) infection is widely recognized as a risk factor for gastric cancer, but only a minority of infected individuals develop gastric cancer. The aim of this study was to determine whether DNA demethylation in non-cancerous gastric mucosa (NGM) significantly enhances susceptibility to gastric cancer. A total of 165 healthy volunteers, including 83 HP-positive and 82-negative individuals, as well as 83 patients with single and 18 with synchronous double gastric cancer (GC) were enrolled in this study. The relative demethylation levels (RDLs) of repetitive sequences, including Alu, LINE-1 and Sat α, were quantified by real-time methylation-specific polymerase chain reaction. The Alu RDL did not exhibit any differences within each respective group, whereas LINE-1 RDL was significantly elevated in cancer tissues compared with the NGM in the other groups (P<0.001). Our results indicated that a gradual increase in Sat α RDL correlated with HP infection and cancer development. Sat α RDL was significantly elevated in the NGM in HP-positive compared with HP-negative (P<0.001), and significantly elevated in cancer tissues (P<0.001). Although the Sat α RDL of the NGM in the total population increased in an age-dependent manner, it was significantly increased in a fraction of younger GC patients (<45 years) compared with all of the others (45 years or older, P=0.0391). In addition, double GC exhibited a significantly higher Sat α RDL in the NGM compared with single GC (P=0.0014). In these two fractions, Sat α RDL in the NGM exhibited an inverse correlation with age. In conclusion, the present study demonstrated that the accumulation of DNA demethylation in Sat α RDL in the NGM with HP infection potentially renders susceptibility to gastric cancer in a fraction of GC patients younger than 45 years or in patients with multiple cancers. PMID:22426602

  16. Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(IV)-oxo complex.

    PubMed

    Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min; You, Youngmin; Nam, Wonwoo; Fukuzumi, Shunichi

    2011-11-21

    Oxidative dimerization of N,N-dimethylaniline (DMA) occurs with a nonheme iron(IV)-oxo complex, [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), to yield the corresponding dimer, tetramethylbenzidine (TMB), in acetonitrile. The rate of the oxidative dimerization of DMA by [Fe(IV)(O)(N4Py)](2+) is markedly enhanced by the presence of scandium triflate, Sc(OTf)(3) (OTf = CF(3)SO(3)(-)), when TMB is further oxidized to the radical cation (TMB(•+)). In contrast, we have observed the oxidative N-demethylation with para-substituted DMA substrates, since the position of the C-C bond formation to yield the dimer is blocked. The rate of the oxidative N-demethylation of para-substituted DMA by [Fe(IV)(O)(N4Py)](2+) is also markedly enhanced by the presence of Sc(OTf)(3). In the case of para-substituted DMA derivatives with electron-donating substituents, radical cations of DMA derivatives are initially formed by Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), giving demethylated products. Binding of Sc(3+) to [Fe(IV)(O)(N4Py)](2+) enhances the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), whereas binding of Sc(3+) to DMA derivatives retards the electron-transfer reaction. The complicated kinetics of the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+) are analyzed by competition between binding of Sc(3+) to DMA derivatives and to [Fe(IV)(O)(N4Py)](2+). The binding constants of Sc(3+) to DMA derivatives increase with the increase of the electron-donating ability of the para-substituent. The rate constants of Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), which are estimated from the binding constants of Sc(3+) to DMA derivatives, agree well with those predicted from the driving force dependence of the rate constants of Sc(3+) ion-coupled electron transfer from one-electron reductants to [Fe

  17. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  18. Pupillometric Signs of Brain Activation Vary with Level of Cognitive Processing

    ERIC Educational Resources Information Center

    Beatty, Jackson; Wagoner, Brennis L.

    1978-01-01

    Reports increased central nervous system vigilance and activation was observed as indicated by pupillary dilation during the decision interval of a letter matching task as higher levels of processing were performed. (SL)

  19. SYSTEMATIC SCANNING ELECTRON MICROSCOPY FOR EVALUATING COMBINED BIOLOGICAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A semi-quantitative scanning electron microscope (SEK) analytical technique has been developed to examine granular activated carbon (GAC) utilized as media for biomass attachment in liquid waste treatment (combined processes). he procedure allows for the objective monitoring, com...

  20. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening

    PubMed Central

    LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.

    2016-01-01

    Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the

  1. Information entropy of activation process: Application for low-temperature fluctuations of a myoglobin molecule

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.

    2015-11-01

    Activation process for unimolecular reaction has been considered by means of radiation theory. The formulae of information entropy of activation have been derived for the Boltzmann-Arrhenius model and the activation process model (APM). The physical meaning of this entropy has been determined. It is a measure of conversion of thermal radiation energy to mechanical energy that moves atoms in a molecule during elementary activation act. It is also a measure of uncertainty of this energy conversion. The uncertainty is due to unevenness of distribution function representing the activation process. It has been shown that Arrhenius dependence is caused by the entropy change. Efficiency comparison of the two models under consideration for low-temperature fluctuations of a myoglobin molecule structure shows that the APM should be favored over the Boltzmann-Arrhenius one.

  2. Antioxidant activity of fresh and processed Jalapeño and Serrano peppers.

    PubMed

    Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Amarowicz, Ryszard; Shahidi, Fereidoon

    2011-01-12

    In this research, total phenols, flavonoids, capsaicinoids, ascorbic acid, and antioxidant activity (ORAC, hydroxyl radical, DPPH, and TEAC assays) of fresh and processed (pickled and chipotle canned) Jalapeño and Serrano peppers were determined. All fresh and processed peppers contained capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, even though the latter could be quantified only in fresh peppers. Processed peppers contained lower amounts of phytochemicals and had lower antioxidant activity, compared to fresh peppers. Good correlations between total phenols and ascorbic acid with antioxidant activity were observed. Elimination of chlorophylls by silicic acid chromatography reduced the DPPH scavenging activity of the extracts, compared to crude extracts, confirming the antioxidant activity of chlorophylls present in Jalapeño and Serrano peppers. PMID:21126003

  3. New Mechanism of Bone Cancer Pain: Tumor Tissue-Derived Endogenous Formaldehyde Induced Bone Cancer Pain via TRPV1 Activation.

    PubMed

    Wan, You

    2016-01-01

    In recent years, our serial investigations focused on the role of cancer cells-derived endogenous formaldehyde in bone cancer pain. We found that cancer cells produced formaldehyde through demethylation process by serine hydroxymethyltransferase (SHMT1 and SHMT2) and lysine-specific histone demethylase 1 (LSD1). When the cancer cells metastasized into bone marrow, the elevated endogenous formaldehyde induced bone cancer pain through activation on the transient receptor potential vanilloid subfamily member 1 (TRPV1) in the peripheral nerve fibers. More interestingly, TRPV1 expressions in the peripheral fibers were upregulated by the local insulin-like growth factor I (IGF-I) produced by the activated osteoblasts. In conclusion, tumor tissue-derived endogenous formaldehyde induced bone cancer pain via TRPV1 activation. PMID:26900062

  4. Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents.

    PubMed

    Freedman, John C; Li, Jihong; Uzal, Francisco A; McClane, Bruce A

    2014-01-01

    Epsilon toxin (ETX), a pore-forming toxin produced by type B and D strains of Clostridium perfringens, mediates severe enterotoxemia in livestock and possibly plays a role in human disease. During enterotoxemia, the nearly inactive ETX prototoxin is produced in the intestines but then must be activated by proteolytic processing. The current study sought to examine ETX prototoxin processing and activation ex vivo using the intestinal contents of a goat, a natural host species for ETX-mediated disease. First, this study showed that the prototoxin has a KEIS N-terminal sequence with a molecular mass of 33,054 Da. When the activation of ETX prototoxin ex vivo by goat small intestinal contents was assessed by SDS-PAGE, the prototoxin was processed in a stepwise fashion into an ~27-kDa band or higher-molecular-mass material that could be toxin oligomers. Purified ETX corresponding to the ~27-kDa band was cytotoxic. When it was biochemically characterized by mass spectrometry, the copresence of three ETX species, each with different C-terminal residues, was identified in the purified ~27-kDa ETX preparation. Cytotoxicity of each of the three ETX species was then demonstrated using recombinant DNA approaches. Serine protease inhibitors blocked the initial proteotoxin processing, while carboxypeptidase inhibitors blocked further processing events. Taken together, this study provides important new insights indicating that, in the intestinal lumen, serine protease (including trypsin and possibly chymotrypsin) initiates the processing of the prototoxin but other proteases, including carboxypeptidases, then process the prototoxin into multiple active and stable species. Importance: Processing and activation by intestinal proteases is a prerequisite for ETX-induced toxicity. Previous studies had characterized the activation of ETX using only arbitrarily chosen amounts of purified trypsin and/or chymotrypsin. Therefore, the current study examined ETX activation ex vivo by natural

  5. Process, Goal and Social Interaction Differences in Recreation: What Makes an Activity Substitutable.

    ERIC Educational Resources Information Center

    Baumgartner, Robert; Heberlein, Thomas A.

    Two recreational activities, deer hunting and goose hunting, both similar in form, are compared. It was hypothesized that the activity for which participants rated the process, the goal, and the social interaction as most important to the experience and for which participants showed the strongest family ties and social support for participation…

  6. The Masked Semantic Priming Effect Is Task Dependent: Reconsidering the Automatic Spreading Activation Process

    ERIC Educational Resources Information Center

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…

  7. Plan before You Play: An Activity for Teaching the Managerial Process

    ERIC Educational Resources Information Center

    Althouse, Norm R.; Hedges, Peggy L.

    2015-01-01

    This article describes a 60-minute classroom activity using LEGO® bricks that demonstrates and reinforces the importance of the managerial process. The activity, Plan Before You Play (PBP), is targeted to introductory business classes, and differs from others in that it requires little investment or up-front planning, is easily scalable, and, with…

  8. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  9. Executive Functions in Learning Processes: Do They Benefit from Physical Activity?

    ERIC Educational Resources Information Center

    Barenberg, Jonathan; Berse, Timo; Dutke, Stephan

    2011-01-01

    As executive functions play an essential role in learning processes, approaches capable of enhancing executive functioning are of particular interest to educational psychology. Recently, the hypothesis has been advanced that executive functioning may benefit from changes in neurobiological processes induced by physical activity. The present…

  10. 77 FR 60714 - Information Collection Activities: Legacy Data Verification Process (LDVP); Submitted for Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... consultation process, on May 14, 2012, we published a Federal Register notice (77 FR 28401) announcing that we... Bureau of Safety and Environmental Enforcement Information Collection Activities: Legacy Data Verification Process (LDVP); Submitted for Office of Management and Budget (OMB) Review; Comment Request...

  11. Errors in Creative Thought? Cognitive Biases in a Complex Processing Activity

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Blair, Cassie; Dailey, Lesley; Leritz, Lyle E.; Osburn, Holly K.

    2006-01-01

    The generation of new ideas is a complex demanding activity involving multiple processing operations. As is the case in other forms of complex cognition, biases in process execution can induce errors that limit peoples' ability to generate viable new ideas. In the present effort, the nature of these biases, and their impact on creative thought,…

  12. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  13. Learning Computers, Speaking English: Cooperative Activities for Learning English and Basic Word Processing.

    ERIC Educational Resources Information Center

    Quann, Steve; Satin, Diana

    This textbook leads high-beginning and intermediate English-as-a-Second-Language (ESL) students through cooperative computer-based activities that combine language learning with training in basic computer skills and word processing. Each unit concentrates on a basic concept of word processing while also focusing on a grammar topic. Skills are…

  14. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    PubMed

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. PMID:26457683

  15. Prospective Elementary Mathematics Teachers' Thought Processes on a Model Eliciting Activity

    ERIC Educational Resources Information Center

    Eraslan, Ali

    2012-01-01

    Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. The purpose of this study is to examine prospective elementary mathematics teachers' thought processes on a model eliciting activity and reveal difficulties or blockages in the processes. The study includes forty-five seniors taking the…

  16. Selective attention modulates high-frequency activity in the face-processing network.

    PubMed

    Müsch, Kathrin; Hamamé, Carlos M; Perrone-Bertolotti, Marcela; Minotti, Lorella; Kahane, Philippe; Engel, Andreas K; Lachaux, Jean-Philippe; Schneider, Till R

    2014-11-01

    Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipito-temporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50-150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole

  17. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  18. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  19. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    PubMed

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-01

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. PMID:24657616

  20. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids.

    PubMed

    Hufford, C D; Sharma, A S; Oguntimein, B O

    1980-10-01

    Liriodenine was evaluated for its antibacterial and antifungal activity against several microorganisms. Other related oxoaporphine alkaloids also were evaluated. Attempts to prepare oxoaporphine alkaloids from N-acetylnoraporphines were unsuccessful, but an unexpected phenanthrene alkaloid was obtained. A novel N-demethylation reaction was noted when oxogaucine methiodide and liriodenine methiodide were treated with alumina. PMID:7420287

  1. Activation process in excitable systems with multiple noise sources: One and two interacting units.

    PubMed

    Franović, Igor; Todorović, Kristina; Perc, Matjaž; Vasović, Nebojša; Burić, Nikola

    2015-12-01

    We consider the coaction of two distinct noise sources on the activation process of a single excitable unit and two interacting excitable units, which are mathematically described by the Fitzhugh-Nagumo equations. We determine the most probable activation paths around which the corresponding stochastic trajectories are clustered. The key point lies in introducing appropriate boundary conditions that are relevant for a class II excitable unit, which can be immediately generalized also to scenarios involving two coupled units. We analyze the effects of the two noise sources on the statistical features of the activation process, in particular demonstrating how these are modified due to the linear or nonlinear form of interactions. Universal properties of the activation process are qualitatively discussed in the light of a stochastic bifurcation that underlies the transition from a stochastically stable fixed point to continuous oscillations. PMID:26764778

  2. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    PubMed

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  3. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia.

    PubMed

    Shimazu, Yayoi; Shimazu, Yutaka; Hishizawa, Masakatsu; Hamaguchi, Masahide; Nagai, Yuya; Sugino, Noriko; Fujii, Sumie; Kawahara, Masahiro; Kadowaki, Norimitsu; Nishikawa, Hiroyoshi; Sakaguchi, Shimon; Takaori-Kondo, Akifumi

    2016-02-01

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1. Because of its immunosuppressive property and resistance to treatment, patients with ATL have poor prognoses. ATL cells possess the regulatory T cell (Treg) phenotype, such as CD4 and CD25, and usually express forkhead box P3 (FOXP3). However, the mechanisms of FOXP3 expression and its association with Treg-like characteristics in ATL remain unclear. Selective demethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene leads to stable FOXP3 expression and defines natural Tregs. Here, we focus on the functional and clinical relationship between the epigenetic pattern of the TSDR and ATL. Analysis of DNA methylation in specimens from 26 patients with ATL showed that 15 patients (58%) hypomethylated the TSDR. The FOXP3(+) cells were mainly observed in the TSDR-hypomethylated cases. The TSDR-hypomethylated ATL cells exerted more suppressive function than the TSDR-methylated ATL cells. Thus, the epigenetic analysis of the FOXP3 gene identified a distinct subtype with Treg properties in heterogeneous ATL. Furthermore, we observed that the hypomethylation of TSDR was associated with poor outcomes in ATL. These results suggest that the DNA methylation status of the TSDR is an important hallmark to define this heterogeneous disease and to predict ATL patient prognosis. PMID:26681759

  4. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada).

    PubMed

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-04-15

    Wetlands in large rivers are important sites of production of the neurotoxin methylmercury (MeHg), and the periphyton growing on wetland macrophytes are increasingly recognized as key players in this production and transfer in food webs. Information is lacking about mercury methylation (Km) and demethylation (Kd) rates in periphytic biofilms from the Northern Hemisphere, as well as about the drivers of net MeHg production, hampering ecosystem modeling of Hg cycling. Mercury methylation and demethylation rates were measured in periphytic biofilms growing on submerged plants in a shallow fluvial lake located in a temperate cold region (St. Lawrence River, Quebec, Canada). Incubations were performed in situ within macrophyte beds using low-level spikes of (199)HgO and Me(200)Hg stable isotopes as tracers. A direct relationship was observed between Km (0.002 to 0.137 d(-1)) and [MeHg] in periphyton. A similar relationship was found between Kd (0.096 to 0.334 d(-1)) and [inorganic Hg]. Periphyton of Lake St. Pierre reached high levels of net MeHg production that were two orders of magnitude higher than those found in local sediment. This production varied through the plant growing season and was mainly driven by environmental variables such as depth of growth, available light, dissolved oxygen, temperature, plant community structure, and productivity of the habitat. PMID:25644842

  5. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  6. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h). PMID:24862952

  7. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  8. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. PMID:26825702

  9. Role of invertase activity in processing quality of potatoes: Effect of storage temperature and duration.

    PubMed

    Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K

    2016-03-01

    Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers. PMID:27097443

  10. Patterns of frontoparietal activation as a marker for unsuccessful visuospatial processing in healthy aging.

    PubMed

    Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A

    2016-09-01

    Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging. PMID:26195153

  11. The time-course and spatial distribution of brain activity associated with sentence processing.

    PubMed

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain. PMID:22248581

  12. Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses.

    PubMed

    Mas-Herrero, Ernest; Ripollés, Pablo; HajiHosseini, Azadeh; Rodríguez-Fornells, Antoni; Marco-Pallarés, Josep

    2015-10-01

    Diverse cortical and subcortical regions are synergically engaged during reward processing. Previous studies using time-frequency decomposition of Electroencephalography (EEG) data have revealed an increase of mid-frontal beta oscillatory activity (BOA) after reward delivery, which could be a potential mechanism in the coordination of the different areas engaged during reward processing. In order to evaluate this hypothesis, twenty subjects performed a monetary gambling paradigm in two separate sessions (EEG and fMRI). Time-frequency oscillatory EEG data and fMRI activity were fused using Joint Independent Component Analysis (ICA). The present results showed that mid-frontal BOA elicited by monetary gains is associated with the engagement of a fronto-striatal-hippocampal network previously involved in reward-related memory enhancement, supporting the role of this activity during reward processing. PMID:26070260

  13. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors. PMID:26410699

  14. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  15. Activation of bean (Phaseolus vulgaris) [alpha]-amylase inhibitor requires proteolytic processing of the proprotein

    SciTech Connect

    Pueyo, J.J.; Hunt, D.C.; Chrispeels, M.J. )

    1993-04-01

    Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the [alpha]-amylases of mammals and insects. This [alpha]-amylase inhibitor ([alpha]Al) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M[sub r]) 15,000 to 18,000. The authors report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, they found that antibodies to [alpha]Al recognize large (M[sub r] 30,000-35,000) polypeptides as well as typical [alpha]Al processing products (M[sub r] 15,000-18,000). [alpha]Al activity was found in all extracts that had the typical [alpha]Al processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, they made a mutant [alpha]Al in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-[alpha]Al when the gene is expressed in tobacco. When pro-[alpha]Al was separated from mature [alpha]Al by gel filtration, pro-[alpha]Al was found not to have [alpha]-amylase inhibitory activity. The authors interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. They suggest that the polypeptide cleavage removes a conformation constraint on the precursor to produce the biochemically active molecule. 43 refs., 5 figs., 1 tab.

  16. Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein.

    PubMed Central

    Smith, Lucinda; Wang, Zhi; Smith, Jeffrey B

    2003-01-01

    Treatment of HeLa cells with tumour necrosis factor alpha (TNFalpha) induced caspase processing of ectopic PKC (protein kinase C) zeta, which converted most of the holoenzyme into the freed kinase domain and increased immune-complex kinase activity. The goal of the present study was to determine the basis for the increased kinase activity that is associated with caspase processing of PKC zeta. Atypical PKC iota is largely identical with PKC zeta, except for a 60-amino-acid segment that lacks the caspase-processing sites of the zeta isoform. Replacement of this segment of PKC zeta with the corresponding segment of PKC iota prevented caspase processing and activation of the kinase function. Processing of purified recombinant PKC zeta by caspase 3 in vitro markedly increased its kinase activity. Caspase processing activated PKC zeta in vitro or intracellularly without increasing the phosphorylation of Thr410 of PKC zeta, which is required for catalytic competency. The freed kinase domain of PKC zeta had a much shorter half-life than the holoenzyme in transfected HeLa cells and in non-transfected kidney epithelial cells. Treatment with TNF-alpha shortened the half-life of the kinase domain protein, and proteasome blockade stabilized the protein. Studies of kinase-domain mutants indicate that a lack of negative charge at Thr410 can shorten the half-life of the freed kinase domain. The present findings indicate that the freed kinase domain has substantially higher kinase activity and a much shorter half-life than the holoenzyme because of accelerated degradation by the ubiquitin-proteasome system. PMID:12887331

  17. Activation of bean (Phaseolus vulgaris) alpha-amylase inhibitor requires proteolytic processing of the proprotein.

    PubMed Central

    Pueyo, J J; Hunt, D C; Chrispeels, M J

    1993-01-01

    Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the alpha-amylases of mammals and insects. This alpha-amylase inhibitor (alpha AI) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M(r)) 15,000 to 18,000. We report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, we found that antibodies to alpha AI recognize large (M(r) 30,000-35,000) polypeptides as well as typical alpha AI processing products (M(r) 15,000-18,000). Alpha AI activity was found in all extracts that had the typical alpha AI processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, we made a mutant alpha AI in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-alpha AI when the gene is expressed in tobacco. When pro-alpha AI was separated from mature alpha AI by gel filtration, pro-alpha AI was found not to have alpha-amylase inhibitory activity. We interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. We suggest that the polypeptide cleavage removes a conformational constraint on the precursor to produce the biochemically active molecule. PMID:8310064

  18. Identification of Oct4-activating compounds that enhance reprogramming efficiency.

    PubMed

    Li, Wendong; Tian, E; Chen, Zhao-Xia; Sun, Guoqiang; Ye, Peng; Yang, Su; Lu, Dave; Xie, Jun; Ho, Thach-Vu; Tsark, Walter M; Wang, Charles; Horne, David A; Riggs, Arthur D; Yip, M L Richard; Shi, Yanhong

    2012-12-18

    One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-β-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation. PMID:23213213

  19. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  20. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    PubMed Central

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  1. Assessment of MSFCs Process for the Development and Activation of Space Act Agreement

    NASA Technical Reports Server (NTRS)

    Daugherty, Rachel

    2014-01-01

    Space Act Agreements (SAAs) are contractual agreements that NASA utilizes to form partnerships with researchers, industry, and academia to stimulate cutting-edge innovation within the science and technology communities. center dot This study assessed the current SAA development and activation process at Marshall Space Flight Center (MSFC) to determine if improvements could be implemented to increase productivity, decrease time to activation, and improve the quality of deliverables.

  2. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner. PMID:26619309

  3. Results from the Active for Life process evaluation: program delivery fidelity and adaptations.

    PubMed

    Griffin, Sarah F; Wilcox, Sara; Ory, Marcia G; Lattimore, Diana; Leviton, Laura; Castro, Cynthia; Carpenter, Ruth Ann; Rheaume, Carol

    2010-04-01

    Active for Life((R)) (AFL) was a large (n = 8159) translational initiative to increase physical activity (PA) in midlife and older adults. Translational research calls for a shift in emphasis from just understanding what works (efficacy) to also understanding how it works in more 'real world' settings. This article describes the process evaluation design and findings, discuss how these findings were used to better understand the translational process and provide a set of process evaluation recommendations with community-based translational research. AFL community organizations across the United States implemented one of two evidence-based PA programs (Active Living Every Day-The Cooper Institute; Human Kinetics Inc. or Active Choices-Stanford University). Both programs were based on the transtheoretical model and social cognitive theory. Overall, the process evaluation revealed high-dose delivery and implementation fidelity by quite varied community organizations serving diverse adult populations. Findings reveal most variation occurred for program elements requiring more participant engagement. Additionally, the results show how a collaborative process allowed the organizations to 'fit' the programs to their specific participant base while maintaining fidelity to essential program elements. PMID:19325031

  4. Pattern of cortical activation during processing of aversive stimuli in traumatized survivors of war and torture.

    PubMed

    Catani, Claudia; Adenauer, Hannah; Keil, Julian; Aichinger, Hannah; Neuner, Frank

    2009-09-01

    Posttraumatic stress disorder (PTSD) has been associated with an altered processing of threat-related stimuli. In particular, an attentional bias towards threat cues has been consistently found in behavioral studies. However, it is unclear whether increased attention towards threat cues translates into preferential processing as neurophysiological studies have yielded inconsistent findings. The aim of the present study was to investigate the neocortical activity related to the processing of aversive stimuli in patients with PTSD. 36 survivors of war and torture with PTSD, 21 Trauma Controls and 20 Unexposed Subjects participated in a visual evoked magnetic field study using flickering pictures of varying affective valence as stimulus material. Minimum norm source localization was carried out to estimate the distribution of sources of the evoked neuromagnetic activity in the brain. Statistical permutation analyses revealed reduced steady-state visual evoked field amplitudes over occipital areas in response to aversive pictures for PTSD patients and for Trauma Controls in comparison to unexposed subjects. Furthermore, PTSD patients showed a hyperactivation of the superior parietal cortex selectively in response to aversive stimuli, which was related to dissociative symptoms as well as to torture severity. The results indicate a different pattern of cortical activation driven by aversive stimuli depending on the experience of multiple traumatic events and PTSD. Whereas, a decreased visual processing of aversive stimuli seems to be associated with trauma exposure in general, the superior parietal activity might represent a specific process linked to the diagnosis of PTSD. PMID:19360450

  5. Effects of human activities on the ecological processes of river biofilms in a highly urbanized river

    NASA Astrophysics Data System (ADS)

    Hung, R.; Li, M.

    2013-12-01

    Many anthropogenic disturbances and their effects of aquatic ecosystem are difficult to quantify in urbanized rivers. In past, specific taxa analysis of community structure was a common approach in river health monitoring studies. However, it is still difficult to understand stream ecosystem integrity without considering ecosystem processes. The complex species composition and metabolism of a river biofilm have the capacity to interact and/or modulate their surrounding environment. Because of their short life cycles, species richness, and worldwide distribution, structure and function of river biofilm communities are sensitive to change in environmental conditions. Therefore, biofilms are widely used as early warning systems of water pollution for water quality monitoring studies. In this study, we used river biofilms as a bioindicator by examining their extracellular enzyme activities and photosynthesis efficiency to understand human activities on the ecological processes of river ecosystem in a highly urbanized river. We sampled four sites along the Keelung River, Taiwan, based on different intensities of anthropogenic disturbances including water pollution index, population densities, land use types and types of stream habitats. Two study sites are heavily influenced by human activities and the others are not. The activities of extracellular enzymes within the biofilm play an important function for organic matter decomposition and nutrient cycling. We measured seven extracellular enzyme activities (β-d-glucosidase, phosphatase, leucine-aminopeptidase, sulfatase, peroxidase, polyphenol oxidase, and esterase) to examine specific enzyme activity changes at four study sites monthly. In addition, relative proportion of each extracellular enzyme activity on total enzyme activities was calculated in order to examine the relationship between functional biofilm profiles and different urban intensities. Among four study sites, leucine-aminopeptidase and esterase

  6. Thermally Activated Delayed Fluorescence Polymers for Efficient Solution-Processed Organic Light-Emitting Diodes.

    PubMed

    Lee, Sae Youn; Yasuda, Takuma; Komiyama, Hideaki; Lee, Jiyoung; Adachi, Chihaya

    2016-06-01

    Thermally activated delayed fluorescence (TADF) π-conjugated polymers are developed for solution-processed TADF-OLEDs. Benzophenone-based alternating donor-acceptor structures contribute to the small ∆EST , enabling efficient exciton-harvesting through TADF. Solution-processed OLEDs using the TADF polymers as emitters can achieve high maximum external electroluminescence efficiencies of up to 9.3%. PMID:27001891

  7. Available processing resources influence encoding-related brain activity before an event.

    PubMed

    Galli, Giulia; Gebert, A Dorothea; Otten, Leun J

    2013-09-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. PMID:23219383

  8. Clinical process analysis and activity-based costing at a heart center.

    PubMed

    Ridderstolpe, Lisa; Johansson, Andreas; Skau, Tommy; Rutberg, Hans; Ahlfeldt, Hans

    2002-08-01

    Cost studies, productivity, efficiency, and quality of care measures, the links between resources and patient outcomes, are fundamental issues for hospital management today. This paper describes the implementation of a model for process analysis and activity-based costing (ABC)/management at a Heart Center in Sweden as a tool for administrative cost information, strategic decision-making, quality improvement, and cost reduction. A commercial software package (QPR) containing two interrelated parts, "ProcessGuide and CostControl," was used. All processes at the Heart Center were mapped and graphically outlined. Processes and activities such as health care procedures, research, and education were identified together with their causal relationship to costs and products/services. The construction of the ABC model in CostControl was time-consuming. However, after the ABC/management system was created, it opened the way for new possibilities including process and activity analysis, simulation, and price calculations. Cost analysis showed large variations in the cost obtained for individual patients undergoing coronary artery bypass grafting (CABG) surgery. We conclude that a process-based costing system is applicable and has the potential to be useful in hospital management. PMID:12118815

  9. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  10. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  11. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus

    PubMed Central

    Blosser, Sara J.; Merriman, Brittney; Grahl, Nora; Chung, Dawoon

    2014-01-01

    The human pathogen Aspergillus fumigatus adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including erg25A and erg25B, and ΔsrbA accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in Aspergillus fumigatus revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δerg25A accumulates more C4-methyl sterol intermediates than Δerg25B. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δerg25A strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of erg25A partially restored the hypoxia growth defect of ΔsrbA. These findings implicated Aspergillus fumigatus SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response. PMID:25107308

  12. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose.

    PubMed

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  13. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    PubMed

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents. PMID:26959270

  14. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    SciTech Connect

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  15. Endogenous testosterone levels are associated with neural activity in men with schizophrenia during facial emotion processing.

    PubMed

    Ji, Ellen; Weickert, Cynthia Shannon; Lenroot, Rhoshel; Catts, Stanley V; Vercammen, Ans; White, Christopher; Gur, Raquel E; Weickert, Thomas W

    2015-06-01

    Growing evidence suggests that testosterone may play a role in the pathophysiology of schizophrenia given that testosterone has been linked to cognition and negative symptoms in schizophrenia. Here, we determine the extent to which serum testosterone levels are related to neural activity in affective processing circuitry in men with schizophrenia. Functional magnetic resonance imaging was used to measure blood-oxygen-level-dependent signal changes as 32 healthy controls and 26 people with schizophrenia performed a facial emotion identification task. Whole brain analyses were performed to determine regions of differential activity between groups during processing of angry versus non-threatening faces. A follow-up ROI analysis using a regression model in a subset of 16 healthy men and 16 men with schizophrenia was used to determine the extent to which serum testosterone levels were related to neural activity. Healthy controls displayed significantly greater activation than people with schizophrenia in the left inferior frontal gyrus (IFG). There was no significant difference in circulating testosterone levels between healthy men and men with schizophrenia. Regression analyses between activation in the IFG and circulating testosterone levels revealed a significant positive correlation in men with schizophrenia (r=.63, p=.01) and no significant relationship in healthy men. This study provides the first evidence that circulating serum testosterone levels are related to IFG activation during emotion face processing in men with schizophrenia but not in healthy men, which suggests that testosterone levels modulate neural processes relevant to facial emotion processing that may interfere with social functioning in men with schizophrenia. PMID:25796490

  16. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  17. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  18. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  19. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  20. Flaking process increases the NF-κB inhibition activity and melanoidin extractability of coffee.

    PubMed

    Chu, Yi-Fang; Hu, Kang; Hatzold, Thomas; Black, Richard M; Chen, Don

    2013-09-01

    Research on the health impacts of coffee has escalated. However, few studies were devoted to understanding the potential impact of mechanical processing on coffee's chemistry and subsequent health implications. Coffee flaking is a commonly used process to improve extractability and aroma characteristics. In this study, we studied the biochemical activity, chemical composition, and microstructure of coffee before and after flaking. We found that flaked coffee extract had 3.3-fold higher activity in inhibiting nuclear factor-kappa B (NF-κB) activation than regular coffee extract. Interestingly, flaking did not significantly alter the amount of coffee phenolics. It increased coffee melanoidin, by 2.1-fold, which likely contributed to the observed higher activity in inhibiting NF-κB activation. Flaking crushed cell walls revealed by microscopy might possibly result in disruption of polysaccharide entanglement and release of high-molecular-weight compounds, such as melanoidins. Consequently, the increased melanoidin content in the brew resulted in the increased inhibition of NF-κB activation. Small molecules, like coffee phenolics, are readily soluble in water during coffee brewing even without flaking, suggesting that flaking has no effect on its extractability. In summary, our investigation revealed that flaking enhanced NF-κB inhibition activity, possibly through the release of melanoidins from crushed cell microstructures. PMID:24804042

  1. Flaking process increases the NF-κB inhibition activity and melanoidin extractability of coffee

    PubMed Central

    Chu, Yi-Fang; Hu, Kang; Hatzold, Thomas; Black, Richard M; Chen, Don

    2013-01-01

    Research on the health impacts of coffee has escalated. However, few studies were devoted to understanding the potential impact of mechanical processing on coffee's chemistry and subsequent health implications. Coffee flaking is a commonly used process to improve extractability and aroma characteristics. In this study, we studied the biochemical activity, chemical composition, and microstructure of coffee before and after flaking. We found that flaked coffee extract had 3.3-fold higher activity in inhibiting nuclear factor-kappa B (NF-κB) activation than regular coffee extract. Interestingly, flaking did not significantly alter the amount of coffee phenolics. It increased coffee melanoidin, by 2.1-fold, which likely contributed to the observed higher activity in inhibiting NF-κB activation. Flaking crushed cell walls revealed by microscopy might possibly result in disruption of polysaccharide entanglement and release of high-molecular-weight compounds, such as melanoidins. Consequently, the increased melanoidin content in the brew resulted in the increased inhibition of NF-κB activation. Small molecules, like coffee phenolics, are readily soluble in water during coffee brewing even without flaking, suggesting that flaking has no effect on its extractability. In summary, our investigation revealed that flaking enhanced NF-κB inhibition activity, possibly through the release of melanoidins from crushed cell microstructures. PMID:24804042

  2. Temporal Dynamics of Activation of Thematic and Functional Knowledge During Conceptual Processing of Manipulable Artifacts

    PubMed Central

    Kalénine, Solène; Mirman, Daniel; Middleton, Erica L.; Buxbaum, Laurel J.

    2012-01-01

    The current research aimed at specifying the activation time course of different types of semantic information during object conceptual processing and the effect of context on this time course. We distinguished between thematic and functional knowledge and the specificity of functional similarity. Two experiments were conducted with healthy older adults using eye tracking in a word-to-picture matching task. The time course of gaze fixations was used to assess activation of distractor objects during the identification of manipulable artifact targets (e.g., broom). Distractors were (a) thematically related (e.g., dustpan), (b) related by a specific function (e.g., vacuum cleaner), or (c) related by a general function (e.g., sponge). Growth curve analyses were used to assess competition effects when target words were presented in isolation (Experiment 1) and embedded in contextual sentences of different generality levels (Experiment 2). In the absence of context, there was earlier and shorter lasting activation of thematically related as compared to functionally related objects. The time course difference was more pronounced for general functions than specific functions. When contexts were provided, functional similarities that were congruent with context generality level increased in salience with earlier activation of those objects. Context had little impact on thematic activation time course. These data demonstrate that processing a single manipulable artifact concept implicitly activates thematic and functional knowledge with different time courses and that context speeds activation of context-congruent functional similarity. PMID:22449134

  3. Proteolytic Processing and Activation of Clostridium perfringens Epsilon Toxin by Caprine Small Intestinal Contents

    PubMed Central

    Freedman, John C.; Li, Jihong; Uzal, Francisco A.

    2014-01-01

    ABSTRACT Epsilon toxin (ETX), a pore-forming toxin produced by type B and D strains of Clostridium perfringens, mediates severe enterotoxemia in livestock and possibly plays a role in human disease. During enterotoxemia, the nearly inactive ETX prototoxin is produced in the intestines but then must be activated by proteolytic processing. The current study sought to examine ETX prototoxin processing and activation ex vivo using the intestinal contents of a goat, a natural host species for ETX-mediated disease. First, this study showed that the prototoxin has a KEIS N-terminal sequence with a molecular mass of 33,054 Da. When the activation of ETX prototoxin ex vivo by goat small intestinal contents was assessed by SDS-PAGE, the prototoxin was processed in a stepwise fashion into an ~27-kDa band or higher-molecular-mass material that could be toxin oligomers. Purified ETX corresponding to the ~27-kDa band was cytotoxic. When it was biochemically characterized by mass spectrometry, the copresence of three ETX species, each with different C-terminal residues, was identified in the purified ~27-kDa ETX preparation. Cytotoxicity of each of the three ETX species was then demonstrated using recombinant DNA approaches. Serine protease inhibitors blocked the initial proteotoxin processing, while carboxypeptidase inhibitors blocked further processing events. Taken together, this study provides important new insights indicating that, in the intestinal lumen, serine protease (including trypsin and possibly chymotrypsin) initiates the processing of the prototoxin but other proteases, including carboxypeptidases, then process the prototoxin into multiple active and stable species. PMID:25336460

  4. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    PubMed Central

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  5. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-03-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  6. Overview of processing activities aimed at higher efficiencies and economical production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1985-01-01

    An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.

  7. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  8. Enhancing the NASA Expendable Launch Vehicle Payload Safety Review Process Through Program Activities

    NASA Technical Reports Server (NTRS)

    Palo, Thomas E.

    2007-01-01

    The safety review process for NASA spacecraft flown on Expendable Launch Vehicles (ELVs) has been guided by NASA-STD 8719.8, Expendable Launch Vehicle Payload Safety Review Process Standard. The standard focused primarily on the safety approval required to begin pre-launch processing at the launch site. Subsequent changes in the contractual, technical, and operational aspects of payload processing, combined with lessons-learned supported a need for the reassessment of the standard. This has resulted in the formation of a NASA ELV Payload Safety Program. This program has been working to address the programmatic issues that will enhance and supplement the existing process, while continuing to ensure the safety of ELV payload activities.

  9. Determination of colchicine and O-demethylated metabolites in decomposed skeletal tissues by microwave assisted extraction, microplate solid phase extraction and ultra-high performance liquid chromatography (MAE-MPSPE-UHPLC).

    PubMed

    Watterson, J H; Imfeld, A B; Cornthwaite, H C

    2014-06-01

    Microwave assisted extraction (MAE) followed by microplate solid phase extraction (MPSPE) coupled with ultra high performance liquid chromatography (UHPLC) for the semi-quantitative determination of colchicine, 3-demethyl colchicine and 2-demethyl colchicine in postmortem rat bone is described. Rats (n=4) received 50mg/kg colchicine (i.p), and euthanized by CO2 asphyxiation. Remains decomposed to skeleton outdoors and vertebral bones were collected cleaned, and ground to a fine powder. Powdered bone underwent MAE using methanol in a closed microwave system, followed by MPSPE and analysis using UHPLC-PDA. MAE analyte stability was assessed and found to be stable for at least 60 min irradiation time. The majority (>95%) of each analyte was recovered after 15 min. The MPSPE-UHPLC method was linear between 10 and 2,000 ng/mL, with coefficients of variation <20% in triplicate analysis, with a limit of detection of 10 ng/mL for each of the three analytes. Following MAE for 30 min (80°C, 1200W), MPSPE-UHPLC analysis of vertebral bone of colchicine-exposed rats detected colchicine (1.8-4.1 μg/g), 3-demethyl colchicine (0.77-1.8 μg/g) and 2-demethyl colchicine (0.43-0.80 μg/g) in all samples assayed. PMID:24799069

  10. 18O incorporation in the oxidation of N-methylcarbazole by lignin peroxidase and a model compound: a mechanistic insight into the oxidative N-demethylation of aromatic tertiary amines.

    PubMed

    Baciocchi, Enrico; Gerini, Maria Francesca; Lapi, Andrea

    2002-05-01

    Using 18O labelled reactants and/or solvent, the origin of the oxygen in the products of the oxidation of N-methylcarbazole by H2O2 catalysed by lignin peroxidase and a model compound has been determined, so getting important information about the mechanism of the oxidative N-demethylation of aromatic tertiary amines. PMID:12123061

  11. Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)

    PubMed Central

    Glotzbach, Evelyn; Mühlberger, Andreas; Gschwendtner, Kathrin; Fallgatter, Andreas J; Pauli, Paul; Herrmann, Martin J

    2011-01-01

    The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes. PMID:21673974

  12. Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts.

    PubMed

    Brønd, Jan Christian; Arvidsson, Daniel

    2016-02-01

    ActiGraph acceleration data are processed through several steps (including band-pass filtering to attenuate unwanted signal frequencies) to generate the activity counts commonly used in physical activity research. We performed three experiments to investigate the effect of sampling frequency on the generation of activity counts. Ideal acceleration signals were produced in the MATLAB software. Thereafter, ActiGraph GT3X+ monitors were spun in a mechanical setup. Finally, 20 subjects performed walking and running wearing GT3X+ monitors. Acceleration data from all experiments were collected with different sampling frequencies, and activity counts were generated with the ActiLife software. With the default 30-Hz (or 60-Hz, 90-Hz) sampling frequency, the generation of activity counts was performed as intended with 50% attenuation of acceleration signals with a frequency of 2.5 Hz by the signal frequency band-pass filter. Frequencies above 5 Hz were eliminated totally. However, with other sampling frequencies, acceleration signals above 5 Hz escaped the band-pass filter to a varied degree and contributed to additional activity counts. Similar results were found for the spinning of the GT3X+ monitors, although the amount of activity counts generated was less, indicating that raw data stored in the GT3X+ monitor is processed. Between 600 and 1,600 more counts per minute were generated with the sampling frequencies 40 and 100 Hz compared with 30 Hz during running. Sampling frequency affects the processing of ActiGraph acceleration data to activity counts. Researchers need to be aware of this error when selecting sampling frequencies other than the default 30 Hz. PMID:26635347

  13. NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

  14. Analyzing the Learning Process of an Online Role-Playing Discussion Activity

    ERIC Educational Resources Information Center

    Hou, Huei-Tse

    2012-01-01

    Instructional activities based on online discussion strategies have gained prevalence in recent years. Within this context, a crucial research topic is to design innovative and appropriate online discussion strategies that assist learners in attaining a deeper level of interaction and higher cognitive skills. By analyzing the process of online…

  15. The Effect of Activity Based Lexis Teaching on Vocabulary Development Process

    ERIC Educational Resources Information Center

    Mert, Esra Lule

    2013-01-01

    "Teaching word" as a complimentary process of teaching Turkish is a crucial field of study. However, studies on this area are insufficient. The only aim of the designed activities that get under way with the constructivist approach on which new education programs are based is to provide students with vocabulary elements of Turkish. In…

  16. Cross-Linguistic Influence on Brain Activation during Second Language Processing: An fMRI Study

    ERIC Educational Resources Information Center

    Jeong, Hyeonjeong; Sugiura, Motoaki; Sassa, Yuko; Yokoyama, Satoru; Horie, Kaoru; Sato, Shigeru; Taira, Masato; Kawashima, Ryuta

    2007-01-01

    The goal of this study was to examine the effect of the linguistic distance between a first language (L1) and a second language (L2) on neural activity during second language relative to first language processing. We compared different L1-L2 pairs in which different linguistic features characterize linguistic distance. Chinese and Korean native…

  17. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    PubMed

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. PMID:24837477

  18. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  19. Activated Biological Filters (ABF Towers). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This student manual contains textual material for a two-lesson unit on activated bio-filters (ABF). The first lesson (the sewage treatment plant) examines those process units that are unique to the ABF system. The lesson includes a review of the structural components of the ABF system and their functions and a discussion of several operational…

  20. Really Writing! Ready-To-Use Writing Process Activities for the Elementary Grades. 2nd Edition

    ERIC Educational Resources Information Center

    Sunflower, Cherlyn

    2005-01-01

    The second edition of "Really Writing!" provides 40 real-life writing activities designed to capture the attention of young authors (grades 2 through 6) who are just learning the composing process. This book is also a resource for teaching advanced writers who are ready to experiment with a variety of writing and speaking genres. Each of the…