Science.gov

Sample records for active disease model

  1. On Modelling Minimal Disease Activity

    PubMed Central

    Jackson, Christopher H.; Su, Li; Gladman, Dafna D.

    2016-01-01

    Objective To explore methods for statistical modelling of minimal disease activity (MDA) based on data from intermittent clinic visits. Methods The analysis was based on a 2‐state model. Comparisons were made between analyses based on “complete case” data from visits at which MDA status was known, and the use of hidden model methodology that incorporated information from visits at which only some MDA defining criteria could be established. Analyses were based on an observational psoriatic arthritis cohort. Results With data from 856 patients and 7,024 clinic visits, analysis was based on virtually all visits, although only 62.6% provided enough information to determine MDA status. Estimated mean times for an episode of MDA varied from 4.18 years to 3.10 years, with smaller estimates derived from the hidden 2‐state model analysis. Over a 10‐year period, the estimated expected times spent in MDA episodes of longer than 1 year was 3.90 to 4.22, and the probability of having such an MDA episode was estimated to be 0.85 to 0.91, with longer times and greater probabilities seen with the hidden 2‐state model analysis. Conclusion A 2‐state model provides a useful framework for the analysis of MDA. Use of data from visits at which MDA status can not be determined provide more precision, and notable differences are seen in estimated quantities related to MDA episodes based on complete case and hidden 2‐state model analyses. The possibility of bias, as well as loss of precision, should be recognized when complete case analyses are used. PMID:26315478

  2. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  3. Matriptase initiates epidermal prokallikrein activation and disease onset in a mouse model of Netherton syndrome

    PubMed Central

    Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L.; Rasmussen, Amber; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A.; Bugge, Thomas H.

    2010-01-01

    Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome. The principal morbidities of the disease are stratum corneum detachment and chronic inflammation. We show that the membrane protease, matriptase, initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein-related cascade. Auto-activation of pro-inflammatory and stratum corneum detachment-associated pro-kallikrein-related peptidases was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented stratum corneum detachment, and improved epidermal barrier function. The study uncovers a pathogenic matriptase-pro-kallikrein pathway that could be operative in several human skin and inflammatory diseases. PMID:20657595

  4. Active learning to understand infectious disease models and improve policy making.

    PubMed

    Willem, Lander; Stijven, Sean; Vladislavleva, Ekaterina; Broeckhove, Jan; Beutels, Philippe; Hens, Niel

    2014-04-01

    Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings. PMID:24743387

  5. Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease

    PubMed Central

    2013-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is an increasing threat to global health. Available medicines were introduced over 40 years ago, have undesirable side effects, and give equivocal results of cure in the chronic stage of the disease. We report the development of two compounds, 6 and (S)-7, with PCR-confirmed curative activity in a mouse model of established T. cruzi infection after once daily oral dosing for 20 days at 20 mg/kg 6 and 10 mg/kg (S)-7. Compounds 6 and (S)-7 have potent in vitro activity, are noncytotoxic, show no adverse effects in vivo following repeat dosing, are prepared by a short synthetic route, and have druglike properties suitable for preclinical development. PMID:24304150

  6. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    PubMed

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  7. Active Aging for Individuals with Parkinson's Disease: Definitions, Literature Review, and Models

    PubMed Central

    Lökk, Johan

    2014-01-01

    Active aging has been emerged to optimize different aspects of health opportunities during the aging process in order to enhance quality of life. Yet, most of the efforts are on normal aging and less attention has been paid for the elderly suffering from a chronic illness such as Parkinson's disease (PD). The aim of this review was to investigate how the concept of “active aging” fit for the elderly with PD and to propose a new model for them using the recent improvements in caring models and management approaches. For this purpose, biomedical databases have been assessed using relevant keywords to find out appropriate articles. Movement problems of PD affect physical activity, psychiatric symptoms lessen social communication, and cognitive impairment could worsen mental well-being in elderly with PD, all of which could lead to earlier retirement and poorer quality of life compared with healthy elderly. Based on the multisystematic nature of PD, a new “Active Aging Model for Parkinson's Disease” is proposed consisting of self-care, multidisciplinary and interdisciplinary care, palliative care, patient-centered care, and personalized care. These strategies could potentially help the individuals with PD to have a better management approach for their condition towards the concept of active aging. PMID:25225618

  8. Altered Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of Alzheimer's Disease

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Trog, Astrid; Lundt, Andreas; Wormuth, Carola; Broich, Karl; Weiergräber, Marco; Papazoglou, Anna

    2015-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling. PMID:25922768

  9. Transglutaminase activation in neurodegenerative diseases

    PubMed Central

    Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL

    2009-01-01

    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049

  10. Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer’s disease mouse models

    PubMed Central

    Wilhelmus, Micha M. M.; de Jager, Mieke; Smit, August B.; van der Loo, Rolinka J.; Drukarch, Benjamin

    2016-01-01

    Alzheimer’s disease (AD) is characterised by amyloid-beta (Aβ) protein deposition in the brain. Posttranslational modifications in Aβ play an important role in Aβ deposition. Tissue transglutaminase (tTG) is an enzyme involved in posttranslational cross-linking of proteins. tTG levels and activity are increased in AD brains, and tTG is associated with Aβ deposits and lesion-associated astrocytes in AD cases. Furthermore, Aβ is a substrate of tTG-catalysed cross-linking. To study the role of tTG in Aβ pathology, we compared tTG distribution and activity in both the APPSWE/PS1ΔE9 and APP23 mice models with human AD. Using immunohistochemistry, we found association of both tTG and in situ active tTG with Aβ plaques and vascular Aβ, in early and late stages of Aβ deposition. In addition, tTG staining colocalised with Aβ-associated reactive astrocytes. Thus, alike human AD cases, tTG was associated with Aβ depositions in these AD models. Although, distribution pattern and spatial overlay of both tTG and its activity with Aβ pathology was substantially different from human AD cases, our findings provide evidence for an early role of tTG in Aβ pathology. Yet, species differences should be taken into account when using these models to study the role of tTG in Aβ pathology. PMID:26837469

  11. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease

    PubMed Central

    Smithmyer, Megan E.; Sawicki, Lisa A.

    2014-01-01

    Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment. PMID:25379176

  12. Learning to classify neural activity from a mouse model of Alzheimer's disease amyloidosis versus controls.

    PubMed

    Beker, Shlomit; Kellner, Vered; Chechik, Gal; Stern, Edward A

    2016-01-01

    The mechanisms underlying Alzheimer's disease (AD) onset and progression are not yet elucidated. The extent to which alterations in the activity of individual neurons of an AD model are significant, and the phase at which they can be captured, point to the intensity of the pathology and imply the stage at which it can be detected. Using a machine-learning algorithm, we present a successful cell-by-cell classification of intracellularly recorded neurons from the B6C3 APPswe/PS1dE9 AD model, versus wildtypes controls, at both a late stage and at an early stage, when the plaque pathology and behavioral deficits are absent or rare. These results suggest that the deficits present in neuronal networks of both old and young transgenic animals are large enough to be apparent at the level of individual neurons, and that the pathology could be detected in nearly any given sample, even before pathologic signs. PMID:27239535

  13. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model.

    PubMed

    Hüttenrauch, M; Brauß, A; Kurdakova, A; Borgers, H; Klinker, F; Liebetanz, D; Salinas-Riester, G; Wiltfang, J; Klafki, H W; Wirths, O

    2016-01-01

    The evidence for a protective role of physical activity on the risk and progression of Alzheimer's disease (AD) has been growing in the last years. Here we studied the influence of a prolonged physical and cognitive stimulation on neurodegeneration, with special emphasis on hippocampal neuron loss and associated behavioral impairment in the Tg4-42 mouse model of AD. Tg4-42 mice overexpress Aβ4-42 without any mutations, and develop an age-dependent hippocampal neuron loss associated with a severe memory decline. We demonstrate that long-term voluntary exercise diminishes CA1 neuron loss and completely rescues spatial memory deficits in different experimental settings. This was accompanied by changes in the gene expression profile of Tg4-42 mice. Deep sequencing analysis revealed an upregulation of chaperones involved in endoplasmatic reticulum protein processing, which might be intimately linked to the beneficial effects seen upon long-term exercise. We believe that we provide evidence for the first time that enhanced physical activity counteracts neuron loss and behavioral deficits in a transgenic AD mouse model. The present findings underscore the relevance of increased physical activity as a potential strategy in the prevention of dementia. PMID:27138799

  14. Disease Activity Measures in Paediatric Rheumatic Diseases

    PubMed Central

    Luca, Nadia J.; Feldman, Brian M.

    2013-01-01

    Disease activity refers to potentially reversible aspects of a disease. Measurement of disease activity in paediatric rheumatic diseases is a critical component of patient care and clinical research. Disease activity measures are developed systematically, often involving consensus methods. To be useful, a disease activity measure must be feasible, valid, and interpretable. There are several challenges in quantifying disease activity in paediatric rheumatology; namely, the conditions are multidimensional, the level of activity must be valuated in the context of treatment being received, there is no gold standard for disease activity, and it is often difficult to incorporate the patient's perspective of their disease activity. To date, core sets of response variables are defined for juvenile idiopathic arthritis, juvenile systemic lupus erythematosus, and juvenile dermatomyositis, as well as definitions for improvement in response to therapy. Several specific absolute disease activity measures also exist for each condition. Further work is required to determine the optimal disease activity measures in paediatric rheumatology. PMID:24089617

  15. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease.

    PubMed

    Born, Heather A; Kim, Ji-Yoen; Savjani, Ricky R; Das, Pritam; Dabaghian, Yuri A; Guo, Qinxi; Yoo, Jong W; Schuler, Dorothy R; Cirrito, John R; Zheng, Hui; Golde, Todd E; Noebels, Jeffrey L; Jankowsky, Joanna L

    2014-03-12

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology. PMID:24623762

  16. Genetic Suppression of Transgenic APP Rescues Hypersynchronous Network Activity in a Mouse Model of Alzeimer's Disease

    PubMed Central

    Born, Heather A.; Kim, Ji-Yoen; Savjani, Ricky R.; Das, Pritam; Dabaghian, Yuri A.; Guo, Qinxi; Yoo, Jong W.; Schuler, Dorothy R.; Cirrito, John R.; Zheng, Hui; Golde, Todd E.; Noebels, Jeffrey L.

    2014-01-01

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology. PMID:24623762

  17. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease.

    PubMed

    Wu, Yuncheng; Li, Xinqun; Zhu, Julie Xiaohong; Xie, Wenjie; Le, Weidong; Fan, Zhen; Jankovic, Joseph; Pan, Tianhong

    2011-01-01

    Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models. PMID:21778691

  18. Effects of berberine on β-secretase activity in a rabbit model of Alzheimer's disease

    PubMed Central

    Panahi, Negar; Mahmoudian, Massoud; Mortazavi, Pejman

    2013-01-01

    Introduction Relevant aspects of Alzheimer's disease (AD) can be modeled by aluminium-maltolate injection into specific regions of the brain. The possible role of berberine chloride (BC) as an anti-inflammatory agent in the brain has been previously addressed. Material and methods Rabbits were divided into control (C), untreated lesion (L) and BC-treated + lesion (L + BC) groups. Animals in L + BC received BC (50 mg/ kg) orally 1 day after surgery and daily for 2 weeks. The lesion was induced by injection of 100 µl of either vehicle or water containing 25 mM aluminium-maltol into intraventricular fissure. Weight loss, ataxia, paralysis and tremor were monitored. For histopathology, Bielschowsky silver and H&E staining were employed. β-Secretase activity in hippocampus was finally assessed. Results All L animals died on days 12-15 after lesion. Seven to 10 days after lesion, abnormal symptoms as well as cachexia were seen in over 90% of cases. L rabbits lost an average of 0.5 kg which was significant on days 10 and 12 (p < 0.05); this was not completely prevented by BC. Up to day 15, all L animals had lost their lives (p < 0.001). BC treatment protected the hippocampus from degeneration, altered the behavior and decreased the activity of β-site amyloid precursor protein cleaving enzyme-1 (BACE-1). Conclusions Considering the findings in regard to physiological abilities, histological changes and BACE-1 activity in hippocampus changes, it is concluded that BC treatment could be an effective therapy in restoring Al maltol-induced behavioral derangements in the rabbit model of AD. PMID:23516061

  19. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model.

    PubMed

    Botte, D A C; Noronha, I L; Malheiros, D M A C; Peixoto, T V; de Mello, S B V

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP-MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP-MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option. PMID:24666423

  20. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model

    PubMed Central

    Botte, D A C; Noronha, I L; Malheiros, D M A C; Peixoto, T V; de Mello, S B V

    2014-01-01

    Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP–MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP–MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option. PMID:24666423

  1. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD. PMID:26982728

  2. LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Sandoval-Hernández, Adrián G; Restrepo, Alejandro; Cardona-Gómez, Gloria P; Arboleda, Gonzalo

    2016-05-16

    The vascular hypothesis of Alzheimer's disease postulates that disruption of the brain microvasculature is important for the accumulation of amyloid beta and increased neuroinflammation. Liver X Receptor agonist, GW3965, has been demonstrated to successfully modulate neuroinflammation and lipid metabolism in murine models of AD. This is partially due to increased expression of ApoE levels and increased mobility of endothelial progenitor cells. This paper analyzes changes in the neurovascular unit and in astrocytes and microglia markers following oral administration of GW3965 in a very old triple transgenic AD mice (3xTg-AD mice). We found that astrogliosis, but not activation of microglia, decreased in very old (24 months) 3xTg-AD mice treated with GW965. In addition, GW3965 increased LRP1 levels in neuron-like cells and partially restored microvascular morphology by decreasing tortuosity and increasing length as shown by Lectin immunostaining. Interestingly, these changes were associated with decreased Aβ in blood vessels. In conclusion, short-term treatment of 3xTg-AD mice with GW3965 restored microvascular architecture which may be important in the cognitive improvement previously shown. PMID:27057732

  3. Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease

    PubMed Central

    Imberti, Barbara; Corna, Daniela; Rizzo, Paola; Xinaris, Christodoulos; Abbate, Mauro; Longaretti, Lorena; Cassis, Paola; Benedetti, Valentina; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe; Morigi, Marina

    2015-01-01

    New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration. PMID:25811887

  4. Renal primordia activate kidney regenerative events in a rat model of progressive renal disease.

    PubMed

    Imberti, Barbara; Corna, Daniela; Rizzo, Paola; Xinaris, Christodoulos; Abbate, Mauro; Longaretti, Lorena; Cassis, Paola; Benedetti, Valentina; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe; Morigi, Marina

    2015-01-01

    New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration. PMID:25811887

  5. SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models.

    PubMed

    Quinti, Luisa; Casale, Malcolm; Moniot, Sébastien; Pais, Teresa F; Van Kanegan, Michael J; Kaltenbach, Linda S; Pallos, Judit; Lim, Ryan G; Naidu, Sharadha Dayalan; Runne, Heike; Meisel, Lisa; Rauf, Nazifa Abdul; Leyfer, Dmitriy; Maxwell, Michele M; Saiah, Eddine; Landers, John E; Luthi-Carter, Ruth; Abagyan, Ruben; Dinkova-Kostova, Albena T; Steegborn, Clemens; Marsh, J Lawrence; Lo, Donald C; Thompson, Leslie M; Kazantsev, Aleksey G

    2016-07-21

    There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders. PMID:27427231

  6. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson's disease by modulating the ERK and JNK signaling pathways.

    PubMed

    Lee, Yujeong; Chun, Hye Jeong; Lee, Kyung Moon; Jung, Young-Suk; Lee, Jaewon

    2015-11-19

    Parkinson's disease (PD) is the second-most common neurodegenerative disease after Alzheimer's disease, and is characterized by dopaminergic neuronal loss in midbrain. The MPTP-induced PD model has been well characterized by motor deficits and selective dopaminergic neuronal death accompanied by glial activation. Silibinin is a constituent of silymarin, an extract of milk thistle seeds, and has been proposed to have hepatoprotective, anti-cancer, anti-oxidative, and neuroprotective effects. In the present study, the authors studied the neuroprotective effects of silibinin in an acute MPTP model of PD. Silibinin was administered for 2 weeks, and then MPTP was administered to mice over 1 day (acute MPTP induced PD). Silibinin pretreatment effectively ameliorated motor dysfunction, dopaminergic neuronal loss, and glial activations caused by MPTP. In addition, an in vitro study demonstrated that silibinin suppressed astroglial activation and ERK and JNK phosphorylation in primary astrocytes in response to MPP(+) treatment. These findings show silibinin protected dopaminergic neurons in an acute MPTP-induced mouse model of PD, and suggest its neuroprotective effects might be mediated by the suppression of astrocyte activation via the inhibition of ERK and JNK phosphorylation. In conclusion, the study indicates silibinin should be viewed as a potential treatment for PD and other neurodegenerative diseases associated with neuroinflammation. PMID:26434409

  7. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  8. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease

    PubMed Central

    Vázquez-Manrique, Rafael P.; Farina, Francesca; Cambon, Karine; Dolores Sequedo, María; Parker, Alex J.; Millán, José María; Weiss, Andreas; Déglon, Nicole; Neri, Christian

    2016-01-01

    The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD. PMID:26681807

  9. Implementation of an active aging model in Mexico for prevention and control of chronic diseases in the elderly

    PubMed Central

    Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa

    2009-01-01

    Background World Health Organization cites among the main challenges of populational aging the dual disease burden: the greater risk of disability, and the need for care. In this sense, the most frequent chronic diseases during old age worldwide are high blood pressure, type 2 diabetes mellitus, cancer, arthritis, osteoporosis, depression, and dementia. Chronic disease-associated dependency represents an onerous sanitary and financial burden for the older adult, the family, and the health care system. Thus, it is necessary to propose community-level models for chronic disease prevention and control in old age. The aim of the present work is to show our experience in the development and implementation of a model for chronic disease prevention and control in old age at the community level under the active aging paradigm. Methods/Design A longitudinal study will be carried out in a sample of 400 elderly urban and rural-dwelling individuals residing in Hidalgo State, Mexico during five years. All participants will be enrolled in the model active aging. This establishes the formation of 40 gerontological promoters (GPs) from among the older adults themselves. The GPs function as mutual-help group coordinators (gerontological nuclei) and establish self-care and self-promotion actions for elderly well-being and social development. It will be conformed a big-net of social network of 40 mutual-help groups of ten elderly adults each one, in which self-care is a daily practice for chronic disease prevention and control, as well as for achieving maximal well-being and life quality in old age. Indicators of the model's impact will be (i) therapeutic adherence; (ii) the incidence of the main chronic diseases in old age; (iii) life expectancy without chronic diseases at 60 years of age; (iv) disability adjusted life years lost; (v) years of life lost due to premature mortality, and (vi) years lived with disability. Discussion We propose that the implementation of the model active

  10. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease

    PubMed Central

    Hipp, Mark S.; Patel, Chetan N.; Bersuker, Kirill; Riley, Brigit E.; Kaiser, Stephen E.; Shaler, Thomas A.; Brandeis, Michael

    2012-01-01

    Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington’s disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt—whether aggregated or not—did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network. PMID:22371559

  11. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI.

    PubMed

    Kadayakkara, Deepak K; Ranganathan, Sarangarajan; Young, Won-Bin; Ahrens, Eric T

    2012-04-01

    Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo (19)F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of (19)F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, (19)F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage (19)F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages. PMID:22330343

  12. STIM1 Protein Activates Store-Operated Calcium Channels in Cellular Model of Huntington’s Disease

    PubMed Central

    Vigont, V. A.; Zimina, O. A.; Glushankova, L. N.; Kolobkova, J. A.; Ryazantseva, M. A.; Mozhayeva, G. N.; Kaznacheyeva, E. V.

    2014-01-01

    We have shown that the expression of full-length mutated huntingtin in human neuroblastoma cells (SK-N-SH) leads to an abnormal increase in calcium entry through store-operated channels. In this paper, the expression of the N-terminal fragment of mutated huntingtin (Htt138Q-1exon) is shown to be enough to provide an actual model for Huntington’s disease. We have shown that Htt138Q-1exon expression causes increased store-operated calcium entry, which is mediated by at least two types of channels in SK-N-SH cells with different reversal potentials. Calcium sensor, STIM1, is required for activation of store-operated calcium entry in these cells. The results provide grounds for considering the proteins responsible for the activation and maintenance of the store-operated calcium entry as promising targets for developing novel therapeutics for neurodegenerative diseases. PMID:25558393

  13. Modeling Infectious Diseases

    MedlinePlus

    ... MIDAS models require a breadth of knowledge, the network draws together an interdisciplinary team of researchers with expertise in epidemiology, infectious diseases, computational biology, statistics, social sciences, physics, computer sciences and informatics. In 2006, MIDAS modelers simulated ...

  14. Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome.

    PubMed

    Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L; Rasmussen, Amber L; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A; Bugge, Thomas H

    2010-08-01

    Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome, which causes detachment of the stratum corneum and chronic inflammation. Here we show that the membrane protease matriptase initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein cascade. Auto-activation of pro-inflammatory pro-kallikrein-related peptidases that are associated with stratum corneum detachment was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented detachment of the stratum corneum, and improved the barrier function of the epidermis. These results uncover a pathogenic matriptase-pro-kallikrein pathway that could operate in several human skin and inflammatory diseases. PMID:20657595

  15. Activation of the factor XII-driven contact system in Alzheimer’s disease patient and mouse model plasma

    PubMed Central

    Zamolodchikov, Daria; Chen, Zu-Lin; Conti, Brooke A.; Renné, Thomas; Strickland, Sidney

    2015-01-01

    Alzheimer’s disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which likely contributes to disease via multiple mechanisms. Increasing evidence implicates inflammation in AD, the origins of which are not completely understood. We investigated whether circulating Aβ could initiate inflammation in AD via the plasma contact activation system. This proteolytic cascade is triggered by the activation of the plasma protein factor XII (FXII) and leads to kallikrein-mediated cleavage of high molecular-weight kininogen (HK) and release of proinflammatory bradykinin. Aβ has been shown to promote FXII-dependent cleavage of HK in vitro. In addition, increased cleavage of HK has been found in the cerebrospinal fluid of patients with AD. Here, we show increased activation of FXII, kallikrein activity, and HK cleavage in AD patient plasma. Increased contact system activation is also observed in AD mouse model plasma and in plasma from wild-type mice i.v. injected with Aβ42. Our results demonstrate that Aβ42-mediated contact system activation can occur in the AD circulation and suggest new pathogenic mechanisms, diagnostic tests, and therapies for AD. PMID:25775543

  16. Activation of the factor XII-driven contact system in Alzheimer's disease patient and mouse model plasma.

    PubMed

    Zamolodchikov, Daria; Chen, Zu-Lin; Conti, Brooke A; Renné, Thomas; Strickland, Sidney

    2015-03-31

    Alzheimer's disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which likely contributes to disease via multiple mechanisms. Increasing evidence implicates inflammation in AD, the origins of which are not completely understood. We investigated whether circulating Aβ could initiate inflammation in AD via the plasma contact activation system. This proteolytic cascade is triggered by the activation of the plasma protein factor XII (FXII) and leads to kallikrein-mediated cleavage of high molecular-weight kininogen (HK) and release of proinflammatory bradykinin. Aβ has been shown to promote FXII-dependent cleavage of HK in vitro. In addition, increased cleavage of HK has been found in the cerebrospinal fluid of patients with AD. Here, we show increased activation of FXII, kallikrein activity, and HK cleavage in AD patient plasma. Increased contact system activation is also observed in AD mouse model plasma and in plasma from wild-type mice i.v. injected with Aβ42. Our results demonstrate that Aβ42-mediated contact system activation can occur in the AD circulation and suggest new pathogenic mechanisms, diagnostic tests, and therapies for AD. PMID:25775543

  17. Modelling Cost-Effectiveness of Biologic Treatments Based on Disease Activity Scores for the Management of Rheumatoid Arthritis in Spain

    PubMed Central

    Beresniak, Ariel; Ariza-Ariza, Rafael; Garcia-Llorente, Jose Francisco; Ramirez-Arellano, Antonio; Dupont, Danielle

    2011-01-01

    Background. The objective of this simulation model was to assess the cost-effectiveness of different biological treatment strategies based on levels of disease activity in Spain, in patients with moderate to severe active RA and an insufficient response to at least one anti-TNF agent. Methods. Clinically meaningful effectiveness criteria were defined using DAS28 scores: remission and Low Disease Activity State (LDAS) thresholds. Monte-Carlo simulations were conducted to assess cost-effectiveness over 2 years of four biological sequential strategies composed of anti-TNF agents (adalimumab, infliximab), abatacept or rituximab, in patients with moderate to severe active RA and an insufficient response to etanercept as first biological agent. Results. The sequential strategy including etanercept, abatacept and adalimumab appeared more efficacious over 2 years (102 days in LDAS) compared to the same sequence including rituximab as second biological option (82 days in LDAS). Cost-effectiveness ratios showed lower costs per day in LDAS with abatacept (427 €) compared to rituximab as second biological option (508 €). All comparisons were confirmed when using remission criteria. Conclusion. Model results suggest that in patients with an insufficient response to anti-TNF agents, the biological sequences including abatacept appear more efficacious and cost-effective than similar sequences including rituximab or cycled anti-TNF agents. PMID:21785694

  18. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties. PMID:26769362

  19. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhang, Cheng-Wu; Chen, Grace Y. J.; Zhu, Biwei; Chai, Chou; Xu, Qing-Hua; Tan, Eng-King; Zhu, Qing; Lim, Kah-Leong; Yao, Shao Q.

    2014-02-01

    The unusually high MAO-B activity consistently observed in Parkinson’s disease (PD) patients has been proposed as a biomarker; however, this has not been realized due to the lack of probes suitable for MAO-B-specific detection in live cells/tissues. Here we report the first two-photon, small molecule fluorogenic probe (U1) that enables highly sensitive/specific and real-time imaging of endogenous MAO-B activities across biological samples. We also used U1 to confirm the reported inverse relationship between parkin and MAO-B in PD models. With no apparent toxicity, U1 may be used to monitor MAO-B activities in small animals during disease development. In clinical samples, we find elevated MAO-B activities only in B lymphocytes (not in fibroblasts), hinting that MAO-B activity in peripheral blood cells might be an accessible biomarker for rapid detection of PD. Our results provide important starting points for using small molecule imaging techniques to explore MAO-B at the organism level.

  20. JNK-mediated activation of ATF2 contributes to dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease.

    PubMed

    Huang, Qiaoying; Du, Xiaoxiao; He, Xin; Yu, Qing; Hu, Kunhua; Breitwieser, Wolfgang; Shen, Qingyu; Ma, Shanshan; Li, Mingtao

    2016-03-01

    The c-Jun N-terminal kinase (JNK)/c-Jun pathway is a known critical regulator of dopaminergic neuronal death in Parkinson's disease (PD) and is considered a potential target for neuroprotective therapy. However, whether JNK is activated within dopaminergic neurons remains controversial, and whether JNK acts through downstream effectors other than c-Jun to promote dopaminergic neuronal death remains unclear. In this study, we confirm that JNK but not p38 is activated in dopaminergic neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxication. Furthermore, within the dopaminergic neurons of the substantia nigra in MPTP-treated mice, JNK2/3 phosphorylates threonine 69 (Thr69) of Activating transcription factor-2 (ATF2), a transcription factor of the ATF/CREB family, whereas the phosphorylation of Thr71 is constitutive and remains unchanged. The increased phosphorylation of ATF2 on Thr69 by JNK in the MPTP mouse model suggests a functional relationship between the transcriptional activation of ATF2 and dopaminergic neuron death. By using dopaminergic neuron-specific conditional ATF2 mutant mice, we found that either partial or complete deletion of the ATF2 DNA-binding domain in dopaminergic neurons markedly alleviates the MPTP-induced dopaminergic neurodegeneration, indicating that the activation of ATF2 plays a detrimental role in neuropathogenesis in PD. Taken together, our findings demonstrate that JNK-mediated ATF2 activation contributes to dopaminergic neuronal death in an MPTP model of PD. PMID:26515688

  1. Daphnane Diterpenes from Daphne genkwa Activate Nurr1 and Have a Neuroprotective Effect in an Animal Model of Parkinson's Disease.

    PubMed

    Han, Baek-Soo; Kim, Kyoung-Shim; Kim, Yu Jin; Jung, Hoe-Yune; Kang, Young-Mi; Lee, Kyu-Suk; Sohn, Mi-Jin; Kim, Chun-Hyung; Kim, Kwang-Soo; Kim, Won-Gon

    2016-06-24

    Nurr1 is an orphan nuclear receptor that is essential for the differentiation and maintenance of dopaminergic neurons in the brain, and it is a therapeutic target for Parkinson's disease (PD). During the screening for Nurr1 activators from natural sources using cell-based assay systems, a methanol extract of the combined stems and roots of Daphne genkwa was found to activate the transcriptional function of Nurr1 at a concentration of 3 μg/mL. The active components were isolated and identified as genkwanine N (1) and yuanhuacin (2). Both compounds 1 and 2 significantly enhanced the function of Nurr1 at 0.3 μM. Nurr1-specific siRNA abolished the activity of 1 and 2, strongly suggesting that transcriptional activation by 1 and 2 occurred through the modulation of Nurr1 function. Additionally, treatment with 1 and 2 inhibited 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and lipopolysaccharide (LPS)-induced neuroinflammation. Moreover, in a 6-OHDA-lesioned rat model of PD, intraperitoneal administration of 2 (0.5 mg/kg/day) for 2 weeks significantly improved behavioral deficits and reduced tyrosine hydroxylase (TH)-positive dopaminergic neuron death induced by 6-OHDA injection and had a beneficial effect on the inflammatory response in the brain. Accordingly, compounds 1 and 2, the first reported Nurr1 activators of natural origin, are potential lead compounds for the treatment of PD. PMID:27228307

  2. Rescue of homeostatic regulation of striatal excitability and locomotor activity in a mouse model of Huntington's disease.

    PubMed

    Cao, Yumei; Bartolomé-Martín, David; Rotem, Naama; Rozas, Carlos; Dellal, Shlomo S; Chacon, Marcelo A; Kadriu, Bashkim; Gulinello, Maria; Khodakhah, Kamran; Faber, Donald S

    2015-02-17

    We describe a fast activity-dependent homeostatic regulation of intrinsic excitability of identified neurons in mouse dorsal striatum, the striatal output neurons. It can be induced by brief bursts of activity, is expressed on a time scale of seconds, limits repetitive firing, and can convert regular firing patterns to irregular ones. We show it is due to progressive recruitment of the KCNQ2/3 channels that generate the M current. This homeostatic mechanism is significantly reduced in striatal output neurons of the R6/2 transgenic mouse model of Huntington's disease, at an age when the neurons are hyperactive in vivo and the mice begin to exhibit locomotor impairment. Furthermore, it can be rescued by bath perfusion with retigabine, a KCNQ channel activator, and chronic treatment improves locomotor performance. Thus, M-current dysfunction may contribute to the hyperactivity and network dysregulation characteristic of this neurodegenerative disease, and KCNQ2/3 channel regulation may be a target for therapeutic intervention. PMID:25646456

  3. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.

    PubMed

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A; Li, Wei; Leoni, Valerio; Schon, Eric A; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-06-01

    Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans. PMID:24814483

  4. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease.

    PubMed

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E; Levites, Yona; Rincon-Limas, Diego E

    2015-11-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  5. Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease

    PubMed Central

    Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia

    2015-01-01

    Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035

  6. Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases

    PubMed Central

    Pei, Wuhong; Xu, Lisha; Varshney, Gaurav K.; Carrington, Blake; Bishop, Kevin; Jones, MaryPat; Huang, Sunny C.; Idol, Jennifer; Pretorius, Pamela R.; Beirl, Alisha; Schimmenti, Lisa A.; Kindt, Katie S.; Sood, Raman; Burgess, Shawn M.

    2016-01-01

    Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes. PMID:27425195

  7. Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases.

    PubMed

    Pei, Wuhong; Xu, Lisha; Varshney, Gaurav K; Carrington, Blake; Bishop, Kevin; Jones, MaryPat; Huang, Sunny C; Idol, Jennifer; Pretorius, Pamela R; Beirl, Alisha; Schimmenti, Lisa A; Kindt, Katie S; Sood, Raman; Burgess, Shawn M

    2016-01-01

    Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes. PMID:27425195

  8. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease

    PubMed Central

    Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle

    2016-01-01

    Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473

  9. Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease

    PubMed Central

    Teller, Sara; Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep; Soriano, Jordi

    2015-01-01

    The understanding of the key mechanisms behind human brain deterioration in Alzheimer’ disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner. PMID:26608215

  10. Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep; Soriano, Jordi

    2015-11-01

    The understanding of the key mechanisms behind human brain deterioration in Alzheimer’ disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner.

  11. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models

    PubMed Central

    Zhang, Bei; Wang, Ying; Li, Hui; Xiong, Ran; Zhao, Zongbo; Chu, Xingkun; Li, Qiongqiong; Sun, Suya; Chen, Shengdi

    2016-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by deposits of aggregated amyloid-β (Aβ) peptide and neurofibrillary tangles in the brain parenchyma. Despite considerable research to elucidate the pathological mechanisms and identify therapeutic strategies for AD, effective treatments are still lacking. In the present study, we found that salidroside (Sal), a phenylpropanoid glycoside isolated from Rhodiola rosea L., can protect against Aβ-induced neurotoxicity in four transgenic Drosophila AD models. Both longevity and locomotor activity were improved in Sal-fed Drosophila. Sal also decreased Aβ levels and Aβ deposition in brain and ameliorated toxicity in Aβ-treated primary neuronal culture. The neuroprotective effect of Sal was associated with upregulated phosphatidylinositide 3-kinase (PI3K)/Akt signaling. Our findings identify a compound that may possess potential therapeutic benefits for AD and other forms of neurodegeneration. PMID:27103787

  12. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. PMID:26117230

  13. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A. PMID:26599234

  14. Neuroprotective Role of Novel Triazine Derivatives by Activating Wnt/β Catenin Signaling Pathway in Rodent Models of Alzheimer's Disease.

    PubMed

    Sinha, Anshuman; Tamboli, Riyaj S; Seth, Brashket; Kanhed, Ashish M; Tiwari, Shashi Kant; Agarwal, Swati; Nair, Saumya; Giridhar, Rajani; Chaturvedi, Rajnish Kumar; Yadav, Mange Ram

    2015-08-01

    It has been reported in the literature that cholinesterase inhibitors provide protection in Alzheimer's disease (AD). Recent reports have implicated triazine derivatives as cholinesterase inhibitors. These findings led us to investigate anti-cholinestrase property of some novel triazine derivatives synthesized in this laboratory. In vitro cholinesterase inhibition assay was performed using Ellman method. The potent compounds screened out from in vitro assay were further evaluated using scopolamine-induced amnesic mice model. Further, in vitro reactive oxygen species (ROS) scavenging and anti-apoptotic property of the potent compounds were demonstrated against Aβ1-42-induced neurotoxicity in rat hippocampal cells. Their neuroprotective role was assessed using Aβ1-42-induced Alzheimer's-like phenotype in rats. Further, the role of compounds on the activation of the Wnt/β-catenin pathway was studied. The results showed that the chosen compounds are having protective effect in Alzheimer's-like condition; the ex vivo results advocated their anti-cholinestrase and anti-oxidant activities. Treatment with TRZ-15 and TRZ-20 showed neuroprotective ability of the compounds as evidenced from the improved cognitive ability in the animals, and decrease in Aβ1-42 burden and cytochrome c and cleaved caspase-3 levels in the brain. This study also demonstrates positive involvement of the novel triazine derivatives in the Wnt/β-catenin pathway. Immunoblot and immunofluorescence data suggested that ratio of pGSK3/GSK3 and β-catenin got dramatically improved after treatment with TRZ-15 and TRZ-20. TRZ-15 and TRZ-20 showed neuroprotection in scopolamine-induced amnesic mice and Aβ1-42-induced Alzheimer's rat model and also activate the Wnt/β-catenin signaling pathway. These findings conclude that TRZ-15 and TRZ-20 could be a therapeutic approach to treat AD. PMID:25257697

  15. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer’s Disease Cell Model

    PubMed Central

    Kou, Zhewen; Peng, Yonghua; Chen, Wenjun; Li, Xiaowen; Li, Shuji; Wang, Ying; Wang, Fang; Zhang, Xingmei

    2015-01-01

    An initial step in amyloid-β (Aβ) production includes amyloid precursor protein (APP) cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer’s disease (AD). Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX). A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity. PMID:26473367

  16. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease.

    PubMed

    Johri, Ashu; Calingasan, Noel Y; Hennessey, Thomas M; Sharma, Abhijeet; Yang, Lichuan; Wille, Elizabeth; Chandra, Abhishek; Beal, M Flint

    2012-03-01

    There is substantial evidence that impairment of peroxisome proliferator-activated receptor (PPAR)-γ-coactivator 1α (PGC-1α) levels and activity play an important role in Huntington's disease (HD) pathogenesis. We tested whether pharmacologic treatment with the pan-PPAR agonist bezafibrate would correct a deficiency of PGC-1α and exert beneficial effects in a transgenic mouse model of HD. We found that administration of bezafibrate in the diet restored levels of PGC-1α, PPARs and downstream genes to levels which occur in wild-type mice. There were significant improvements in phenotype and survival. In the striatum, astrogliosis and neuronal atrophy were attenuated and numbers of mitochondria were increased. Bezafibrate treatment prevented conversion of type I oxidative to type II glycolytic muscle fibers and increased the numbers of muscle mitochondria. Finally, bezafibrate rescued lipid accumulation and apparent vacuolization of brown adipose tissue in the HD mice. These findings provide strong evidence that treatment with bezafibrate exerts neuroprotective effects which may be beneficial in the treatment of HD. PMID:22095692

  17. Cognitive recovery by chronic activation of the large-conductance calcium-activated potassium channel in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Li; Kang, Huicong; Li, Yongzhi; Shui, Yuan; Yamamoto, Ryo; Sugai, Tokio; Kato, Nobuo

    2015-05-01

    We previously showed that activity of the large conductance calcium-activated potassium (Big-K; BK) channels is suppressed in 3xTg Alzheimer disease (AD) model mice. However, its behavioral significance is not known. In the present report, ventricular injection of the BK channel activator isopimaric acid (ISO) was conducted to examine whether BK channel activation ameliorates cognition in 3xTg mice. The novel object recognition (NOR) test revealed that chronic injection of ISO improved non-spatial memory in 3xTg mice. In the Morris water maze, the probe test demonstrated an improved spatial memory after ISO injection. Electrophysiological underpinnings of the ISO effect were then examined in slices obtained from the mice after behavior. At hippocampal CA1 synapses, the basic synaptic transmission was abnormally elevated and long-term potentiation (LTP) was partially suppressed in 3xTg mice. These were both recovered by ISO treatment. We then confirmed suppressed BK channel activity in 3xTg mice by measuring the half-width of evoked action potentials. This was also recovered by ISO treatment. We previously showed that the recovery of BK channel activity accompanies reduction of neuronal excitability in pyramidal cells. Here again, pyramidal cell excitability, as assessed by calculating the frequency of evoked spikes, was elevated in the 3xTg mouse and was normalized by ISO. ELISA experiments demonstrated an ISO-induced reduction of Aβ1-42 content in hippocampal tissue in 3xTg mice. The present study thus suggests a potential therapeutic utility of BK channel activators for AD. PMID:25577958

  18. Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease

    PubMed Central

    van Roon-Mom, Willeke MC; Pepers, Barry A; 't Hoen, Peter AC; Verwijmeren, Carola ACM; den Dunnen, Johan T; Dorsman, Josephine C; van Ommen, GertJan B

    2008-01-01

    Background Huntington's disease is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD or Huntington's disease gene. Although micro array studies on patient and animal tissue provide valuable information, the primary effect of mutant huntingtin will inevitably be masked by secondary processes in advanced stages of the disease. Thus, cell models are instrumental to study early, direct effects of mutant huntingtin. mRNA changes were studied in an inducible PC12 model of Huntington's disease, before and after aggregates became visible, to identify groups of genes that could play a role in the early pathology of Huntington's disease. Results Before aggregation, up-regulation of gene expression predominated, while after aggregates became visible, down-regulation and up-regulation occurred to the same extent. After aggregates became visible there was a down-regulation of dopamine biosynthesis genes accompanied by down-regulation of dopamine levels in culture, indicating the utility of this model to identify functionally relevant pathways. Furthermore, genes of the anti-oxidant Nrf2-ARE pathway were up-regulated, possibly as a protective mechanism. In parallel, we discovered alterations in genes which may result in increased oxidative stress and damage. Conclusion Up-regulation of gene expression may be more important in HD pathology than previously appreciated. In addition, given the pathogenic impact of oxidative stress and neuroinflammation, the Nrf2-ARE signaling pathway constitutes a new attractive therapeutic target for HD. PMID:18844975

  19. SUBCHRONIC PULMONARY PATHOLOGY, IRON-OVERLOAD AND TRANSCRIPTIONAL ACTIVITY AFTER LIBBY AMPHIBOLE EXPOSURE IN RAT MODELS OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Background: Surface-available iron (Fe) is proposed to contribute to asbestos-induced toxicity through the production of reactive oxygen species.Objective: Our goal was to evaluate the hypothesis that rat models of cardiovascular disease with coexistent Fe overload would be incre...

  20. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  1. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease.

    PubMed

    Kim, Mi Eun; Lee, Joo Yeon; Lee, Kyung Moon; Park, Hee Ra; Lee, Eunjin; Lee, Yujeong; Lee, Jun Sik; Lee, Jaewon

    2016-08-01

    Bee venom (BV), also known as apitoxin, is widely used in traditional oriental medicine to treat immune-related diseases. Recent studies suggest that BV could be beneficial for the treatment of neurodegenerative diseases. Parkinson's disease (PD) is the second most common neurodegenerative disease next to Alzheimer's disease, and PD pathologies are closely associated with neuroinflammation. Previous studies have suggested the neuroprotective effects of BV in animal models of PD are due to the modulation of inflammation. However, the molecular mechanisms responsible for the anti-neuroinflammatory effect of BV have not been elucidated in astrocytes. Here, the authors investigated the neuroprotective effects of BV and pramipexole (PPX; a positive control) in a subchronic MPTP-induced murine PD model. Both BV and PPX prevented MPTP-induced impairments in motor performance and reduced dopaminergic neuron loss, and furthermore, these neuroprotective effects of BV and PPX were found to be associated with reduced astroglial activation in vivo PD model. However, in MPP(+) treated primary cultured astrocytes, BV modulated astrocyte activation, whereas PPX did not, indicating that the neuroprotective effects of PPX were not mediated by neuroinflammation. These findings suggest that BV should be considered a potential therapeutic or preventive agent for PD and other neuroinflammatory associated disorders. PMID:27469335

  2. Models for managing wildlife disease.

    PubMed

    McCALLUM, Hamish

    2016-06-01

    Modelling wildlife disease poses some unique challenges. Wildlife disease systems are data poor in comparison with human or livestock disease systems, and the impact of disease on population size is often the key question of interest. This review concentrates specifically on the application of dynamic models to evaluate and guide management strategies. Models have proved useful particularly in two areas. They have been widely used to evaluate vaccination strategies, both for protecting endangered species and for preventing spillover from wildlife to humans or livestock. They have also been extensively used to evaluate culling strategies, again both for diseases in species of conservation interest and to prevent spillover. In addition, models are important to evaluate the potential of parasites and pathogens as biological control agents. The review concludes by identifying some key research gaps, which are further development of models of macroparasites, deciding on appropriate levels of complexity, modelling genetic management and connecting models to data. PMID:26283059

  3. Drosophila Models of Cardiac Disease

    PubMed Central

    Piazza, Nicole; Wessells, R.J.

    2013-01-01

    The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance. PMID:21377627

  4. Neuroprotective Activity of Peripherally Administered Liver Growth Factor in a Rat Model of Parkinson’s Disease

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease. PMID:23861803

  5. Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of Parkinson's disease.

    PubMed

    Geng, Xiwen; Xie, Jinlu; Wang, Xuenan; Wang, Xiusong; Zhang, Xiao; Hou, Yabing; Lei, Chengdong; Li, Min; Qu, Qingyang; He, Tingting; Han, Hongyu; Yao, Xiaomeng; Wang, Min

    2016-05-15

    The pedunculopontine nucleus (PPN) is a new deep brain stimulation target for treating Parkinson's disease (PD). But the alterations of the PPN electrophysiological activities in PD are still debated. To investigate these potential alterations, extracellular single unit and local field potential (LFP) activities in the PPN were recorded in unilateral hemispheric 6-hydroxydopamine (6-OHDA) lesioned rats and in control rats, respectively. The spike activity results revealed two types of neurons (Type I and Type II) with distinct electrophysiological characteristics in the PPN. Both types of neurons had increased firing rate and changed firing pattern in lesioned rats when compared to control rats. Specifically, Type II neurons showed an increased firing rate when the rat state was switched from rest to locomotion. The LFP results demonstrated that lesioned rats had lower LFP power at 0.7-12Hz and higher power at 12-30Hz than did control animals in either resting or locomotor state. These findings provide a better understanding of the effects of 6-OHDA lesion on neuronal activities in the PPN and also provide a proof of the link between this structure and locomotion, which contributes to better understanding the mechanisms of the PPN functioning in the pathophysiology of PD. PMID:26924016

  6. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson's disease

    PubMed Central

    Martin, Heather L.; Mounsey, Ross B.; Mustafa, Sarah; Sathe, Kinnari; Teismann, Peter

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to provide neuroprotection in a number of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. These protective effects are primarily considered to result from the anti-inflammatory actions of PPARγ, however, there is increasing evidence that anti-oxidant mechanisms may also contribute. This study explored the impact of the PPARγ agonist rosiglitazone and the PPARγ antagonist GW9662 in the MPP+/MPTP (1-methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease, focussing on oxidative stress mechanisms. Rosiglitazone attenuated reactive oxygen species formation induced by MPP+ in SH-SY5Y cells concurrent with an upregulation of glutathione-S-transferase activity, but not superoxide dismutase activity. These responses were not attenuated by cotreatment with GW9662 suggesting that PPARγ activation is not required. The localisation of PPARγ in vivo to dopaminergic neurons of the substantia nigra pars compacta (SNpc) was established by immunohistochemistry and PPARγ levels were found to be upregulated 7 days after MPTP treatment. The importance of PPARγ in protecting against MPTP toxicity was confirmed by treating C57BL6 mice with GW9662. Treatment with GW9662 increased MPTP-induced neuronal loss in the SNpc whilst not affecting MPTP-induced reductions in striatal dopamine and 3,4-dihdroxyphenylacetic acid. GW9662 also caused neuronal loss in the SNpc of saline-treated mice. The evidence presented here supports the role of anti-oxidant mechanisms in the protective effects of PPARγ agonists in neurodegenerative diseases, but indicates that these effects may be independent of PPARγ activation. It also demonstrates the importance of PPARγ activity for neuronal survival within the SNpc. PMID:22417924

  7. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease

    PubMed Central

    Ghosh, Anamitra; Roy, Avik; Matras, Joanna; Brahmachari, Saurav; Gendelman, Howard E.; Pahan, Kalipada

    2010-01-01

    Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. We investigated whether simvastatin, an FDA-approved cholesterol-lowering drug, could protect against nigrostriatal degeneration following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to model PD in mice. First, MPP+ induced the activation of p21ras and NF-κB in mouse microglial cells. Inhibition of MPP+-induced activation of NF-κB by Δp21ras, a dominant-negative mutant of p21ras, supported the involvement of p21ras in MPP+-induced microglial activation of NF-κB. Interestingly, simvastatin attenuated activation of both p21ras and NF-κB in MPP+-stimulated microglial cells. Consistently, we found a very rapid activation of p21ras in vivo in the substantia nigra pars compacta of MPTP-intoxicated mice. However, after oral administration, simvastatin entered into the nigra, reduced nigral activation of p21ras, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Similarly, pravastatin, another cholesterol-lowering drug, suppressed microglial inflammatory responses and protected dopaminergic neurons in MPTP-intoxicated mice; but at levels less than simvastatin. Furthermore, both the statins administered 2 days after initiation of the disease were still capable of inhibiting the demise of dopaminergic neurons and concomitant loss of neurotransmitters suggesting that statins are capable of slowing down the progression of neuronal loss in the MPTP mouse model. Therefore, we conclude that statins may be of therapeutic benefit for PD patients. PMID:19864567

  8. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies. PMID:22754549

  9. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease

    PubMed Central

    Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246

  10. Being active when you have heart disease

    MedlinePlus

    Heart disease - activity ... Getting regular exercise when you have heart disease is important. Exercise can make your heart muscle stronger. It may also help you be more active without chest pain or ...

  11. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Baker, David J.; Blackburn, Daniel J.; Keatinge, Marcus; Sokhi, Dilraj; Viskaitis, Paulius; Heath, Paul R.; Ferraiuolo, Laura; Kirby, Janine; Shaw, Pamela J.

    2015-01-01

    Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1G93A mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1G93A vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1G93A spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1G93A astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies. PMID:26528138

  12. Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer's disease model rats

    PubMed Central

    Asle-Rousta, Masoumeh; Oryan, Shahrbanoo; Ahmadiani, Abolhassan; Rahnema, Mehdi

    2013-01-01

    Sphingosine-1 phosphate (S1P) is involved in a variety of cellular processes via activation of S1P receptors (S1PRs; S1PR1 to S1PR5) that are highly expressed in the brain. It has been shown that the level of S1P is reduced in the brain of Alzheimer's disease (AD) patients. However, there is no study designed to evaluate the expression of S1PRs in AD brains. The objectives of the present work are (1) to examine the expression of S1PR1-3 in the hippocampus of beta amyloid (Aβ) 1-42 injected rats and (2) to clarify the effects of chronic S1PR1 activation on S1PR1-3 levels, spatial memory deficit and hippocampal damage in AD rats. SEW2871, the S1PR1 selective agonist, repeatedly was injected intraperitoneally during a period of two weeks. Upon Western Blot data bilateral intrahippocampal injection of Aβ1-42 decreased the expression of S1PR1 while increased S1PR2 level and did not affect that of S1PR3. We found that chronic administration of SEW2871 inhibited the reduction of S1PR1 expression and ameliorated spatial memory impairment in the Morris water maze task in rats. In addition, SEW2871 attenuated the Aβ1-42-induced hippocampal neuronal loss according to Nissl staining findings. Data in the current study highlights the importance of S1PR1 signaling pathway deregulation in AD development and suggests that activation of S1PR1 may represent a potential approach for developing new therapeutics to manage memory deficit and apoptosis associated with neurodegenerative disorders such as AD. PMID:26417237

  13. Models of health and disease.

    PubMed

    Tamm, M E

    1993-09-01

    This paper describes and analyses six models of health and disease. These are: religious, biomedical, psychosomatic, humanistic, existential and transpersonal. Of these six models, only one was unequivocally reductionist: the biomedical. The others were all holistic. The religious, humanistic and transpersonal models could be considered as health models, the biomedical, psychosomatic and existential models as disease or illness models. The different models were assumed to depict different, but related, ways of representing health and disease. It is probable that different groups in society, including the different groups in the health service--doctors, nurses and patients--look at health and illness from partly different models. This is considered to have significant implications for the health service. PMID:8217913

  14. Peptide TFP5/TP5 derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson's disease.

    PubMed

    Binukumar, B K; Shukla, Varsha; Amin, Niranjana D; Grant, Philip; Bhaskar, M; Skuntz, Susan; Steiner, Joseph; Pant, Harish C

    2015-12-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer's disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 -hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson's disease. PMID:26399293

  15. Peptide TFP5/TP5 derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson’s disease

    PubMed Central

    Binukumar, BK.; Shukla, Varsha; Amin, Niranjana D.; Grant, Philip; Bhaskar, M.; Skuntz, Susan; Steiner, Joseph; Pant, Harish C.

    2015-01-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease. PMID:26399293

  16. Chinese herbal medicine (Tuhuai extract) exhibits topical anti-proliferative and anti-inflammatory activity in murine disease models.

    PubMed

    Man, Mao-Qiang; Shi, Yuejun; Man, Mona; Lee, Seung Hun; Demerjian, Marianne; Chang, Sandra; Feingold, Kenneth R; Elias, Peter M

    2008-08-01

    While psoriasis is one of the most common skin disorders in humans, effective, safe and inexpensive treatments are still largely unavailable. Chinese herbal medicine (CHM) has been used for centuries for treating psoriasis and several reports claim that systemic administration of one such CHM, Tuhuai, mainly composed of flos sophorae, smilax glabra roxb and licorice, is effective in psoriasis. However, the mechanisms by which this CHM improves psoriasis are not yet clear. Two universal features of psoriasis are epidermal hyperplasia and inflammation. Moreover, drugs that specifically inhibit epidermal hyperplasia and/or inflammation are widely used to treat psoriasis. Here, we investigated whether topical applications of Tuhuai extract exhibit anti-proliferative and anti-inflammatory activities in two murine models of inflammatory dermatoses. To assess Tuhuai's potential anti-proliferative effect, we disrupted epidermal barrier function twice-daily for 4 days in normal hairless mice followed by topical applications of either 1% Tuhuai extract or Vehicle to both flanks immediately after each barrier perturbation. Changes in epidermal proliferation and apoptosis were evaluated by immunohistochemistry and TUNEL staining. To assess the anti-inflammatory effects of Tuhuai, both irritant (phorbol ester) and acute allergic contact dermatitis (oxazolone) models were used. Whereas topical Tuhuai extract did not alter epidermal proliferation or induce irritation in normal skin, it both reduced epidermal hyperplasia in the epidermal hyperproliferative model, and reduced inflammation in both irritant and allergic contact dermatitis models. As topical Tuhuai extract exhibits anti-proliferative and anti-inflammatory properties in a variety of human models of inflammatory dermatoses, Tuhuai could provide an effective, relatively safe and inexpensive therapeutic alternative for the treatment of inflammatory dermatoses, including psoriasis. PMID:18341576

  17. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease

    PubMed Central

    De Franceschi, Lucia; Franco, Robert S.; Bertoldi, Mariarita; Brugnara, Carlo; Matté, Alessandro; Siciliano, Angela; Wieschhaus, Adam J.; Chishti, Athar H.; Joiner, Clinton H.

    2013-01-01

    Sickle cell disease (SCD) is a globally distributed hereditary red blood cell (RBC) disorder. One of the hallmarks of SCD is the presence of circulating dense RBCs, which are important in SCD-related clinical manifestations. In human dense sickle cells, we found reduced calpastatin activity and protein expression compared to either healthy RBCs or unfractionated sickle cells, suggesting an imbalance between activator and inhibitor of calpain-1 in favor of activator in dense sickle cells. Calpain-1 is a nonlysosomal cysteine proteinase that modulates multiple cell functions through the selective cleavage of proteins. To investigate the relevance of this observation in vivo, we evaluated the effects of the orally active inhibitor of calpain-1, BDA-410 (30 mg/kg/d), on RBCs from SAD mice, a mouse model for SCD. In SAD mice, BDA-410 improved RBC morphology, reduced RBC density (D20; from 1106±0.001 to 1100±0.001 g/ml; P<0.05) and increased RBC-K+ content (from 364±10 to 429±12.3 mmol/kg Hb; P<0.05), markedly reduced the activity of the Ca2+-activated K+channel (Gardos channel), and decreased membrane association of peroxiredoxin-2. The inhibitory effect of calphostin C, a specific inhibitor of protein kinase C (PKC), on the Gardos channel was eliminated after BDA-410 treatment, which suggests that calpain-1 inhibition affects the PKC-dependent fraction of the Gardos channel. BDA-410 prevented hypoxia-induced RBC dehydration and K+ loss in SAD mice. These data suggest a potential role of BDA-410 as a novel therapeutic agent for treatment of SCD.—De Franceschi, L., Franco, R. S., Bertoldi, M., Brugnara, C., Matté, A., Siciliano, A., Wieschhaus, A. J., Chishti, A. H., Joiner, C. H. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease. PMID:23085996

  18. Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine.

    PubMed

    Talib, Jihan; Maghzal, Ghassan J; Cheng, David; Stocker, Roland

    2016-08-01

    Myeloperoxidase (MPO) activity contributes to arterial inflammation, vascular dysfunction and disease, including atherosclerosis. Current assessment of MPO activity in biological systems in vivo utilizes 3-chlorotyrosine (3-Cl-Tyr) as a biomarker of hypochlorous acid (HOCl) and other chlorinating species. However, 3-Cl-Tyr is formed in low yield and is subject to further metabolism. Recently, we reported a method to selectively assess MPO-activity in vivo by measuring the conversion of hydroethidine to 2-chloroethidium (2-Cl-E(+)) by liquid chromatography with tandem mass spectrometry (LC-MS/MS) (J. Biol. Chem., 289, 2014, pp. 5580-5595). The hydroethidine-based method has greater sensitivity for MPO activity than measurement of 3-Cl-Tyr. The current methods paper provides a detailed protocol to determine in vivo and ex vivo MPO activity in arteries from mouse models of vascular inflammation and disease by utilizing the conversion of hydroethidine to 2-Cl-E(+). Procedures for the synthesis of standards, preparation of tissue homogenates and the generation of 2-Cl-E(+) are also provided in detail, as are the conditions for LC-MS/MS detection of 2-Cl-E(+). PMID:27184954

  19. Herpes simplex virus-1 infection of colonic explants as a model of viral-induced activation of Crohn's disease.

    PubMed

    Silva, Manuel A; Menezes, José; Dionne, Serge; Levy, Emile; Amre, Devendra K; Seidman, Ernest G

    2012-05-01

    The exogenous triggers responsible for Crohn's disease (CD) relapses are not often identified. Cytomegalovirus and other members of the herpesvirus family have been implicated in precipitating relapses. However, the role of viral infections in the immunopathogenesis of CD remains poorly understood. We describe an ex-vivo model of primary viral infection of CD tissue with Herpes Simplex Virus type I (HSV-1). IL-6 and CD68 served as markers for CD inflammation, type I IFNs for viral infection. Colonic explants obtained from CD resections were infected via the luminal or the submucosal compartments with HSV-1 or mock virus solution, at varying concentrations for up to 20 h. Serial tissue sections were assayed for expression of HSV-1 specific antigens, CD-68, IL-6 and DC-SIGN. Culture supernatants were tested for IL-6 and type I IFN production. Positive immunostaining for HSV-1 specific antigens was consistently detectable using 11×10(6)PFU from 13 h onwards, mainly on cells located in the submucosa, and in the perivascular area. CD68 was up-regulated in lamina propria macrophages from mildly and non-inflamed CD tissue after HSV-1 infection. IL-6+ cells in the infected tissues were mainly submucosal DC-SIGN+ dendritic cells. IL-6 and IFN-β levels were higher in the supernatants from HSV-1-infected explants compared to controls after 20 h of culture (p<0.01). These data show increased expression of inflammatory markers during the initial stages of HSV-1 primary infection using CD colonic explants. This in vitro model appears promising to study the immunoregulatory changes induced by microbial infection in reactivation of CD. PMID:22398063

  20. Random modelling of contagious diseases.

    PubMed

    Demongeot, J; Hansen, O; Hessami, H; Jannot, A S; Mintsa, J; Rachdi, M; Taramasco, C

    2013-03-01

    Modelling contagious diseases needs to include a mechanistic knowledge about contacts between hosts and pathogens as specific as possible, e.g., by incorporating in the model information about social networks through which the disease spreads. The unknown part concerning the contact mechanism can be modelled using a stochastic approach. For that purpose, we revisit SIR models by introducing first a microscopic stochastic version of the contacts between individuals of different populations (namely Susceptible, Infective and Recovering), then by adding a random perturbation in the vicinity of the endemic fixed point of the SIR model and eventually by introducing the definition of various types of random social networks. We propose as example of application to contagious diseases the HIV, and we show that a micro-simulation of individual based modelling (IBM) type can reproduce the current stable incidence of the HIV epidemic in a population of HIV-positive men having sex with men (MSM). PMID:23525763

  1. Cardiovascular Disease and Cancer: Student Awareness Activities.

    ERIC Educational Resources Information Center

    Meyer, James H., Comp.

    Awareness activities pertaining to cancer and cardiovascular disease are presented as a supplement for high school science classes. The exercises can be used to enrich units of study dealing with the circulatory system, the cell, or human diseases. Eight activities deal with the following topics: (1) cardiovascular disease risk factors; (2)…

  2. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats.

    PubMed

    Agrawal, Yogeeta O; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M; Arya, Dharamvir Singh; Goyal, Sameer N

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPAR-γ receptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and -LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPAR-γ receptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I

  3. Hesperidin Produces Cardioprotective Activity via PPAR-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats

    PubMed Central

    Agrawal, Yogeeta O.; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M.; Arya, Dharamvir Singh; Goyal, Sameer N.

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPAR-γ receptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and –LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPAR-γ receptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I

  4. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease.

    PubMed

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  5. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease

    PubMed Central

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  6. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease

    PubMed Central

    Graham, Leah C.; Harder, Jeffrey M.; Soto, Ileana; de Vries, Wilhelmine N.; John, Simon W. M.; Howell, Gareth R.

    2016-01-01

    Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer’s disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer’s disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer’s disease. PMID:26888450

  7. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer's disease.

    PubMed

    Graham, Leah C; Harder, Jeffrey M; Soto, Ileana; de Vries, Wilhelmine N; John, Simon W M; Howell, Gareth R

    2016-01-01

    Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer's disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer's disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer's disease. PMID:26888450

  8. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    PubMed

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  9. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

    PubMed Central

    Van Kanegan, Michael J.; Dunn, Denise E.; Kaltenbach, Linda S.; Shah, Bijal; He, Dong Ning; McCoy, Daniel D.; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H.; Newman, Robert A.; Lo, Donald C.

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0–4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0–4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer’s disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  10. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease.

    PubMed

    Liu, Quan Feng; Lee, Jang Ho; Kim, Young-Mi; Lee, Soojin; Hong, Yoon Ki; Hwang, Soojin; Oh, Youngje; Lee, Kyungho; Yun, Hye Sup; Lee, Im-Soon; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD. PMID:26458335

  11. Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity

    PubMed Central

    Johnson, Carl; Gratzinger, Dita; Majeti, Ravindra

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics. PMID:27428079

  12. Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity.

    PubMed

    Jonas, Brian A; Johnson, Carl; Gratzinger, Dita; Majeti, Ravindra

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics. PMID:27428079

  13. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice.

    PubMed

    Wang, Furong; Zhang, Yu; Wang, Li; Sun, Peng; Luo, Xianwen; Ishigaki, Yasuhito; Sugai, Tokio; Yamamoto, Ryo; Kato, Nobuo

    2015-10-01

    Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice. PMID:26051398

  14. Brush border enzyme activities in the small intestine after long-term gliadin feeding in animal models of human coeliac disease.

    PubMed

    Kozáková, H; Stĕpánková, R; Kolínská, J; Farré, M A; Funda, D P; Tucková, L; Tlaskalová-Hogenová, H

    1998-01-01

    Coeliac disease is a human, genetically linked, disorder which develops in gluten-sensitive persons. The aim of this study was to investigate the effect of prolonged feeding of gliadin, a major fraction of gluten, on enzyme activities of enterocyte brush border membrane enzymes in rats, mice and pigs. Brush-border membranes were isolated from mucosal scrapings of the small intestine of 21-d-old rat pups hand-fed with formula milk diet, two-month-old nu/nu and +/+ BALB/c mice and two-month-old piglets fed three times a week starting at birth with high doses of gliadin. Activities of lactase, sucrase and dipeptidyl peptidase IV (DPP IV) were determined. Individual animal models differed in their response to gliadin feeding. In comparison with albumin fed controls the activities of DPP IV and lactase were decreased in rat pups, nu/nu BALB/c mice and piglets. DPP IV activity was mostly affected in the ileum of rats and piglets fed with gliadin starting at birth. On the other hand, lactase and sucrase activities of nu/nu BALB/c mice and piglets decreased to the largest extent in jejunum. PMID:9821309

  15. Reduced levels of mitochondrial complex I subunit NDUFB8 and linked complex I + III oxidoreductase activity in the TgCRND8 mouse model of Alzheimer's disease.

    PubMed

    Francis, Beverly M; Yang, Jimao; Song, Byung Jun; Gupta, Saurabh; Maj, Mary; Bazinet, Richard P; Robinson, Brian; Mount, Howard T J

    2014-01-01

    Bioenergetic failure is a feature of Alzheimer's disease (AD). We examined mitochondrial function in the amyloid-β protein precursor transgenic 'TgCRND8' mouse model of AD. Activities of NADH: cytochrome c reductase (complex I + III) and cytochrome oxidase (complex IV) of the electron transport chain, as well as those of α-ketoglutarate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH) were assessed in brains of 45 week-old mice. Complex I + III activity was reduced by almost 50%, whereas complex IV, α-KGDH, and PDH activities were unaffected. Reduced activity coincided with decreased expression of NDUFB8, a nuclear-DNA encoded subunit integral to the assembly of complex I. The composition and availability of cardiolipin, a major phospholipid in inner mitochondrial membranes, was not altered. To determine whether mitochondrial output is affected by the selective reduction in complex I + III activity, we examined tissue levels of high-energy phosphates. ATP was maintained whereas creatine increased in the cortex and hippocampus. These results suggest disruption of complex I function and the likely role of creatine in sustaining ATP at late stages of dysfunction in TgCRND8 mice. PMID:24217272

  16. Inflammatory diseases modelling in zebrafish.

    PubMed

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-02-20

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  17. Inflammatory diseases modelling in zebrafish

    PubMed Central

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-01-01

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  18. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer’s disease

    PubMed Central

    DONG, XIAN-HUI; GAO, WEI-JUAN; KONG, WEI-NA; XIE, HONG-LIN; PENG, YAN; SHAO, TIE-MEI; YU, WEN-GUO; CHAI, XI-QING

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APPswe/PS1ΔE9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium, Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD. PMID:25780429

  19. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease

    PubMed Central

    Chan, Hugh; Paur, Helen; Vernon, Anthony C.; Zabarsky, Virginia; Datla, Krishna P.; Croucher, Martin J.; Dexter, David T.

    2010-01-01

    Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug. PMID:20948891

  20. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models

    PubMed Central

    2014-01-01

    Background Alzheimer’s disease (AD) is the most common type of presenile and senile dementia. The human β-amyloid precursor cleavage enzyme (BACE-1) is a key enzyme responsible for amyloid plaque production, which implicates the progress and symptoms of AD. Here we assessed the anti-BACE-1 and behavioral activities of curcuminoids from rhizomes of Curcuma longa (Zingiberaceae), diarylalkyls curcumin (CCN), demethoxycurcumin (DMCCN), and bisdemethoxycurcumin (BDMCCN) against AD Drosophila melanogaster models. Methods Neuro-protective ability of the curcuminoids was assessed using Drosophila melanogaster model system overexpressing BACE-1 and its substrate APP in compound eyes and entire neurons. Feeding and climbing activity, lifespan, and morphostructural changes in fly eyes also were evaluated. Results BDMCCN has the strongest inhibitory activity toward BACE-1 with 17 μM IC50, which was 20 and 13 times lower than those of CCN and DMCCN respectively. Overexpression of APP/BACE-1 resulted in the progressive and measurable defects in morphology of eyes and locomotion. Remarkably, supplementing diet with either 1 mM BDMCCN or 1 mM CCN rescued APP/BACE1-expressing flies and kept them from developing both morphological and behavioral defects. Our results suggest that structural characteristics, such as degrees of saturation, types of carbon skeleton and functional group, and hydrophobicity appear to play a role in determining inhibitory potency of curcuminoids on BACE-1. Conclusion Further studies will warrant possible applications of curcuminoids as therapeutic BACE-1 blockers. PMID:24597901

  1. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  2. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    PubMed

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities. PMID:27316720

  3. Animal models for human diseases.

    PubMed

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  4. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer's disease.

    PubMed

    Cioanca, Oana; Hritcu, Lucian; Mihasan, Marius; Hancianu, Monica

    2013-08-15

    Coriandrum sativum L., commonly known as coriander and belonging to the Apiaceae family is cultivated throughout the world for its nutritional value. In traditional medicine, coriander is recommended for the relief of pain, anxiety, flatulence, loss of appetite and convulsions. In the present study, the effects of inhaled coriander volatile oil (1% and 3%, daily, for 21days) extracted from C. sativum var. microcarpum on spatial memory performance were assessed in an Aβ(1-42) rat model of Alzheimer's disease. The Aβ(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory errors, reference memory errors and time taken to consume all five baits within radial arm maze task. Exposure to coriander volatile oil significantly improved these parameters, suggesting positive effects on spatial memory formation. Assessments of oxidative stress markers in the hippocampal tissue of Aβ(1-42)-treated rats showed a significant increase of superoxide dismutase (SOD), lactate dehydrogenase (LDH) and a decrease of glutathione peroxidase (GPX) specific activities along with an elevation of malondialdehyde (MDA) level. Coriander volatile oil significantly decreased SOD and LDH specific activities, increased GPX specific activity and attenuated the increased MDA level. Also, DNA cleavage patterns were absent in the coriander rats, thus suggesting antiapoptotic activity of the volatile oil. Therefore, our results suggest that exposure to coriander volatile oil ameliorates Aβ(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus. PMID:23958472

  5. Disease activity in osteomyelitis: role of radiography

    SciTech Connect

    Tumeh, S.S.; Aliabadi, P.; Weissman, B.N.; McNeil, B.J.

    1987-12-01

    To determine the impact of radiographic findings on the interpretation of bone and gallium scans of patients with active osteomyelitis, the authors reviewed the medical records and radiologic examinations of 104 patients. The only diagnostic finding of active disease on radiographs was the presence of a sequestrum (three patients). Other findings--such as erosion, soft-tissue swelling, and periosteal reaction--proved nonspecific and did not differentiate active from inactive disease. Furthermore, these findings did not significantly change the sensitivity or specificity of the bone and gallium scans, either in detecting or in excluding the presence of active disease.

  6. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    PubMed

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence. PMID:25591942

  7. Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer's disease.

    PubMed

    Manuel, Iván; Lombardero, Laura; LaFerla, Frank M; Giménez-Llort, Lydia; Rodríguez-Puertas, Rafael

    2016-08-01

    Neurochemical alterations in Alzheimer's disease (AD) include cholinergic neuronal loss in the nucleus basalis of Meynert (nbM) and a decrease in densities of the M2 muscarinic receptor subtype in areas related to learning and memory. Neuromodulators present in the cholinergic pathways, such as neuropeptides and neurolipids, control these cognitive processes and have become targets of research in order to understand and treat the pathophysiological and clinical stages of the disease. This is the case of the endocannabinoid and galaninergic systems, which have been found to be up-regulated in AD, and could therefore have a neuroprotective role. In the present study, the functional coupling of Gi/o protein-coupled receptors to GalR1, and the CB1 receptor subtype for endocannabinoids were analyzed in the 3xTg-AD mice model of AD. In addition, the activity mediated by Gi/o protein-coupled M2/4 muscarinic receptor subtypes was also analyzed in brain areas involved in anxiety and cognition. Thus, male mice were studied at 4 and 15months of age (prodromal and advanced stages, respectively) and compared to age-matched non-transgenic (NTg) mice (adult and old, respectively). In 4-month-old 3xTg-AD mice, the [(35)S]GTPγS binding stimulated by galanin was significantly increased in the hypothalamus, but a decrease of functional M2/4 receptors was observed in the posterior amygdala. The CB1 cannabinoid receptor activity was up-regulated in the anterior thalamus at that age. In 15-month-old 3xTg-AD mice, muscarinic receptor activity was found to be increased in motor cortex, while CB1 activity was decreased in nbM. No changes were found in GalR1-mediated activity at this age. Our results provide further evidence of the relevance of limbic areas in the prodromal stage of AD, the profile of which is characterized by anxiety. The up-regulation of galaninergic and endocannabinoid systems support the hypothesis of their neuroprotective roles, and these are established prior to the

  8. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25-35) rat model of Alzheimer's disease.

    PubMed

    Fedotova, Julia; Soultanov, Vagif; Nikitina, Tamara; Roschin, Victor; Ordyan, Natalia; Hritcu, Lucian

    2016-04-01

    The present preclinical study was designed to examine the effects of prolonged Ropren® administration (8.6 mg/kg, orally, once daily, 28 days) in a β-amyloid (25-35) rat model of Alzheimer's disease following gonadectomy. The experimental model was created by intracerebroventricular injection of β-amyloid (25-35) into gonadectomized (GDX) rats and GDX rats with testosterone propionate (TP, 0.5mg/kg, subcutaneous, once daily, 28 days) supplementation. Ropren® was administered to the GDX rats and GDX rats treated with TP. Memory performance was assessed using the passive avoidance and the Morris water maze tests and the spontaneous locomotor activity was assessed using the open field test. Treatment with Ropren® significantly improved and restored the cognitive ability of GDX rats with β-amyloid (25-35)-induced amnesia in the passive avoidance test and Morris water maze. Co-administration of Ropren® with TP exerted a markedly synergistic memory-enhancing effect in the GDX rats with β-amyloid (25-35)-induced amnesia on the same models of memory testing. Ropren® administered alone or together with TP significantly enhanced crossing, frequency of rearing and grooming of the GDX rats with β-amyloid (25-35)-induced amnesia in the open field test. These results indicate that Ropren® has a marked memory-enhancing action in the experimental model of Alzheimer's disease in male rats with altered levels of androgens. PMID:26821186

  9. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD. PMID:25449120

  10. Revisiting rodent models: Octodon degus as Alzheimer's disease model?

    PubMed

    Steffen, Johannes; Krohn, Markus; Paarmann, Kristin; Schwitlick, Christina; Brüning, Thomas; Marreiros, Rita; Müller-Schiffmann, Andreas; Korth, Carsten; Braun, Katharina; Pahnke, Jens

    2016-01-01

    Alzheimer's disease primarily occurs as sporadic disease and is accompanied with vast socio-economic problems. The mandatory basic research relies on robust and reliable disease models to overcome increasing incidence and emerging social challenges. Rodent models are most efficient, versatile, and predominantly used in research. However, only highly artificial and mostly genetically modified models are available. As these 'engineered' models reproduce only isolated features, researchers demand more suitable models of sporadic neurodegenerative diseases. One very promising animal model was the South American rodent Octodon degus, which was repeatedly described as natural 'sporadic Alzheimer's disease model' with 'Alzheimer's disease-like neuropathology'. To unveil advantages over the 'artificial' mouse models, we re-evaluated the age-dependent, neurohistological changes in young and aged Octodon degus (1 to 5-years-old) bred in a wild-type colony in Germany. In our hands, extensive neuropathological analyses of young and aged animals revealed normal age-related cortical changes without obvious signs for extensive degeneration as seen in patients with dementia. Neither significant neuronal loss nor enhanced microglial activation were observed in aged animals. Silver impregnation methods, conventional, and immunohistological stains as well as biochemical fractionations revealed neither amyloid accumulation nor tangle formation. Phosphoepitope-specific antibodies against tau species displayed similar intraneuronal reactivity in both, young and aged Octodon degus.In contrast to previous results, our study suggests that Octodon degus born and bred in captivity do not inevitably develop cortical amyloidosis, tangle formation or neuronal loss as seen in Alzheimer's disease patients or transgenic disease models. PMID:27566602

  11. Translational models of ocular disease.

    PubMed

    Zeiss, Caroline J

    2013-07-01

    Animals provide indispensable models to translate basic mechanistic discoveries and realize their therapeutic potential in humans. Conversely, advances in human medicine often inform management of similar conditions in clinical veterinary medicine. In this paper, key experimental model species are introduced, with emphasis on genetic contributions of the mouse. Its role and those of larger animal models are described in common ocular research areas including intraocular neoplasia, corneal epithelial and stromal disease, cataract, uveitis, glaucoma, and retinal dystrophies. Emphasis is placed on those conditions shared by humans and domestic animals, with the intent of exploring how the study of comparable conditions in humans, domestic animals, and laboratory animals informs one another. PMID:23750503

  12. Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson's Disease Cell Model

    PubMed Central

    Jinfeng, Li; Yunliang, Wang; Xinshan, Liu; Yutong, Wang; Shanshan, Wang; Peng, Xue; Xiaopeng, Yang; Zhixiu, Xu; Qingshan, Lu; Honglei, Yin; Xia, Cao; Hongwei, Wang; Bingzhen, Cao

    2016-01-01

    The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson's disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD. PMID:27340670

  13. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer's Disease.

    PubMed

    Modi, Khushbu K; Roy, Avik; Brahmachari, Saurabh; Rangasamy, Suresh B; Pahan, Kalipada

    2015-01-01

    This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer's disease (AD). NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS) in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ)- and 1-methyl-4-phenylpyridinium(+)-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg) mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum) powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE) and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD. PMID:26102198

  14. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer’s Disease

    PubMed Central

    Modi, Khushbu K.; Roy, Avik; Brahmachari, Saurabh; Rangasamy, Suresh B.; Pahan, Kalipada

    2015-01-01

    This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer’s disease (AD). NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS) in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ)- and 1-methyl-4-phenylpyridinium(+)-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg) mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum) powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE) and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD. PMID:26102198

  15. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha

    PubMed Central

    Graffmann, Nina; Ring, Sarah; Kawala, Marie-Ann; Wruck, Wasco; Ncube, Audrey; Trompeter, Hans-Ingo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression. PMID:27308945

  16. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha.

    PubMed

    Graffmann, Nina; Ring, Sarah; Kawala, Marie-Ann; Wruck, Wasco; Ncube, Audrey; Trompeter, Hans-Ingo; Adjaye, James

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression. PMID:27308945

  17. Inhibition of glutaminyl cyclase ameliorates amyloid pathology in an animal model of Alzheimer's disease via the modulation of γ-secretase activity.

    PubMed

    Song, Hyundong; Chang, Yu Jin; Moon, Minho; Park, Sarah Kyua; Tran, Phuong-Thao; Hoang, Van-Hai; Lee, Jeewoo; Mook-Jung, Inhee

    2015-01-01

    Alzheimer's disease is the most prevalent neurodegenerative disorder, characterized by neurofibrillary tangles, senile plaques, and neuron loss. Amyloid beta peptides are generated from amyloid beta precursor protein by consecutive catalysis by β and γ-secretases. Diversely modified forms of A have been N3pE-42 Aβ has received considerable attention as one of the major constituents of the senile plaques of AD brains due to its higher aggregation velocity, stability, and hydrophobicity compared to the full-length A. A previous study suggested that is catalyzed by glutaminyl cyclase (QC) following limited proteolysis of Aβ at the N-terminus. Here, we reveal that decreasing the QC activity via application of a QC inhibitor modulates-γ-secretase activity, resulting in diminished plaque formation as well as reduced N3pE 42 Aβ aggregates in the subiculum of the 5XFAD mouse model of AD. This study suggests a possible novel mechanism by which QC regulates Aβ formation , namely modulation of γ-secretase activity. PMID:25114069

  18. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  19. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  20. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease.

    PubMed

    Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul; Ojha, Shreesh K

    2016-01-01

    The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial

  1. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease

    PubMed Central

    Javed, Hayate; Azimullah, Sheikh; Haque, M. Emdadul; Ojha, Shreesh K.

    2016-01-01

    The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial

  2. Mouse models of human disease

    PubMed Central

    Perlman, Robert L.

    2016-01-01

    The use of mice as model organisms to study human biology is predicated on the genetic and physiological similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. PMID:27121451

  3. Sex-dependent alterations in social behaviour and cortical synaptic activity coincide at different ages in a model of Alzheimer's disease.

    PubMed

    Bories, Cyril; Guitton, Matthieu J; Julien, Carl; Tremblay, Cyntia; Vandal, Milène; Msaid, Meriem; De Koninck, Yves; Calon, Frédéric

    2012-01-01

    Besides memory deficits, Alzheimer's disease (AD) patients suffer from neuropsychiatric symptoms, including alterations in social interactions, which are subject of a growing number of investigations in transgenic models of AD. Yet the biological mechanisms underlying these behavioural alterations are poorly understood. Here, a social interaction paradigm was used to assess social dysfunction in the triple-transgenic mouse model of AD (3xTg-AD). We observed that transgenic mice displayed dimorphic behavioural abnormalities at different ages. Social disinhibition was observed in 18 months old 3xTg-AD males compared to age and sex-matched control mice. In 3xTg-AD females, social disinhibition was present at 12 months followed by reduced social interactions at 18 months. These dimorphic behavioural alterations were not associated with alterations in AD neuropathological markers such as Aβ or tau levels in the frontal cortex. However, patch-clamp recordings revealed that enhanced social interactions coincided temporally with an increase in both excitatory and inhibitory basal synaptic inputs to layer 2-3 pyramidal neurons in the prefrontal cortex. These findings uncover a novel pattern of occurrence of psychiatric-like symptoms between sexes in an AD model. Our results also reveal that functional alterations in synapse activity appear as a potentially significant substrate underlying behavioural correlates of AD. PMID:23029404

  4. In vivo imaging of microglial activation by positron emission tomography with [(11)C]PBR28 in the 5XFAD model of Alzheimer's disease.

    PubMed

    Mirzaei, Nazanin; Tang, Sac Pham; Ashworth, Sharon; Coello, Christopher; Plisson, Christophe; Passchier, Jan; Selvaraj, Vimal; Tyacke, Robin J; Nutt, David J; Sastre, Magdalena

    2016-06-01

    Microglial activation has been linked with deficits in neuronal function and synaptic plasticity in Alzheimer's disease (AD). The mitochondrial translocator protein (TSPO) is known to be upregulated in reactive microglia. Accurate visualization and quantification of microglial density by PET imaging using the TSPO tracer [(11)C]-R-PK11195 has been challenging due to the limitations of the ligand. In this study, it was aimed to evaluate the new TSPO tracer [(11)C]PBR28 as a marker for microglial activation in the 5XFAD transgenic mouse model of AD. Dynamic PET scans were acquired following intravenous administration of [(11)C]PBR28 in 6-month-old 5XFAD mice and in wild-type controls. Autoradiography with [(3)H]PBR28 was carried out in the same brains to further confirm the distribution of the radioligand. In addition, immunohistochemistry was performed on adjacent brain sections of the same mice to evaluate the co-localization of TSPO with microglia. PET imaging revealed that brain uptake of [(11)C]PBR28 in 5XFAD mice was increased compared with control mice. Moreover, binding of [(3)H]PBR28, measured by autoradiography, was enriched in cortical and hippocampal brain regions, coinciding with the positive staining of the microglial marker Iba-1 and amyloid deposits in the same areas. Furthermore, double-staining using antibodies against TSPO demonstrated co-localization of TSPO with microglia and not with astrocytes in 5XFAD mice and human post-mortem AD brains. The data provided support of the suitability of [(11)C]PBR28 as a tool for in vivo monitoring of microglial activation and assessment of treatment response in future studies using animal models of AD. PMID:26959396

  5. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease.

    PubMed

    Du, Zhuowei; Chazalon, Marine; Bestaven, Emma; Leste-Lasserre, Thierry; Baufreton, Jérôme; Cazalets, Jean-René; Cho, Yoon H; Garret, Maurice

    2016-08-01

    Huntington's disease (HD) is characterized by progressive motor symptoms preceded by cognitive deficits and is regarded as a disorder that primarily affects the basal ganglia. The external globus pallidus (GPe) has a central role in the basal ganglia, projects directly to the cortex, and is majorly modulated by GABA. To gain a better understanding of the time course of HD progression and gain insight into the underlying mechanisms, we analyzed GABAergic neurotransmission in the GPe of the R6/1 mouse model at purportedly asymptomatic and symptomatic stages (i.e., 2 and 6months). Western blot and quantitative polymerase chain reaction (PCR) analyses revealed alterations in the GPe of male R6/1 mice compared with wild-type littermates. Expression of proteins involved in pre- and post-synaptic GABAergic compartments as well as synapse number were severely decreased at 2 and 6months. At both ages, patch-clamp electrophysiological recordings showed a decrease of spontaneous and miniature inhibitory post-synaptic currents (IPSCs) suggesting that HD mutation has an early effect on the GABA signaling in the brain. Therefore, we performed continuous locomotor activity recordings from 2 to 4months of age. Actigraphy analyses revealed rest/activity fragmentation alterations that parallel GABAergic system impairment at 2months, while the locomotor deficit is evident only at 3months in R6/1 mice. Our results reveal early deficits in HD and support growing evidence for a critical role played by the GPe in physiological and pathophysiological states. We suggest that actimetry may be used as a non-invasive tool to monitor early disease progression. PMID:27217211

  6. Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model.

    PubMed

    Fang, Du; Wang, Yongfu; Zhang, Zhihua; Du, Heng; Yan, Shiqiang; Sun, Qinru; Zhong, Changjia; Wu, Long; Vangavaragu, Jhansi Rani; Yan, Shijun; Hu, Gang; Guo, Lan; Rabinowitz, Molly; Glaser, Elzbieta; Arancio, Ottavio; Sosunov, Alexander A; McKhann, Guy M; Chen, John Xi; Yan, Shirley ShiDu

    2015-09-15

    Accumulation of amyloid-β (Aβ) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aβ and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aβ degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aβ-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aβ along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD. PMID:26123488

  7. Selenomethionine reduces the deposition of beta-amyloid plaques by modulating β-secretase and enhancing selenoenzymatic activity in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, Zhong-Hao; Chen, Chen; Wu, Qiu-Yan; Zheng, Rui; Liu, Qiong; Ni, Jia-Zuan; Hoffmann, Peter R; Song, Guo-Li

    2016-08-01

    Alzheimer's disease (AD) is characterized by the production of large amounts of beta-amyloid (Aβ) and the accumulation of extracellular senile plaques, which have been considered to be potential targets in the treatment of AD. Selenium (Se) is a nutritionally essential trace element with known antioxidant potential and Se status has been shown to decrease with age and has a close relationship with cognitive competence in AD. Selenomethionine (Se-Met), a major reserve form of Se in organisms, has been shown in our previous study to ameliorate the decline in cognitive function, increase oxidation resistance, and reduce tau hyperphosphorylation in a triple transgenic mouse model of AD. However, it has not been reported whether Se-Met has any effects on Aβ pathology in AD mice. To study the effect of Se-Met on Aβ pathology and the function of selenoproteins/selenoenzymes in 3× Tg-AD mice, 3× Tg-AD mice at 8 months of age were treated with Se-Met for 3 months. Se-Met led to significantly reduced production and deposition of Aβ, down-regulation of β-secretase levels and enhanced activity of selenoenzymes as well as increased levels of Se in the hippocampus and cortex. Se-Met reduces amyloidogenic processing of amyloid precursor protein while modulating β-secretase and selenoenzymatic activity in AD mice. These results indicate that Se-Met might exert its therapeutic effect through multiple pathways in AD. PMID:27465436

  8. Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer's disease is not long-lasting after treatment discontinuation.

    PubMed

    Ziyatdinova, Sofya; Viswanathan, Jayashree; Hiltunen, Mikko; Tanila, Heikki; Pitkänen, Asla

    2015-05-01

    Patients with Alzheimer's disease are at increased risk for unprovoked seizures and epilepsy compared with age-matched controls. Experimental evidence suggests that neuronal hyperexcitability and epilepsy can be triggered by amyloid-β (Aβ), the main component of amyloid plaques. Previous studies demonstrated that the administration of an anticonvulsant and histone deacetylase inhibitor, valproic acid, leads to a long-lasting reduction in Aβ levels. Here we used an APdE9 mouse model of Alzheimer's disease with overproduction of Aβ to assess whether treatment with valproic acid initiated immediately after epilepsy onset modifies the occurrence of epileptiform activity. We also analyzed whether the effect is long-lasting and associated with antiamyloidogenesis and histone-modifications. Male APdE9 mice (15 week old) received daily intraperitoneal injections of 30mg/kg valproic acid for 1 week. After a 3-week wash-out, the same animals received injections of a higher dose of valproic acid (300mg/kg) daily for 1 week. Long-term video-electroencephalography monitoring was performed prior to, during, and after the treatments. Aβ and total histone H3 and H4 acetylation levels were measured at 1 month after the final valproic acid treatment. While 30mg/kg valproic acid reduced spontaneous seizures in APdE9 mice (p<0.05, chi-square), epileptiform discharges were not reduced. Administration of 300mg/kg valproic acid, however, reduced epileptiform discharges in APdE9 mice for at least 1 week after treatment discontinuation (p<0.05, Wilcoxon test), but there was no consistent long-term effects on epileptiform activity after treatment withdrawal. Further, we found no long-lasting effect on Aβ levels (p>0.05, Mann-Whitney test), only a meager increase in global acetylation of histone H3 (p<0.05), and no effects on H4 acetylation (p>0.05). In conclusion, valproic acid treatment of APdE9 mice at the stage when amyloid plaques are beginning to develop and epileptiform activity

  9. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  10. Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha.

    PubMed

    Siddiqui, Almas; Rane, Anand; Rajagopalan, Subramanian; Chinta, Shankar J; Andersen, Julie K

    2016-09-01

    Loss of parkin E3 ligase activity as a result of parkin gene mutation in rare familial forms of Parkinson's disease (PD) has been shown to be detrimental to mitochondrial function and to contribute to ensuing neurodegeneration. This has been shown by ourselves and others to be in part due to reductions in parkin-mediated ubiquitination of the transcriptional repressor PARIS, limiting the protein's subsequent degradation by the proteasome. Subsequent elevations in PARIS protein levels result in reduced expression of the master mitochondrial regulator PGC-1α, impacting in turn on mitochondrial function. Here, we report that oxidatively-mediated reductions in parkin solubility and function in a mouse model of age-related sporadic PD coincides with increased PARIS levels and reduced PGC-1α signaling. Furthermore, restoration of PGC-1α expression was found to abrogate losses in mitochondrial function and degeneration of dopaminergic (DAergic) neurons within the substantia nigra pars compacta (SNpc) associated with this particular model. These findings suggest that the PGC-1α signaling pathway constitutes a viable therapeutic target for the treatment of not only familial PD, but also more common sporadic forms of the disorder. PMID:27185595

  11. Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model.

    PubMed

    Xiao, Zhaoyang; Cilz, Nicholas I; Kurada, Lalitha; Hu, Binqi; Yang, Chuanxiu; Wada, Etsuko; Combs, Colin K; Porter, James E; Lesage, Florian; Lei, Saobo

    2014-05-14

    Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD. PMID:24828655

  12. Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer's Disease Model

    PubMed Central

    Xiao, Zhaoyang; Cilz, Nicholas I.; Kurada, Lalitha; Hu, Binqi; Yang, Chuanxiu; Wada, Etsuko; Combs, Colin K.; Porter, James E.; Lesage, Florian

    2014-01-01

    Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K+ channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD. PMID:24828655

  13. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway.

    PubMed

    Machhi, Jatin; Sinha, Anshuman; Patel, Pratik; Kanhed, Ashish M; Upadhyay, Pragnesh; Tripathi, Ashutosh; Parikh, Zalak S; Chruvattil, Ragitha; Pillai, Prakash P; Gupta, Sarita; Patel, Kirti; Giridhar, Rajani; Yadav, Mange Ram

    2016-05-01

    Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aβ aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aβ1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aβ1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/β-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aβ1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aβ1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aβ1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/β-catenin pathway as evidenced by increased p-GSK-3, β-catenin, and neuroD1 levels in Aβ1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD. PMID:26797524

  14. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.

    PubMed

    Calon, Frédéric; Lim, Giselle P; Morihara, Takashi; Yang, Fusheng; Ubeda, Oliver; Salem, Norman; Frautschy, Sally A; Cole, Greg M

    2005-08-01

    Epidemiological data indicate that low n-3 polyunsaturated fatty acids (PFA) intake is a readily manipulated dietary risk factor for Alzheimer's disease (AD). Studies in animals confirm the deleterious effect of n-3 PFA depletion on cognition and on dendritic scaffold proteins. Here, we show that in transgenic mice overexpressing the human AD gene APPswe (Tg2576), safflower oil-induced n-3 PFA deficiency caused a decrease in N-methyl-D-aspartate (NMDA) receptor subunits, NR2A and NR2B, in the cortex and hippocampus with no loss of the presynaptic markers, synaptophysin and synaptosomal-associated protein 25 (SNAP-25). n-3 PFA depletion also decreased the NR1 subunit in the hippocampus and Ca2+/calmodulin-dependent protein kinase (CaMKII) in the cortex of Tg2576 mice. These effects of dietary n-3 PFA deficiency were greatly amplified in Tg2576 mice compared to nontransgenic mice. Loss of the NR2B receptor subunit was not explained by changes in mRNA expression, but correlated with p85alpha phosphatidylinositol 3-kinase levels. Most interestingly, n-3 PFA deficiency dramatically increased levels of protein fragments, corresponding to caspase/calpain-cleaved fodrin and gelsolin in Tg2576 mice. This effect was minimal in nontransgenic mice suggesting that n-3 PFA depletion potentiated caspase activation in the Tg2576 mouse model of AD. Dietary supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) partly protected from NMDA receptor subunit loss and accumulation of fodrin and gelsolin fragments but fully prevented CaMKII decrease. The marked effect of dietary n-3 PFA on NMDA receptors and caspase/calpain activation in the cortex of an animal model of AD provide new insights into how dietary essential fatty acids may influence cognition and AD risk. PMID:16101743

  15. Physical Activity Fundamental to Preventing Disease.

    ERIC Educational Resources Information Center

    Office of the Assistant Secretary for Planning and Evaluation (DHHS), Washington, DC.

    Regular physical activity, fitness, and exercise are critically important for all people's health and wellbeing. It can reduce morbidity and mortality from many chronic diseases. Despite its well-known benefits, most U.S. adults, and many children, are not active enough to achieve these health benefits. Physical inactivity and related health…

  16. Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson’s Disease

    PubMed Central

    Daviaud, Nicolas; Garbayo, Elisa; Sindji, Laurence; Martínez-Serrano, Alberto; Schiller, Paul C.

    2015-01-01

    Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. Significance Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). The present work elucidates and compares the survival, differentiation, and

  17. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease.

    PubMed

    Gao, Lei; Tian, Mi; Zhao, Hong-Yun; Xu, Qian-Qian; Huang, Yu-Ming; Si, Qun-Cao; Tian, Qing; Wu, Qing-Ming; Hu, Xia-Min; Sun, Li-Bo; McClintock, Shawn M; Zeng, Yan

    2016-02-01

    We recently demonstrated that activation of tyrosine receptor kinase B (TrkB) by 7, 8-dihydroxyflavone (7, 8-DHF), the selective TrkB agonist, increased surface alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPARs) AMPA receptor subunit GluR1 (GluA1) subunit expression at the synapses of Fragile X Syndrome mutant mice. This present study investigated the effects of 7, 8-DHF on both memory function and synapse structure in relation to the synapse protein level of AMPARs in the Tg2576 Alzheimer's disease (AD) mouse model. The study found that chronic oral administration of 7, 8-DHF significantly improved spatial memory and minimized dendrite loss in the hippocampus of Tg2576 mice. A key feature of 7, 8-DHF action was the increased expression of both GluA1 and GluA2 at synapses. Interestingly, 7, 8-DHF had no effect on the attenuation of amyloid precursor protein or Aβ exhibiting in the Tg2576 AD brains, yet it activated the phosphorylation of TrkB receptors and its downstream signals including CaMKII, Akt, Erk1/2, and cAMP-response element-binding protein. Importantly, cyclotraxin B (a TrkB inhibitor), U0126 (a Ras-ERK pathway inhibitor), Wortmannin (an Akt phosphorylation inhibitor), and KN-93 (a CaMKII inhibitor) counteracted the enhanced expression and phosphorylation of AMPAR subunits induced by 7, 8-DHF. Collectively, our results demonstrated that 7, 8-DHF acted on TrkB and resolved learning and memory impairments in the absence of reduced amyloid in amyloid precursor protein transgenic mice partially through improved synaptic structure and enhanced synaptic AMPARs. The findings suggest that the application of 7, 8-DHF may be a promising new approach to improve cognitive abilities in AD. We provided extensive data demonstrating that 7, 8-dihydroflavone, the TrkB agonist, improved Tg2576 mice spatial memory. This improvement is correlated with a reversion to normal values of GluA1 and GluA2 AMPA receptor subunits and dendritic

  18. Biomarkers for Microglial Activation in Alzheimer's Disease

    PubMed Central

    Lautner, Ronald; Mattsson, Niklas; Schöll, Michael; Augutis, Kristin; Blennow, Kaj; Olsson, Bob; Zetterberg, Henrik

    2011-01-01

    Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques. PMID:22114747

  19. Biomarker Modeling of Alzheimer's Disease

    PubMed Central

    Jack, Clifford R; Holtzman, David M

    2014-01-01

    Alzheimer's disease (AD) is a slowly progressing disorder in which pathophysiological abnormalities, detectable in vivo by biomarkers, precede overt clinical symptoms by many years to decades. Five AD biomarkers are sufficiently validated to have been incorporated into clinical diagnostic criteria and commonly used in therapeutic trials. Current AD biomarkers fall into 2 categories: biomarkers of amyloid-β plaques and of tau-related neurodegeneration. Three of the 5 are imaging measures and two are cerebrospinal fluid analytes. AD biomarkers do not evolve in an identical manner but rather in a sequential but temporally overlapping manner. Models of the temporal evolution of AD biomarkers can take the form of plots of biomarker severity (degree of abnormality) vs. time. In this review we discuss several time-dependent models of AD which take into consideration varying age of onset (early vs. late) and the influence of aging and co-occurring brain pathologies that commonly arise in the elderly. PMID:24360540

  20. Release and activity of histone in diseases.

    PubMed

    Chen, R; Kang, R; Fan, X-G; Tang, D

    2014-01-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases. PMID:25118930

  1. Physical activity, nutrition, and chronic disease.

    PubMed

    Blair, S N; Horton, E; Leon, A S; Lee, I M; Drinkwater, B L; Dishman, R K; Mackey, M; Kienholz, M L

    1996-03-01

    Epidemiologic, animal, clinical, and metabolic studies demonstrate the independent roles of physical activity and nutrition in the prevention and treatment of several chronic diseases. Fewer data are available to describe the synergistic effects of exercise and diet, and questions remain as to whether and how these two lifestyle factors work together to promote health and prevent disease. This paper briefly reviews many of the known effects of physical activity and nutrition on the prevention and treatment of coronary heart disease, non-insulin-dependent diabetes mellitus, obesity, and osteoporosis as well as how exercise and diet may work together. A discussion of how to increase physical activity levels and how to improve dietary intake also is included. Finally, current exercise and dietary recommendations are summarized, as are directions for future research. PMID:8776222

  2. A model for lupus brain disease

    PubMed Central

    Diamond, Betty; Volpe, Bruce T.

    2015-01-01

    Summary Systemic lupus erythematosus is an autoimmune disease characterized by antibodies that bind target autoantigens in multiple organs in the body. In peripheral organs, immune complexes engage the complement cascade, recruiting blood-borne inflammatory cells and initiating tissue inflammation. Immune complex-mediated activation of Fc receptors on infiltrating blood-borne cells and tissue resident cells amplifies an inflammatory cascade with resulting damage to tissue function, ultimately leading to tissue destruction. This pathophysiology appears to explain tissue injury throughout the body, except in the central nervous system. This review addresses a paradigm we have developed for autoantibody-mediated brain damage. This paradigm suggests that antibody-mediated brain disease does not depend on immune complex formation but rather on antibody-mediated alterations in neuronal activation and survival. Moreover, antibodies only access brain tissue when blood-brain barrier integrity is impaired, leading to a lack of concurrence of brain disease and tissue injury in other organs. We discuss the implications of this model for lupus and for identifying other antibodies that may contribute to brain disease. PMID:22725954

  3. A review of disease progression models of Parkinson's disease and applications in clinical trials.

    PubMed

    Venuto, Charles S; Potter, Nicholas B; Ray Dorsey, E; Kieburtz, Karl

    2016-07-01

    Quantitative disease progression models for neurodegenerative disorders are gaining recognition as important tools for drug development and evaluation. In Parkinson's disease (PD), several models have described longitudinal changes in the Unified Parkinson's Disease Rating Scale (UPDRS), one of the most utilized outcome measures for PD trials assessing disease progression. We conducted a literature review to examine the methods and applications of quantitative disease progression modeling for PD using a combination of key words including "Parkinson disease," "progression," and "model." For this review, we focused on models of PD progression quantifying changes in the total UPDRS scores against time. Four different models reporting equations and parameters have been published using linear and nonlinear functions. The reasons for constructing disease progression models of PD thus far have been to quantify disease trajectories of PD patients in active and inactive treatment arms of clinical trials, to quantify and discern symptomatic and disease-modifying treatment effects, and to demonstrate how model-based methods may be used to design clinical trials. The historical lack of efficiency of PD clinical trials begs for model-based simulations in planning for studies that result in more informative conclusions, particularly around disease modification. © 2016 International Parkinson and Movement Disorder Society. PMID:27226141

  4. Chronic Disease Modeling and Simulation Software

    PubMed Central

    Barhak, Jacob; Isaman, Deanna JM; Ye, Wen; Lee, Donghee

    2010-01-01

    Computers allow describing the progress of a disease using computerized models. These models allow aggregating expert and clinical information to allow researchers and decision makers to forecast disease progression. To make this forecast reliable, good models and therefore good modeling tools are required. This paper will describe a new computer tool designed for chronic disease modeling. The modeling capabilities of this tool were used to model the Michigan model for diabetes. The modeling approach and its advantages such as simplicity, availability, and transparency are discussed. PMID:20558320

  5. Practical Disease Modelling with Fruits, Seeds, Bulbs and Tubers.

    ERIC Educational Resources Information Center

    Whitney, Philip

    1989-01-01

    Plant material can be used for classroom investigations of factors influencing infection. Plant responses to infection can be used as teaching models for animal as well as plant diseases. Three activities are discussed. (Author/CW)

  6. Thirteen challenges in modelling plant diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The underlying structure of epidemiological models, and the questions that models can be used to address, do not necessarily depend on the identity of the host. This means that certain preoccupations of plant disease modelers are similar to those of modelers of diseases in animals and humans. Howeve...

  7. Immunization with a Myelin-Derived Antigen Activates the Brain's Choroid Plexus for Recruitment of Immunoregulatory Cells to the CNS and Attenuates Disease Progression in a Mouse Model of ALS.

    PubMed

    Kunis, Gilad; Baruch, Kuti; Miller, Omer; Schwartz, Michal

    2015-04-22

    Amyotrophic lateral sclerosis (ALS) is a devastating fatal motor neuron disease, for which there is currently no cure or effective treatment. In this disease, local neuroinflammation develops along the disease course and contributes to its rapid progression. In several models of CNS pathologies, circulating immune cells were shown to display an indispensable role in the resolution of the neuroinflammatory response. The recruitment of such cells to the CNS involves activation of the choroid plexus (CP) of the brain for leukocyte trafficking, through a mechanism that requires IFN-γ signaling. Here, we found that in the mutant SOD1(G93A) (mSOD1) mouse model of ALS, the CP does not support leukocyte trafficking during disease progression, due to a local reduction in IFN-γ levels. Therapeutic immunization of mSOD1 mice with a myelin-derived peptide led to CP activation, and was followed by the accumulation of immunoregulatory cells, including IL-10-producing monocyte-derived macrophages and Foxp3(+) regulatory T cells, and elevation of the neurotrophic factors IGF-1 and GDNF in the diseased spinal cord parenchyma. The immunization resulted in the attenuation of disease progression and an increased life expectancy of the mSOD1 mice. Collectively, our results demonstrate that recruitment of immunoregulatory cells to the diseased spinal cord in ALS, needed for fighting off the pathology, can be enhanced by transiently boosting peripheral immunity to myelin antigens. PMID:25904790

  8. EULAR Sjogren's syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjogren's syndrome

    PubMed Central

    Seror, Raphaèle; Ravaud, Philippe; Bowman, Simon; Baron, Gabriel; Tzioufas, Athanasios; Theander, Elke; Gottenberg, Jacques-Eric; Bootsma, Hendrika; Mariette, Xavier; Vitali, Claudio

    2010-01-01

    Objective To develop a disease activity index for patients with primary Sjögren’s syndrome (SS): the European League Against Rheumatism (EULAR) Sjögren’s Syndrome Disease Activity Index (ESSDAI). Methods Thirty-nine SS experts participated in an international collaboration, promoted by EULAR, to develop the ESSDAI. Experts identified 12 organ-specific “domains” contributing to disease activity. For each domain, features of disease activity were classified in 3 or 4 levels according to their severity. Data abstracted from 96 patients with systemic complications of primary SS were used to generate 702 realistic vignettes for which all possible systemic complications were represented. Using the 0–10 physician global assessment (PhGA) scale, each expert scored the disease activity of 5 patient profiles and 20 realistic vignettes. Multiple regression modelling, with PhGA used as the dependent variable, was used to estimate the weight of each domain. Results All 12 domains were significantly associated with disease activity in the multivariate model, domain weights ranged from 1 to 6. The ESSDAI scores varied from 2 to 47 and were significantly correlated with PhGA for both real patient profiles and realistic vignettes (r=0.61 and r=0.58, respectively, p<0.0001). Compared to 57 (59.4%) of the real patient profiles, 468 (66.7%) of the realistic vignettes were considered likely or very likely to be true. Conclusion The ESSDAI is a clinical index designed to measure disease activity in patients with primary SS. Once validated, such a standardized evaluation of primary SS should facilitate clinical research and should be helpful as an outcome measure in clinical trials. PMID:19561361

  9. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease. PMID:25451064

  10. Hooked! Modeling human disease in zebrafish.

    PubMed

    Santoriello, Cristina; Zon, Leonard I

    2012-07-01

    Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies. PMID:22751109

  11. Physical activity, obesity and cardiovascular diseases.

    PubMed

    Lakka, T A; Bouchard, C

    2005-01-01

    Sedentary lifestyle and overweight are major public health, clinical, and economical problems in modern societies. The worldwide epidemic of excess weight is due to imbalance between physical activity and dietary energy intake. Sedentary lifestyle, unhealthy diet, and consequent overweight and obesity markedly increase the risk of cardiovascular diseases. Regular physical activity 45-60 min per day prevents unhealthy weight gain and obesity, whereas sedentary behaviors such as watching television promote them. Regular exercise can markedly reduce body weight and fat mass without dietary caloric restriction in overweight individuals. An increase in total energy expenditure appears to be the most important determinant of successful exercise-induced weight loss. The best long-term results may be achieved when physical activity produces an energy expenditure of at least 2,500 kcal/week. Yet, the optimal approach in weight reduction programs appears to be a combination of regular physical activity and caloric restriction. A minimum of 60 min, but most likely 80-90 min of moderate-intensity physical activity per day may be needed to avoid or limit weight regain in formerly overweight or obese individuals. Regular moderate intensity physical activity, a healthy diet, and avoiding unhealthy weight gain are effective and safe ways to prevent and treat cardiovascular diseases and to reduce premature mortality in all population groups. Although the efforts to promote cardiovascular health concern the whole population, particular attention should be paid to individuals who are physically inactive, have unhealthy diets or are prone to weight gain. They have the highest risk for worsening of the cardiovascular risk factor profile and for cardiovascular disease. To combat the epidemic of overweight and to improve cardiovascular health at a population level, it is important to develop strategies to increase habitual physical activity and to prevent overweight and obesity in

  12. Physical activity, brain plasticity, and Alzheimer's disease.

    PubMed

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2012-11-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer's disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer's disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. PMID:23085449

  13. [Plasma cholinesterase activity in hepatic diseases].

    PubMed

    Araoud, Manel; Mhenni, Hamida; Hellara, Ilhem; Hellara, Olfa; Neffati, Fadoua; Douki, Wahiba; Mili, Marwa; Saffar, Hammouda; Najjar, Mohamed Fadhel

    2013-01-01

    Plasma cholinesterase activity (ChE) may vary in some pathological circumstances. We studied the changes in activity of this enzyme according to the type of liver injury, to assess the interest of this parameter in the diagnosis of liver diseases. Our study was performed on 102 patients with different liver diseases and 53 healthy controls. The ChE activity was lower in patients compared to control group (p < 0.0001), and more pronounced in cirrhotic patients compared to those suffering from hepatitis. Elevated activities of AST, ALT, GGT and ALP and bilirubinemia, and decreased albuminemia were noted in patients compared to controls (p < 0.001). Hypoalbuminemia was significantly important in cirrhotic patients compared to those suffering from cholestasis or hepatitis. A correlation between ChE and bilirubin, albumin and serum protein was found in patients with cirrhosis or those with chronic hepatitis. A significantly lower activity of ChE was found in patients with hepatic insufficiency (HI). In case of suspicion of HI, the prescription of ChE activity could guide or confirm the diagnosis of the impairment. PMID:23747666

  14. Graves' disease: thyroid function and immunologic activity

    SciTech Connect

    Gossage, A.A.; Crawley, J.C.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-11-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of (/sup 99m/Tc)pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity--TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p less than 0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination.

  15. Graves' disease: thyroid function and immunologic activity

    SciTech Connect

    Gossage, A.A.R.; Crawley, J.C.W.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-11-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of (/sup 9/-9..mu..Tc)pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity - TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p<0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination.

  16. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model.

    PubMed

    Lamine, Asma; Létourneau, Myriam; Doan, Ngoc Duc; Maucotel, Julie; Couvineau, Alain; Vaudry, Hubert; Chatenet, David; Vaudry, David; Fournier, Alain

    2016-09-01

    Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases. PMID:26006268

  17. Macrophage activation syndrome in autoimmune disease.

    PubMed

    Deane, Sean; Selmi, Carlo; Teuber, Suzanne S; Gershwin, M Eric

    2010-01-01

    Macrophage activation syndrome (MAS) is a phenomenon characterized by cytopenia, organ dysfunction, and coagulopathy associated with an inappropriate activation of macrophages. Current diagnostic criteria are imprecise, but the syndrome is now recognized as a form of hemophagocytic lymphohistiocytosis that is characteristically associated with autoimmune diatheses. The diagnosis of incipient MAS in patients with autoimmune disease requires a high index of suspicion, as several characteristics of the disorder may be present in the underlying condition or infectious complications associated with the treatment thereof. Proposed treatment regimens include aggressive approaches that require validation in future controlled studies. This review discusses the major aspects of the pathophysiology, diagnosis, and management of MAS with a focus on the association with autoimmune disease. PMID:20407267

  18. Modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Selinger, Robin

    We study active nematic phases of self-propelled flexible chains in two dimensions using computer simulation, to investigate effects of chain flexibility. In a ``dry'' phase of self-propelled flexible chains, we find that increasing chain stiffness enhances orientational order and correlation length, narrows the distribution of turning angles, increases persistence length, and increases the magnitude of giant density fluctuations. We further adapt the simulation model to describe behavior of microtubules driven by kinesin molecular motors in two different environments: on a rigid substrate with kinesin immobilized on the surface; and on a lipid membrane where kinesin is bonded to lipid head groups and can diffuse. Results are compared to experiments by L. Hirst and J. Xu. Lastly, we consider active nematics of flexible particles enclosed in soft, deformable encapsulation in two dimensions, and demonstrate novel mechanisms of pattern formation that are fundamentally different from those observed in bulk. Supported by NSF-DMR 1409658.

  19. Active music therapy and Parkinson's disease: methods.

    PubMed

    Pacchetti, C; Aglieri, R; Mancini, F; Martignoni, E; Nappi, G

    1998-01-01

    Music therapy (MT) is an unconventional, multisensorial therapy poorly assessed in medical care but widely used to different ends in a variety of settings. MT has two branches: active and passive. In active MT the utilisation of instruments is structured to correspond to all sensory organs so as to obtain suitable motor and emotional responses. We conducted a prospective study to evaluate the effects of MT in the neurorehabilitation of patients with Parkinson's Disease (PD), a common degenerative disorder involving movement and emotional impairment. Sixteen PD patients took part in 13 weekly sessions of MT each lasting 2 hours. At the beginning and at the end of the session, every 2 weeks, the patients were evaluated by a neurologist, who assessed PD severity with UPDRS, emotional functions with Happiness Measures (HM) and quality of life using the Parkinson's Disease Quality of Life Questionnaire (PDQL). After every session a significant improvement in motor function, particularly in relation to hypokinesia, was observed both in the overall and in the pre-post session evaluations. HM, UPDRS-ADL and PDQL changes confirmed an improving effect of MT on emotional functions, activities of daily living and quality of life. In conclusion, active MT, operating at a multisensorial level, stimulates motor, affective and behavioural functions. Finally, we propose active MT as new method to include in PD rehabilitation programmes. This article describes the methods adopted during MT sessions with PD patients. PMID:9584875

  20. Evolutionary Mutant Models for Human Disease

    PubMed Central

    Albertson, R. Craig; Cresko, William; Detrich, H. William; Postlethwait, John H.

    2010-01-01

    Although induced mutations in traditional laboratory animals have been valuable as models for human diseases, they have some important limitations. Here we propose a complementary approach to discover genes and mechanisms that might contribute to human disorders: the analysis of evolutionary mutant models whose adaptive phenotypes mimic maladaptive human diseases. If the type and mode of action of mutations favored by natural selection in wild populations are similar to those that contribute to human diseases, then studies in evolutionary mutant models have the potential to identify novel genetic factors and gene-by-environment interactions that affect human health and underlie human disease. PMID:19108930

  1. A Low Dose of Fermented Soy Germ Alleviates Gut Barrier Injury, Hyperalgesia and Faecal Protease Activity in a Rat Model of Inflammatory Bowel Disease

    PubMed Central

    Moussa, Lara; Bézirard, Valérie; Salvador-Cartier, Christel; Bacquié, Valérie; Lencina, Corinne; Lévêque, Mathilde; Braniste, Viorica; Ménard, Sandrine

    2012-01-01

    Pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF), IL-1β and TNF-α predominate in inflammatory bowel diseases (IBD) and TNBS colitis. Increased levels of serine proteases activating protease-activated receptor 2 (PAR-2) are found in the lumen and colonic tissue of IBD patients. PAR-2 activity and pro-inflammatory cytokines impair epithelial barrier, facilitating the uptake of luminal aggressors that perpetuate inflammation and visceral pain. Soy extracts contain phytoestrogens (isoflavones) and serine protease inhibitors namely Bowman-Birk Inhibitors (BBI). Since estrogens exhibit anti-inflammatory and epithelial barrier enhancing properties, and that a BBI concentrate improves ulcerative colitis, we aimed to evaluate if a fermented soy germ extract (FSG) with standardized isoflavone profile and stable BBI content exert cumulative or synergistic protection based on protease inhibition and estrogen receptor (ER)-ligand activity in colitic rats. Female rats received orally for 15 d either vehicle or FSG with or without an ER antagonist ICI 182.780 before TNBS intracolonic instillation. Macroscopic and microscopic damages, myeloperoxidase activity, cytokine levels, intestinal paracellular permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression were assessed 24 h, 3 d and 5 d post-TNBS. FSG treatment improved the severity of colitis, by decreasing the TNBS-induced rise in gut permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression at all post-TNBS points. All FSG effects were reversed by the ICI 182.780 except the decrease in faecal proteolytic activity and PAR-2 expression. In conclusion, the anti-inflammatory properties of FSG treatment result from two distinct but synergic pathways i.e an ER-ligand and a PAR-2 mediated pathway, providing rationale for potential use as adjuvant therapy in IBD. PMID:23166707

  2. Tissue-Engineered Kidney Disease Models

    PubMed Central

    DesRochers, Teresa M.; Palma, Erica; Kaplan, David L.

    2014-01-01

    Renal disease represents a major health problem that often results in end-stage renal failure necessitating dialysis and eventually transplantation. Historically these diseases have been studied with patient observation and screening, animal models, and two-dimensional cell culture. In this review, we focus on recent advances in tissue engineered kidney disease models that have the capacity to compensate for the limitations of traditional modalities. The cells and materials utilized to develop these models are discussed and tissue engineered models of polycystic kidney disease, drug-induced nephrotoxicity, and the glomerulus are examined in detail. The application of these models has the potential to direct future disease treatments and preclinical drug development. PMID:24361391

  3. Effect of Curcumin on Lifespan, Activity Pattern, Oxidative Stress, and Apoptosis in the Brains of Transgenic Drosophila Model of Parkinson's Disease

    PubMed Central

    Siddique, Yasir Hasan; Naz, Falaq; Jyoti, Smita

    2014-01-01

    Background. A time dependent loss of dopaminergic neurons and the formation of intracellular aggregates of alpha synuclein have been reported in PD model flies. Methods. The progeny (PD flies) expressing human alpha synuclein was exposed to 25, 50, and 100 µM of curcumin mixed in the diet for 24 days. The effect of curcumin was studied on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of PD model flies. The activity of PD model flies was monitored by using Drosophila activity monitors (DAMs). For the estimation of oxidative stress, lipid peroxidation and protein carbonyl content were estimated in the flies brains of each treated groups. The cell death in Drosophila brain was analyzed by isolating brains in Ringer's solution placing them in 70% ethanol and stained in acridine orange to calculate the gray scale values. Results. The exposure of flies to 25, 50, and 100 µM of curcumin showed a dose dependent significant delay in the loss of activity pattern, reduction in the oxidative stress and apoptosis, and increase in the life span of PD model flies. Conclusion. Curcumin is potent in reducing PD symptoms. PMID:24860828

  4. Activation of Salmonella Typhi-Specific Regulatory T Cells in Typhoid Disease in a Wild-Type S. Typhi Challenge Model

    PubMed Central

    McArthur, Monica A.; Fresnay, Stephanie; Magder, Laurence S.; Darton, Thomas C.; Jones, Claire; Waddington, Claire S.; Blohmke, Christoph J.; Dougan, Gordon; Angus, Brian; Levine, Myron M.; Pollard, Andrew J.; Sztein, Marcelo B.

    2015-01-01

    Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg) by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD) and those who were not (No TD). TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1). We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases. PMID:26001081

  5. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease.

    PubMed

    Bortolanza, Mariza; Cavalcanti-Kiwiatkoski, Roberta; Padovan-Neto, Fernando E; da-Silva, Célia Aparecida; Mitkovski, Miso; Raisman-Vozari, Rita; Del-Bel, Elaine

    2015-01-01

    l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease. PMID:25447229

  6. Active immunotherapy options for Alzheimer’s disease

    PubMed Central

    2014-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia and a major contributor to disability and dependency among older people. AD pathogenesis is associated with the accumulation of amyloid-beta protein (Aβ) and/or hyperphosphorylated tau protein in the brain. At present, current therapies provide temporary symptomatic benefit, but do not treat the underlying disease. Recent research has thus focused on investigating the molecular and cellular pathways and processes involved in AD pathogenesis to support the development of effective disease-modifying agents. In accordance with the existing Aβ-cascade hypothesis for AD pathogenesis, immunotherapy has been the most extensively studied approach in Aβ-targeted therapy. Both passive and active immunotherapies have been shown to effectively reduce Aβ accumulation and prevent downstream pathology in preclinical models. Following AN1792, second-generation active immunotherapies have shown promising results in terms of antibody response and safety. Comparatively, tau immunotherapy is not as advanced, but preclinical data support its development into clinical trials. Results from active amyloid-based immunotherapy studies in preclinical models indicate that intervention appears to be more effective in early stages of amyloid accumulation, highlighting the importance of diagnosing AD as early as possible and undertaking clinical trials at this stage. This strategy, combined with improving our understanding of the complex AD pathogenesis, is imperative to the successful development of these disease-modifying agents. This paper will review the active immunotherapies currently in development, including the benefits and challenges associated with this approach. PMID:24476230

  7. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. PMID:25201221

  8. Flightless Flies: Drosophila models of neuromuscular disease

    PubMed Central

    Lloyd, Thomas E.; Taylor, J. Paul

    2010-01-01

    The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy, myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases. PMID:20329357

  9. Oriented active shape models.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  10. Rabbit Models for Studying Human Infectious Diseases

    PubMed Central

    Peng, Xuwen; Knouse, John A; Hernon, Krista M

    2015-01-01

    Using an appropriate animal model is crucial for mimicking human disease conditions, and various facets including genetics, anatomy, and pathophysiology should be considered before selecting a model. Rabbits (Oryctolagus cuniculus) are well known for their wide use in production of antibodies, eye research, atherosclerosis and other cardiovascular diseases. However, a systematic description of the rabbit as primary experimental models for the study of various human infectious diseases is unavailable. This review focuses on the human infectious diseases for which rabbits are considered a classic or highly appropriate model, including AIDS (caused by HIV1), adult T-cell leukemia–lymphoma (human T-lymphotropic virus type 1), papilloma or carcinoma (human papillomavirus) , herpetic stromal keratitis (herpes simplex virus type 1), tuberculosis (Mycobacterium tuberculosis), and syphilis (Treponema pallidum). In addition, particular aspects of the husbandry and care of rabbits used in studies of human infectious diseases are described. PMID:26678367

  11. Rabbit Models for Studying Human Infectious Diseases.

    PubMed

    Peng, Xuwen; Knouse, John A; Hernon, Krista M

    2015-12-01

    Using an appropriate animal model is crucial for mimicking human disease conditions, and various facets including genetics, anatomy, and pathophysiology should be considered before selecting a model. Rabbits (Oryctolagus cuniculus) are well known for their wide use in production of antibodies, eye research, atherosclerosis and other cardiovascular diseases. However, a systematic description of the rabbit as primary experimental models for the study of various human infectious diseases is unavailable. This review focuses on the human infectious diseases for which rabbits are considered a classic or highly appropriate model, including AIDS (caused by HIV1), adult T-cell leukemia-lymphoma (human T-lymphotropic virus type 1), papilloma or carcinoma (human papillomavirus) , herpetic stromal keratitis (herpes simplex virus type 1), tuberculosis (Mycobacterium tuberculosis), and syphilis (Treponema pallidum). In addition, particular aspects of the husbandry and care of rabbits used in studies of human infectious diseases are described. PMID:26678367

  12. Macrophage Models of Gaucher Disease for Evaluating Disease Pathogenesis and Candidate Drugs

    PubMed Central

    Aflaki, Elma; Stubblefield, Barbara K.; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-01-01

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)–derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. PMID:24920659

  13. A Prediction Model for Chronic Kidney Disease Includes Periodontal Disease

    PubMed Central

    Fisher, Monica A.; Taylor, George W.

    2009-01-01

    Background An estimated 75% of the seven million Americans with moderate-to-severe chronic kidney disease are undiagnosed. Improved prediction models to identify high-risk subgroups for chronic kidney disease enhance the ability of health care providers to prevent or delay serious sequelae, including kidney failure, cardiovascular disease, and premature death. Methods We identified 11,955 adults ≥18 years of age in the Third National Health and Nutrition Examination Survey. Chronic kidney disease was defined as an estimated glomerular filtration rate of 15 to 59 ml/minute/1.73 m2. High-risk subgroups for chronic kidney disease were identified by estimating the individual probability using β coefficients from the model of traditional and non-traditional risk factors. To evaluate this model, we performed standard diagnostic analyses of sensitivity, specificity, positive predictive value, and negative predictive value using 5%, 10%, 15%, and 20% probability cutoff points. Results The estimated probability of chronic kidney disease ranged from virtually no probability (0%) for an individual with none of the 12 risk factors to very high probability (98%) for an older, non-Hispanic white edentulous former smoker, with diabetes ≥10 years, hypertension, macroalbuminuria, high cholesterol, low high-density lipoprotein, high C-reactive protein, lower income, and who was hospitalized in the past year. Evaluation of this model using an estimated 5% probability cutoff point resulted in 86% sensitivity, 85% specificity, 18% positive predictive value, and 99% negative predictive value. Conclusion This United States population–based study suggested the importance of considering multiple risk factors, including periodontal status, because this improves the identification of individuals at high risk for chronic kidney disease and may ultimately reduce its burden. PMID:19228085

  14. Evaluation of Models of Parkinson's Disease

    PubMed Central

    Jagmag, Shail A.; Tripathi, Naveen; Shukla, Sunil D.; Maiti, Sankar; Khurana, Sukant

    2016-01-01

    Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems. PMID:26834536

  15. Active immunization therapies for Parkinson's disease and multiple system atrophy.

    PubMed

    Schneeberger, Achim; Tierney, Lanay; Mandler, Markus

    2016-02-01

    Vaccination is increasingly being investigated as a potential treatment for synucleinopathies, a group of neurodegenerative diseases including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies associated with α-synuclein pathology. All lack a causal therapy. Development of novel, disease-altering treatment strategies is urgently needed. Vaccination has positioned itself as a prime strategy for addressing these diseases because it is broadly applicable, requires infrequent administration, and maintains low production costs for treating a large population or as a preventive measure. Current evidence points to a causal role of misfolded α-synuclein in the development and progression of synucleinopathies. In the past decade, significant progress in active immunization against α-synuclein has been shown both in preclinical animal models and in early clinical development. In this review, we describe the state-of-the-art in active immunization approaches to synucleinopathies, with a focus on advances in Parkinson's disease (PD) and multiple-system atrophy (MSA). We first review preclinical animal models, highlighting their progress in translation to the clinical setting. We then discuss current clinical applications, stressing different approaches taken to address α-synuclein pathology. Finally, we address challenges, trends, and future perspectives of current vaccination programs. PMID:26260853

  16. Translational In Vivo Models for Cardiovascular Diseases.

    PubMed

    Fliegner, Daniela; Gerdes, Christoph; Meding, Jörg; Stasch, Johannes-Peter

    2016-01-01

    Cardiovascular diseases are still the first leading cause of death and morbidity in developed countries. Experimental cardiology research and preclinical drug development in cardiology call for appropriate and especially clinically relevant in vitro and in vivo studies. The use of animal models has contributed to expand our knowledge and our understanding of the underlying mechanisms and accordingly provided new approaches focused on the improvement of diagnostic and treatment strategies of various cardiac pathologies.Numerous animal models in different species as well as in small and large animals have been developed to address cardiovascular complications, including heart failure, pulmonary hypertension, and thrombotic diseases. However, a perfect model of heart failure or other indications that reproduces every aspect of the natural disease does not exist. The complexity and heterogeneity of cardiac diseases plus the influence of genetic and environmental factors limit to mirror a particular disease with a single experimental model.Thus, drug development in the field of cardiology is not only very challenging but also inspiring; therefore animal models should be selected that reflect as best as possible the disease being investigated. Given the wide range of animal models, reflecting critical features of the human pathophysiology available nowadays increases the likelihood of the translation to the patients. Furthermore, this knowledge and the increase of the predictive value of preclinical models help us to find more efficient and reliable solutions as well as better and innovative treatment strategies for cardiovascular diseases. PMID:26552402

  17. The new disease model of alcoholism.

    PubMed Central

    Wallace, J

    1990-01-01

    The new biopsychosocial disease model of alcoholism is examined from the perspective of recent biologic research. Studies of animal and human genetic predispositions suggest the presence of genetic influences over drinking behavior as well as biologic risk factors related to deficiencies in various neurochemicals. Ethanol affects the fluidity of cell membrane lipids, eventually causing membrane dysfunction. It also adversely affects the activity of two enzymes, monoamine oxidase and adenylate cyclase, that have important functions in the information processing system of the brain. Research on condensation products formed in the brain after alcohol consumption has provided clues to the development of alcoholism, but many questions remain unanswered. Alcoholism is clearly a multidimensional phenomenon in which biologic, psychological, and sociocultural factors interact to produce illness. PMID:2190417

  18. Animal models of chronic liver diseases.

    PubMed

    Liu, Yan; Meyer, Christoph; Xu, Chengfu; Weng, Honglei; Hellerbrand, Claus; ten Dijke, Peter; Dooley, Steven

    2013-03-01

    Chronic liver diseases are frequent and potentially life threatening for humans. The underlying etiologies are diverse, ranging from viral infections, autoimmune disorders, and intoxications (including alcohol abuse) to imbalanced diets. Although at early stages of disease the liver regenerates in the absence of the insult, advanced stages cannot be healed and may require organ transplantation. A better understanding of underlying mechanisms is mandatory for the design of new drugs to be used in clinic. Therefore, rodent models are being developed to mimic human liver disease. However, no model to date can completely recapitulate the "corresponding" human disorder. Limiting factors are the time frame required in humans to establish a certain liver disease and the fact that rodents possess a distinct immune system compared with humans and have different metabolic rates affecting liver homeostasis. These features account for the difficulties in developing adequate rodent models for studying disease progression and for testing new pharmaceuticals to be translated into the clinic. Nevertheless, traditional and new promising animal models that mimic certain attributes of chronic liver diseases are established and being used to deepen our understanding in the underlying mechanisms of distinct liver diseases. This review aims at providing a comprehensive overview of recent advances in animal models recapitulating different features and etiologies of human liver diseases. PMID:23275613

  19. Helping People with Alzheimer's Disease Stay Physically Active

    MedlinePlus

    ... Free Stuff Be a Partner Helping People with Alzheimer's Disease Stay Physically Active Regular physical activity has many benefits for people with Alzheimer’s disease. Exercise helps keep muscles, joints, and the ...

  20. Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model

    PubMed Central

    Ortega-Arellano, Hector Flavio; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2013-01-01

    Understanding the mechanism(s) by which dopaminergic (DAergic) neurons are eroded in Parkinson’s disease (PD) is critical for effective therapeutic strategies. By using the binary tyrosine hydroxylase (TH)-Gal4/UAS-X RNAi Drosophila melanogaster system, we report that Dmp53, basket and drICE gene knockdown in dopaminergic neurons prolong life span (p < 0.05; log-rank test) and locomotor activity (p < 0.05; χ2 test) in D. melanogaster lines chronically exposed to (1 mM) paraquat (PQ, oxidative stress (OS) generator) compared to untreated transgenic fly lines. Likewise, knockdown flies displayed higher climbing performance than control flies. Amazingly, gallic acid (GA) significantly protected DAergic neurons, ameliorated life span, and climbing abilities in knockdown fly lines treated with PQ compared to flies treated with PQ only. Therefore, silencing specific gene(s) involved in neuronal death might constitute an excellent tool to study the response of DAergic neurons to OS stimuli. We propose that a therapy with antioxidants and selectively “switching off” death genes in DAergic neurons could provide a means for pre-clinical PD individuals to significantly ameliorate their disease condition. PMID:24385865

  1. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway

    PubMed Central

    Hao, J-R; Sun, N; Lei, L; Li, X-Y; Yao, B; Sun, K; Hu, R; Zhang, X; Shi, X-D; Gao, C

    2015-01-01

    It is accepted that amyloid β-derived diffusible ligands (ADDLs) have a prominent role in triggering the early cognitive deficits that constitute Alzheimer's disease (AD). However, there is still no effective treatment for preventing or reversing the progression of the disease. Targeting α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor trafficking and its regulation is a new strategy for AD early treatment. Here we investigate the effect and mechanism of L-Stepholidine (L-SPD), which elicits dopamine D1-type receptor agonistic activity, while acting as D2-type receptor antagonist on cognition and synaptic plasticity in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice, and hippocampal cultures or slices treated with ADDLs. L-SPD could improve the hippocampus-dependent memory, surface expression of glutamate receptor A (GluA1)-containing AMPA receptors and spine density in hippocampus of APP/PS1 transgenic mice. L-SPD not only rescued decreased phosphorylation and surface expression of GluA1 in hippocampal cultures but also protected the long-term potentiation in hippocampal slices induced by ADDLs. Protein kinase A (PKA) agonist Sp-cAMPS or D1-type receptor agonist SKF81297 had similar effects, whereas PKA antagonist Rp-cAMPS or D1-type receptor antagonist SCH23390 abolished the effect of L-SPD on GluA1 trafficking. This was mediated mainly by PKA, which could phosphorylate serine residue at 845 of the GluA1. L-SPD may be explored as a potential therapeutic drug for AD through a mechanism that improves AMPA receptor trafficking and synaptic plasticity via activating D1/PKA signaling pathway. PMID:26539912

  2. Animal models for motor neuron disease.

    PubMed

    Green, S L; Tolwani, R J

    1999-10-01

    Motor neuron disease is a general term applied to a broad class of neurodegenerative diseases that are characterized by fatally progressive muscular weakness, atrophy, and paralysis attributable to loss of motor neurons. At present, there is no cure for most motor neuron diseases, including amyotrophic lateral sclerosis (ALS), the most common human motor neuron disease--the cause of which remains largely unknown. Animal models of motor neuron disease (MND) have significantly contributed to the remarkable recent progress in understanding the cause, genetic factors, and pathologic mechanisms proposed for this class of human neurodegenerative disorders. Largely driven by ALS research, animal models of MND have proven their usefulness in elucidating potential causes and specific pathogenic mechanisms, and have helped to advance promising new treatments from "benchside to bedside." This review summarizes important features of selected established animal models of MND: genetically engineered mice and inherited or spontaneously occurring MND in the murine, canine, and equine species. PMID:10551448

  3. Animal models for prion-like diseases.

    PubMed

    Fernández-Borges, Natalia; Eraña, Hasier; Venegas, Vanesa; Elezgarai, Saioa R; Harrathi, Chafik; Castilla, Joaquín

    2015-09-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease. PMID:25907990

  4. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer's disease.

    PubMed

    Turunc Bayrakdar, E; Uyanikgil, Y; Kanit, L; Koylu, E; Yalcin, A

    2014-02-01

    The underlying mechanisms of Alzheimer's Disease (AD) are still unclear. It is suggested that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation can cause neuroinflammation and cell death. In this study we searched the effects of nicotinamide (NA), endogenous PARP-1 inhibitor, on oxidative stress, apoptosis, and the regulation of PARP-1 and nuclear factor kappa B (NF-κB) in amyloid beta peptide (1-42) (Aβ(1-42))-induced neurodegeneration. Sprague-Dawley rats were divided into four groups as control, Aβ(1-42), Aβ(1-42) + NA(100 and 500 mg/kg). All groups were stereotaxically injected bilaterally into the hippocampus with Aβ(1-42) or saline. After surgery NA administrations were made intraperitoneally (ip) for 7 days. In order to investigate the effects of Aβ(1-42) and NA, protein carbonyls, lipid peroxidation, reactive oxygen species (ROS) production, glutathione (GSH) levels, activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), mitochondrial function, mRNA and protein levels of PARP-1, NF-κB, p53, Bax, and Bcl-2 were measured in specific brain regions such as cortex and hippocampus. Aβ(1-42) treatment only increased the oxidative stress parameters and caused decline in antioxidant enzyme activities, mitochondrial function, and GSH levels. Also, overexpression of PARP-1, NF-κB, p53, Bax, and the decreased levels of Bcl-2 were observed in Aβ(1-42)-treated group. NA treatments against Aβ(1-42)-upregulated Bcl-2 and downregulated PARP-1, NF-κB, p53, and Bax levels. NA treatments also decreased the oxidative stress parameters and elevated antioxidant enzyme activities, GSH levels, and mitochondrial function against Aβ(1-42) treatment. These data suggest that NA may have a therapeutic potential in neurodegenerative processes due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activity. PMID:24151909

  5. A decision-tree model to detect post-calving diseases based on rumination, activity, milk yield, BW and voluntary visits to the milking robot.

    PubMed

    Steensels, M; Antler, A; Bahr, C; Berckmans, D; Maltz, E; Halachmi, I

    2016-09-01

    Early detection of post-calving health problems is critical for dairy operations. Separating sick cows from the herd is important, especially in robotic-milking dairy farms, where searching for a sick cow can disturb the other cows' routine. The objectives of this study were to develop and apply a behaviour- and performance-based health-detection model to post-calving cows in a robotic-milking dairy farm, with the aim of detecting sick cows based on available commercial sensors. The study was conducted in an Israeli robotic-milking dairy farm with 250 Israeli-Holstein cows. All cows were equipped with rumination- and neck-activity sensors. Milk yield, visits to the milking robot and BW were recorded in the milking robot. A decision-tree model was developed on a calibration data set (historical data of the 10 months before the study) and was validated on the new data set. The decision model generated a probability of being sick for each cow. The model was applied once a week just before the veterinarian performed the weekly routine post-calving health check. The veterinarian's diagnosis served as a binary reference for the model (healthy-sick). The overall accuracy of the model was 78%, with a specificity of 87% and a sensitivity of 69%, suggesting its practical value. PMID:27221983

  6. Editorial: Mathematical modelling of infectious diseases.

    PubMed

    Fenton, Andy

    2016-06-01

    The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species. PMID:27027318

  7. The cybrid model of sporadic Parkinson's disease.

    PubMed

    Trimmer, Patricia A; Bennett, James P

    2009-08-01

    Parkinson's disease (PD) is the eponym attached to the most prevalent neurodegenerative movement disorder of adults, derived from observations of an early nineteenth century physician and paleontologist, James Parkinson, and is now recognized to encompass much more than a movement disorder clinically or dopamine neuron death pathologically. Most PD ( approximately 90%) is sporadic (sPD), is associated with mitochondrial deficiencies and has been studied in cell and animal models arising from the use of mitochondrial toxins that unfortunately have not predicted clinical efficacy to slow disease progression in humans. We have extensively studied the cytoplasmic hybrid ("cybrid") model of sPD in which donor mtDNAs are introduced into and expressed in neural tumor cells with identical nuclear genetic and environmental backgrounds. sPD cybrids demonstrate many abnormalities in which increased oxidative stress drives downstream antioxidant response and cell death activating signaling pathways. sPD cybrids regulate mitochondrial ETC genes and gene ontology families like sPD brain. sPD cybrids spontaneously form Lewy bodies and Lewy neurites, linking mtDNA expression to neuropathology, and demonstrate impaired organelle transport in processes and reduced mitochondrial respiration. Our recent studies show that near-infrared laser light therapy normalizes mitochondrial movement and can stimulate respiration in sPD cybrid neurons, and mitochondrial gene therapy can restore respiration and stimulate mitochondrial ETC gene and protein expression. sPD cybrids have provided multiple lines of circumstantial evidence linking mtDNA to sPD pathogenesis and can serve as platforms for therapy development. sPD cybrid models can be improved by the use of non-tumor human stem cell-derived neural precursor cells and by an introduction of postmortem brain mtDNA to test its causality directly. PMID:19328199

  8. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease.

    PubMed

    Kubota, Takashi; Matsumoto, Hiroshi; Kirino, Yutaka

    2016-07-01

    Membrane-associated estrogen receptor "G protein-coupled receptor 30" (GPR30) has been implicated in spatial recognition memory and protection against neuronal death. The present study investigated the role of GPR30 in object recognition memory in an Alzheimer's disease (AD) mouse model (5XFAD) by using novel object recognition (NOR) test. Impairment of long-term (24 h) recognition memory was observed in both male and female 5XFAD mice. Selective GPR30 agonist, G-1, ameliorated this impairment in female 5XFAD mice, but not in male mice. Our study demonstrated the ameliorative role of GPR30 in NOR memory impaired by AD pathology in female mice. PMID:27423484

  9. Modeling proteasome dynamics in Parkinson's disease.

    PubMed

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel

    2009-01-01

    In Parkinson's disease (PD), there is evidence that alpha-synuclein (alphaSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between alphaSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature alphaSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the alphaSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system. PMID:19411740

  10. Modeling proteasome dynamics in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H.; Pigolotti, Simone; Otzen, Daniel

    2009-09-01

    In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system.

  11. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  12. Modeling Graves' Orbitopathy in Experimental Graves' Disease.

    PubMed

    Banga, J P; Moshkelgosha, S; Berchner-Pfannschmidt, U; Eckstein, A

    2015-09-01

    Graves' orbitopathy (GO), also known as thyroid eye disease is an inflammatory disease of the orbital tissue of the eye that arises as a consequence of autoimmune thyroid disease. The central feature of the disease is the production of antibodies to the thyrotropin hormone receptor (TSHR) that modulate the function of the receptor leading to autoimmune hyperthyroidism and GO. Over the years, all viable preclinical models of Graves' disease have been incomplete and singularly failed to progress in the treatment of orbital complications. A new mouse model of GO based upon immunogenic presentation of human TSHR A-subunit plasmid by close field electroporation is shown to lead to induction of prolonged functional antibodies to TSHR resulting in chronic disease with subsequent progression to GO. The stable preclinical GO model exhibited pathologies reminiscent of human disease characterized by orbital remodeling by inflammation and adipogenesis. Inflammatory lesions characterized by CD3+ T cells and macrophages were localized in the orbital muscle tissue. This was accompanied by extensive adipogenesis of orbital fat in some immune animals. Surprisingly, other signs of orbital involvement were reminiscent of eyelid inflammation involving chemosis, with dilated and congested orbital blood vessels. More recently, the model is replicated in the author's independent laboratories. The pre-clinical model will provide the basis to study the pathogenic and regulatory roles of immune T and B cells and their subpopulations to understand the initiation, pathophysiology, and progression of GO. PMID:26287396

  13. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. PMID:26414877

  14. Modeling neural circuits in Parkinson's disease.

    PubMed

    Psiha, Maria; Vlamos, Panayiotis

    2015-01-01

    Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum. PMID:25416983

  15. A Customizable Model for Chronic Disease Coordination: Lessons Learned From the Coordinated Chronic Disease Program.

    PubMed

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    2016-01-01

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managed resources, and 6) relationship building. These elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs. PMID:27032986

  16. A Customizable Model for Chronic Disease Coordination: Lessons Learned From the Coordinated Chronic Disease Program

    PubMed Central

    Sequeira, Sonia; Chavez, Amy Holmes

    2016-01-01

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managed resources, and 6) relationship building. These elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs. PMID:27032986

  17. Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

    PubMed

    Heimer, G; Rivlin, M; Israel, Z; Bergman, H

    2006-01-01

    Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/ critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity. PMID:17017503

  18. Effects of a combination of puerarin, baicalin and berberine on the expression of proliferator-activated receptor-γ and insulin receptor in a rat model of nonalcoholic fatty liver disease

    PubMed Central

    ZHAO, WEIHAN; LIU, LIJUAN; WANG, YUNLIANG; MAO, TANGYOU; LI, JUNXIANG

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a prevalent disease, with a clinical spectrum ranging from simple fatty liver disease to nonalcoholic steatohepatitis and cirrhosis. Puerarin, baicalin and berberine are herbal products widely used in Asia, which are believed to possess therapeutic benefits for alleviating the symptoms of NAFLD. In the present study, a rat model of NAFLD, induced by a high-fat diet, was established and orthographical experimentation was used to investigate the effects of various combinations of puerarin, baicalin and berberine on the hepatic expression of proliferator-activated receptor (PPAR)-γ and insulin receptor (IR). The present study demonstrated that serum levels of total cholesterol, alanine transaminase and low-density lipoproteins were significantly decreased in the puerarin-dominated groups (P<0.05 vs. the model group), whereas the concentrations of tumor necrosis factor-α and interleukin-6 were significantly improved in the baicalin- and berberine-dominated groups (P<0.05 vs. the model group). Furthermore, as compared with the control group, the levels of PPAR-γ/IR mRNA and protein expression were significantly decreased in the model group (P<0.01), and significantly increased in the rosiglitazone group and some of the orthogonal experiment groups (P<0.01). In conclusion, a combination of puerarin, baicalin and berberine induced favorable effects on NAFLD by upregulating hepatic PPAR-γ and IR expression levels, and different proportions of monomer compositions exerted variable positive effects on various stages of NAFLD. PMID:26889237

  19. A nonlocal spatial model for Lyme disease

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  20. Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease.

    PubMed

    Gully, Joseph C; Sergeyev, Valeriy G; Bhootada, Yogesh; Mendez-Gomez, Hector; Meyers, Craig A; Zolotukhin, Sergey; Gorbatyuk, Marina S; Gorbatyuk, Oleg S

    2016-08-01

    Activating transcription factor 4 (ATF4) is a member of the PERK signaling pathway, which directly binds endoplasmic reticulum stress target genes and plays a crucial role in both adaptations to stress and activation of apoptosis. Previous publications demonstrated conflicting evidence on the role of ATF4 in the pathogenesis of neurodegenerative disorders. In this study, we used recombinant adeno-associate virus (rAAV)-mediated gene transfer to investigate if the sustained up-regulation of ATF4 launches a pro-survival or pro-death trend in the dopamine (DA) cells of the substantia nigra pars compacta in a rat model of Parkinson-like neurodegeneration induced by human alpha-synuclein (αS) overexpression. We showed that ATF4 does not protect nigral DA neurons against an αS-induced pathology. Moreover, the rAAV-mediated overexpression of ATF4 resulted in severe nigra-striatal degeneration via activation of caspases 3/7. PMID:27233218

  1. Animal Models of Polyglutamine Diseases and Therapeutic Approaches*

    PubMed Central

    Marsh, J. Lawrence; Lukacsovich, Tamas; Thompson, Leslie Michels

    2009-01-01

    The dominant gain-of-function polyglutamine repeat diseases, in which the initiating mutation is known, allow development of models that recapitulate many aspects of human disease. To the extent that pathology is a consequence of disrupted fundamental cellular activities, one can effectively study strategies to ameliorate or protect against these cellular insults. Model organisms allow one to identify pathways that affect disease onset and progression, to test and screen for pharmacological agents that affect pathogenic processes, and to validate potential targets genetically as well as pharmacologically. Here, we describe polyglutamine repeat diseases that have been modeled in a variety of organisms, including worms, flies, mice, and non-human primates, and discuss examples of how they have broadened the therapeutic landscape. PMID:18957429

  2. High-Throughput LC-MS/MS Proteomic Analysis of a Mouse Model of Mesiotemporal Lobe Epilepsy Predicts Microglial Activation Underlying Disease Development.

    PubMed

    Bitsika, Vasiliki; Duveau, Venceslas; Simon-Areces, Julia; Mullen, William; Roucard, Corinne; Makridakis, Manousos; Mermelekas, George; Savvopoulos, Pantelis; Depaulis, Antoine; Vlahou, Antonia

    2016-05-01

    Uncovering the molecular mechanisms of mesiotemporal lobe epilepsy (MTLE) is critical to identify therapeutic targets. In this study, we performed global protein expression analysis of a kainic acid (KA) MTLE mouse model at various time-points (1, 3, and 30 days post-KA injection -dpi), representing specific stages of the syndrome. High-resolution liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in combination with label-free protein quantification using three processing approaches for quantification, was applied. Following comparison of KA versus NaCl-injected mice, 22, 53, and 175 proteins were differentially (statistically significant) expressed at 1, 3 and 30dpi, respectively, according to all three quantification approaches. Selected findings were confirmed by multiple reaction monitoring LC-MS/MS. As a positive control, the astrocyte marker GFAP was found to be upregulated (3dpi: 1.9 fold; 30dpi: 12.5 fold), also verified by IHC. The results collectively suggest that impairment in synaptic transmission occurs even right after initial status epilepticus (1dpi), with neurodegeneration becoming more extensive during epileptogenesis (3dpi) and sustained at the chronic phase (30dpi), where also extensive glial- and astrocyte-mediated inflammation is evident. This molecular profile is in line with observed phenotypic changes in human MTLE, providing the basis for future studies on new molecular targets for the disease. PMID:27057777

  3. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's disease.

    PubMed

    Gurevicius, Kestutis; Lipponen, Arto; Tanila, Heikki

    2013-05-01

    Amyloid precursor protein transgenic mice modeling Alzheimer's disease display frequent occurrence of seizures peaking at an age when amyloid plaques start to form in the cortex and hippocampus. We tested the hypothesis that numerous reported interactions of amyloid-β with cell surface molecules result in altered excitation-inhibition balance in brain-wide neural networks, eventually leading to epileptogenesis. We examined electroencephalograms (EEGs) and auditory-evoked potentials (AEPs) in freely moving 4-month-old APPswe/PS1dE9 (APdE9) and wild-type (WT) control mice in the hippocampus, cerebral cortex, and thalamus during movement, quiet waking, non-rapid eye movement sleep, and rapid eye movement (REM) sleep. Cortical EEG power was higher in APdE9 mice than in WT mice over a broad frequency range (5-100 Hz) and during all 4 behavioral states. Thalamic EEG power was also increased but in a narrower range (10-80 Hz). Furthermore, APdE9 mice displayed augmented cortical and thalamic AEPs. While power and theta-gamma modulation were preserved in the APdE9 hippocampus, REM sleep-related phase shift of theta-gamma modulation was altered. Our data suggest that at the early stage of amyloid pathology, cortical principal cells become hyperexcitable and via extensive cortico-thalamic connection drive thalamic cells. Minor hippocampal changes are most likely secondary to abnormal entorhinal input. PMID:22581851

  4. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease

    PubMed Central

    Ersek, Adel; Xu, Ke; Antonopoulos, Aristotelis; Butters, Terry D.; Santo, Ana Espirito; Vattakuzhi, Youridies; Williams, Lynn M.; Goudevenou, Katerina; Danks, Lynett; Freidin, Andrew; Spanoudakis, Emmanouil; Parry, Simon; Papaioannou, Maria; Hatjiharissi, Evdoxia; Chaidos, Aristeidis; Alonzi, Dominic S.; Twigg, Gabriele; Hu, Ming; Dwek, Raymond A.; Haslam, Stuart M.; Roberts, Irene; Dell, Anne; Rahemtulla, Amin; Horwood, Nicole J.; Karadimitris, Anastasios

    2015-01-01

    Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell–derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM. PMID:25915583

  5. Disease Prediction Models and Operational Readiness

    PubMed Central

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M.; Lancaster, Mary J.

    2014-01-01

    The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness

  6. Disease Prediction Models and Operational Readiness

    SciTech Connect

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.

    2014-03-19

    INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the

  7. Disease prediction models and operational readiness.

    PubMed

    Corley, Courtney D; Pullum, Laura L; Hartley, David M; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M; Lancaster, Mary J

    2014-01-01

    The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness

  8. The Pharmacological Chaperone AT2220 Increases the Specific Activity and Lysosomal Delivery of Mutant Acid Alpha-Glucosidase, and Promotes Glycogen Reduction in a Transgenic Mouse Model of Pompe Disease

    PubMed Central

    Lun, Yi; Soska, Rebecca; Feng, Jessie; Dhulipala, Rohini; Frascella, Michelle; Garcia, Anadina; Pellegrino, Lee J.; Xu, Su; Brignol, Nastry; Toth, Matthew J.; Do, Hung V.; Lockhart, David J.; Wustman, Brandon A.; Valenzano, Kenneth J.

    2014-01-01

    Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may

  9. Animal Models Used to Study Superantigen-Mediated Diseases.

    PubMed

    Brosnahan, Amanda J

    2016-01-01

    Superantigens secreted by Staphylococcus aureus and Streptococcus pyogenes interact with the T-cell receptor and major histocompatibility class II molecules on antigen-presenting cells to elicit a massive cytokine release and activation of T cells in higher numbers than that seen with ordinary antigens. Because of this unique ability, superantigens have been implicated as etiological agents for many different types of diseases, including toxic shock syndrome, infective endocarditis, pneumonia, and inflammatory skin diseases. This review covers the main animal models that have been developed in order to identify the roles of superantigens in human disease. PMID:26676033

  10. Comparative study of the neuroprotective and nootropic activities of the carboxylate and amide forms of the HLDF-6 peptide in animal models of Alzheimer's disease.

    PubMed

    Bogachouk, Anna P; Storozheva, Zinaida I; Solovjeva, Olga A; Sherstnev, Vyacheslav V; Zolotarev, Yury A; Azev, Vyacheslav N; Rodionov, Igor L; Surina, Elena A; Lipkin, Valery M

    2016-01-01

    A comparative study of the neuroprotective and nootropic activities of two pharmaceutical substances, the HLDF-6 peptide (HLDF-6-OH) and its amide form (HLDF-6-NH2), was conducted. The study was performed in male rats using two models of a neurodegenerative disorder. Cognitive deficit in rats was induced by injection of the beta-amyloid fragment 25-35 (βA 25-35) into the giant-cell nucleus basalis of Meynert or by coinjection of βA 25-35 and ibotenic acid into the hippocampus. To evaluate cognitive functions in animals, three tests were used: the novel object recognition test, the conditioned passive avoidance task and the Morris maze. Comparative analysis of the data demonstrated that the neuroprotective activity of HLDF-6-NH2, evaluated by improvement of cognitive functions in animals, surpassed that of the native HLDF-6-OH peptide. The greater cognitive/ behavioral effects can be attributed to improved kinetic properties of the amide form of the peptide, such as the character of biodegradation and the half-life time. The effects of HLDF-6-NH2 are comparable to, or exceed, those of the reference compounds. Importantly, HLDF-6-NH2 exerts its effects at much lower doses than the reference compounds. PMID:26628555

  11. The Anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas' disease is less dependent on gamma interferon than that of benznidazole.

    PubMed

    Ferraz, Marcela L; Gazzinelli, Ricardo T; Alves, Rosana O; Urbina, Julio A; Romanha, Alvaro J

    2007-04-01

    We have investigated the influences of gamma interferon (IFN-gamma) and interleukin-12 (IL-12) on the efficacy of posaconazole (POS) treatment of acute experimental infections with Trypanosoma cruzi; the standard drug, benznidazole (BZ), was used as a positive control. Wild-type (WT) mice infected with T. cruzi and treated with POS or BZ had no parasitemia, 100% survival, and cure rates of 86 to 89%. IFN-gamma-knockout (KO) mice infected with T. cruzi and treated with BZ controlled the infection during treatment but relapsed after the drug pressure ceased and had 0% survival, while those receiving POS better controlled the infection after the end of treatment and had 70% survival (P<0.0001 compared to the results for both untreated and BZ-treated animals). IL-12-KO mice infected and treated with POS or BZ had intermediate results, displaying enhanced parasitemia, decreased survival (77 to 83%), and reduced cure rates (35 to 39%) compared with those of the WT animals. Our results demonstrate that either IFN-gamma or IL-12 deficiency reduces the efficacy of POS or BZ in this experimental model but also indicate that the anti-T. cruzi activity of POS is much less dependent on the activity of IFN-gamma than that of BZ is. PMID:17220408

  12. Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease.

    PubMed

    Sun, Yi-Na; Wang, Tao; Wang, Yong; Han, Ling-Na; Li, Li-Bo; Zhang, Yu-Ming; Liu, Jian

    2015-08-01

    Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions. PMID:25797491

  13. Heat Shock Protein-70 (Hsp-70) Suppresses Paraquat-Induced Neurodegeneration by Inhibiting JNK and Caspase-3 Activation in Drosophila Model of Parkinson's Disease

    PubMed Central

    Shukla, Arvind Kumar; Pragya, Prakash; Chaouhan, Hitesh Singh; Tiwari, Anand Krishna; Patel, Devendra Kumar; Abdin, Malik Zainul; Chowdhuri, Debapratim Kar

    2014-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders with limited clinical interventions. A number of epidemiological as well as case-control studies have revealed an association between pesticide exposure, especially of paraquat (PQ) and occurrence of PD. Hsp70, a molecular chaperone by function, has been shown as one of the modulators of neurological disorders. However, paucity of information regarding the protective role of Hsp70 on PQ-induced PD like symptoms led us to hypothesize that modulation of hsp70 expression in the dopaminergic neurons would improve the health of these cells. We took advantage of Drosophila, which is a well-established model for neurological research and also possesses genetic tools for easy manipulation of gene expression with limited ethical concern. Over-expression of hsp70 was found to reduce PQ-induced oxidative stress along with JNK and caspase-3 mediated dopaminergic neuronal cell death in exposed organism. Further, anti-apoptotic effect of hsp70 was shown to confer better homeostasis in the dopaminergic neurons of PQ-exposed organism as evidenced by their improved locomotor performance and survival. The study has merit in the context of human concern since we observed protection of dopaminergic neurons in PQ-exposed organism by over-expressing a human homologue of hsp70, HSPA1L, in these cells. The effect was parallel to that observed with Drosophila hsp70. These findings reflect the potential therapeutic applicability of hsp70 against PQ-induced PD like symptoms in an organism. PMID:24887138

  14. An experimental animal model of Kashin-Beck disease.

    PubMed Central

    Zhang, G Q; Liu, J X

    1989-01-01

    Twelve young macaque monkeys were fed with grain and water from areas actively endemic or non-endemic for Kashin-Beck disease. Both dietary grain and water from geographical areas endemic for Kashin-Beck disease induced a sequence of pathological changes in the growth plates and articular cartilage and biochemical changes in the serum and urine of monkeys. These changes are similar to those in human Kashin-Beck disease. It is considered that this may be a simple and valuable model for the further study of this disease and its management and control. The results suggest that the pathogenetic factors of Kashin-Beck disease relate both to grain and to water in the diet in endemic areas. The experiment also shows that certain serum enzyme concentrations correlate with chondronecrosis. Images PMID:2930266

  15. Modeling Alzheimer's disease with non-transgenic rat models

    PubMed Central

    2013-01-01

    Alzheimer's disease (AD), for which there is no cure, is the most common form of dementia in the elderly. Despite tremendous efforts by the scientific community, the AD drug development pipeline remains extremely limited. Animal models of disease are a cornerstone of any drug development program and should be as relevant as possible to the disease, recapitulating the disease phenotype with high fidelity, to meaningfully contribute to the development of a successful therapeutic agent. Over the past two decades, transgenic models of AD based on the known genetic origins of familial AD have significantly contributed to our understanding of the molecular mechanisms involved in the onset and progression of the disease. These models were extensively used in AD drug development. The numerous reported failures of new treatments for AD in clinical trials indicate that the use of genetic models of AD may not represent the complete picture of AD in humans and that other types of animal models relevant to the sporadic form of the disease, which represents 95% of AD cases, should be developed. In this review, we will discuss the evolution of non-transgenic rat models of AD and how these models may open new avenues for drug development. PMID:23634826

  16. A model for ubiquitous care of noncommunicable diseases.

    PubMed

    Vianna, Henrique Damasceno; Barbosa, Jorge Luis Victória

    2014-09-01

    The ubiquitous computing, or ubicomp, is a promising technology to help chronic diseases patients managing activities, offering support to them anytime, anywhere. Hence, ubicomp can aid community and health organizations to continuously communicate with patients and to offer useful resources for their self-management activities. Communication is prioritized in works of ubiquitous health for noncommunicable diseases care, but the management of resources is not commonly employed. We propose the UDuctor, a model for ubiquitous care of noncommunicable diseases. UDuctor focuses the resources offering, without losing self-management and communication supports. We implemented a system and applied it in two practical experiments. First, ten chronic patients tried the system and filled out a questionnaire based on the technology acceptance model. After this initial evaluation, an alpha test was done. The system was used daily for one month and a half by a chronic patient. The results were encouraging and show potential for implementing UDuctor in real-life situations. PMID:25192571

  17. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors. PMID:26470809

  18. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  19. Modeling of protein misfolding in disease.

    PubMed

    Małolepsza, Edyta B

    2008-01-01

    A short review of the results of molecular modeling of prion disease is presented in this chapter. According to the "one-protein theory" proposed by Prusiner, prion proteins are misfolded naturally occurring proteins, which, on interaction with correctly folded proteins may induce misfolding and propagate the disease, resulting in insoluble amyloid aggregates in cells of affected specimens. Because of experimental difficulties in measurements of origin and growth of insoluble amyloid aggregations in cells, theoretical modeling is often the only one source of information regarding the molecular mechanism of the disease. Replica exchange Monte Carlo simulations presented in this chapter indicate that proteins in the native state, N, on interaction with an energetically higher structure, R, can change their conformation into R and form a dimer, R(2). The addition of another protein in the N state to R(2) may lead to spontaneous formation of a trimer, R(3). These results reveal the molecular basis for a model of prion disease propagation or conformational diseases in general. PMID:18446294

  20. Spontaneous and transgenic rodent models of inflammatory bowel disease

    PubMed Central

    Jurjus, Abdo

    2015-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries. PMID:26155200

  1. Data in support of a central role of plasminogen activator inhibitor-2 polymorphism in recurrent cardiovascular disease risk in the setting of high HDL cholesterol and C-reactive protein using Bayesian network modeling.

    PubMed

    Corsetti, James P; Salzman, Peter; Ryan, Dan; Moss, Arthur J; Zareba, Wojciech; Sparks, Charles E

    2016-09-01

    Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2) on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP) as a marker of inflammation, "Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation" (Corsetti et al., 2016; [1]). The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events) utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]). PMID:27284570

  2. A dynamic, optimal disease control model for foot-and-mouth disease: I. Model description.

    PubMed

    Kobayashi, Mimako; Carpenter, Tim E; Dickey, Bradley F; Howitt, Richard E

    2007-05-16

    A dynamic optimization model was developed and used to evaluate alternative foot-and-mouth disease (FMD) control strategies. The model chose daily control strategies of depopulation and vaccination that minimized total regional cost for the entire epidemic duration, given disease dynamics and resource constraints. The disease dynamics and the impacts of control strategies on these dynamics were characterized in a set of difference equations; effects of movement restrictions on the disease dynamics were also considered. The model was applied to a three-county region in the Central Valley of California; the epidemic relationships were parameterized and validated using the information obtained from an FMD simulation model developed for the same region. The optimization model enables more efficient searches for desirable control strategies by considering all strategies simultaneously, providing the simulation model with optimization results to direct it in generating detailed predictions of potential FMD outbreaks. PMID:17280729

  3. Murine neonatal intravascular injections: Modeling newborn disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to perform murine neonatal intravascular injections likely will prove useful in studying many newborn-specific disease states that are modeled in mice. Unfortunately, effective intravascular injection in the neonatal mouse has been limited by developmental immaturity and small size. To e...

  4. Animal Models of Parkinson's Disease: Vertebrate Genetics

    PubMed Central

    Lee, Yunjong; Dawson, Valina L.; Dawson, Ted M.

    2012-01-01

    Parkinson's disease (PD) is a complex genetic disorder that is associated with environmental risk factors and aging. Vertebrate genetic models, especially mice, have aided the study of autosomal-dominant and autosomal-recessive PD. Mice are capable of showing a broad range of phenotypes and, coupled with their conserved genetic and anatomical structures, provide unparalleled molecular and pathological tools to model human disease. These models used in combination with aging and PD-associated toxins have expanded our understanding of PD pathogenesis. Attempts to refine PD animal models using conditional approaches have yielded in vivo nigrostriatal degeneration that is instructive in ordering pathogenic signaling and in developing therapeutic strategies to cure or halt the disease. Here, we provide an overview of the generation and characterization of transgenic and knockout mice used to study PD followed by a review of the molecular insights that have been gleaned from current PD mouse models. Finally, potential approaches to refine and improve current models are discussed. PMID:22960626

  5. Airborne spread of foot-and-mouth disease - model intercomparison

    SciTech Connect

    Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

  6. Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease and aging.

    PubMed

    Bar-Am, Orit; Amit, Tamar; Kupershmidt, Lana; Aluf, Yuval; Mechlovich, Danit; Kabha, Hoda; Danovitch, Lena; Zurawski, Vincent R; Youdim, Moussa B H; Weinreb, Orly

    2015-03-01

    Recently, we have designed and synthesized a novel multipotent, brain-permeable iron-chelating drug, VAR10303 (VAR), possessing both propargyl and monoamine oxidase (MAO) inhibitory moieties. The present study was undertaken to determine the multiple pharmacological activities of VAR in neurodegenerative preclinical models. We demonstrate that VAR affords iron chelating/iron-induced lipid-peroxidation inhibitory potency and brain selective MAO-A and MAO-B inhibitory effects, with only limited tyramine-cardiovascular potentiation of blood pressure. The results show that in 6-hydroxydopamine rat (neuroprotection) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse (neurorescue) Parkinson's disease models, VAR significantly attenuated the loss of striatal dopamine levels, markedly reduced dopamine turnover, and increased tyrosine-hydroxylase levels. Furthermore, chronic systemic treatment of aged rats with VAR improved cognitive behavior deficits and enhanced the expression levels of neurotrophic factors (e.g., brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and nerve growth factor), Bcl-2 family members and synaptic plasticity in the hippocampus. Our study indicates that the multitarget compound VAR exerted neuroprotective and neurorestorative effects in animal models of Parkinson's disease and aging, further suggesting that a drug that can regulate multiple brain targets could be an ideal treatment-strategy for age-associated neurodegenerative disorders. PMID:25499799

  7. Global Modeling Activities and NAME

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Atlas, Robert (Technical Monitor)

    2002-01-01

    In this talk I will review global modeling activities in the United States that could contribute to and benefit from NAME activities. I will present some preliminary results from several global atmospheric general circulation model simulation experiments for the initial NAME model intercomparison project period of May-Oct 1990. These include an ensemble of medium resolution simulations, and a high resolution (one half degree) simulation. I will also discuss possible high resolution global data assimilation experiments that could be used to help validate the model simulations and assimilate planned NAME observations.

  8. Exercise Decreases Risk of Future Active Disease in Inflammatory Bowel Disease Patients in Remission

    PubMed Central

    Jones, Patricia D.; Kappelman, Michael D.; Martin, Christopher F.; Chen, Wenli; Sandler, Robert S.; Long, Millie D.

    2015-01-01

    Background Although exercise impacts quality of life in patients with inflammatory bowel disease (IBD), little is known about its role in disease activity. Among IBD patients in remission, we aimed to evaluate the association between exercise and subsequent active disease. Methods We performed a prospective study using the Crohn's and Colitis Foundation of America (CCFA) Partners Internet-based cohort of individuals with self-reported IBD. We identified participants in remission, defined as short Crohn's disease activity index (sCDAI) <150 or simple clinical colitis activity index (SCCAI) ≤2. The primary exposure was exercise status, measured using the validated Godin leisure time activity index. The primary study outcome, assessed after six months, was active disease defined using the above disease activity index thresholds. We used bivariate and multivariate analyses to describe the independent association between exercise and risk of active disease. Results We identified 1308 patients with Crohn's Disease (CD) and 549 with ulcerative or indeterminate colitis (UC/IC) in remission, of whom 227(17.4%) with CD and 135 (24.6%) with UC/IC developed active disease after 6 months. Higher exercise level was associated with decreased risk of active disease for CD (adjusted RR 0.72, 95% CI 0.55-0.94) and UC/IC (adjusted RR 0.78, 95% CI 0.54-1.13). Conclusions In patients with CD in remission, those with higher exercise levels were significantly less likely to develop active disease at six months. In patients with UC/IC in remission, patients with higher exercise levels were less likely to develop active disease at six months, however this was not statistically significant. PMID:25723616

  9. [Experimental model of ocular ischemic diseases].

    PubMed

    Kiseleva, T N; Chudin, A V

    2014-01-01

    The review presents the most common methods of modeling of retinal ischemia in vitro (chemical ischemia with iodoacetic acid, incubation of the retinal pigment epithelium cells with oligomycin, deprivation of oxygen and glucose) and in vivo (a model with increased intraocular pressure, cerebral artery occlusion, chronic ligation of the carotid arteries, photocoagulation of the retinal vessels, occlusion of the central retinal artery, endothelin-1 administration). Modeling ischemic injury in rats is the most frequently used method in studies, because the blood supply of their eyes is similar to blood flow in the human eyes. Each method has its own advantages and disadvantages. Application of methods depends on the purpose of the experimental study. Currently model of ocular ischemic disease can be obtained easily by injecting vasoconstrictive drug endothelin-1. It is the most widely used method of high intraocular pressure induced ocular ischemic damage similar to glaucoma, occlusion of central retinal artery or ophthalmic artery in human. The development of experimental models of ocular ischemic diseases and detailed investigation of mechanisms of impairment of microcirculation are useful for improve the efficiency of diagnostic and treatment of ischemic diseases of retina and optic nerve. PMID:25971134

  10. Modeling approaches for active systems

    NASA Astrophysics Data System (ADS)

    Herold, Sven; Atzrodt, Heiko; Mayer, Dirk; Thomaier, Martin

    2006-03-01

    To solve a wide range of vibration problems with the active structures technology, different simulation approaches for several models are needed. The selection of an appropriate modeling strategy is depending, amongst others, on the frequency range, the modal density and the control target. An active system consists of several components: the mechanical structure, at least one sensor and actuator, signal conditioning electronics and the controller. For each individual part of the active system the simulation approaches can be different. To integrate the several modeling approaches into an active system simulation and to ensure a highly efficient and accurate calculation, all sub models must harmonize. For this purpose, structural models considered in this article are modal state-space formulations for the lower frequency range and transfer function based models for the higher frequency range. The modal state-space formulations are derived from finite element models and/or experimental modal analyses. Consequently, the structure models which are based on transfer functions are directly derived from measurements. The transfer functions are identified with the Steiglitz-McBride iteration method. To convert them from the z-domain to the s-domain a least squares solution is implemented. An analytical approach is used to derive models of active interfaces. These models are transferred into impedance formulations. To couple mechanical and electrical sub-systems with the active materials, the concept of impedance modeling was successfully tested. The impedance models are enhanced by adapting them to adequate measurements. The controller design strongly depends on the frequency range and the number of modes to be controlled. To control systems with a small number of modes, techniques such as active damping or independent modal space control may be used, whereas in the case of systems with a large number of modes or with modes that are not well separated, other control

  11. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. PMID:27066769

  12. Animal Models of CNS Viral Disease: Examples from Borna Disease Virus Models

    PubMed Central

    Solbrig, Marylou V.

    2010-01-01

    Borna disease (BD), caused by the neurotropic RNA virus, Borna Disease virus, is an affliction ranging from asymptomatic to fatal meningoencephalitis across naturally and experimentally infected warmblooded (mammalian and bird) species. More than 100 years after the first clinical descriptions of Borna disease in horses and studies beginning in the 1980's linking Borna disease virus to human neuropsychiatric diseases, experimentally infected rodents have been used as models for examining behavioral, neuropharmacological, and neurochemical responses to viral challenge at different stages of life. These studies have contributed to understanding the role of CNS viral injury in vulnerability to behavioral, developmental, epileptic, and neurodegenerative diseases and aided evaluation of the proposed and still controversial links to human disease. PMID:20204069

  13. Endophenotype Network Models: Common Core of Complex Diseases.

    PubMed

    Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph

    2016-01-01

    Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease's expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules. PMID:27278246

  14. A Home Production Activity Model.

    ERIC Educational Resources Information Center

    Beutler, Ivan F.; Owen, Alma J.

    1980-01-01

    The family is examined as a focal unit of production and a home production activity model is developed. An interdisciplinary approach is used which puts the broad range of family activities on a continuum from production to consumption. (Author/SK)

  15. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  16. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  17. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  18. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics

    PubMed Central

    Tao, Ya-Xiong

    2008-01-01

    The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs. PMID:18768149

  19. Inhibiting caspase-6 activation and catalytic activity for neurodegenerative diseases.

    PubMed

    Flygare, John A; Arkin, Michelle R

    2014-01-01

    Partnerships between industry and academia are becoming increasingly complex and relevant in the drive to discover innovative new medicines. We describe the structure of the collaboration between the University of California - San Francisco - Small Molecule Discovery Center (UCSF-SMDC) and Genentech to develop chemical matter that inhibits the activity of caspase-6. We focus on the scientific basis for the partnership and how the orientation- and transaction-related barriers were overcome. We describe the division of labor that allowed two groups to operate as a unified team to generate multiple chemical series with distinct mechanisms of action. The successful structure of the agreement serves as a model for future collaborations at both institutions. PMID:24283214

  20. Modelling autoimmune rheumatic disease: a likelihood rationale.

    PubMed

    Ulvestad, E

    2003-07-01

    Immunoglobulins (Igs) and autoantibodies are commonly tested in sera from patients with suspected rheumatic disease. To evaluate the clinical utility of the tests in combination, we investigated sera from 351 patients with autoimmune rheumatic disease (ARD) rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS) and 96 patients with nonautoimmune rheumatic disease (NAD) (fibromyalgia, osteoarthritis, etc.). Antinuclear antibodies (ANA), rheumatoid factor (RF), antibodies against DNA and extractable nuclear antigens (anti-ENA), IgG, IgA and IgM were measured for all patients. Logistic regression analysis of test results was used to calculate each patient's probability for belonging to the ARD or NAD group as well as likelihood ratios for disease. Test accuracy was investigated using receiver-operating characteristic (ROC) plots and nonparametric ROC analysis. Neither concentrations of IgG, IgA, IgM, anti-DNA nor anti-ENA gave a significant effect on diagnostic outcome. Probabilities for disease and likelihood ratios calculated by combining RF and ANA performed significantly better at predicting ARD than utilization of the diagnostic tests in isolation (P < 0.001). At a cut-off level of P = 0.73 and likelihood ratio = 1, the logistic model gave a specificity of 93% and a sensitivity of 75% for the differentiation between ARD and NAD. When compared at the same level of specificity, ANA gave a sensitivity of 37% and RF gave a sensitivity of 56.6%. Dichotomizing ANA and RF as positive or negative did not reduce the performance characteristics of the model. Combining results obtained from serological analysis of ANA and RF according to this model will increase the diagnostic utility of the tests in rheumatological practice. PMID:12828565

  1. TSPO in a murine model of Sandhoff disease: presymptomatic marker of neurodegeneration and disease pathophysiology.

    PubMed

    Loth, Meredith K; Choi, Judy; McGlothan, Jennifer L; Pletnikov, Mikhail V; Pomper, Martin G; Guilarte, Tomás R

    2016-01-01

    Translocator protein (18 kDa), formerly known as the peripheral benzodiazepine receptor (PBR), has been extensively used as a biomarker of active brain disease and neuroinflammation. TSPO expression increases dramatically in glial cells, particularly in microglia and astrocytes, as a result of brain injury, and this phenomenon is a component of the hallmark response of the brain to injury. In this study, we used a mouse model of Sandhoff disease (SD) to assess the longitudinal expression of TSPO as a function of disease progression and its relationship to behavioral and neuropathological endpoints. Focusing on the presymptomatic period of the disease, we used ex vivo [(3)H]DPA-713 quantitative autoradiography and in vivo [(125)I]IodoDPA-713 small animal SPECT imaging to show that brain TSPO levels markedly increase prior to physical and behavioral manifestation of disease. We further show that TSPO upregulation coincides with early neuronal GM2 ganglioside aggregation and is associated with ongoing neurodegeneration and activation of both microglia and astrocytes. In brain regions with increased TSPO levels, there is a differential pattern of glial cell activation with astrocytes being activated earlier than microglia during the progression of disease. Immunofluorescent confocal imaging confirmed that TSPO colocalizes with both microglia and astrocyte markers, but the glial source of the TSPO response differs by brain region and age in SD mice. Notably, TSPO colocalization with the astrocyte marker GFAP was greater than with the microglia marker, Mac-1. Taken together, our findings have significant implications for understanding TSPO glial cell biology and for detecting neurodegeneration prior to clinical expression of disease. PMID:26545928

  2. Meclizine is neuroprotective in models of Huntington's disease.

    PubMed

    Gohil, Vishal M; Offner, Nicolas; Walker, James A; Sheth, Sunil A; Fossale, Elisa; Gusella, James F; MacDonald, Marcy E; Neri, Christian; Mootha, Vamsi K

    2011-01-15

    Defects in cellular energy metabolism represent an early feature in a variety of human neurodegenerative diseases. Recent studies have shown that targeting energy metabolism can protect against neuronal cell death in such diseases. Here, we show that meclizine, a clinically used drug that we have recently shown to silence oxidative metabolism, suppresses apoptotic cell death in a murine cellular model of polyglutamine (polyQ) toxicity. We further show that this protective effect extends to neuronal dystrophy and cell death in Caenorhabditis elegans and Drosophila melanogaster models of polyQ toxicity. Meclizine's mechanism of action is not attributable to its anti-histaminergic or anti-muscarinic activity, but rather, strongly correlates with its ability to suppress mitochondrial respiration. Since meclizine is an approved drug that crosses the blood-brain barrier, it may hold therapeutic potential in the treatment of polyQ toxicity disorders, such as Huntington's disease. PMID:20977989

  3. Meclizine is neuroprotective in models of Huntington's disease

    PubMed Central

    Gohil, Vishal M.; Offner, Nicolas; Walker, James A.; Sheth, Sunil A.; Fossale, Elisa; Gusella, James F.; MacDonald, Marcy E.; Neri, Christian; Mootha, Vamsi K.

    2011-01-01

    Defects in cellular energy metabolism represent an early feature in a variety of human neurodegenerative diseases. Recent studies have shown that targeting energy metabolism can protect against neuronal cell death in such diseases. Here, we show that meclizine, a clinically used drug that we have recently shown to silence oxidative metabolism, suppresses apoptotic cell death in a murine cellular model of polyglutamine (polyQ) toxicity. We further show that this protective effect extends to neuronal dystrophy and cell death in Caenorhabditis elegans and Drosophila melanogaster models of polyQ toxicity. Meclizine's mechanism of action is not attributable to its anti-histaminergic or anti-muscarinic activity, but rather, strongly correlates with its ability to suppress mitochondrial respiration. Since meclizine is an approved drug that crosses the blood–brain barrier, it may hold therapeutic potential in the treatment of polyQ toxicity disorders, such as Huntington's disease. PMID:20977989

  4. Seasonal prevalence of MS disease activity(Podcast)

    PubMed Central

    Meier, D.S.; Balashov, K.E.; Healy, B.; Weiner, H.L.; Guttmann, C.R.G.

    2010-01-01

    Objective: This observational cohort study investigated the seasonal prevalence of multiple sclerosis (MS) disease activity (likelihood and intensity), as reflected by new lesions from serial T2-weighted MRI, a sensitive marker of subclinical disease activity. Methods: Disease activity was assessed from the appearance of new T2 lesions on 939 separate brain MRI examinations in 44 untreated patients with MS. Likelihood functions for MS disease activity were derived, accounting for the temporal uncertainty of new lesion occurrence, individual levels of disease activity, and uneven examination intervals. Both likelihood and intensity of disease activity were compared with the time of year (season) and regional climate data (temperature, solar radiation, precipitation) and among relapsing and progressive disease phenotypes. Contrast-enhancing lesions and attack counts were also compared for seasonal effects. Results: Unlike contrast enhancement or attacks, new T2 activity revealed a likelihood 2–3 times higher in March–August than during the rest of the year, and correlated strongly with regional climate data, in particular solar radiation. In addition to the likelihood or prevalence, disease intensity was also elevated during the summer season. The elevated risk season appears to lessen for progressive MS and occur about 2 months earlier. Conclusion: This study documents evidence of a strong seasonal pattern in subclinical MS activity based on noncontrast brain MRI. The observed seasonality in MS disease activity has implications for trial design and therapy assessment. The observed activity pattern is suggestive of a modulating role of seasonally changing environmental factors or season-dependent metabolic activity. GLOSSARY CEL = contrast-enhancing lesions; MS = multiple sclerosis. PMID:20805526

  5. Activity enhances dopaminergic long-duration response in Parkinson disease

    PubMed Central

    Auinger, Peggy; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Mendis, Tilak

    2012-01-01

    Objective: We tested the hypothesis that dopamine-dependent motor learning mechanism underlies the long-duration response to levodopa in Parkinson disease (PD) based on our studies in a mouse model. By data-mining the motor task performance in dominant and nondominant hands of the subjects in a double-blind randomized trial of levodopa therapy, the effects of activity and dopamine therapy were examined. Methods: We data-mined the Earlier versus Later Levodopa Therapy in Parkinson's Disease (ELLDOPA) study published in 2005 and performed statistical analysis comparing the effects of levodopa and dominance of handedness over 42 weeks. Results: The mean change in finger-tapping counts from baseline before the initiation of therapy to predose at 9 weeks and 40 weeks increased more in the dominant compared to nondominant hand in levodopa-treated subjects in a dose-dependent fashion. There was no significant difference in dominant vs nondominant hands in the placebo group. The short-duration response assessed by the difference of postdose performance compared to predose performance at the same visit did not show any significant difference between dominant vs nondominant hands. Conclusions: Active use of the dominant hand and dopamine replacement therapy produces synergistic effect on long-lasting motor task performance during “off” medication state. Such effect was confined to dopamine-responsive symptoms and not seen in dopamine-resistant symptoms such as gait and balance. We propose that long-lasting motor learning facilitated by activity and dopamine is a form of disease modification that is often seen in trials of medications that have symptomatic effects. PMID:22459675

  6. A 3D alcoholic liver disease model on a chip.

    PubMed

    Lee, JaeSeo; Choi, BongHwan; No, Da Yoon; Lee, GeonHui; Lee, Seung-Ri; Oh, HyunJik; Lee, Sang-Hoon

    2016-03-14

    Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications. PMID:26857817

  7. Gastrointestinal tract modelling in health and disease

    PubMed Central

    Liao, Dong-Hua; Zhao, Jing-Bo; Gregersen, Hans

    2009-01-01

    The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract function are generated by the integrated behaviour of multiple tissues and cell types. A thorough study of the GI tract requires understanding of the interactions between cells, tissues and gastrointestinal organs in health and disease. This depends on knowledge, not only of numerous cellular ionic current mechanisms and signal transduction pathways, but also of large scale GI tissue structures and the special distribution of the nervous network. A unique way of coping with this explosion in complexity is mathematical and computational modelling; providing a computational framework for the multilevel modelling and simulation of the human gastrointestinal anatomy and physiology. The aim of this review is to describe the current status of biomechanical modelling work of the GI tract in humans and animals, which can be further used to integrate the physiological, anatomical and medical knowledge of the GI system. Such modelling will aid research and ensure that medical professionals benefit, through the provision of relevant and precise information about the patient’s condition and GI remodelling in animal disease models. It will also improve the accuracy and efficiency of medical procedures, which could result in reduced cost for diagnosis and treatment. PMID:19132766

  8. Ideal Experimental Rat Models for Liver Diseases.

    PubMed

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-05-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes. PMID:26421020

  9. An ovine transgenic Huntington's disease model

    PubMed Central

    Jacobsen, Jessie C.; Bawden, C. Simon; Rudiger, Skye R.; McLaughlan, Clive J.; Reid, Suzanne J.; Waldvogel, Henry J.; MacDonald, Marcy E.; Gusella, James F.; Walker, Simon K.; Kelly, Jennifer M.; Webb, Graham C.; Faull, Richard L.M.; Rees, Mark I.; Snell, Russell G.

    2010-01-01

    Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene [Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell, 72, 971–983]. Despite identification of the gene in 1993, the underlying life-long disease process and effective treatments to prevent or delay it remain elusive. In an effort to fast-track treatment strategies for HD into clinical trials, we have developed a new large-animal HD transgenic ovine model. Sheep, Ovis aries L., were selected because the developmental pattern of the ovine basal ganglia and cortex (the regions primarily affected in HD) is similar to the analogous regions of the human brain. Microinjection of a full-length human HTT cDNA containing 73 polyglutamine repeats under the control of the human promotor resulted in six transgenic founders varying in copy number of the transgene. Analysis of offspring (at 1 and 7 months of age) from one of the founders showed robust expression of the full-length human HTT protein in both CNS and non-CNS tissue. Further, preliminary immunohistochemical analysis demonstrated the organization of the caudate nucleus and putamen and revealed decreased expression of medium size spiny neuron marker DARPP-32 at 7 months of age. It is anticipated that this novel transgenic animal will represent a practical model for drug/clinical trials and surgical interventions especially aimed at delaying or preventing HD initiation. New sequence accession number for ovine HTT mRNA: FJ457100. PMID:20154343

  10. Endophenotype Network Models: Common Core of Complex Diseases

    PubMed Central

    Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph

    2016-01-01

    Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules. PMID:27278246

  11. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  12. NALP3 inflammasome activation in protein misfolding diseases.

    PubMed

    Shi, Fushan; Kouadir, Mohammed; Yang, Yang

    2015-08-15

    Protein-misfolding diseases, such as Alzheimer's disease, type 2 diabetes, Prion diseases, and Parkinson's disease, are characterized by inflammatory reactions. In all these diseases, IL-1β (Interlukine-1β) has been shown to be an important regulator, and the misfolded proteins are proved to be triggers of the release of IL-1β. Recently, several reports demonstrated that the inflammasome activation is involved in the progress of the misfolded protein diseases, and that the inflammasome can recognize pathogenic proteins leading to the release of IL-1β. In this review, we discuss the role of inflammasome in the pathogenesis of misfolded protein diseases and the potential of inflammasome-targeting therapeutic interventions in the management of these diseases. PMID:26037399

  13. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer's disease.

    PubMed

    Shaerzadeh, Fatemeh; Motamedi, Fereshteh; Khodagholi, Fariba

    2014-11-01

    3-Methyladenine (3-MA), as a PI3K inhibitor, is widely used for inhibition of autophagy. Inhibition of PI3K class I leads to inhibition of Akt phosphorylation, a central molecule involved in diverse arrays of intracellular cascades in nervous system. Accordingly, in the present study, we aimed to determine the alterations of specific mitochondrial biogenesis markers and mitochondrial function in 3-MA-injected rats following amyloid beta (Aβ) insult. Our data revealed that inhibition of Akt phosphorylation downregulates master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our data also showed that decrease in PGC-1α level presumably is due to decrease in the phosphorylation of cAMP-response element binding and AMP-activated kinase, two upstream activators of PGC-1α. As a consequence, the level of some mitochondrial biogenesis factors including nuclear respiratory factor-1, mitochondrial transcription factor A, and Cytochrome c decreased significantly. Also, activities of tricarboxylic acid cycle (TCA) enzymes such as Aconitase, a-ketoglutarate dehydrogenase, and malate dehydrogenase reduced in the presence of 3-MA with or without Aβ insult. Decrease in mitochondrial biogenesis factors and TCA enzyme activity in the rats receiving 3-MA and Aβ were more compared to the rats that received either alone; indicating the additive destructive effects of these two agents. In agreement with our molecular results, data obtained from behavioral test (using novel objective recognition test) indicated that inhibition of Akt phosphorylation with or without Aβ injection impaired novel recognition (non-spatial) memory. Our results suggest that 3-MA amplified deleterious effects of Aβ by targeting central molecule Akt. PMID:25135709

  14. Inhibition of endoplasmic reticulum stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson's disease.

    PubMed

    Tong, Qiang; Wu, Liang; Jiang, Teng; Ou, Zhou; Zhang, Yingdong; Zhu, Dongya

    2016-04-01

    Telmisartan, one unique angiotensin II type 1 receptor blocker, has been attracting attention due to its putative peroxisome proliferator-activated receptor (PPAR)-γ or β/δ actions. Recently, telmisartan has been reported to exert neuroprotective effects in animal models of Parkinson's disease (PD). However, the underlying mechanisms have not been fully clarified. Recently, accumulating evidence has shown that endoplasmic reticulum (ER) stress plays a crucial role in rotenone-induced neuronal apoptosis. Additionally, studies have revealed that inositol-requiring enzyme/endonuclease 1α (IRE1α) is necessary and sufficient to trigger ER stress. In the present study, we aimed to determine whether ER stress-activated IRE1α-mediated apoptotic pathway is involved in the neuroprotection of telmisartan in the rotenone rats of PD and explore the possible involvement of PPAR-β/δ activation. The catalepsy tests were performed to test the catalepsy symptom. The dopamine content and α-synuclein expression were ascertained through high-performance liquid chromatography and immunohistochemistry, respectively. The expression of IRE1α, TNF receptor associated factor 2 (TRAF2), caspase-12 and PPAR-β/δ was detected by western blot. Neuronal apoptosis was assessed by TUNEL and immunohistochemistry. Our results show that telmisartan ameliorated the catalepsy symptom and attenuated dopamine depletion as well as α-synuclein accumulation. Moreover, telmisartan decreased ER stress-mediated neuronal apoptosis. Furthermore, telmisartan inhibited IRE1α-TRAF2-caspase-12 apoptotic signaling pathway. Additionally, telmisartan activated PPAR β/δ, implying that PPAR-β/δ activation properties of telmisartan are possibly or partially involved in the neuroprotective effects. In conclusion, our findings suggest that suppressing ER stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rats of PD. PMID

  15. Computational models of epileptiform activity.

    PubMed

    Wendling, Fabrice; Benquet, Pascal; Bartolomei, Fabrice; Jirsa, Viktor

    2016-02-15

    We reviewed computer models that have been developed to reproduce and explain epileptiform activity. Unlike other already-published reviews on computer models of epilepsy, the proposed overview starts from the various types of epileptiform activity encountered during both interictal and ictal periods. Computational models proposed so far in the context of partial and generalized epilepsies are classified according to the following taxonomy: neural mass, neural field, detailed network and formal mathematical models. Insights gained about interictal epileptic spikes and high-frequency oscillations, about fast oscillations at seizure onset, about seizure initiation and propagation, about spike-wave discharges and about status epilepticus are described. This review shows the richness and complementarity of the various modeling approaches as well as the fruitful contribution of the computational neuroscience community in the field of epilepsy research. It shows that models have progressively gained acceptance and are now considered as an efficient way of integrating structural, functional and pathophysiological data about neural systems into "coherent and interpretable views". The advantages, limitations and future of modeling approaches are discussed. Perspectives in epilepsy research and clinical epileptology indicate that very promising directions are foreseen, like model-guided experiments or model-guided therapeutic strategy, among others. PMID:25843066

  16. Large animal models of cardiovascular disease.

    PubMed

    Tsang, H G; Rashdan, N A; Whitelaw, C B A; Corcoran, B M; Summers, K M; MacRae, V E

    2016-04-01

    The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26914991

  17. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  18. A customizable model for chronic disease coordination: Lessons learned from the coordinated chronic disease program

    DOE PAGESBeta

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    2016-03-31

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less

  19. Multiple plasma enzyme activities in liver disease

    PubMed Central

    Hargreaves, T.; Janota, I.; Smith, M. J. H.

    1961-01-01

    The measurement of the plasma activities of glutamic-oxaloacetic and glutamic-pyruvic transaminases, aldolase, cholinesterase, and isocitric, lactic, and phosphogluconic dehydrogenases in random samples of blood was found to be of no value in the differential diagnosis of hepatitis, obstructive jaundice, hepatic cirrhosis, and neoplastic conditions involving the liver. Serial determinations of the enzyme activities provided useful information about the course of certain hepatic disorders, particularly acute viral hepatitis. PMID:13711559

  20. Animal Models of Cardiac Disease and Stem Cell Therapy

    PubMed Central

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue; Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases. PMID:21258568

  1. Animal models of skin disease for drug discovery

    PubMed Central

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  2. Understanding impacts of climatic extremes on diarrheal disease epidemics: Insights from mechanistic disease propagation models

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2013-12-01

    An epidemic outbreak of diarrheal diseases (primarily cholera) in Haiti in 2010 is a reminder that our understanding on disease triggers, transmission and spreading mechanisms is incomplete. Cholera can occur in two forms - epidemic (defined as sudden outbreak in a historically disease free region) and endemic (recurrence and persistence of the disease for several consecutive years). Examples of countries with epidemic cholera include Pakistan (2008), Congo (2008), and most recently Haiti (2010). A significant difference between endemic and epidemic regions is the mortality rate, i.e., 1% or lower in an endemic regions versus 3-7% during recent epidemic outbreaks. A fundamentally transformational approach - a warning system with several months prediction lead time - is needed to prevent disease outbreak and minimize its impact on population. Lack of information on spatial and temporal variability of disease incidence as well as transmission in human population continues to be significant challenge in the development of early-warning systems for cholera. Using satellite data on regional hydroclimatic processes, water and sanitation infrastructure indices, and biological pathogen growth information, here we present a Simple, Mechanistic, Adaptive, Remote sensing based Regional Transmission or SMART model to (i) identify regions of potential cholera outbreaks and (ii) quantify mechanism of spread of the disease in previously disease free region. Our results indicate that epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for the growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. We discuss the above findings in light of

  3. Mast cells and their activation in lung disease.

    PubMed

    Virk, Harvinder; Arthur, Greer; Bradding, Peter

    2016-08-01

    Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes. PMID:26845625

  4. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    PubMed Central

    Rodrigues, Lais S.; Targa, Adriano D. S.; Noseda, Ana Carolina D.; Aurich, Mariana F.; Da Cunha, Cláudio; Lima, Marcelo M. S.

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson’s disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = −0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum. PMID:25520618

  5. Hypothalamic digoxin-mediated model for Parkinson's disease.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid pathway produces four key metabolites important in cellular function--digoxin (endogenous membrane Na(+)-K+ ATPase inhibitor), dolichol (important in N-glycosylation of proteins), ubiquinone (free-radical scavenger), and cholesterol (component of cellular membranes). This study assessed the changes in the isoprenoid pathway and the consequences of its dysfunction in Parkinson's disease (PD). There was an elevation in plasma HMG CoA reductase activity, serum digoxin and dolichol levels, and a reduction in serum magnesium, RBC membrane Na(+)-K+ ATPase activity, and serum ubiquinone levels. Serum tryptophan, serotonin, strychnine, nicotine, and quinolinic acid were elevated, while tyrosine, morphine, dopamine, and noradrenaline were decreased. The total serum glycosaminoglycans (GAG) and glycosaminoglycan fractions (except chondroitin sulphates and hyaluronic acid), the activity of GAG degrading enzymes, carbohydrate residues of serum glycoproteins, the activity of glycohydrolase-beta galactosidase, and serum glycolipids were elevated. HDL cholesterol was reduced and free fatty acids increased. The RBC membrane glycosaminoglycans, hexose and fucose residues of glycoproteins and cholesterol were reduced, while phospholipid was increased. The activity of all serum free-radical scavenging enzymes, concentration of glutathione, alpha tocopherol, iron binding capacity, and ceruloplasmin decreased significantly in PD, while the concentration of serum lipid peroxidation products and nitric oxide increased. A dysfunctional isoprenoid pathway and related cascade are important in the pathogenesis of Parkinson's disease. A hypothalamic digoxin mediated model for Parkinson's disease is also postulated. PMID:12856480

  6. Complement protein C3 exacerbates prion disease in a mouse model of chronic wasting disease.

    PubMed

    Michel, Brady; Ferguson, Adam; Johnson, Theodore; Bender, Heather; Meyerett-Reid, Crystal; Wyckoff, A Christy; Pulford, Bruce; Telling, Glenn C; Zabel, Mark D

    2013-12-01

    Accumulating evidence shows a critical role of the complement system in facilitating attachment of prions to both B cells and follicular dendritic cells and assisting in prion replication. Complement activation intensifies disease in prion-infected animals, and elimination of complement components inhibits prion accumulation, replication and pathogenesis. Chronic wasting disease (CWD) is a highly infectious prion disease of captive and free-ranging cervid populations that utilizes the complement system for efficient peripheral prion replication and most likely efficient horizontal transmission. Here we show that complete genetic or transient pharmacological depletion of C3 prolongs incubation times and significantly delays splenic accumulation in a CWD transgenic mouse model. Using a semi-quantitative prion amplification scoring system we show that C3 impacts disease progression in the early stages of disease by slowing the rate of prion accumulation and/or replication. The delayed kinetics in prion replication correlate with delayed disease kinetics in mice deficient in C3. Taken together, these data support a critical role of C3 in peripheral CWD prion pathogenesis. PMID:24038599

  7. Mathematical modeling of infectious disease dynamics

    PubMed Central

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  8. Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer's disease.

    PubMed

    Filali, Mohammed; Lalonde, Robert; Rivest, Serge

    2011-05-01

    Glutamate neurotoxicity has been proposed to be involved in Alzheimer pathogenesis, with clinical data supporting successful treatment with the NMDA receptor antagonist memantine. In the present study, the effects of subchronic memantine administration were assessed on spatial and non-spatial learning as well as exploratory activity and nest-building in APP/PS1 mutant mice. Memantine (10 mg/kg, i.p.) was better than placebo during the reversal phase of left-right discrimination, though equivalent to saline for Morris water maze and passive avoidance learning. The drug had no effect on non-learned behaviors in elevated plus-maze exploration and nest-building. These results support a specific action of the NMDA receptor antagonist on behavioral flexibility in mutant mice with amyloid pathology. PMID:21281652

  9. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission

    PubMed Central

    Rooks, Michelle G; Veiga, Patrick; Wardwell-Scott, Leslie H; Tickle, Timothy; Segata, Nicola; Michaud, Monia; Gallini, Carey Ann; Beal, Chloé; van Hylckama-Vlieg, Johan ET; Ballal, Sonia A; Morgan, Xochitl C; Glickman, Jonathan N; Gevers, Dirk; Huttenhower, Curtis; Garrett, Wendy S

    2014-01-01

    Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet−/− Rag2−/− mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis. PMID:24500617

  10. Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models

    PubMed Central

    Lee, Soojin; Bang, Se Min; Lee, Joon Woo; Cho, Kyoung Sang

    2014-01-01

    Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines. PMID:24790636

  11. Modeling rapidly disseminating infectious disease during mass gatherings

    PubMed Central

    2012-01-01

    We discuss models for rapidly disseminating infectious diseases during mass gatherings (MGs), using influenza as a case study. Recent innovations in modeling and forecasting influenza transmission dynamics at local, regional, and global scales have made influenza a particularly attractive model scenario for MG. We discuss the behavioral, medical, and population factors for modeling MG disease transmission, review existing model formulations, and highlight key data and modeling gaps related to modeling MG disease transmission. We argue that the proposed improvements will help integrate infectious-disease models in MG health contingency plans in the near future, echoing modeling efforts that have helped shape influenza pandemic preparedness plans in recent years. PMID:23217051

  12. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis.

    PubMed

    Dweck, Marc R; Aikawa, Elena; Newby, David E; Tarkin, Jason M; Rudd, James H F; Narula, Jagat; Fayad, Zahi A

    2016-07-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is, therefore, shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression, and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis, and the advantages and challenges posed by these techniques. PMID:27390335

  13. Effect of 2 Psychotherapies on Depression and Disease Activity in Pediatric Crohn's Disease

    PubMed Central

    Youk, Ada O.; Gonzalez-Heydrich, Joseph; Bujoreanu, Simona I.; Weisz, John; Fairclough, Diane; Ducharme, Peter; Jones, Neil; Lotrich, Francis; Keljo, David; Srinath, Arvind; Bousvaros, Athos; Kupfer, David; DeMaso, David R.

    2015-01-01

    Background: Crohn's disease (CD) is associated with depression. It is unclear if psychosocial interventions offer benefit for depressive symptoms during active CD. In this secondary analysis of a larger study of treating depression in pediatric inflammatory bowel disease, we assessed whether cognitive behavioral therapy (CBT) would differentiate from supportive nondirective therapy in treating depression and disease activity in youth with CD. We also explored whether somatic depressive symptoms showed a different pattern of response in the overall sample and the subset with active inflammatory bowel disease. Methods: Youth with depression and CD (n = 161) were randomized to 3 months of CBT (teaching coping skills) or supportive nondirective therapy (supportive listening). Depressive severity was measured using the Children's Depression Rating Scale-Revised (CDRS-R) with the somatic depressive subtype consisting of those CDRS-R items, which significantly correlated with CD activity. Disease activity was measured by the Pediatric Crohn's disease Activity Index. Given the potential confound of higher dose steroids, subanalyses excluded subjects on >20 mg/d prednisone equivalent (n = 34). Results: Total CDRS-R scores in the overall sample significantly decreased over time after both treatments (P < 0.0001). Treatment with CBT was associated with a significantly greater improvement in the Pediatric Crohn's disease Activity Index (P = 0.05) and somatic depressive subtype (P = 0.03) in those with active inflammatory bowel disease (n = 95) compared with supportive nondirective therapy. After excluding those on steroids (n = 34), there was a significant improvement in total CDRS-R (P = 0.03) and in Pediatric Crohn's disease Activity Index (P = 0.03) after CBT. Conclusions: Psychotherapy may be a useful adjunct to treat depression in the context of CD-related inflammation in youth who are not concurrently on higher dose steroids. PMID:25822010

  14. Movement-related cortical activation in familial Parkinson disease.

    PubMed

    Delval, A; Defebvre, L; Labyt, E; Douay, X; Bourriez, J-L; Waucquiez, N; Derambure, P; Destée, A

    2006-09-26

    We sought to determine whether or not first-degree relatives of patients with familial Parkinson disease (FDRs) present impaired movement-related cortical activity. We studied 10 familial Parkinson disease subjects, 10 FDRs, and 10 controls and analyzed event-related mu desynchronization (ERD) and beta synchronization. Forty percent FDRs presented reduced premovement mu ERD latency, suggesting that premovement cortical activation is impaired in FDRs. PMID:17000986

  15. Temporal Effect of Depressive Symptoms on the Longitudinal Evolution of Rheumatoid Arthritis Disease Activity

    PubMed Central

    Rathbun, Alan M.; Harrold, Leslie R.; Reed, George W.

    2016-01-01

    Objective Depression is common in the rheumatoid arthritis (RA) population, yet little is known of its effect on the course of disease activity. The aim of our study was to determine if prevalent and incident depressive symptoms influenced longitudinal changes in RA disease activity. Methods RA patients with and without depressive symptoms were identified using single-item questions from an existing registry sample. Mixed-effects models were used to examine changes in disease activity over 2 years in those with and without prevalent and incident depressive symptoms. Outcome variables included composite disease activity, joint counts, global assessments, pain, function, and acute-phase reactants. Model-based outcome estimations at the index dates and corresponding 1- and 2-year changes were calculated. Results Rates of disease activity change were significantly different in patients with a lifetime prevalence of symptomology, but not incident depressive symptoms, when compared to controls. Prior symptoms were associated with slower rates of disease activity decline, evidenced by the estimated 1-year Clinical Disease Activity Index changes: −3.0 (−3.3, −2.6) and −4.0 (−4.3, −3.6) in patients with and without lifetime prevalence, respectively. Analogous results were obtained for most of the other disease activity outcomes; although, there was no temporal effect of prevalent symptoms of depression on swollen joints and acute-phase reactants. Conclusion Depressive symptoms temporally influence the evolution of RA disease activity, and the magnitude is dependent on the time of symptomatic onset. However, the effect is limited to patient-reported pain, global assessment, and function, as well as physician-reported global assessment and tender joints. PMID:25384985

  16. A Stage Model of Stress and Disease.

    PubMed

    Cohen, Sheldon; Gianaros, Peter J; Manuck, Stephen B

    2016-07-01

    In this article, we argued that the term stress has served as a valuable heuristic, helping researchers to integrate traditions that illuminate different stages of the process linking stressful life events to disease. We provided a short history of three traditions in the study of stress: the epidemiological, psychological, and biological. The epidemiological tradition focuses on defining which circumstances and experiences are deemed stressful on the basis of consensual agreement that they constitute threats to social or physical well-being. The psychological tradition focuses on individuals' perceptions of the stress presented by life events on the basis of their appraisals of the threats posed and the availability of effective coping resources. The biological tradition focuses on brain-based perturbations of physiological systems that are otherwise essential for normal homeostatic regulation and metabolic control. The foci of these three traditions have informed elements of a stage model of disease, wherein events appraised as stressful are viewed as triggering affective states that in turn engender behavioral and biological responses having possible downstream implications for disease. PMID:27474134

  17. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease

    PubMed Central

    Chung, Young C; Shin, Won-Ho; Baek, Jeong Y; Cho, Eun J; Baik, Hyung H; Kim, Sang R; Won, So-Yoon; Jin, Byung K

    2016-01-01

    The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. However, the mechanisms underlying CB2 receptor-mediated neuroprotection in MPTP mice have not been elucidated. The mechanisms underlying CB2 receptor-mediated neuroprotection of dopamine neurons in the substantia nigra (SN) were evaluated in the MPTP mouse model of Parkinson's disease (PD) by immunohistochemical staining (tyrosine hydroxylase, macrophage Ag complex-1, glial fibrillary acidic protein, myeloperoxidase (MPO), and CD3 and CD68), real-time PCR and a fluorescein isothiocyanate-labeled albumin assay. Treatment with the selective CB2 receptor agonist JWH-133 (10 μg kg−1, intraperitoneal (i.p.)) prevented MPTP-induced degeneration of dopamine neurons in the SN and of their fibers in the striatum. This JWH-133-mediated neuroprotection was associated with the suppression of blood–brain barrier (BBB) damage, astroglial MPO expression, infiltration of peripheral immune cells and production of inducible nitric oxide synthase, proinflammatory cytokines and chemokines by activated microglia. The effects of JWH-133 were mimicked by the non-selective cannabinoid receptor WIN55,212 (10 μg kg−1, i.p.). The observed neuroprotection and inhibition of glial-mediated neurotoxic events were reversed upon treatment with the selective CB2 receptor antagonist AM630, confirming the involvement of the CB2 receptor. Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.

  18. The Fuzzy Model for Diagnosis of Animal Disease

    NASA Astrophysics Data System (ADS)

    Jianhua, Xiao; Luyi, Shi; Yu, Zhang; Li, Gao; Honggang, Fan; Haikun, Ma; Hongbin, Wang

    The knowledge of animal disease diagnosis was fuzzy; the fuzzy model can imitate the character of clinical diagnosis for veterinary. The fuzzy model of disease, the methods for class the disease group of differential diagnosis and the fuzzy diagnosis model were discussed in this paper.

  19. Modeling Activities in Earth Science

    NASA Astrophysics Data System (ADS)

    Malone, Kathy

    2014-05-01

    Students usually find science to be quite abstract. This is especially true of disciplines like Earth Science where it is difficult for the students to conduct and design hands-on experiments in areas such as Plate Tectonics that would allow them to develop predictive models. In the United States the new Next Generation Science Standards explicitly requires students to experience the science disciplines via modeling based activities. This poster presentation will discuss an activity that demonstrates how modeling, plate tectonics and student discourse converge in the earth science classroom. The activities featured on the poster will include using cardboard and shaving cream to demonstrate convergent plate boundaries, a Milky Way candy bar to demonstrate divergent boundaries and silly putty to demonstrate a strike slip boundary. I will discuss how students report back to the group about the findings from the lab and the techniques that can be used to heighten the student discourse. The activities outlined in this poster were originally designed for a middle school Earth Science class by Suzi Shoemaker for a graduate thesis at Arizona State University.

  20. Microglia Activated with the Toll-Like Receptor 9 Ligand CpG Attenuate Oligomeric Amyloid β Neurotoxicity in in Vitro and in Vivo Models of Alzheimer’s Disease

    PubMed Central

    Doi, Yukiko; Mizuno, Tetsuya; Maki, Yuki; Jin, Shijie; Mizoguchi, Hiroyuki; Ikeyama, Masayoshi; Doi, Minoru; Michikawa, Makoto; Takeuchi, Hideyuki; Suzumura, Akio

    2009-01-01

    Soluble oligomeric amyloid β (oAβ) 1-42 causes synaptic dysfunction and neuronal injury in Alzheimer’s disease (AD). Although accumulation of microglia around senile plaques is a hallmark of AD pathology, the role of microglia in oAβ1-42 neurotoxicity is not fully understood. Here, we showed that oAβ but not fibrillar Aβ was neurotoxic, and microglia activated with unmethylated DNA CpG motif (CpG), a ligand for Toll-like receptor 9, attenuated oAβ1-42 neurotoxicity in primary neuron-microglia co-cultures. CpG enhanced microglial clearance of oAβ1-42 and induced higher levels of the antioxidant enzyme heme oxygenase-1 in microglia without producing neurotoxic molecules such as nitric oxide and glutamate. Among subclasses of CpGs, class B and class C activated microglia to promote neuroprotection. Moreover, intracerebroventricular administration of CpG ameliorated both the cognitive impairments induced by oAβ1-42 and the impairment of associative learning in Tg2576 mouse model of AD. We propose that CpG may be an effective therapeutic strategy for limiting oAβ1-42 neurotoxicity in AD. PMID:19834064

  1. Clinical Candidate VT-1161's Antiparasitic Effect In Vitro, Activity in a Murine Model of Chagas Disease, and Structural Characterization in Complex with the Target Enzyme CYP51 from Trypanosoma cruzi

    PubMed Central

    Hoekstra, William J.; Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; da Gama Jaen Batista, Denise; da Silva, Cristiane F.; Nefertiti, Aline S. G.; Rachakonda, Girish; Schotzinger, Robert J.; Villalta, Fernando; Soeiro, Maria de Nazaré C.

    2015-01-01

    A novel antifungal drug candidate, the 1-tetrazole-based agent VT-1161 [(R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-{5-[4-(2,2,2-trifluoroethoxy)phenyl]pyridin-2-yl}propan-2-ol], which is currently in two phase 2b antifungal clinical trials, was found to be a tight-binding ligand (apparent dissociation constant [Kd], 24 nM) and a potent inhibitor of cytochrome P450 sterol 14α-demethylase (CYP51) from the protozoan pathogen Trypanosoma cruzi. Moreover, VT-1161 revealed a high level of antiparasitic activity against amastigotes of the Tulahuen strain of T. cruzi in cellular experiments (50% effective concentration, 2.5 nM) and was active in vivo, causing >99.8% suppression of peak parasitemia in a mouse model of infection with the naturally drug-resistant Y strain of the parasite. The data strongly support the potential utility of VT-1161 in the treatment of Chagas disease. The structural characterization of T. cruzi CYP51 in complex with VT-1161 provides insights into the molecular basis for the compound's inhibitory potency and paves the way for the further rational development of this novel, tetrazole-based inhibitory chemotype both for antiprotozoan chemotherapy and for antifungal chemotherapy. PMID:26643331

  2. Clinical Candidate VT-1161's Antiparasitic Effect In Vitro, Activity in a Murine Model of Chagas Disease, and Structural Characterization in Complex with the Target Enzyme CYP51 from Trypanosoma cruzi.

    PubMed

    Hoekstra, William J; Hargrove, Tatiana Y; Wawrzak, Zdzislaw; da Gama Jaen Batista, Denise; da Silva, Cristiane F; Nefertiti, Aline S G; Rachakonda, Girish; Schotzinger, Robert J; Villalta, Fernando; Soeiro, Maria de Nazaré C; Lepesheva, Galina I

    2016-02-01

    A novel antifungal drug candidate, the 1-tetrazole-based agent VT-1161 [(R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-{5-[4-(2,2,2-trifluoroethoxy)phenyl]pyridin-2-yl}propan-2-ol], which is currently in two phase 2b antifungal clinical trials, was found to be a tight-binding ligand (apparent dissociation constant [Kd], 24 nM) and a potent inhibitor of cytochrome P450 sterol 14α-demethylase (CYP51) from the protozoan pathogen Trypanosoma cruzi. Moreover, VT-1161 revealed a high level of antiparasitic activity against amastigotes of the Tulahuen strain of T. cruzi in cellular experiments (50% effective concentration, 2.5 nM) and was active in vivo, causing >99.8% suppression of peak parasitemia in a mouse model of infection with the naturally drug-resistant Y strain of the parasite. The data strongly support the potential utility of VT-1161 in the treatment of Chagas disease. The structural characterization of T. cruzi CYP51 in complex with VT-1161 provides insights into the molecular basis for the compound's inhibitory potency and paves the way for the further rational development of this novel, tetrazole-based inhibitory chemotype both for antiprotozoan chemotherapy and for antifungal chemotherapy. PMID:26643331

  3. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  4. Downregulation of Sulfotransferase Expression and Activity in Diseased Human Livers

    PubMed Central

    Yalcin, Emine B.; More, Vijay; Neira, Karissa L.; Lu, Zhenqiang James; Cherrington, Nathan J.; Slitt, Angela L.

    2013-01-01

    Sulfotransferase (SULT) function has been well studied in healthy human subjects by quantifying mRNA and protein expression and determining enzyme activity with probe substrates. However, it is not well known if sulfotransferase activity changes in metabolic and liver disease, such as diabetes, steatosis, or cirrhosis. Sulfotransferases have significant roles in the regulation of hormones and excretion of xenobiotics. In the present study of normal subjects with nonfatty livers and patients with steatosis, diabetic cirrhosis, and alcoholic cirrhosis, we sought to determine SULT1A1, SULT2A1, SULT1E1, and SULT1A3 activity and mRNA and protein expression in human liver tissue. In general, sulfotransferase activity decreased significantly with severity of liver disease from steatosis to cirrhosis. Specifically, SULT1A1 and SULT1A3 activities were lower in disease states relative to nonfatty tissues. Alcoholic cirrhotic tissues further contained lower SULT1A1 and 1A3 activities than those affected by either of the two other disease states. SULT2A1, on the other hand, was only reduced in alcoholic cirrhotic tissues. SULT1E1 was reduced both in diabetic cirrhosis and in alcoholic cirrhosis tissues, relative to nonfatty liver tissues. In conclusion, the reduced levels of sulfotransferase expression and activity in diseased versus nondiseased liver tissue may alter the metabolism and disposition of xenobiotics and affect homeostasis of endobiotic sulfotransferase substrates. PMID:23775849

  5. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease)

    PubMed Central

    Spuch, Carlos; Navarro, Carmen

    2011-01-01

    Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB). Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease. PMID:22203906

  6. Reductions in disease activity in the AMPLE trial: clinical response by baseline disease duration

    PubMed Central

    Schiff, Michael; Weinblatt, Michael E; Valente, Robert; Citera, Gustavo; Maldonado, Michael; Massarotti, Elena; Yazici, Yusuf; Fleischmann, Roy

    2016-01-01

    Objectives To evaluate clinical response by baseline disease duration using 2-year data from the AMPLE trial. Methods Patients were randomised to subcutaneous abatacept 125 mg weekly or adalimumab 40 mg bi-weekly, with background methotrexate. As part of a post hoc analysis, the achievement of validated definitions of remission (Clinical Disease Activity Index (CDAI) ≤2.8, Simplified Disease Activity Index (SDAI) ≤3.3, Routine Assessment of Patient Index Data 3 (RAPID3) ≤3.0, Boolean score ≤1), low disease activity (CDAI <10, SDAI <11, RAPID3 ≤6.0), Health Assessment Questionnaire-Disability Index response and American College of Rheumatology responses were evaluated by baseline disease duration (≤6 vs >6 months). Disease Activity Score 28 (C-reactive protein) <2.6 or ≤3.2 and radiographic non-progression in patients achieving remission were also evaluated. Results A total of 646 patients were randomised and treated (abatacept, n=318; adalimumab, n=328). In both treatment groups, comparable responses were achieved in patients with early rheumatoid arthritis (≤6 months) and in those with later disease (>6 months) across multiple clinical measures. Conclusions Abatacept or adalimumab with background methotrexate were associated with similar onset and sustainability of response over 2 years. Patients treated early or later in the disease course achieved comparable clinical responses. Trial registration number NCT00929864, Post-results. PMID:27110385

  7. Immunologic findings, thrombocytopenia and disease activity in lupus nephritis.

    PubMed Central

    Clark, W. F.; Linton, A. L.; Cordy, P. E.; Keown, P. E.; Lohmann, R. C.; Lindsay, R. M.

    1978-01-01

    Twenty patients with nephritis due to systemic lupus erythematosus were followed up for a mean of 34 months after renal biopsy with serial determinations of total serum complement and C3 and C4 concentrations, binding of deoxyribonucleic acid (DNA), antinuclear antibody pattern and platelet count. There were 25 episodes of nonhematologic observed disease activity in 16 of the 20 patients; elevated DNA binding and thrombocytopenia correlated well with these episodes. The mean platelet count during episodes of observed disease activity was 96 +/- 42 X 10(9)/L, which was significantly different from the mean count of 248 +/- 90 X 10(9)/L during disease quiescence. The proportion of false-positive results with the immunologic tests varied from 25% to 67% and with platelet counts it was 11%. It is suggested that thrombocytopenia may be a simple and accurate index of disease activity in lupus nephritis. PMID:350367

  8. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities

    PubMed Central

    Rahmani, Arshad H; shabrmi, Fahad M Al; Aly, Salah M

    2014-01-01

    The current mode of treatment based on synthetic drugs is expensive and also causes genetic and metabolic alterations. However, safe and sound mode of treatment is needed to control the diseases development and progression. In this regards, medicinal plant and its constituents play an important role in diseases management via modulation of biological activities. Ginger, the rhizome of the Zingiber officinale, has shown therapeutic role in the health management since ancient time and considered as potential chemopreventive agent. Numerous studies based on clinical trials and animal model has shown that ginger and its constituents shows significant role in the prevention of diseases via modulation of genetic and metabolic activities. In this review, we focused on the therapeutics effects of ginger and its constituents in the diseases management, and its impact on genetic and metabolic activities. PMID:25057339

  9. Vitiligo: A Possible Model of Degenerative Diseases

    PubMed Central

    Bellei, Barbara; Pitisci, Angela; Ottaviani, Monica; Ludovici, Matteo; Cota, Carlo; Luzi, Fabiola; Dell'Anna, Maria Lucia; Picardo, Mauro

    2013-01-01

    Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects. PMID:23555779

  10. A surface hydrology model for regional vector borne disease models

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  11. Joint Modeling of Transitional Patterns of Alzheimer's Disease

    PubMed Central

    Liu, Wei; Zhang, Bo; Zhang, Zhiwei; Zhou, Xiao-Hua

    2013-01-01

    While the experimental Alzheimer's drugs recently developed by pharmaceutical companies failed to stop the progression of Alzheimer's disease, clinicians strive to seek clues on how the patients would be when they visit back next year, based upon the patients' current clinical and neuropathologic diagnosis results. This is related to how to precisely identify the transitional patterns of Alzheimer's disease. Due to the complexities of the diagnosis of Alzheimer's disease, the condition of the disease is usually characterized by multiple clinical and neuropathologic measurements, including Clinical Dementia Rating (CDRGLOB), Mini-Mental State Examination (MMSE), a score derived from the clinician judgement on neuropsychological tests (COGSTAT), and Functional Activities Questionnaire (FAQ). In this research article, we investigate a class of novel joint random-effects transition models that are used to simultaneously analyze the transitional patterns of multiple primary measurements of Alzheimer's disease and, at the same time, account for the association between the measurements. The proposed methodology can avoid the bias introduced by ignoring the correlation between primary measurements and can predict subject-specific transitional patterns. PMID:24073268

  12. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  13. [Brua as an explanatory model for diseases].

    PubMed

    Minkenberg, E H M; Blom, J D

    2015-01-01

    A 26-year-old woman from the island of Aruba who had been living in the Netherlands for ten years felt she was misunderstood by the various health professionals she had consulted because of her fear that she was being poisoned and would soon die. Due to her background en her belief in brua, she attributed her symptoms and her illness to 'voodoo', allegedly practiced by members of her husband's family in connection with relationship problems. A culture-sensitive approach to the patient, along with thorough psychiatric and neurological tests, yielded a surprising result. Our findings emphasise how important it is for us as health professionals to acquaint ourselves with explanatory models of the diseases of our patients, and how vital it is for us to be aware of a patient's background, particularly if the patient is of foreign descent. PMID:26028018

  14. [Macrophage activation syndrome associated with adult-onset Still's disease].

    PubMed

    Iwamoto, Masahiro

    2007-12-01

    Macrophage activation syndrome (MAS) is a rare and potentially lethal disease, resulting from uncontrolled activation and proliferation of T lymphocytes and macrophages. Adult-onset Still's disease (AOSD) is an inflammatory disease. AOSD resemble reactive MAS in its symptoms and laboratory data. Moreover, AOSD per se induces MAS. It is, therefore, quite difficult to differentiate these syndrome and disease. The immunodeficiency state induced by treatment in AOSD could reactivate latent viruses such as Epstein-Barr virus, which could potentially lead to MAS. The therapeutic agents for AOSD, such as sulfasalazine, also could provoke reactive MAS. Because multiple factors are involved in inducing MAS to a different degree, the main cause should be searched for and targeted for the therapy. PMID:18174671

  15. Inflammation, immune activation, and cardiovascular disease in HIV.

    PubMed

    Nou, Eric; Lo, Janet; Grinspoon, Steven K

    2016-06-19

    Cardiovascular disease is one of the leading causes of morbidity and mortality in people living with HIV. Several epidemiological studies have shown an increased risk of myocardial infarction and stroke compared to uninfected controls. Although traditional risk factors contribute to this increased risk of cardiovascular disease, HIV-specific mechanisms likely also play a role. Systemic inflammation has been linked to cardiovascular disease in several populations suffering from chronic inflammation, including people living with HIV. Although antiretroviral therapy reduces immune activation, levels of inflammatory markers remain elevated compared to uninfected controls. The causes of this sustained immune response are likely multifactorial and incompletely understood. In this review, we summarize the evidence describing the relationship between inflammation and cardiovascular disease and discuss potential anti-inflammatory treatment options for cardiometabolic disease in people living with HIV. PMID:27058351

  16. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  17. A unifying modeling framework for highly multivariate disease mapping.

    PubMed

    Botella-Rocamora, P; Martinez-Beneito, M A; Banerjee, S

    2015-04-30

    Multivariate disease mapping refers to the joint mapping of multiple diseases from regionally aggregated data and continues to be the subject of considerable attention for biostatisticians and spatial epidemiologists. The key issue is to map multiple diseases accounting for any correlations among themselves. Recently, Martinez-Beneito (2013) provided a unifying framework for multivariate disease mapping. While attractive in that it colligates a variety of existing statistical models for mapping multiple diseases, this and other existing approaches are computationally burdensome and preclude the multivariate analysis of moderate to large numbers of diseases. Here, we propose an alternative reformulation that accrues substantial computational benefits enabling the joint mapping of tens of diseases. Furthermore, the approach subsumes almost all existing classes of multivariate disease mapping models and offers substantial insight into the properties of statistical disease mapping models. PMID:25645551

  18. A brain network model explaining tremor in Parkinson's disease.

    PubMed

    Duval, Christian; Daneault, Jean-Francois; Hutchison, William D; Sadikot, Abbas F

    2016-01-01

    This paper presents a novel model of tremor in Parkinson's disease (PD) based on extensive literature review as well as novel results stemming from functional stereotactic neurosurgery for the alleviation of tremor in PD. Specifically, evidence that suggests the basal ganglia induces PD tremor via excessive inhibitory output to the thalamus and altered firing patterns which in turn generate rhythmic bursting activity of thalamic cells is presented. Then, evidence that the thalamus generates PD tremor by facilitating the generation and consolidation of rhythmic bursting activity of neurons within its nuclei is also offered. Finally, evidence that the cerebellum may modulate characteristics of PD tremor by treating it as if it was a voluntary motor behavior is presented. Accordingly, the current paper proposes that PD tremor is induced by abnormal basal ganglia activity; it is generated by the thalamus, and modulated or reinforced by the cerebellum. PMID:26459110

  19. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  20. Inflammation activation and resolution in human tendon disease

    PubMed Central

    Dakin, Stephanie G; Martinez, Fernando O; Yapp, Clarence; Wells, Graham; Oppermann, Udo; Dean, Benjamin JF; Smith, Richard DJ; Wheway, Kim; Watkins, Bridget; Roche, Lucy; Carr, Andrew J

    2016-01-01

    Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate or advanced disease and inflammation was characterized through activation of pathways mediated by Interferon, NF-κB, glucocorticoid receptor and STAT-6. Inflammation signatures revealed expression of genes and proteins induced by Interferon and NF-κB in early stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced stage disease. The pro-resolving proteins FPR2/ALX and ChemR23 were increased in early stage disease compared to intermediate-advanced stage disease. Patients who were pain-free post-treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain post-treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and Interferon target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi Lipoxin A4, a stable lipoxin metabolite derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation. PMID:26511510

  1. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  2. Using Active Modeling in Counterterrorism

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jen; Jiau, Hewijin C.; Tsai, Shang-Rong

    Terrorist organizations attain their goals by attacking various targets to jeopardize human lives and intimidate governments. As new terrorist attacks almost always aim to break the mold of old plots, tracing the dynamic behaviors of terrorists becomes crucial to national defense. This paper proposes using active modeling in analyzing unconventional attacks in the design of counterterrorism system. The intelligent terrorism detection system not only detects potential threats by monitoring terrorist networks with identified threat patterns, but also continually integrates new threat features in terrorist behaviors and the varying relationships among terrorists.

  3. Induced Pluripotent Stem Cells: From Product-Focused Disease Modeling to Process-Focused Disease Discovery

    PubMed Central

    Campbell, Katherine A.; Terzic, Andre; Nelson, Timothy J.

    2016-01-01

    Summary Induced pluripotent stem (iPS) cell technology offers an unprecedented opportunity to study patient-specific disease. This biotechnology platform enables recapitulation of individualized disease signatures in a dish through differentiation of patient-derived iPS cells. Beyond disease modeling, the in vitro process of differentiation toward genuine patient tissue offers a blueprint to inform disease etiology and molecular pathogenesis. Here, we highlight recent advances in patient-specific cardiac disease modeling and outline the future promise of iPS cell-based disease discovery applications. PMID:26439809

  4. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  5. Using the zebrafish model for Alzheimer’s disease research

    PubMed Central

    Newman, Morgan; Ebrahimie, Esmaeil; Lardelli, Michael

    2014-01-01

    Rodent models have been extensively used to investigate the cause and mechanisms behind Alzheimer’s disease. Despite many years of intensive research using these models we still lack a detailed understanding of the molecular events that lead to neurodegeneration. Although zebrafish lack the complexity of advanced cognitive behaviors evident in rodent models they have proven to be a very informative model for the study of human diseases. In this review we give an overview of how the zebrafish has been used to study Alzheimer’s disease. Zebrafish possess genes orthologous to those mutated in familial Alzheimer’s disease and research using zebrafish has revealed unique characteristics of these genes that have been difficult to observe in rodent models. The zebrafish is becoming an increasingly popular model for the investigation of Alzheimer’s disease and will complement studies using other models to help complete our understanding of this disease. PMID:25071820

  6. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  7. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  8. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  9. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  10. 24 CFR 1006.225 - Model activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Model activities. 1006.225 Section... NATIVE HAWAIIAN HOUSING BLOCK GRANT PROGRAM Eligible Activities § 1006.225 Model activities. NHHBG funds may be used for housing activities under model programs that are: (a) Designed to carry out...

  11. Central Nervous System and its Disease Models on a Chip.

    PubMed

    Yi, YoonYoung; Park, JiSoo; Lim, Jaeho; Lee, C Justin; Lee, Sang-Hoon

    2015-12-01

    Technologies for microfluidics and biological microelectromechanical systems have been rapidly progressing over the past decade, enabling the development of unique microplatforms for in vitro human central nervous system (CNS) and related disease models. Most fundamental techniques include manipulation of axons, synapses, and neuronal networks, and different culture conditions are possible, such as compartmental, co-culturing, and 3D. Various CNS disease models, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), epilepsy, N-methyl-D-aspartate receptor (NMDAR) encephalitis, migraine, diffuse axonal injury, and neuronal migration disorders, have been successfully established on microplatforms. In this review, we summarize fundamental technologies and current existing CNS disease models on microplatforms. We also discuss possible future directions, including application of these methods to pathological studies, drug screening, and personalized medicine, with 3D and personalized disease models that could generate more realistic CNS disease models. PMID:26497426

  12. Predictive modeling of coral disease distribution within a reef system.

    PubMed

    Williams, Gareth J; Aeby, Greta S; Cowie, Rebecca O M; Davy, Simon K

    2010-01-01

    Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1) coral diseases show distinct associations with multiple environmental factors, 2) incorporating interactions (synergistic collinearities) among environmental variables is important when predicting coral disease spatial patterns, and 3) modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value) will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA), Porites tissue loss (PorTL), Porites trematodiasis (PorTrem), and Montipora white syndrome (MWS), and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT) within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response), led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to particular

  13. Agent-Based Modeling of Noncommunicable Diseases: A Systematic Review

    PubMed Central

    Arah, Onyebuchi A.

    2015-01-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application. PMID:25602871

  14. Models of marine molluscan diseases: Trends and challenges.

    PubMed

    Powell, Eric N; Hofmann, Eileen E

    2015-10-01

    Disease effects on host population dynamics and the transmission of pathogens between hosts are two important challenges for understanding how epizootics wax and wane and how disease influences host population dynamics. For the management of marine shellfish resources, marine diseases pose additional challenges in early intervention after the appearance of disease, management of the diseased population to limit a decline in host abundance, and application of measures to restrain that decline once it occurs. Mathematical models provide one approach for quantifying these effects and addressing the competing goals of managing the diseased population versus managing the disease. The majority of models for molluscan diseases fall into three categories distinguished by these competing goals. (1) Models that consider disease effects on the host population tend to focus on pathogen proliferation within the host. Many of the well-known molluscan diseases are pandemic, in that they routinely reach high prevalence rapidly over large geographic expanses, are characterized by transmission that does not depend upon a local source, and exert a significant influence on host population dynamics. Models focused on disease proliferation examine the influence of environmental change on host population metrics and provide a basis to better manage diseased stocks. Such models are readily adapted to questions of fishery management and habitat restoration. (2) Transmission models are designed to understand the mechanisms triggering epizootics, identify factors impeding epizootic development, and evaluate controls on the rate of disease spread over the host's range. Transmission models have been used extensively to study terrestrial diseases, yet little attention has been given to their potential for understanding the epidemiology of marine molluscan diseases. For management of diseases of wild stocks, transmission models open up a range of options, including the application of area

  15. Perivascular fat, AMP-activated protein kinase and vascular diseases

    PubMed Central

    Almabrouk, T A M; Ewart, M A; Salt, I P; Kennedy, S

    2014-01-01

    Perivascular adipose tissue (PVAT) is an active endocrine and paracrine organ that modulates vascular function, with implications for the pathophysiology of cardiovascular disease (CVD). Adipocytes and stromal cells contained within PVAT produce mediators (adipokines, cytokines, reactive oxygen species and gaseous compounds) with a range of paracrine effects modulating vascular smooth muscle cell contraction, proliferation and migration. However, the modulatory effect of PVAT on the vascular system in diseases, such as obesity, hypertension and atherosclerosis, remains poorly characterized. AMP-activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology and vascular function, and hence may be a potential therapeutic target for metabolic disorders such as type 2 diabetes mellitus (T2DM) and the vascular complications associated with obesity and T2DM. The role of AMPK in PVAT or the actions of PVAT have yet to be established, however. Activation of AMPK by pharmacological agents, such as metformin and thiazolidinediones, may modulate the activity of PVAT surrounding blood vessels and thereby contribute to their beneficial effect in cardiometabolic diseases. This review will provide a current perspective on how PVAT may influence vascular function via AMPK. We will also attempt to demonstrate how modulating AMPK activity using pharmacological agents could be exploited therapeutically to treat cardiometabolic diseases. PMID:24490856

  16. A Bioassay for Lafora Disease and Laforin Glucan Phosphatase Activity

    PubMed Central

    Sherwood, Amanda R.; Johnson, Mary Beth; Delgado-Escueta, Antonio V.; Gentry, Matthew S.

    2013-01-01

    Objectives Lafora disease is a rare yet invariably fatal form of progressive neurodegenerative epilepsy resulting from mutations in the phosphatase laforin. Several therapeutic options for Lafora disease patients are currently being explored, and these therapies would benefit from a biochemical means of assessing functional laforin activity following treatment. To date, only clinical outcomes such as decreases in seizure frequency and severity have been used to indicate success of epilepsy treatment. However, these qualitative measures exhibit variability and must be assessed over long periods of time. In this work, we detail a simple and sensitive bioassay that can be used for the detection of functional endogenous laforin from human and mouse tissue. Design and methods We generated antibodies capable of detecting and immunoprecipitating endogenous laforin. Following laforin immunoprecipitation, laforin activity was assessed via phosphatase assays using para-nitrophenylphosphate (pNPP) and a malachite green-based assay specific for glucan phosphatase activity. Results We found that antibody binding to laforin does not impede laforin activity. Furthermore, the malachite green-based glucan phosphatase assay used in conjunction with a rabbit polyclonal laforin antibody was capable of detecting endogenous laforin activity from human and mouse tissue. Importantly, this assay discriminated between laforin activity and other phosphatases. Conclusions The bioassay that we have developed utilizing laforin antibodies and an assay specific for glucan phosphatase activity could prove valuable in the rapid detection of functional laforin in patients to which novel Lafora disease therapies have been administered. PMID:24012855

  17. Glucocerebrosidase enzyme activity in GBA mutation Parkinson's disease.

    PubMed

    Ortega, Roberto A; Torres, Paola A; Swan, Matthew; Nichols, William; Boschung, Sarah; Raymond, Deborah; Barrett, Matthew J; Johannes, Brooke A; Severt, Lawrence; Shanker, Vicki; Hunt, Ann L; Bressman, Susan; Pastores, Gregory M; Saunders-Pullman, Rachel

    2016-06-01

    Mutations in the glucocerebrosidase (GBA1) gene, the most common genetic contributor to Parkinson's disease (PD), are associated with an increased risk of PD in heterozygous and homozygous carriers. While glucocerebrosidase enzyme (GCase) activity is consistently low in Gaucher disease, there is a range of leukocyte GCase activity in healthy heterozygous GBA1 mutation carriers. To determine whether GCase activity may be a marker for PD with heterozygous GBA1 mutations (GBA1 mutation PD, GBA PD), GBA PD patients (n=15) were compared to PD patients without heterozygous GBA1 mutations (idiopathic PD; n=8), heterozygous GBA1 carriers without PD (asymptomatic carriers; n=4), and biallelic mutation carriers with PD (Gaucher disease with PD, GD1 PD; n=3) in a pilot study. GCase activity (nmol/mg protein/hour) in GD1 PD (median [interquartile range]; minimum-maximum: 6.4 [5.7]; 5.3-11) was lower than that of GBA PD (16.0 [7.0]; 11-40) (p=0.01), while GCase activity in GBA PD was lower than idiopathic PD (28.5 [15.0]; 16-56) (p=0.01) and asymptomatic carriers (25.5 [2.5]; 23-27) (p=0.04). Therefore, GCase activity appears to be a possible marker of heterozygous GBA1 mutation PD, and larger studies are warranted. Prospective studies are also necessary to determine whether lower GCase activity precedes development of PD. PMID:26857292

  18. Cardiac parasympathetic activity in severe uncomplicated coronary artery disease.

    PubMed Central

    Nolan, J.; Flapan, A. D.; Reid, J.; Neilson, J. M.; Bloomfield, P.; Ewing, D. J.

    1994-01-01

    BACKGROUND--Previous studies have suggested that coronary artery disease is independently associated with reduced cardiac parasympathetic activity, and that this is important in its pathophysiology. These studies included many patients with complications that might be responsible for the reported autonomic abnormalities. OBJECTIVE--To measure cardiac parasympathetic activity in patients with uncomplicated coronary artery disease. PATIENTS AND METHODS--44 patients of mean (SD) age 56 (8) with severe uncomplicated coronary artery disease (symptoms uncontrolled on maximal medical treatment; > 70% coronary stenosis at angiography; normal ejection fraction; no evidence of previous infarction, diabetes, or hypertension). Heart rate variability was measured from 24 hour ambulatory electrocardiograms by counting the number of times successive RR intervals exceeded the preceding RR interval by > 50 ms, a previously validated sensitive and specific index of cardiac parasympathetic activity. RESULTS--Mean (range) of counts were: waking 112 (range 6-501)/h, sleeping 198 (0-812)/h, and total 3912 (151-14 454)/24 h. These mean results were unremarkable, and < 10% of patients fell below the lower 95% confidence interval for waking, sleeping, or total 24 hour counts in normal people. There was no relation between the severity of coronary artery disease or the use of concurrent antianginal drug treatment and cardiac parasympathetic activity. CONCLUSION--In contrast with previous reports no evidence of a specific independent association between coronary artery disease and reduced cardiac parasympathetic activity was found. The results of previous studies may reflect the inclusion of patients with complications and not the direct effect of coronary artery disease itself. PMID:7913823

  19. [Disease and disability. The ICF model].

    PubMed

    Linden, M

    2015-01-01

    Diagnoses alone, e.g. according to the international classification of diseases 10 (ICD-10), do not give information on the illness severity, treatment needs and consequences. This depends on the functional health status, e.g. according to the international classification of functioning, disability and health (ICF) which discriminates between impairment of functions, limitations in activity and capacity and participation restrictions. The German social law (SGB IX) defines disability as a chronic health status which lasts longer than 6 months and which results in participation restrictions. Participation restrictions are impaired capacities which not allow context or role requirements to be fulfilled. There are many instruments to measure capacities, such as the Mini-ICF-APP which was especially developed for mental disorders. As most mental disorders are chronic illnesses which lead to participation restrictions they must be conceptualized as mental disabilities. The consequence is that they must be treated under a social psychiatric perspective focussing on functions, capacities and context alike. PMID:25575629

  20. New advances on glial activation in health and disease

    PubMed Central

    Lee, Kim Mai; MacLean, Andrew G

    2015-01-01

    In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses. PMID:25964871

  1. A phenotypic model recapitulating the neuropathology of Parkinson's disease

    PubMed Central

    Ferris, Craig F; Marella, Mathieu; Smerkers, Brian; Barchet, Thomas M; Gershman, Benjamin; Matsuno-Yagi, Akemi; Yagi, Takao

    2013-01-01

    This study was undertaken to develop a phenotypic model recapitulating the neuropathology of Parkinson's disease (PD). Such a model would show loss of dopamine in the basal ganglia, appearance of Lewy bodies, and the early stages of motor dysfunction. The model was developed by subcutaneously injecting biodegradable microspheres of rotenone, a complex I inhibitor in 8–9 month old, ovariectomized Long–Evans rats. Animals were observed for changes in body weight and motor activity. At the end of 11–12 weeks animals were euthanized and the brains examined for histopathological changes. Rotenone treated animals gain weight and appear normal and healthy as compared to controls but showed modest hypokinesia around 5–6 weeks posttreatment. Animals showed loss of dopaminergic (DA) neurons and the appearance of putative Lewy bodies in the substantia nigra. Neuroinflammation and oxidative stress were evidenced by the appearance of activated microglia, iron precipitates, and 8-oxo-2′-deoxyguanosine a major product of DNA oxidation. The dorsal striatum, the projection site of midbrain DA neurons, showed a significant reduction in tyrosine hydroxylase immunostaining, together with an increase in reactive astrocytes, an early sign of DA nerve terminal damage. Levels of vesicular monoamine transporter 2 (VMAT2) were significantly reduced in the dorsal striatum; however, there was an unexpected increase in dopamine transporter (DAT) levels. Old, ovariectomized females treated with rotenone microspheres present with normal weight gain and good health but a modest hypokinesia. Accompanying this behavioral phenotype are a constellation of neuropathologies characteristic of PD that include loss of DA neurons, microglia activation, oxidative damage to nuclear DNA, iron deposition, and appearance of putative Lewy bodies. This phenotypic model recapitulating the neuropathology of Parkinson's disease could provide insight into early mechanisms of pathogenesis and could aid in

  2. A phenotypic model recapitulating the neuropathology of Parkinson's disease.

    PubMed

    Ferris, Craig F; Marella, Mathieu; Smerkers, Brian; Barchet, Thomas M; Gershman, Benjamin; Matsuno-Yagi, Akemi; Yagi, Takao

    2013-07-01

    This study was undertaken to develop a phenotypic model recapitulating the neuropathology of Parkinson's disease (PD). Such a model would show loss of dopamine in the basal ganglia, appearance of Lewy bodies, and the early stages of motor dysfunction. The model was developed by subcutaneously injecting biodegradable microspheres of rotenone, a complex I inhibitor in 8-9 month old, ovariectomized Long-Evans rats. Animals were observed for changes in body weight and motor activity. At the end of 11-12 weeks animals were euthanized and the brains examined for histopathological changes. Rotenone treated animals gain weight and appear normal and healthy as compared to controls but showed modest hypokinesia around 5-6 weeks posttreatment. Animals showed loss of dopaminergic (DA) neurons and the appearance of putative Lewy bodies in the substantia nigra. Neuroinflammation and oxidative stress were evidenced by the appearance of activated microglia, iron precipitates, and 8-oxo-2'-deoxyguanosine a major product of DNA oxidation. The dorsal striatum, the projection site of midbrain DA neurons, showed a significant reduction in tyrosine hydroxylase immunostaining, together with an increase in reactive astrocytes, an early sign of DA nerve terminal damage. Levels of vesicular monoamine transporter 2 (VMAT2) were significantly reduced in the dorsal striatum; however, there was an unexpected increase in dopamine transporter (DAT) levels. Old, ovariectomized females treated with rotenone microspheres present with normal weight gain and good health but a modest hypokinesia. Accompanying this behavioral phenotype are a constellation of neuropathologies characteristic of PD that include loss of DA neurons, microglia activation, oxidative damage to nuclear DNA, iron deposition, and appearance of putative Lewy bodies. This phenotypic model recapitulating the neuropathology of Parkinson's disease could provide insight into early mechanisms of pathogenesis and could aid in the

  3. Usefulness of Endoscopic Indices in Determination of Disease Activity in Patients with Crohn's Disease

    PubMed Central

    Kucharski, Marcin; Karczewski, Jacek; Mańkowska-Wierzbicka, Dorota; Karmelita-Katulska, Katarzyna; Kaczmarek, Elżbieta; Iwanik, Katarzyna; Rzymski, Piotr; Grzymisławski, Marian; Linke, Krzysztof; Dobrowolska, Agnieszka

    2016-01-01

    Background. Assessment of endoscopic activity of Crohn's disease (CD) is of growing importance both in clinical practice and in clinical trials. The study aimed to assess which of the endoscopic indices used for evaluation of mucosal changes correlates with the currently used clinical indices for determination of disease activity and with the results of histopathological examination. Study. A group of 71 patients with CD and 52 individuals without a diagnosis of GI tract disease as a control group were investigated, considering clinical and histological severity of the disease and the severity of inflammatory changes in the bowel. Evaluation was conducted with the use of clinical, endoscopic, and histopathological indices. Endoscopic indices were then correlated with different clinical and histopathological indices with the aim of finding the strongest correlations. Results and Conclusions. Correlation between the clinical disease activity and the severity of endoscopic lesions in CD was shown in this study to be poor. The results also indicate that the optimal endoscopic index used in the diagnostic stage and in the assessment of treatment effects in CD is Simple Endoscopic Score for Crohn's Disease (SES-CD). PMID:26997952

  4. Conceptual model for heart failure disease management.

    PubMed

    Andrikopoulou, Efstathia; Abbate, Kariann; Whellan, David J

    2014-03-01

    The objective of this review is to propose a conceptual model for heart failure (HF) disease management (HFDM) and to define the components of an efficient HFDM plan in reference to this model. Articles that evaluated 1 or more of the following aspects of HFDM were reviewed: (1) outpatient clinic follow-up; (2) self-care interventions to enhance patient skills; and (3) remote evaluation of worsening HF either using structured telephone support (STS) or by monitoring device data (telemonitoring). The success of programs in reducing readmissions and mortality were mixed. Outpatient follow-up programs generally resulted in improved outcomes, including decreased readmissions. Based on 1 meta-analysis, specialty clinics improved outcomes and nonspecialty clinics did not. Results from self-care programs were inconsistent and might have been affected by patient cognitive status and educational level, and intervention intensity. Telemonitoring, despite initially promising meta-analyses demonstrating a decrease in the number and duration of HF-related readmissions and all-cause mortality rates at follow-up, has not been shown in randomized trials to consistently reduce readmissions or mortality. However, evidence from device monitoring trials in particular might have been influenced by technology and design issues that might be rectified in future trials. Results from the literature suggest that the ideal HFDM plan would include outpatient follow-up at an HF specialty clinic and continuous education to improve patient self-care. The end result of this plan would lead to better understanding on the part of the patient and improved patient ability to recognize and respond to signs of decompensation. PMID:24565255

  5. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease

    PubMed Central

    Oliveira, Claudia P.; de Lima Sanches, Priscila; de Abreu-Silva, Erlon Oliveira; Marcadenti, Aline

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and it is associated with other medical conditions such as diabetes mellitus, metabolic syndrome, and obesity. The mechanisms of the underlying disease development and progression are not completely established and there is no consensus concerning the pharmacological treatment. In the gold standard treatment for NAFLD weight loss, dietary therapy, and physical activity are included. However, little scientific evidence is available on diet and/or physical activity and NAFLD specifically. Many dietary approaches such as Mediterranean and DASH diet are used for treatment of other cardiometabolic risk factors such as insulin resistance and type-2 diabetes mellitus (T2DM), but on the basis of its components their role in NAFLD has been discussed. In this review, the implications of current dietary and exercise approaches, including Brazilian and other guidelines, are discussed, with a focus on determining the optimal nonpharmacological treatment to prescribe for NAFLD. PMID:26770987

  6. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease.

    PubMed

    Oliveira, Claudia P; de Lima Sanches, Priscila; de Abreu-Silva, Erlon Oliveira; Marcadenti, Aline

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and it is associated with other medical conditions such as diabetes mellitus, metabolic syndrome, and obesity. The mechanisms of the underlying disease development and progression are not completely established and there is no consensus concerning the pharmacological treatment. In the gold standard treatment for NAFLD weight loss, dietary therapy, and physical activity are included. However, little scientific evidence is available on diet and/or physical activity and NAFLD specifically. Many dietary approaches such as Mediterranean and DASH diet are used for treatment of other cardiometabolic risk factors such as insulin resistance and type-2 diabetes mellitus (T2DM), but on the basis of its components their role in NAFLD has been discussed. In this review, the implications of current dietary and exercise approaches, including Brazilian and other guidelines, are discussed, with a focus on determining the optimal nonpharmacological treatment to prescribe for NAFLD. PMID:26770987

  7. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity

    PubMed Central

    Barrowman, Jemima; Wiley, Patricia A.; Hudon-Miller, Sarah E.; Hrycyna, Christine A.; Michaelis, Susan

    2012-01-01

    The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene (LMNA) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical ‘HGPS’) and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro. We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered. PMID:22718200

  8. Biomarkers of basic activities of daily living in Alzheimer's disease.

    PubMed

    Hall, James R; Johnson, Leigh A; Barber, Robert C; Vo, Hoa T; Winter, A Scott; O'Bryant, Sid E

    2012-01-01

    Functional impairment is common in Alzheimer's disease (AD) and related to increased caregiver burden and institutionalization. There is a dearth of research investigating the relationship between specific biomarkers and basic activities of daily living (BADLs) such as toileting, feeding, dressing, grooming, bathing, and ambulating. The present study examined the relationship between serum based biomarkers and specific ADLs in a sample of AD patients. Data were collected from 196 participants enrolled in the Texas Alzheimer's Research and Care Consortium Project and diagnosed with AD. BADLs were measured using the Lawton-Brody Physical Self-Maintenance Scale. A panel of 22 biomarkers previously found to be related to AD pathology was used for the analysis. Stepwise regression modeling was used to assess the link between the biomarkers and BADLs. Results were also examined by gender. Nine of the 22 biomarkers were significantly related to BADLs. When stratified by gender, the biomarkers accounted for 32% of the variance in the males and 27% in females. The pattern of significant biomarkers differed by gender with IL 7 and Tenascin C significantly related to BADLs for females and IL 15 significantly related to BADLs for males. The results of this study indicated that a small number of serum based biomarkers are related to BADLs, and these biomarkers differed by gender. PMID:22571981

  9. Wanted: Active Role Models for Today's Kids

    MedlinePlus

    ... this page please turn Javascript on. Feature: Reducing Childhood Obesity Wanted: Active Role Models for Today's Kids Past ... the active role models they can get. "With childhood obesity at an all-time high, we need to ...

  10. Diet and Physical Activity for Cardiovascular Disease Prevention.

    PubMed

    Lanier, Jeffrey B; Bury, David C; Richardson, Sean W

    2016-06-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. One-third of these deaths may be preventable through healthy lifestyle choices including diet and physical activity. The Mediterranean diet is associated with reduced cardiovascular mortality, whereas the Dietary Approaches to Stop Hypertension (DASH) eating plan is associated with a reduced risk of coronary artery disease. Substituting dietary saturated fat with polyunsaturated fatty acids is associated with improved cardiovascular outcomes, although exogenous supplementation with omega-3 fatty acids does not improve cardiovascular outcomes. There is an association between increased sodium intake and cardiovascular risk, but reducing dietary sodium has not consistently shown a reduction in cardiovascular risk. Physical activity recommendations for adults are at least 150 minutes of moderate-intensity aerobic activity per week, 75 minutes of vigorous-intensity aerobic activity per week, or an equivalent combination. Increases in physical activity by any level are associated with reduced cardiovascular risk. Introducing muscle-strengthening activities at least twice per week in previously inactive adults is associated with improved cardiovascular outcomes. Inactive adults without known CVD can gradually increase activity to a moderate-intensity level without consulting a physician. The U.S. Preventive Services Task Force recommends behavioral counseling to promote healthy diet and physical activity in adults at high risk of CVD. Evidence of benefit for counseling patients at average risk is less established. PMID:27281836

  11. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn's disease

    PubMed Central

    Vande Casteele, Niels; Khanna, Reena; Levesque, Barrett G; Stitt, Larry; Zou, G Y; Singh, Sharat; Lockton, Steve; Hauenstein, Scott; Ohrmund, Linda; Greenberg, Gordon R; Rutgeerts, Paul J; Gils, Ann; Sandborn, William J; Vermeire, Séverine; Feagan, Brian G

    2015-01-01

    Objective Although low infliximab trough concentrations and antibodies to infliximab (ATI) are associated with poor outcomes in patients with Crohn's disease (CD), the clinical relevance of ATI in patients with adequate infliximab concentrations is uncertain. We evaluated this question using an assay sensitive for identification of ATI in the presence of infliximab. Design In an observational study, 1487 trough serum samples from 483 patients with CD who participated in four clinical studies of maintenance infliximab therapy were analysed using a fluid phase mobility shift assay. Infliximab and ATI concentrations most discriminant for remission, defined as a C-reactive protein concentration of ≤5 mg/L, were determined by receiver operating characteristic curves. A multivariable regression model evaluated these factors as independent predictors of remission. Results Based upon analysis of 1487 samples, 77.1% of patients had detectable and 22.9% had undetectable infliximab concentrations, of which 9.5% and 71.8%, respectively, were positive for ATI. An infliximab concentration of >2.79 μg/mL (area under the curve (AUC)=0.681; 95% CI 0.632 to 0.731) and ATI concentration of <3.15 U/mL (AUC=0.632; 95% CI 0.589 to 0.676) were associated with remission. Multivariable analysis showed that concentrations of both infliximab trough (OR 1.8; 95% CI 1.3 to 2.5; p<0.001) and ATI (OR 0.57; 95% CI 0.39 to 0.81; p=0.002) were independent predictors of remission. Conclusions The development of ATI increases the probability of active disease even at low concentrations and in the presence of a therapeutic concentration of drug during infliximab maintenance therapy. Evaluation of strategies to prevent ATI formation, including therapeutic drug monitoring with selective infliximab dose intensification, is needed. PMID:25336114

  12. Modeling daily flow patterns individuals to characterize disease spread

    SciTech Connect

    Smallwood, J.; Hyman, J. M.; Mirchandani, Pitu B.

    2002-11-17

    The effect of an individual's travels throughout a day on the spread of disease is examined using a deterministic SIR model. We determine which spatial and demographic characteristics most contribute to the disease spread and whether the progression of the disease can be slowed by appropriate vaccination of people belonging to a specific location-type.

  13. Imaging of Small-Animal Models of Infectious Diseases

    PubMed Central

    Jelicks, Linda A.; Lisanti, Michael P.; Machado, Fabiana S.; Weiss, Louis M.; Tanowitz, Herbert B.; Desruisseaux, Mahalia S.

    2014-01-01

    Infectious diseases are the second leading cause of death worldwide. Noninvasive small-animal imaging has become an important research tool for preclinical studies of infectious diseases. Imaging studies permit enhanced information through longitudinal studies of the same animal during the infection. Herein, we briefly review recent studies of animal models of infectious disease that have used imaging modalities. PMID:23201133

  14. Distinct features of circulating microparticles and their relationship with disease activity in inflammatory bowel disease

    PubMed Central

    Voudoukis, Evangelos; Vetsika, Eleni-Kyriaki; Giannakopoulou, Konstantina; Karmiris, Konstantinos; Theodoropoulou, Angeliki; Sfiridaki, Aekaterini; Georgoulias, Vassilis; Paspatis, Gregorios A.; Koutroubakis, Ioannis E.

    2016-01-01

    Background There is evidence that circulating microparticles (MPs) and annexin (+) platelet-derived MPs (PDMPs) are increased in inflammatory bowel disease (IBD). The aim of our study was to characterize the abundance, origin, and annexin V binding of MPs in patients with IBD and correlate them with the disease characteristics. Methods Case-control study of 46 IBD patients (23 Crohn’s disease, 23 ulcerative colitis) and 40 matched healthy controls (HC). MPs were divided according to annexin V binding, their origin was estimated based on specific cell membrane markers in plasma samples and their number was calculated via flow cytometry. Clinical and laboratory activity indices were also analyzed. Results Annexin (-) PDMPs (P=0.0004), total (P=0.04) and annexin (+) monocyte-derived MPs (P=0.02) were increased and annexin (-) total MPs (P=0.0007) were decreased in IBD patients compared to HC. The annexin (+)/(-) ratio of all MP types were significantly elevated in IBD patients compared to HC (P<0.003). IBD patients with active disease displayed elevated total and annexin (+) total MPs, total, annexin (+) and (-) PDMPs compared with those in remission (P<0.05). Annexin (-) PDMPs were considerably increased in IBD patients with active compared to those with inactive disease (P=0.0013). Total and annexin (-) PDMPs were significantly correlated with most of the disease activity indices (P<0.05). Conclusion The majority of circulating MPs, their counterparts and particularly annexin (-) PDMPs are increased in active IBD patients. Annexin (+)/(-) ratio proved to be the most reliable distinctive MP index between HC and IBD patients. PMID:27065731

  15. A Network Approach to Rare Disease Modeling

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Rabello, Sabrina; Sharma, Amitabh; Wiest, Olaf; Barabasi, Albert-Laszlo

    2011-03-01

    Network approaches have been widely used to better understand different areas of natural and social sciences. Network Science had a particularly great impact on the study of biological systems. In this project, using biological networks, candidate drugs as a potential treatment of rare diseases were identified. Developing new drugs for more than 2000 rare diseases (as defined by ORPHANET) is too expensive and beyond expectation. Disease proteins do not function in isolation but in cooperation with other interacting proteins. Research on FDA approved drugs have shown that most of the drugs do not target the disease protein but a protein which is 2 or 3 steps away from the disease protein in the Protein-Protein Interaction (PPI) network. We identified the already known drug targets in the disease gene's PPI subnetwork (up to the 3rd neighborhood) and among them those in the same sub cellular compartment and higher coexpression coefficient with the disease gene are expected to be stronger candidates. Out of 2177 rare diseases, 1092 were found not to have any drug target. Using the above method, we have found the strongest candidates among the rest in order to further experimental validations.

  16. Platelet activity in the pathophysiology of inflammatory bowel diseases.

    PubMed

    Chen, Chunqiu; Li, Yongyu; Yu, Zhen; Liu, Zhanju; Shi, Yanhong; Lewandowska, Urszula; Sobczak, Marta; Fichna, Jakub; Kreis, Martin

    2015-01-01

    Platelets play a crucial role in immune responses. Impaired platelet activation may cause persistent mucosal inflammation through P-selectin, CD40-CD40L and other systems influencing granulocytes, macrophages or endothelial cells. Pharmacological regulation of platelet activation may reduce thromboembolism and limit the interaction of platelets with endothelial and inflammatory cells, in turn weakening the inflammatory responses. In this review we focus on pathophysiological activities of platelets in inflammatory bowel diseases and discuss the studies on currently available anti-platelet therapies in the treatment of gastrointestinal inflammation. Finally, we provide a prospective view to new anti-platelet agents currently under development. PMID:25585124

  17. Chronic lymphocytic leukemia: a disease of activated monoclonal B cells

    PubMed Central

    Damle, Rajendra N.; Calissano, Carlo; Chiorazzi, Nicholas

    2010-01-01

    B-cell type chronic lymphocytic leukemia (CLL) has long been considered a disease of resting lymphocytes. However cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the buildup of leukemic cells is due to an inherent defect in cell death. However, in vivo labeling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients. PMID:20620969

  18. Metabolic correction in microglia derived from Sandhoff disease model mice.

    PubMed

    Tsuji, Daisuke; Kuroki, Aya; Ishibashi, Yasuhiro; Itakura, Tomohiro; Itoh, Kohji

    2005-09-01

    Sandhoff disease is an autosomal recessive lysosomal storage disease caused by a defect of the beta-subunit gene (HEXB) associated with simultaneous deficiencies of beta-hexosaminidase A (HexA; alphabeta) and B (HexB; betabeta), and excessive accumulation of GM2 ganglioside (GM2) and oligosaccharides with N-acetylglucosamine (GlcNAc) residues at their non-reducing termini. Recent studies have shown the involvement of microglial activation in neuroinflammation and neurodegeneration of this disease. We isolated primary microglial cells from the neonatal brains of Sandhoff disease model mice (SD mice) produced by disruption of the murine Hex beta-subunit gene allele (Hexb-/-). The cells expressed microglial cell-specific ionized calcium binding adaptor molecule 1 (Iba1)-immunoreactivity (IR) and antigen recognized by Ricinus communis agglutinin lectin-120 (RCA120), but not glial fibrillary acidic protein (GFAP)-IR specific for astrocytes. They also demonstrated significant intracellular accumulation of GM2 and GlcNAc-oligosaccharides. We produced a lentiviral vector encoding for the murine Hex beta-subunit and transduced it into the microglia from SD mice with the recombinant lentivirus, causing elimination of the intracellularly accumulated GM2 and GlcNAc-oligosaccharides and secretion of Hex isozyme activities from the transduced SD microglial cells. Recomibinant HexA isozyme isolated from the conditioned medium of a Chinese hamster ovary (CHO) cell line simultaneously expressing the human HEXA (alpha-subunit) and HEXB genes was also found to be incorporated into the SD microglia via cell surface cation-independent mannose 6-phosphate receptor and mannose receptor to degrade the intracellularly accumulated GM2 and GlcNAc-oligosaccharides. These results suggest the therapeutic potential of recombinant lentivirus encoding the murine Hex beta-subunit and the human HexA isozyme (alphabeta heterodimer) for metabolic cross-correction in microglial cells involved in

  19. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease

    PubMed Central

    Flynn, Ryan; Allen, Jessica L.; Luznik, Leo; MacDonald, Kelli P.; Paz, Katelyn; Alexander, Kylie A.; Vulic, Ante; Du, Jing; Panoskaltsis-Mortari, Angela; Taylor, Patricia A.; Poe, Jonathan C.; Serody, Jonathan S.; Murphy, William J.; Hill, Geoffrey R.; Maillard, Ivan; Koreth, John; Cutler, Corey S.; Soiffer, Robert J.; Antin, Joseph H.; Ritz, Jerome; Chao, Nelson J.; Clynes, Raphael A.; Sarantopoulos, Stefanie

    2015-01-01

    Novel therapies for chronic graft-versus-host disease (cGVHD) are needed. Aberrant B-cell activation has been demonstrated in mice and humans with cGVHD. Having previously found that human cGVHD B cells are activated and primed for survival, we sought to further evaluate the role of the spleen tyrosine kinase (Syk) in cGVHD in multiple murine models and human peripheral blood cells. In a murine model of multiorgan system, nonsclerodermatous disease with bronchiolitis obliterans where cGVHD is dependent on antibody and germinal center (GC) B cells, we found that activation of Syk was necessary in donor B cells, but not T cells, for disease progression. Bone marrow–specific Syk deletion in vivo was effective in treating established cGVHD, as was a small-molecule inhibitor of Syk, fostamatinib, which normalized GC formation and decreased activated CD80/86+ dendritic cells. In multiple distinct models of sclerodermatous cGVHD, clinical and pathological disease manifestations were not eliminated when mice were therapeutically treated with fostamatinib, though both clinical and immunologic effects could be observed in one of these scleroderma models. We further demonstrated that Syk inhibition was effective at inducing apoptosis of human cGVHD B cells. Together, these data demonstrate a therapeutic potential of targeting B-cell Syk signaling in cGVHD. PMID:25852057

  20. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease.

    PubMed

    Flynn, Ryan; Allen, Jessica L; Luznik, Leo; MacDonald, Kelli P; Paz, Katelyn; Alexander, Kylie A; Vulic, Ante; Du, Jing; Panoskaltsis-Mortari, Angela; Taylor, Patricia A; Poe, Jonathan C; Serody, Jonathan S; Murphy, William J; Hill, Geoffrey R; Maillard, Ivan; Koreth, John; Cutler, Corey S; Soiffer, Robert J; Antin, Joseph H; Ritz, Jerome; Chao, Nelson J; Clynes, Raphael A; Sarantopoulos, Stefanie; Blazar, Bruce R

    2015-06-25

    Novel therapies for chronic graft-versus-host disease (cGVHD) are needed. Aberrant B-cell activation has been demonstrated in mice and humans with cGVHD. Having previously found that human cGVHD B cells are activated and primed for survival, we sought to further evaluate the role of the spleen tyrosine kinase (Syk) in cGVHD in multiple murine models and human peripheral blood cells. In a murine model of multiorgan system, nonsclerodermatous disease with bronchiolitis obliterans where cGVHD is dependent on antibody and germinal center (GC) B cells, we found that activation of Syk was necessary in donor B cells, but not T cells, for disease progression. Bone marrow-specific Syk deletion in vivo was effective in treating established cGVHD, as was a small-molecule inhibitor of Syk, fostamatinib, which normalized GC formation and decreased activated CD80/86(+) dendritic cells. In multiple distinct models of sclerodermatous cGVHD, clinical and pathological disease manifestations were not eliminated when mice were therapeutically treated with fostamatinib, though both clinical and immunologic effects could be observed in one of these scleroderma models. We further demonstrated that Syk inhibition was effective at inducing apoptosis of human cGVHD B cells. Together, these data demonstrate a therapeutic potential of targeting B-cell Syk signaling in cGVHD. PMID:25852057

  1. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  2. The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson’s Disease

    PubMed Central

    2011-01-01

    T-Type Ca2+ channel inhibitors hold tremendous therapeutic potential for the treatment of pain, epilepsy, sleep disorders, essential tremor, and other neurological disorders; however, a lack of truly selective tools has hindered basic research, and selective tools from the pharmaceutical industry are potentially burdened with intellectual property (IP) constraints. Thus, an MLPCN high-throughput screen (HTS) was conducted to identify novel T-type Ca2+ channel inhibitors free from IP constraints, and freely available through the MLPCN, for use by the biomedical community to study T-type Ca2+ channels. While the HTS provided numerous hits, these compounds could not be optimized to the required level of potency to be appropriate tool compounds. Therefore, a scaffold hopping approach, guided by SurflexSim, ultimately afforded ML218 (CID 45115620), a selective T-type Ca2+ (Cav3.1, Cav3.2, Cav3.3) inhibitor (Cav3.2, IC50 = 150 nM in Ca2+ flux; Cav3.2 IC50 = 310 nM; and Cav3.3 IC50 = 270 nM, respectively in patch clamp electrophysiology) with good DMPK properties, acceptable in vivo rat PK, and excellent brain levels. Electrophysiology studies in subthalamic nucleus (STN) neurons demonstrated robust effects of ML218 on the inhibition of T-type calcium current, inhibition of low threshold spike, and rebound burst activity. Based on the basal ganglia circuitry in Parkinson’s disease (PD), the effects of ML218 in STN neurons suggest a therapeutic role for T-type Ca2+ channel inhibitors, and ML218 was found to be orally efficacious in haloperidol-induced catalepsy, a preclinical PD model, with comparable efficacy to an A2A antagonist, a clinically validated PD target. ML218 proves to be a powerful new probe to study T-type Ca2+ function in vitro and in vivo, and freely available. PMID:22368764

  3. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  4. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  5. Zebrafish as a disease model for studying human hepatocellular carcinoma

    PubMed Central

    Lu, Jeng-Wei; Ho, Yi-Jung; Yang, Yi-Ju; Liao, Heng-An; Ciou, Shih-Ci; Lin, Liang-In; Ou, Da-Liang

    2015-01-01

    Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury. PMID:26576090

  6. Multi-locus models of genetic risk of disease

    PubMed Central

    2010-01-01

    Background Evidence for genetic contribution to complex diseases is described by recurrence risks to relatives of diseased individuals. Genome-wide association studies allow a description of the genetics of the same diseases in terms of risk loci, their effects and allele frequencies. To reconcile the two descriptions requires a model of how risks from individual loci combine to determine an individual's overall risk. Methods We derive predictions of risk to relatives from risks at individual loci under a number of models and compare them with published data on disease risk. Results The model in which risks are multiplicative on the risk scale implies equality between the recurrence risk to monozygotic twins and the square of the recurrence risk to sibs, a relationship often not observed, especially for low prevalence diseases. We show that this theoretical equality is achieved by allowing impossible probabilities of disease. Other models, in which probabilities of disease are constrained to a maximum of one, generate results more consistent with empirical estimates for a range of diseases. Conclusions The unconstrained multiplicative model, often used in theoretical studies because of its mathematical tractability, is not a realistic model. We find three models, the constrained multiplicative, Odds (or Logit) and Probit (or liability threshold) models, all fit the data on risk to relatives. Currently, in practice it would be difficult to differentiate between these models, but this may become possible if genetic variants that explain the majority of the genetic variance are identified. PMID:20181060

  7. Measurement of Fractional Exhaled Nitric Oxide as a Marker of Disease Activity in Inflammatory Bowel Disease

    PubMed Central

    Ikonomi, Erkanda; Rothstein, Robin D.; Ehrlich, Adam C.; Friedenberg, Frank K.

    2016-01-01

    Background and Aims Definitive diagnosis of IBD requires endoscopic and pathologic confirmation. These tools are also used to classify disease activity. Our aim was to determine if the fractional exhaled nitric oxide (FeNO) could be utilized to screen for IBD and assess for disease activity. Methods We matched weighted IBD cases and controls from the 2009–2010 NHANES dataset. All subjects underwent measurement of FeNO using standardized techniques. We assessed for potential confounders for FeNO measurement including age, height, and asthma. For IBD subjects, we used the presence of diarrhea, fatigue, and weight loss as a proxy for IBD activity. Laboratory parameters examined to estimate disease activity included anemia (≤ 10 g/dl), iron deficiency (ferritin ≤ 20 ng/ml), hypoalbuminemia (≤ 3.2 g/dl), and CRP (≥ 1.1 mg/dl). Results The weighted sample represented 199,414,901 subjects. The weighted prevalence of IBD was 2,084,895 (1.0%). IBD subjects had nearly the same FeNO level as those without IBD (17.0 ± 16.2 vs. 16.7 ± 14.5 ppb). The odds of a FeNO > 25 ppb was half (OR=0.501; 95% CI 0.497–0.504) for subjects with IBD compared to those without IBD after controlling for confounders. The AUROC curve for FeNO was 0.47 (0.35–0.59). FeNO levels were not higher in patients with laboratory values suggestive of active disease. FeNO levels were higher in IBD patients with diarrhea, rectal urgency, and fatigue but were lower in those with unintentional weight loss. Conclusion Measurement of FeNO does not appear to be useful to screen for IBD or assess disease activity. PMID:27398403

  8. Elevation of Serum Acid Sphingomyelinase Activity in Acute Kawasaki Disease.

    PubMed

    Konno, Yuuki; Takahashi, Ikuko; Narita, Ayuko; Takeda, Osamu; Koizumi, Hiromi; Tamura, Masamichi; Kikuchi, Wataru; Komatsu, Akira; Tamura, Hiroaki; Tsuchida, Satoko; Noguchi, Atsuko; Takahashi, Tsutomu

    2015-01-01

    Kawasaki disease (KD) is an acute systemic vasculitis that affects both small and medium-sized vessels including the coronary arteries in infants and children. Acid sphingomyelinase (ASM) is a lysosomal glycoprotein that hydrolyzes sphingomyelin to ceramide, a lipid, that functions as a second messenger in the regulation of cell functions. ASM activation has been implicated in numerous cellular stress responses and is associated with cellular ASM secretion, either through alternative trafficking of the ASM precursor protein or by means of an unidentified mechanism. Elevation of serum ASM activity has been described in several human diseases, suggesting that patients with diseases involving vascular endothelial cells may exhibit a preferential elevation of serum ASM activity. As acute KD is characterized by systemic vasculitis that could affect vascular endothelial cells, the elevation of serum ASM activity should be considered in these patients. In the present study, serum ASM activity in the sera of 15 patients with acute KD was determined both before and after treatment with infusion of high-dose intravenous immunoglobulin (IVIG), a first-line treatment for acute KD. Serum ASM activity before IVIG was significantly elevated in KD patients when compared to the control group (3.85 ± 1.46 nmol/0.1 ml/6 h vs. 1.15 ± 0.10 nmol/0.1 ml/6 h, p < 0.001), suggesting that ASM activation may be involved in the pathophysiology of this condition. Serum ASM activity before IVIG was significantly correlated with levels of C-reactive protein (p < 0.05). These results suggest the involvement of sphingolipid metabolism in the pathophysiology of KD. PMID:26447086

  9. Multiscale modeling for clinical translation in neuropsychiatric disease

    PubMed Central

    Lytton, William W.; Neymotin, Samuel A.; Kerr, Cliff C.

    2015-01-01

    Multiscale modeling of neuropsychiatric illness bridges scales of clinical importance: from the highest scales (presentation of behavioral signs and symptoms), through intermediate scales (clinical testing and surgical intervention), down to the molecular scale of pharmacotherapy. Modeling of brain disease is difficult compared to modeling of other organs, because dysfunction manifests at scales where measurements are rudimentary due both to inadequate access (memory and cognition) and to complexity (behavior). Nonetheless, we can begin to explore these aspects through the use of information-theoretic measures as stand-ins for meaning at the top scales. We here describe efforts across five disorders: Parkinson’s, Alzheimer’s, stroke, schizophrenia, and epilepsy. We look at the use of therapeutic brain stimulation to replace lost neural signals, a loss that produces diaschisis, defined as activity changes in other brain areas due to missing inputs. These changes may in some cases be compensatory, hence beneficial, but in many cases a primary pathology, whether itself static or dynamic, sets in motion a series of dynamic consequences that produce further pathology. The simulations presented here suggest how diaschisis can be reversed by using a neuroprosthetic signal. Despite having none of the information content of the lost physiological signal, the simplified neuroprosthetic signal can restore a diaschitic area to near-normal patterns of activity. Computer simulation thus begins to explain the remarkable success of stimulation technologies - deep brain stimulation, transcranial magnetic stimulation, ultrasound stimulation, transcranial direct current stimulation - across an extremely broad range of pathologies. Multiscale modeling can help us to optimize and integrate these neuroprosthetic therapies by taking into consideration effects of different stimulation protocols, combinations of stimulation with neuropharmacological therapy, and interplay of these

  10. Rat models of asthma and chronic obstructive lung disease.

    PubMed

    Martin, James G; Tamaoka, Meiyo

    2006-01-01

    The rat has been extensively used to model asthma and somewhat less extensively to model chronic obstructive pulmonary disease (COPD). The features of asthma that have been successfully modeled include allergen-induced airway constriction, eosinophilic inflammation and allergen-induced airway hyperresponsiveness. T-cell involvement has been directly demonstrated using adoptive transfer techniques. Both CD4+ and CD8+ T cells are activated in response to allergen challenge in the sensitized rat and express Thelper2 cytokines (IL-4, IL-5 and IL-13). Repeated allergen exposure causes airway remodeling. Dry gas hyperpnea challenge also evokes increases in lung resistance, allowing exercise-induced asthma to be modeled. COPD is modeled using elastase-induced parenchymal injury to mimic emphysema. Cigarette smoke-induced airspace enlargement occurs but requires months of cigarette exposure. Inflammation and fibrosis of peripheral airways is an important aspect of COPD that is less well modeled. Novel approaches to the treatment of COPD have been reported including treatments aimed at parenchymal regeneration. PMID:16337418

  11. Cumulative disease activity predicts incidental hearing impairment in patients with rheumatoid arthritis (RA).

    PubMed

    Pascual-Ramos, Virginia; Contreras-Yáñez, Irazú; Rivera-Hoyos, Paula; Enríquez, Lorena; Ramírez-Anguiano, Jaqueline

    2014-03-01

    We previously reported that 24% of 113 rheumatoid arthritis (RA) patients had hearing impairment (HI). We investigated if disease activity was a predictor of incidental HI. One hundred and four patients completed three consecutive 6 months-apart rheumatic evaluations and concomitant audiometric evaluations which included at least an interview, an otoscopic evaluation, and a pure tone audiometry. HI was defined if the average thresholds for at least one of low-, mid-, or high-frequency ranges were ≥25 decibels (dB) hearing level in one or both ears. Appropriated statistics was used. Internal review board approval was obtained. Patients were most frequently middle-aged (43.4 ± 13.3 years), female (89.4%), and had median disease duration of 5 years and low disease activity. All were receiving RA treatment. At inclusion, 24 patients had HI which was sensorineural in 91.7% of them. Among the 80 patients without HI at baseline, 10 (12.5%) developed incidental HI, and they had more disease activity either at baseline ([median, range] disease activity score-28 joints evaluated-C-reactive protein [DAS28-CRP], 3.9 [1.6-7.3] vs. 2.1 [1-8.7], p = 0.006) or cumulative previous incidental HI (3.4 [1.8-4.8] vs. 2 [1-6.2], p = 0.007) and were more frequently on combined methotrexate and sulfasalazine (20 vs. 1.4%, p = 0.05) than their counterparts. In the adjusted Cox proportional model, cumulative DAS28-CRP was the only variable to predict incidental HI (odds ratio, 1.8; 95% confidence interval, 1.1-2.7; p = 0.01). Almost 13% of RA patients with short disease duration and low disease activity developed incidental HI during 1 year. Cumulative disease activity predicted incidental HI. PMID:24435352

  12. Blockade of Gap Junction Hemichannel Suppresses Disease Progression in Mouse Models of Amyotrophic Lateral Sclerosis and Alzheimer's Disease

    PubMed Central

    Takeuchi, Hideyuki; Mizoguchi, Hiroyuki; Doi, Yukiko; Jin, Shijie; Noda, Mariko; Liang, Jianfeng; Li, Hua; Zhou, Yan; Mori, Rarami; Yasuoka, Satoko; Li, Endong; Parajuli, Bijay; Kawanokuchi, Jun; Sonobe, Yoshifumi; Sato, Jun; Yamanaka, Koji; Sobue, Gen; Mizuno, Tetsuya; Suzumura, Akio

    2011-01-01

    Background Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases. Methods and Findings In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimer's disease mouse model. Conclusions Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various

  13. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-01-01

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans. PMID:26919851

  14. Development and Application of Chronic Disease Risk Prediction Models

    PubMed Central

    Oh, Sun Min; Stefani, Katherine M.

    2014-01-01

    Currently, non-communicable chronic diseases are a major cause of morbidity and mortality worldwide, and a large proportion of chronic diseases are preventable through risk factor management. However, the prevention efficacy at the individual level is not yet satisfactory. Chronic disease prediction models have been developed to assist physicians and individuals in clinical decision-making. A chronic disease prediction model assesses multiple risk factors together and estimates an absolute disease risk for the individual. Accurate prediction of an individual's future risk for a certain disease enables the comparison of benefits and risks of treatment, the costs of alternative prevention strategies, and selection of the most efficient strategy for the individual. A large number of chronic disease prediction models, especially targeting cardiovascular diseases and cancers, have been suggested, and some of them have been adopted in the clinical practice guidelines and recommendations of many countries. Although few chronic disease prediction tools have been suggested in the Korean population, their clinical utility is not as high as expected. This article reviews methodologies that are commonly used for developing and evaluating a chronic disease prediction model and discusses the current status of chronic disease prediction in Korea. PMID:24954311

  15. Advancing swine models for human health and diseases.

    PubMed

    Walters, Eric M; Prather, Randall S

    2013-01-01

    Swine models are relatively new kids on the block for modeling human health and diseases when compared to rodents and dogs. Because of the similarity to humans in size, physiology, and genetics, the pig has made significant strides in advancing the understanding of the human condition, and is thus an excellent choice for an animal model. Recent technological advances to genetic engineering of the swine genome enhance the utility of swine as models of human genetic diseases. PMID:23829105

  16. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  17. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models

    PubMed Central

    Sun, Xiaotian; Zareen, Neela; Rao, Apeksha; Berman, Zachary; Volpicelli-Daley, Laura; Bernd, Paulette; Crary, John F.; Levy, Oren A.; Greene, Lloyd A.

    2015-01-01

    Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a

  18. Generating Transgenic Mouse Models for Studying Celiac Disease.

    PubMed

    Ju, Josephine M; Marietta, Eric V; Murray, Joseph A

    2015-01-01

    This chapter provides a brief overview of current animal models for studying celiac disease, with a focus on generating HLA transgenic mouse models. Human Leukocyte Antigen class II molecules have been a particular target for transgenic mice due to their tight association with celiac disease, and a number of murine models have been developed which had the endogenous MHC class II genes replaced with insertions of disease susceptible HLA class II alleles DQ2 or DQ8. Additionally, transgenic mice that overexpress interleukin-15 (IL-15), a key player in the inflammatory cascade that leads to celiac disease, have also been generated to model a state of chronic inflammation. To explore the contribution of specific bacteria in gluten-sensitive enteropathy, the nude mouse and rat models have been studied in germ-free facilities. These reductionist mouse models allow us to address single factors thought to have crucial roles in celiac disease. No single model has incorporated all of the multiple factors that make up celiac disease. Rather, these mouse models can allow the functional interrogation of specific components of the many stages of, and contributions to, the pathogenic mechanisms that will lead to gluten-dependent enteropathy. Overall, the tools for animal studies in celiac disease are many and varied, and provide ample space for further creativity as well as to characterize the complete and complex pathogenesis of celiac disease. PMID:26498609

  19. P21-activated kinase in inflammatory and cardiovascular disease

    PubMed Central

    Taglieri, Domenico M.; Ushio-Fukai, Masuko; Monasky, Michelle M.

    2014-01-01

    P-21 activated kinases, or PAKs, are serine–threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target. PMID:24794532

  20. Metformin treatment alters memory function in a mouse model of Alzheimer's disease.

    PubMed

    DiTacchio, Kacee A; Heinemann, Stephen F; Dziewczapolski, Gustavo

    2015-01-01

    Metabolic dysfunction exacerbates Alzheimer's disease (AD) incidence and progression. Here we report that activation of the AMPK pathway, a common target in the management of diabetes, results in gender-divergent cognitive effects in a murine model of the disease. Specifically, our results show that activation of AMPK increases memory dysfunction in males but is protective in females, suggesting that gender considerations may constitute an important factor in medical intervention of diabetes as well as AD. PMID:25190626

  1. Bidirectional Relationship between Chronic Kidney Disease and Periodontal Disease: Structural Equation Modeling

    PubMed Central

    Fisher, Monica A.; Taylor, George W.; West, Brady T.; McCarthy, Ellen T.

    2011-01-01

    Periodontal disease is associated with diabetes, heart disease, and chronic kidney disease (CKD), an effect postulated to be due in part to endovascular inflammation. While a bidirectional relationship between CKD and periodontal disease is plausible, it has not been previously reported in the literature. Over 11 200 adults 18 years or older were identified in the Third National Health and Nutrition Examination Survey. Analyses were conducted in two stages. First, multivariable logistic regression models were fitted to test the hypothesis that periodontal disease was independently associated with CKD. Given the potential that the periodontal disease and CKD relationship may be bidirectional, a two-step analytic approach was used that involved 1) tests for mediation, and 2) structural equation models to examine more complex direct and indirect effects of periodontal disease on CKD, and vice versa. In two separate models periodontal disease (ORAdj =1.62 (95% CI: 1.17-2.26) and edentulism (ORAdj = 1.83 (1.31-2.55) and periodontal disease score (ORAdj = 1.01 (1.01-1.02) were associated with CKD, when simultaneously adjusting for 14 other factors. Three of four structural equation models were most plausible suggesting bidirectional relationships. Collectively, these analyses provide for the first time empirical support for a bidirectional relationship between CKD and periodontal disease, and mediation of that relationship by diabetes duration and hypertension. PMID:20927035

  2. Use of model organism and disease databases to support matchmaking for human disease gene discovery.

    PubMed

    Mungall, Christopher J; Washington, Nicole L; Nguyen-Xuan, Jeremy; Condit, Christopher; Smedley, Damian; Köhler, Sebastian; Groza, Tudor; Shefchek, Kent; Hochheiser, Harry; Robinson, Peter N; Lewis, Suzanna E; Haendel, Melissa A

    2015-10-01

    The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases. PMID:26269093

  3. Invasive pneumococcal disease leads to activation and hyperreactivity of platelets.

    PubMed

    Tunjungputri, Rahajeng N; de Jonge, Marien I; de Greeff, Astrid; van Selm, Saskia; Buys, Herma; Harders-Westerveen, Jose F; Stockhofe-Zurwieden, Norbert; Urbanus, Rolf T; de Groot, Phillip G; Smith, Hilde E; van der Ven, Andre J; de Mast, Quirijn

    2016-08-01

    Using a novel porcine model of intravenous Streptococcus pneumoniae infection, we showed that invasive pneumococcal infections induce marked platelet activation and hyperreactivity. This may contribute to the vascular complications seen in pneumococcal infection. PMID:27322088

  4. Systematic discovery of nonobvious human disease models through orthologous phenotypes.

    PubMed

    McGary, Kriston L; Park, Tae Joo; Woods, John O; Cha, Hye Ji; Wallingford, John B; Marcotte, Edward M

    2010-04-01

    Biologists have long used model organisms to study human diseases, particularly when the model bears a close resemblance to the disease. We present a method that quantitatively and systematically identifies nonobvious equivalences between mutant phenotypes in different species, based on overlapping sets of orthologous genes from human, mouse, yeast, worm, and plant (212,542 gene-phenotype associations). These orthologous phenotypes, or phenologs, predict unique genes associated with diseases. Our method suggests a yeast model for angiogenesis defects, a worm model for breast cancer, mouse models of autism, and a plant model for the neural crest defects associated with Waardenburg syndrome, among others. Using these models, we show that SOX13 regulates angiogenesis, and that SEC23IP is a likely Waardenburg gene. Phenologs reveal functionally coherent, evolutionarily conserved gene networks-many predating the plant-animal divergence-capable of identifying candidate disease genes. PMID:20308572

  5. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    SciTech Connect

    Sanchez-Pernaute, Rosario; Jenkins, Bruce G.; Isacson, Ole

    2005-09-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders.

  6. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review.

    PubMed

    Papaevgeniou, Nikoletta; Chondrogianni, Niki

    2016-01-01

    Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal. PMID:27613027

  7. Mathematical models in medicine: Diseases and epidemics

    SciTech Connect

    Witten, M.

    1987-01-01

    This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling.

  8. Toward Development of a Fibromyalgia Responder Index and Disease Activity Score: OMERACT Module Update

    PubMed Central

    Mease, PJ; Clauw, DJ; Christensen, R; Crofford, L; Gendreau, M; Martin, SA; Simon, L; Strand, V; Williams, DA; Arnold, LM

    2012-01-01

    Following development of the core domain set for fibromyalgia (FM) in OMERACT 7–9, the FM working group has progressed toward the development of an FM responder index and a disease activity score based on these domains, utilizing outcome indices of these domains from archived randomized clinical trials (RCTs) in FM. Possible clinical domains that could be included in a responder index and disease activity score include: pain, fatigue, sleep disturbance, cognitive dysfunction, mood disturbance, tenderness, stiffness, and functional impairment. Outcome measures for these domains demonstrate good to adequate psychometric properties, although measures of cognitive dysfunction need to be further developed. The approach used in the development of responder indices and disease activity scores for rheumatoid arthritis and ankylosing spondylitis represent heuristic models for our work, but FM is challenging in that there is no clear algorithm of treatment that defines disease activity based on treatment decisions, nor are there objective markers that define thresholds of severity or response to treatment. The process of developing candidate dichotomous responder definitions and continuous quantitative disease activity measures is described, as is participant discussion that transpired at OMERACT 10. Final results of this work will be published in a separate manuscript pending completion of analyses. PMID:21724721

  9. Urinary glucaric acid excretion in rheumatoid arthritis: influence of disease activity and disease modifying drugs.

    PubMed Central

    Addyman, R; Beyeler, C; Astbury, C; Bird, H A

    1996-01-01

    OBJECTIVE: To examine if a correlation exists between cytochrome P-450 enzyme induction and disease activity in patients with rheumatoid arthritis (RA), measuring urinary excretion of D-glucaric acid (GA) as an index of phase II drug metabolism. METHODS: Patients with RA were treated with sulphasalazine, sodium aurothiomalate, or D-penicillamine in standard dose regimens, for 24 weeks. Patients with ankylosing spondylitis (AS) or non-inflammatory arthritis (NIA) acted as controls. The urinary GA:creatinine ratio was measured at 0, 12, and 24 weeks of treatment. RESULTS: Patients with RA had a slightly greater urinary GA:creatinine ratio than patients with AS or NIA at baseline; this increased during treatment with disease modifying antirheumatic drugs (DMARDs). Sulphasalazine treatment had a greater effect on GA excretion than sodium aurothiomalate or D-penicillamine; this difference was statistically significant between weeks 0 and 12 (p = 0.01). Gamma glutamyltranspeptidase concentration showed a weak correlation with GA excretion between weeks 0 and 12 (p = 0.03), but all other measurements of changes in disease activity (plasma viscosity, C reactive protein, platelets, and articular index) were found not to correlate with GA excretion between weeks 0-12 or 0-24. CONCLUSION: The increased excretion of GA in patients with RA receiving DMARD treatment is probably the result of an indirect effect on hepatic metabolism bearing no relationship to disease activity. PMID:8774168

  10. Development of the chronic obstructive pulmonary disease activity rating scale: reliability, validity and factorial structure.

    PubMed

    Morimoto, Michiko; Takai, Kenichi; Nakajima, Kazuo; Kagawa, Koujiro

    2003-03-01

    The purpose of the present study was to develop the Chronic Obstructive Pulmonary Disease (COPD) Activity Rating Scale (CARS) to measure life-related activity in patients with COPD, and to confirm its reliability and constructive validity in a factorial structure model. The subjects consisted of 114 patients with COPD. An 88-item life-related activity list, generated previously from a literature review, was administered. The secondary structural model consisted of four factors with 12 items. The results of the confirmatory factor analysis by structural equation modeling showed the fit criteria to be statistically significant. The internal consistency of the 12 items was highly reliable (Cronbach's alpha = 0.924). The CARS score was correlated with pulmonary function tests, breathlessness, and the health-related quality of life (QOL) scales in Pearson correlation coefficient. The results suggest that the COPD Activity Rating Scale is a valid scale for the assessment of life-related activity in patients with COPD. PMID:12603718

  11. Genome editing in nonhuman primates: approach to generating human disease models.

    PubMed

    Chen, Y; Niu, Y; Ji, W

    2016-09-01

    Nonhuman primates (NHPs) are superior than rodents to be animal models for the study of human diseases, due to their similarities in terms of genetics, physiology, developmental biology, social behaviour and cognition. Transgenic animals have become a key tool in functional genomics to generate models for human diseases and validate new drugs. However, until now, progress in the field of transgenic NHPs has been slow because of technological limitations. Many human diseases, including neurodegenerative disorders, are caused by mutations in endogenous genes. Fortunately, recent developments in precision gene editing have led to the generation of NHP models for human diseases. Since 2014, there have been several reports of the generation of monkey models using transcription activator-like endonucleases (TALENs) or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9); some of these NHP models showed symptoms that were much closer to those of human diseases than have been seen previously in mouse models. No off-targeting was observed in the NHP models, and multiple gene knockout and biallelic mutants were feasible with low efficiency. These findings suggest that there are many possibilities to establish NHP models for human diseases that can mimic human diseases more faithfully than rodent models. PMID:27114283

  12. Scurfy mice: A model for autoimmune disease

    SciTech Connect

    Godfrey, V.L.

    1993-01-01

    Autoimmune disease-the condition in which the body attacks its own tissue-has been an object of public concern recently. Former President George Bush and his wife Barbara both are afflicted with Graves' disease in which the body's own immune system attakcs the thyroid gland. The safety of breast implants was called into question because of evidence that some recipients had developed autoimmune disorders such a rheumatoid arthritis, systemic lupus erythematosus, and scleroderma. Women, the media pointed out, have a higher-than-average incidence of many autoimmune disorders. These events suggest the need to know more about what makes the immune system work so well and what makes it go awry. At ORNL's Biology Division, progress is being in understanding the underlying causes of immune disease by studying mice having a disease that causes them to be underdeveloped; to have scaly skin, small ears, and large spleens; to open their eyes late; and to die early. These [open quotes]scurfy[close quotes]mice are helping us better understand the role of the thymus gland in autoimmune disease.

  13. Drug−disease interaction: Crohn's disease elevates verapamil plasma concentrations but reduces response to the drug proportional to disease activity

    PubMed Central

    Sanaee, Forough; Clements, John D; Waugh, Alistair W G; Fedorak, Richard N; Lewanczuk, Richard; Jamali, Fakhreddin

    2011-01-01

    AIM Inflammation is involved in the pathogenesis of cardiovascular diseases that includes reduced response to pharmacotherapy due to altered pharmacokinetics and pharmacodynamics. It is not known if these effects exist in general in all inflammatory conditions. It also remains unknown whether in a given population the effect is a function of disease severity. We investigated whether pharmacokinetics and pharmacodynamics of a typical calcium channel inhibitor are influenced by Crohn's disease (CD), a disease for which the disease severity can be readily ranked. METHODS We administered 80 mg verapamil orally to (i) healthy control subjects (n = 9), (ii) patients with clinically quiescent CD (n = 22) and (iii) patients with clinically active CD (n = 14). Serial analysis of verapamil enantiomers (total and plasma unbound), blood pressure and electrocardiograms were recorded over 8 h post dose. The severity of CD was measured using the Harvey-Bradshaw Index. RESULTS CD substantially and significantly increased plasma verapamil concentration and in a stereoselective fashion (S, 9-fold; R, 2-fold). The elevated verapamil concentration, however, failed to result in an increased verapamil pharmacodynamic effect so that the patients with elevated verapamil concentration demonstrated no significant increase in response measured as PR interval and blood pressure. Instead, the greater the disease severity, the lower was the drug potency to prolong PR interval (r = 0.86, P < 0.0006), CONCLUSIONS CD patients with severe disease may not respond to cardiovascular therapy with calcium channel blockers. Reducing the severity increases response despite reduced drug concentration. This observation may have therapeutic implication beyond the disease and the drug studies herein. PMID:21592185

  14. POSTERIOR PREDICTIVE MODEL CHECKS FOR DISEASE MAPPING MODELS. (R827257)

    EPA Science Inventory

    Disease incidence or disease mortality rates for small areas are often displayed on maps. Maps of raw rates, disease counts divided by the total population at risk, have been criticized as unreliable due to non-constant variance associated with heterogeneity in base population si...

  15. Neural activities during affective processing in people with Alzheimer's disease.

    PubMed

    Lee, Tatia M C; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    2013-03-01

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to compare the affective processing in 12 people with mild Alzheimer's disease and 12 matched controls. The main finding was that the clinical participants showed reduced activations in regions associated with the motor simulation system (the ventral premotor cortex) and in regions associated with emotional simulation-empathy (the anterior insula and adjacent frontal operculum). This regional decline in blood oxygen level-dependent signals appeared to be lateralized in the left hemisphere and was not related to any structural degeneration in the clinical participants. Furthermore, the regions that showed changes in neural activity differed for the 3 emotional facial expressions studied. Findings of our study indicate that neural changes in regions associated with the motor and emotional simulation systems might play an important role in the development of Alzheimer's disease. PMID:22840336

  16. Thermo-kinetic model for Prion diseases

    NASA Astrophysics Data System (ADS)

    Galdino, M. L.; de Albuquerque, S. S.; Ferreira, A. S.; Cressoni, J. C.; dos Santos, R. J. V.

    2001-06-01

    A mean field theory of the auto catalytic Prions conversion reaction is developed under a conservation law for Prions density. These reactions take place in the brain where a normally folded Prion protein ( Pr P c) is converted into a misfolded, more stable, form ( Pr P Sc). The results reproduce most of the known facts observed in Prion diseases such as: very long incubation time, rapid death after the first symptoms manifestation, dependence of the incubation and death times on the concentration of the initial contamination dose and the existence of a minimum contamination dose for the detection of the disease. Results of computing simulations are also presented.

  17. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.

    PubMed

    Sampaziotis, Fotios; Cardoso de Brito, Miguel; Madrigal, Pedro; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A C; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H; Bradley, J Andrew; Gelson, William T H; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J; Hannan, Nicholas R F; Vallier, Ludovic

    2015-08-01

    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening. PMID:26167629

  18. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation

    PubMed Central

    Sampaziotis, Fotios; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A. C.; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H.; Bradley, J. Andrew; Gelson, William TH; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J.

    2016-01-01

    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, gamma-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and VEGF. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development as well as disease modeling and drug screening. PMID:26167629

  19. A Few Bad Apples: A Model of Disease Influenced Agent Behaviour in a Heterogeneous Contact Environment

    PubMed Central

    Enright, Jessica; Kao, Rowland R.

    2015-01-01

    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent’s disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence. PMID:25734661

  20. A few bad apples: a model of disease influenced agent behaviour in a heterogeneous contact environment.

    PubMed

    Enright, Jessica; Kao, Rowland R

    2015-01-01

    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent's disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence. PMID:25734661

  1. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  2. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  3. [Physical activity in basic and primary prevention of cardiovascular disease].

    PubMed

    Sobieszczańska, Małgorzata; Kałka, Dariusz; Pilecki, Witold; Adamus, Jerzy

    2009-06-01

    On account of the frequency of appearing and character of atherosclerosis cardiac vascular disease, one of the most crucial elements of effective fight against it is preparation of complex preventive programs including as vast number of population as possible. Consequently, Benjamin and Smitch suggested attaching the notion of basic prevention to the standard division into primary and secondary one. The basic prevention, carrying out in the general population, should concern genetic predisposition, psychosocial factors, keeping up proper body weight, healthy eating and physical activity. Especially high hopes are connected with high efficiency, simplicity and low money-consumption of preventive activities associated with physical activity modification, which has a crucial influence on reducing negative impact of atherosclerosis hazard. The results of numerous scientific research, carried out in many countries and on various, large groups, proved undoubtedly that at the healthy adult people of both sex the systematic physical activity of moderate intensification plays an essential part in preventing CVD and decreasing the death risk because of that reason as well. Moreover, systematic physical exercises show many other health-oriented actions, thanks to which they have an influence on decreasing premature and total death rate. The risk of incidence of civilization-related diseases such as diabetes type II, hypertension, obesity, osteoporosis, tumors (of large intestine, breast, prostatic gland) and depression has decreased significantly. Unequivocally positive influence has been proved at many observations dedicated to health recreational physical activity and physical activity connected with professional work based on aerobe effort. The positive effects have been also observed at children population and senior population which is more and more numerous and the most at risk. The beneficial action of physical activity is connected with direct effect on organism

  4. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    SciTech Connect

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other.

  5. Physical activity, functional ability, and disease activity in children and adolescents with juvenile idiopathic arthritis.

    PubMed

    Gueddari, S; Amine, B; Rostom, S; Badri, D; Mawani, N; Ezzahri, M; Moussa, F; Shyen, S; Abouqal, R; Chkirat, B; Hajjaj-Hassouni, N

    2014-09-01

    Juvenile idiopathic arthritis (JIA) is a chronic condition known to cause pain-related complications in youth and affect children's physical functioning. There is no data in Arabic children with JIA about the impact of illness upon their physical activity. The objective of this study was to explore physical activity (PA) in children and adolescents with JIA compared with a healthy population and to examine associations between PA, functional ability, and disease activity. Our study included patients with JIA and group control aged between 8 and 17 years. The diagnosis was used according to the International League of Association of Rheumatology (ILAR) criteria 2001. Sociodemographic data and clinical features were collected. Physical activity level and energy expenditure were assessed with a 1-day activity diary and the metabolic equivalent (MET), respectively. Functional ability was assessed with the Moroccan version of the Childhood Health Assessment Questionnaire (CHAQ). Disease activity was measured using the Juvenile Arthritis Disease Activity Score (JADAS). Fifty patients and 50 controls were included (mean ± SD age 11.5 ± 3.3 and 10.5 ± 3.8 years, respectively; p = 0.49) with masculine predominance n = 30 (59.6 %) and n = 29 (58 %), respectively (p = 0.26). The median disease duration was 4.3 years (2-5). The median analog scale (VAS) pain was 20 (10-40). Fourteen patients (28 %) had an active disease. Patient population consisted in majority of oligoarticular arthritis (28 %), 14 patients. The mean of energy expenditure and physical activity were significantly higher in the JIA group. The JIA group spent more time in bed and less time on moderate to vigorous PA than the control group. There is no significant relationship between PA, functional ability, and disease activity. Our study suggests that children and adolescents with JIA have low PA levels and are at risk of losing the benefits of PA. Low PA is not related to

  6. Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease.

    PubMed

    Oraby, Tamer; Vasilyeva, Olga; Krewski, Daniel; Lutscher, Frithjof

    2014-01-01

    Behavior and habitat of wildlife animals change seasonally according to environmental conditions. Mathematical models need to represent this seasonality to be able to make realistic predictions about the future of a population and the effectiveness of human interventions. Managing and modeling disease in wild animal populations requires particular care in that disease transmission dynamics is a critical consideration in the etiology of both human and animal diseases, with different transmission paradigms requiring different disease risk management strategies. Since transmission of infectious diseases among wildlife depends strongly on social behavior, mechanisms of disease transmission could also change seasonally. A specific consideration in this regard confronted by modellers is whether the contact rate between individuals is density-dependent or frequency-dependent. We argue that seasonal behavior changes could lead to a seasonal shift between density and frequency dependence. This hypothesis is explored in the case of chronic wasting disease (CWD), a fatal disease that affects deer, elk and moose in many areas of North America. Specifically, we introduce a strategic CWD risk model based on direct disease transmission that accounts for the seasonal change in the transmission dynamics and habitats occupied, guided by information derived from cervid ecology. The model is composed of summer and winter susceptible-infected (SI) equations, with frequency-dependent and density-dependent transmission dynamics, respectively. The model includes impulsive birth events with density-dependent birth rate. We determine the basic reproduction number as a weighted average of two seasonal reproduction numbers. We parameterize the model from data derived from the scientific literature on CWD and deer ecology, and conduct global and local sensitivity analyses of the basic reproduction number. We explore the effectiveness of different culling strategies for the management of CWD

  7. Medicinal plant activity on Helicobacter pylori related diseases

    PubMed Central

    Wang, Yuan-Chuen

    2014-01-01

    More than 50% of the world population is infected with Helicobacter pylori (H. pylori). The bacterium highly links to peptic ulcer diseases and duodenal ulcer, which was classified as a group I carcinogen in 1994 by the WHO. The pathogenesis of H. pylori is contributed by its virulence factors including urease, flagella, vacuolating cytotoxin A (VacA), cytotoxin-associated gene antigen (Cag A), and others. Of those virulence factors, VacA and CagA play the key roles. Infection with H. pylori vacA-positive strains can lead to vacuolation and apoptosis, whereas infection with cagA-positive strains might result in severe gastric inflammation and gastric cancer. Numerous medicinal plants have been reported for their anti-H. pylori activity, and the relevant active compounds including polyphenols, flavonoids, quinones, coumarins, terpenoids, and alkaloids have been studied. The anti-H. pylori action mechanisms, including inhibition of enzymatic (urease, DNA gyrase, dihydrofolate reductase, N-acetyltransferase, and myeloperoxidase) and adhesive activities, high redox potential, and hydrophilic/hydrophobic natures of compounds, have also been discussed in detail. H. pylori-induced gastric inflammation may progress to superficial gastritis, atrophic gastritis, and finally gastric cancer. Many natural products have anti-H. pylori-induced inflammation activity and the relevant mechanisms include suppression of nuclear factor-κB and mitogen-activated protein kinase pathway activation and inhibition of oxidative stress. Anti-H. pylori induced gastric inflammatory effects of plant products, including quercetin, apigenin, carotenoids-rich algae, tea product, garlic extract, apple peel polyphenol, and finger-root extract, have been documented. In conclusion, many medicinal plant products possess anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect. Those plant products have showed great potential as pharmaceutical candidates for H. pylori

  8. Circadian Disruption and Metabolic Disease: Findings from Animal Models

    PubMed Central

    Arble, Deanna Marie; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-01-01

    Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease. PMID:21112026

  9. Do mouse models of allergic asthma mimic clinical disease?

    PubMed

    Epstein, Michelle M

    2004-01-01

    Experimental mouse models of allergic asthma established almost 10 years ago offered new opportunities to study disease pathogenesis and to develop new therapeutics. These models focused on the factors governing the allergic immune response, on modeling clinical behavior of allergic asthma, and led to insights into pulmonary pathophysiology. Although mouse models rarely completely reproduce all the features of human disease, after sensitization and respiratory tract challenges with antigen, wild-type mice develop a clinical syndrome that closely resembles allergic asthma, characterized by eosinophilic lung inflammation, airway hyperresponsiveness (AHR), increased IgE, mucus hypersecretion, and eventually, airway remodeling. There are, however, differences between mouse and human physiology that threaten to limit the value of mouse models. Three examples of such differences relate to both clinical manifestations of disease and underlying pathogenesis. First, in contrast to patients who have increased methacholine-induced AHR even when they are symptom-free, mice exhibit only transient methacholine-induced AHR following allergen exposure. Second, chronic allergen exposure in patients leads to chronic allergic asthma, whereas repeated exposures in sensitized mice causes suppression of disease. Third, IgE and mast cells, in humans, mediate early- and late-phase allergic responses, though both are unnecessary for the generation of allergic asthma in mice. Taken together, these observations suggest that mouse models of allergic asthma are not exact replicas of human disease and thus, question the validity of these models. However, observations from mouse models of allergic asthma support many existing paradigms, although some novel discoveries in mice have yet to be verified in patients. This review presents an overview of the clinical aspects of disease in mouse models of allergic asthma emphasizing (1). the factors influencing the pathophysiological responses during

  10. Memory activation reveals abnormal EEG in preclinical Huntington's disease.

    PubMed

    van der Hiele, Karin; Jurgens, Caroline K; Vein, Alla A; Reijntjes, Robert H A M; Witjes-Ané, Marie-Noëlle W; Roos, Raymund A C; van Dijk, Gert; Middelkoop, Huub A M

    2007-04-15

    The EEG is potentially useful as a marker of early Huntington's disease (HD). In dementia, the EEG during a memory activation challenge showed abnormalities where the resting EEG did not. We investigated whether memory activation also reveals EEG abnormalities in preclinical HD. Sixteen mutation carriers for HD and 13 nonmutation carriers underwent neurological, neuropsychological, MRI and EEG investigations. The EEG was registered during a rest condition, i.e. eyes closed, and a working memory task. In each condition we determined absolute power in the theta (4-8 Hz) and alpha (8-13 Hz) bands and subsequently calculated relative alpha power. The EEG during eyes closed did not differ between groups. The EEG during memory activation showed less relative alpha power in mutation carriers as compared to nonmutation carriers, even though memory performance was similar [F (1,27) = 10.87; P = 0.003]. Absolute powers also showed less alpha power [F (1,27) = 7.02; P = 0.013] but similar theta power. No correlations were found between absolute and relative alpha power on the one hand and neuropsychological scores, motor scores or number of CAG repeats on the other. In conclusion, memory activation reveals functional brain changes in Huntington's disease before clinical signs become overt. PMID:17266047

  11. Pluripotent stem cells in disease modelling and drug discovery.

    PubMed

    Avior, Yishai; Sagi, Ido; Benvenisty, Nissim

    2016-03-01

    Experimental modelling of human disorders enables the definition of the cellular and molecular mechanisms underlying diseases and the development of therapies for treating them. The availability of human pluripotent stem cells (PSCs), which are capable of self-renewal and have the potential to differentiate into virtually any cell type, can now help to overcome the limitations of animal models for certain disorders. The ability to model human diseases using cultured PSCs has revolutionized the ways in which we study monogenic, complex and epigenetic disorders, as well as early- and late-onset diseases. Several strategies are used to generate such disease models using either embryonic stem cells (ES cells) or patient-specific induced PSCs (iPSCs), creating new possibilities for the establishment of models and their use in drug screening. PMID:26818440

  12. [Somatoform pruritus: a psychosomatic disease model].

    PubMed

    Niemeier, V; Höring, C M

    2013-06-01

    Pruritus is an interdisciplinary symptom that is difficult to diagnose and treat. When there is no evidence of an organic cause, it is challenge for both the patient and the doctor. Itching affecting non-inflamed and otherwise normal skin is often classified as somatoform pruritus. When treated in an interdisciplinary manner with psychosomatic specialists, the patient increasingly becomes aware of still-unrecognized inner-emotional conflicts. At the same time, however, it must be taken into account that the pruritus may precede an underlying disease by a long time and that the diagnosis must be checked regularly. Basic psychosomatic competence and experience in the administration of psychopharmaceuticals is recommended for dermatologists. Taking a psychosomatic concept of disease into account may improve patient satisfaction and compliance, and help to avoid doctor-hopping. PMID:23677539

  13. Functional activity of human hepatocytes under traumatic disease.

    PubMed

    Kudryavtseva, M V; Stein, G I; Shashkov, B V; Kudryavtsev, B N

    1998-03-01

    Absorption and fluorescent cytophotometry techniques were applied to studies of RNA as well as of total glycogen and its fractions as the parameters of functional activity of the hepatocytes in patients with severe mechanical trauma, both with and without autointoxication (AI). Slides were stained with gallocyanine-chromalums to determine the RNA content and were processed by the fluorescent PAS-reaction for the glycogen content. To trace the dynamics of RNA and glycogen contents in the liver punction biopsies were done in the same patients. A quick increase in the RNA content took place in both groups of patients at the first period (within the first 3 days) of traumatic disease. At the second period of disease the hepatocyte RNA content in patients without AI was found to decrease up to the initial level whereas that in patients with AI increased on the average by 36% of the initial values. The total glycogen content in hepatocytes of all the patients changed insignificantly in the course of disease but its labile fraction in patients with AI decreased to 70% of the total. The increase of hepatocyte synthetic activity and the maintenance of the high glycogen level are indicative of the large compensatory potential of the liver that enables it to carry an intensive functional load under AI conditions. PMID:9570502

  14. Subcortical evoked activity and motor enhancement in Parkinson's disease

    PubMed Central

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S.; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2016-01-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of ‘paradoxical kinesis’ in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus – a key component of the reticular activating system – provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an ‘energizing’ influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  15. Pharmacological treatment options for mast cell activation disease.

    PubMed

    Molderings, Gerhard J; Haenisch, Britta; Brettner, Stefan; Homann, Jürgen; Menzen, Markus; Dumoulin, Franz Ludwig; Panse, Jens; Butterfield, Joseph; Afrin, Lawrence B

    2016-07-01

    Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches. PMID:27132234

  16. Subcortical evoked activity and motor enhancement in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2016-03-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  17. Metabolic correlates of pallidal neuronal activity in Parkinson's disease.

    PubMed

    Eidelberg, D; Moeller, J R; Kazumata, K; Antonini, A; Sterio, D; Dhawan, V; Spetsieris, P; Alterman, R; Kelly, P J; Dogali, M; Fazzini, E; Beric, A

    1997-08-01

    We have used [18F]fluorodeoxyglucose and PET to identify specific metabolic covariance patterns associated with Parkinson's disease and related disorders previously. Nonetheless, the physiological correlates of these abnormal patterns are unknown. In this study we used PET to measure resting state glucose metabolism in 42 awake unmedicated Parkinson's disease patients prior to unilateral stereotaxic pallidotomy for relief of symptoms. Spontaneous single unit activity of the internal segment of the globus pallidus (GPi) was recorded intraoperatively in the same patients under identical conditions. The first 24 patients (Group A) were scanned on an intermediate resolution tomograph (full width at half maximum, 8 mm); the subsequent 18 patients (Group B) were scanned on a higher resolution tomograph (full width half maximum, 4.2 mm). We found significant positive correlations between GPi firing rates and thalamic glucose metabolism in both patient groups (Group A: r = 0.41, P < 0.05; Group B: r = 0.69, P < 0.005). In Group B, pixel-based analysis disclosed a significant focus of physiological-metabolic correlation involving the ventral thalamus and the GPi (statistical parametric map: P < 0.05, corrected). Regional covariance analysis demonstrated that internal pallidal neuronal activity correlated significantly (r = 0.65, P < 0.005) with the expression of a unique network characterized by covarying pallidothalamic and brainstem metabolic activity. Our findings suggest that the variability in pallidal neuronal firing rates in Parkinson's disease patients is associated with individual differences in the metabolic activity of efferent projection systems. PMID:9278625

  18. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  19. Motor cortex stimulation for Parkinson's disease: a modelling study

    NASA Astrophysics Data System (ADS)

    Zwartjes, Daphne G. M.; Heida, Tjitske; Feirabend, Hans K. P.; Janssen, Marcus L. F.; Visser-Vandewalle, Veerle; Martens, Hubert C. F.; Veltink, Peter H.

    2012-10-01

    Chronic motor cortex stimulation (MCS) is currently being investigated as a treatment method for Parkinson's disease (PD). Unfortunately, the underlying mechanisms of this treatment are unclear and there are many uncertainties regarding the most effective stimulation parameters and electrode configuration. In this paper, we present a MCS model with a 3D representation of several axonal populations. The model predicts that the activation of either the basket cell or pyramidal tract (PT) type axons is involved in the clinical effect of MCS. We propose stimulation protocols selectively targeting one of these two axon types. To selectively target the basket cell axons, our simulations suggest using either cathodal or bipolar stimulation with the electrode strip placed perpendicular rather than parallel to the gyrus. Furthermore, selectivity can be increased by using multiple cathodes. PT type axons can be selectively targeted with anodal stimulation using electrodes with large contact sizes. Placing the electrode epidurally is advisable over subdural placement. These selective protocols, when practically implemented, can be used to further test which axon type should be activated for clinically effective MCS and can subsequently be applied to optimize treatment. In conclusion, this paper increases insight into the neuronal population involved in the clinical effect of MCS on PD and proposes strategies to improve this therapy.

  20. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-01-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. PMID:27367161

  1. An immuno-epidemiological model for Johne's disease in cattle.

    PubMed

    Martcheva, Maia; Lenhart, Suzanne; Eda, Shigetoshi; Klinkenberg, Don; Momotani, Eiichi; Stabel, Judy

    2015-01-01

    To better understand the mechanisms involved in the dynamics of Johne's disease in dairy cattle, this paper illustrates a novel way to link a within-host model for Mycobacterium avium ssp. paratuberculosis with an epidemiological model. The underlying variable in the within-host model is the time since infection. Two compartments, infected macrophages and T cells, of the within-host model feed into the epidemiological model through the direct transmission rate, disease-induced mortality rate, the vertical transmission rate, and the shedding of MAP into the environment. The epidemiological reproduction number depends on the within-host bacteria load in a complex way, exhibiting multiple peaks. A possible mechanism to account for the switch in shedding patterns of the bacteria in this disease is included in the within-host model, and its effect can be seen in the epidemiological reproduction model. PMID:26091672

  2. Upper Airway Genioglossal Activity in Children with Sickle Cell Disease

    PubMed Central

    Huang, Jingtao; Pinto, Swaroop J.; Allen, Julian L.; Arens, Raanan; Bowdre, Cheryl Y.; Jawad, Abbas F.; Mason, Thornton B.A.; Ohene-Frempong, Kwaku; Smith-Whitley, Kim; Marcus, Carole L.

    2011-01-01

    Study Objectives: The prevalence of obstructive sleep apnea syndrome (OSAS) in sickle cell disease (SCD) has been reported to be higher than that in the general pediatric population. However, not all subjects with SCD develop OSAS. We hypothesized that SCD patients with OSAS have a blunted neuromuscular response to subatmospheric pressure loads during sleep, making them more likely to develop upper airway collapse. Design: Subjects with SCD with and without OSAS underwent pressure-flow measurements during sleep using intraoral surface electrodes to measure genioglossal EMG (EMGgg). Two techniques were applied to decrease the nasal pressure (PN) to subatmospheric levels, resulting in an activated and relatively hypotonic upper airway. The area under the curve of the inspiratory EMGgg moving time average was analyzed. EMGgg activity was expressed as a percentage of baseline. Changes in EMGgg in response to decrements in nasal pressure were expressed as the slope of the EMGgg vs. nasal pressure (slope of EMGgg-PN). Setting: Sleep laboratory. Participants: 4 children with SCD and OSAS and 18 children with SCD but without OSAS. Results: The major findings of this study were: (1) using the activated but not the hypotonic technique, the slope of EMGgg-PN was more negative in SCD controls than SCD OSAS; (2) the slope of EMGgg-PN was significantly lower using the activated technique compared to the hypotonic technique in SCD controls only; (3) similarly, the critical closing pressure, Pcrit, was more negative using the activated technique than the hypotonic technique in SCD controls but not in SCD OSAS. Conclusion: This preliminary study has shown that children with SCD but without OSAS have more prominent upper airway reflexes than children with SCD and OSAS. Citation: Huang J; Pinto SJ; Allen JL; Arens R; Bowdre CY; Jawad AF; Mason TBA; Ohene-Frempong K; Smith-Whitely K; Marcus CL. Upper airway genioglossal activity in children with sickle cell disease. SLEEP 2011

  3. Incorporating disease and population structure into models of SIR disease in contact networks.

    PubMed

    Miller, Joel C; Volz, Erik M

    2013-01-01

    We consider the recently introduced edge-based compartmental models (EBCM) for the spread of susceptible-infected-recovered (SIR) diseases in networks. These models differ from standard infectious disease models by focusing on the status of a random partner in the population, rather than a random individual. This change in focus leads to simple analytic models for the spread of SIR diseases in random networks with heterogeneous degree. In this paper we extend this approach to handle deviations of the disease or population from the simplistic assumptions of earlier work. We allow the population to have structure due to effects such as demographic features or multiple types of risk behavior. We allow the disease to have more complicated natural history. Although we introduce these modifications in the static network context, it is straightforward to incorporate them into dynamic network models. We also consider serosorting, which requires using dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is straightforward to introduce many other generalizations not considered here. Our goal is twofold: to provide a number of examples generalizing the EBCM method for various different population or disease structures and to provide insight into how to derive such a model under new sets of assumptions. PMID:23990880

  4. Computational fluid dynamics models and congenital heart diseases

    PubMed Central

    Pennati, Giancarlo; Corsini, Chiara; Hsia, Tain-Yen; Migliavacca, Francesco

    2013-01-01

    Mathematical modeling is a powerful tool to investigate hemodynamics of the circulatory system. With improving imaging techniques and detailed clinical investigations, it is now possible to construct patient-specific models of reconstructive surgeries for the treatment of congenital heart diseases. These models can help clinicians to better understand the hemodynamic behavior of different surgical options for a treated patient. This review outlines recent advances in mathematical modeling in congenital heart diseases, the discoveries and limitations these models present, and future directions that are on the horizon. PMID:24432298

  5. Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson's Disease.

    PubMed

    Fischer, D Luke; Gombash, Sara E; Kemp, Christopher J; Manfredsson, Fredric P; Polinski, Nicole K; Duffy, Megan F; Sortwell, Caryl E

    2016-01-01

    Gene therapy methods are increasingly used to model Parkinson's disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD. PMID:26611600

  6. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  7. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network

    PubMed Central

    Lebl, Karin; Lentz, Hartmut H. K.; Pinior, Beate; Selhorst, Thomas

    2016-01-01

    The trade of livestock is an important and growing economic sector, but it is also a major factor in the spread of diseases. The spreading of diseases in a trade network is likely to be influenced by how often existing trade connections are active. The activity α is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. The observed German pig trade network had an activity of α = 0.11, thus each existing trade connection between two farms was, on average, active at about 10% of the time during the observation period 2008–2009. The aim of this study is to analyze how changes in the activity level of the German pig trade network influence the probability of disease outbreaks, size, and duration of epidemics for different disease transmission probabilities. Thus, we want to investigate the question, whether it makes a difference for a hypothetical spread of an animal disease to transport many animals at the same time or few animals at many times. A SIR model was used to simulate the spread of a disease within the German pig trade network. Our results show that for transmission probabilities <1, the outbreak probability increases in the case of a decreased frequency of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak size, we find that a threshold exists such that finite outbreaks occur only above a critical value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, although the outbreak probability increased when decreasing α, these outbreaks affect only a small number of farms. The duration of the epidemic peaks at an activity level in the range of α = 0.2–0.3. Additionally, the results of our simulations show that even small changes in the activity level of the German pig trade network would have dramatic effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can conclude and recommend that the network activity

  8. Active learning based segmentation of Crohns disease from abdominal MRI.

    PubMed

    Mahapatra, Dwarikanath; Vos, Franciscus M; Buhmann, Joachim M

    2016-05-01

    This paper proposes a novel active learning (AL) framework, and combines it with semi supervised learning (SSL) for segmenting Crohns disease (CD) tissues from abdominal magnetic resonance (MR) images. Robust fully supervised learning (FSL) based classifiers require lots of labeled data of different disease severities. Obtaining such data is time consuming and requires considerable expertise. SSL methods use a few labeled samples, and leverage the information from many unlabeled samples to train an accurate classifier. AL queries labels of most informative samples and maximizes gain from the labeling effort. Our primary contribution is in designing a query strategy that combines novel context information with classification uncertainty and feature similarity. Combining SSL and AL gives a robust segmentation method that: (1) optimally uses few labeled samples and many unlabeled samples; and (2) requires lower training time. Experimental results show our method achieves higher segmentation accuracy than FSL methods with fewer samples and reduced training effort. PMID:27040833

  9. The Cybrid Model of Sporadic Parkinson’s Disease

    PubMed Central

    Trimmer, Patricia A.; Bennett, James P.

    2009-01-01

    Parkinson’s disease (PD) is the eponym attached to the most prevalent neurodegenerative movement disorder of adults, derived from observations of an early nineteenth century physician and paleontologist, James Parkinson, and is now recognized to encompass much more than a movement disorder clinically or dopamine neuron death pathologically. Most PD (~90%) is sporadic (sPD), is associated with mitochondrial deficiencies and has been studied in cell and animal models arising from use of mitochondrial toxins that unfortunately have not predicted clinical efficacy to slow disease progression in humans. We have extensively studied the cytoplasmic hybrid (“cybrid”) model of sPD in which donor mtDNA’s are introduced into and expressed in neural tumor cells with identical nuclear genetic and environmental backgrounds. sPD cybrids demonstrate many abnormalities in which increased oxidative stress drives downstream antioxidant response and cell death activating signaling pathways. sPD cybrids regulate mitochondrial ETC genes and gene ontology families like sPD brain. sPD cybrids spontaneously form Lewy bodies and Lewy neurites, linking mtDNA expression to neuropathology, and demonstrate impaired organelle transport in processes and reduced mitochondrial respiration. Our recent studies show that near-infrered laser light therapy normalizes mitochondrial movement and can stimulate respiration in sPD cybrid neurons, and mitochondrial gene therapy can restore respiration and stimulate mitochondrial ETC gene and protein expression. sPD cybrids have provided multiple lines of circumstantial evidence linking mtDNA to sPD pathogenesis and can serve as platforms for therapy development. sPD cybrid models can be improved by use of non-tumor human stem cell-derived neural precursor cells and by introduction of postmortem brain mtDNA to test its causality directly. PMID:19328199

  10. Thrombotic microangiopathies: from animal models to human disease and cure.

    PubMed

    Caprioli, Jessica; Remuzzi, Giuseppe; Noris, Marina

    2011-01-01

    Thrombotic microangiopathies are a group of microvascular disorders, with reduced organ perfusion and hemolytic anemia. The two most relevant conditions characterized by thrombotic microangiopathic anemia (TMA) are thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). In TTP, systemic microvascular aggregation of platelets causes ischemia in the brain and other organs. In HUS, platelet-fibrin thrombi predominantly occlude the renal circulation. TTP can be inherited due to deficiencies in the activity of von Willebrand factor cleaving protease (ADAMTS13) or acquired due to the presence of autoantibodies directed against ADAMTS13. The majority of HUS cases are secondary to infections by strains of Escherichia coli that produce Shiga-like toxins (Stx-HUS), while about 5- 10% of all cases are classified as atypical HUS (aHUS). Genetically derived impaired regulation of the complement system is associated with aHUS. Infusion or the exchange of fresh frozen plasma have ameliorated the prognosis of TMA; however, no specific therapies aimed at preventing or limiting the microangiopathic process have been proven to affect the course of TMA. Large mammals, small animal models, knockout and transgenic mouse models of TTP and both Stx-HUS and aHUS have been developed and have provided outstanding contributions to nearly all areas of TMA research. A better understanding of the key clinical features of the diseases and of the importance of genetic and/or environmental factors involved in the pathogenesis of the diseases have been obtained. These animal models have also allowed the set up of protocols aimed at ameliorating the clinical approach to patients and for the development of new drugs and vaccines. PMID:21252531

  11. Can fecal calprotectin better stratify Crohn’s disease activity index?

    PubMed Central

    Scaioli, Eleonora; Cardamone, Carla; Scagliarini, Michele; Zagari, Rocco Maurizio; Bazzoli, Franco; Belluzzi, Andrea

    2015-01-01

    Background Crohn’s disease (CD) activity index (CDAI) is still widely used for monitoring clinical activity in CD patients, but is of little value as indicator of persistent inflammation in symptomless patients. Fecal calprotectin levels ≥150 µg/g are strongly indicative of endoscopically and/or histologically active disease. Our aim was to study, in a large cohort of CD patients, the relationship between CDAI and fecal calprotectin levels. Methods CDAI and fecal calprotectin levels were evaluated in consecutive patients from a CD outpatient clinic. Results We enrolled 193 CD patients, of whom 38% with CDAI <150 had a calprotectin value ≥150 µg/g, suggestive of active disease. A logistic regression model showed that for CDAI levels between 100 and 150, the estimated logistic probability of calprotectin ≥150 µg/g increased progressively to 76%, reaching 94% where disease activity was localized in the colon. With a CDAI cut-off >120, we found a high diagnostic accuracy of 72%, with 88% specificity and 50% sensitivity (positive predictive value: 76%, negative predictive value: 71%) to identify a calprotectin value ≥150 µg/g. Conclusion CDAI scores between 100 and 150 display an acceptable ability to quantify the risk of persistent inflammation as expressed by the high calprotectin level. PMID:25831217

  12. Latest In vitro and in vivo models of celiac disease

    PubMed Central

    Stoven, Samantha; Murray, Joseph A.; Marietta, Eric V.

    2013-01-01

    Introduction Currently, the only treatment for celiac disease is a gluten free diet, and there is an increased desire for alternative therapies. In vitro and in vivo models of celiac disease have been generated in order to better understand the pathogenesis of celiac disease, and this review will discuss these models as well as the testing of alternative therapies using these models. Areas Covered The research discussed describes the different in vitro and in vivo models of celiac disease that currently exist and how they have contributed to our understanding of how gluten can stimulate both innate and adaptive immune responses in celiac patients. We also provide a summary on the alternative therapies that have been tested with these models and discuss whether subsequent clinical trials were done based on these tests done with these models of celiac disease. Expert Opinion Only a few of the alternative therapies that have been tested with animal models have gone on to clinical trials; however, those that did go on to clinical trial have provided promising results from a safety standpoint. Further trials are required to determine if some of these therapies may serve as an effective adjunct to a gluten free diet to alleviate the adverse affects associated with accidental gluten exposure. A “magic-bullet” approach may not be the answer to celiac disease, but possibly a future cocktail of these different therapeutics may allow celiac patients to consume an unrestricted diet. PMID:23293929

  13. An Immuno-epidemiological model for Johne's disease in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the mechanisms involved in the dynamics of Johne’s Disease in dairy cattle, this paper illustrates a novel way to link a within-host model for Mycobacterium avium ssp. paratuberculosis with an epidemiological model. The underlying variable in the within-host model is the time s...

  14. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation

    PubMed Central

    Bai, Yang; Wang, Xiaolu; Zhao, Song; Ma, Chunye; Cui, Jiuwei; Zheng, Yang

    2015-01-01

    Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD. PMID:26583056

  15. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease

    PubMed Central

    Chen, Sujuan; Ye, Yangjing; Guo, Min; Ren, Qian; Liu, Lei; Zhang, Hai; Xu, Chong; Zhou, Qian; Huang, Shile; Chen, Long

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dysregulation of mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of PD. However, the underlying mechanism is incompletely elucidated. Here, we show that PD mimetics (6-hydroxydopamine, N-methyl-4-phenylpyridine or rotenone) suppressed phosphorylation of mTOR, S6K1 and 4E-BP1, reduced cell viability, and activated caspase-3 and PARP in PC12 cells and primary neurons. Overexpression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 in PC12 cells partially prevented cell death in response to the PD toxins, revealing that mTOR-mediated S6K1 and 4E-BP1 pathways due to the PD toxins were inhibited, leading to neuronal cell death. Furthermore, we found that the inhibition of mTOR signaling contributing to neuronal cell death was attributed to suppression of Akt and activation of AMPK. This is supported by the findings that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPKα with compound C partially attenuated inhibition of phosphorylation of mTOR, S6K1 and 4E-BP1, activation of caspase-3, and neuronal cell death triggered by the PD toxins. The results indicate that PD stresses activate AMPK and inactivate Akt, causing neuronal cell death via inhibiting mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that proper co-manipulation of AMPK/Akt/mTOR signaling may be a potential strategy for prevention and treatment of PD. PMID:24726895

  16. Metabolic correlates of subthalamic nucleus activity in Parkinson's disease.

    PubMed

    Lin, Tanya P; Carbon, Maren; Tang, Chengke; Mogilner, Alon Y; Sterio, Djordje; Beric, Aleksandar; Dhawan, Vijay; Eidelberg, David

    2008-05-01

    Overactivity of subthalamic nucleus (STN) neurons is a consistent feature of Parkinson's disease (PD) and is a target of therapy for this disorder. However, the relationship of STN firing rate to regional brain function is not known. We scanned 17 PD patients with (18)F-fluorodeoxyglucose (FDG) PET to measure resting glucose metabolism before the implantation of STN deep brain stimulation electrodes. Spontaneous STN firing rates were recorded during surgery and correlated with preoperative regional glucose metabolism on a voxel-by-voxel basis. We also examined the relationship between firing rate and the activity of metabolic brain networks associated with the motor and cognitive manifestations of the disease. Mean firing rates were 47.2 +/- 6.1 and 48.7 +/- 8.5 Hz for the left and right hemispheres, respectively. These measures correlated (P < 0.007) with glucose metabolism in the putamen and globus pallidus, which receive projections from this structure. Significant correlations (P < 0.0005) were also evident in the primary motor (BA4) and dorsolateral prefrontal (BA46/10) cortical areas. The activity of both the motor (P < 0.0001) and the cognitive (P < 0.006) PD-related metabolic networks was elevated in these patients. STN firing rates correlated with the activity of the former (P < 0.007) but not the latter network (P = 0.39). The findings suggest that the functional pathways associated with motor disability in PD are linked to the STN firing rate. These pathways are likely to mediate the clinical benefit that is seen following targeted STN interventions for this disease. PMID:18400841

  17. Parkinson's disease and CYP1A2 activity

    PubMed Central

    Forsyth, J T; Grünewald, R A; Rostami-Hodjegan, A; Lennard, M S; Sagar, H J; Tucker, G T

    2000-01-01

    Aims MPTP, a neurotoxin which induces parkinsonism is partially metabolized by the enzyme CYP1A2. Smoking appears to protect against Parkinson's disease (PD) and cigarette smoke induces CYP1A2 activity. Thus, we investigated the hypothesis that idiopathic PD is associated with lower CYP1A2 activity using caffeine as a probe compound. Methods CYP1A2 activity was assessed using saliva paraxanthine (PX) to caffeine (CA) ratios. Caffeine half-life was also estimated from salivary concentrations of caffeine at 2 and 5 h post dose. 117 treated and 40 untreated patients with PD and 105 healthy control subjects were studied. Results PX/CA ratios were 0.57, 0.93 and 0.77 in treated patients, untreated patients and healthy control subjects, respectively, with no significant differences between study groups (95% CI: treated patients vs controls −0.24, 0.57; untreated patients vs controls −0.75, 0.35). However, patients with PD (treated or untreated) had caffeine half-lives shorter than that in controls (treated patients: 262 min, untreated patients: 244 min, controls: 345 min; 95% CI: controls vs treated patients 23, 143 (P = 0.003); controls vs untreated patients 19, 184 (P = 0.011)). Amongst the patients with PD, caffeine half-life was also inversely related to the age of onset of disease (P = 0.012); gender and concomitant drugs did not influence this significantly. Conclusions Based on PX/CA ratio, there was no evidence of decreased CYP1A2 activity in patients compared with control subjects. The observed decrease in the elimination half-life of caffeine in PD may be caused by increased CYP2E1 activity, an enzyme that also contributes to the metabolism of caffeine. The latter warrants further investigation. PMID:11012552

  18. Modeling heart disease in a dish: From somatic cells to disease-relevant cardiomyocytes

    PubMed Central

    Zanella, Fabian; Lyon, Robert C.; Sheikh, Farah

    2016-01-01

    A scientific milestone that has tremendously impacted the cardiac research field has been the discovery and establishment of human-induced pluripotent stem cells (hiPSC). Key to this discovery has been uncovering a viable path in generating human patient and disease-specific cardiac cells to dynamically model and study human cardiac diseases in an in vitro setting. Recent studies have demonstrated that hiPSC-derived cardiomyocytes can be used to model and recapitulate various known disease features in hearts of patient donors harboring genetic-based cardiac diseases. Experimental drugs have also been tested in this setting and shown to alleviate disease phenotypes in hiPSC-derived cardiomyocytes, further paving the way for therapeutic interventions for cardiac disease. Here, we review state-of-the-art methods to generate high-quality hiPSC and differentiate them towards cardiomyocytes as well as the full range of genetic-based cardiac diseases, which have been modeled using hiPSC. We also provide future perspectives on exploiting the potential of hiPSC to compliment existing studies and gain new insights into the mechanisms underlying cardiac disease. PMID:24054750

  19. [Coeliac disease and reproduction: possible in vivo models].

    PubMed

    Stazi, Anna Velia

    2005-01-01

    Presently there are no in vivo models to study the different effects of coeliac disease (CD) including the increase of reproductive risks. CD is a multifactorial condition which requires both an exogenous element (gluten) and complex genetic factors; moreover, CD is associated to several endocrine, immune and reproductive diseases. There are no adequate in vivo models for the systemic complications of CD; in particular, there are no genetic knock-out models. However, models are available for gluten enteropathy such as Irish Setter and Balb/c and BDF1 mouse strains, and also for endocrine-immune diseases associated to CD such as BB rats and NOD mice. These models could be used to study reproductive aspects. This is desirable because a new model for dermatitis herpetiformis tightly associated with CD, that uses HLA-DQ8 transgenic NOD mice, has already been identified. PMID:16569922

  20. Animal models of human granulocyte diseases.

    PubMed

    Schäffer, Alejandro A; Klein, Christoph

    2013-02-01

    In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  1. Using yeast to model calcium-related diseases: example of the Hailey-Hailey disease.

    PubMed

    Voisset, Cécile; García-Rodríguez, Néstor; Birkmire, April; Blondel, Marc; Wellinger, Ralf Erik

    2014-10-01

    Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of disease modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau. PMID:24583118

  2. iPSC technology-Powerful hand for disease modeling and therapeutic screen

    PubMed Central

    Kim, Changsung

    2015-01-01

    Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265] PMID:25104399

  3. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment

    PubMed Central

    ROBINSON, ANDREW P.; HARP, CHRISTOPHER T.; NORONHA, AVERTANO; MILLER, STEPHEN D.

    2014-01-01

    While no single model can exactly recapitulate all aspects of multiple sclerosis (MS), animal models are essential in understanding the induction and pathogenesis of the disease and to develop therapeutic strategies that limit disease progression and eventually lead to effective treatments for the human disease. Several different models of MS exist, but by far the best understood and most commonly used is the rodent model of experimental autoimmune encephalomyelitis (EAE). This model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. Mouse models are most frequently used because of the inbred genotype of laboratory mice, their rapid breeding capacity, the ease of genetic manipulation, and availability of transgenic and knockout mice to facilitate mechanistic studies. Although not all therapeutic strategies for MS have been developed in EAE, all of the current US Food and Drug Administration (FDA)-approved immunomodulatory drugs are effective to some degree in treating EAE, a strong indicator that EAE is an extremely useful model to study potential treatments for MS. Several therapies, such as glatiramer acetate (GA: Copaxone), and natalizumab (Tysabri), were tested first in the mouse model of EAE and then went on to clinical trials. Here we discuss the usefulness of the EAE model in understanding basic disease pathophysiology and developing treatments for MS as well as the potential drawbacks of this model. PMID:24507518

  4. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    PubMed

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  5. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems

    PubMed Central

    Hartman, Kira G.; Bortner, James D.; Falk, Gary W.; Ginsberg, Gregory G.; Jhala, Nirag; Yu, Jian; Martín, Martín G.; Rustgi, Anil K.; Lynch, John P.

    2014-01-01

    Gastrointestinal (GI) illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammation are a common element of many GI diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett’s esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  6. Discursive Positionings and Emotions in Modelling Activities

    ERIC Educational Resources Information Center

    Daher, Wajeeh

    2015-01-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…

  7. Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity

    PubMed Central

    Fedeles, Sorin V.; So, Jae-Seon; Shrikhande, Amol; Lee, Seung Hun; Gallagher, Anna-Rachel; Barkauskas, Christina E.; Somlo, Stefan; Lee, Ann-Hwee

    2015-01-01

    The HSP40 cochaperone SEC63 is associated with the SEC61 translocon complex in the ER. Mutations in the gene encoding SEC63 cause polycystic liver disease in humans; however, it is not clear how altered SEC63 influences disease manifestations. In mice, loss of SEC63 induces cyst formation both in liver and kidney as the result of reduced polycystin-1 (PC1). Here we report that inactivation of SEC63 induces an unfolded protein response (UPR) pathway that is protective against cyst formation. Specifically, using murine genetic models, we determined that SEC63 deficiency selectively activates the IRE1α-XBP1 branch of UPR and that SEC63 exists in a complex with PC1. Concomitant inactivation of both SEC63 and XBP1 exacerbated the polycystic kidney phenotype in mice by markedly suppressing cleavage at the G protein–coupled receptor proteolysis site (GPS) in PC1. Enforced expression of spliced XBP1 (XBP1s) enhanced GPS cleavage of PC1 in SEC63-deficient cells, and XBP1 overexpression in vivo ameliorated cystic disease in a murine model with reduced PC1 function that is unrelated to SEC63 inactivation. Collectively, the findings show that SEC63 function regulates IRE1α/XBP1 activation, SEC63 and XBP1 are required for GPS cleavage and maturation of PC1, and activation of XBP1 can protect against polycystic disease in the setting of impaired biogenesis of PC1. PMID:25844898

  8. Nucleotide excision repair deficient mouse models and neurological disease.

    PubMed

    Niedernhofer, Laura J

    2008-07-01

    Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER-deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER-deficiency. PMID:18272436

  9. Criteria for Validating Mouse Models of Psychiatric Diseases

    PubMed Central

    Chadman, Kathryn K.; Yang, Mu; Crawley, Jacqueline N.

    2010-01-01

    Animal models of human diseases are in widespread use for biomedical research. Mouse models with a mutation in a single gene or multiple genes are excellent research tools for understanding the role of a specific gene in the etiology of a human genetic disease. Ideally, the mouse phenotypes will recapitulate the human phenotypes exactly. However, exact matches are rare, particularly in mouse models of neuropsychiatric disorders. This article summarizes the current strategies for optimizing the validity of a mouse model of a human brain dysfunction. We address the common question raised by molecular geneticists and clinical researchers in psychiatry, “what is a ‘good enough’ mouse model”? PMID:18484083

  10. Imaging Microglial Activation with TSPO PET: Lighting Up Neurologic Diseases?

    PubMed

    Vivash, Lucy; O'Brien, Terence J

    2016-02-01

    Neuroinflammation is implicated in the pathogenesis of a wide range of neurologic and neuropsychiatric diseases. For over 20 years, (11)C-PK11195 PET, which aims to image expression of the translocator protein (TSPO) on activated microglia in the brain, has been used in preclinical and clinical research to investigate neuroinflammation in vivo in patients with brain diseases. However, (11)C-PK11195 suffers from two major limitations: its low brain permeability and high nonspecific and plasma binding results in a low signal-to-noise ratio, and the use of (11)C restricts its use to PET research centers and hospitals with an on-site cyclotron. In recent years, there has been a great deal of work into the development of new TSPO-specific PET radiotracers. This work has focused on fluorinated radiotracers, which would enable wider use and improved signal-to-noise ratios. These radiotracers have been utilized in preclinical and clinical studies of several neurologic diseases with varying degrees of success. Unfortunately, the application of these second-generation TSPO radiotracers has revealed additional problems, including a polymorphism that affects TSPO binding. In this review, the developments in TSPO imaging are discussed, and current limitations and suggestions for future directions are explored. PMID:26697963

  11. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    PubMed Central

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  12. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    PubMed

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  13. Deterministic Modelling of BAK Activation Kinetics

    NASA Astrophysics Data System (ADS)

    Grills, C.; Chacko, A.; Crawford, N.; Johnston, P. G.; Fennell, D. A.; O'Rourke, S. F. C.

    2009-08-01

    The molecular mechanism underlying mitochondrial BAK activation during apoptosis remains highly controversial. Two seemingly conflicting models have been proposed. In the activation model, BAK requires so-called activating BH3 only proteins (aBH3) to initiate its conformation change. In the other, displacement from inhibitory pro-survival BCL-2 proteins (PBPs) and monomerization of BAK by PBP restricted dissociator BH3-only proteins (dBH3) is sufficient. To better understand the kinetic implications of these models and reconcile these conflicting but highly evidence-based models, we have employed dynamical systems analysis to explore the kinetics underlying BAK activation as a non-linear reaction system. Our findings accommodate both pure agonism and dissociation as mutually exclusive mechanisms capable of initiating BAK activation. In addition we find our work supports a modelling based approach for predicting resistance to therapeutically relevant small molecules BH3 mimetics.

  14. Comparison of experimental mouse models of inflammatory bowel disease.

    PubMed

    Oh, Soo Youn; Cho, Kyung-Ah; Kang, Jihee Lee; Kim, Kwang Ho; Woo, So-Youn

    2014-02-01

    Inflammatory bowel disease (IBD) is multifactorial and involves immunological, environmental and genetic factors. Although there are no animal models that effectively mimic human IBD, experimental models allow us to analyze the mechanisms of chronic intestinal inflammation. IBD can be induced in mice by dextran sulfate sodium (DSS) or by a 2,4,6-trinitrobenzene sulfonic acid (TNBS)‑ethanol enema, which evoke immune responses and colitis. In this study, in order to compare the mechanisms of inflammatory response in mice, 3 distinct models of IBD were established: 2% TNBS-induced acute colitis, 4% DSS-induced acute colitis and 2% DSS-induced chronic colitis. In addition, to evaluate the effects of TNBS on inflammasome activation, we used caspase-1 knockout (KO) mice. Changes in both body weight and survival became prominent after day 1 in the 2% TNBS‑induced colitis model, and after day 5 in the 4% DSS-induced colitis model. The TNBS- and DSS-treated mice, but not the caspase-1 KO mice, showed a massive bowel edema and disruption of epithelial cells. The level of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) was increased in all tested tissues of the TNBS- and DSS-treated groups, apart from the basal membrane (BM) in the DSS-induced colitis groups and the lamina propria (LP) in the DSS-induced chronic colitis group. We further analyzed different subsets of CD4(+) T cells in LP and found that the levels of interferon (IFN)γ‑secreting (IFNγ(+)), IL-17‑secreting (IL-17(+)), but not those of IL-4-secreting (IL-4(+)) T cells increased upon treatment with TNBS or DSS. In addition, discrepancies between the histopathologies of wild-type and caspase-1 KO mice indicated that the pathogenesis of IBD may be associated with the inflammasome pathway responses mediated by caspase‑1 in TNBS‑induced colitis. PMID:24285285

  15. A molecular link between the active component of marijuana and Alzheimer's disease pathology.

    PubMed

    Eubanks, Lisa M; Rogers, Claude J; Beuscher, Albert E; Koob, George F; Olson, Arthur J; Dickerson, Tobin J; Janda, Kim D

    2006-01-01

    Alzheimer's disease is the leading cause of dementia among the elderly, and with the ever-increasing size of this population, cases of Alzheimer's disease are expected to triple over the next 50 years. Consequently, the development of treatments that slow or halt the disease progression have become imperative to both improve the quality of life for patients and reduce the health care costs attributable to Alzheimer's disease. Here, we demonstrate that the active component of marijuana, Delta9-tetrahydrocannabinol (THC), competitively inhibits the enzyme acetylcholinesterase (AChE) as well as prevents AChE-induced amyloid beta-peptide (Abeta) aggregation, the key pathological marker of Alzheimer's disease. Computational modeling of the THC-AChE interaction revealed that THC binds in the peripheral anionic site of AChE, the critical region involved in amyloidgenesis. Compared to currently approved drugs prescribed for the treatment of Alzheimer's disease, THC is a considerably superior inhibitor of Abeta aggregation, and this study provides a previously unrecognized molecular mechanism through which cannabinoid molecules may directly impact the progression of this debilitating disease. PMID:17140265

  16. Fluctuations in epidemic modeling - disease extinction and control

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira

    2009-03-01

    The analysis of infectious disease fluctuations has recently seen an increasing rise in the use of new tools and models from stochastic dynamics and statistical physics. Examples arise in modeling fluctuations of multi-strain diseases, in modeling adaptive social behavior and its impact on disease fluctuations, and in the analysis of disease extinction in finite population models. Proper stochastic model reduction [1] allows one to predict unobserved fluctuations from observed data in multi-strain models [2]. Degree alteration and power law behavior is predicted in adaptive network epidemic models [3,4]. And extinction rates derived from large fluctuation theory exhibit scaling with respect to distance to the bifurcation point of disease onset with an unusual exponent [5]. In addition to outbreak prediction, another main goal of epidemic modeling is one of eliminating the disease to extinction through various control mechanisms, such as vaccine implementation or quarantine. In this talk, a description will be presented of the fluctuational behavior of several epidemic models and their extinction rates. A general framework and analysis of the effect of non-Gaussian control actuations which enhance the rate to disease extinction will be described. In particular, in it is shown that even in the presence of a small Poisson distributed vaccination program, there is an exponentially enhanced rate to disease extinction. These ideas may lead to improved methods of controlling disease where random vaccinations are prevalent. [4pt] Recent papers:[0pt] [1] E. Forgoston and I. B. Schwartz, ``Escape Rates in a Stochastic Environment with Multiple Scales,'' arXiv:0809.1345 2008.[0pt] [2] L. B. Shaw, L. Billings, I. B. Schwartz, ``Using dimension reduction to improve outbreak predictability of multi-strain diseases,'' J. Math. Bio. 55, 1 2007.[0pt] [3] L. B. Shaw and I. B. Schwartz, ``Fluctuating epidemics on adaptive networks,'' Physical Review E 77, 066101 2008.[0pt] [4] L. B

  17. Modelling Typical Online Language Learning Activity

    ERIC Educational Resources Information Center

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  18. Evaluating a Model of Youth Physical Activity

    ERIC Educational Resources Information Center

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  19. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  20. Phospholipase A2 activating protein and idiopathic inflammatory bowel disease.

    PubMed Central

    Peterson, J W; Dickey, W D; Saini, S S; Gourley, W; Klimpel, G R; Chopra, A K

    1996-01-01

    BACKGROUND: Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel diseases (IBD) involving synthesis of eicosanoids from arachidonic acid (AA), which is released from membrane phospholipids by phospholipase A2 (PLA2). A potentially important regulator of the production of these mediators is a protein activator of PLA2, referred to as PLA2 activating protein (PLAP). AIMS: The purpose of this investigation was to discover if PLAP values might be increased in the inflamed intestinal tissue of patients with IBD and in intestinal tissue of mice with colitis. PATIENTS: Biopsy specimens were taken from patients with ulcerative colitis and Crohn's disease undergoing diagnostic colonoscopy, and normal colonic mucosa was obtained from patients without IBD after surgical resection. METHODS: Immunocytochemistry with affinity purified antibodies to PLAP synthetic peptides was used to locate PLAP antigen in sections of intestinal biopsy specimens from IBD patients compared with that of normal intestinal tissue. Northern blot analysis with a murine [32P] labelled plap cDNA probe was performed on RNA extracted from the colons of mice fed dextran sulphate sodium (DSS) and cultured HT-29 cells exposed to lipopolysaccharide (LPS). RESULTS: PLAP antigen was localised predominantly within monocytes and granulocytes in intestinal tissue sections from IBD patients, and additional deposition of extracellular PLAP antigen was associated with blood vessels and oedema fluid in the inflamed tissues. In contrast, tissue sections from normal human intestine were devoid of PLAP reactive antigen, except for some weak cytoplasmic reaction of luminal intestinal epithelial cells. Similarly, colonic tissue from DSS treated mice contained an increased amount of PLAP antigen compared with controls. The stroma of the lamina propria of the colonic mucosa from the DSS treated mice reacted intensely with antibodies to PLAP synthetic peptides, while no reaction was observed with control

  1. Animal models of human respiratory syncytial virus disease

    PubMed Central

    Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research. PMID:21571908

  2. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease

    PubMed Central

    Azhar, Salman

    2011-01-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/β and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  3. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease.

    PubMed

    Azhar, Salman

    2010-09-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  4. Early microglia activation in a mouse model of chronic glaucoma

    PubMed Central

    Bosco, Alejandra; Steele, Michael R.; Vetter, Monica L.

    2014-01-01

    Changes in microglial cell activation and distribution are associated with neuronal decline in the CNS, particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet, their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here, we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb+/SjJ (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression. PMID:21246546

  5. Modelling the propagation of social response during a disease outbreak

    PubMed Central

    Fast, Shannon M.; González, Marta C.; Wilson, James M.; Markuzon, Natasha

    2015-01-01

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. PMID:25589575

  6. Modelling the propagation of social response during a disease outbreak.

    PubMed

    Fast, Shannon M; González, Marta C; Wilson, James M; Markuzon, Natasha

    2015-03-01

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. PMID:25589575

  7. Rodent models for Alzheimer’s disease drug discovery

    PubMed Central

    Puzzo, Daniela; Gulisano, Walter; Palmeri, Agostino; Arancio, Ottavio

    2015-01-01

    Introduction Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes, leading to dementia. Histophatological hallmarks are represented by aggregates of beta-amyloid peptide (Aβ) in senile plaques and deposition of hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Rare forms of early onset familial Alzheimer's disease are due to gene mutations. This has prompted researchers to develop genetically modified animals that could recapitulate the main features of the disease. The use of these models is complemented by non-genetically modified animals. Area covered This review summarizes the characteristics of the most used transgenic (Tg) and non-Tg models of AD. The authors have focused on models mainly used in their laboratories including: APP Tg2576, APP/PS1, 3xAD, single h-Tau, non-Tg mice treated with acute injections of Aβ or tau, and models of physiological aging. Expert opinion Animal models of disease might be very useful for studying the pathophysiology of the disease and for testing new therapeutics in preclinical studies but they do not reproduce the entire clinical features of human AD. When selecting a model, researchers should consider the various factors that might influence the phenotype. They should also consider the timing of testing/treating animals since the age at which each model develops certain aspects of the AD pathology varies. PMID:25927677

  8. Network Modeling of Crohn’s Disease Incidence

    PubMed Central

    Victor, Jean-Marc; Debret, Gaëlle; Lesne, Annick; Pascoe, Leigh; Carrivain, Pascal; Wainrib, Gilles

    2016-01-01

    Background Numerous genetic and environmental risk factors play a role in human complex genetic disorders (CGD). However, their complex interplay remains to be modelled and explained in terms of disease mechanisms. Methods and findings Crohn's Disease (CD) was modeled as a modular network of patho-physiological functions, each summarizing multiple gene-gene and gene-environment interactions. The disease resulted from one or few specific combinations of module functional states. Network aging dynamics was able to reproduce age-specific CD incidence curves as well as their variations over the past century in Western countries. Within the model, we translated the odds ratios (OR) associated to at-risk alleles in terms of disease propensities of the functional modules. Finally, the model was successfully applied to other CGD including ulcerative colitis, ankylosing spondylitis, multiple sclerosis and schizophrenia. Conclusion Modeling disease incidence may help to understand disease causative chains, to delineate the potential of personalized medicine, and to monitor epidemiological changes in CGD. PMID:27309539

  9. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  10. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine

    PubMed Central

    2013-01-01

    With the significant advancement of high-throughput technologies and diagnostic techniques throughout the past decades, molecular underpinnings of many disorders have been identified. However, translation of patient-specific molecular mechanisms into tailored clinical applications remains a challenging task, which requires integration of multi-dimensional molecular and clinical data into patient-centric models. This task becomes even more challenging when dealing with complex diseases such as neurodegenerative disorders. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. We argue that integrative disease modeling will be an indispensable part of any P4 medicine research and development in the near future and that it supports the shift from descriptive to causal mechanistic diagnosis and treatment of complex diseases. For each ‘P’ in predictive, preventive, personalized and participatory (P4) medicine, we demonstrate how integrative disease modeling can contribute to addressing the real-world issues in development of new predictive, preventive, personalized and participatory measures. With the increasing recognition that application of integrative systems modeling is the key to all activities in P4 medicine, we envision that translational bioinformatics in general and integrative modeling in particular will continue to open up new avenues of scientific research for current challenges in P4 medicine. PMID:24195840

  11. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)

    PubMed Central

    Fu, Sonia; Cooper, Jonathan D.; Harvey, Robert J.

    2016-01-01

    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery. PMID:27327661

  12. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease).

    PubMed

    Wager, Kim; Zdebik, Anselm A; Fu, Sonia; Cooper, Jonathan D; Harvey, Robert J; Russell, Claire

    2016-01-01

    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80-85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery. PMID:27327661

  13. Study on cholesteryl ester transfer activity in coronary heart disease.

    PubMed

    Fujinuma, Y; Tanaka, A; Maezawa, H

    1991-09-01

    The net cholesterol transfer activity from high density lipoprotein (HDL) to low density lipoprotein (LDL) was determined in the patients with coronary heart disease (CHD) to examine its effect on the pathogenesis of arteriosclerosis. Furthermore, in the CHD patients with high HDL cholesterolemia (more than 60 mg/dl), the HDL particle size was measured by high performance liquid chromatography. A significant cholesteryl ester transfer activity (P less than 0.02) was noted in the CHD patients with low HDL cholesterolemia (less than 60 mg/dl). The rate of cholesteryl ester transfer activity (cholesteryl ester transfer activity/hour) inversely correlated with the serum HDL cholesterol value (r = -0.483, P = 0.096) in the patients with CHD. These results suggest that an increase of CETA caused a low HDL cholesterol value in the CHD patients with low HDL cholesterolemia and it may have the risk of causing CHD. However, an increase of the CETA was not found in the CHD patients with high HDL cholesterolemia compared to the normal subjects, the HDL particle size being significantly greater than that in the normal subjects. In the CHD patients with high HDL cholesterolemia, the large size of HDL may have the risk of causing CHD. PMID:1934199

  14. [The biological activity of macrophages in health and disease].

    PubMed

    Nazimek, Katarzyna; Bryniarski, Krzysztof

    2012-01-01

    Macrophages are involved in immune response as phagocytes, antigen presenting cells and as effector cells of delayed-type hypersensitivity. Moreover, the activity of macrophages is associated with modulation of many biological processes during the whole life and depends on the actual macrophage phenotype induced under the influence of various microenvironmental stimuli. In pregnancy, placental macrophages induce the development of maternal tolerance to fetal antigens, while fetal macrophages are responsible for proper formation of tissues and organs. Residual macrophages play a very important role in tissue homeostasis, apoptotic cell clearance to prevent autoimmunization and first defense in infections. The inflammatory response of macrophages may be modulated by pathogens. Their suppressive activity is observed in immunologically privileged organs such as testes. In pathologies, macrophages are responsible for tissue damage in a case of nonspecific activation followed by overproduction of proinflammatory factors. Suppression of a specific immune response against tumors is mainly the effect of tumor associated macrophage (TAM) action. On the other hand, presentation of allergens or self-antigens by macrophages and their nonspecific activation by necrotic adipocytes leads to the induction of a chronic inflammatory response and impairment of immunity. Therefore, modulation of macrophage functions may be the key for improvement of therapy of cancer and allergic, autoimmune, metabolic, cardiovascular and Alzheimer's diseases. PMID:22922151