Sample records for active disease model

  1. Understanding disease mechanisms with models of signaling pathway activities.

    PubMed

    Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; Vidal-Puig, Antonio; Montaner, David; Dopazo, Joaquín

    2014-10-25

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

  2. Developing an active implementation model for a chronic disease management program

    PubMed Central

    Smidth, Margrethe; Christensen, Morten Bondo; Olesen, Frede; Vedsted, Peter

    2013-01-01

    Background Introduction and diffusion of new disease management programs in healthcare is usually slow, but active theory-driven implementation seems to outperform other implementation strategies. However, we have only scarce evidence on the feasibility and real effect of such strategies in complex primary care settings where municipalities, general practitioners and hospitals should work together. The Central Denmark Region recently implemented a disease management program for chronic obstructive pulmonary disease (COPD) which presented an opportunity to test an active implementation model against the usual implementation model. The aim of the present paper is to describe the development of an active implementation model using the Medical Research Council’s model for complex interventions and the Chronic Care Model. Methods We used the Medical Research Council’s five-stage model for developing complex interventions to design an implementation model for a disease management program for COPD. First, literature on implementing change in general practice was scrutinised and empirical knowledge was assessed for suitability. In phase I, the intervention was developed; and in phases II and III, it was tested in a block- and cluster-randomised study. In phase IV, we evaluated the feasibility for others to use our active implementation model. Results The Chronic Care Model was identified as a model for designing efficient implementation elements. These elements were combined into a multifaceted intervention, and a timeline for the trial in a randomised study was decided upon in accordance with the five stages in the Medical Research Council’s model; this was captured in a PaTPlot, which allowed us to focus on the structure and the timing of the intervention. The implementation strategies identified as efficient were use of the Breakthrough Series, academic detailing, provision of patient material and meetings between providers. The active implementation model was

  3. Developing an active implementation model for a chronic disease management program.

    PubMed

    Smidth, Margrethe; Christensen, Morten Bondo; Olesen, Frede; Vedsted, Peter

    2013-04-01

    Introduction and diffusion of new disease management programs in healthcare is usually slow, but active theory-driven implementation seems to outperform other implementation strategies. However, we have only scarce evidence on the feasibility and real effect of such strategies in complex primary care settings where municipalities, general practitioners and hospitals should work together. The Central Denmark Region recently implemented a disease management program for chronic obstructive pulmonary disease (COPD) which presented an opportunity to test an active implementation model against the usual implementation model. The aim of the present paper is to describe the development of an active implementation model using the Medical Research Council's model for complex interventions and the Chronic Care Model. We used the Medical Research Council's five-stage model for developing complex interventions to design an implementation model for a disease management program for COPD. First, literature on implementing change in general practice was scrutinised and empirical knowledge was assessed for suitability. In phase I, the intervention was developed; and in phases II and III, it was tested in a block- and cluster-randomised study. In phase IV, we evaluated the feasibility for others to use our active implementation model. The Chronic Care Model was identified as a model for designing efficient implementation elements. These elements were combined into a multifaceted intervention, and a timeline for the trial in a randomised study was decided upon in accordance with the five stages in the Medical Research Council's model; this was captured in a PaTPlot, which allowed us to focus on the structure and the timing of the intervention. The implementation strategies identified as efficient were use of the Breakthrough Series, academic detailing, provision of patient material and meetings between providers. The active implementation model was tested in a randomised trial

  4. Predictive models for ocular chronic graft-versus-host disease diagnosis and disease activity in transplant clinical practice.

    PubMed

    Curtis, Lauren M; Datiles, Manuel B; Steinberg, Seth M; Mitchell, Sandra A; Bishop, Rachel J; Cowen, Edward W; Mays, Jacqueline; McCarty, John M; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H; Gress, Ronald E; Pavletic, Steven Z

    2015-09-01

    Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer's tear test and National Institutes of Health 0-3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer's tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected transplant

  5. Predictive models for ocular chronic graft-versus-host disease diagnosis and disease activity in transplant clinical practice

    PubMed Central

    Curtis, Lauren M.; Datiles, Manuel B.; Steinberg, Seth M.; Mitchell, Sandra A.; Bishop, Rachel J.; Cowen, Edward W.; Mays, Jacqueline; McCarty, John M.; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H.; Gress, Ronald E.; Pavletic, Steven Z.

    2015-01-01

    Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer’s tear test and National Institutes of Health 0–3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer’s tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected

  6. Reduced Activity of AMP-Activated Protein Kinase Protects against Genetic Models of Motor Neuron Disease

    PubMed Central

    Lim, M. A.; Selak, M. A.; Xiang, Z.; Krainc, D.; Neve, R. L.; Kraemer, B. C.; Watts, J. L.

    2012-01-01

    A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease. PMID:22262909

  7. Transglutaminase activation in neurodegenerative diseases

    PubMed Central

    Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL

    2009-01-01

    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049

  8. Active Learning to Understand Infectious Disease Models and Improve Policy Making

    PubMed Central

    Vladislavleva, Ekaterina; Broeckhove, Jan; Beutels, Philippe; Hens, Niel

    2014-01-01

    Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings. PMID:24743387

  9. Active learning to understand infectious disease models and improve policy making.

    PubMed

    Willem, Lander; Stijven, Sean; Vladislavleva, Ekaterina; Broeckhove, Jan; Beutels, Philippe; Hens, Niel

    2014-04-01

    Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings.

  10. Using animal models to determine the significance of complement activation in Alzheimer's disease

    PubMed Central

    Loeffler, David A

    2004-01-01

    Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood. PMID:15479474

  11. Reducing Disease Activity in Animal Models of MS by Activation of the Protective Arm of the Renin-Angiotensin System

    DTIC Science & Technology

    2015-10-01

    patients, there is little evidence for a role of ACE2/A( 1 -7)/Mas axis, only a solitary assessment showing decreased ACE2 levels in the CSF of MS...project? Major Goals (Year 1 ): 1 : Measure levels of RAS components in the spinal cord of mice with EAE (animal model of MS) prior to, and at multiple...AWARD NUMBER: W81XWH-14- 1 -0523 TITLE: Reducing Disease Activity in Animal Models of MS by Activation of the Protective Arm of the Renin

  12. Matriptase initiates epidermal prokallikrein activation and disease onset in a mouse model of Netherton syndrome

    PubMed Central

    Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L.; Rasmussen, Amber; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A.; Bugge, Thomas H.

    2010-01-01

    Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome. The principal morbidities of the disease are stratum corneum detachment and chronic inflammation. We show that the membrane protease, matriptase, initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein-related cascade. Auto-activation of pro-inflammatory and stratum corneum detachment-associated pro-kallikrein-related peptidases was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented stratum corneum detachment, and improved epidermal barrier function. The study uncovers a pathogenic matriptase-pro-kallikrein pathway that could be operative in several human skin and inflammatory diseases. PMID:20657595

  13. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway.

    PubMed

    Song, Lei; Li, Xiaoping; Bai, Xiao-Xue; Gao, Jian; Wang, Chun-Yan

    2017-11-01

    The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phytoestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzheimer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuroprotective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-1beta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, calphostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammatory effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.

  14. A conceptual disease model for adult Pompe disease.

    PubMed

    Kanters, Tim A; Redekop, W Ken; Rutten-Van Mölken, Maureen P M H; Kruijshaar, Michelle E; Güngör, Deniz; van der Ploeg, Ans T; Hakkaart, Leona

    2015-09-15

    Studies in orphan diseases are, by nature, confronted with small patient populations, meaning that randomized controlled trials will have limited statistical power. In order to estimate the effectiveness of treatments in orphan diseases and extrapolate effects into the future, alternative models might be needed. The purpose of this study is to develop a conceptual disease model for Pompe disease in adults (an orphan disease). This conceptual model describes the associations between the most important levels of health concepts for Pompe disease in adults, from biological parameters via physiological parameters, symptoms and functional indicators to health perceptions and final health outcomes as measured in terms of health-related quality of life. The structure of the Wilson-Cleary health outcomes model was used as a blueprint, and filled with clinically relevant aspects for Pompe disease based on literature and expert opinion. Multiple observations per patient from a Dutch cohort study in untreated patients were used to quantify the relationships between the different levels of health concepts in the model by means of regression analyses. Enzyme activity, muscle strength, respiratory function, fatigue, level of handicap, general health perceptions, mental and physical component scales and utility described the different levels of health concepts in the Wilson-Cleary model for Pompe disease. Regression analyses showed that functional status was affected by fatigue, muscle strength and respiratory function. Health perceptions were affected by handicap. In turn, self-reported quality of life was affected by health perceptions. We conceptualized a disease model that incorporated the mechanisms believed to be responsible for impaired quality of life in Pompe disease. The model provides a comprehensive overview of various aspects of Pompe disease in adults, which can be useful for both clinicians and policymakers to support their multi-faceted decision making.

  15. Implementation of an active aging model in Mexico for prevention and control of chronic diseases in the elderly.

    PubMed

    Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa

    2009-08-26

    World Health Organization cites among the main challenges of populational aging the dual disease burden: the greater risk of disability, and the need for care. In this sense, the most frequent chronic diseases during old age worldwide are high blood pressure, type 2 diabetes mellitus, cancer, arthritis, osteoporosis, depression, and dementia. Chronic disease-associated dependency represents an onerous sanitary and financial burden for the older adult, the family, and the health care system. Thus, it is necessary to propose community-level models for chronic disease prevention and control in old age. The aim of the present work is to show our experience in the development and implementation of a model for chronic disease prevention and control in old age at the community level under the active aging paradigm. A longitudinal study will be carried out in a sample of 400 elderly urban and rural-dwelling individuals residing in Hidalgo State, Mexico during five years. All participants will be enrolled in the model active aging. This establishes the formation of 40 gerontological promoters (GPs) from among the older adults themselves. The GPs function as mutual-help group coordinators (gerontological nuclei) and establish self-care and self-promotion actions for elderly well-being and social development. It will be conformed a big-net of social network of 40 mutual-help groups of ten elderly adults each one, in which self-care is a daily practice for chronic disease prevention and control, as well as for achieving maximal well-being and life quality in old age. Indicators of the model's impact will be (i) therapeutic adherence; (ii) the incidence of the main chronic diseases in old age; (iii) life expectancy without chronic diseases at 60 years of age; (iv) disability adjusted life years lost; (v) years of life lost due to premature mortality, and (vi) years lived with disability. We propose that the implementation of the model active aging framework will permits the

  16. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032; Zhu, Bo

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid andmore » glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.« less

  17. Finasteride Inhibits the Disease-Modifying Activity of Progesterone in the Hippocampus Kindling Model of Epileptogenesis

    PubMed Central

    Reddy, Doodipala Samba; Ramanathan, G.

    2012-01-01

    Progesterone (P) plays an important role in seizure susceptibility in women with epilepsy. Preclinical and experimental studies suggest that P appears to interrupt epileptogenesis, which is a process whereby a normal brain becomes progressively epileptic due to precipitating risk factors. P has not been investigated widely for its potential disease-modifying activity in epileptogenic models. Recently, P has been shown to exert disease-modifying effects in the kindling model of epileptogenesis. However, the mechanisms underlying the protective effects of P against epileptogenesis remain unclear. In this study, we investigated the role of P-derived neurosteroids in the disease-modifying activity of P. It is hypothesized that 5α-reductase converts P to allopregnanolone and related neurosteroids that retard epileptogenesis in the brain. To test this hypothesis, we utilized the mouse hippocampus kindling model of epileptogenesis and investigated the effect of finasteride, a 5α-reductase and neurosteroid synthesis inhibitor. P markedly retarded the development of epileptogenesis and inhibited the rate of kindling acquisition to elicit stage 5 seizures. Pretreatment with finasteride led to complete inhibition of the P-induced retardation of limbic epileptogenesis in mice. Finasteride did not significantly influence the acute seizure expression in fully-kindled mice expressing stage 5 seizures. Thus, neurosteroids that potentiate phasic and tonic inhibition in the hippocampus, such as allopregnanolone, may mediate the disease-modifying effect of P, indicating a new role of neurosteroids in acquired limbic epileptogenesis and temporal lobe epilepsy. PMID:22835430

  18. Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease

    PubMed Central

    2013-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is an increasing threat to global health. Available medicines were introduced over 40 years ago, have undesirable side effects, and give equivocal results of cure in the chronic stage of the disease. We report the development of two compounds, 6 and (S)-7, with PCR-confirmed curative activity in a mouse model of established T. cruzi infection after once daily oral dosing for 20 days at 20 mg/kg 6 and 10 mg/kg (S)-7. Compounds 6 and (S)-7 have potent in vitro activity, are noncytotoxic, show no adverse effects in vivo following repeat dosing, are prepared by a short synthetic route, and have druglike properties suitable for preclinical development. PMID:24304150

  19. Implementation of an active aging model in Mexico for prevention and control of chronic diseases in the elderly

    PubMed Central

    Mendoza-Núñez, Víctor Manuel; Martínez-Maldonado, María de la Luz; Correa-Muñoz, Elsa

    2009-01-01

    Background World Health Organization cites among the main challenges of populational aging the dual disease burden: the greater risk of disability, and the need for care. In this sense, the most frequent chronic diseases during old age worldwide are high blood pressure, type 2 diabetes mellitus, cancer, arthritis, osteoporosis, depression, and dementia. Chronic disease-associated dependency represents an onerous sanitary and financial burden for the older adult, the family, and the health care system. Thus, it is necessary to propose community-level models for chronic disease prevention and control in old age. The aim of the present work is to show our experience in the development and implementation of a model for chronic disease prevention and control in old age at the community level under the active aging paradigm. Methods/Design A longitudinal study will be carried out in a sample of 400 elderly urban and rural-dwelling individuals residing in Hidalgo State, Mexico during five years. All participants will be enrolled in the model active aging. This establishes the formation of 40 gerontological promoters (GPs) from among the older adults themselves. The GPs function as mutual-help group coordinators (gerontological nuclei) and establish self-care and self-promotion actions for elderly well-being and social development. It will be conformed a big-net of social network of 40 mutual-help groups of ten elderly adults each one, in which self-care is a daily practice for chronic disease prevention and control, as well as for achieving maximal well-being and life quality in old age. Indicators of the model's impact will be (i) therapeutic adherence; (ii) the incidence of the main chronic diseases in old age; (iii) life expectancy without chronic diseases at 60 years of age; (iv) disability adjusted life years lost; (v) years of life lost due to premature mortality, and (vi) years lived with disability. Discussion We propose that the implementation of the model active

  20. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    PubMed

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  1. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease.

    PubMed

    McDonald, Claire L; Hennessy, Edel; Rubio-Araiz, Ana; Keogh, Brian; McCormack, William; McGuirk, Peter; Reilly, Mary; Lynch, Marina A

    2016-11-01

    The effects of Toll-like receptor (TLR) activation in peripheral cells are well characterized but, although several TLRs are expressed on cells of the brain, the consequences of their activation on neuronal function remain to be fully investigated, particularly in the context of assessing their potential as therapeutic targets in neurodegenerative diseases. Several endogenous TLR ligands have been identified, many of which are soluble factors released from cells exposed to stressors. In addition, amyloid-β (Aβ) the main constituent of the amyloid plaques in Alzheimer's disease (AD), activates TLR2, although it has also been shown to bind to several other receptors. The objective of this study was to determine whether activation of TLR2 played a role in the developing inflammatory changes and Aβ accumulation in a mouse model of AD. Wild type and transgenic mice that overexpress amyloid precursor protein and presenilin 1 (APP/PS1 mice) were treated with anti-TLR2 antibody for 7months from the age of 7-14months. We demonstrate that microglial and astroglial activation, as assessed by MHCII, CD68 and GFAP immunoreactivity was decreased in anti-TLR2 antibody-treated compared with control (IgG)-treated mice. This was associated with reduced Aβ plaque burden and improved performance in spatial learning. The data suggest that continued TLR2 activation contributes to the developing neuroinflammation and pathology and may be provide a strategy for limiting the progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Development of a multi-biomarker disease activity test for rheumatoid arthritis.

    PubMed

    Centola, Michael; Cavet, Guy; Shen, Yijing; Ramanujan, Saroja; Knowlton, Nicholas; Swan, Kathryn A; Turner, Mary; Sutton, Chris; Smith, Dustin R; Haney, Douglas J; Chernoff, David; Hesterberg, Lyndal K; Carulli, John P; Taylor, Peter C; Shadick, Nancy A; Weinblatt, Michael E; Curtis, Jeffrey R

    2013-01-01

    Disease activity measurement is a key component of rheumatoid arthritis (RA) management. Biomarkers that capture the complex and heterogeneous biology of RA have the potential to complement clinical disease activity assessment. To develop a multi-biomarker disease activity (MBDA) test for rheumatoid arthritis. Candidate serum protein biomarkers were selected from extensive literature screens, bioinformatics databases, mRNA expression and protein microarray data. Quantitative assays were identified and optimized for measuring candidate biomarkers in RA patient sera. Biomarkers with qualifying assays were prioritized in a series of studies based on their correlations to RA clinical disease activity (e.g. the Disease Activity Score 28-C-Reactive Protein [DAS28-CRP], a validated metric commonly used in clinical trials) and their contributions to multivariate models. Prioritized biomarkers were used to train an algorithm to measure disease activity, assessed by correlation to DAS and area under the receiver operating characteristic curve for classification of low vs. moderate/high disease activity. The effect of comorbidities on the MBDA score was evaluated using linear models with adjustment for multiple hypothesis testing. 130 candidate biomarkers were tested in feasibility studies and 25 were selected for algorithm training. Multi-biomarker statistical models outperformed individual biomarkers at estimating disease activity. Biomarker-based scores were significantly correlated with DAS28-CRP and could discriminate patients with low vs. moderate/high clinical disease activity. Such scores were also able to track changes in DAS28-CRP and were significantly associated with both joint inflammation measured by ultrasound and damage progression measured by radiography. The final MBDA algorithm uses 12 biomarkers to generate an MBDA score between 1 and 100. No significant effects on the MBDA score were found for common comorbidities. We followed a stepwise approach to

  3. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models.

    PubMed

    Li, Lin; Zhang, Cheng-Wu; Chen, Grace Y J; Zhu, Biwei; Chai, Chou; Xu, Qing-Hua; Tan, Eng-King; Zhu, Qing; Lim, Kah-Leong; Yao, Shao Q

    2014-01-01

    The unusually high MAO-B activity consistently observed in Parkinson's disease (PD) patients has been proposed as a biomarker; however, this has not been realized due to the lack of probes suitable for MAO-B-specific detection in live cells/tissues. Here we report the first two-photon, small molecule fluorogenic probe (U1) that enables highly sensitive/specific and real-time imaging of endogenous MAO-B activities across biological samples. We also used U1 to confirm the reported inverse relationship between parkin and MAO-B in PD models. With no apparent toxicity, U1 may be used to monitor MAO-B activities in small animals during disease development. In clinical samples, we find elevated MAO-B activities only in B lymphocytes (not in fibroblasts), hinting that MAO-B activity in peripheral blood cells might be an accessible biomarker for rapid detection of PD. Our results provide important starting points for using small molecule imaging techniques to explore MAO-B at the organism level.

  4. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  5. Development of a Multi-Biomarker Disease Activity Test for Rheumatoid Arthritis

    PubMed Central

    Shen, Yijing; Ramanujan, Saroja; Knowlton, Nicholas; Swan, Kathryn A.; Turner, Mary; Sutton, Chris; Smith, Dustin R.; Haney, Douglas J.; Chernoff, David; Hesterberg, Lyndal K.; Carulli, John P.; Taylor, Peter C.; Shadick, Nancy A.; Weinblatt, Michael E.; Curtis, Jeffrey R.

    2013-01-01

    Background Disease activity measurement is a key component of rheumatoid arthritis (RA) management. Biomarkers that capture the complex and heterogeneous biology of RA have the potential to complement clinical disease activity assessment. Objectives To develop a multi-biomarker disease activity (MBDA) test for rheumatoid arthritis. Methods Candidate serum protein biomarkers were selected from extensive literature screens, bioinformatics databases, mRNA expression and protein microarray data. Quantitative assays were identified and optimized for measuring candidate biomarkers in RA patient sera. Biomarkers with qualifying assays were prioritized in a series of studies based on their correlations to RA clinical disease activity (e.g. the Disease Activity Score 28-C-Reactive Protein [DAS28-CRP], a validated metric commonly used in clinical trials) and their contributions to multivariate models. Prioritized biomarkers were used to train an algorithm to measure disease activity, assessed by correlation to DAS and area under the receiver operating characteristic curve for classification of low vs. moderate/high disease activity. The effect of comorbidities on the MBDA score was evaluated using linear models with adjustment for multiple hypothesis testing. Results 130 candidate biomarkers were tested in feasibility studies and 25 were selected for algorithm training. Multi-biomarker statistical models outperformed individual biomarkers at estimating disease activity. Biomarker-based scores were significantly correlated with DAS28-CRP and could discriminate patients with low vs. moderate/high clinical disease activity. Such scores were also able to track changes in DAS28-CRP and were significantly associated with both joint inflammation measured by ultrasound and damage progression measured by radiography. The final MBDA algorithm uses 12 biomarkers to generate an MBDA score between 1 and 100. No significant effects on the MBDA score were found for common comorbidities

  6. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson's disease by modulating the ERK and JNK signaling pathways.

    PubMed

    Lee, Yujeong; Chun, Hye Jeong; Lee, Kyung Moon; Jung, Young-Suk; Lee, Jaewon

    2015-11-19

    Parkinson's disease (PD) is the second-most common neurodegenerative disease after Alzheimer's disease, and is characterized by dopaminergic neuronal loss in midbrain. The MPTP-induced PD model has been well characterized by motor deficits and selective dopaminergic neuronal death accompanied by glial activation. Silibinin is a constituent of silymarin, an extract of milk thistle seeds, and has been proposed to have hepatoprotective, anti-cancer, anti-oxidative, and neuroprotective effects. In the present study, the authors studied the neuroprotective effects of silibinin in an acute MPTP model of PD. Silibinin was administered for 2 weeks, and then MPTP was administered to mice over 1 day (acute MPTP induced PD). Silibinin pretreatment effectively ameliorated motor dysfunction, dopaminergic neuronal loss, and glial activations caused by MPTP. In addition, an in vitro study demonstrated that silibinin suppressed astroglial activation and ERK and JNK phosphorylation in primary astrocytes in response to MPP(+) treatment. These findings show silibinin protected dopaminergic neurons in an acute MPTP-induced mouse model of PD, and suggest its neuroprotective effects might be mediated by the suppression of astrocyte activation via the inhibition of ERK and JNK phosphorylation. In conclusion, the study indicates silibinin should be viewed as a potential treatment for PD and other neurodegenerative diseases associated with neuroinflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease

    PubMed Central

    Vázquez-Manrique, Rafael P.; Farina, Francesca; Cambon, Karine; Dolores Sequedo, María; Parker, Alex J.; Millán, José María; Weiss, Andreas; Déglon, Nicole; Neri, Christian

    2016-01-01

    The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD. PMID:26681807

  8. Evaluation of disease modifying activity of Coriandrum sativum in experimental models

    PubMed Central

    Nair, Vinod; Singh, Surender; Gupta, Y.K.

    2012-01-01

    Background & objectives: Coriandrum sativum (CS), has been widely used in traditional systems of medicine for treatment of rheumatoid arthritis. However, the mechanism of action for its antiarthritic effects is not clearly known. Therefore, the present study was carried out to evaluate the antiarthritic activity of CS in rats in two experimental models. Methods: The antiarthritic activity of CS seed hydroalcoholic extract (CSHE) was evaluated in adult Wistar rats by using two experimental models, viz. formaldehyde and Complete Freund's adjuvant (CFA) induced arthritis. The expression of pro-inflammatory cytokines (predominantly contributed by macrophages) was also evaluated. TNF-α level was estimated in serum by ELISA method. TNF-R1, IL-1 β and IL-6 expression in the synovium was analysed by immunohistochemistry. Results: CSHE produced a dose dependent inhibition of joint swelling as compared to control animals in both, formaldehyde and CFA induced arthritis. Although there was a dose dependent increase in serum TNF-α levels in the CSHE treated groups as compared to control, the synovial expression of macrophage derived pro-inflammatory cytokines/cytokine receptor was found to be lower in the CSHE treated groups as compared to control. Interpretation & conclusions: Our results demonstrate that the antiarthritic activity of CSHE may be attributed to the modulation of pro-inflammatory cytokines in the synovium. In further studies CSHE could be explored to be developed as a disease modifying agent in the treatment of RA. PMID:22446868

  9. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease.

    PubMed

    Liang, Dandan; Chen, Hongjin; Zhao, Leping; Zhang, Wenxin; Hu, Jie; Liu, Zhiguo; Zhong, Peng; Wang, Wei; Wang, Jingying; Liang, Guang

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Swing Boat: Inducing and Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer’s Disease

    PubMed Central

    Berlandi, Johannes; Lin, Fang-Ju; Ambrée, Oliver; Rieger, Dirk; Paulus, Werner; Jeibmann, Astrid

    2017-01-01

    Recent studies indicate that physical activity can slow down progression of neurodegeneration in humans. To date, automated ways to induce activity have been predominantly described in rodent models. To study the impact of activity on behavior and survival in adult Drosophila melanogaster, we aimed to develop a rotating tube device “swing boat” which is capable of monitoring activity and sleep patterns as well as survival rates of flies. For the purpose of a first application, we tested our device on a transgenic fly model of Alzheimer’s disease (AD). Activity of flies was recorded in a climate chamber using the Drosophila Activity Monitoring (DAM) System connected to data acquisition software. Locomotor activity was induced by a rotating tube device “swing boat” by repetitively tilting the tubes for 30 min per day. A non-exercising group of flies was used as control and activity and sleep patterns were obtained. The GAL4-/UAS system was used to drive pan-neuronal expression of human Aβ42 in flies. Immunohistochemical stainings for Aβ42 were performed on paraffin sections of adult fly brains. Daily rotation of the fly tubes evoked a pronounced peak of activity during the 30 min exercise period. Pan-neuronal expression of human Aβ42 in flies caused abnormalities in locomotor activity, reduction of life span and elevated sleep fragmentation in comparison to wild type flies. Furthermore, the formation of amyloid accumulations was observed in the adult fly brain. Gently induced activity over 12 days did not evoke prominent effects in wild type flies but resulted in prolongation of median survival time by 7 days (32.6%) in Aβ42-expressing flies. Additionally, restoration of abnormally decreased night time sleep (10%) and reduced sleep fragmentation (28%) were observed compared to non-exercising Aβ42-expressing flies. On a structural level no prominent effects regarding prevalence of amyloid aggregations and Aβ42 RNA expression were detected following

  11. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhang, Cheng-Wu; Chen, Grace Y. J.; Zhu, Biwei; Chai, Chou; Xu, Qing-Hua; Tan, Eng-King; Zhu, Qing; Lim, Kah-Leong; Yao, Shao Q.

    2014-02-01

    The unusually high MAO-B activity consistently observed in Parkinson’s disease (PD) patients has been proposed as a biomarker; however, this has not been realized due to the lack of probes suitable for MAO-B-specific detection in live cells/tissues. Here we report the first two-photon, small molecule fluorogenic probe (U1) that enables highly sensitive/specific and real-time imaging of endogenous MAO-B activities across biological samples. We also used U1 to confirm the reported inverse relationship between parkin and MAO-B in PD models. With no apparent toxicity, U1 may be used to monitor MAO-B activities in small animals during disease development. In clinical samples, we find elevated MAO-B activities only in B lymphocytes (not in fibroblasts), hinting that MAO-B activity in peripheral blood cells might be an accessible biomarker for rapid detection of PD. Our results provide important starting points for using small molecule imaging techniques to explore MAO-B at the organism level.

  12. Increased Disease Activity is Associated with Altered Sleep Architecture in an Experimental Model of Systemic Lupus Erythematosus

    PubMed Central

    Palma, Beatriz Duarte; Tufik, Sergio

    2010-01-01

    Study Objectives: The aim of this study was to evaluate sleep patterns during the course of the disease in (NZB/NZW)F1 mice, an experimental model of systemic lupus erythematosus (SLE). Design: Female mice were implanted with electrodes for chronic recording of sleep-wake cycles during the entire experimental phase (9, 19, and 29 weeks of age). The disease course was also assessed. At each time-point, blood samples were collected from the orbital plexus to evaluate serum antinuclear antibodies (ANA), which are important serologic parameters of disease evolution. Pain perception was also evaluated. Measurements and Results: During the dark phase, (NZB/NZW)F1 mice aged 19 weeks spent more time in sleep, and, as a consequence, the total waking time was lower when compared with earlier periods. An augmented number of sleep-stage transitions and microarousals were observed at the 29th week of life in both light and dark phases. At this same time-point, the mice showed lower pain thresholds than they had at 9 weeks of life. The disease status was confirmed; the entire group of mice at 29 weeks of life showed positive ANA with high titer levels. Conclusions: The sleep-recording data showed that, during the progress and severe phases of the disease (19 and 29 wks of age, respectively), sleep architecture is altered. According to these results, increased sleep fragmentation, disease activity, and pain sensitivity are features observed in these mice, similar to symptoms of SLE. Citation: Palma BD; Tufik S. Increased disease activity is associated with altered sleep architecture in an experimental model of systemic lupus erythematosus. SLEEP 2010;33(9):1244-1248. PMID:20857872

  13. Integrated Social- and Neurocognitive Model of Physical Activity Behavior in Older Adults with Metabolic Disease.

    PubMed

    Olson, Erin A; Mullen, Sean P; Raine, Lauren B; Kramer, Arthur F; Hillman, Charles H; McAuley, Edward

    2017-04-01

    Despite the proven benefits of physical activity to treat and prevent metabolic diseases, such as diabetes (T2D) and metabolic syndrome (MetS), most individuals with metabolic disease do not meet physical activity (PA) recommendations. PA is a complex behavior requiring substantial motivational and cognitive resources. The purpose of this study was to examine social cognitive and neuropsychological determinants of PA behavior in older adults with T2D and MetS. The hypothesized model theorized that baseline self-regulatory strategy use and cognitive function would indirectly influence PA through self-efficacy. Older adults with T2D or MetS (M age  = 61.8 ± 6.4) completed either an 8-week physical activity intervention (n = 58) or an online metabolic health education course (n = 58) and a follow-up at 6 months. Measures included cognitive function, self-efficacy, self-regulatory strategy use, and PA. The data partially supported the hypothesized model (χ 2  = 158.535(131), p > .05, comparative fit index = .96, root mean square error of approximation = .04, standardized root mean square residual = .06) with self-regulatory strategy use directly predicting self-efficacy (β = .33, p < .05), which in turn predicted PA (β = .21, p < .05). Performance on various cognitive function tasks predicted PA directly and indirectly via self-efficacy. Baseline physical activity (β = .62, p < .01) and intervention group assignment via self-efficacy (β = -.20, p < .05) predicted follow-up PA. The model accounted for 54.4 % of the variance in PA at month 6. Findings partially support the hypothesized model and indicate that select cognitive functions (i.e., working memory, inhibition, attention, and task-switching) predicted PA behavior 6 months later. Future research warrants the development of interventions targeting cognitive function, self-regulatory skill development, and self-efficacy enhancement. The trial was registered with the

  14. Deterministic SLIR model for tuberculosis disease mapping

    NASA Astrophysics Data System (ADS)

    Aziz, Nazrina; Diah, Ijlal Mohd; Ahmad, Nazihah; Kasim, Maznah Mat

    2017-11-01

    Tuberculosis (TB) occurs worldwide. It can be transmitted to others directly through air when active TB persons sneeze, cough or spit. In Malaysia, it was reported that TB cases had been recognized as one of the most infectious disease that lead to death. Disease mapping is one of the methods that can be used as the prevention strategies since it can displays clear picture for the high-low risk areas. Important thing that need to be considered when studying the disease occurrence is relative risk estimation. The transmission of TB disease is studied through mathematical model. Therefore, in this study, deterministic SLIR models are used to estimate relative risk for TB disease transmission.

  15. Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease.

    PubMed

    Ng, Chee-Hoe; Basil, Adeline H; Hang, Liting; Tan, Royston; Goh, Kian-Leong; O'Neill, Sharon; Zhang, Xiaodong; Yu, Fengwei; Lim, Kah-Leong

    2017-07-01

    Despite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD. Here, we showed that silencing of expression of the Drosophila PGC-1α ortholog spargel results in PD-related phenotypes in flies and also seem to negate the effects of AMPK activation, which we have previously demonstrated to be neuroprotective, that is, AMPK-mediated neuroprotection appears to require PGC-1α. Importantly, we further showed that genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel is sufficient to rescue the disease phenotypes of Parkin and LRRK2 genetic fly models of PD, thus supporting the proposed use of PGC-1α-related strategies for neuroprotection in PD. Copyright © 2017 National Neuroscience Institute. Published by Elsevier Inc. All rights reserved.

  16. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease.

    PubMed

    Rorabaugh, Jacki M; Chalermpalanupap, Termpanit; Botz-Zapp, Christian A; Fu, Vanessa M; Lembeck, Natalie A; Cohen, Robert M; Weinshenker, David

    2017-11-01

    See Grinberg and Heinsen (doi:10.1093/brain/awx261) for a scientific commentary on this article. Clinical evidence suggests that aberrant tau accumulation in the locus coeruleus and noradrenergic dysfunction may be a critical early step in Alzheimer’s disease progression. Yet, an accurate preclinical model of these phenotypes that includes early pretangle tau accrual in the locus coeruleus, loss of locus coeruleus innervation and deficits locus coeruleus/norepinephrine modulated behaviours, does not exist, hampering the identification of underlying mechanisms and the development of locus coeruleus-based therapies. Here, a transgenic rat (TgF344-AD) expressing disease-causing mutant amyloid precursor protein (APPsw) and presenilin-1 (PS1ΔE9) was characterized for histological and behavioural signs of locus coeruleus dysfunction reminiscent of mild cognitive impairment/early Alzheimer’s disease. In TgF344-AD rats, hyperphosphorylated tau was detected in the locus coeruleus prior to accrual in the medial entorhinal cortex or hippocampus, and tau pathology in the locus coeruleus was negatively correlated with noradrenergic innervation in the medial entorhinal cortex. Likewise, TgF344-AD rats displayed progressive loss of hippocampal norepinephrine levels and locus coeruleus fibres in the medial entorhinal cortex and dentate gyrus, with no frank noradrenergic cell body loss. Cultured mouse locus coeruleus neurons expressing hyperphosphorylation-prone mutant human tau had shorter neurites than control neurons, but similar cell viability, suggesting a causal link between pretangle tau accrual and altered locus coeruleus fibre morphology. TgF344-AD rats had impaired reversal learning in the Morris water maze compared to their wild-type littermates, which was rescued by chemogenetic locus coeruleus activation via designer receptors exclusively activated by designer drugs (DREADDs). Our results indicate that TgF344-AD rats uniquely meet several key criteria for a

  17. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer's disease.

    PubMed

    Stranahan, Alexis M; Martin, Bronwen; Maudsley, Stuart

    2012-01-01

    Physical activity has been correlated with a reduced incidence of cognitive decline and Alzheimer's disease in human populations. Although data from intervention-based randomized trials is scarce, there is some indication that exercise may confer protection against age-related deficits in cognitive function. Data from animal models suggests that exercise, in the form of voluntary wheel running, is associated with reduced amyloid deposition and enhanced clearance of amyloid beta, the major constituent of plaques in Alzheimer's disease. Treadmill exercise has also been shown to ameliorate the accumulation of phosphorylated tau, an essential component of neurofibrillary tangles in Alzheimer's models. A common therapeutic theme arising from studies of exercise-induced neuroprotection in human populations and in animal models involves reduced inflammation in the central nervous system. In this respect, physical activity may promote neuronal resilience by reducing inflammation.

  18. Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson's Disease

    PubMed Central

    Wu, Yuncheng; Li, Xinqun; Zhu, Julie Xiaohong; Xie, Wenjie; Le, Weidong; Fan, Zhen; Jankovic, Joseph; Pan, Tianhong

    2011-01-01

    Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models. PMID:21778691

  19. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    PubMed

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffett, Kristine; Burris, Thomas P., E-mail: burristp@slu.edu

    The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inversemore » agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. - Highlights: • The LXR antagonist GSK2033 suppresses the expression of lipogenic genes FASN and SREBF1 in HepG2 cells. • GSK2033 exhibits sufficient exposure to perform animal experiments targeting the liver. • GSK2033 has fails to suppress hepatic Fasn and Srebf1 expression in an animal model of non-alcoholic fatty liver disease. • GSK2033 may regulate the activity of several nuclear receptors.« less

  1. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease.

    PubMed

    Roy, Avik; Ghosh, Anamitra; Jana, Arundhati; Liu, Xiaojuan; Brahmachari, Saurav; Gendelman, Howard E; Pahan, Kalipada

    2012-01-01

    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac), but not p21(ras), attenuated the production of ROS from activated microglia. Inhibition of both p21(ras) and p21(rac) activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras) and p21(rac)in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras) and p21(rac), protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.

  2. Distinct changes in evoked and resting globus pallidus activity in early and late Parkinson's disease experimental models.

    PubMed

    Zold, Camila L; Larramendy, Celia; Riquelme, Luis A; Murer, M Gustavo

    2007-09-01

    The main clinical manifestations of Parkinson's disease are caused by alterations of basal ganglia activity that are tied in with the progressive loss of mesencephalic dopaminergic neurons. Recent theoretical and modeling studies have suggested that changes in resting neuronal activity occurred later in the course of the disease than those evoked by phasic cortical input. However, there is no empirical support for this proposal. Here we report a marked increase in the responsiveness of globus pallidus neurons to electrical motor cortex stimulation, in the absence of noticeable changes in resting activity, in anesthetized rats that had consistently shown a deficit in forelimb use during behavioral testing before the experiments, and had approximately 45% dopamine neurons spared in the substantia nigra. Pallidal neurons were also over-responsive to motor cortex stimulation and lost spatial selectivity for cortical inputs in rats with extensive nigrostriatal damage. After partial lesions, over-responsiveness was mainly due to an increased proportion of neurons showing excitatory responses, while extensive lesions led to an increased likelihood of inhibitory responding neurons. Changes in resting neuronal activity, comprising pauses disrupting tonic discharge, occurred across different global brain states, including an activated condition which shares similarities with natural patterns of cortical activity seen in awake states and rapid eye-movement sleep, but only after massive nigrostriatal degeneration. These results suggest that a loss of functional segregation and an abnormal temporal encoding of phasic cortical inputs by globus pallidus neurons may contribute to inducing early motor impairment in Parkinson's disease.

  3. Habitual physical activity in mitochondrial disease.

    PubMed

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, P<0.01). There were no systematic differences in physical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  4. Disease Activity in Rheumatoid Arthritis and the Risk of Cardiovascular Events

    PubMed Central

    Solomon, DH; Reed, G; Kremer, JM; Curtis, JR; Farkouh, ME; Harrold, LR; Hochberg, MC; Tsao, P; Greenberg, J

    2015-01-01

    Background Use of several immunomodulatory agents has been associated with reduced cardiovascular (CV) events in epidemiologic studies of rheumatoid arthritis (RA). However, it is unknown whether time-averaged disease activity in RA correlates with CV events. Methods We studied patients with RA followed in a longitudinal US-based registry. Time-averaged disease activity was assessed using the area under the curve of the Clinical Disease Activity Index, a validated measure of rheumatoid arthritis disease activity, assessed during follow-up. Age, gender, diabetes, hypertension, hyperlipidemia, body mass index, family history of myocardial infarction (MI), aspirin use, NSAID use presence of CV disease, and baseline immunomodulator use were assessed at baseline. Cox proportional hazards regression models were examined to determine the risk of a composite CV endpoint that included MI, stroke, and CV death. Results 24,989 subjects followed for a median of 2.7 years were included in these analyses. During follow-up, we observed 422 confirmed CV endpoints for an incidence rate of 9.08 (95% confidence interval, CI, 7.90 – 10.26) per 1,000 person-years. In models adjusting for variables noted above, a 10-point reduction in time-averaged Clinical Disease Activity Index was associated with a 26% reduction in CV risk (95% confidence interval 17-34%). These results were robust in subgroup analyses stratified by presence of CV disease, use of corticosteroids, use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors, change in RA treatment, and also when restricted to events adjudicated as definite or probable. Conclusions Reduced time-averaged disease activity in RA is associated with fewer CV events. PMID:25776112

  5. Protective activity of guanosine in an in vitro model of Parkinson's disease.

    PubMed

    Giuliani, P; Romano, S; Ballerini, P; Ciccarelli, R; Petragnani, N; Cicchitti, S; Zuccarini, M; Jiang, S; Rathbone, M P; Caciagli, F; Di Iorio, P

    2012-12-01

    Parkinson's disease (PD) is a pathological condition characterized by a progressive neurodegeneration of dopaminergic neurons with the consequent reduction of dopamine content in the substantia nigra. The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used to mimic the neuropathology of PD in both in vivo and in vitro experimental models. We found that, as expected, in dopaminergic human SH-SY5Y neuroblastoma cells the toxin reduced cell viability causing programmed cell death as assessed by an increase in DNA fragmentation. We also examined, in these cells, the activation/inactivation of several pro and anti apoptotic signaling pathways by 6-OHDA including p-38 kinase (p-38), c-Jun N-terminal kinase (JNK), protein kinase B (also known as Akt), glycogen synthase kinase-3β (GSK3β), and Bcl-2 protein. Guanine-based purines, exert neuroprotective effects and we previously reported that guanosine activates cell survival pathways including PI3K/Akt/PKB signaling in different kinds of cells including glia and neuroblastoma cells. In the present study we found that guanosine (300 µM) protected SH-SY5Y neuroblastoma cells when they were exposed to 6-OHDA, promoting their survival. Guanosine reduced the 6-OHDA mediated activation of p-38 and JNK. Moreover the nucleoside potentiated the early increase in the phosphorylation of the anti-apoptotic kinase Akt and the increase in the expression of the anti-apoptotic Bcl-2 protein induced by 6-OHDA. In summary our results show that guanosine results to be neuroprotective in a recognized in vitro model of PD thus suggesting that it could represent a new potential pharmacological tool to be studied in the therapeutic approach to PD.

  6. Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework.

    PubMed

    Yang, Lingjian; Ainali, Chrysanthi; Tsoka, Sophia; Papageorgiou, Lazaros G

    2014-12-05

    Applying machine learning methods on microarray gene expression profiles for disease classification problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome. Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy and difficulty of biological interpretation. Current research efforts focus on integrating information on protein interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by proposing novel methodologies. A supervised multiclass pathway activity inference method using optimisation techniques is reported. For each pathway expression dataset, patterns of its constituent genes are summarised into one composite feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway activity profile. The model was evaluated through a variety of published gene expression profiles that cover different types of disease. We show that not only does it improve classification accuracy, but it can also perform well in multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the model include the ability to control the maximum number of genes that may participate in determining pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building

  7. Epileptic activity in Alzheimer’s disease: causes and clinical relevance

    PubMed Central

    Vossel, Keith A; Tartaglia, Maria C; Nygaard, Haakon B; Zeman, Adam Z; Miller, Bruce L

    2018-01-01

    Epileptic activity is frequently associated with Alzheimer’s disease; this association has therapeutic implications, because epileptic activity can occur at early disease stages and might contribute to pathogenesis. In clinical practice, seizures in patients with Alzheimer’s disease can easily go unrecognised because they usually present as non-motor seizures, and can overlap with other symptoms of the disease. In patients with Alzheimer’s disease, seizures can hasten cognitive decline, highlighting the clinical relevance of early recognition and treatment. Some evidence indicates that subclinical epileptiform activity in patients with Alzheimer’s disease, detected by extended neurophysiological monitoring, can also lead to accelerated cognitive decline. Treatment of clinical seizures in patients with Alzheimer’s disease with select antiepileptic drugs (AEDs), in low doses, is usually well tolerated and efficacious. Moreover, studies in mouse models of Alzheimer’s disease suggest that certain classes of AEDs that reduce network hyperexcitability have disease-modifying properties. These AEDs target mechanisms of epileptogenesis involving amyloid β and tau. Clinical trials targeting network hyperexcitability in patients with Alzheimer’s disease will identify whether AEDs or related strategies could improve their cognitive symptoms or slow decline. PMID:28327340

  8. Believability of messages about preventing breast cancer and heart disease through physical activity.

    PubMed

    Berry, Tanya R; Jones, Kelvin E; Courneya, Kerry S; McGannon, Kerry R; Norris, Colleen M; Rodgers, Wendy M; Spence, John C

    2018-01-18

    The purpose of this research was to examine the relationships of self-reported physical activity to involvement with messages that discuss the prevention of heart disease and breast cancer through physical activity, the explicit believability of the messages, and agreement (or disagreement) with specific statements about the messages or disease beliefs in general. A within subjects' design was used. Participants (N = 96) read either a breast cancer or heart disease message first, then completed a corresponding task that measured agreement or disagreement and confidence in the agreement or disagreement that 1) physical activity 'reduces risk/does not reduce risk' of breast cancer or heart disease, 2) that breast cancer or heart disease is a 'real/not real risk for me', 3) that women who get breast cancer or heart disease are 'like/not like me', and 4) that women who get breast cancer or heart disease are 'to blame/not to blame'. This task was followed by a questionnaire measuring message involvement and explicit believability. They then read the other disease messages and completed the corresponding agreement and confidence task and questionnaire measures. Lastly, participants completed a questionnaire measuring physical activity related attitudes and intentions, and demographics. There was no difference in message involvement or explicit believability of breast cancer compared to heart disease messages. Active participants had a higher confidence in their agreement that physical activity is preventive of heart disease compared to breast cancer. Multinomial regression models showed that, in addition to physical activity related attitudes and intentions, agreement that physical activity was preventive of heart disease and that women with heart disease are 'like me' were predictors of being more active compared to inactive. In the breast cancer model only attitudes and intentions predicted physical activity group. Active women likely internalized messages about

  9. Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease

    PubMed Central

    Jana, Arundhati; Liu, Xiaojuan; Brahmachari, Saurav; Gendelman, Howard E.; Pahan, Kalipada

    2012-01-01

    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21rac, but not p21ras, attenuated the production of ROS from activated microglia. Inhibition of both p21ras and p21rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21ras and p21rac in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Oral administration of NaPB reduced nigral activation of p21ras and p21rac, protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders. PMID:22723850

  10. Computational modeling of neurostimulation in brain diseases.

    PubMed

    Wang, Yujiang; Hutchings, Frances; Kaiser, Marcus

    2015-01-01

    Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation. © 2015 Elsevier B.V. All rights reserved.

  11. Being active when you have heart disease

    MedlinePlus

    Heart disease - activity; CAD - activity; Coronary artery disease - activity; Angina - activity ... Getting regular exercise when you have heart disease is important. Exercise can make your heart muscle stronger. It may also help you be more active without chest pain or ...

  12. A model for ubiquitous care of noncommunicable diseases.

    PubMed

    Vianna, Henrique Damasceno; Barbosa, Jorge Luis Victória

    2014-09-01

    The ubiquitous computing, or ubicomp, is a promising technology to help chronic diseases patients managing activities, offering support to them anytime, anywhere. Hence, ubicomp can aid community and health organizations to continuously communicate with patients and to offer useful resources for their self-management activities. Communication is prioritized in works of ubiquitous health for noncommunicable diseases care, but the management of resources is not commonly employed. We propose the UDuctor, a model for ubiquitous care of noncommunicable diseases. UDuctor focuses the resources offering, without losing self-management and communication supports. We implemented a system and applied it in two practical experiments. First, ten chronic patients tried the system and filled out a questionnaire based on the technology acceptance model. After this initial evaluation, an alpha test was done. The system was used daily for one month and a half by a chronic patient. The results were encouraging and show potential for implementing UDuctor in real-life situations.

  13. Serum prolactin in coeliac disease: a marker for disease activity

    PubMed Central

    Reifen, R.; Buskila, D.; Maislos, M.; Press, J.; Lerner, A.

    1997-01-01

    Accepted 21 April 1997
 Prolactin, a polypeptide hormone of anterior pituitary origin, has pronounced physiological effects on growth, reproduction, and osmoregulation. Increasing evidence indicates that prolactin also has an immunomodulatory influence on the immune system. The status of prolactin in patients with coeliac disease was investigated by obtaining serum samples from 48 patients with active and non-active coeliac disease. These were compared with samples from 20 children with familial Mediterranean fever and 65 normal controls. Serum prolactin in patients with active coeliac disease was significantly higher than in the other groups studied and reference values. Serum prolactin correlated well with the degree of mucosal atrophy and with the serum concentration of antiendomysial antibodies. Prolactin may play a part in immune modulation in the intestinal damage of coeliac disease and serve as a potential marker for disease activity.

 PMID:9301358

  14. Physical activity and autoimmune diseases: Get moving and manage the disease.

    PubMed

    Sharif, Kassem; Watad, Abdulla; Bragazzi, Nicola Luigi; Lichtbroun, Micheal; Amital, Howard; Shoenfeld, Yehuda

    2018-01-01

    Physical activity, by definition, is any skeletal muscle body movement that results in energy expenditure. In the last few decades, a plethora of scientific evidences have accumulated and confirmed the beneficial role of physical activity as a modifiable risk factor for a wide variety of chronic diseases including cardiovascular diseases (CVDs), diabetes mellitus and cancer, among others. Autoimmune diseases are a heterogeneous group of chronic diseases, which occur secondary to loss of self-antigen tolerance. With the advent of biological therapies, better outcomes have recently been noted in the management of autoimmune diseases. Nonetheless, recent research highlights the salient role of modifiable behaviors such as physical inactivity on various aspects of the immune system and autoimmune diseases. Physical activity leads to a significant elevation in T-regulatory cells, decreased immunoglobulin secretion and produces a shift in the Th1/Th2 balance to a decreased Th1 cell production. Moreover, physical activity has been proven to promote the release of IL-6 from muscles. IL-6 released from muscles functions as a myokine and has been shown to induce an anti-inflammatory response through IL-10 secretion and IL-1β inhibition. Physical activity has been shown to be safe in most of autoimmune diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), inflammatory bowel diseases (IBD), as well as others. Additionally, the incidence of RA, MS, IBD and psoriasis has been found to be higher in patients less engaged in physical activity. As a general trend, patients with autoimmune diseases tend to be less physically active as compared to the general population. Physically active RA patients were found to have a milder disease course, better cardiovascular disease (CVD) profile, and improved joint mobility. Physical activity decreases fatigue, enhances mood, cognitive abilities and mobility in patients with MS. In SLE

  15. Genomic background-related activation of microglia and reduced β-amyloidosis in a mouse model of Alzheimer's disease.

    PubMed

    Fröhlich, Christina; Paarmann, Kristin; Steffen, Johannes; Stenzel, Jan; Krohn, Markus; Heinze, Hans-Jochen; Pahnke, Jens

    2013-03-01

    Alzheimer's disease (AD) is by far the most common neurodegenerative disease. AD is histologically characterized not only by extracellular senile plaques and vascular deposits consisting of β-amyloid (Aβ) but also by accompanying neuroinflammatory processes involving the brain's microglia. The importance of the microglia is still in controversial discussion, which currently favors a protective function in disease progression. Recent findings by different research groups highlighted the importance of strain-specific and mitochondria-specific genomic variations in mouse models of cerebral β-amyloidosis. Here, we want to summarize our previously presented data and add new results that draw attention towards the consideration of strain-specific genomic alterations in the setting of APP transgenes. We present data from APP-transgenic mice in commonly used C57Bl/6J and FVB/N genomic backgrounds and show a direct influence on the kinetics of Aβ deposition and the activity of resident microglia. Plaque size, plaque deposition rate and the total amount of Aβ are highest in C57Bl/6J mice as compared to the FVB/N genomic background, which can be explained at least partially by a reduced microglia activity towards amyloid deposits in the C57BL/6J strain.

  16. Correlation of rheumatoid arthritis activity indexes (Disease Activity Score 28 measured with ESR and CRP, Simplified Disease Activity Index and Clinical Disease Activity Index) and agreement of disease activity states with various cut-off points in a Northeastern Brazilian population.

    PubMed

    Medeiros, Marta Maria das Chagas; de Oliveira, Brenda Maria Gurgel Barreto; de Cerqueira, João Victor Medeiros; Quixadá, Raquel Telles de Souza; de Oliveira, Ídila Mont'Alverne Xavier

    2015-01-01

    The Disease Activity Score 28 (DAS28) and its versions have been used to measure rheumatoid arthritis (RA) activity, but there is no consensus about which one is the best. Determine the correlation among indexes (DAS28 ESR, DAS28 CRP, SDAI and CDAI) and evaluate agreement of activity strata using different cutoff points. Rheumatoid arthritis patients were cross-sectionally evaluated with data collection to calculate the DAS28 (ESR and CRP), SDAI and CDAI, using different cut-offs for defining remission, mild, moderate and high activity. Pearson correlations were calculated for continuous measures and agreement (kappa test) for the strata (remission, mild, moderate and high activity). Of 111 patients included, 108 were women, age 55.6 years, 11-year disease duration. DAS28 (ESR) was significantly higher than DAS28 (CRP) (4.0 vs. 3.5; p<0.001) and the values remained higher after stratification by age, gender, disease duration, rheumatoid factor and HAQ. Correlations among indexes ranged from 0.84 to 0.99, with better correlation between SDAI and CDAI. Agreements among activity strata ranged from 46.8% to 95.8%. DAS28 (CRP) with cut-off point for the remission of 2.3 underestimated disease activity by 45.8% compared with DAS28 (ESR). SDAI and CDAI showed agreement of 95.8%. The four indexes were associated with disease duration and HAQ. Although the activity indexes show good correlation, they show discrepancies in activity strata, thus requiring more researches to define a better index and better cutoff points. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  17. NF-kappa B activation correlates with disease phenotype in Crohn’s disease

    PubMed Central

    Han, Yoo Min; Koh, Jaemoon; Lee, Changhyun; Koh, Seong-Joon; Kim, ByeongGwan; Lee, Kook Lae; Im, Jong Pil; Kim, Joo Sung

    2017-01-01

    Background/Aims Unregulated activation of nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of Crohn’s disease. In this study, we investigated the clinical characteristics and disease outcome of Crohn’s disease patients with varying levels of the NF-κB activation. Methods Crohn’s disease patients who underwent surgical bowel resection were divided into two groups, based on the activation status of NF-κB. NF-κB activation was assessed by the immunoreactivity of nuclear NF-κB during immunohistochemical staining of bowel resection specimens. We compared the demographic, clinical and histologic characteristics between groups. Furthermore, the occurrence of reoperation, readmission, and medication change due to disease flare-up were investigated according to NF-κB activation status. Results Among 83 Crohn’s disease patients, 47 (56%) showed high NF-κB activity and 36 (44%) showed low NF-κB activity. Patients with high NF-κB activity had higher frequency of ileocolonic involvement (P = 0.028) and lower frequency of perianal involvement (P = 0.042) relative to those with low NF-κB activity. Total histologic scores were significantly higher in patients with high NF-κB activity than those with low NF-κB activity (P = 0.044). There was no significant difference in the frequency of reoperation, readmission, and medication change in relation to NF-κB activation status. Conclusions Crohn’s disease patients with high NF-κB activation showed specific clinical manifestations of higher frequency of ileocolonic involvement and lower frequency of perianal involvement relative to those with low NF-κB activation. High NF-κB activity was associated with higher histologic scores. However, the NF-κB activity did not affect the outcome and disease course after surgery. PMID:28753650

  18. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease.

    PubMed

    Couturier, Julien; Stancu, Ilie-Cosmin; Schakman, Olivier; Pierrot, Nathalie; Huaux, François; Kienlen-Campard, Pascal; Dewachter, Ilse; Octave, Jean-Noël

    2016-01-27

    The proinflammatory cytokine interleukin-1β (IL-1β) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-β (Aβ) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1β maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aβ-induced inflammasome activation by measuring IL-1β release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7-8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Cultured astrocytes primed with LPS and treated with Aβ showed an ASC-dependent production of IL-1β resulting from inflammasome activation mediated by Aβ phagocytosis and cathepsin B enzymatic activity. ASC

  19. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease.

    PubMed

    Sen, A; Cox, R T

    2017-01-01

    Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance. © 2017 Elsevier Inc. All rights reserved.

  20. Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease

    PubMed Central

    Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia

    2015-01-01

    Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035

  1. MS disease activity in RESTORE

    PubMed Central

    Cree, Bruce A.C.; De Sèze, Jerome; Gold, Ralf; Hartung, Hans-Peter; Jeffery, Douglas; Kappos, Ludwig; Kaufman, Michael; Montalbán, Xavier; Weinstock-Guttman, Bianca; Anderson, Britt; Natarajan, Amy; Ticho, Barry; Duda, Petra

    2014-01-01

    Objective: RESTORE was a randomized, partially placebo-controlled exploratory study evaluating multiple sclerosis (MS) disease activity during a 24-week interruption of natalizumab. Methods: Eligible patients were relapse-free through the prior year on natalizumab and had no gadolinium-enhancing lesions on screening brain MRI. Patients were randomized 1:1:2 to continue natalizumab, to switch to placebo, or to receive alternative immunomodulatory therapy (other therapies: IM interferon β-1a [IM IFN-β-1a], glatiramer acetate [GA], or methylprednisolone [MP]). During the 24-week randomized treatment period, patients underwent clinical and MRI assessments every 4 weeks. Results: Patients (n = 175) were randomized to natalizumab (n = 45), placebo (n = 42), or other therapies (n = 88: IM IFN-β-1a, n = 17; GA, n = 17; MP, n = 54). Of 167 patients evaluable for efficacy, 49 (29%) had MRI disease activity recurrence: 0/45 (0%) natalizumab, 19/41 (46%) placebo, 1/14 (7%) IM IFN-β-1a, 8/15 (53%) GA, and 21/52 (40%) MP. Relapse occurred in 4% of natalizumab patients and in 15%–29% of patients in the other treatment arms. MRI disease activity recurred starting at 12 weeks (n = 3 at week 12) while relapses were reported as early as 4–8 weeks (n = 2 in weeks 4–8) after the last natalizumab dose. Overall, 50/167 patients (30%), all in placebo or other-therapies groups, restarted natalizumab early because of disease activity. Conclusions: MRI and clinical disease activity recurred in some patients during natalizumab interruption, despite use of other therapies. Classification of evidence: This study provides Class II evidence that for patients with MS taking natalizumab who are relapse-free for 1 year, stopping natalizumab increases the risk of MS relapse or MRI disease activity as compared with continuing natalizumab. PMID:24682966

  2. Best practice assessment of disease modelling for infectious disease outbreaks.

    PubMed

    Dembek, Z F; Chekol, T; Wu, A

    2018-05-08

    During emerging disease outbreaks, public health, emergency management officials and decision-makers increasingly rely on epidemiological models to forecast outbreak progression and determine the best response to health crisis needs. Outbreak response strategies derived from such modelling may include pharmaceutical distribution, immunisation campaigns, social distancing, prophylactic pharmaceuticals, medical care, bed surge, security and other requirements. Infectious disease modelling estimates are unavoidably subject to multiple interpretations, and full understanding of a model's limitations may be lost when provided from the disease modeller to public health practitioner to government policymaker. We review epidemiological models created for diseases which are of greatest concern for public health protection. Such diseases, whether transmitted from person-to-person (Ebola, influenza, smallpox), via direct exposure (anthrax), or food and waterborne exposure (cholera, typhoid) may cause severe illness and death in a large population. We examine disease-specific models to determine best practices characterising infectious disease outbreaks and facilitating emergency response and implementation of public health policy and disease control measures.

  3. Testing the Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2017-06-01

    Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease Form...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically test the requirement of PAK

  4. Attachment, childhood abuse, and IBD-related quality of life and disease activity outcomes.

    PubMed

    Caplan, Rachel A; Maunder, Robert G; Stempak, Joanne M; Silverberg, Mark S; Hart, Tae L

    2014-05-01

    This study examined attachment style as a moderator of the relationship between childhood abuse and inflammatory bowel disease (IBD)-related outcomes. Study participants were 205 patients with IBD from Mount Sinai Hospital in Toronto. Participants completed self-report questionnaires regarding personal relationships, abuse history, and IBD-related information. Multiple regression models were fit using 3 outcome variables: disease-related quality of life (QOL), disease activity for ulcerative colitis, and disease activity for Crohn's disease. Patients reporting less severe abuse and low levels of avoidant attachment had the highest levels of QOL, whereas patients reporting high levels of avoidant attachment had the lowest levels of QOL, regardless of abuse severity. Patients reporting greater anxious attachment had lower QOL scores. Patients reporting less severe abuse and low levels of avoidant attachment had the lowest levels of disease activity, whereas patients reporting high levels of avoidant attachment had the highest levels of ulcerative colitis-related disease activity, regardless of abuse severity. However, for anxious attachment, there was no significant main effect or significant interaction of abuse by anxious attachment on ulcerative colitis-related disease activity. Childhood abuse and attachment style were not found to be associated with Crohn's disease-related disease activity. Adult attachment style may moderate the relationship between childhood abuse and IBD-related outcomes, by impacting one's QOL and disease activity. Distinct types of insecure attachment styles may impact these relationships differently. Psychological interventions focusing on attachment styles of patients with IBD have the potential to improve IBD-related QOL and disease activity.

  5. Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.

    PubMed

    Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B

    2018-05-15

    Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.

  6. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    PubMed

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  7. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease

    PubMed Central

    Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle

    2016-01-01

    Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473

  8. Universal etiology, multifactorial diseases and the constitutive model of disease classification.

    PubMed

    Fuller, Jonathan

    2018-02-01

    Infectious diseases are often said to have a universal etiology, while chronic and noncommunicable diseases are said to be multifactorial in their etiology. It has been argued that the universal etiology of an infectious disease results from its classification using a monocausal disease model. In this article, I will reconstruct the monocausal model and argue that modern 'multifactorial diseases' are not monocausal by definition. 'Multifactorial diseases' are instead defined according to a constitutive disease model. On closer analysis, infectious diseases are also defined using the constitutive model rather than the monocausal model. As a result, our classification models alone cannot explain why infectious diseases have a universal etiology while chronic and noncommunicable diseases lack one. The explanation is instead provided by the Nineteenth Century germ theorists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease.

    PubMed

    Wang, Xiuyan; Zheng, Liyu; Wu, Jinming; Tang, Binbin; Zhang, Mengqin; Zhu, Debin; Lin, Xianfan

    2017-06-01

    Increased plasma levels of bilirubin have been reported in rat models and patients with alcoholic liver disease (ALD). The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin. In the present study, the bilirubin transport regulatory mechanisms, and the role of CAR activation in hepatic and extrahepatic bilirubin clearance were investigated in a murine model of ALD. The mice were fed a Lieber-DeCarli ethanol diet or an isocaloric control diet for 4 weeks, followed by the administration of CAR agonists, 1,4-bis-[2‑(3,5-dichlorpyridyloxy)]benzene (TCPOBOP) and phenobarbital (PB), and their vehicles to examine the effect of the pharmacological activation of CAR on serum levels of bilirubin and on the bilirubin clearance pathway in ALD by serological survey, western blotting and reverse transcription‑quantitative polymerase chain reaction. The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1. The activation of CAR by TCPOBOP and PB resulted in downregulation of the serum levels of bilirubin followed by selective upregulation of the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 in ALD. These results revealed the bilirubin transport regulatory mechanisms and highlighted the importance of CAR in modulating the bilirubin clearance pathway in the ALD mouse model.

  10. Systemic lupus erythematosus in three ethnic groups. XIV. Poverty, wealth, and their influence on disease activity.

    PubMed

    Alarcón, Graciela S; McGwin, Gerald; Sanchez, Martha L; Bastian, Holly M; Fessler, Barri J; Friedman, Alan W; Baethge, Bruce A; Roseman, Jeffrey; Reveille, John D

    2004-02-15

    To determine the impact of wealth on disease activity in the multiethnic (Hispanic, African American, and Caucasian) LUMINA (Lupus in Minorities, Nature versus nurture) cohort of patients with systemic lupus erythematosus (SLE) and disease duration < or =5 years at enrollment. Variables (socioeconomic, demographic, clinical, immunologic, immunogenetic, behavioral, and psychological) were measured at enrollment and annually thereafter. Four questions from the Women's Health Initiative study were used to measure wealth. Disease activity was measured with the Systemic Lupus Activity Measure (SLAM). The relationship between the different variables and wealth was then examined. Next, the impact of wealth on disease activity was examined in regression models where the dependent variables were the SLAM score and SLAM global (physician). Variables previously found to impact disease activity plus the wealth questions were included in the models. Questions on income, assets, and debt were found to distinguish patients into groups, wealthier and less wealthy. Less wealthy patients tended to be younger, women, noncaucasian, less educated, unmarried, less likely to have health insurance, and more likely to live below the poverty line. They also tended to have more active disease, more abnormal illness-related behaviors, less social support, and lower levels of self reported mental functioning. None of the wealth questions was retained in the regression models, although other socioeconomic features (such as African American ethnicity, poverty, and younger age) did. Wealth, per se, does not appear to have an additional predictive value, over and above traditional measures of socioeconomic status, in SLE disease activity.

  11. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease

    PubMed Central

    Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246

  12. A customizable model for chronic disease coordination: Lessons learned from the coordinated chronic disease program

    DOE PAGES

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    2016-03-31

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less

  13. A customizable model for chronic disease coordination: Lessons learned from the coordinated chronic disease program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less

  14. Mast cell inflammasome activity in the meninges regulates EAE disease severity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Brown, Melissa A

    2018-04-01

    Inflammasomes are multiprotein complexes that assemble in response to microbial and other danger signals and regulate the secretion of biologically active IL-1β and IL-18. Although they are important in protective immunity against bacterial, viral and parasitic infections, aberrant inflammasome activity promotes chronic inflammation associated with autoimmune disease. Inflammasomes have been described in many immune cells, but the majority of studies have focused on their activity in macrophages. Here we discuss an important role for mast cell-inflammasome activity in EAE, the rodent model of multiple sclerosis, a CNS demyelinating disease. We review our evidence that mast cells in the meninges, tissues that surround the brain and spinal cord, interact with infiltrating myelin-specific T cells in early disease. This interaction elicits IL-1β expression by mast cells, which in turn, promotes GM-CSF expression by T cells. In view of the essential role that GM-CSF plays in T cell encephalitogenicity, we propose this mast cell-T cell crosstalk in the meninges is critical for EAE disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.

    2015-01-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  16. FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice.

    PubMed

    Ogawa, Yasuhiro; Sano, Takafumi; Irisa, Masahiro; Kodama, Takashi; Saito, Takahiro; Furusawa, Eiri; Kaizu, Katsutoshi; Yanagi, Yusuke; Tsukimura, Takahiro; Togawa, Tadayasu; Yamanaka, Shoji; Itoh, Kohji; Sakuraba, Hitoshi; Oishi, Kazuhiko

    2017-01-13

    Sandhoff disease (SD) is caused by the loss of β-hexosaminidase (Hex) enzymatic activity in lysosomes resulting from Hexb mutations. In SD patients, the Hex substrate GM2 ganglioside accumulates abnormally in neuronal cells, resulting in neuronal loss, microglial activation, and astrogliosis. Hexb -/- mice, which manifest a phenotype similar to SD, serve as animal models for examining the pathophysiology of SD. Hexb -/- mice reach ~8 weeks without obvious neurological defects; however, trembling begins at 12 weeks and is accompanied by startle reactions and increased limb tone. These symptoms gradually become severe by 16-18 weeks. Immune reactions caused by autoantibodies have been recently associated with the pathology of SD. The inhibition of immune activation may represent a novel therapeutic target for SD. Herein, SD mice (Hexb -/- ) were crossed to mice lacking an activating immune receptor (FcRγ -/- ) to elucidate the potential relationship between immune responses activated through SD autoantibodies and astrogliosis. Microglial activation and astrogliosis were observed in cortices of Hexb -/- mice during the asymptomatic phase, and were inhibited in Hexb -/- FcRγ -/- mice. Moreover, early astrogliosis and impaired motor coordination in Hexb -/- mice could be ameliorated by immunosuppressants, such as FTY720. Our findings demonstrate the importance of early treatment and the therapeutic effectiveness of immunosuppression in SD.

  17. Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease

    PubMed Central

    Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.

    2008-01-01

    To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036

  18. Engineered in vitro disease models.

    PubMed

    Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E

    2015-01-01

    The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.

  19. Active Vaccines for Alzheimer Disease Treatment.

    PubMed

    Sterner, Rosalie M; Takahashi, Paul Y; Yu Ballard, Aimee C

    2016-09-01

    Vaccination against peptides specific to Alzheimer disease may generate an immune response that could help inhibit disease and symptom progression. PubMed and Scopus were searched for clinical trial articles, review articles, and preclinical studies relevant to the field of active Alzheimer disease vaccines and raw searches yielded articles ranging from 2016 to 1973. ClinicalTrials.gov was searched for active Alzheimer disease vaccine trials. Manual research and cross-referencing from reviews and original articles was performed. First generation Aβ42 phase 2a trial in patients with mild to moderate Alzheimer disease resulted in cases of meningoencephalitis in 6% of patients, so next generation vaccines are working to target more specific epitopes to induce a more controlled immune response. Difficulty in developing these vaccines resides in striking a balance between providing a vaccine that induces enough of an immune response to actually clear protein sustainably but not so much of a response that results in excess immune activation and possibly adverse effects such as meningoencephalitis. Although much work still needs to be done in the field to make this a practical possibility, the enticing allure of being able to treat or even prevent the extraordinarily impactful disease that is Alzheimer disease makes the idea of active vaccination for Alzheimer disease very appealing and something worth striving toward. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  20. Self-assessment of Rheumatoid Arthritis Disease Activity Using a Smartphone Application. Development and 3-month Feasibility Study.

    PubMed

    Nishiguchi, S; Ito, H; Yamada, M; Yoshitomi, H; Furu, M; Ito, T; Shinohara, A; Ura, T; Okamoto, K; Aoyama, T; Tsuboyama, Tadao

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Rheumatoid arthritis (RA) is a progressive inflammatory disease that causes damage to multiple joints, decline in functional status, and premature mortality. Thus, effective and frequent objective assessments are necessary. Then, we developed a self-assessment system for RA patients based on a smartphone application. The purpose of this study was to investigate the feasibility of a self-assessment system for RA patients using a smartphone application. We measured daily disease activity in nine RA patients who used the smartphone application for a period of three months. A disease activity score (DAS28) predictive model was used and feedback comments relating to disease activity were shown to patients via the smartphone application each day. To assess participants' RA disease activity, the DAS28 based on the C-reactive protein level was measured by a rheumatologist during monthly clinical visits. The disease activity measured by the application correlated well with the patients' actual disease activity during the 3-month period, as assessed by clinical examination. Furthermore, most participants gave favourable responses to a questionnaire administered at the end of the 3-month period containing questions relating to the ease of use and usefulness of the system. The results of this feasibility study indicated that the DAS28 predictive model can longitudinally predict DAS28 and may be an acceptable and useful tool for assessment of RA disease activity for both patients and healthcare providers.

  1. Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease

    PubMed Central

    Sweeney, William E; Frost, Philip; Avner, Ellis D

    2017-01-01

    AIM To investigate the therapeutic potential of tesevatinib (TSV), a unique multi-kinase inhibitor currently in Phase II clinical trials for autosomal dominant polycystic kidney disease (ADPKD), in well-defined rodent models of autosomal recessive polycystic kidney disease (ARPKD). METHODS We administered TSV in daily doses of 7.5 and 15 mg/kg per day by I.P. to the well characterized bpk model of polycystic kidney disease starting at postnatal day (PN) 4 through PN21 to assess efficacy and toxicity in neonatal mice during postnatal development and still undergoing renal maturation. We administered TSV by oral gavage in the same doses to the orthologous PCK model (from PN30 to PN90) to assess efficacy and toxicity in animals where developmental processes are complete. The following parameters were assessed: Body weight, total kidney weight; kidney weight to body weight ratios; and morphometric determination of a cystic index and a measure of hepatic disease. Renal function was assessed by: Serum BUN; creatinine; and a 12 h urinary concentrating ability. Validation of reported targets including the level of angiogenesis and inhibition of angiogenesis (active VEGFR2/KDR) was assessed by Western analysis. RESULTS This study demonstrates that: (1) in vivo pharmacological inhibition of multiple kinase cascades with TSV reduced phosphorylation of key mediators of cystogenesis: EGFR, ErbB2, c-Src and KDR; and (2) this reduction of kinase activity resulted in significant reduction of renal and biliary disease in both bpk and PCK models of ARPKD. The amelioration of disease by TSV was not associated with any apparent toxicity. CONCLUSION The data supports the hypothesis that this multi-kinase inhibitor TSV may provide an effective clinical therapy for human ARPKD. PMID:28729967

  2. Design, synthesis of allosteric peptide activator for human SIRT1 and its biological evaluation in cellular model of Alzheimer's disease.

    PubMed

    Kumar, Rahul; Nigam, Lokesh; Singh, Amrendra Pratap; Singh, Kusum; Subbarao, Naidu; Dey, Sharmistha

    2017-02-15

    Sirtuin 1 (SIRT1) is one of the member of the mammalian proteins of the Sirtuin family of NAD + dependent deacetylases, has recently been shown to attenuate amyloidogenic processing of amyloid protein precursor (APP) in in-vitro cell culture studies and transgenic mouse models of Alzheimer's disease (AD). SIRT1 has been shown to have a protective role against (AD). It has been reported earlier that increasing SIRT1 activity can prevent AD in mice model. Tripeptide as an activator of SIRT1 were screened on the basis of structural information by molecular docking and synthesized by solid phase method. The enhancement of biochemical activity of pure recombinant SIRT1 as well as SIRT1 in serum of AD patients in presence of tripeptide was done by Fluorescent Activity Assay. The activity of SIRT1 by peptide was assessed in IMR-32 cell line by measuring acetylated p53 level. Further the protective effect of SIRT1 activator in cellular model of AD was analyzed by MTT assay. We find CWR tripeptide as a SIRT1 activator by molecular docking, enhanced the activity of SIRT1 protein by lowering the Michaelis constant, Km by allosteric mechanism. The activity of serum SIRT1 of AD was also increases by CWR. It also decreased the acetylation of p53 in IMR32 neuroblastoma cells and protected the cell death caused by Aβ amyloid fragments in cell line model of AD. Thus, it can be concluded that CWR may serve as platform to elucidate further small molecule activator as a therapeutic agent for AD targeting SIRT1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Insect and disease activity (2003)

    Treesearch

    John W. Coulston

    2007-01-01

    Why Are Insects and Diseases Important? Native insects and diseases are a natural part of ecosystems and are essential to the ecological balance in natural forests (Castello and others 1995). In contrast, nonnative insects and diseases can pose a particular threat because ecosystems often lack natural internal controls of these agents. The activity of both native and...

  4. New Insights from Rodent Models of Fatty Liver Disease

    PubMed Central

    2011-01-01

    Abstract Rodent models of fatty liver disease are essential research tools that provide a window into disease pathogenesis and a testing ground for prevention and treatment. Models come in many varieties involving dietary and genetic manipulations, and sometimes both. High-energy diets that induce obesity do not uniformly cause fatty liver disease; this has prompted close scrutiny of specific macronutrients and nutrient combinations to determine which have the greatest potential for hepatotoxicity. At the same time, diets that do not cause obesity or the metabolic syndrome but do cause severe steatohepatitis have been exploited to study factors important to progressive liver injury, including cell death, oxidative stress, and immune activation. Rodents with a genetic predisposition to overeating offer yet another model in which to explore the evolution of fatty liver disease. In some animals that overeat, steatohepatitis can develop even without resorting to a high-energy diet. Importantly, these models and others have been used to document that aerobic exercise can prevent or reduce fatty liver disease. This review focuses primarily on lessons learned about steatohepatitis from manipulations of diet and eating behavior. Numerous additional insights about hepatic lipid metabolism, which have been gained from genetically engineered mice, are also mentioned. Antioxid. Redox Signal. 15, 535–550. PMID:21126212

  5. Airborne spread of foot-and-mouth disease - model intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloster, J; Jones, A; Redington, A

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office duringmore » 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.« less

  6. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities

    PubMed Central

    Rahmani, Arshad H; shabrmi, Fahad M Al; Aly, Salah M

    2014-01-01

    The current mode of treatment based on synthetic drugs is expensive and also causes genetic and metabolic alterations. However, safe and sound mode of treatment is needed to control the diseases development and progression. In this regards, medicinal plant and its constituents play an important role in diseases management via modulation of biological activities. Ginger, the rhizome of the Zingiber officinale, has shown therapeutic role in the health management since ancient time and considered as potential chemopreventive agent. Numerous studies based on clinical trials and animal model has shown that ginger and its constituents shows significant role in the prevention of diseases via modulation of genetic and metabolic activities. In this review, we focused on the therapeutics effects of ginger and its constituents in the diseases management, and its impact on genetic and metabolic activities. PMID:25057339

  7. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    PubMed

    Peng, Ruoqi; Sridhar, Sriram; Tyagi, Gaurav; Phillips, Jonathan E; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M; Kitson, Chris; Budd, David C; Fine, Jay S; Bauer, Carla M T; Stevenson, Christopher S

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  8. Cross-sectional and prospective relationship between physical activity and chronic diseases in European older adults.

    PubMed

    Marques, Adilson; Peralta, Miguel; Martins, João; de Matos, Margarida Gaspar; Brownson, Ross C

    2017-05-01

    This study examined the relationship between physical activity (PA) and chronic diseases in European older adults, using a prospective analysis with data from 2011 and 2013. Participants were 37,524 older adults (16,204 men) who responded to the fourth (in 2011) and fifth (in 2013) wave of SHARE project, from 13 European countries. Participants' answers to interview questions about the presence of chronic conditions and PA. The cross-sectional and prospective association between PA and the number of chronic diseases was assessed using general linear models. Among men and women, moderate or vigorous physical activity (MVPA) in 2011 was associated with fewer reported chronic diseases in 2011 and 2013. In prospective analysis, MVPA in 2011 was inversely associated with the number of chronic diseases in 2013 in the unadjusted model. In the adjusted model MVPA more than once a week remained as a significant predictor of fewer chronic diseases. PA should be prescribed to older adults in order to prevent and reduce the number of chronic diseases, and, when possible, vigorous intensity PA should be recommended.

  9. Cardiovascular Disease and Cancer: Student Awareness Activities.

    ERIC Educational Resources Information Center

    Meyer, James H., Comp.

    Awareness activities pertaining to cancer and cardiovascular disease are presented as a supplement for high school science classes. The exercises can be used to enrich units of study dealing with the circulatory system, the cell, or human diseases. Eight activities deal with the following topics: (1) cardiovascular disease risk factors; (2)…

  10. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  11. Comparison of the activity of three antibiotic regimens in severe Legionnaires' disease.

    PubMed

    Dournon, E; Mayaud, C; Wolff, M; Schlemmer, B; Samuel, D; Sollet, J P; Levasseur-Rajagopalan, P

    1990-10-01

    Comparison of the activity of different antibiotic regimens in Legionnaire's disease has never been made because of the rarity of well documented cases of that disease. We have retrospectively compared severe cases of Legionnaires' disease treated with pefloxacin alone or in combination with erythromycin and/or rifampicin using computer-matched cases treated either with erythromycin or with erythromycin in combination with rifampicin. This study suggests that: (1) combined therapy including erythromycin, rifampicin and/or pefloxacin is superior to therapy with erythromycin alone; (2) combinations including pefloxacin may be the most active ones; and (3) pefloxacin alone may be as active as combination therapy. Although these results are in agreement with data obtained in cell and in animal models of legionella infection they need to be further confirmed by the study of larger number of patients.

  12. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  13. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease

    PubMed Central

    Kwon, Michelle; Pavlov, Tengis S.; Nozu, Kandai; Rasmussen, Shauna A.; Ilatovskaya, Daria V.; Lerch-Gaggl, Alexandra; North, Lauren M.; Kim, Hyunho; Qian, Feng; Sweeney, William E.; Avner, Ellis D.; Blumer, Joe B.; Staruschenko, Alexander; Park, Frank

    2012-01-01

    Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease. PMID:23236168

  14. Prevalence of Disease among Active Civil Airmen

    DTIC Science & Technology

    1988-10-01

    JOINTS 16.9 17.1 MUSCLES 1.21.7 2.0 MISCELLANEOUS Iu 51.8 (ENDOCRINOPATHIES, 48.9 DRUGS, ETC.) 54.1 Figjre 1. Disease Prevalence Among Active Airmen...ENDOCRINOPATHIES, 43.1 DRUGS, ETC.) Figure 2. Comparison of Disease Prevalence Among Arrnen by Body System, 1988 Verses 1984 SUMMARY Health findings in the...frequency of occurrence among active airmen. As expected, hypertension is the greatest contributor to cardiovascular disease prevalence . Eve disease is

  15. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model.

    PubMed

    Vargas, Jessica Y; Fuenzalida, Marco; Inestrosa, Nibaldo C

    2014-02-05

    The role of the Wnt signaling pathway during synaptic development has been well established. In the adult brain, different components of Wnt signaling are expressed, but little is known about its role in mature synapses. Emerging in vitro studies have implicated Wnt signaling in synaptic plasticity. Furthermore, activation of Wnt signaling has shown to protect against amyloid-β-induced synaptic impairment. The present study provides the first evidence that in vivo activation of Wnt signaling improves episodic memory, increases excitatory synaptic transmission, and enhances long-term potentiation in adult wild-type mice. Moreover, the activation of Wnt signaling also rescues memory loss and improves synaptic dysfunction in APP/PS1-transgenic mice that model the amyloid pathology of Alzheimer's diseases. These findings indicate that Wnt signaling modulates cognitive function in the adult brain and could be a novel promising target for Alzheimer's disease therapy.

  16. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    PubMed

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease

    PubMed Central

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A.; Li, Wei; Leoni, Valerio; Schon, Eric A.; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-01-01

    Summary Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD+-dependent protein deacetylase. As NAD+ boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD+ play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD+ precursor, or reduction of NAD+ consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans. PMID:24814483

  18. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies.

    PubMed

    Bezard, Erwan; Yue, Zhenyu; Kirik, Deniz; Spillantini, Maria Grazia

    2013-01-01

    Over the last two decades, significant strides has been made toward acquiring a better knowledge of both the etiology and pathogenesis of Parkinson's disease (PD). Experimental models are of paramount importance to obtain greater insights into the pathogenesis of the disease. Thus far, neurotoxin-based animal models have been the most popular tools employed to produce selective neuronal death in both in vitro and in vivo systems. These models have been commonly referred to as the pathogenic models. The current trend in modeling PD revolves around what can be called the disease gene-based models or etiologic models. The value of utilizing multiple models with a different mechanism of insult rests on the premise that dopamine-producing neurons die by stereotyped cascades that can be activated by a range of insults, from neurotoxins to downregulation and overexpression of disease-related genes. In this position article, we present the relevance of both pathogenic and etiologic models as well as the concept of clinically relevant designs that, we argue, should be utilized in the preclinical development phase of new neuroprotective therapies before embarking into clinical trials. Copyright © 2013 Movement Disorders Society.

  19. Modeling human disease using organotypic cultures.

    PubMed

    Schweiger, Pawel J; Jensen, Kim B

    2016-12-01

    Reliable disease models are needed in order to improve quality of healthcare. This includes gaining better understanding of disease mechanisms, developing new therapeutic interventions and personalizing treatment. Up-to-date, the majority of our knowledge about disease states comes from in vivo animal models and in vitro cell culture systems. However, it has been exceedingly difficult to model disease at the tissue level. Since recently, the gap between cell line studies and in vivo modeling has been narrowing thanks to progress in biomaterials and stem cell research. Development of reliable 3D culture systems has enabled a rapid expansion of sophisticated in vitro models. Here we focus on some of the latest advances and future perspectives in 3D organoids for human disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Serum Adipocytokine Levels as Surrogate Markers for Disease Activity of Crohn's Disease.

    PubMed

    Kim, Su Hwan; Jang, Seung Hyeon; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae; Kim, You Sun; Han, Dong Soo; Kim, Joo Sung

    2017-05-01

    Determining inflammatory activity is crucial for assessing disease activity and for tailoring therapy in patients with Crohn׳s disease (CD). This study aimed to evaluate adipocytokine levels in patients with CD and to determine whether they can serve as surrogate markers for disease activity. Serum samples and information regarding the clinical features of patients in the CD Network Project registry were collected from March 2009 to February 2012. Patients with CD and disease duration of at least 2 years were enrolled in this study. Fasting serum leptin, adiponectin, obestatin and ghrelin levels were measured, and their correlation with clinical features of the patients was analyzed. Serum adipocytokine levels were evaluated according to disease activity as determined by CD activity index score. A total of 153 patients with CD were included. Serum ghrelin levels negatively correlated with patient age (P = 0.041) and age at diagnosis (P = 0.017), and positively correlated with C-reactive protein (CRP) levels (P = 0.017). Multiple regression analysis showed that serum ghrelin levels were related only to CRP levels (P = 0.032). Like ghrelin, serum leptin levels were also related to CRP levels (P < 0.001). Obestatin and adiponectin levels were not related to CRP levels. Serum adipocytokine levels did not significantly differ across different disease locations or behaviors. Serum ghrelin levels were significantly lower in patients with CD with a history of surgery than in those without (P = 0.007). Serum ghrelin and leptin levels may be useful as surrogate markers for disease activity in patients with CD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  1. Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease.

    PubMed

    F Hernández, Ledia; Castela, Ivan; Ruiz-DeDiego, Irene; Obeso, Jose A; Moratalla, Rosario

    2017-04-01

    Long-term levodopa (l-dopa) treatment is associated with the development of l-dopa-induced dyskinesias in the majority of patients with Parkinson disease (PD). The etiopathogonesis and mechanisms underlying l-dopa-induced dyskinesias are not well understood. We used striatal optogenetic stimulation to induce dyskinesias in a hemiparkinsonian model of PD in rats. Striatal dopamine depletion was induced unilaterally by 6-hydroxydopamine injection into the medial forebrain bundle. For the optogenetic manipulation, we injected adeno-associated virus particles expressing channelrhodopsin to stimulate striatal medium spiny neurons with a laser source. Simultaneous optical activation of medium spiny neurons of the direct and indirect striatal pathways in the 6-hydroxydopamine lesion but l-dopa naïve rats induced involuntary movements similar to l-dopa-induced dyskinesias, labeled here as optodyskinesias. Noticeably, optodyskinesias were facilitated by l-dopa in animals that did not respond initially to the laser stimulation. In general, optodyskinesias lasted while the laser stimulus was applied, but in some instances remained ongoing for a few seconds after the laser was off. Postmortem tissue analysis revealed increased FosB expression, a molecular marker of l-dopa-induced dyskinesias, primarily in medium spiny neurons of the direct pathway in the dopamine-depleted hemisphere. Selective optogenetic activation of the dorsolateral striatum elicits dyskinesias in the 6-hydroxydopamine rat model of PD. This effect was associated with a preferential activation of the direct striato-nigral pathway. These results potentially open new avenues in the understanding of mechanisms involved in l-dopa-induced dyskinesias. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  2. Thermoneutral housing exacerbates non-alcoholic fatty liver disease in mice and allows for sex-independent disease modeling

    PubMed Central

    Giles, Daniel A; Moreno-Fernandez, Maria E; Stankiewicz, Traci E; Graspeuntner, Simon; Cappelletti, Monica; Wu, David; Mukherjee, Rajib; Chan, Calvin C; Lawson, Matthew J; Klarquist, Jared; Sünderhauf, Annika; Softic, Samir; Kahn, C Ronald; Stemmer, Kerstin; Iwakura, Yoichiro; Aronow, Bruce J; Karns, Rebekah; Steinbrecher, Kris A; Karp, Christopher L; Sheridan, Rachel; Shanmukhappa, Shiva K; Reynaud, Damien; Haslam, David B; Sina, Christian; Rupp, Jan; Hogan, Simon P; Divanovic, Senad

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the human disease spectrum, including bridging hepatic fibrosis. Here, we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways associated with human disease. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the interleukin-17 (IL-17) axis resulted in altered immune responsiveness and protection from thermoneutral housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full-blown disease at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis. PMID:28604704

  3. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System

    PubMed Central

    Wu, Bechien U.; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H.; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J.

    2017-01-01

    OBJECTIVES Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. METHODS We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. RESULTS From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. CONCLUSIONS We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis. PMID:28462914

  4. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System.

    PubMed

    Wu, Bechien U; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J

    2017-07-01

    Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis.

  5. Stargardt disease: towards developing a model to predict phenotype.

    PubMed

    Heathfield, Laura; Lacerda, Miguel; Nossek, Christel; Roberts, Lisa; Ramesar, Rajkumar S

    2013-10-01

    Stargardt disease is an ABCA4-associated retinopathy, which generally follows an autosomal recessive inheritance pattern and is a frequent cause of macular degeneration in childhood. ABCA4 displays significant allelic heterogeneity whereby different mutations can cause retinal diseases with varying severity and age of onset. A genotype-phenotype model has been proposed linking ABCA4 mutations, purported ABCA4 functional protein activity and severity of disease, as measured by degree of visual loss and the age of onset. It has, however, been difficult to verify this model statistically in observational studies, as the number of individuals sharing any particular mutation combination is typically low. Seven founder mutations have been identified in a large number of Caucasian Afrikaner patients in South Africa, making it possible to test the genotype-phenotype model. A generalised linear model was developed to predict and assess the relative pathogenic contribution of the seven mutations to the age of onset of Stargardt disease. It is shown that the pathogenicity of an individual mutation can differ significantly depending on the genetic context in which it occurs. The results reported here may be used to identify suitable candidates for inclusion in clinical trials, as well as guide the genetic counselling of affected individuals and families.

  6. Stargardt Disease: towards developing a model to predict phenotype

    PubMed Central

    Heathfield, Laura; Lacerda, Miguel; Nossek, Christel; Roberts, Lisa; Ramesar, Rajkumar S

    2013-01-01

    Stargardt disease is an ABCA4-associated retinopathy, which generally follows an autosomal recessive inheritance pattern and is a frequent cause of macular degeneration in childhood. ABCA4 displays significant allelic heterogeneity whereby different mutations can cause retinal diseases with varying severity and age of onset. A genotype–phenotype model has been proposed linking ABCA4 mutations, purported ABCA4 functional protein activity and severity of disease, as measured by degree of visual loss and the age of onset. It has, however, been difficult to verify this model statistically in observational studies, as the number of individuals sharing any particular mutation combination is typically low. Seven founder mutations have been identified in a large number of Caucasian Afrikaner patients in South Africa, making it possible to test the genotype–phenotype model. A generalised linear model was developed to predict and assess the relative pathogenic contribution of the seven mutations to the age of onset of Stargardt disease. It is shown that the pathogenicity of an individual mutation can differ significantly depending on the genetic context in which it occurs. The results reported here may be used to identify suitable candidates for inclusion in clinical trials, as well as guide the genetic counselling of affected individuals and families. PMID:23695285

  7. Validation of the "German Inflammatory Bowel Disease Activity Index (GIBDI)": An Instrument for Patient-Based Disease Activity Assessment in Crohn's Disease and Ulcerative Colitis.

    PubMed

    Hüppe, Angelika; Langbrandtner, Jana; Häuser, Winfried; Raspe, Heiner; Bokemeyer, Bernd

    2018-05-09

     Assessment of disease activity in Crohn's disease (CD) and ulcerative colitis (UC) is usually based on the physician's evaluation of clinical symptoms, endoscopic findings, and biomarker analysis. The German Inflammatory Bowel Disease Activity Index for CD (GIBDI CD ) and UC (GIBDI UC ) uses data from patient-reported questionnaires. It is unclear to what extent the GIBDI agrees with the physicians' documented activity indices.  Data from 2 studies were reanalyzed. In both, gastroenterologists had documented disease activity in UC with the partial Mayo Score (pMS) and in CD with the Harvey Bradshaw Index (HBI). Patient-completed GIBDI questionnaires had also been assessed. The analysis sample consisted of 151 UC and 150 CD patients. Kappa coefficients were determined as agreement measurements.  Rank correlations were 0.56 (pMS, GIBDI UC ) and 0.57 (HBI, GIBDI CD ), with p < 0.001. The absolute agreement for 2 categories of disease activity (remission yes/no) was 74.2 % (UC) and 76.6 % (CD), and for 4 categories (none/mild/moderate/severe) 60.3 % (UC) and 61.9 % (CD). The kappa values ranged between 0.47 for UC (2 categories) and 0.58 for CD (4 categories).  There is satisfactory agreement of GIBDI with the physician-documented disease activity indices. GIBDI can be used in health care research without access to assessments of medical practitioners. In clinical practice, the index offers a supplementary source of information. © Georg Thieme Verlag KG Stuttgart · New York.

  8. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy

    PubMed Central

    Honigberg, Lee A.; Smith, Ashley M.; Sirisawad, Mint; Verner, Erik; Loury, David; Chang, Betty; Li, Shyr; Pan, Zhengying; Thamm, Douglas H.; Miller, Richard A.; Buggy, Joseph J.

    2010-01-01

    Activation of the B-cell antigen receptor (BCR) signaling pathway contributes to the initiation and maintenance of B-cell malignancies and autoimmune diseases. The Bruton tyrosine kinase (Btk) is specifically required for BCR signaling as demonstrated by human and mouse mutations that disrupt Btk function and prevent B-cell maturation at steps that require a functional BCR pathway. Herein we describe a selective and irreversible Btk inhibitor, PCI-32765, that is currently under clinical development in patients with B-cell non-Hodgkin lymphoma. We have used this inhibitor to investigate the biologic effects of Btk inhibition on mature B-cell function and the progression of B cell-associated diseases in vivo. PCI-32765 blocked BCR signaling in human peripheral B cells at concentrations that did not affect T cell receptor signaling. In mice with collagen-induced arthritis, orally administered PCI-32765 reduced the level of circulating autoantibodies and completely suppressed disease. PCI-32765 also inhibited autoantibody production and the development of kidney disease in the MRL-Fas(lpr) lupus model. Occupancy of the Btk active site by PCI-32765 was monitored in vitro and in vivo using a fluorescent affinity probe for Btk. Active site occupancy of Btk was tightly correlated with the blockade of BCR signaling and in vivo efficacy. Finally, PCI-32765 induced objective clinical responses in dogs with spontaneous B-cell non-Hodgkin lymphoma. These findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway. PMID:20615965

  9. Relationship between leptin concentrations and disease activity in patients with rheumatoid arthritis.

    PubMed

    Batún-Garrido, José Antonio de Jesús; Salas-Magaña, Marisol; Juárez-Rojop, Isela Esther; Hernández-Núñez, Eúfrates; Olán, Francisco

    2018-05-11

    Multiple studies have found a direct relationship between leptin concentrations and disease activity in rheumatoid arthritis. We studied 77 patients with the diagnosis of rheumatoid arthritis; the leptin determination was through an enzyme immunoassay. Disease activity was assessed by the DAS-28 CRP. A multivariate logistic regression model was used to determine the association between significant variables and leptin concentrations. 40.3% of the patients were in remission, 41.6% were mildly active, 11.7% were moderately active and 6.5% were severely active. The results show an independent association between higher concentrations of leptin and disease activity (OR 1.7; 95% CI 1.4-3.2; p .03), the number of swollen joints (OR 4.6; 95% CI 1.7-8.3; p .000), the number of painful joints (OR 3.4; 95% CI 1.6-4.6; p .000), and the presence of metabolic syndrome (OR 1.3; 95% IC 1.2-1,9; p .045). The data suggest that serum leptin is elevated in patients with active RA. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  10. Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep; Soriano, Jordi

    2015-11-01

    The understanding of the key mechanisms behind human brain deterioration in Alzheimer’ disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner.

  11. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  12. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.

  13. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  14. Transgenic mouse models of Parkinson's disease and Huntington's disease.

    PubMed

    Skaper, Stephen D; Giusti, Pietro

    2010-08-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Another neurodegenerative disorder, Huntington's disease (HD), is characterized by striking movement abnormalities and the loss of medium-sized spiny neurons in the striatum. Current medications only provide symptomatic relief and fail to halt the death of neurons in these disorders. A major hurdle in the development of neuroprotective therapies is due to limited understanding of disease processes leading to the death of neurons. The etiology of dopaminergic neuronal demise in PD is elusive, but a combination of genetic and environmental factors seems to play a critical role. The majority of PD cases are sporadic; however, the discovery of genes linked to rare familial forms of disease and studies from experimental animal models has provided crucial insights into molecular mechanisms of disease pathogenesis. HD, on the other hand, is one of the few neurodegenerative diseases with a known genetic cause, namely an expanded CAG repeat mutation, extending a polyglutamine tract in the huntingtin protein. One of the most important advances in HD research has been the generation of various mouse models that enable the exploration of early pathological, molecular, and cellular abnormalities produced by the mutation. In addition, these models for both HD and PD have made possible the testing of different pharmacological approaches to delay the onset or slow the progression of disease. This article will provide an overview of the genetics underlying PD and HD, the animal models developed, and their potential utility to the study of disease pathophysiology.

  15. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the Coronary Heart Disease Policy Model-China

    PubMed Central

    Moran, Andrew; Gu, Dongfeng; Zhao, Dong; Coxson, Pamela; Wang, Y. Claire; Chen, Chung-Shiuan; Liu, Jing; Cheng, Jun; Bibbins-Domingo, Kirsten; Shen, Yu-Ming; He, Jiang; Goldman, Lee

    2010-01-01

    Background The relative effects of individual and combined risk factor trends on future cardiovascular disease in China have not been quantified in detail. Methods and Results Future risk factor trends in China were projected based on prior trends. Cardiovascular disease (coronary heart disease and stroke) in adults ages 35 to 84 years was projected from 2010 to 2030 using the Coronary Heart Disease Policy Model–China, a Markov computer simulation model. With risk factor levels held constant, projected annual cardiovascular events increased by >50% between 2010 and 2030 based on population aging and growth alone. Projected trends in blood pressure, total cholesterol, diabetes (increases), and active smoking (decline) would increase annual cardiovascular disease events by an additional 23%, an increase of approximately 21.3 million cardiovascular events and 7.7 million cardiovascular deaths over 2010 to 2030. Aggressively reducing active smoking in Chinese men to 20% prevalence in 2020 and 10% prevalence in 2030 or reducing mean systolic blood pressure by 3.8 mm Hg in men and women would counteract adverse trends in other risk factors by preventing cardiovascular events and 2.9 to 5.7 million total deaths over 2 decades. Conclusions Aging and population growth will increase cardiovascular disease by more than a half over the coming 20 years, and projected unfavorable trends in blood pressure, total cholesterol, diabetes, and body mass index may accelerate the epidemic. National policy aimed at controlling blood pressure, smoking, and other risk factors would counteract the expected future cardiovascular disease epidemic in China. PMID:20442213

  16. Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease

    PubMed Central

    Morales, Rodrigo; Bravo-Alegria, Javiera; Duran-Aniotz, Claudia; Soto, Claudio

    2015-01-01

    Experimental evidence in animal models suggests that misfolded Amyloid-β (Aβ) spreads in disease following a prion-like mechanism. Several properties characteristics of infectious prions have been shown for the induction of Aβ aggregates. However, a detailed titration of Aβ misfolding transmissibility and estimation of the minimum concentration of biologically active Aβ seeds able to accelerate pathological changes has not yet been performed. In this study, brain extracts from old tg2576 animals were serially diluted and intra-cerebrally injected into young subjects from the same transgenic line. Animals were sacrificed several months after treatment and brain slices were analyzed for amyloid pathology. We observed that administration of misfolded Aβ was able to significantly accelerate amyloid deposition in young mice, even when the original sample was diluted a million times. The titration curve obtained in this experiment was compared to the natural Aβ load spontaneously accumulated by these mice overtime. Our findings suggest that administration of the largest dose of Aβ seeds led to an acceleration of pathology equivalent to over a year. These results show that active Aβ seeds present in the brain can seed amyloidosis in a titratable manner, similarly as observed for infectious prions. PMID:25879692

  17. Serum calcification propensity is independently associated with disease activity in systemic lupus erythematosus

    PubMed Central

    Chalikias, George; Tziakas, Dimitrios; Chizzolini, Carlo; Ribi, Camillo; Trendelenburg, Marten; Eisenberger, Ute; Hauser, Thomas; Pasch, Andreas; Huynh-Do, Uyen; Arampatzis, Spyridon

    2018-01-01

    Background Systemic lupus erythematosus (SLE) is associated with severe cardiovascular complications. The T50 score is a novel functional blood test quantifying calcification propensity in serum. High calcification propensity (or low T50) is a strong and independent determinant of all-cause mortality in various patient populations. Methods A total of 168 patients with ≥ 4 American College of Rheumatology (ACR) diagnostic criteria from the Swiss Systemic lupus erythematosus Cohort Study (SSCS) were included in this analysis. Serum calcification propensity was assessed using time-resolved nephelometry. Results The cohort mainly consisted of female (85%), middle-aged (43±14 years) Caucasians (77%). The major determinants of T50 levels included hemoglobin, serum creatinine and serum protein levels explaining 43% of the variation at baseline. Integrating disease activity (SELENA-SLEDAI) into this multivariate model revealed a significant association between disease activity and T50 levels. In a subgroup analysis considering only patients with active disease (SELENA-SLEDAI score ≥4) we found a negative association between T50 and SELENA-SLEDAI score at baseline (Spearman’s rho -0.233, P = 0.02). Conclusions Disease activity and T50 are closely associated. Moreover, T50 levels identify a subgroup of SLE patients with ongoing systemic inflammation as mirrored by increased disease activity. T50 could be a promising biomarker reflecting SLE disease activity and might offer an earlier detection tool for high-risk patients. PMID:29364894

  18. Depressive mood and disease activity in inflammatory bowel disease.

    PubMed

    Besharat, Sima; Amiriani, Taghi; Roshandel, Gholamreza; Besharat, Mahsa; Semnani, Shahryar; Kamkar, Mohammadzaman

    2012-09-01

    Some mood disorders are more prevalent in chronic medical conditions compared with the general population. The relationship between inflammatory bowel disease (IBD) and psychiatric disorders has been raised as an area of interest for investigation. In this study, we aimed to assess the probable relationship between depression and disease activity in IBD patients in Golestan province, northeast of Iran. During February 2008 to February 2010, 50 patients recently diagnosed as IBD cases attended the Golestan Research Center of Gastroenterology and Hepatology (GRCGH), northeast of Iran. The Simple Clinical Colitis Activity Index (SCCAI) was used to evaluate the disease activity. The Beck Depression Inventory (BDI) was used to assess the severity of depressive symptoms. Depression was assumed when the BDI score was 13 points or higher. Sixteen cases (32%) had depressive characteristics. SCCAI and the Beck score were not significantly different between the two sexes. There was a non-significant correlation between SCCAI, Beck score, age and body mass index (BMI). We reported a relatively high percent of depression in IBD patients, although no significant relationship was seen. Copyright © 2012 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All rights reserved.

  19. Assessment of physical activity in chronic kidney disease.

    PubMed

    Robinson-Cohen, Cassianne; Littman, Alyson J; Duncan, Glen E; Roshanravan, Baback; Ikizler, T Alp; Himmelfarb, Jonathan; Kestenbaum, Bryan R

    2013-03-01

    Physical inactivity plays an important role in the development of kidney disease and its complications; however, the validity of standard tools for measuring physical activity (PA) is not well understood. We investigated the performance of several readily available and widely used PA and physical function questionnaires, individually and in combination, against accelerometry among a cohort of chronic kidney disease (CKD) participants. Forty-six participants from the Seattle Kidney Study, an observational cohort study of persons with CKD, completed the Physical Activity Scale for the Elderly, Human Activity Profile (HAP), Medical Outcomes Study SF-36 questionnaire, and the Four-week Physical Activity History questionnaires. We simultaneously measured PA using an Actigraph GT3X accelerometer during a 14-day period. We estimated the validity of each instrument by testing its associations with log-transformed accelerometry counts. We used the Akaike information criterion to investigate the performance of combinations of questionnaires. All questionnaire scores were significantly associated with log-transformed accelerometry counts. The HAP correlated best with accelerometry counts (r(2) = 0.32) followed by SF-36 (r(2) = 0.23). Forty-three percent of the variability in accelerometry counts data was explained by a model that combined the HAP, SF-36, and Four-week Physical Activity History questionnaires. A combination of measurement tools can account for a modest component of PA in patients with CKD; however, a substantial proportion of PA is not captured by standard assessments. Copyright © 2013 National Kidney Foundation, Inc. All rights reserved.

  20. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.

    PubMed

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A; Li, Wei; Leoni, Valerio; Schon, Eric A; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-06-03

    Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease

    PubMed Central

    Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu

    2016-01-01

    Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728

  2. Anomalies in social behaviors and exploratory activities in an APPswe/PS1 mouse model of Alzheimer's disease.

    PubMed

    Filali, Mohammed; Lalonde, Robert; Rivest, Serge

    2011-10-24

    Alzheimer's disease is characterized by deficits in social communication, associated with generalized apathy or agitation, as well as social memory. To assess social behaviors in 6-month-old male APPswe/PS1 bigenics relative to non-transgenic controls, the 3-chamber test was used, together with open-field and elevated plus-maze tests of exploration. APPswe/PS1 mice were less willing to engage in social interaction than wild-type, avoiding an unfamiliar stimulus mouse, probably not due to generalized apathy because in both tests of exploratory activity the mutants were hyperactive. This study reveals reduced "sociability" combined with hyperactivity in an APPswe/PS1 mouse model of Alzheimer dementia. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.

    PubMed

    Sampaziotis, Fotios; de Brito, Miguel Cardoso; Madrigal, Pedro; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A C; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H; Bradley, J Andrew; Gelson, William Th; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J; Hannan, Nicholas R F; Vallier, Ludovic

    2015-08-01

    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.

  4. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  5. Translational models of lung disease.

    PubMed

    Mercer, Paul F; Abbott-Banner, Katharine; Adcock, Ian M; Knowles, Richard G

    2015-02-01

    The 2nd Cross Company Respiratory Symposium (CCRS), held in Horsham, U.K. in 2012, brought together representatives from across the pharmaceutical industry with expert academics, in the common interest of improving the design and translational predictiveness of in vivo models of respiratory disease. Organized by the respiratory representatives of the European Federation of Pharmaceutical Industries and Federations (EFPIA) group of companies involved in the EU-funded project (U-BIOPRED), the aim of the symposium was to identify state-of-the-art improvements in the utility and design of models of respiratory disease, with a view to improving their translational potential and reducing wasteful animal usage. The respiratory research and development community is responding to the challenge of improving translation in several ways: greater collaboration and open sharing of data, careful selection of the species, complexity and chronicity of the models, improved practices in preclinical research, continued refinement in models of respiratory diseases and their sub-types, greater understanding of the biology underlying human respiratory diseases and their sub-types, and finally greater use of human (and especially disease-relevant) cells, tissues and explants. The present review highlights these initiatives, combining lessons from the symposium and papers published in Clinical Science arising from the symposium, with critiques of the models currently used in the settings of asthma, idiopathic pulmonary fibrosis and COPD. The ultimate hope is that this will contribute to a more rational, efficient and sustainable development of a range of new treatments for respiratory diseases that continue to cause substantial morbidity and mortality across the world.

  6. Patient-Reported Disease Activity and Adverse Pregnancy Outcomes in Systemic Lupus Erythematosus and Rheumatoid Arthritis.

    PubMed

    Harris, Nathaniel; Eudy, Amanda; Clowse, Megan

    2018-06-15

    While increased rheumatic disease activity during pregnancy has been associated with adverse pregnancy outcomes, this activity is typically assessed by the physician. Little is known, however, about the association between patient-reported measures of disease activity and pregnancy outcomes. Univariate and multivariable regression models were used to assess the relationship between patient and physician-reported measures of disease activity and adverse pregnancy outcomes in 225 patients with lupus or rheumatoid arthritis (RA) enrolled in a prospective registry at a single academic center from 2008-2016. In women with RA, patient-reported disease activity is associated with preterm birth (OR 5.9 (1.5-23.9)), and gestational age (beta -1.5 weeks (-2.6, -0.4 weeks)). The physician assessment of disease activity also predicted preterm (OR 2.1 (1.2-3.5)), small for gestational age births (OR 1.8 (1.03-3.1), and gestational age in weeks (beta -0.6 weeks (-0.9, -0.02 weeks)). On the other hand, SLE patient-reported disease activity measures, including the HAQ, pain or global health measures, are not associated with adverse pregnancy outcomes. However, physician measures of SLE disease activity are associated with preterm birth (OR 2.9 (1.-6.3)), cesarean delivery (OR 2.3 (1.0-5.3)), and preeclampsia (OR 2.8 (1.3-6.3)). The results do not appear to be driven by lupus nephritis or antiphospholipid syndrome. For women with RA, patient-reported measures of disease activity may be useful adjuncts to physician-reported measures in identifying pregnancies at greater risk. In contrast, in SLE, no patient-reported measures were associated with adverse outcomes while physician measures of disease activity helped predict several adverse pregnancy outcomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  8. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    PubMed

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  9. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    PubMed

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  10. Mitogen-activated protein kinase phosphatase-1: a critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (review).

    PubMed

    Li, Chang-Yi; Yang, Ling-Chao; Guo, Kai; Wang, Yue-Peng; Li, Yi-Gang

    2015-04-01

    Mitogen-activated protein kinase (MAPK) cascades are important players in the overall representation of cellular signal transduction pathways, and the deregulation of MAPKs is involved in a variety of diseases. The activation of MAPK signals occurs through phosphorylation by MAPK kinases at conserved threonine and tyrosine (Thr-Xaa-Tyr) residues. The mitogen-activated protein kinase phosphatases (MKPs) are a major part of the dual-specificity family of phosphatases and specifically inactivate MAPKs by dephosphorylating both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. MAPKs binding to MKPs can enhance MKP stability and activity, providing an important negative-feedback control mechanism that limits the MAPK cascades. In recent years, accumulating and compelling evidence from studies mainly employing cultured cells and mouse models has suggested that the archetypal MKP family member, MKP-1, plays a pivotal role in cardiovascular disease as a major negative modulator of MAPK signaling pathways. In the present review, we summarize the current knowledge on the pathological properties and the regulation of MKP-1 in cardiovascular disease, which may provide valuable therapeutic options.

  11. An agent-based approach for modeling dynamics of contagious disease spread

    PubMed Central

    Perez, Liliana; Dragicevic, Suzana

    2009-01-01

    Background The propagation of communicable diseases through a population is an inherent spatial and temporal process of great importance for modern society. For this reason a spatially explicit epidemiologic model of infectious disease is proposed for a greater understanding of the disease's spatial diffusion through a network of human contacts. Objective The objective of this study is to develop an agent-based modelling approach the integrates geographic information systems (GIS) to simulate the spread of a communicable disease in an urban environment, as a result of individuals' interactions in a geospatial context. Methods The methodology for simulating spatiotemporal dynamics of communicable disease propagation is presented and the model is implemented using measles outbreak in an urban environment as a case study. Individuals in a closed population are explicitly represented by agents associated to places where they interact with other agents. They are endowed with mobility, through a transportation network allowing them to move between places within the urban environment, in order to represent the spatial heterogeneity and the complexity involved in infectious diseases diffusion. The model is implemented on georeferenced land use dataset from Metro Vancouver and makes use of census data sets from Statistics Canada for the municipality of Burnaby, BC, Canada study site. Results The results provide insights into the application of the model to calculate ratios of susceptible/infected in specific time frames and urban environments, due to its ability to depict the disease progression based on individuals' interactions. It is demonstrated that the dynamic spatial interactions within the population lead to high numbers of exposed individuals who perform stationary activities in areas after they have finished commuting. As a result, the sick individuals are concentrated in geographical locations like schools and universities. Conclusion The GIS-agent based model

  12. Imaging plus X: multimodal models of neurodegenerative disease.

    PubMed

    Oxtoby, Neil P; Alexander, Daniel C

    2017-08-01

    This article argues that the time is approaching for data-driven disease modelling to take centre stage in the study and management of neurodegenerative disease. The snowstorm of data now available to the clinician defies qualitative evaluation; the heterogeneity of data types complicates integration through traditional statistical methods; and the large datasets becoming available remain far from the big-data sizes necessary for fully data-driven machine-learning approaches. The recent emergence of data-driven disease progression models provides a balance between imposed knowledge of disease features and patterns learned from data. The resulting models are both predictive of disease progression in individual patients and informative in terms of revealing underlying biological patterns. Largely inspired by observational models, data-driven disease progression models have emerged in the last few years as a feasible means for understanding the development of neurodegenerative diseases. These models have revealed insights into frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease and other conditions. For example, event-based models have revealed finer graded understanding of progression patterns; self-modelling regression and differential equation models have provided data-driven biomarker trajectories; spatiotemporal models have shown that brain shape changes, for example of the hippocampus, can occur before detectable neurodegeneration; and network models have provided some support for prion-like mechanistic hypotheses of disease propagation. The most mature results are in sporadic Alzheimer's disease, in large part because of the availability of the Alzheimer's disease neuroimaging initiative dataset. Results generally support the prevailing amyloid-led hypothetical model of Alzheimer's disease, while revealing finer detail and insight into disease progression. The emerging field of disease progression modelling provides a natural

  13. Investigating Interventions in Alzheimer's Disease with Computer Simulation Models

    PubMed Central

    Proctor, Carole J.; Boche, Delphine; Gray, Douglas A.; Nicoll, James A. R.

    2013-01-01

    Progress in the development of therapeutic interventions to treat or slow the progression of Alzheimer's disease has been hampered by lack of efficacy and unforeseen side effects in human clinical trials. This setback highlights the need for new approaches for pre-clinical testing of possible interventions. Systems modelling is becoming increasingly recognised as a valuable tool for investigating molecular and cellular mechanisms involved in ageing and age-related diseases. However, there is still a lack of awareness of modelling approaches in many areas of biomedical research. We previously developed a stochastic computer model to examine some of the key pathways involved in the aggregation of amyloid-beta (Aβ) and the micro-tubular binding protein tau. Here we show how we extended this model to include the main processes involved in passive and active immunisation against Aβ and then demonstrate the effects of this intervention on soluble Aβ, plaques, phosphorylated tau and tangles. The model predicts that immunisation leads to clearance of plaques but only results in small reductions in levels of soluble Aβ, phosphorylated tau and tangles. The behaviour of this model is supported by neuropathological observations in Alzheimer patients immunised against Aβ. Since, soluble Aβ, phosphorylated tau and tangles more closely correlate with cognitive decline than plaques, our model suggests that immunotherapy against Aβ may not be effective unless it is performed very early in the disease process or combined with other therapies. PMID:24098635

  14. Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease.

    PubMed

    Ghattamaneni, Naga K R; Panchal, Sunil K; Brown, Lindsay

    2018-04-20

    Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of all or part of the digestive tract. Nutraceuticals include bioactive compounds such as polyphenols with anti-inflammatory activities, thus these products have the potential to treat chronic inflammatory diseases. We have emphasized the role of nutraceuticals in ameliorating the symptoms of IBD in rodent models of human IBD through modulation of key pathogenic mechanisms including dysbiosis, oxidative stress, increased inflammatory cytokines, immune system dysregulation, and inflammatory cell signaling pathways. Nutraceuticals have an important role in IBD patients as a preventive approach to extend remission phases and as a therapeutic intervention to suppress active IBD. Further clinical trials on nutraceuticals with positive results in rodent models are warranted. Copyright © 2018. Published by Elsevier Ltd.

  15. Toward Development of a Fibromyalgia Responder Index and Disease Activity Score: OMERACT Module Update

    PubMed Central

    Mease, PJ; Clauw, DJ; Christensen, R; Crofford, L; Gendreau, M; Martin, SA; Simon, L; Strand, V; Williams, DA; Arnold, LM

    2012-01-01

    Following development of the core domain set for fibromyalgia (FM) in OMERACT 7–9, the FM working group has progressed toward the development of an FM responder index and a disease activity score based on these domains, utilizing outcome indices of these domains from archived randomized clinical trials (RCTs) in FM. Possible clinical domains that could be included in a responder index and disease activity score include: pain, fatigue, sleep disturbance, cognitive dysfunction, mood disturbance, tenderness, stiffness, and functional impairment. Outcome measures for these domains demonstrate good to adequate psychometric properties, although measures of cognitive dysfunction need to be further developed. The approach used in the development of responder indices and disease activity scores for rheumatoid arthritis and ankylosing spondylitis represent heuristic models for our work, but FM is challenging in that there is no clear algorithm of treatment that defines disease activity based on treatment decisions, nor are there objective markers that define thresholds of severity or response to treatment. The process of developing candidate dichotomous responder definitions and continuous quantitative disease activity measures is described, as is participant discussion that transpired at OMERACT 10. Final results of this work will be published in a separate manuscript pending completion of analyses. PMID:21724721

  16. Paediatric Crohn Disease: Disease Activity and Growth in the BELCRO Cohort After 3 Years Follow-up.

    PubMed

    De Greef, Elisabeth; Hoffman, Ilse; Smets, Francoise; Van Biervliet, Stephanie; Bontems, Patrick; Hauser, Bruno; Paquot, Isabelle; Alliet, Philippe; Arts, Wim; Dewit, Olivier; De Vos, Martine; Baert, Filip; Bossuyt, Peter; Rahier, Jean-Francois; Franchimont, Denis; Vermeire, Severine; Fontaine, Fernand; Louis, Edouard; Coche, J C; Veereman, Gigi

    2016-08-01

    The Belgian registry for paediatric Crohn disease (BELCRO) cohort is a prospective, multicentre registry for newly diagnosed paediatric patients with Crohn disease (CD) (<18 years) recruited from 2008 to 2010 to identify predictive factors for disease activity and growth. Data from the BELCRO database were evaluated at diagnosis, 24 and 36 months follow-up. At month 36 (M36), data were available on 84 of the 98 patients included at diagnosis. Disease activity evolved as follows: inactive 5% to 70%, mild 19% to 24%, and moderate to severe 76% to 6%. None of the variables such as age, sex, diagnostic delay, type of treatment, disease location, disease activity at diagnosis, and growth were associated with disease activity at M36. Paediatricians studied significantly less patients with active disease at M36 compared with adult physicians. Sixty percent of the patients had biologicals as part of their treatment at M36. Adult gastroenterologists initiated biologicals significantly earlier. They were the only factor determining biologicals' initiation, not disease location or disease severity at diagnosis. Median body mass index (BMI) z score evolved from -0.97 (range -5.5-2.1) to 0.11 (range -3.4-2) and median height z score from -0.15 (range -3.4-1.6) to 0.12 (range -2.3-2.3) at M36. None of the variables mentioned above influenced growth over time. Present treatment strategies lead to good disease control in the BELCRO cohort after 3 years. Logistic regression analysis did not show any influence of disease location or present treatment strategy on disease activity and growth, but patients under paediatric care had significantly less severe disease at M36.

  17. Avian models with spontaneous autoimmune diseases

    PubMed Central

    Wick, Georg; Andersson, Leif; Hala, Karel; Gershwin, M. Eric; Selmi, Carlo F.; Erf, Gisela F.; Lamont, Susan J.; Sgonc, Roswitha

    2012-01-01

    Autoimmune diseases in human patients only become clinically manifest when the disease process has developed to a stage where functional compensation by the afflicted organ or system is not possible any more. In order to understand the initial etiologic and pathogenic events that are generally not yet accessible in humans, appropriate animal models are required. In this respect, spontaneously developing models - albeit rare – reflect the situation in humans much more closely than experimentally induced models, including knockout and transgenic mice. The present review describes three spontaneous chicken models for human autoimmune diseases, the Obese strain (OS) with a Hashimoto-like autoimmune thyroiditis, the University of California at Davis lines 200 and 206 (UCD-200 and 206) with a scleroderma-like disease and the amelanotic Smyth line with a vitiligo-like syndrome (SLV). Special emphasis is given to the new opportunities to unravel the genetic basis of these diseases in view of the recently completed sequencing of the chicken genome. PMID:17145302

  18. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis

    PubMed Central

    Aikawa, Elena; Newby, David E.; Tarkin, Jason M.; Rudd, James H.F.; Narula, Jagat; Fayad, Zahi A.

    2016-01-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is, therefore, shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression, and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis, and the advantages and challenges posed by these techniques. PMID:27390335

  19. Quantifying daily physical activity and determinants in sedentary patients with Parkinson's disease.

    PubMed

    Dontje, M L; de Greef, M H G; Speelman, A D; van Nimwegen, M; Krijnen, W P; Stolk, R P; Kamsma, Y P T; Bloem, B R; Munneke, M; van der Schans, C P

    2013-10-01

    Although physical activity is beneficial for Parkinson's disease (PD) patients, many do not meet the recommended levels. The range of physical activity among sedentary PD patients is unknown, as are factors that determine this variability. Hence, we aimed to (1) assess daily physical activity in self-identified sedentary PD patients; (2) compare this with criteria of a daily physical activity guideline; and (3) identify determinants of daily physical activity. Daily physical activity of 586 self-identified sedentary PD patients was measured with a tri-axial accelerometer for seven consecutive days. Physical fitness and demographic, disease-specific, and psychological characteristics were assessed. Daily physical activity was compared with the 30-min activity guideline. A linear mixed-effects model was estimated to identify determinants of daily physical activity. Accelerometer data of 467 patients who fulfilled all criteria revealed that >98% of their day was spent on sedentary to light-intensity activities. Eighty-two percent of the participants were 'physically inactive' (0 days/week of 30-min activity); 17% were 'semi-active' (1-4 days/week of 30-min activity). Age, gender, physical fitness, and scores on the Unified Parkinson's Disease Rating Scale explained 69% of the variability in daily physical activity. Performance-based measurements confirmed that most self-identified sedentary PD patients are 'physically inactive'. However, the variance in daily physical activity across subjects was considerable. Higher age, being female, and lower physical capacity were the most important determinants of reduced daily physical activity. Future therapeutic interventions should aim to improve daily physical activity in these high-risk patients, focusing specifically on modifiable risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  1. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  2. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease.

    PubMed

    Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki

    2016-12-01

    This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  3. Development of a Conceptual Model of Disease Progression for Use in Economic Modeling of Chronic Obstructive Pulmonary Disease.

    PubMed

    Tabberer, Maggie; Gonzalez-McQuire, Sebastian; Muellerova, Hana; Briggs, Andrew H; Rutten-van Mölken, Maureen P M H; Chambers, Mike; Lomas, David A

    2017-05-01

    To develop and validate a new conceptual model (CM) of chronic obstructive pulmonary disease (COPD) for use in disease progression and economic modeling. The CM identifies and describes qualitative associations between disease attributes, progression and outcomes. A literature review was performed to identify any published CMs or literature reporting the impact and association of COPD disease attributes with outcomes. After critical analysis of the literature, a Steering Group of experts from the disciplines of health economics, epidemiology and clinical medicine was convened to develop a draft CM, which was refined using a Delphi process. The refined CM was validated by testing for associations between attributes using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). Disease progression attributes included in the final CM were history and occurrence of exacerbations, lung function, exercise capacity, signs and symptoms (cough, sputum, dyspnea), cardiovascular disease comorbidities, 'other' comorbidities (including depression), body composition (body mass index), fibrinogen as a biomarker, smoking and demographic characteristics (age, gender). Mortality and health-related quality of life were determined to be the most relevant final outcome measures for this model, intended to be the foundation of an economic model of COPD. The CM is being used as the foundation for developing a new COPD model of disease progression and to provide a framework for the analysis of patient-level data. The CM is available as a reference for the implementation of further disease progression and economic models.

  4. Measuring Disease Exacerbation and Flares in Rheumatoid Arthritis: Comparison of Commonly Used Disease Activity Indices and Individual Measures.

    PubMed

    Voshaar, Martijn A H Oude; Moghadam, Marjan Ghiti; Vonkeman, Harald E; Ten Klooster, Peter M; van Schaardenburg, Dirkjan; Tekstra, Janneke; Visser, Henk; van de Laar, Mart A F J; Jansen, Tim L

    2017-08-01

    To evaluate and compare the utility of commonly used outcome measures for assessing disease exacerbation or flare in patients with rheumatoid arthritis (RA). Data from the Dutch Potential Optimalisation of (Expediency) and Effectiveness of Tumor necrosis factor-α blockers (POET) study, in which 462 patients discontinued their tumor necrosis factor-α inhibitor, were used. The ability of different measures to discriminate between those with and without physician-reported flare or medication escalation at the 3-month visit (T2) was evaluated by calculating effect size (ES) statistics. Responsiveness to increased disease activity was compared between measures by standardizing change scores (SCS) from baseline to the 3-month visit. Finally, the incremental validity of individual outcome measures beyond the Simplified Disease Activity Score was evaluated using logistic regression analysis. The SCS were greater for disease activity indices than for any of the individual measures. The 28-joint Disease Activity Score, Clinical Disease Activity Index, and Simplified Disease Activity Index performed similarly. Pain and physician's (PGA) and patient's global assessment (PtGA) of disease activity were the most responsive individual measures. Similar results were obtained for discriminative ability, with greatest ES for disease activity indices followed by pain, PGA, and PtGA. Pain was the only measure to demonstrate incremental validity beyond SDAI in predicting 3-month flare status. These results support the use of composite disease activity indices, patient-reported pain and disease activity, and physician-reported disease activity for measuring disease exacerbation or identifying flares of RA. Physical function, acute-phase response, and the auxiliary measures fatigue, participation, and emotional well-being performed poorly.

  5. Fibromyalgia in patients with other rheumatic diseases: prevalence and relationship with disease activity.

    PubMed

    Haliloglu, Sema; Carlioglu, Ayse; Akdeniz, Derya; Karaaslan, Yasar; Kosar, Ali

    2014-09-01

    Fibromyalgia (FM) is a syndrome characterized by chronic widespread pain and the presence of specific tender points. The prevalence of FM has been estimated at 2-7 % of the general global population. The presence of FM in several rheumatic diseases with a structural pathology has been reported as 11-30 %. The objectives of this study were to determine the prevalence of FM and to evaluate the possible relationship between FM existence and disease activity among rheumatic diseases. The study group included 835 patients--197 rheumatoid arthritis (RA), 67 systemic lupus erythematosus (SLE), 119 ankylosing spondylitis (AS), 238 osteoarthritis (OA), 14 familial Mediterranean fever (FMF), 53 Behçet's disease (BD), 71 gout, 25 Sjögren's syndrome (SS), 20 vasculitis, 29 polymyalgia rheumatica (PMR), and two polymyositis (PM)--with or without FM. Recorded information included age, gender, laboratory parameters, presence of fatigue, and disease activity indexes. The prevalence of FM in patients with rheumatologic diseases was found to be 6.6 % for RA, 13.4 % for SLE, 12.6 % for AS, 10.1 % for OA, 5.7 % for BD, 7.1 % for FMF, 12 % for SS, 25 % for vasculitis, 1.4 % for gout, and 6.9 % for PMR. One out of two patients with PM was diagnosed with FM. Some rheumatologic cases (AS, OA) with FM were observed mostly in female patients (p = 0.000). Also, there were significant correlations between disease activity indexes and Fibromyalgia Impact Questionnaire scores for most rheumatologic patients (RA, AS, OA, and BD) (p < 0.05; respectively, r = 0.6, 0.95, 0.887, and 1). Concomitant FM is a common clinical problem in rheumatologic diseases, and its recognition is important for the optimal management of these diseases. Increased pain, physical limitations, and fatigue may be interpreted as increased activity of these diseases, and a common treatment option is the prescription of higher doses of biologic agents or corticosteroids. Considerations of the FM component in the management

  6. Salivary Platelet Activating Factor Levels in Periodontal Disease

    DTIC Science & Technology

    1991-05-01

    Factor Levels in Periodontal Disease 6. AUTHOR(S) Martha L. Garito, Major 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATO;N...ABSTRACT 98 0801 SALIVARY PLATELET ACTIVATING FACTOR LEVELS IN PERIODONTAL DISEASE A THESIS Presented to the Faculty of The University of Texas Graduate...B.S., D.M.D. San Antonio, Texas May 1991 SALIVARY PLATELET ACTIVATING FACTOR LEVELS IN PERIODONTAL DISEASE Martha Laura Gar’to APPROVED: - Supervising

  7. Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms

    PubMed Central

    Ishibashi, Hidetoshi; Minakawa, Eiko N.; Motohashi, Hideyuki H.; Takayama, Osamu; Popiel, H. Akiko; Puentes, Sandra; Owari, Kensuke; Nakatani, Terumi; Nogami, Naotake; Yamamoto, Kazuhiro; Yonekawa, Takahiro; Tanaka, Yoko; Fujita, Naoko; Suzuki, Hikaru; Aizawa, Shu; Nagano, Seiichi; Yamada, Daisuke; Wada, Keiji; Kohsaka, Shinichi

    2017-01-01

    Abstract Age-associated neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3–4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases. PMID:28374014

  8. Endophenotype Network Models: Common Core of Complex Diseases

    PubMed Central

    Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph

    2016-01-01

    Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules. PMID:27278246

  9. Endophenotype Network Models: Common Core of Complex Diseases

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph

    2016-06-01

    Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules.

  10. Blood-based biomarkers used to predict disease activity in Crohn's disease and ulcerative colitis.

    PubMed

    Burakoff, Robert; Pabby, Vikas; Onyewadume, Louisa; Odze, Robert; Adackapara, Cheryl; Wang, Wei; Friedman, Sonia; Hamilton, Matthew; Korzenik, Joshua; Levine, Jonathan; Makrauer, Frederick; Cheng, Changming; Smith, Hai Choo; Liew, Choong-Chin; Chao, Samuel

    2015-05-01

    Identifying specific genes that are differentially expressed during inflammatory bowel disease flares may help stratify disease activity. The aim of this study was to identify panels of genes to be able to distinguish disease activity in Crohn's disease (CD) and ulcerative colitis (UC). Patients were grouped into categories based on disease and severity determined by histological grading. Whole blood was collected by PAXgene Blood RNA collection tubes, (PreAnalytiX) and gene expression analysis using messenger RNA was conducted. Logistic regression was performed on multiple combinations of common probe sets, and data were evaluated in terms of discrimination by computing the area under the receiving operator characteristic curve (ROC-AUC). Nine inactive CD, 8 mild CD, 10 moderate-to-severe CD, 9 inactive UC, 8 mild UC, 10 moderate-to-severe UC, and 120 controls were hybridized to Affymetrix U133 Plus 2 microarrays. Panels of 6 individual genes discriminated the stages of disease activity: CD with mild severity {ROC-AUC, 0.89 (95% confidence interval [CI], 0.84%-0.95%)}, CD with moderate-to-severe severity (ROC-AUC 0.98 [95% CI, 0.97-1.0]), UC with mild severity (ROC-AUC 0.92 [95% CI, 0.87-0.96]), and UC with moderate-to-severe severity (ROC-AUC 0.99 [95% CI, 0.97-1.0]). Validation by real-time reverse transcription-PCR confirmed the Affymetrix microarray data. The specific whole blood gene panels reliably distinguished CD and UC and determined the activity of disease, with high sensitivity and specificity in our cohorts of patients. This simple serological test has the potential to become a biomarker to determine the activity of disease.

  11. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease

    PubMed Central

    De Franceschi, Lucia; Franco, Robert S.; Bertoldi, Mariarita; Brugnara, Carlo; Matté, Alessandro; Siciliano, Angela; Wieschhaus, Adam J.; Chishti, Athar H.; Joiner, Clinton H.

    2013-01-01

    Sickle cell disease (SCD) is a globally distributed hereditary red blood cell (RBC) disorder. One of the hallmarks of SCD is the presence of circulating dense RBCs, which are important in SCD-related clinical manifestations. In human dense sickle cells, we found reduced calpastatin activity and protein expression compared to either healthy RBCs or unfractionated sickle cells, suggesting an imbalance between activator and inhibitor of calpain-1 in favor of activator in dense sickle cells. Calpain-1 is a nonlysosomal cysteine proteinase that modulates multiple cell functions through the selective cleavage of proteins. To investigate the relevance of this observation in vivo, we evaluated the effects of the orally active inhibitor of calpain-1, BDA-410 (30 mg/kg/d), on RBCs from SAD mice, a mouse model for SCD. In SAD mice, BDA-410 improved RBC morphology, reduced RBC density (D20; from 1106±0.001 to 1100±0.001 g/ml; P<0.05) and increased RBC-K+ content (from 364±10 to 429±12.3 mmol/kg Hb; P<0.05), markedly reduced the activity of the Ca2+-activated K+channel (Gardos channel), and decreased membrane association of peroxiredoxin-2. The inhibitory effect of calphostin C, a specific inhibitor of protein kinase C (PKC), on the Gardos channel was eliminated after BDA-410 treatment, which suggests that calpain-1 inhibition affects the PKC-dependent fraction of the Gardos channel. BDA-410 prevented hypoxia-induced RBC dehydration and K+ loss in SAD mice. These data suggest a potential role of BDA-410 as a novel therapeutic agent for treatment of SCD.—De Franceschi, L., Franco, R. S., Bertoldi, M., Brugnara, C., Matté, A., Siciliano, A., Wieschhaus, A. J., Chishti, A. H., Joiner, C. H. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease. PMID:23085996

  12. Model-based economic evaluation in Alzheimer's disease: a review of the methods available to model Alzheimer's disease progression.

    PubMed

    Green, Colin; Shearer, James; Ritchie, Craig W; Zajicek, John P

    2011-01-01

    To consider the methods available to model Alzheimer's disease (AD) progression over time to inform on the structure and development of model-based evaluations, and the future direction of modelling methods in AD. A systematic search of the health care literature was undertaken to identify methods to model disease progression in AD. Modelling methods are presented in a descriptive review. The literature search identified 42 studies presenting methods or applications of methods to model AD progression over time. The review identified 10 general modelling frameworks available to empirically model the progression of AD as part of a model-based evaluation. Seven of these general models are statistical models predicting progression of AD using a measure of cognitive function. The main concerns with models are on model structure, around the limited characterization of disease progression, and on the use of a limited number of health states to capture events related to disease progression over time. None of the available models have been able to present a comprehensive model of the natural history of AD. Although helpful, there are serious limitations in the methods available to model progression of AD over time. Advances are needed to better model the progression of AD and the effects of the disease on peoples' lives. Recent evidence supports the need for a multivariable approach to the modelling of AD progression, and indicates that a latent variable analytic approach to characterising AD progression is a promising avenue for advances in the statistical development of modelling methods. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Development and Operation of Space-Based Disease Early Warning Models

    NASA Astrophysics Data System (ADS)

    John, M. M.

    2010-12-01

    Millions of people die every year from preventable diseases such as malaria and cholera. Pandemics put the entire world population at risk and have the potential to kill thousands and cripple the global economy. In light of these dangers, it is fortunate that the data and imagery gathered by remote sensing satellites can be used to develop models that predict areas at risk for outbreaks. These warnings can help decision makers to distribute preventative medicine and other forms of aid to save lives. There are already many Earth observing satellites in orbit with the ability to provide data and imagery. Researchers have created a number of models based on this information, and some are being used in real-life situations. These capabilities should be further developed and supported by governments and international organizations to benefit as many people as possible. To understand the benefits and challenges of disease early warning models, it is useful to understand how they are developed. A number of steps must occur for satellite data and imagery to be used to prevent disease outbreaks; each requires a variety of inputs and may include a range of experts and stakeholders. This paper discusses the inputs, outputs, and basic processes involved in each of six main steps to developing models, including: identifying and validating links between a disease and environmental factors, creating and validating a software model to predict outbreaks, transitioning a model to operational use, using a model operationally, and taking action on the data provided by the model. The paper briefly overviews past research regarding the link between remote sensing data and disease, and identifies ongoing research in academic centers around the world. The activities of three currently operational models are discussed, including the U.S. Department of Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS), NASA carries out its Malaria Modeling and Surveillance

  14. Rheumatoid arthritis disease activity and disability affect the risk of serious infection events in RADIUS 1.

    PubMed

    Weaver, Arthur; Troum, Orrin; Hooper, Michele; Koenig, Andrew S; Chaudhari, Sandeep; Feng, Jingyuan; Wenkert, Deborah

    2013-08-01

    To determine whether disease activity and disability independently correlate with serious infection event (SIE) risk in a large rheumatoid arthritis (RA) cohort. The associations between SIE and Clinical Disease Activity Index (CDAI) and Health Assessment Questionnaire-Disability Index (HAQ-DI) in the Rheumatoid Arthritis Disease-Modifying Antirheumatic Drug Intervention and Utilization Study (RADIUS 1) cohort were evaluated using the Andersen-Gill model (a proportional HR model allowing > 1 event per patient). Of 4084 patients with 347 SIE, 271 patients experienced ≥ 1 SIE. A 5-unit CDAI increase and 0.4-unit HAQ-DI increase corresponded to an increase in SIE risk with and without covariate adjustments. A 5-unit CDAI increase corresponded with a 7.7% increased SIE risk (adjusted HR 1.077, 95% CI 1.044-1.112, p < 0.0001) and a 0.4-unit HAQ-DI increase with a 30.1% increased risk (adjusted HR 1.301, 95% CI 1.225-1.381, p < 0.0001). Categorical analysis showed that more severe RA activity (even after controlling for disability) and disability were associated with an increased SIE risk. Increased RA disease activity and disability were each associated with a significantly increased SIE risk in the RADIUS 1 cohort, which could not be completely accounted for by disability.

  15. Animal Models for Periodontal Disease

    PubMed Central

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  16. Chronic Active Epstein–Barr Virus Disease

    PubMed Central

    Kimura, Hiroshi; Cohen, Jeffrey I.

    2017-01-01

    Chronic active Epstein–Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease. PMID:29375552

  17. Chronic Active Epstein-Barr Virus Disease.

    PubMed

    Kimura, Hiroshi; Cohen, Jeffrey I

    2017-01-01

    Chronic active Epstein-Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  18. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  19. IL-18 Serum Level in Adult Onset Still's Disease: A Marker of Disease Activity

    PubMed Central

    Colafrancesco, Serena; Priori, Roberta; Alessandri, Cristiano; Perricone, Carlo; Pendolino, Monica; Picarelli, Giovanna; Valesini, Guido

    2012-01-01

    Introduction. Immunological factors seem to play a pivotal role in Adult Onset Still's Disease (AOSD). Among all, IL-18 cytokine is overexpressed and drives the inflammatory process. Objective. We aimed to investigate the levels of IL-18 in sera of Italian patients with AOSD and to assess its possible role as a marker of disease activity. Methods. IL-18 serum levels were determined by ELISA in 26 Italian patients with AOSD. Disease activity was assessed using Pouchot's criteria. As controls, 21 patients with Rheumatoid Arthritis (RA), 21 patients with Sjogren's Syndrome (SS), 20 patients with Systemic Lupus Erythematosus (SLE), and 21 healthy subjects (normal human sera, NHS) were evaluated. Results. IL-18 serum levels were significantly higher in patients with active AOSD than in non-active (P = 0.001) and control groups (RA P = 0.0070, SS P = 0.0029, SLE P = 0.0032, NHS P = 0.0004). A significant correlation between IL-18 serum levels and disease activity (P < 0.0001), and laboratory parameters as ferritin (P = 0.0127) and C-reactive protein (P = 0.0032) was demonstrated. Conclusions. Higher levels of IL-18 are detected in active AODS patients and correlate with disease activity and inflammatory laboratory features. ROC-AUC analysis of the serum concentration of IL-18 suggests that it can be considered a diagnostic marker of AOSD. This paper supports the targeting of this cytokine as a possible therapeutic option in AOSD. PMID:22762008

  20. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    PubMed

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

  1. Genetic mouse models of brain ageing and Alzheimer's disease.

    PubMed

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat; Shimada, Toshio; Sugioka, Kozo; Yamasaki, Hiroshi; Fujii, Yoshimi; Ishibashi, Yutaka; Oka, Jun-Ichiro; Shido, Osamu

    2002-06-01

    Docosahexaenoic acid (C22:6, n-3), a major n-3 fatty acid of the brain, has been implicated in restoration and enhancement of memory-related functions. Because Alzheimer's disease impairs memory, and infusion of amyloid-beta (Abeta) peptide (1-40) into the rat cerebral ventricle reduces learning ability, we investigated the effect of dietary pre-administration of docosahexaenoic acid on avoidance learning ability in Abeta peptide-produced Alzheimer's disease model rats. After a mini-osmotic pump filled with Abeta peptide or vehicle was implanted in docosahexaenoic acid-fed and control rats, they were subjected to an active avoidance task in a shuttle avoidance system apparatus. Pre-administration of docosahexaenoic acid had a profoundly beneficial effect on the decline in avoidance learning ability in the Alzheimer's disease model rats, associated with an increase in the cortico-hippocampal docosahexaenoic acid/arachidonic acid molar ratio, and a decrease in neuronal apoptotic products. Docosahexaenoic acid pre-administration furthermore increased cortico-hippocampal reduced glutathione levels and glutathione reductase activity, and suppressed the increase in lipid peroxide and reactive oxygen species levels in the cerebral cortex and hippocampus of the Alzheimer's disease model rats, suggesting an increase in antioxidative defence. Docosahexaenoic acid is thus a possible prophylactic means for preventing the learning deficiencies of Alzheimer's disease.

  3. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network.

    PubMed

    Lebl, Karin; Lentz, Hartmut H K; Pinior, Beate; Selhorst, Thomas

    2016-01-01

    The trade of livestock is an important and growing economic sector, but it is also a major factor in the spread of diseases. The spreading of diseases in a trade network is likely to be influenced by how often existing trade connections are active. The activity α is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. The observed German pig trade network had an activity of α = 0.11, thus each existing trade connection between two farms was, on average, active at about 10% of the time during the observation period 2008-2009. The aim of this study is to analyze how changes in the activity level of the German pig trade network influence the probability of disease outbreaks, size, and duration of epidemics for different disease transmission probabilities. Thus, we want to investigate the question, whether it makes a difference for a hypothetical spread of an animal disease to transport many animals at the same time or few animals at many times. A SIR model was used to simulate the spread of a disease within the German pig trade network. Our results show that for transmission probabilities <1, the outbreak probability increases in the case of a decreased frequency of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak size, we find that a threshold exists such that finite outbreaks occur only above a critical value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, although the outbreak probability increased when decreasing α, these outbreaks affect only a small number of farms. The duration of the epidemic peaks at an activity level in the range of α = 0.2-0.3. Additionally, the results of our simulations show that even small changes in the activity level of the German pig trade network would have dramatic effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can conclude and recommend that the network activity is

  4. Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease

    PubMed Central

    Southwood, Cherie M.; Fykkolodziej, Bozena; Dachet, Fabien; Gow, Alexander

    2013-01-01

    Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD) patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third, and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether or not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support. PMID:24575297

  5. Stereotaxical Infusion of Rotenone: A Reliable Rodent Model for Parkinson's Disease

    PubMed Central

    Xiong, Nian; Huang, Jinsha; Zhang, Zhentao; Zhang, Zhaowen; Xiong, Jing; Liu, Xingyuan; Jia, Min; Wang, Fang; Chen, Chunnuan; Cao, Xuebing; Liang, Zhihou; Sun, Shenggang; Lin, Zhicheng; Wang, Tao

    2009-01-01

    A clinically-related animal model of Parkinson's disease (PD) may enable the elucidation of the etiology of the disease and assist the development of medications. However, none of the current neurotoxin-based models recapitulates the main clinical features of the disease or the pathological hallmarks, such as dopamine (DA) neuron specificity of degeneration and Lewy body formation, which limits the use of these models in PD research. To overcome these limitations, we developed a rat model by stereotaxically (ST) infusing small doses of the mitochondrial complex-I inhibitor, rotenone, into two brain sites: the right ventral tegmental area and the substantia nigra. Four weeks after ST rotenone administration, tyrosine hydroxylase (TH) immunoreactivity in the infusion side decreased by 43.7%, in contrast to a 75.8% decrease observed in rats treated systemically with rotenone (SYS). The rotenone infusion also reduced the DA content, the glutathione and superoxide dismutase activities, and induced alpha-synuclein expression, when compared to the contralateral side. This ST model displays neither peripheral toxicity or mortality and has a high success rate. This rotenone-based ST model thus recapitulates the slow and specific loss of DA neurons and better mimics the clinical features of idiopathic PD, representing a reliable and more clinically-related model for PD research. PMID:19924288

  6. Activity enhances dopaminergic long-duration response in Parkinson disease

    PubMed Central

    Auinger, Peggy; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Mendis, Tilak

    2012-01-01

    Objective: We tested the hypothesis that dopamine-dependent motor learning mechanism underlies the long-duration response to levodopa in Parkinson disease (PD) based on our studies in a mouse model. By data-mining the motor task performance in dominant and nondominant hands of the subjects in a double-blind randomized trial of levodopa therapy, the effects of activity and dopamine therapy were examined. Methods: We data-mined the Earlier versus Later Levodopa Therapy in Parkinson's Disease (ELLDOPA) study published in 2005 and performed statistical analysis comparing the effects of levodopa and dominance of handedness over 42 weeks. Results: The mean change in finger-tapping counts from baseline before the initiation of therapy to predose at 9 weeks and 40 weeks increased more in the dominant compared to nondominant hand in levodopa-treated subjects in a dose-dependent fashion. There was no significant difference in dominant vs nondominant hands in the placebo group. The short-duration response assessed by the difference of postdose performance compared to predose performance at the same visit did not show any significant difference between dominant vs nondominant hands. Conclusions: Active use of the dominant hand and dopamine replacement therapy produces synergistic effect on long-lasting motor task performance during “off” medication state. Such effect was confined to dopamine-responsive symptoms and not seen in dopamine-resistant symptoms such as gait and balance. We propose that long-lasting motor learning facilitated by activity and dopamine is a form of disease modification that is often seen in trials of medications that have symptomatic effects. PMID:22459675

  7. 99mTc-CXCL8 SPECT to Monitor Disease Activity in Inflammatory Bowel Disease.

    PubMed

    Aarntzen, Erik H J G; Hermsen, Rick; Drenth, Joost P H; Boerman, Otto C; Oyen, Wim J G

    2016-03-01

    Inflammatory bowel diseases (IBDs) are defined as chronic relapsing immune-mediated disorders of the gastrointestinal tract. IBD exacerbations are characterized by recruitment of mainly CXCL8 receptor-expressing activated neutrophils into the intestinal wall, leading to severe damage. Considering its chronic relapsing character, accurate and timely diagnosis of an exacerbation is pivotal for early adaptation of the treatment and reduction of the disease burden. However, endoscopic evaluation is invasive and associated with an increased risk of perforation. We previously developed a (99m)Tc-labeled CXCL8 preparation in preclinical models including colitis and clinical studies. In this study, we investigate the accuracy of (99m)Tc-CXCL8 SPECT to detect and localize disease activity in a prospective series of patients with IBD. Thirty patients (15 Crohns disease, 15 ulcerative colitis) participated, and 92 segmental pairs of histology and (99m)Tc-CXCL8 scans were studied. Imaging was performed after injection of 400 MBq of (99m)Tc-CXCL8. Planar and SPECT images of the abdomen were acquired at 30 min and 4 h after the injection. The overall sensitivity and specificity on a per-patient basis for the detection of active disease were 95% and 44% for (99m)Tc-CXCL8 scan and 71% and 70% for endoscopy. The degree of (99m)Tc-CXCL8 accumulation correlated to the degree of neutrophilic influx in affected mucosa. Sensitivity and specificity on a per-segment basis, calculated from the 92 segmental pairs, were 82% and 72%, negative predictive value was 81%, and overall positive predictive value was 74%. Specificity could be increased at the expense of sensitivity using different cutoffs. In 74 segmental pairs, overall sensitivity and specificity for endoscopy were 74% and 85%, positive predictive value was 81%, and negative predictive value was 79%. (99m)Tc-CXCL8 SPECT provides a novel imaging technique to target neutrophil recruitment to the intestinal wall, especially in moderate

  8. Responsiveness of Endoscopic Indices of Disease Activity for Crohn's Disease.

    PubMed

    Khanna, Reena; Zou, GuangYong; Stitt, Larry; Feagan, Brian G; Sandborn, William J; Rutgeerts, Paul; McDonald, John W D; Dubcenco, Elena; Fogel, Ronald; Panaccione, Remo; Jairath, Vipul; Nelson, Sigrid; Shackelton, Lisa M; Huang, Bidan; Zhou, Qian; Robinson, Anne M; Levesque, Barrett G; D'Haens, Geert

    2017-10-01

    The Crohn's Disease Endoscopic Index of Severity (CDEIS) and the Simple Endoscopic Score for Crohn's Disease (SES-CD) are commonly used to assess Crohn's disease (CD) activity; however neither instrument is fully validated. We evaluated the responsiveness to change of the SES-CD and CDEIS using data from a trial of adalimumab, a drug therapy of known efficacy. Paired video recordings (N=112) of colonoscopies (baseline and week 8-12) obtained from patients with CD who participated in a trial of adalimumab therapy were reviewed in random order, in duplicate, by four central readers (56 pairs of videos by 2 groups of readers). Responsiveness of the SES-CD and the CDEIS was evaluated by comparing correlations between the observed and pre-specified predictions of change scores for these endoscopic indices with a global endoscopic evaluation of severity (GELS), a patient reported outcome (PRO2), and the Crohn's disease activity index (CDAI), and by calculation of the standardized effect size, and Guyatt's Responsiveness statistic (GRS) using 2 definitions of change; (1) treatment assignment and (2) an absolute change in total PRO2 of 50. The potential application of effect size estimates was demonstrated by calculating hypothetical sample sizes for comparing two independent groups. The impact of removing stenosis as an index item and adjusting for the number of segments observed was also assessed. Changes in both endoscopic instruments and the GELS were highly correlated. The SES-CD displayed numerically higher effect sizes for both definitions of change. The standardized effect size and GRS estimates (95% confidence interval) for the SES-CD based on treatment assignment were 0.84 (0.53, 1.15) and 0.79 (0.48, 1.09). Corresponding values for the CDEIS were 0.72 (0.42, 1.02) and 0.75 (0.45, 1.06). The standardized effect size and GRS estimates for the SES-CD based on an absolute change in total PRO2 of 50 points or greater were 0.76 (0.49, 1.02) and 0.93 (0.64, 1

  9. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity?

    PubMed

    Mohan, Chandra; Assassi, Shervin

    2015-11-26

    Serological and proteomic biomarkers can help clinicians diagnose rheumatic diseases earlier and assess disease activity more accurately. These markers have been incorporated into the recently revised classification criteria of several diseases to enable early diagnosis and timely initiation of treatment. Furthermore, they also facilitate more accurate subclassification and more focused monitoring for the detection of certain disease manifestations, such as lung and renal involvement. These biomarkers can also make the assessment of disease activity and treatment response more reliable. Simultaneously, several new serological and proteomic biomarkers have become available in the routine clinical setting--for example, a protein biomarker panel for rheumatoid arthritis and a myositis antibody panel for dermatomyositis and polymyositis. This review will focus on commercially available antibody and proteomic biomarkers in rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), dermatomyositis and polymyositis, and axial spondyloarthritis (including ankylosing spondylitis). It will discuss how these markers can facilitate early diagnosis as well as more accurate subclassification and assessment of disease activity in the clinical setting. The ultimate goal of current and future biomarkers in rheumatic diseases is to enable early detection of these diseases and their clinical manifestations, and to provide effective monitoring and treatment regimens that are tailored to each patient's needs and prognosis. © BMJ Publishing Group Ltd 2015.

  10. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    PubMed

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  11. Disease Prediction Models and Operational Readiness

    PubMed Central

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M.; Lancaster, Mary J.

    2014-01-01

    The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness

  12. Disease Prediction Models and Operational Readiness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.

    2014-03-19

    INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the USmore » National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers

  13. Pathological synchronization in Parkinson's disease: networks, models and treatments.

    PubMed

    Hammond, Constance; Bergman, Hagai; Brown, Peter

    2007-07-01

    Parkinson's disease is a common and disabling disorder of movement owing to dopaminergic denervation of the striatum. However, it is still unclear how this denervation perverts normal functioning to cause slowing of voluntary movements. Recent work using tissue slice preparations, animal models and in humans with Parkinson's disease has demonstrated abnormally synchronized oscillatory activity at multiple levels of the basal ganglia-cortical loop. This excessive synchronization correlates with motor deficit, and its suppression by dopaminergic therapies, ablative surgery or deep-brain stimulation might provide the basic mechanism whereby diverse therapeutic strategies ameliorate motor impairment in patients with Parkinson's disease. This review is part of the INMED/TINS special issue, Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  14. Physical activity, obesity and cardiovascular diseases.

    PubMed

    Lakka, T A; Bouchard, C

    2005-01-01

    Sedentary lifestyle and overweight are major public health, clinical, and economical problems in modern societies. The worldwide epidemic of excess weight is due to imbalance between physical activity and dietary energy intake. Sedentary lifestyle, unhealthy diet, and consequent overweight and obesity markedly increase the risk of cardiovascular diseases. Regular physical activity 45-60 min per day prevents unhealthy weight gain and obesity, whereas sedentary behaviors such as watching television promote them. Regular exercise can markedly reduce body weight and fat mass without dietary caloric restriction in overweight individuals. An increase in total energy expenditure appears to be the most important determinant of successful exercise-induced weight loss. The best long-term results may be achieved when physical activity produces an energy expenditure of at least 2,500 kcal/week. Yet, the optimal approach in weight reduction programs appears to be a combination of regular physical activity and caloric restriction. A minimum of 60 min, but most likely 80-90 min of moderate-intensity physical activity per day may be needed to avoid or limit weight regain in formerly overweight or obese individuals. Regular moderate intensity physical activity, a healthy diet, and avoiding unhealthy weight gain are effective and safe ways to prevent and treat cardiovascular diseases and to reduce premature mortality in all population groups. Although the efforts to promote cardiovascular health concern the whole population, particular attention should be paid to individuals who are physically inactive, have unhealthy diets or are prone to weight gain. They have the highest risk for worsening of the cardiovascular risk factor profile and for cardiovascular disease. To combat the epidemic of overweight and to improve cardiovascular health at a population level, it is important to develop strategies to increase habitual physical activity and to prevent overweight and obesity in

  15. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.

    PubMed

    Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen

    2012-02-13

    Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Physical Activity Fundamental to Preventing Disease.

    ERIC Educational Resources Information Center

    Office of the Assistant Secretary for Planning and Evaluation (DHHS), Washington, DC.

    Regular physical activity, fitness, and exercise are critically important for all people's health and wellbeing. It can reduce morbidity and mortality from many chronic diseases. Despite its well-known benefits, most U.S. adults, and many children, are not active enough to achieve these health benefits. Physical inactivity and related health…

  17. Predictive model for falling in Parkinson disease patients.

    PubMed

    Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, Jose; Cortijo, Patricia

    2016-12-01

    Falls are a common complication of advancing Parkinson's disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The aim of this study was to develop a multivariate model to predict falling in PD patients. Prospective cohort with forty-nine PD patients. The area under the receiver-operating characteristic curve (AUC) was calculated to evaluate predictive performance of the purposed multivariate model. The median of PD duration and UPDRS-III score in the cohort was 6 years and 24 points, respectively. Falls occurred in 18 PD patients (30%). Predictive factors for falling identified by univariate analysis were age, PD duration, physical activity, and scores of UPDRS motor, FOG, ACE, IFS, PFAQ and GDS ( p -value < 0.001), as well as fear of falling score ( p -value = 0.04). The final multivariate model (PD duration, FOG, ACE, and physical activity) showed an AUC = 0.9282 (correctly classified = 89.83%; sensitivity = 92.68%; specificity = 83.33%). This study showed that our multivariate model have a high performance to predict falling in a sample of PD patients.

  18. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    PubMed

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quantitative Contrast-Enhanced Ultrasound Parameters in Crohn Disease: Their Role in Disease Activity Determination With Ultrasound.

    PubMed

    Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R

    2016-01-01

    The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global

  20. A framework for supervising lifestyle diseases using long-term activity monitoring.

    PubMed

    Han, Yongkoo; Han, Manhyung; Lee, Sungyoung; Sarkar, A M Jehad; Lee, Young-Koo

    2012-01-01

    Activity monitoring of a person for a long-term would be helpful for controlling lifestyle associated diseases. Such diseases are often linked with the way a person lives. An unhealthy and irregular standard of living influences the risk of such diseases in the later part of one's life. The symptoms and the initial signs of these diseases are common to the people with irregular lifestyle. In this paper, we propose a novel healthcare framework to manage lifestyle diseases using long-term activity monitoring. The framework recognizes the user's activities with the help of the sensed data in runtime and reports the irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed framework is a hierarchical structure that consists of three modules: activity recognition, activity pattern generation and lifestyle disease prediction. We show that it is possible to assess the possibility of lifestyle diseases from the sensor data. We also show the viability of the proposed framework.

  1. Evaluation of inflammatory activity in Crohn’s disease and ulcerative colitis

    PubMed Central

    Vilela, Eduardo Garcia; Torres, Henrique Osvaldo da Gama; Martins, Fabiana Paiva; Ferrari, Maria de Lourdes de Abreu; Andrade, Marcella Menezes; da Cunha, Aloísio Sales

    2012-01-01

    Crohn’s disease and ulcerative colitis evolve with a relapsing and remitting course. Determination of inflammatory state is crucial for the assessment of disease activity and for tailoring therapy. However, no simple diagnostic test for monitoring intestinal inflammation is available. Noninvasive markers give only indirect assessments of disease activity. Histopathological or endoscopical examinations accurately assess inflammatory activity, but they are invasive, time consuming and expensive and therefore are unsuitable for routine use. Imaging procedures are not applicable for ulcerative colitis. The usefulness of ultrasound and Doppler imaging in assessing disease activity is still a matter of discussion for Crohn’s disease, and an increased interest in computed tomography enterograph (CTE) has been seen, mainly because it can delineate the extent and severity of bowel wall inflammation, besides detecting extraluminal findings. Until now, the available data concerning the accuracy of magnetic resonance enterography in detecting disease activity is less than CTE. Due to this, clinical activity indices are still commonly used for both diseases. PMID:22408345

  2. Mean platelet volume is decreased in adults with active lupus disease.

    PubMed

    Delgado-García, Guillermo; Galarza-Delgado, Dionicio Ángel; Colunga-Pedraza, Iris; Borjas-Almaguer, Omar David; Mandujano-Cruz, Ilse; Benavides-Salgado, Daniel; Martínez-Granados, Rolando Jacob; Atilano-Díaz, Alexandro

    2016-02-26

    Only a few biomarkers are available for assessing disease activity in systemic lupus erythematosus (SLE). Mean platelet volume (MPV) has been recently studied as an inflammatory biomarker. It is currently unclear whether MPV may also play a role as a biomarker of disease activity in adult patients with SLE. We investigated the association between MPV and disease activity in adult patients with SLE. In this retrospective study, we compared two groups of adult patients divided according to disease activity (36 per group). Subjects were age- and gender-matched. MPV was significantly decreased with respect to those of inactive patients (7.16±1.39 vs. 8.16±1.50, p=0.005). At a cutoff level of 8.32 fL, MPV has a sensitivity of 86% and a specificity of 41% for the detection of disease activity. A modest positive correlation was found between MPV and albumin (r=0.407, p=0.001), which in turn is inversely associated with disease activity. In summary, MPV is decreased in adult patients with active lupus disease, and positively correlated with albumin, another biomarker of disease activity. Prospective studies are needed to evaluate the prognostic value of this biomarker. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  3. Mean platelet volume is decreased in adults with active lupus disease.

    PubMed

    Delgado-García, Guillermo; Galarza-Delgado, Dionicio Ángel; Colunga-Pedraza, Iris; Borjas-Almaguer, Omar David; Mandujano-Cruz, Ilse; Benavides-Salgado, Daniel; Martínez-Granados, Rolando Jacob; Atilano-Díaz, Alexandro

    Only a few biomarkers are available for assessing disease activity in systemic lupus erythematosus (SLE). Mean platelet volume (MPV) has been recently studied as an inflammatory biomarker. It is currently unclear whether MPV may also play a role as a biomarker of disease activity in adult patients with SLE. We investigated the association between MPV and disease activity in adult patients with SLE. In this retrospective study, we compared two groups of adult patients divided according to disease activity (36 per group). Subjects were age- and gender-matched. MPV was significantly decreased with respect to those of inactive patients (7.16±1.39 vs. 8.16±1.50, p=0.005). At a cutoff level of 8.32fL, MPV has a sensitivity of 86% and a specificity of 41% for the detection of disease activity. A modest positive correlation was found between MPV and albumin (r=0.407, p=0.001), which in turn is inversely associated with disease activity. In summary, MPV is decreased in adult patients with active lupus disease, and positively correlated with albumin, another biomarker of disease activity. Prospective studies are needed to evaluate the prognostic value of this biomarker. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  4. Economic Modeling Considerations for Rare Diseases.

    PubMed

    Pearson, Isobel; Rothwell, Ben; Olaye, Andrew; Knight, Christopher

    2018-05-01

    To identify challenges that affect the feasibility and rigor of economic models in rare diseases and strategies that manufacturers have employed in health technology assessment submissions to demonstrate the value of new orphan products that have limited study data. Targeted reviews of PubMed, the National Institute for Health and Care Excellence's (NICE's) Highly Specialised Technologies (HST), and the Scottish Medicines Consortium's (SMC's) ultra-orphan submissions were performed. A total of 19 PubMed studies, 3 published NICE HSTs, and 11 ultra-orphan SMC submissions were eligible for inclusion. In rare diseases, a number of different factors may affect the model's ability to comply with good practice recommendations. Many products for the treatment of rare diseases have an incomplete efficacy and safety profile at product launch. In addition, there is often limited available natural history and epidemiology data. Information on the direct and indirect cost burden of an orphan disease also may be limited, making it difficult to estimate the potential economic benefit of treatment. These challenges can prevent accurate estimation of a new product's benefits in relation to costs. Approaches that can address such challenges include using patient and/or clinician feedback to inform model assumptions; data from disease analogues; epidemiological techniques, such as matching-adjusted indirect comparison; and long-term data collection. Modeling in rare diseases is often challenging; however, a number of approaches are available to support the development of model structures and the collation of input parameters and to manage uncertainty. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.

  6. [Physical activity and respiratory tract diseases asthma and allergy].

    PubMed

    Carlsen, K H

    2000-11-10

    This article presents a review of the relationship between physical training and airways diseases: the relationship between physical activity and the development of airways diseases, and the effect of physical training in rehabilitation after airways diseases. The article is a systematic review of exercise-induced asthma (EIA), the effect of physical training upon bronchial hyperresponsiveness and the development of asthma; how chronic lung diseases affect the ability to participate in physical activity; and the use of physical training in rehabilitation after airways diseases. Physical training may provoke EIA in asthmatic patients. Furthermore, heavy regular training over long periods of time may contribute to the development of asthma. Mastering EIA is an important goal in the management of asthma, especially in children and adolescents, in order to foster normal physical and mental development. Physical training improves fitness and the mastering of asthma, but not of bronchial hyperresponsiveness and asthma activity. In other airways disorders like cystic fibrosis or chronic obstructive lung disease, a reduced lung function may limit the ability to participate in physical activity. Training is an important tool in the rehabilitation of patients with pulmonary disorders as it improves physical fitness and quality of life.

  7. [The experimental models of Parkinson's disease in animals].

    PubMed

    Grigor'ian, G A; Bazian, A S

    2007-01-01

    The current review describes the modem Parkinson's disease models in animals, their advantages, limitations and disadvantages. It was noted that the most widespread up-to-date models based on etiology of the Parkinson's disease. Although toxins mostly produce the Parkinson's disease, a study of involved genes allows investigating not only inherited but also sporadic (not inherited) forms of disease since the same genes are involved in both cases. Mutations of genes lead to formation of "mutant" toxic proteins, which produce a death of the specialized neurons of the nigrostriatal dopaminergic system and the development of Parkinson's disease. A significant place in the review takes adescription of characteristics of the toxic models produced by 6-OHDA, MPTP and rotenone, their similarities and differences in pathogenetic mechanisms of the Parkinson's disease development. On the basis of the considered experimental models of Parkinson's disease a conclusion has been done that none of these models may in full and adequate scale imitate the entire clinical, pathophysiological, morphological, biochemical and other aspects of the Parkinson's disease development.

  8. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms.

    PubMed

    Choi, Dong-Young; Choi, Hyukjae

    2015-02-01

    Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.

  9. Measures of rheumatoid arthritis disease activity in Australian clinical practice.

    PubMed

    Taylor, Andrew; Bagga, Hanish

    2011-01-01

    Objectives. To investigate which rheumatoid arthritis (RA) disease activity measures are being collected in patients receiving glucocorticoids, non-biologic or biologic disease-modifying antirheumatic drugs (DMARDs) in Australian rheumatology practice. Methods. A retrospective audit of medical records was conducted from eight rheumatology practices around Australia. Each rheumatologist recruited 30 consecutive eligible patients into the review, 10 of whom must have been receiving a biological agent for rheumatoid arthritis. Disease activity measures and radiographic assessments were collected from each patient's last consultation. For biologic patients, disease activity measures were also collected from when the patient was first initiated on the biological agent. Results. At last consultation, the disease measures that were recorded most often were ESR (89.2%), haemoglobin (87.5%), and CRP (84.2%). DAS28 was infrequently recorded (16.3%). The rate of recording disease activity measures for patients receiving biologic DMARDs decreased over time (mean 27 months). Conclusion. This review has shown inconsistency of RA activity measures being recorded in Australian rheumatology clinical practice. An accurate assessment of the disease process is necessary to effectively target rheumatoid arthritis patients to treat in order to achieve optimal outcomes.

  10. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models.

    PubMed

    Jones, Daniel P; True, Harry D; Patel, Jyoti

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.

  11. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  12. In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease.

    PubMed

    Sweeney, Michael T; Quesnell, Rebecca; Tiwari, Raksha; Lemay, Mary; Watts, Jeffrey L

    2013-01-01

    Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 μg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 μg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.

  13. Who is at risk of chronic disease? Associations between risk profiles of physical activity, sitting and cardio-metabolic disease in Australian adults.

    PubMed

    Engelen, Lina; Gale, Joanne; Chau, Josephine Y; Hardy, Louise L; Mackey, Martin; Johnson, Nathan; Shirley, Debra; Bauman, Adrian

    2017-04-01

    To examine the associations of physical activity (PA) and sitting time (sit) with cardio-metabolic diseases. Cross-sectional data from the Australian National Nutrition and Physical Activity Survey 2011-2012 (n=9,435) were used to classify adults into low and high risk groups based on their physical activity and sitting behaviour profiles. Logistic regression models examined associations between low and high risk classifications (high PA-low sit; high PA-high sit; low PA-low sit; low PA-high sit;) and socio-demographic factors, and associations between low and high risk classifications and the prevalence of cardiovascular disease, Type 2 diabetes and metabolic syndrome. These results characterise chronic disease risk based on both physical activity and sitting behaviour. Adults with the highest risk lifestyle behaviour pattern (low PA-high sit) tended to be middle aged, male, at greater social disadvantage, smoke, report fair health, be abdominally obese and employed in administrative and driver occupations. These individuals had a substantially greater risk of cardiovascular disease and metabolic syndrome (OR=1.41, 95% CI 1.13, 1.75; OR= 2.37, 95% CI 1.63, 3.45, respectively). The findings highlight the importance of both sufficient physical activity and low sitting time for cardio-metabolic health. Implications for public health: Primary prevention focus should consider physical activity and reduced sitting time as well as provision of relevant advice for cardio-metabolic health. © 2017 The Authors.

  14. Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model.

    PubMed

    Bichell, Terry Jo V; Wegrzynowicz, Michal; Tipps, K Grace; Bradley, Emma M; Uhouse, Michael A; Bryan, Miles; Horning, Kyle; Fisher, Nicole; Dudek, Karrie; Halbesma, Timothy; Umashanker, Preethi; Stubbs, Andrew D; Holt, Hunter K; Kwakye, Gunnar F; Tidball, Andrew M; Colbran, Roger J; Aschner, Michael; Neely, M Diana; Di Pardo, Alba; Maglione, Vittorio; Osmand, Alexander; Bowman, Aaron B

    2017-06-01

    Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Innate immune activation in neurodegenerative disease.

    PubMed

    Heneka, Michael T; Kummer, Markus P; Latz, Eicke

    2014-07-01

    The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

  16. Modeling neural circuits in Parkinson's disease.

    PubMed

    Psiha, Maria; Vlamos, Panayiotis

    2015-01-01

    Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum.

  17. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration.

    PubMed

    Snider, Jonathan; Müller, Martijn L T M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J H; Frey, Kirk A; Albin, Roger L; Bohnen, Nicolaas I

    2015-10-01

    To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Cross-sectional study. PD subjects, n = 48 (40 M); 69.4 ± 7.4 (56-84) years old; 8.4 ± 4.2 (2.5-20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7-53) and mean MMSE score 28.4 ± 1.9 (22-30) underwent [(11)C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R = -0.37, P = 0.0099) but not with duration of exercise physical activity (R = -0.05, P = 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F = 6.15, P = 0.017) while accounting for effects of nigrostriatal degeneration (F = 4.93, P = 0.032), levodopa-equivalent dose (LED; F = 1.07, P = 0.31), age (F = 4.37, P = 0.043) and duration of disease (F = 1.46, P = 0.23; total model (F = 5.76, P = 0.0004). Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. Published by Elsevier Ltd.

  18. In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease.

    PubMed

    Selznick, L A; Holtzman, D M; Han, B H; Gökden, M; Srinivasan, A N; Johnson, E M; Roth, K A

    1999-09-01

    The mechanism by which cells die in Alzheimer disease (AD) is unknown. Several investigators speculate that much of the cell loss may be due to apoptosis, a highly regulated form of programmed cell death. Caspase-3 is a critical effector of neuronal apoptosis and may be inappropriately activated in AD. To address this possibility, we examined cortical and hippocampal brain sections from AD patients, as well as 2 animal models of AD, for in situ evidence of caspase-3 activation. We report here that senile plaques and neurofibrillary tangles in the AD brain are not associated with caspase-3 activation. Furthermore, amyloid beta (A beta) deposition in the APPsw transgenic mouse model of AD does not result in caspase-3 activation despite the ability of A beta to induce caspase-3 activation and neuronal apoptosis in vitro. AD brain sections do, however, exhibit caspase-3 activation in hippocampal neurons undergoing granulovacuolar degeneration. Our data suggests that caspase-3 does not have a significant role in the widespread neuronal cell death that occurs in AD, but may contribute to the specific loss of hippocampal neurons involved in learning and memory.

  19. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: a negative correlation with the disease activity.

    PubMed

    Roma, E; Krini, M; Hantzi, E; Sakka, S; Panayiotou, I; Margeli, A; Papassotiriou, I; Kanaka-Gantenbein, C

    2012-10-01

    Retinol Binding Protein-4 (RBP-4), the action of which was initially thought to be only the transport of vitamin A, is a major circulating adipocytokine involved in the inflammation. We evaluated the serum RBP-4 levels in children with inflammatory bowel disease (IBD) and correlated them with transthyretin (TTR), inflammation markers, disease activity, and body mass index (BMI). In 41 children of mean age 11.9 ± 3.6 years (range 5-17.7 y) with IBD (19 with Crohn's disease (CD) and 22 with Ulcerative colitis (UC) serum RBP-4, TTR, Amyloid A (SAA), C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), disease activity and BMI were prospectively determined and compared with those of 42 matched controls. No difference in the RBP-4 and TTR serum levels, between patients and controls as well as between active and remission state of the disease was noticed. A negative correlation of serum RBP-4 with the disease activity, SAA and ESR and a positive correlation with TTR was found, but no significant correlation with CRP or BMI was found. Inflammation markers were significantly increased in patients compared to controls and had a positive correlation with the disease activity. RBP-4 negatively correlated with disease activity of children with IBD probably indicating a protective anti-inflammatory mechanism of action in addition to transport of vitamin A.

  20. Primary immunodeficiency disease: a model for case management of chronic diseases.

    PubMed

    Burton, Janet; Murphy, Elyse; Riley, Patty

    2010-01-01

    Patient-centered chronic care management is a new model for the management of rare chronic diseases such as primary immunodeficiency disease (PIDD). This approach emphasizes helping patients become experts on the management of their disease as informed, involved, and interactive partners in healthcare decisions with providers. Because only a few patients are affected by rare illnesses, these patients are forced to become knowledgeable about their disease and therapies and to seek treatment from a healthcare team, which includes physicians and nurse specialists who are equipped to manage the complexity of the disease and its comorbidities. Importantly, therapy for PIDD can be self-administered at home, which has encouraged the transition toward a proactive stance that is at the heart of patient-centered chronic care management. We discuss the evolution of therapy, the issues with the disease, and challenges with its management within the framework of other chronic disease management programs. Suggestions and rationale to move case management of PIDD forward are presented with the intent that sharing our experiences will improve process and better manage outcomes in this patient population. The patient-centered model for the management of PIDD is applicable to the primary care settings, where nurse case managers assist patients through education, support them and their families, and facilitate access to community resources in an approach, which has been described as "guided care." The model also applies specifically to immunology centers where patients receive treatment or instruction on its self-administration at home. Patient-centered management of PIDD, with its emphasis on full involvement of patients in their treatment, has the potential to improve compliance with treatment, and thus patient outcomes, as well as patients' quality of life. The patient-centered model expands the traditional model of chronic disease management, which relies on evidence

  1. Modeling Addictive Consumption as an Infectious Disease*

    PubMed Central

    Alamar, Benjamin; Glantz, Stanton A.

    2011-01-01

    The dominant model of addictive consumption in economics is the theory of rational addiction. The addict in this model chooses how much they are going to consume based upon their level of addiction (past consumption), the current benefits and all future costs. Several empirical studies of cigarette sales and price data have found a correlation between future prices and consumption and current consumption. These studies have argued that the correlation validates the rational addiction model and invalidates any model in which future consumption is not considered. An alternative to the rational addiction model is one in which addiction spreads through a population as if it were an infectious disease, as supported by the large body of empirical research of addictive behaviors. In this model an individual's probability of becoming addicted to a substance is linked to the behavior of their parents, friends and society. In the infectious disease model current consumption is based only on the level of addiction and current costs. Price and consumption data from a simulation of the infectious disease model showed a qualitative match to the results of the rational addiction model. The infectious disease model can explain all of the theoretical results of the rational addiction model with the addition of explaining initial consumption of the addictive good. PMID:21339848

  2. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    PubMed Central

    Seah, Yu Fen Samantha; EL Farran, Chadi A.; Warrier, Tushar; Xu, Jian; Loh, Yuin-Han

    2015-01-01

    Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases. PMID:26633382

  3. Drugs for Neglected Diseases initiative model of drug development for neglected diseases: current status and future challenges.

    PubMed

    Ioset, Jean-Robert; Chang, Shing

    2011-09-01

    The Drugs for Neglected Diseases initiative (DNDi) is a patients' needs-driven organization committed to the development of new treatments for neglected diseases. Created in 2003, DNDi has delivered four improved treatments for malaria, sleeping sickness and visceral leishmaniasis. A main DNDi challenge is to build a solid R&D portfolio for neglected diseases and to deliver preclinical candidates in a timely manner using an original model based on partnership. To address this challenge DNDi has remodeled its discovery activities from a project-based academic-bound network to a fully integrated process-oriented platform in close collaboration with pharmaceutical companies. This discovery platform relies on dedicated screening capacity and lead-optimization consortia supported by a pragmatic, structured and pharmaceutical-focused compound sourcing strategy.

  4. Relationship Between Markers of Platelet Activation and Inflammation with Disease Activity in Wegener’s Granulomatosis

    PubMed Central

    TOMASSON, GUNNAR; LAVALLEY, MICHAEL; TANRIVERDI, KAHRAMAN; FINKIELMAN, JAVIER D.; DAVIS, JOHN C.; HOFFMAN, GARY S.; McCUNE, W. JOSEPH; St. CLAIR, E. WILLIAM; SPECKS, ULRICH; SPIERA, ROBERT; STONE, JOHN H.; FREEDMAN, JANE E.; MERKEL, PETER A.

    2013-01-01

    Objective There remains a need for biomarkers to guide therapy in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Our objective was to determine whether measures of platelet activation or inflammation are associated with disease activity in Wegener’s granulomatosis (WG). Methods Study subjects were participants in a clinical trial. Soluble CD40 ligand (sCD40L), C-reactive protein, interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein 1 (MCP-1), P-selectin, vascular endothelial growth factor, and proteinase 3 (PR3)-specific ANCA were measured by ELISA using plasma samples obtained at baseline (active disease), at remission, and prior to, during, and after first flares. Disease activity was assessed by the Birmingham Vasculitis Activity Score for WG (BVAS/WG). Association of biomarkers with disease activity was determined with conditional logistic and linear regression. Results Over a mean followup of 27 months, 180 subjects underwent 2044 visits; markers were measured in 563 samples. Longitudinally, all markers other than IL-6 were associated with disease activity. The strongest associations for active disease at baseline versus remission were observed for sCD40L (OR 4.72, 95% CI 2.47–9.03), P-selectin (OR 6.26, 95% CI 2.78–14.10), PR3-ANCA (OR 9.41, 4.03–21.99), and inversely for MCP-1 (OR 0.36, 95% CI 0.22–0.57). BVAS/WG increased by 0.80 (95% CI 0.44–1.16), 0.83 (95% CI 0.42–1.25), and 0.81 (95% CI 0.48–1.15) per unit-increase in PR3-ANCA, sCD40L, and P-selectin, respectively; and decreased by 1.54 (95% CI 0.96–2.12) per unit-increase in MCP-1. Conclusion Cytokines arising from within the circulation, including those of platelet activation, correlate with disease activity in WG. PMID:21411717

  5. Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease.

    PubMed

    Oraby, Tamer; Vasilyeva, Olga; Krewski, Daniel; Lutscher, Frithjof

    2014-01-07

    Behavior and habitat of wildlife animals change seasonally according to environmental conditions. Mathematical models need to represent this seasonality to be able to make realistic predictions about the future of a population and the effectiveness of human interventions. Managing and modeling disease in wild animal populations requires particular care in that disease transmission dynamics is a critical consideration in the etiology of both human and animal diseases, with different transmission paradigms requiring different disease risk management strategies. Since transmission of infectious diseases among wildlife depends strongly on social behavior, mechanisms of disease transmission could also change seasonally. A specific consideration in this regard confronted by modellers is whether the contact rate between individuals is density-dependent or frequency-dependent. We argue that seasonal behavior changes could lead to a seasonal shift between density and frequency dependence. This hypothesis is explored in the case of chronic wasting disease (CWD), a fatal disease that affects deer, elk and moose in many areas of North America. Specifically, we introduce a strategic CWD risk model based on direct disease transmission that accounts for the seasonal change in the transmission dynamics and habitats occupied, guided by information derived from cervid ecology. The model is composed of summer and winter susceptible-infected (SI) equations, with frequency-dependent and density-dependent transmission dynamics, respectively. The model includes impulsive birth events with density-dependent birth rate. We determine the basic reproduction number as a weighted average of two seasonal reproduction numbers. We parameterize the model from data derived from the scientific literature on CWD and deer ecology, and conduct global and local sensitivity analyses of the basic reproduction number. We explore the effectiveness of different culling strategies for the management of CWD

  6. Physical activity behaviour in men with inflammatory joint disease: a cross-sectional register-based study.

    PubMed

    Hammer, Nanna Maria; Midtgaard, Julie; Hetland, Merete Lund; Krogh, Niels Steen; Esbensen, Bente Appel

    2018-05-01

    Physical activity is recommended as an essential part of the non-pharmacological management of inflammatory joint disease, but previous research in this area has predominantly included women. The aim of this study was to examine physical activity behaviour in men with inflammatory joint disease. The study was conducted as a cross-sectional register-based study. Data on physical activity behaviour in men with RA, PsA and AS were matched with sociodemographic and clinical variables extracted from the DANBIO registry. Logistic regression analyses using multiple imputations were performed to investigate demographic and clinical variables associated with regular engagement in physical activity (moderate-vigorous ⩾2 h/week). Descriptive statistics were applied to explore motivation, barriers and preferences for physical activity. A total of 325 men were included of whom 129 (40%) engaged in regular physical activity. In univariate analyses, higher age, visual analogue scale (VAS) for pain, VAS fatigue, VAS patient's global, CRP level, disease activity, functional disability and current smoking were negatively associated with regular engagement in physical activity. In the final multivariable regression model only a high VAS fatigue score (⩾61 mm) (OR = 0.228; CI: 0.119, 0.436) remained significantly independently associated with regular physical activity. A majority of men with inflammatory joint disease do not meet the recommendations of regular physical activity. Both sociodemographic and clinical parameters were associated with engagement in physical activity, and fatigue especially seems to play a pivotal role in explaining suboptimal physical activity behaviour in this patient group.

  7. Physical activity in primary and secondary prevention of cardiovascular disease: Overview updated.

    PubMed

    Alves, Alberto J; Viana, João L; Cavalcante, Suiane L; Oliveira, Nórton L; Duarte, José A; Mota, Jorge; Oliveira, José; Ribeiro, Fernando

    2016-10-26

    Although the observed progress in the cardiovascular disease treatment, the incidence of new and recurrent coronary artery disease remains elevated and constitutes the leading cause of death in the developed countries. Three-quarters of deaths due to cardiovascular diseases could be prevented with adequate changes in lifestyle, including increased daily physical activity. New evidence confirms that there is an inverse dose-response relationship between physical activity and cardiovascular disease and mortality risk. However, participation in moderate to vigorous physical activity may not fully attenuate the independent effect of sedentary activities on increased risk for cardiovascular diseases. Physical activity also plays an important role in secondary prevention of cardiovascular diseases by reducing the impact of the disease, slowing its progress and preventing recurrence. Nonetheless, most of eligible cardiovascular patients still do not benefit from secondary prevention/cardiac rehabilitation programs. The present review draws attention to the importance of physical activity in the primary and secondary prevention of cardiovascular diseases. It also addresses the mechanisms by which physical activity and regular exercise can improve cardiovascular health and reduce the burden of the disease.

  8. Immortalized Parkinson's disease lymphocytes have enhanced mitochondrial respiratory activity

    PubMed Central

    Annesley, Sarah J.; Lay, Sui T.; De Piazza, Shawn W.; Sanislav, Oana; Hammersley, Eleanor; Allan, Claire Y.; Francione, Lisa M.; Bui, Minh Q.; Chen, Zhi-Ping; Ngoei, Kevin R. W.; Tassone, Flora; Kemp, Bruce E.; Storey, Elsdon; Evans, Andrew; Loesch, Danuta Z.

    2016-01-01

    ABSTRACT In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired – proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a ‘normal’ and a ‘hyperactive’ state characterized by two different metabolic rates. The apparent stability of the ‘hyperactive’ state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the ‘hyperactive’ state might not cause pathology

  9. Reduced physical activity and risk of chronic disease: the biology behind the consequences.

    PubMed

    Booth, Frank W; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P

    2008-03-01

    This review focuses on three preserved, ancient, biological mechanisms (physical activity, insulin sensitivity, and fat storage). Genes in humans and rodents were selected in an environment of high physical activity that favored an optimization of aerobic metabolic pathways to conserve energy for a potential, future food deficiency. Today machines and other technologies have replaced much of the physical activity that selected optimal gene expression for energy metabolism. Distressingly, the negative by-product of a lack of ancient physical activity levels in our modern civilization is an increased risk of chronic disease. We have been employing a rodent wheel-lock model to approximate the reduction in physical activity in humans from the level under which genes were selected to a lower level observed in modern daily functioning. Thus far, two major changes have been identified when rats undertaking daily, natural voluntary running on wheels experience an abrupt cessation of the running (wheel lock model). First, insulin sensitivity in the epitrochlearis muscle of rats falls to sedentary values after 2 days of the cessation of running, confirming the decline to sedentary values in whole-body insulin sensitivity when physically active humans stop high levels of daily exercise. Second, visceral fat increases within 1 week after rats cease daily running, confirming the plasticity of human visceral fat. This review focuses on the supporting data for the aforementioned two outcomes. Our primary goal is to better understand how a physically inactive lifestyle initiates maladaptations that cause chronic disease.

  10. Validity of retrospective disease activity assessment in systemic lupus erythematosus.

    PubMed

    Arce-Salinas, A; Cardiel, M H; Guzmán, J; Alcocer-Varela, J

    1996-05-01

    To evaluate the validity of retrospective disease activity assessment derived from clinical charts. We prospectively evaluated 37 patients with systemic lupus erythematosus (SLE) in 90 visits using the SLE Disease Activity Index (SLEDAI), the Mexican SLEDAI (Mex-SLEDAI), and the Lupus Activity Criteria Count (LACC) indices. Routine clinical observations were written by rheumatologists blind to index scores. These notes were reviewed 2 years later to obtain retrospective index scores and their validity was assessed using prospective scores as the standard. Statistical analysis was by Spearman's rank correlation coefficient (rs), Wilcoxon matched pairs test, kappa statistic, and intraclass correlation coefficient (ri). We calculated the sensitivity and specificity of retrospective indices to detect active disease. Median retrospective scores were lower in all indices: SLEDAI (4 VS 2, p =0.004, RS = 0.68, ri = 0.30); Mex-SLEDAI (2 vs 1, p < 0.0003, rs = 0.79, ri = 0.31); and LACC (1 vs 1, p = 0.007, rs = 0.65, ri = 0.21). Used to detect active SLE, the retrospective SLEDAI had a sensitivity of 0.68 and a specificity of 0.86; corresponding values for the Mex-SLEDAI were 0.72 and 0.91, and for the LACC, 0.77 and 0.76. Retrospective disease activity indices tended to provide lower scores than prospective evaluations. They often missed patients with mildly active disease, but when positive they were good predictors of disease activity.

  11. Bioprinting technologies for disease modeling.

    PubMed

    Memic, Adnan; Navaei, Ali; Mirani, Bahram; Cordova, Julio Alvin Vacacela; Aldhahri, Musab; Dolatshahi-Pirouz, Alireza; Akbari, Mohsen; Nikkhah, Mehdi

    2017-09-01

    There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases' characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.

  12. Active Targeted Macrophage-mediated Delivery of Catalase to Affected Brain Regions in Models of Parkinson's Disease.

    PubMed

    Zhao, Yuling; Haney, Matthew J; Mahajan, Vivek; Reiner, Benjamin C; Dunaevsky, Anna; Mosley, R Lee; Kabanov, Alexander V; Gendelman, Howard E; Batrakova, Elena V

    2011-09-10

    We previously demonstrated that monocyte-macrophage based drug delivery can be applied to a spectrum of infectious, neoplastic, and degenerative disorders. In particular, bone marrow-derived macrophages (BMM) loaded with nano formulated catalase, "nanozyme", were shown to attenuate neuro inflammation and nigrostriatal degeneration in rodent models of Parkinson's disease (PD). Nonetheless, the pharmacokinetics and biodistribution of BMM-incorporated nanozyme has not been explored. To this end, we now demonstrate that BMM, serving as a "depot" for nanozyme, increased area under the curve(AUC), half-life, and mean residence time in blood circulation of the protein when compared to the nanozyme administered alone. Accordingly, bioavailability of the nanozyme for the brain, spleen, kidney, and liver was substantially increased. Importantly, nanozyme-loaded BMM targeted diseased sites and improved transport across the blood brain barrier. This was seen specifically in affected brain subregions in models of PD. Engaging natural immune cells such as monocyte-macrophages as drug carriers provides a new perspective for therapeutic delivery for PD and also likely a range of other inflammatory and degenerative diseases.

  13. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    PubMed

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  14. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    PubMed

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  15. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  16. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models.

    PubMed

    Asaad, Mazen; Lee, Jin Hyung

    2018-05-18

    Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.

  17. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models

    PubMed Central

    Asaad, Mazen

    2018-01-01

    ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664

  18. Personalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical Activity.

    PubMed

    Nes, Bjarne M; Gutvik, Christian R; Lavie, Carl J; Nauman, Javaid; Wisløff, Ulrik

    2017-03-01

    To derive and validate a single metric of activity tracking that associates with lower risk of cardiovascular disease mortality. We derived an algorithm, Personalized Activity Intelligence (PAI), using the HUNT Fitness Study (n = 4631), and validated it in the general HUNT population (n = 39,298) aged 20-74 years. The PAI was divided into three sex-specific groups (≤50, 51-99, and ≥100), and the inactive group (0 PAI) was used as the referent. Hazard ratios for all-cause and cardiovascular disease mortality were estimated using Cox proportional hazard regressions. After >1 million person-years of observations during a mean follow-up time of 26.2 (SD 5.9) years, there were 10,062 deaths, including 3867 deaths (2207 men and 1660 women) from cardiovascular disease. Men and women with a PAI level ≥100 had 17% (95% confidence interval [CI], 7%-27%) and 23% (95% CI, 4%-38%) reduced risk of cardiovascular disease mortality, respectively, compared with the inactive groups. Obtaining ≥100 PAI was associated with significantly lower risk for cardiovascular disease mortality in all prespecified age groups, and in participants with known cardiovascular disease risk factors (all P-trends <.01). Participants who did not obtain ≥100 PAI had increased risk of dying regardless of meeting the physical activity recommendations. PAI may have a huge potential to motivate people to become and stay physically active, as it is an easily understandable and scientifically proven metric that could inform potential users of how much physical activity is needed to reduce the risk of premature cardiovascular disease death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. A nonlocal spatial model for Lyme disease

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  20. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases.

    PubMed

    Ahn, Misol; Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J

    2016-03-01

    Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  1. [Serum creatine kinase activity in dogs and cats with metabolic diseases].

    PubMed

    Neumann, S

    2005-09-01

    Elevated Creatine kinase-activitiy (CK) indicates disturbances of the muscle cell integrity. In addition to primary muscle disease, like trauma, inflammation or dystrophy, diseases of other organs can lead to secondary muscle involvement, which will be indicated by increased serum activities of the CK. The mechanisms of muscle cell disturbance are still unknown. An elevated protein catabolism in the muscle cell is suspected. In the present study we investigated, if dogs and cats with metabolic diseases have increased CK-activity in the serum. From 34 dogs and cats in a group with different metabolic diseases without metabolic acidosis 19% of the dogs and 50% of the cats had increased CK-activity in the serum. From 33 dogs and cats with different metabolic diseases connected with metabolic acidosis 86% of the dogs and 95% of the cats had simultaneously increased CK-activity in the serum. In comparison to healthy dogs and cats animals with metabolic diseases have significant and in cases of metabolic di-seases with metabolic acidosis cats have high significant elevation (dogs significant) of CK-activity in the serum. There was no significant correlation between the groups of patients. In conclusion we think that our results show that metabolic diseases often induce secondary myopathy, measured by CK-activity in the serum, but metabolic acidosis has no direct influence on elevated CK activity in dogs and cats.

  2. Disease activity indices in coeliac disease: systematic review and recommendations for clinical trials.

    PubMed

    Hindryckx, Pieter; Levesque, Barrett G; Holvoet, Tom; Durand, Serina; Tang, Ceen-Ming; Parker, Claire; Khanna, Reena; Shackelton, Lisa M; D'Haens, Geert; Sandborn, William J; Feagan, Brian G; Lebwohl, Benjamin; Leffler, Daniel A; Jairath, Vipul

    2018-01-01

    Although several pharmacological agents have emerged as potential adjunctive therapies to a gluten-free diet for coeliac disease, there is currently no widely accepted measure of disease activity used in clinical trials. We conducted a systematic review of coeliac disease activity indices to evaluate their operating properties and potential as outcome measures in registration trials. MEDLINE, EMBASE and the Cochrane central library were searched from 1966 to 2015 for eligible studies in adult and/or paediatric patients with coeliac disease that included coeliac disease activity markers in their outcome measures. The operating characteristics of histological indices, patient-reported outcomes (PROs) and endoscopic indices were evaluated for content and construct validity, reliability, responsiveness and feasibility using guidelines proposed by the US Food and Drug Administration (FDA). Of 19 123 citations, 286 studies were eligible, including 24 randomised-controlled trials. Three of five PROs identified met most key evaluative criteria but only the Celiac Disease Symptom Diary (CDSD) and the Celiac Disease Patient-Reported Outcome (CeD PRO) have been approved by the FDA. All histological and endoscopic scores identified lacked content validity. Quantitative morphometric histological analysis had better reliability and responsiveness compared with qualitative scales. Endoscopic indices were infrequently used, and only one index demonstrated responsiveness to effective therapy. Current best evidence suggests that the CDSD and the CeD PRO are appropriate for use in the definition of primary end points in coeliac disease registration trials. Morphometric histology should be included as a key secondary or co-primary end point. Further work is needed to optimise end point configuration to inform efficient drug development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Adult Congenital Heart Disease Patients Experience Similar Symptoms of Disease Activity.

    PubMed

    Cedars, Ari M; Stefanescu Schmidt, Ada; Broberg, Craig; Zaidi, Ali; Opotowsky, Alexander; Grewal, Jasmine; Kay, Joseph; Bhatt, Ami B; Novak, Eric; Spertus, John

    2016-03-01

    There is a lack of objective data on the symptoms characterizing disease activity among adults with congenital heart disease (ACHD). The purpose of this study was to elicit the most important symptoms from patients across the spectrum of ACHD and to examine whether reported symptoms were similar across the spectrum of ACHD as a foundation for creating a patient-reported outcome measure(s). We constructed a 39-item survey using input from physicians specializing in ACHD to assess the symptoms patients associate with disease activity. Patients (n=124) prospectively completed this survey, and the results were analyzed based on underlying anatomy and disease complexity. A confirmatory cohort of patients (n=40) was then recruited prospectively to confirm the validity of the initial data. When grouped based on underlying anatomy, significant differences in disease-related symptom rankings were found for only 6 of 39 symptoms. Six symptoms were identified which were of particular significance to patients, regardless of underlying anatomy. Patients with anatomy of great complexity experienced greater overall symptom severity than those with anatomy of low or moderate complexity, attributable exclusively to higher ranking of 5 symptoms. The second patient cohort had symptom experiences similar to those of the initial cohort, differing in only 5 of 39 symptoms. This study identified 6 symptoms relevant to patients across the spectrum of ACHD and remarkable homogeneity of patient experience, suggesting that a single disease-specific patient-reported outcome can be created for quality and outcome assessments. © 2016 American Heart Association, Inc.

  4. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease

    PubMed Central

    El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude

    2015-01-01

    Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. PMID:25421557

  5. Fluctuations in epidemic modeling - disease extinction and control

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira

    2009-03-01

    The analysis of infectious disease fluctuations has recently seen an increasing rise in the use of new tools and models from stochastic dynamics and statistical physics. Examples arise in modeling fluctuations of multi-strain diseases, in modeling adaptive social behavior and its impact on disease fluctuations, and in the analysis of disease extinction in finite population models. Proper stochastic model reduction [1] allows one to predict unobserved fluctuations from observed data in multi-strain models [2]. Degree alteration and power law behavior is predicted in adaptive network epidemic models [3,4]. And extinction rates derived from large fluctuation theory exhibit scaling with respect to distance to the bifurcation point of disease onset with an unusual exponent [5]. In addition to outbreak prediction, another main goal of epidemic modeling is one of eliminating the disease to extinction through various control mechanisms, such as vaccine implementation or quarantine. In this talk, a description will be presented of the fluctuational behavior of several epidemic models and their extinction rates. A general framework and analysis of the effect of non-Gaussian control actuations which enhance the rate to disease extinction will be described. In particular, in it is shown that even in the presence of a small Poisson distributed vaccination program, there is an exponentially enhanced rate to disease extinction. These ideas may lead to improved methods of controlling disease where random vaccinations are prevalent. [4pt] Recent papers:[0pt] [1] E. Forgoston and I. B. Schwartz, ``Escape Rates in a Stochastic Environment with Multiple Scales,'' arXiv:0809.1345 2008.[0pt] [2] L. B. Shaw, L. Billings, I. B. Schwartz, ``Using dimension reduction to improve outbreak predictability of multi-strain diseases,'' J. Math. Bio. 55, 1 2007.[0pt] [3] L. B. Shaw and I. B. Schwartz, ``Fluctuating epidemics on adaptive networks,'' Physical Review E 77, 066101 2008.[0pt] [4] L. B

  6. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  7. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models

    PubMed Central

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation. PMID:28465628

  8. Histone Deacetylase Adaptation in Single Ventricle Heart Disease and a Young Animal Model of Right Ventricular Hypertrophy

    PubMed Central

    Blakeslee, Weston W.; Demos-Davies, Kimberly M.; Lemon, Douglas D.; Lutter, Katharina M.; Cavasin, Maria A.; Payne, Sam; Nunley, Karin; Long, Carlin S.; McKinsey, Timothy A.; Miyamoto, Shelley D.

    2017-01-01

    Background Histone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac disease. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle heart disease of right ventricular morphology (SV), as well as in a rodent model of right ventricular hypertrophy (RVH). Methods Homogenates of RV explants from non-failing controls and SV children were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day old rat pups were placed in hypoxic conditions and echocardiographic analysis, gene expression, HDAC catalytic activity and isoform expression studies of the RV were performed. Results Class I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in hearts of SV children. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression and elevated class I and class IIb HDAC catalytic activity and protein expression in the RV compared to control. Conclusions These data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. While further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for pre-clinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies. PMID:28549058

  9. Disease modeling in genetic kidney diseases: zebrafish.

    PubMed

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  10. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease.

    PubMed

    Liu, Quan Feng; Lee, Jang Ho; Kim, Young-Mi; Lee, Soojin; Hong, Yoon Ki; Hwang, Soojin; Oh, Youngje; Lee, Kyungho; Yun, Hye Sup; Lee, Im-Soon; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.

  11. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease

    PubMed Central

    Dufek, Brianna; Meehan, Daniel; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic

    2016-01-01

    Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the sub-capillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of pro-inflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is upregulated in Alport glomeruli, and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan, or under conditions of siRNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and pro-inflammatory cytokines, increased lifespan, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model. PMID:27165837

  12. Disease models for the development of therapies for lysosomal storage diseases.

    PubMed

    Xu, Miao; Motabar, Omid; Ferrer, Marc; Marugan, Juan J; Zheng, Wei; Ottinger, Elizabeth A

    2016-05-01

    Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease-relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell-derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  13. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides

    PubMed Central

    Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636

  14. Validating the Predicted Effect of Astemizole and Ketoconazole Using a Drosophila Model of Parkinson's Disease.

    PubMed

    Styczyńska-Soczka, Katarzyna; Zechini, Luigi; Zografos, Lysimachos

    2017-04-01

    Parkinson's disease is a growing threat to an ever-ageing population. Despite progress in our understanding of the molecular and cellular mechanisms underlying the disease, all therapeutics currently available only act to improve symptoms and do not stop the disease process. It is therefore imperative that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson's. Drug repurposing has been recognized as being equally as promising as de novo drug discovery in the field of neurodegeneration and Parkinson's disease specifically. In this work, we utilize a transgenic Drosophila model of Parkinson's disease, made by expressing human alpha-synuclein in the Drosophila brain, to validate two repurposed compounds: astemizole and ketoconazole. Both have been computationally predicted to have an ameliorative effect on Parkinson's disease, but neither had been tested using an in vivo model of the disease. After treating the flies in parallel, results showed that both drugs rescue the motor phenotype that is developed by the Drosophila model with age, but only ketoconazole treatment reversed the increased dopaminergic neuron death also observed in these models, which is a hallmark of Parkinson's disease. In addition to validating the predicted improvement in Parkinson's disease symptoms for both drugs and revealing the potential neuroprotective activity of ketoconazole, these results highlight the value of Drosophila models of Parkinson's disease as key tools in the context of in vivo drug discovery, drug repurposing, and prioritization of hits, especially when coupled with computational predictions.

  15. Elevated C-reactive protein and self-reported disease activity in systemic lupus erythematosus

    PubMed Central

    Eudy, AM; Vines, AI; Dooley, MA; Cooper, GS; Parks, CG

    2014-01-01

    C-reactive protein (CRP), a biomarker of inflammation, has been associated with increased disease activity in rheumatoid arthritis. However, the association in systemic lupus erythematosus (SLE) remains unclear. We examined the association of CRP with self-reported disease activity in the Carolina Lupus Study and described differences by sociodemographic characteristics. The study included baseline and three-year follow-up data on 107 African-American and 69 Caucasian SLE patients enrolled at a median 13 months since diagnosis. Models estimated prevalence differences in the association of baseline CRP with self-reported flares, adjusting for age, sex, race and education. Active disease or flare was reported by 59% at baseline and 58% at follow-up. Higher CRP (>10 μg/ml vs. <3 μg/ml) was associated with a 17% (95% CI: −20, 53%) higher prevalence of flare at baseline and a 26% (95% CI: −9, 62%) higher prevalence of flare at follow-up. These CRP-flare associations were notably stronger in patients with lower education at baseline and in African Americans at follow-up. These findings suggest CRP may be a useful marker in studies of SLE health disparities. PMID:25057037

  16. Inflammatory activity in Crohn disease: ultrasound findings.

    PubMed

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  17. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson's disease.

    PubMed

    Siddique, Yasir Hasan; Naz, Falaq; Jyoti, Smita; Ali, Fahad; Fatima, Ambreen; Rahul; Khanam, Saba

    2016-04-01

    The role of Geraniol was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. Geraniol at final concentration of 10, 20 and 40μM were mixed in the diet and the flies were allowed to feed on it for 24 days. The effect of geraniol was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl, glutathione, dopamine content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of PD model flies to 10, 20 and 40μM of geraniol results in a significant delay in the loss of climbing ability (p<0.05), improved activity pattern reduced the oxidative stress (p<0.05) in the brains of transgenic Drosophila as compared to unexposed PD model flies. The results suggest that geraniol is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alzheimer's disease: insights from Drosophila melanogaster models

    PubMed Central

    Moloney, Aileen; Sattelle, David B.; Lomas, David A.; Crowther, Damian C.

    2010-01-01

    The power of fruit fly genetics is being deployed against some of the most intractable and economically significant problems in modern medicine, the neurodegenerative diseases. Fly models of Alzheimer's disease can be exposed to the rich diversity of biological techniques that are available to the community and are providing new insights into disease mechanisms, and assisting in the identification of novel targets for therapy. Similar approaches might also help us to interpret the results of genome-wide association studies of human neurodegenerative diseases by allowing us to triage gene “hits” according to whether a candidate risk factor gene has a modifying effect on the disease phenotypes in fly model systems. PMID:20036556

  19. FlyBase portals to human disease research using Drosophila models

    PubMed Central

    Millburn, Gillian H.; Crosby, Madeline A.; Gramates, L. Sian; Tweedie, Susan

    2016-01-01

    ABSTRACT The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format ­­– using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) – to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. PMID:26935103

  20. FlyBase portals to human disease research using Drosophila models.

    PubMed

    Millburn, Gillian H; Crosby, Madeline A; Gramates, L Sian; Tweedie, Susan

    2016-03-01

    The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format --- using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) - to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. © 2016. Published by The Company of Biologists Ltd.

  1. Physical activity, diet, and risk of Alzheimer disease.

    PubMed

    Scarmeas, Nikolaos; Luchsinger, Jose A; Schupf, Nicole; Brickman, Adam M; Cosentino, Stephanie; Tang, Ming X; Stern, Yaakov

    2009-08-12

    Both higher adherence to a Mediterranean-type diet and more physical activity have been independently associated with lower Alzheimer disease (AD) risk but their combined association has not been investigated. To investigate the combined association of diet and physical activity with AD risk. Prospective cohort study of 2 cohorts comprising 1880 community-dwelling elders without dementia living in New York, New York, with both diet and physical activity information available. Standardized neurological and neuropsychological measures were administered approximately every 1.5 years from 1992 through 2006. Adherence to a Mediterranean-type diet (scale of 0-9; trichotomized into low, middle, or high; and dichotomized into low or high) and physical activity (sum of weekly participation in various physical activities, weighted by the type of physical activity [light, moderate, vigorous]; trichotomized into no physical activity, some, or much; and dichotomized into low or high), separately and combined, were the main predictors in Cox models. Models were adjusted for cohort, age, sex, ethnicity, education, apolipoprotein E genotype, caloric intake, body mass index, smoking status, depression, leisure activities, a comorbidity index, and baseline Clinical Dementia Rating score. Time to incident AD. A total of 282 incident AD cases occurred during a mean (SD) of 5.4 (3.3) years of follow-up. When considered simultaneously, both Mediterranean-type diet adherence (compared with low diet score, hazard ratio [HR] for middle diet score was 0.98 [95% confidence interval {CI}, 0.72-1.33]; the HR for high diet score was 0.60 [95% CI, 0.42-0.87]; P = .008 for trend) and physical activity (compared with no physical activity, the HR for some physical activity was 0.75 [95% CI, 0.54-1.04]; the HR for much physical activity was 0.67 [95% CI, 0.47-0.95]; P = .03 for trend) were associated with lower AD risk. Compared with individuals neither adhering to the diet nor participating in

  2. Immunologic findings, thrombocytopenia and disease activity in lupus nephritis.

    PubMed Central

    Clark, W. F.; Linton, A. L.; Cordy, P. E.; Keown, P. E.; Lohmann, R. C.; Lindsay, R. M.

    1978-01-01

    Twenty patients with nephritis due to systemic lupus erythematosus were followed up for a mean of 34 months after renal biopsy with serial determinations of total serum complement and C3 and C4 concentrations, binding of deoxyribonucleic acid (DNA), antinuclear antibody pattern and platelet count. There were 25 episodes of nonhematologic observed disease activity in 16 of the 20 patients; elevated DNA binding and thrombocytopenia correlated well with these episodes. The mean platelet count during episodes of observed disease activity was 96 +/- 42 X 10(9)/L, which was significantly different from the mean count of 248 +/- 90 X 10(9)/L during disease quiescence. The proportion of false-positive results with the immunologic tests varied from 25% to 67% and with platelet counts it was 11%. It is suggested that thrombocytopenia may be a simple and accurate index of disease activity in lupus nephritis. PMID:350367

  3. Clean copy association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows.

    PubMed

    Williams, J; Ntallaris, T; Routly, J E; Jones, D N; Cameron, J; Holman-Coates, A; Smith, R F; Humblot, P; Dobson, H

    2018-05-31

    We have previously established that the efficiency of identifying oestrus with activity-sensing devices can be compromised by common production diseases; the present study was undertaken to determine how these diseases may affect device readings. A total of 67 Holstein-Friesian cows, >20 days postpartum, were equipped with activity-sensing neck collars and pedometers, and simultaneous milk progesterone profiles were also monitored twice a week. The influences of common production stressors on maximum activity and progesterone values were analysed. Approximately 30% potential oestrus events (low progesterone value between two high values) remained unrecognised by both activity methods, and progesterone values in these animals were higher on the potential day of oestrus when both activity methods did not detect an event (0.043 ± 0.004 versus 0.029 ± 0.004 ng/mL; P = 0.03). Data from a subset of 45 cows (two events each) were subjected to mixed models and multiple regression modelling to investigate associations with production diseases. Cow motor activity was lower in lame cows. Maximum progesterone concentrations prior to oestrus increased as time postpartum and body condition score (BCS) increased. There were also fewer days of low progesterone prior to oestrus associated with increases in BCS and maximum progesterone concentrations prior to oestrus. In conclusion, lameness was associated with lower activity values, but this suppression was insufficient to account for lowered oestrus detection efficiency of either device. However, associations were identified between production diseases and progesterone profiles. Copyright © 2018. Published by Elsevier Inc.

  4. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    PubMed

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.

  5. Rodent Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis

    PubMed Central

    Imajo, Kento; Yoneda, Masato; Kessoku, Takaomi; Ogawa, Yuji; Maeda, Shin; Sumida, Yoshio; Hyogo, Hideyuki; Eguchi, Yuichiro; Wada, Koichiro; Nakajima, Atsushi

    2013-01-01

    Research in nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), has been limited by the availability of suitable models for this disease. A number of rodent models have been described in which the relevant liver pathology develops in an appropriate metabolic context. These models are promising tools for researchers investigating one of the key issues of NASH: not so much why steatosis occurs, but what causes the transition from simple steatosis to the inflammatory, progressive fibrosing condition of steatohepatitis. The different rodent models can be classified into two large groups. The first includes models in which the disease is acquired after dietary or pharmacological manipulation, and the second, genetically modified models in which liver disease develops spontaneously. To date, no single rodent model has encompassed the full spectrum of human disease progression, but individual models can imitate particular characteristics of human disease. Therefore, it is important that researchers choose the appropriate rodent models. The purpose of the present review is to discuss the metabolic abnormalities present in the currently available rodent models of NAFLD, summarizing the strengths and weaknesses of the established models and the key findings that have furthered our understanding of the disease’s pathogenesis. PMID:24192824

  6. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease.

    PubMed

    El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2015-07-01

    Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. Copyright © 2015 by the American Society of Nephrology.

  7. Physical Activity and the Risk of Gallstone Disease: A Systematic Review and Meta-analysis.

    PubMed

    Zhang, Yan-Peng; Zhao, Ya-Lei; Sun, Yu-Ling; Zhu, Rong-Tao; Wang, Wei-Jie; Li, Jian

    2017-10-01

    The role of physical activity in preventing gallstone disease independent of its effect on the body weight has not been well established. We performed a systematic review and meta-analysis of cohort and case-control studies to analyze this potential association. We searched PubMed and EMBASE to identify all published studies in English through April 2016. We pooled the relative risks (RRs) or odds ratios (ORs) and corresponding 95% confidence intervals (CIs) from individual studies using a random-effects model to investigate associations between physical activity and the risk of gallstone disease. A total of 16 studies comprising 19 independent reports of approximately 260,000 participants met the inclusion criteria, including 6 case-control studies and 13 cohort studies. In a pooled analysis of cohort studies, physical activity (in a comparison of the highest-level and the lowest-level groups) was associated with a reduced risk of gallstone disease (RR=0.85; 95% CI, 0.78-0.92; I=79.5%). For men, the RR was 0.76 (95% CI, 0.60-0.97), and for women, the RR was similar (RR=0.77; 95% CI, 0.66-0.91). In a dose-response analysis, the RR of gallstone disease was 0.87 (95% CI, 0.83-0.92; I=1.0%) per 20 metabolic equivalent-hours of recreational physical per week. In comparison, case-control studies yielded a stronger significant risk reduction for gallstone disease (OR=0.64; 95% CI, 0.46-0.90; I=76.6%). This study suggests an inverse association between physical activity and gallstone disease in both men and women; however, these findings should be interpreted cautiously because of study heterogeneity.

  8. Vulval skin conditions: disease activity and quality of life.

    PubMed

    Lawton, Sandra; Littlewood, Sheelagh

    2013-04-01

    Chronic vulval skin conditions are known to cause a significant reduction in the quality of life. Validated scales exist to measure the disease impact of general dermatologic conditions; however, none have been specifically derived to assess vulval disease. This study aimed to identify what symptoms and aspects of their lives are important for women with vulval skin conditions and to assess their usefulness in developing an assessment measure for monitoring disease activity and quality of life in women with vulval skin conditions. Participants were female patients attending a specialist vulval dermatology clinic at a tertiary referral center. Ten patients with a variety vulval skin conditions were interviewed to gain their experiences of living with a vulval skin condition. Using qualitative semistructured interviews, patients were asked open-ended questions about aspects of their disease that have affected them. These included the following: daily activities and social activities, physical functions, sexual activities, mobility, relationships, and an understanding of their vulval condition. Data was recorded, transcribed, and then analyzed thematically with all aspects regarding quality of life and symptoms identified. Results are presented according to common themes identified, specifically physical symptoms, body image, the impact of the condition on sexual and physical function, issues affecting daily activities, and the journey traveled when accessing medical care. This qualitative study adds to the evidence that chronic vulval conditions are distressing and cause significant morbidity. It highlights further the need to devise a validated questionnaire which can be used in clinical practice looking specifically at disease impact and quality of life. It can only enhance the clinical consultation and facilitate discussion which is disease and person specific.

  9. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration

    PubMed Central

    Snider, Jon; Müller, Martijn L.T.M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Frey, Kirk A; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Objective To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Background Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Methods Cross-sectional study. PD subjects, n=48 (40M); 69.4±7.4 (56–84) years old; 8.4±4.2 (2.5–20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7–53) and mean MMSE score 28.4 ± 1.9 (22–30) underwent [11C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Results Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R= −0.37, P=0.0099) but not with duration of exercise physical activity (R= −0.05, P= 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F=6.15, P=0.017) while accounting for effects of nigrostriatal degeneration (F=4.93, P=0.032), levodopa-equivalent dose (LED; F=1.07, P=0.31), age (F=4.37, P=0.043) and duration of disease (F=1.46, P=0.23; total model (F=5.76, P=0.0004). Conclusions Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. PMID:26330028

  10. Aerobic capacity over 16 years in patients with rheumatoid arthritis: Relationship to disease activity and risk factors for cardiovascular disease

    PubMed Central

    Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig

    2017-01-01

    The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years. PMID:29272303

  11. Aerobic capacity over 16 years in patients with rheumatoid arthritis: Relationship to disease activity and risk factors for cardiovascular disease.

    PubMed

    Hörnberg, Kristina; Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig

    2017-01-01

    The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years.

  12. Comparison of two models of inflammatory bowel disease in rats.

    PubMed

    Catana, Cristina Sorina; Magdas, Cristian; Tabaran, Flaviu Alexandru; Crăciun, Elena Cristina; Deak, Georgiana; Magdaş, Virginia Ana; Cozma, Vasile; Gherman, Călin Mircea; Berindan-Neagoe, Ioana; Dumitraşcu, Dan Lucian

    2018-03-26

    There is a need for experimental animal models for inflammatory bowel diseases (IBD), but no proposed model has been unanimously accepted. The aim of this study was to develop 2 affordable models of IBD in rats and to compare them. We produced IBD in rats using either dextran sodium sulfate (DSS) or 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The requirements for experimental models were: a predictable clinical course, histopathology and inflammation similar to human ulcerative colitis (UC) and Crohn's disease (CD). The effect of acute administration of DSS and TNBS on oxidative stress (as measured by the assessment of glutathione peroxidase - GPx) was verified. The activity of whole blood GPx was measured using a commercially available Randox kit (Crumlin, UK). The administration of DSS increased GPx activity compared to the control and TNBS-treated groups, but not to a statistically significant degree. Histological examination of the colonic mucosa following the administration of DSS showed multifocal erosions with minimal to mild inflammatory infiltrate, mainly by polymorphonuclear cells (PMN), lymphocytes and plasma cells. For TNBS-induced colitis, the histological changes manifested as multifocal areas of ulcerative colitis with mild to severe inflammatory infiltrate. Whole blood GPx values displayed a direct dependence on the chemical agent used. Our results show a correlation between histopathology, proinflammatory state and oxidative stress. The experimental DSSor TNBS-induced bowel inflammation used in this study corresponds to human IBD and is reproducible with characteristics indicative of acute inflammation in the case of the protocols mentioned.

  13. In vivo optical activation of astrocytes as a potential therapeutic strategy for neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Xue, Zhong; Wong, Stephen T. C.

    2013-03-01

    Neurovascular dysfunction in many neurodegenerative diseases, such as Alzheimer's disease (AD), reduces blood flow to affected brain areas and causes neuronal dysfunction and loss. A new optical imaging technique is developed to activate astrocytes in live animal models in order to investigate the increase of local cerebral blood flow as a potential therapeutic strategy for AD. The technique uses fluorescent labeling of vasculature and astrocytes coupled with intravital 2-photon microscopy to visualize the astrocyte-vasculature interactions in live animals. Using femtosecond laser stimulation, calcium uncaging is applied to specifically target and activate astrocytes in vivo with high spatial and temporal resolutions. Intravital 2-photon microscopy imaging was employed to demonstrate that single endfoot optical activation around an arteriole induced a 25% increase in arteriole diameter, which in turn increased cerebral local blood flow in down-stream capillaries. This quantitative result indicates the potential of using optical activation of astrocytes in afflicted brain areas of neurodegeneration to restore normal neurovascular functions.

  14. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics.

    PubMed

    Aguisanda, Francis; Yeh, Charles D; Chen, Catherine Z; Li, Rong; Beers, Jeanette; Zou, Jizhong; Thorne, Natasha; Zheng, Wei

    2017-06-28

    Wolman disease (WD) is a rare lysosomal storage disorder that is caused by mutations in the LIPA gene encoding lysosomal acid lipase (LAL). Deficiency in LAL function causes accumulation of cholesteryl esters and triglycerides in lysosomes. Fatality usually occurs within the first year of life. While an enzyme replacement therapy has recently become available, there is currently no small-molecule drug treatment for WD. We have generated induced pluripotent stem cells (iPSCs) from two WD patient dermal fibroblast lines and subsequently differentiated them into neural stem cells (NSCs). The WD NSCs exhibited the hallmark disease phenotypes of neutral lipid accumulation, severely deficient LAL activity, and increased LysoTracker dye staining. Enzyme replacement treatment dramatically reduced the WD phenotype in these cells. In addition, δ-tocopherol (DT) and hydroxypropyl-beta-cyclodextrin (HPBCD) significantly reduced lysosomal size in WD NSCs, and an enhanced effect was observed in DT/HPBCD combination therapy. The results demonstrate that these WD NSCs are valid cell-based disease models with characteristic disease phenotypes that can be used to evaluate drug efficacy and screen compounds. DT and HPBCD both reduce LysoTracker dye staining in WD cells. The cells may be used to further dissect the pathology of WD, evaluate compound efficacy, and serve as a platform for high-throughput drug screening to identify new compounds for therapeutic development.

  15. Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy.

    PubMed

    Choudhury, Sabanum; Borah, Anupom

    2015-07-01

    Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling

    PubMed Central

    Gonzales, Erin D.; Tanenhaus, Anne K.; Zhang, Jiabin; Chaffee, Ryan P.; Yin, Jerry C.P.

    2016-01-01

    Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention. PMID:26604145

  17. Usefulness of C-Reactive Protein as a Disease Activity Marker in Crohn’s Disease according to the Location of Disease

    PubMed Central

    Yang, Dong-Hoon; Yang, Suk-Kyun; Park, Sang Hyoung; Lee, Ho-Su; Boo, Sun-Jin; Park, Jae-Ho; Na, Soo Young; Jung, Kee Wook; Kim, Kyung-Jo; Ye, Byong Duk; Byeon, Jeong-Sik; Myung, Seung-Jae; Kim, Jin-Ho

    2015-01-01

    Background/Aims C-reactive protein (CRP) is a serologic activity marker in Crohn’s disease (CD), but it may be less useful in evaluating CD activity in ileal CD patients. We aimed to investigate the usefulness of CRP as a disease activity marker in CD according to disease location. Methods Korean CD patients in a single hospital were evaluated. Factors associated with elevated CRP concentration at the time of diagnosis of CD and the association between the physician’s prediction regarding upcoming surgery and the sites of the lesions directly related to surgery were analyzed. Results Of 435 CD patients, 25.7%, 6.9%, and 67.4% had ileal, colonic, and ileocolonic CD, respectively. Multivariate analysis revealed that an elevated erythrocyte sedimentation rate, reduced serum albumin, CD activity index (CDAI) >220, and ileocolonic/colonic location were associated with an elevated CRP level and that the CRP level was significantly correlated with the CDAI in all CD patients (γ=0.466, p<0.01). However, the correlation coefficient was dependent on the location, with values of 0.395, 0.456, and 0.527 in patients with an ileal, ileocolonic, and colonic disease location, respectively. Surgery for ileal lesions was less predictable than surgery for ileocolonic or colonic lesions during follow-up. Conclusions CRP is less useful as a disease activity marker in patients with ileal CD than those with ileocolonic or colonic CD. PMID:25170056

  18. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  19. Modelling human disease with pluripotent stem cells.

    PubMed

    Siller, Richard; Greenhough, Sebastian; Park, In-Hyun; Sullivan, Gareth J

    2013-04-01

    Recent progress in the field of cellular reprogramming has opened up the doors to a new era of disease modelling, as pluripotent stem cells representing a myriad of genetic diseases can now be produced from patient tissue. These cells can be expanded and differentiated to produce a potentially limitless supply of the affected cell type, which can then be used as a tool to improve understanding of disease mechanisms and test therapeutic interventions. This process requires high levels of scrutiny and validation at every stage, but international standards for the characterisation of pluripotent cells and their progeny have yet to be established. Here we discuss the current state of the art with regard to modelling diseases affecting the ectodermal, mesodermal and endodermal lineages, focussing on studies which have demonstrated a disease phenotype in the tissue of interest. We also discuss the utility of pluripotent cell technology for the modelling of cancer and infectious disease. Finally, we spell out the technical and scientific challenges which must be addressed if the field is to deliver on its potential and produce improved patient outcomes in the clinic.

  20. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  1. Deterministic and stochastic CTMC models from Zika disease transmission

    NASA Astrophysics Data System (ADS)

    Zevika, Mona; Soewono, Edy

    2018-03-01

    Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.

  2. The Neuroprotection of Low-Dose Morphine in Cellular and Animal Models of Parkinson’s Disease Through Ameliorating Endoplasmic Reticulum (ER) Stress and Activating Autophagy

    PubMed Central

    Wang, Bing; Su, Cun-Jin; Liu, Teng-Teng; Zhou, Yan; Feng, Yu; Huang, Ya; Liu, Xu; Wang, Zhi-Hong; Chen, Li-Hua; Luo, Wei-Feng; Liu, Tong

    2018-01-01

    Parkinson’s disease (PD) is a common neurodegenerative disease characterized the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Brain endogenous morphine biosynthesis was reported to be impaired in PD patients and exogenous morphine attenuated 6-hydroxydopamine (6-OHDA)-induced cell death in vitro. However, the mechanisms underlying neuroprotection of morphine in PD are still unclear. In the present study, we investigated the neuroprotective effects of low-dose morphine in cellular and animal models of PD and the possible underlying mechanisms. Herein, we found 6-OHDA and rotenone decreased the mRNA expression of key enzymes involved in endogenous morphine biosynthesis in SH-SY5Y cells. Incubation of morphine prevented 6-OHDA-induced apoptosis, restored mitochondrial membrane potential, and inhibited the accumulation of intracellular reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, morphine attenuated the 6-OHDA-induced endoplasmic reticulum (ER) stress possible by activating autophagy in SH-SY5Y cells. Finally, oral application of low-dose morphine significantly improved midbrain tyrosine hydroxylase (TH) expression, decreased apomorphine-evoked rotation and attenuated pain hypersensitivity in a 6-OHDA-induced PD rat model, without the risks associated with morphine addiction. Feeding of low-dose morphine prolonged the lifespan and improved the motor function in several transgenic Drosophila PD models in gender, genotype, and dose-dependent manners. Overall, our results suggest that neuroprotection of low-dose morphine may be mediated by attenuating ER stress and oxidative stress, activating autophagy, and ameliorating mitochondrial function. PMID:29731707

  3. A complete categorization of multiscale models of infectious disease systems.

    PubMed

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  4. Multiscale Modeling of Drug-induced Effects of ReDuNing Injection on Human Disease: From Drug Molecules to Clinical Symptoms of Disease

    NASA Astrophysics Data System (ADS)

    Luo, Fang; Gu, Jiangyong; Zhang, Xinzhuang; Chen, Lirong; Cao, Liang; Li, Na; Wang, Zhenzhong; Xiao, Wei; Xu, Xiaojie

    2015-05-01

    ReDuNing injection (RDN) is a patented traditional Chinese medicine, and the components of it were proven to have antiviral and important anti-inflammatory activities. Several reports showed that RDN had potential effects in the treatment of influenza and pneumonia. Though there were several experimental reports about RDN, the experimental results were not enough and complete due to that it was difficult to predict and verify the effect of RDN for a large number of human diseases. Here we employed multiscale model by integrating molecular docking, network pharmacology and the clinical symptoms information of diseases and explored the interaction mechanism of RDN on human diseases. Meanwhile, we analyzed the relation among the drug molecules, target proteins, biological pathways, human diseases and the clinical symptoms about it. Then we predicted potential active ingredients of RDN, the potential target proteins, the key pathways and related diseases. These attempts may offer several new insights to understand the pharmacological properties of RDN and provide benefit for its new clinical applications and research.

  5. Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.

    PubMed

    Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim

    2017-07-01

    Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.

  6. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.

    PubMed

    Schweig, Jonas Elias; Yao, Hailan; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Mouzon, Benoit; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2017-09-06

    The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

  7. Agent-based modeling of noncommunicable diseases: a systematic review.

    PubMed

    Nianogo, Roch A; Arah, Onyebuchi A

    2015-03-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application.

  8. Serum protease activity in chronic kidney disease patients: The GANI_MED renal cohort

    PubMed Central

    Wolke, Carmen; Teumer, Alexander; Endlich, Karlhans; Endlich, Nicole; Rettig, Rainer; Stracke, Sylvia; Fiene, Beate; Aymanns, Simone; Felix, Stephan B; Hannemann, Anke

    2016-01-01

    Serum or plasma proteases have been associated with various diseases including cancer, inflammation, or reno-cardiovascular diseases. We aimed to investigate whether the enzymatic activities of serum proteases are associated with the estimated glomerular filtration rate (eGFR) in patients with different stages of chronic kidney disease (CKD). Our study population comprised 268 participants of the “Greifswald Approach to Individualized Medicine” (GANI_MED) cohort. Enzymatic activity of aminopeptidase A, aminopeptidase B, alanyl (membrane) aminopeptidase, insulin-regulated aminopeptidase, puromycin-sensitive aminopeptidase, leucine aminopeptidase 3, prolyl-endopeptidase (PEP), dipeptidyl peptidase 4 (DPP4), angiotensin I-converting enzyme, and angiotensin I-converting enzyme 2 (ACE2) proteases was measured in serum. Linear regression of the respective protease was performed on kidney function adjusted for age and sex. Kidney function was modeled either by the continuous Modification of Diet in Renal Disease (MDRD)-based eGFR or dichotomized by eGFR < 15 mL/min/1.73 m2 or <45 mL/min/1.73 m2, respectively. Results with a false discovery rate below 0.05 were deemed statistically significant. Among the 10 proteases investigated, only the activities of ACE2 and DPP4 were correlated with eGFR. Patients with lowest eGFR exhibited highest DPP4 and ACE2 activities. DPP4 and PEP were correlated with age, but all other serum protease activities showed no associations with age or sex. Our data indicate that ACE2 and DPP4 enzymatic activity are associated with the eGFR in patients with CKD. This finding distinguishes ACE2 and DPP4 from other serum peptidases analyzed and clearly indicates that further analyses are warranted to identify the precise role of these serum ectopeptidases in the pathogenesis of CKD and to fully elucidate underlying molecular mechanisms. Impact statement • Renal and cardiac diseases are very common and often occur concomitantly

  9. Serum protease activity in chronic kidney disease patients: The GANI_MED renal cohort.

    PubMed

    Wolke, Carmen; Teumer, Alexander; Endlich, Karlhans; Endlich, Nicole; Rettig, Rainer; Stracke, Sylvia; Fiene, Beate; Aymanns, Simone; Felix, Stephan B; Hannemann, Anke; Lendeckel, Uwe

    2017-03-01

    Serum or plasma proteases have been associated with various diseases including cancer, inflammation, or reno-cardiovascular diseases. We aimed to investigate whether the enzymatic activities of serum proteases are associated with the estimated glomerular filtration rate (eGFR) in patients with different stages of chronic kidney disease (CKD). Our study population comprised 268 participants of the "Greifswald Approach to Individualized Medicine" (GANI_MED) cohort. Enzymatic activity of aminopeptidase A, aminopeptidase B, alanyl (membrane) aminopeptidase, insulin-regulated aminopeptidase, puromycin-sensitive aminopeptidase, leucine aminopeptidase 3, prolyl-endopeptidase (PEP), dipeptidyl peptidase 4 (DPP4), angiotensin I-converting enzyme, and angiotensin I-converting enzyme 2 (ACE2) proteases was measured in serum. Linear regression of the respective protease was performed on kidney function adjusted for age and sex. Kidney function was modeled either by the continuous Modification of Diet in Renal Disease (MDRD)-based eGFR or dichotomized by eGFR < 15 mL/min/1.73 m 2 or <45 mL/min/1.73 m 2 , respectively. Results with a false discovery rate below 0.05 were deemed statistically significant. Among the 10 proteases investigated, only the activities of ACE2 and DPP4 were correlated with eGFR. Patients with lowest eGFR exhibited highest DPP4 and ACE2 activities. DPP4 and PEP were correlated with age, but all other serum protease activities showed no associations with age or sex. Our data indicate that ACE2 and DPP4 enzymatic activity are associated with the eGFR in patients with CKD. This finding distinguishes ACE2 and DPP4 from other serum peptidases analyzed and clearly indicates that further analyses are warranted to identify the precise role of these serum ectopeptidases in the pathogenesis of CKD and to fully elucidate underlying molecular mechanisms. Impact statement • Renal and cardiac diseases are very common and often occur concomitantly

  10. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM)

    PubMed Central

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Background Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Methods Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. Results This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Conclusions Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to

  11. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM).

    PubMed

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications

  12. Measures of Patient Activation and Social Support in a Peer-Led Support Network for Women With Cardiovascular Disease.

    PubMed

    Witt, Dawn; Benson, Gretchen; Campbell, Susan; Sillah, Arthur; Berra, Kathy

    Social support has been associated with beneficial effects on many disease states and overall health and well-being. However, there is limited research exploring the impact of peer-led support models among women living with coronary heart disease. This study describes the structure of peer-led support groups offered by WomenHeart (WH): The National Coalition for Women Living with Heart Disease, and assesses WH participants' quality of life and social, emotional, and physical health. Participants were recruited from 50 WH groups. A 70-item online survey was administered, and the main analytic sample included 157 women. Multivariate logistic regression was used to examine the association between patient activation levels (lower activation levels: 1, 2 vs higher activation levels: 3, 4) and social support scores (range: lowest 8 to highest 34), adjusting for age. High levels of social support, patient activation, physical activity, and low levels of stress, anxiety, and depression were reported. Those who were at or above the median for the social support measures (indicating high levels of social support) had greater odds of high levels of patient activation (level 3 or 4) than individuals reporting low levels of social support (OR = 2.23; 95% CI, 1.04-4.76; P = .012). Women who regularly attended a support group by a trained peer leader were highly engaged in their health care and had low levels of stress, anxiety, and depression. These findings lend credibility to the value of the peer support model and could potentially be replicated in other disease states to enhance patient care.

  13. Modulation of inflammation in transgenic models of Alzheimer’s disease

    PubMed Central

    2014-01-01

    Over the past decade the process of inflammation has been a focus of increasing interest in the Alzheimer’s disease (AD) field, not only for its potential role in neuronal degeneration but also as a promising therapeutic target. However, recent research in this field has provided divergent outcomes, largely due to the use of different models and different stages of the disease when the investigations have been carried out. It is now accepted that microglia, and possibly astrocytes, change their activation phenotype during ageing and the stage of the disease, and therefore these are important factors to have in mind to define the function of different inflammatory components as well as potential therapies. Modulating inflammation using animal models of AD has offered the possibility to investigate inflammatory components individually and manipulate inflammatory genes in amyloid precursor protein and tau transgenics independently. This has also offered some hints on the mechanisms by which these factors may affect AD pathology. In this review we examine the different transgenic approaches and treatments that have been reported to modulate inflammation using animal models of AD. These studies have provided evidence that enhancing inflammation is linked with increases in amyloid-beta (Aβ) generation, Aβ aggregation and tau phosphorylation. However, the alterations on tau phosphorylation can be independent of changes in Aβ levels by these inflammatory mediators. PMID:24490742

  14. Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies

    PubMed Central

    Riddle, Dawn M.; Zhang, Bin

    2017-01-01

    Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets. SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis. PMID:28522732

  15. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.

    PubMed

    Budas, Grant R; Boehm, Mario; Kojonazarov, Baktybek; Viswanathan, Gayathri; Tian, Xia; Veeroju, Swathi; Novoyatleva, Tatyana; Grimminger, Friedrich; Hinojosa-Kirschenbaum, Ford; Ghofrani, Hossein A; Weissmann, Norbert; Seeger, Werner; Liles, John T; Schermuly, Ralph T

    2018-02-01

    Progression of pulmonary arterial hypertension (PAH) is associated with pathological remodeling of the pulmonary vasculature and the right ventricle (RV). Oxidative stress drives the remodeling process through activation of MAPKs (mitogen-activated protein kinases), which stimulate apoptosis, inflammation, and fibrosis. We investigated whether pharmacological inhibition of the redox-sensitive apical MAPK, ASK1 (apoptosis signal-regulating kinase 1), can halt the progression of pulmonary vascular and RV remodeling. A selective, orally available ASK1 inhibitor, GS-444217, was administered to two preclinical rat models of PAH (monocrotaline and Sugen/hypoxia), a murine model of RV pressure overload induced by pulmonary artery banding, and cellular models. Oral administration of GS-444217 dose dependently reduced pulmonary arterial pressure and reduced RV hypertrophy in PAH models. The therapeutic efficacy of GS-444217 was associated with reduced ASK1 phosphorylation, reduced muscularization of the pulmonary arteries, and reduced fibrotic gene expression in the RV. Importantly, efficacy was observed when GS-444217 was administered to animals with established disease and also directly reduced cardiac fibrosis and improved cardiac function in a model of isolated RV pressure overload. In cellular models, GS-444217 reduced phosphorylation of p38 and JNK (c-Jun N-terminal kinase) induced by adenoviral overexpression of ASK1 in rat cardiomyocytes and reduced activation/migration of primary mouse cardiac fibroblasts and human pulmonary adventitial fibroblasts derived from patients with PAH. ASK1 inhibition reduced pathological remodeling of the pulmonary vasculature and the right ventricle and halted progression of pulmonary hypertension in rodent models. These preclinical data inform the first description of a causal role of ASK1 in PAH disease pathogenesis.

  16. [Prediction of potential geographic distribution of Lyme disease in Qinghai province with Maximum Entropy model].

    PubMed

    Zhang, Lin; Hou, Xuexia; Liu, Huixin; Liu, Wei; Wan, Kanglin; Hao, Qin

    2016-01-01

    To predict the potential geographic distribution of Lyme disease in Qinghai by using Maximum Entropy model (MaxEnt). The sero-diagnosis data of Lyme disease in 6 counties (Huzhu, Zeku, Tongde, Datong, Qilian and Xunhua) and the environmental and anthropogenic data including altitude, human footprint, normalized difference vegetation index (NDVI) and temperature in Qinghai province since 1990 were collected. By using the data of Huzhu Zeku and Tongde, the prediction of potential distribution of Lyme disease in Qinghai was conducted with MaxEnt. The prediction results were compared with the human sero-prevalence of Lyme disease in Datong, Qilian and Xunhua counties in Qinghai. Three hot spots of Lyme disease were predicted in Qinghai, which were all in the east forest areas. Furthermore, the NDVI showed the most important role in the model prediction, followed by human footprint. Datong, Qilian and Xunhua counties were all in eastern Qinghai. Xunhua was in hot spot areaⅡ, Datong was close to the north of hot spot area Ⅲ, while Qilian with lowest sero-prevalence of Lyme disease was not in the hot spot areas. The data were well modeled in MaxEnt (Area Under Curve=0.980). The actual distribution of Lyme disease in Qinghai was in consistent with the results of the model prediction. MaxEnt could be used in predicting the potential distribution patterns of Lyme disease. The distribution of vegetation and the range and intensity of human activity might be related with Lyme disease distribution.

  17. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.

  18. A mathematical model of insulin resistance in Parkinson's disease.

    PubMed

    Braatz, Elise M; Coleman, Randolph A

    2015-06-01

    This paper introduces a mathematical model representing the biochemical interactions between insulin signaling and Parkinson's disease. The model can be used to examine the changes that occur over the course of the disease as well as identify which processes would be the most effective targets for treatment. The model is mathematized using biochemical systems theory (BST). It incorporates a treatment strategy that includes several experimental drugs along with current treatments. In the past, BST models of neurodegeneration have used power law analysis and simulation (PLAS) to model the system. This paper recommends the use of MATLAB instead. MATLAB allows for more flexibility in both the model itself and in data analysis. Previous BST analyses of neurodegeneration began treatment at disease onset. As shown in this model, the outcomes of delayed, realistic treatment and full treatment at disease onset are significantly different. The delayed treatment strategy is an important development in BST modeling of neurodegeneration. It emphasizes the importance of early diagnosis, and allows for a more accurate representation of disease and treatment interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  20. Classic and new animal models of Parkinson's disease.

    PubMed

    Blesa, Javier; Phani, Sudarshan; Jackson-Lewis, Vernice; Przedborski, Serge

    2012-01-01

    Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.

  1. Preclinical models of Graves' disease and associated secondary complications.

    PubMed

    Moshkelgosha, Sajad; So, Po-Wah; Diaz-Cano, Salvador; Banga, J Paul

    2015-01-01

    Autoimmune thyroid disease is the most common organ-specific autoimmune disorder which consists of two opposing clinical syndromes, Hashimoto's thyroiditis and Graves' (hyperthyroidism) disease. Graves' disease is characterized by goiter, hyperthyroidism, and the orbital complication known as Graves' orbitopathy (GO), or thyroid eye disease. The hyperthyroidism in Graves' disease is caused by stimulation of function of thyrotropin hormone receptor (TSHR), resulting from the production of agonist antibodies to the receptor. A variety of induced mouse models of Graves' disease have been developed over the past two decades, with some reproducible models leading to high disease incidence of autoimmune hyperthyroidism. However, none of the models show any signs of the orbital manifestation of GO. We have recently developed an experimental mouse model of GO induced by immunization of the plasmid encoded ligand binding domain of human TSHR cDNA by close field electroporation that recapitulates the orbital pathology in GO. As in human GO patients, immune mice with hyperthyroid or hypothyroid disease induced by anti-TSHR antibodies exhibited orbital pathology and chemosis, characterized by inflammation of orbital muscles and extensive adipogenesis leading to expansion of the orbital retrobulbar space. Magnetic resonance imaging of the head region in immune mice showed a significant expansion of the orbital space, concurrent with proptosis. This review discusses the different strategies for developing mouse models in Graves' disease, with a particular focus on GO. Furthermore, it outlines how this new model will facilitate molecular investigations into pathophysiology of the orbital disease and evaluation of new therapeutic interventions.

  2. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  3. A Root water uptake model to compensate disease stress in citrus trees

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kambhammettu, B. P.; Lad, R. S.; Suradhaniwar, S.

    2017-12-01

    Plant root water uptake (RWU) controls a number of hydrologic fluxes in simulating unsaturated flow and transport processes. Variable saturated models that simulate soil-water-plant interactions within the rizhosphere do not account for the health of the tree. This makes them difficult to analyse RWU patterns for diseased trees. Improper irrigation management activities on diseased (Phytopthora spp. affected) citrus trees of central India has resulted in a significant reduction in crop yield accompanied by disease escalation. This research aims at developing a quantitative RWU model that accounts for the reduction in water stress as a function of plant disease level (hereafter called as disease stress). A total of four research plots with varying disease severity were considered for our field experimentation. A three-dimensional electrical resistivity tomography (ERT) was performed to understand spatio-temporal distribution in soil moisture following irrigation. Evaporation and transpiration were monitored daily using micro lysimeter and sap flow meters respectively. Disease intensity was quantified (on 0 to 9 scale) using pathological analysis on soil samples. Pedo-physocal and pedo-electric relations were established under controlled laboratory conditions. A non-linear disease stress response function for citrus trees was derived considering phonological, hydrological, and pathological parameters. Results of numerical simulations conclude that the propagation of error in RWU estimates by ignoring the health condition of the tree is significant. The developed disease stress function was then validated in the presence of deficit water and nutrient stress conditions. Results of numerical analysis showed a good agreement with experimental data, corroborating the need for alternate management practices for disease citrus trees.

  4. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening

    PubMed Central

    Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho

    2016-01-01

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615

  5. [Stochastic model of infectious diseases transmission].

    PubMed

    Ruiz-Ramírez, Juan; Hernández-Rodríguez, Gabriela Eréndira

    2009-01-01

    Propose a mathematic model that shows how population structure affects the size of infectious disease epidemics. This study was conducted during 2004 at the University of Colima. It used generalized small-world network topology to represent contacts that occurred within and between families. To that end, two programs in MATLAB were conducted to calculate the efficiency of the network. The development of a program in the C programming language was also required, that represents the stochastic susceptible-infectious-removed model, and simultaneous results were obtained for the number of infected people. An increased number of families connected by meeting sites impacted the size of the infectious diseases by roughly 400%. Population structure influences the rapid spread of infectious diseases, reaching epidemic effects.

  6. Effect of psychological therapy on disease activity, psychological comorbidity, and quality of life in inflammatory bowel disease: a systematic review and meta-analysis.

    PubMed

    Gracie, David J; Irvine, Andrew J; Sood, Ruchit; Mikocka-Walus, Antonina; Hamlin, P John; Ford, Alexander C

    2017-03-01

    Inflammatory bowel disease is associated with psychological comorbidity and impaired quality of life. Psychological comorbidity could affect the natural history of inflammatory bowel disease. Psychological therapies might therefore have beneficial effects on disease activity, mood, and quality of life in patients with inflammatory bowel disease. We did a systematic review and meta-analysis examining these issues. In this systematic review and meta-analysis, we searched MEDLINE, Embase, Embase Classic, PsychINFO, and the Cochrane Central Register of Controlled Trials for articles published between 1947 and Sept 22, 2016. Randomised controlled trials (RCTs) recruiting patients with inflammatory bowel disease aged at least 16 years that compared psychological therapy with a control intervention or usual treatment were eligible. We pooled dichotomous data to obtain relative risks of induction of remission in active disease or prevention of relapse of quiescent disease, with 95% CIs. We pooled continuous data to estimate standardised mean differences in disease activity indices, anxiety, depression, perceived stress, and quality-of-life scores in patients dichotomised into those with clinically active or quiescent disease, with 95% CIs. We extracted data from published reports and contacted the original investigators of studies for which the required data were not available. We pooled all data using a random-effects model. The search identified 1824 studies, with 14 RCTs of 1196 patients eligible for inclusion. The relative risk of relapse of quiescent inflammatory bowel disease with psychological therapy versus control was 0·98 (95% CI 0·77-1·24; p=0·87; I 2 =50%; six trials; 518 patients). We observed a significant difference in depression scores (standardised mean difference -0·17 [-0·33 to -0·01]; p=0·04; I 2 =0%; seven trials; 605 patients) and quality of life (0·30 [0·07-0·52]; p=0·01; I 2 =42%; nine trials; 578 patients) with psychological therapy

  7. Prolyl hydroxylase activity in serum and rectal mucosa in inflammatory bowel disease.

    PubMed Central

    Farthing, M F; Dick, A P; Heslop, G; Levene, C I

    1978-01-01

    Prolyl hydroxylase activity in rectal mucosa was found to be significantly greater in 11 patients with Crohn's disease than in 11 control subjects with the irritable bowel syndrome and 16 patients with ulcerative colitis (P less than 0.005). Seven of the patients with Crohn's disease had a histologically normal rectum. This abnormality in apparently normal mucosa supports the concept that Crohn's disease is a 'continuous' disease of the gastrointestinal tract. Although there was no significant difference in prolyl hydroxylase activity between control subjects and patients with ulcerative colitis, those patients with quiescent disease tended to have lower values than those with active mucosal inflammation. Prolyl hydroxylase activity could not, however, be detected in the sera of either healthy control subjects or patients with inflammatory bowel disease. PMID:210089

  8. Fetal Origins of Life Stage Disease: A Zebrafish Model for the ...

    EPA Pesticide Factsheets

    In the U.S., childhood obesity has more than doubled in children and quadrupled in adolescents in the past 30 years, affects 35% of adults, and costs the U.S. healthcare industry >$200 billion annually. The chemical environment in the womb may cause susceptibility to different life-stage and life-long metabolic diseases including obesity. The challenge is to understand if exposures during developmentally sensitive windows impact life-stage disease, such as obesity, by increasing adipose tissue mass. In vitro models lack the integrated systems approach needed to assess adipose development, while mammalian models are impractical in a screen of thousands of chemicals. Therefore, an obesogen screening method was developed to interrogate bioactivity using a full systems approach, in a vertebrate zebrafish model with complete metabolic activity, at a time when the full signaling repertoire is expressed and active, to optimally examine how chemical dose and duration impact life-stage adipose mass. A time-line for adipose depot formation was mapped in zebrafish 6−14 days post fertilization (dpf) using the lipophilic dye, Nile Red, in combination with fluorescent microscopy. Those time points were then used to investigate the impact of embryonic tributyltin chloride (TBT, a known obesogen) exposure (10nM daily renewal, 0−5dpf) on adipose mass. Fluorescent microscopy revealed adipose depots that were larger and appeared 2 days earlier in TBT treated compared to contro

  9. Women, men, and rheumatoid arthritis: analyses of disease activity, disease characteristics, and treatments in the QUEST-RA study.

    PubMed

    Sokka, Tuulikki; Toloza, Sergio; Cutolo, Maurizio; Kautiainen, Hannu; Makinen, Heidi; Gogus, Feride; Skakic, Vlado; Badsha, Humeira; Peets, Tõnu; Baranauskaite, Asta; Géher, Pál; Ujfalussy, Ilona; Skopouli, Fotini N; Mavrommati, Maria; Alten, Rieke; Pohl, Christof; Sibilia, Jean; Stancati, Andrea; Salaffi, Fausto; Romanowski, Wojciech; Zarowny-Wierzbinska, Danuta; Henrohn, Dan; Bresnihan, Barry; Minnock, Patricia; Knudsen, Lene Surland; Jacobs, Johannes Wg; Calvo-Alen, Jaime; Lazovskis, Juris; Pinheiro, Geraldo da Rocha Castelar; Karateev, Dmitry; Andersone, Daina; Rexhepi, Sylejman; Yazici, Yusuf; Pincus, Theodore

    2009-01-01

    Gender as a predictor of outcomes of rheumatoid arthritis (RA) has evoked considerable interest over the decades. Historically, there is no consensus whether RA is worse in females or males. Recent reports suggest that females are less likely than males to achieve remission. Therefore, we aimed to study possible associations of gender and disease activity, disease characteristics, and treatments of RA in a large multinational cross-sectional cohort of patients with RA called Quantitative Standard Monitoring of Patients with RA (QUEST-RA). The cohort includes clinical and questionnaire data from patients who were seen in usual care, including 6,004 patients at 70 sites in 25 countries as of April 2008. Gender differences were analyzed for American College of Rheumatology Core Data Set measures of disease activity, DAS28 (disease activity score using 28 joint counts), fatigue, the presence of rheumatoid factor, nodules and erosions, and the current use of prednisone, methotrexate, and biologic agents. Women had poorer scores than men in all Core Data Set measures. The mean values for females and males were swollen joint count-28 (SJC28) of 4.5 versus 3.8, tender joint count-28 of 6.9 versus 5.4, erythrocyte sedimentation rate of 30 versus 26, Health Assessment Questionnaire of 1.1 versus 0.8, visual analog scales for physician global estimate of 3.0 versus 2.5, pain of 4.3 versus 3.6, patient global status of 4.2 versus 3.7, DAS28 of 4.3 versus 3.8, and fatigue of 4.6 versus 3.7 (P < 0.001). However, effect sizes were small-medium and smallest (0.13) for SJC28. Among patients who had no or minimal disease activity (0 to 1) on SJC28, women had statistically significantly higher mean values compared with men in all other disease activity measures (P < 0.001) and met DAS28 remission less often than men. Rheumatoid factor was equally prevalent among genders. Men had nodules more often than women. Women had erosions more often than men, but the statistical significance

  10. Women, men, and rheumatoid arthritis: analyses of disease activity, disease characteristics, and treatments in the QUEST-RA Study

    PubMed Central

    Sokka, Tuulikki; Toloza, Sergio; Cutolo, Maurizio; Kautiainen, Hannu; Makinen, Heidi; Gogus, Feride; Skakic, Vlado; Badsha, Humeira; Peets, Tõnu; Baranauskaite, Asta; Géher, Pál; Újfalussy, Ilona; Skopouli, Fotini N; Mavrommati, Maria; Alten, Rieke; Pohl, Christof; Sibilia, Jean; Stancati, Andrea; Salaffi, Fausto; Romanowski, Wojciech; Zarowny-Wierzbinska, Danuta; Henrohn, Dan; Bresnihan, Barry; Minnock, Patricia; Knudsen, Lene Surland; Jacobs, Johannes WG; Calvo-Alen, Jaime; Lazovskis, Juris; Pinheiro, Geraldo da Rocha Castelar; Karateev, Dmitry; Andersone, Daina; Rexhepi, Sylejman; Yazici, Yusuf; Pincus, Theodore

    2009-01-01

    Introduction Gender as a predictor of outcomes of rheumatoid arthritis (RA) has evoked considerable interest over the decades. Historically, there is no consensus whether RA is worse in females or males. Recent reports suggest that females are less likely than males to achieve remission. Therefore, we aimed to study possible associations of gender and disease activity, disease characteristics, and treatments of RA in a large multinational cross-sectional cohort of patients with RA called Quantitative Standard Monitoring of Patients with RA (QUEST-RA). Methods The cohort includes clinical and questionnaire data from patients who were seen in usual care, including 6,004 patients at 70 sites in 25 countries as of April 2008. Gender differences were analyzed for American College of Rheumatology Core Data Set measures of disease activity, DAS28 (disease activity score using 28 joint counts), fatigue, the presence of rheumatoid factor, nodules and erosions, and the current use of prednisone, methotrexate, and biologic agents. Results Women had poorer scores than men in all Core Data Set measures. The mean values for females and males were swollen joint count-28 (SJC28) of 4.5 versus 3.8, tender joint count-28 of 6.9 versus 5.4, erythrocyte sedimentation rate of 30 versus 26, Health Assessment Questionnaire of 1.1 versus 0.8, visual analog scales for physician global estimate of 3.0 versus 2.5, pain of 4.3 versus 3.6, patient global status of 4.2 versus 3.7, DAS28 of 4.3 versus 3.8, and fatigue of 4.6 versus 3.7 (P < 0.001). However, effect sizes were small-medium and smallest (0.13) for SJC28. Among patients who had no or minimal disease activity (0 to 1) on SJC28, women had statistically significantly higher mean values compared with men in all other disease activity measures (P < 0.001) and met DAS28 remission less often than men. Rheumatoid factor was equally prevalent among genders. Men had nodules more often than women. Women had erosions more often than men, but

  11. Role of interleukin-23 as a biomarker in rheumatoid arthritis patients and its correlation with disease activity.

    PubMed

    Zaky, Doaa S E; El-Nahrery, Eslam M A

    2016-02-01

    IL-23 is a pro-inflammatory cytokine belonging to the IL-12 cytokine family. IL-23 is essential for the differentiation of Th17 lymphocytes, a subtype of T lymphocyte implicated in chronic inflammatory/autoimmune mediated diseases. Experimental models of arthritis and clinical indications have highlighted an important role for Th17 lymphocytes in the pathogenesis of RA. However the role and mechanism of action of IL-23 in the pathogenesis of RA are still not fully understood. This study was conducted to assess the level of IL-23 in patients with RA as well as the relationship between the IL-23 level and disease activity. The study includes 77 patients with RA fulfilling the American College of Rheumatology (ACR) revised criteria for diagnosis of RA as well as 25 age and sex matched healthy subjects as controls. Patients were divided according to disease activity into four groups: DAS 28 score (˂ 2.6), 10 patients in remission, DAS 28 score between 2.6-3.2, 10 patients with low disease activity, DAS 28 score ranges between (3.2-5.1), 30 patients with moderate disease activity and DAS 28 score (˂ 5.1), 27 patients with High disease activity. Disease activity were determined by the 28-joint disease activity score (DAS 28). Anti-citrullinated protein antibodies (ACPA) was done. The levels of IL-23 were determined by enzyme-linked immunosorbent assay (ELISA). Serum level of IL-23 was significantly elevated in RA patients (78.92±52.47) compared to control group (33.34±3.99) (P<0.001). However, no correlations were found between IL-23 and DAS 28 score, and other patients characteristics. Our results imply that IL-23 may potentially play a role in the pathogenesis of RA and may be a useful biomarker for the diagnosis of this disease. Targeting the IL-23 cytokine may provide a new therapeutic approach in the treatment of RA. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Serum Analysis of Tryptophan Catabolism Pathway: Correlation with Crohn’s Disease Activity

    PubMed Central

    Gupta, Nitin K; Thaker, Ameet I; Kanuri, Navya; Riehl, Terrence E; Rowley, Christopher W; Stenson, William F; Ciorba, Matthew A

    2011-01-01

    BACKGROUND Indoleamine 2,3 dioxygenase 1 (IDO1) is a tryptophan catabolizing enzyme with immunotolerance promoting functions. We sought to determine if increased gut expression of IDO1 in Crohn’s disease (CD) would result in detectable changes in serum levels of tryptophan and the initial IDO1 pathway catabolite, kynurenine. METHODS Individuals were prospectively enrolled through the Washington University Digestive Diseases Research Center. Montreal classification was used for disease phenotyping. Disease severity was categorized by physician’s global assessment. Serum tryptophan and kynurenine were measured by high pressure liquid chromatography. IDO1 immunohistochemical staining was performed on formalin-fixed tissue blocks. RESULTS 25 CD patients and 11 controls were enrolled. 8 CD patients had serum collected at two different time points and levels of disease activity. Strong IDO1 expression exists in both the lamina propria and epithelium during active CD compared to controls. Suppressed serum tryptophan levels and an elevated kynurenine/tryptophan (K/T) ratio were found in individuals with active CD as compared to those in remission or the control population. K/T ratios correlated positively with disease activity as well as with C-reactive protein and erythrocyte sedimentation rate. In the subgroup of CD patients with two serum measurements, tryptophan levels elevated while kynurenine levels and the K/T ratio lowered as the disease activity lessened. CONCLUSIONS IDO1 expression in Crohn’s disease is associated with lower serum tryptophan and an elevated K/T ratio. These levels may serve a reasonable objective marker of gut mucosal immune activation and surrogate for Crohn’s Disease activity. PMID:21823214

  13. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Stochastic modelling of infectious diseases for heterogeneous populations.

    PubMed

    Ming, Rui-Xing; Liu, Ji-Ming; W Cheung, William K; Wan, Xiang

    2016-12-22

    Infectious diseases such as SARS and H1N1 can significantly impact people's lives and cause severe social and economic damages. Recent outbreaks have stressed the urgency of effective research on the dynamics of infectious disease spread. However, it is difficult to predict when and where outbreaks may emerge and how infectious diseases spread because many factors affect their transmission, and some of them may be unknown. One feasible means to promptly detect an outbreak and track the progress of disease spread is to implement surveillance systems in regional or national health and medical centres. The accumulated surveillance data, including temporal, spatial, clinical, and demographic information can provide valuable information that can be exploited to better understand and model the dynamics of infectious disease spread. The aim of this work is to develop and empirically evaluate a stochastic model that allows the investigation of transmission patterns of infectious diseases in heterogeneous populations. We test the proposed model on simulation data and apply it to the surveillance data from the 2009 H1N1 pandemic in Hong Kong. In the simulation experiment, our model achieves high accuracy in parameter estimation (less than 10.0 % mean absolute percentage error). In terms of the forward prediction of case incidence, the mean absolute percentage errors are 17.3 % for the simulation experiment and 20.0 % for the experiment on the real surveillance data. We propose a stochastic model to study the dynamics of infectious disease spread in heterogeneous populations from temporal-spatial surveillance data. The proposed model is evaluated using both simulated data and the real data from the 2009 H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy. We believe that our model can provide valuable insights for public health authorities to predict the effect of disease spread and analyse its underlying factors and to guide new control efforts.

  15. Natural selection to sports, later physical activity habits, and coronary heart disease

    PubMed Central

    Kujala, U.; Sarna, S.; Kaprio, J.; Tikkanen, H.; Koskenvuo, M.

    2000-01-01

    Objectives—To investigate the associations between natural selection to sports at a young age, continuity of physical activity, and occurrence of coronary heart disease. Design—Prospective cohort study. Setting—Finland. Participants—Former top level male athletes participating at a young age (1920–1965) in different types of sport (endurance (n = 166), power speed (n = 235), "other" (n = 834)) and controls healthy at the age of 20 years (n = 743). Main outcome measures—Data on the occurrence of coronary heart disease were obtained from death certificates, three nationwide registers, and questionnaire studies in 1985 and 1995, and data on later physical activity were obtained from the questionnaires. Results—In 1985 all groups of former athletes were more physically active than controls (p<0.001). Despite similar total volumes of physical activity, compared with power speed athletes, former endurance athletes participated more often in vigorous activity (p = 0.006) and had less coronary heart disease (adjusted odds ratio 0.34, 95% confidence interval 0.17 to 0.73; p = 0.004). In 1985 and 1995, both endurance and other athletes had less coronary heart disease than controls. From 1986 to 1995, the incidence of new coronary heart disease was lower among those who participated in vigorous physical activity in 1985. Conclusions—Both a previous aptitude for endurance athletic events and continuity of vigorous physical activity seem to be associated with protection against coronary heart disease, but an aptitude for power speed events does not give protection against coronary heart disease. Key Words: coronary heart disease; fitness; genetic selection; physical activity PMID:11131233

  16. Toward Standardizing a Lexicon of Infectious Disease Modeling Terms.

    PubMed

    Milwid, Rachael; Steriu, Andreea; Arino, Julien; Heffernan, Jane; Hyder, Ayaz; Schanzer, Dena; Gardner, Emma; Haworth-Brockman, Margaret; Isfeld-Kiely, Harpa; Langley, Joanne M; Moghadas, Seyed M

    2016-01-01

    Disease modeling is increasingly being used to evaluate the effect of health intervention strategies, particularly for infectious diseases. However, the utility and application of such models are hampered by the inconsistent use of infectious disease modeling terms between and within disciplines. We sought to standardize the lexicon of infectious disease modeling terms and develop a glossary of terms commonly used in describing models' assumptions, parameters, variables, and outcomes. We combined a comprehensive literature review of relevant terms with an online forum discussion in a virtual community of practice, mod4PH (Modeling for Public Health). Using a convergent discussion process and consensus amongst the members of mod4PH, a glossary of terms was developed as an online resource. We anticipate that the glossary will improve inter- and intradisciplinary communication and will result in a greater uptake and understanding of disease modeling outcomes in heath policy decision-making. We highlight the role of the mod4PH community of practice and the methodologies used in this endeavor to link theory, policy, and practice in the public health domain.

  17. Models for H₃ receptor antagonist activity of sulfonylurea derivatives.

    PubMed

    Khatri, Naveen; Madan, A K

    2014-03-01

    The histamine H₃ receptor has been perceived as an auspicious target for the treatment of various central and peripheral nervous system diseases. In present study, a wide variety of 60 2D and 3D molecular descriptors (MDs) were successfully utilized for the development of models for the prediction of antagonist activity of sulfonylurea derivatives for histamine H₃ receptors. Models were developed through decision tree (DT), random forest (RF) and moving average analysis (MAA). Dragon software version 6.0.28 was employed for calculation of values of diverse MDs of each analogue involved in the data set. The DT classified and correctly predicted the input data with an impressive non-error rate of 94% in the training set and 82.5% during cross validation. RF correctly classified the analogues into active and inactive with a non-error rate of 79.3%. The MAA based models predicted the antagonist histamine H₃ receptor activity with non-error rate up to 90%. Active ranges of the proposed MAA based models not only exhibited high potency but also showed improved safety as indicated by relatively high values of selectivity index. The statistical significance of the models was assessed through sensitivity, specificity, non-error rate, Matthew's correlation coefficient and intercorrelation analysis. Proposed models offer vast potential for providing lead structures for development of potent but safe H₃ receptor antagonist sulfonylurea derivatives. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A preliminary score for the assessment of disease activity in hereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory Diseases Activity Index) Consensus Conference

    PubMed Central

    Piram, Maryam; Frenkel, Joost; Gattorno, Marco; Ozen, Seza; Lachmann, Helen J; Goldbach-Mansky, Raphaela; Hentgen, Véronique; Neven, Bénédicte; Stankovic Stojanovic, Katia; Simon, Anna; Kuemmerle-Deschner, Jasmin; Hoffman, Hal; Stojanov, Silvia; Duquesne, Agnès; Pillet, Pascal; Martini, Alberto; Pouchot, Jacques; Koné-Paut, Isabelle

    2012-01-01

    Background The systemic autoinflammatory disorders (SAID) share many clinical manifestations, albeit with variable patterns, intensity and frequency. A common definition of disease activity would be rational and useful in the management of these lifelong diseases. Moreover, standardised disease activity scores are required for the assessment of new therapies in constant development. The aim of this study was to develop preliminary activity scores for familial Mediterranean fever, mevalonate kinase deficiency, tumour necrosis factor receptor-1-associated periodic syndrome and cryopyrin-associated periodic syndromes (CAPS). Methods The study was conducted using two well-recognised consensus formation methods: the Delphi technique and the nominal group technique. The results from a two-step survey and data from parent/patient interviews were used as preliminary data to develop the agenda for a consensus conference to build a provisional scoring system. Results 24 of 65 experts in SAID from 20 countries answered the web questionnaire and 16 attended the consensus conference. There was consensus agreement to develop separate activity scores for each disease but with a common format based on patient diaries. Fever and disease-specific clinical variables were scored according to their severity. A final score was generated by summing the score of all the variables divided by the number of days over which the diary was completed. Scores varied from 0 to 16 (0–13 in CAPS). These scores were developed for the purpose of clinical studies but could be used in clinical practice. Conclusion Using widely recognised consensus formation techniques, preliminary scores were obtained to measure disease activity in four main SAID. Further prospective validation study of this instrument will follow. PMID:21081528

  19. Longitudinal impact of IBS-type symptoms on disease activity, healthcare utilization, psychological health, and quality of life in inflammatory bowel disease.

    PubMed

    Gracie, David J; Hamlin, P John; Ford, Alexander C

    2018-05-01

    The impact of irritable bowel syndrome (IBS)-type symptoms on the natural history of inflammatory bowel disease (IBD) is uncertain. We aimed to address this in a longitudinal study of secondary care patients. Longitudinal disease activity was defined by disease flare, escalation of medical therapy, hospitalization, or intestinal resection. The number of investigations performed and clinics attended determined healthcare utilization. Psychological well-being and quality of life were assessed using validated questionnaires. These outcomes were compared over a minimum period of 2 years between patients reporting IBS-type symptoms and patients with quiescent disease, occult inflammation, and active disease at baseline. In 360 IBD patients, there were no differences in longitudinal disease activity between patients with IBS-type symptoms and patients with quiescent disease or occult inflammation. Disease flare and escalation of medical therapy was more common in patients with active disease than in patients with IBS-type symptoms (hazard ratio (HR) = 3.16; 95% confidence interval (CI) 1.93-5.19 and HR = 3.24; 95% CI 1.98-5.31, respectively). A greater number of investigations were performed in patients with IBS-type symptoms than quiescent disease (P = 0.008), but not compared with patients with occult inflammation or active disease. Anxiety, depression, and somatization scores at follow up were higher, and quality-of-life scores lower, in patients with IBS-type symptoms when compared with patients with quiescent disease, but were similar to patients with active disease. IBS-type symptoms in IBD were associated with increased healthcare utilization, psychological comorbidity, reduced quality of life, but not adverse disease activity outcomes during extended follow-up.

  20. An early and late peak in microglial activation in Alzheimer's disease trajectory.

    PubMed

    Fan, Zhen; Brooks, David J; Okello, Aren; Edison, Paul

    2017-03-01

    Amyloid-β deposition, neuroinflammation and tau tangle formation all play a significant role in Alzheimer's disease. We hypothesized that there is microglial activation early on in Alzheimer's disease trajectory, where in the initial phase, microglia may be trying to repair the damage, while later on in the disease these microglia could be ineffective and produce proinflammatory cytokines leading to progressive neuronal damage. In this longitudinal study, we have evaluated the temporal profile of microglial activation and its relationship between fibrillar amyloid load at baseline and follow-up in subjects with mild cognitive impairment, and this was compared with subjects with Alzheimer's disease. Thirty subjects (eight mild cognitive impairment, eight Alzheimer's disease and 14 controls) aged between 54 and 77 years underwent 11C-(R)PK11195, 11C-PIB positron emission tomography and magnetic resonance imaging scans. Patients were followed-up after 14 ± 4 months. Region of interest and Statistical Parametric Mapping analysis were used to determine longitudinal alterations. Single subject analysis was performed to evaluate the individualized pathological changes over time. Correlations between levels of microglial activation and amyloid deposition at a voxel level were assessed using Biological Parametric Mapping. We demonstrated that both baseline and follow-up microglial activation in the mild cognitive impairment cohort compared to controls were increased by 41% and 21%, respectively. There was a longitudinal reduction of 18% in microglial activation in mild cognitive impairment cohort over 14 months, which was associated with a mild elevation in fibrillar amyloid load. Cortical clusters of microglial activation and amyloid deposition spatially overlapped in the subjects with mild cognitive impairment. Baseline microglial activation was increased by 36% in Alzheimer's disease subjects compared with controls. Longitudinally, Alzheimer's disease subjects showed

  1. A Small Molecule Inhibitor of Plasminogen Activator Inhibitor-1 Reduces Brain Amyloid-β Load and Improves Memory in an Animal Model of Alzheimer's Disease.

    PubMed

    Akhter, Hasina; Huang, Wen-Tan; van Groen, Thomas; Kuo, Hui-Chien; Miyata, Toshio; Liu, Rui-Ming

    2018-01-01

    Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.

  2. Protective effect of Nrf2-ARE activator isolated from green perilla leaves on dopaminergic neuronal loss in a Parkinson's disease model.

    PubMed

    Masaki, Yuta; Izumi, Yasuhiko; Matsumura, Atsuko; Akaike, Akinori; Kume, Toshiaki

    2017-03-05

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN), and oxidative stress is thought to contribute to the pathogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, which is a cellular defense system against oxidative stress, is a promising target for therapeutics aimed at reducing neuronal death in PD. Previously, we have isolated 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC) from green perilla leaves as an activator of the Nrf2-ARE pathway. The present study showed the protective effect of DDC on PD models in vivo and in vitro. In a 6-hydroxydopamine (6-OHDA)-induced hemiparkinson's disease mouse model, intracerebral administration of DDC suppressed the dopaminergic neuronal loss and behavioral dysfunction. DDC upregulated the expression of heme oxygenase-1 (HO-1), one of the ARE-driven antioxidant enzymes, in astrocytes and microglia of the SN. In primary mesencephalic cultures, treatment with DDC also increased the HO-1 expression in astrocytes and microglia. DDC showed a protective effect against 6-OHDA-induced dopaminergic neuronal death, and the effect was suppressed by an HO-1 inhibitor. These results suggest that DDC prevents dopaminergic neurons from oxidative stress by upregulation of glial expression of HO-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Airway disease phenotypes in animal models of cystic fibrosis.

    PubMed

    McCarron, Alexandra; Donnelley, Martin; Parsons, David

    2018-04-02

    In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.

  4. Hyperthyroid vs hypothyroid eye disease: the same severity and activity

    PubMed Central

    Kashkouli, M B; Pakdel, F; Kiavash, V; Heidari, I; Heirati, A; Jam, S

    2011-01-01

    Purpose To compare demographics, severity, and activity of thyroid eye disease (TED) in patients with hyperthyroidism (Hr-TED) vs primary hypothyroidism (Ho-TED). Patients and Methods In a cross-sectional study, demographics, complete eye examination, severity score (NOSPECS, total hundred eye score), clinical activity score, and Rundle grading were recorded for patients with TED and different thyroid disorders referred from an endocrinology clinic from 2003 to 2006. Results TED was clinically found in 303 patients (303/851, 35.6%). The majority of them (280/303, 92.4%) had Graves' hyperthyroidism and 23 (23/303, 7.5%) had primary hypothyroidism. Mean age, gender, mean severity score, mean activity score, Rundle grade, unilateral presentation of TED, smoking habit, mean duration of eye disease, and mean interval time of thyroid to TED were not significantly different between the two groups (0.06disease was significantly (P=0.02) longer in the Hr-TED group (49.6 months) than in the Ho-TED group (22.7 months). Most of the patients in both groups (63.2% of Hr-TED and 73.9% of Ho-TED) developed the eye disease within 18 months before or after the thyroid disease. Conclusion The same demographics, clinical characteristics, and severity and activity scores for Hr-TED and Ho-TED imply that both groups present the same category of eye disease. PMID:21818129

  5. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    PubMed

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.

  6. Pharmacokinetic and pharmacodynamic model for analysis of adalimumab administered for Crohn's disease.

    PubMed

    Kimura, Koji; Yoshida, Atsushi; Takayanagi, Risa; Yamada, Yasuhiko

    2018-05-23

    Adalimumab (ADA) is used as a therapeutic agent for Crohn's disease (CD). Although that dosage regimen has been established through clinical trial experience, it has not been analyzed theoretically. In the present study, we analyzed of sequential changes of the Crohn's disease activity index (CDAI) after repeated administrations of ADA using a pharmacokinetic and pharmacodynamic model. In addition, we analyzed the validity of the dosage regimen, and potential efficacy gained by increasing the dose and reducing the interval of administration. The sequential changes in CDAI values obtained with our model were in good agreement with observed CDAI values, which was considered to show the validity of our analysis. We considered that our results showed the importance of the loading dose of ADA to obtain remission in an early stage of active CD. In addition, we showed that patients who have an incomplete response to ADA can obtain similar efficacy from increasing the dose and reducing the dose interval. In conclusion, our results showed that the present model may be applied to predict the CDAI values of ADA for CD. They indicated the validity of the dosage regimen, as well as the efficacy of increasing the dose and reducing the dose interval. This article is protected by copyright. All rights reserved.

  7. [Animal models of neurodegenerative diseases].

    PubMed

    Langui, Dominique; Lachapelle, François; Duyckaerts, Charles

    2007-02-01

    . Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.

  8. Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.

    PubMed

    van den Driessche, P; Yakubu, Abdul-Aziz

    2018-04-12

    We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].

  9. Lesional perfusion abnormalities in Leigh disease demonstrated by arterial spin labeling correlate with disease activity.

    PubMed

    Whitehead, Matthew T; Lee, Bonmyong; Gropman, Andrea

    2016-08-01

    Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease. In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome. We searched the imaging database from an academic children's hospital for "arterial spin labeling, perfusion, necrosis, lactate, and Leigh" to build a cohort of children for retrospective analysis. We reviewed each child's medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort. The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256). Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.

  10. Agent-Based Modeling of Noncommunicable Diseases: A Systematic Review

    PubMed Central

    Arah, Onyebuchi A.

    2015-01-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application. PMID:25602871

  11. Innate immunity in Alzheimer's disease: the relevance of animal models?

    PubMed

    Franco Bocanegra, Diana K; Nicoll, James A R; Boche, Delphine

    2018-05-01

    The mouse is one of the organisms most widely used as an animal model in biomedical research, due to the particular ease with which it can be handled and reproduced in laboratory. As a member of the mammalian class, mice share with humans many features regarding metabolic pathways, cell morphology and anatomy. However, important biological differences between mice and humans exist and must be taken into consideration when interpreting research results, to properly translate evidence from experimental studies into information that can be useful for human disease prevention and/or treatment. With respect to Alzheimer's disease (AD), much of the experimental information currently known about this disease has been gathered from studies using mainly mice as models. Therefore, it is notably important to fully characterise the differences between mice and humans regarding important aspects of the disease. It is now widely known that inflammation plays an important role in the development of AD, a role that is not only a response to the surrounding pathological environment, but rather seems to be strongly implicated in the aetiology of the disease as indicated by the genetic studies. This review highlights relevant differences in inflammation and in microglia, the innate immune cell of the brain, between mice and humans regarding genetics and morphology in normal ageing, and the relationship of microglia with AD-like pathology, the inflammatory profile, and cognition. We conclude that some noteworthy differences exist between mice and humans regarding microglial characteristics, in distribution, gene expression, and states of activation. This may have repercussions in the way that transgenic mice respond to, and influence, the AD-like pathology. However, despite these differences, human and mouse microglia also show similarities in morphology and behaviour, such that the mouse is a suitable model for studying the role of microglia, as long as these differences are taken

  12. AMP-Activated Protein Kinase as a Reprogramming Strategy for Hypertension and Kidney Disease of Developmental Origin.

    PubMed

    Tain, You-Lin; Hsu, Chien-Ning

    2018-06-12

    Suboptimal early-life conditions affect the developing kidney, resulting in long-term programming effects, namely renal programming. Adverse renal programming increases the risk for developing hypertension and kidney disease in adulthood. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life. AMP-activated protein kinase (AMPK) plays a key role in normal renal physiology and the pathogenesis of hypertension and kidney disease. This review discusses the regulation of AMPK in the kidney and provides hypothetical mechanisms linking AMPK to renal programming. This will be followed by studies targeting AMPK activators like metformin, resveratrol, thiazolidinediones, and polyphenols as reprogramming strategies to prevent hypertension and kidney disease. Further studies that broaden our understanding of AMPK isoform- and tissue-specific effects on renal programming are needed to ultimately develop reprogramming strategies. Despite the fact that animal models have provided interesting results with regard to reprogramming strategies targeting AMPK signaling to protect against hypertension and kidney disease with developmental origins, these results await further clinical translation.

  13. Active-learning implementation in an advanced elective course on infectious diseases.

    PubMed

    Hidayat, Levita; Patel, Shreya; Veltri, Keith

    2012-06-18

    To describe the development, implementation, and assessment of an advanced elective course on infectious diseases using active-learning strategies. Pedagogy for active learning was incorporated by means of mini-lecture, journal club, and debate with follow-up discussion. Forty-eight students were enrolled in this 4-week elective course, in which 30% of course time was allocated for active-learning exercises. All activities were fundamentally designed as a stepwise approach in complementing each active-learning exercise. Achievement of the course learning objectives was assessed using a 5-point Likert scale survey instrument. Students' awareness of the significance of antimicrobial resistance was improved (p ≤ 0.05). Students' ability to critically evaluate the infectious-disease literature and its application in informed clinical judgments was also enhanced through these active-learning exercises (p ≤ 0.05). Students agreed that active learning should be part of the pharmacy curriculum and that active-learning exercises improved their critical-thinking, literature-evaluation, and self-learning skills. An elective course using active-learning strategies allowed students to combine information gained from the evaluation of infectious-disease literature, critical thinking, and informed clinical judgment. This blended approach ultimately resulted in an increased knowledge and awareness of infectious diseases.

  14. Active-Learning Implementation in an Advanced Elective Course on Infectious Diseases

    PubMed Central

    Patel, Shreya; Veltri, Keith

    2012-01-01

    Objectives. To describe the development, implementation, and assessment of an advanced elective course on infectious diseases using active-learning strategies. Design. Pedagogy for active learning was incorporated by means of mini-lecture, journal club, and debate with follow-up discussion. Forty-eight students were enrolled in this 4-week elective course, in which 30% of course time was allocated for active-learning exercises. All activities were fundamentally designed as a stepwise approach in complementing each active-learning exercise. Assessment. Achievement of the course learning objectives was assessed using a 5-point Likert scale survey instrument. Students’ awareness of the significance of antimicrobial resistance was improved (p ≤ 0.05). Students’ ability to critically evaluate the infectious-disease literature and its application in informed clinical judgments was also enhanced through these active-learning exercises (p ≤ 0.05). Students agreed that active learning should be part of the pharmacy curriculum and that active-learning exercises improved their critical-thinking, literature-evaluation, and self-learning skills. Conclusion. An elective course using active-learning strategies allowed students to combine information gained from the evaluation of infectious-disease literature, critical thinking, and informed clinical judgment. This blended approach ultimately resulted in an increased knowledge and awareness of infectious diseases. PMID:22761528

  15. Toward Standardizing a Lexicon of Infectious Disease Modeling Terms

    PubMed Central

    Milwid, Rachael; Steriu, Andreea; Arino, Julien; Heffernan, Jane; Hyder, Ayaz; Schanzer, Dena; Gardner, Emma; Haworth-Brockman, Margaret; Isfeld-Kiely, Harpa; Langley, Joanne M.; Moghadas, Seyed M.

    2016-01-01

    Disease modeling is increasingly being used to evaluate the effect of health intervention strategies, particularly for infectious diseases. However, the utility and application of such models are hampered by the inconsistent use of infectious disease modeling terms between and within disciplines. We sought to standardize the lexicon of infectious disease modeling terms and develop a glossary of terms commonly used in describing models’ assumptions, parameters, variables, and outcomes. We combined a comprehensive literature review of relevant terms with an online forum discussion in a virtual community of practice, mod4PH (Modeling for Public Health). Using a convergent discussion process and consensus amongst the members of mod4PH, a glossary of terms was developed as an online resource. We anticipate that the glossary will improve inter- and intradisciplinary communication and will result in a greater uptake and understanding of disease modeling outcomes in heath policy decision-making. We highlight the role of the mod4PH community of practice and the methodologies used in this endeavor to link theory, policy, and practice in the public health domain. PMID:27734014

  16. Modeling the Disease Course of Zaire ebolavirus Infection in the Outbred Guinea Pig.

    PubMed

    Cross, Robert W; Fenton, Karla A; Geisbert, Joan B; Mire, Chad E; Geisbert, Thomas W

    2015-10-01

    Rodent models that accurately reflect human filovirus infection are needed as early screens for medical countermeasures. Prior work in rodents with the Zaire species of Ebola virus (ZEBOV) primarily used inbred mice and guinea pigs to model disease. However, these inbred species do not show some of the important features of primate ZEBOV infection, most notably, coagulation abnormalities. Thirty-six outbred guinea pigs were infected with guinea pig-adapted ZEBOV and examined sequentially over an 8-day period to investigate the pathologic events that lead to death. Features of disease in ZEBOV-infected outbred guinea pigs were largely consistent with disease in humans and nonhuman primates and included early infection of macrophages and dendritiform cells, apoptosis of bystander lymphocytes, and increases in levels of proinflammatory cytokines. Most importantly, dysregulation of circulating levels of fibrinogen, protein C activity, and antifibrinolytic proteins and deposition of fibrin in tissues demonstrated both biochemical and microscopic evidence of disseminated intravascular coagulation. These findings suggest that the outbred guinea pig model recapitulates ZEBOV infection of primates better than inbred rodent models, is useful for dissecting key events in the pathogenesis of ZEBOV, and is useful for evaluating candidate interventions prior to assessment in primates. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. P21-activated kinase in inflammatory and cardiovascular disease.

    PubMed

    Taglieri, Domenico M; Ushio-Fukai, Masuko; Monasky, Michelle M

    2014-09-01

    P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Serum interleukin measurement may help identify thyroid cancer patients with active disease.

    PubMed

    Martins, Mariana Bonjiorno; Marcello, Marjory Alana; Batista, Fernando de Assis; Peres, Karina Colombera; Meneghetti, Murilo; Ward, Mirela Andrea Latham; Etchebehere, Elba Cristina Sá de Camargo; da Assumpção, Ligia Vera Montali; Ward, Laura Sterian

    2018-02-01

    Investigate the clinical utility of serum interleukin dosages of IL-2, IL-2R, IL-4, IL-6, IL-6R, IL-8, IL-10 and IL-12 in the diagnosis and characterization of patients with DTC. In particular, verify ILs utility in the identification of individuals who are evolving disease-free or with the active disease. We evaluated 200 patients with malignant nodules (100 patients disease-free and 100 patients with recurrence/active disease); 60 benign nodules and 100 healthy controls, serum levels were assessed by ELISA. All ILs, but not IL-4, differentiated these three groups. We observed that IL-2, 2R and 10 serum concentrations were associated with thyroglobulin levels. Serum IL-2 was able to differentiate patients with active disease from the disease-free with a sensitivity of 98%, specificity of 58%, positive predictive value (PPV) of 70% and negative predictive value (NPV) of 97% (p=0.0007). IL-6R levels differentiated patients with active disease from the disease-free patients with 56% sensitivity, 63% specificity, PPV of 60% and NPV of 59% (p<0.0001). IL-8 values also distinguished patients with active disease from the disease-free ones with sensitivity of 50%, specificity of 76%, PPV of 68% and NPV of 60% (p=0.0025); using IL-12, we obtained a sensitivity value of 73%, specificity of 66%, PPV of 68% and NPV of 71% (p<0.0001). Furthermore, interleukin levels showed association with some tumor characteristics of aggressiveness. We suggest that the serum concentration of ILs may assist in the diagnosis and characterization of tumor malignancy helping identify patients with active disease who deserve closer medical attention. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Anti-Oxidative Stress Activity Is Essential for Amanita caesarea Mediated Neuroprotection on Glutamate-Induced Apoptotic HT22 Cells and an Alzheimer’s Disease Mouse Model

    PubMed Central

    Li, Zhiping; Chen, Xia; Lu, Wenqian; Zhang, Shun; Guan, Xin; Li, Zeyu; Wang, Di

    2017-01-01

    Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l-Glu) induced HT22 cell apoptosis model, and in a d-galactose (d-gal) and AlCl3-developed experimental Alzheimer’s disease (AD) mouse model. In 25 mM of l-Glu-damaged HT22 cells, a 3-h pretreatment with AC strongly improved cell viability, reduced the proportion of apoptotic cells, restored mitochondrial function, inhibited the over-production of intracellular reactive oxygen species (ROS) and Ca2+, and suppressed the high expression levels of cleaved-caspase-3, calpain 1, apoptosis-inducing factor (AIF) and Bax. Compared with HT22 exposed only to l-Glu cells, AC enhanced the phosphorylation activities of protein kinase B (Akt) and the mammalian target of rapamycin (mTOR), and suppressed the phosphorylation activities of phosphatase and tensin homolog deleted on chromosome ten (PTEN). In the experimental AD mouse, 28-day AC administration at doses of 250, 500, and 1000 mg/kg/day strongly enhanced vertical movements and locomotor activities, increased the endurance time in the rotarod test, and decreased the escape latency time in the Morris water maze test. AC also alleviated the deposition of amyloid beta (Aβ) in the brain and improved the central cholinergic system function, as indicated by an increase acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations and a reduction in acetylcholine esterase (AchE) levels. Moreover, AC reduced ROS levels and enhanced superoxide dismutase (SOD) levels in the brain of experimental AD mice. Taken together, our data provide experimental evidence that A. caesarea may serve as potential food for treating or preventing neurodegenerative diseases. PMID:28749416

  20. Neuroprotective Role of Novel Triazine Derivatives by Activating Wnt/β Catenin Signaling Pathway in Rodent Models of Alzheimer's Disease.

    PubMed

    Sinha, Anshuman; Tamboli, Riyaj S; Seth, Brashket; Kanhed, Ashish M; Tiwari, Shashi Kant; Agarwal, Swati; Nair, Saumya; Giridhar, Rajani; Chaturvedi, Rajnish Kumar; Yadav, Mange Ram

    2015-08-01

    It has been reported in the literature that cholinesterase inhibitors provide protection in Alzheimer's disease (AD). Recent reports have implicated triazine derivatives as cholinesterase inhibitors. These findings led us to investigate anti-cholinestrase property of some novel triazine derivatives synthesized in this laboratory. In vitro cholinesterase inhibition assay was performed using Ellman method. The potent compounds screened out from in vitro assay were further evaluated using scopolamine-induced amnesic mice model. Further, in vitro reactive oxygen species (ROS) scavenging and anti-apoptotic property of the potent compounds were demonstrated against Aβ1-42-induced neurotoxicity in rat hippocampal cells. Their neuroprotective role was assessed using Aβ1-42-induced Alzheimer's-like phenotype in rats. Further, the role of compounds on the activation of the Wnt/β-catenin pathway was studied. The results showed that the chosen compounds are having protective effect in Alzheimer's-like condition; the ex vivo results advocated their anti-cholinestrase and anti-oxidant activities. Treatment with TRZ-15 and TRZ-20 showed neuroprotective ability of the compounds as evidenced from the improved cognitive ability in the animals, and decrease in Aβ1-42 burden and cytochrome c and cleaved caspase-3 levels in the brain. This study also demonstrates positive involvement of the novel triazine derivatives in the Wnt/β-catenin pathway. Immunoblot and immunofluorescence data suggested that ratio of pGSK3/GSK3 and β-catenin got dramatically improved after treatment with TRZ-15 and TRZ-20. TRZ-15 and TRZ-20 showed neuroprotection in scopolamine-induced amnesic mice and Aβ1-42-induced Alzheimer's rat model and also activate the Wnt/β-catenin signaling pathway. These findings conclude that TRZ-15 and TRZ-20 could be a therapeutic approach to treat AD.

  1. Defective Response of Natural Killer Activity to Thyroxine in Graves’ Disease

    PubMed Central

    Lee, Myung-Shik; Hong, Weon-Seon; Hong, Seong Woon; Lee, Jhin-Oh; Kang, Tae-Woong

    1990-01-01

    The effect of thyroxine (T4) on natural killer (NK) activity of peripheral blood lymphocytes (PBL) was investigated, using a 4-hr 51Cr release assay, in 18 patients with previously untreated Graves’ disease and in 18 controls. NK activity in patients with Graves disease was not significantly different from that in the controls. Normal T4 (NT) and high T4 (HT) medium, free T4 concentrations in which were 1.01 and 16.3 ng/dl, respectively, were used to evaluate the effect of T4 on NK activity. In the controls, NK activity increased in the NT or HT medium compared with that in the control medium at effector to target cell (E : T) ratios of 25 : 1 and 50 : 1. NK activity in the Graves’ disease patients, however, did not increase when either the NT or HT medium was used at E : T ratios of 25 : 1 and 50 : 1. These results suggest that patients with Graves’ disease have a similar NK activity to the controls but have a defect in the peripheral blood lymphocytes to increase NK activity in response to T4. PMID:2098098

  2. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease

    PubMed Central

    2014-01-01

    Background Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, anti-inflammatory, antioxidant, antimicrobial and memory-enhancer drug. This study was undertaken in order to evaluate the possible cognitive-enhancing and antioxidative effects of the aqueous extract of A. adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. Methods The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on spatial memory performance was assessed using Y-maze and radial arm-maze tasks, as animal models of spatial memory. Pergolide - induced rotational behavior test was employed to validate unilateral damage to dopamine nigrostriatal neurons. Also, in vitro antioxidant activity was assessed through the estimation of total flavonoid and total phenolic contents along with determination of free radical scavenging activity. Statistical analyses were performed using two-way analysis of variance (ANOVA). Significant differences were determined by Tukey’s post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson’s correlation coefficient and regression analysis were used in order to evaluate the association between behavioral parameters and net rotations in rotational behavior test. Results The 6-OHDA-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory errors and reference memory errors within radial arm maze task. Administration of the aqueous extract of A. adianthifolia leaves significantly improved these parameters, suggesting positive effects on spatial memory formation. Also, the aqueous extract of A. adianthifolia leaves showed potent in vitro antioxidant activity. Furthermore, in vivo evaluation, the aqueous extract of A. adianthifolia leaves attenuated the contralateral

  3. Understanding impacts of climatic extremes on diarrheal disease epidemics: Insights from mechanistic disease propagation models

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2013-12-01

    An epidemic outbreak of diarrheal diseases (primarily cholera) in Haiti in 2010 is a reminder that our understanding on disease triggers, transmission and spreading mechanisms is incomplete. Cholera can occur in two forms - epidemic (defined as sudden outbreak in a historically disease free region) and endemic (recurrence and persistence of the disease for several consecutive years). Examples of countries with epidemic cholera include Pakistan (2008), Congo (2008), and most recently Haiti (2010). A significant difference between endemic and epidemic regions is the mortality rate, i.e., 1% or lower in an endemic regions versus 3-7% during recent epidemic outbreaks. A fundamentally transformational approach - a warning system with several months prediction lead time - is needed to prevent disease outbreak and minimize its impact on population. Lack of information on spatial and temporal variability of disease incidence as well as transmission in human population continues to be significant challenge in the development of early-warning systems for cholera. Using satellite data on regional hydroclimatic processes, water and sanitation infrastructure indices, and biological pathogen growth information, here we present a Simple, Mechanistic, Adaptive, Remote sensing based Regional Transmission or SMART model to (i) identify regions of potential cholera outbreaks and (ii) quantify mechanism of spread of the disease in previously disease free region. Our results indicate that epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for the growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. We discuss the above findings in light of

  4. A theoretical individual-based model of Brown Ring Disease in Manila clams, Venerupis philippinarum

    NASA Astrophysics Data System (ADS)

    Paillard, Christine; Jean, Fred; Ford, Susan E.; Powell, Eric N.; Klinck, John M.; Hofmann, Eileen E.; Flye-Sainte-Marie, Jonathan

    2014-08-01

    An individual-based mathematical model was developed to investigate the biological and environmental interactions that influence the prevalence and intensity of Brown Ring Disease (BRD), a disease, caused by the bacterial pathogen, Vibrio tapetis, in the Manila clam (Venerupis (= Tapes, = Ruditapes) philippinarum). V. tapetis acts as an external microparasite, adhering at the surface of the mantle edge and its secretion, the periostracal lamina, causing the symptomatic brown deposit. Brown Ring Disease is atypical in that it leaves a shell scar that provides a unique tool for diagnosis of either live or dead clams. The model was formulated using laboratory and field measurements of BRD development in Manila clams, physiological responses of the clam to the pathogen, and the physiology of V. tapetis, as well as theoretical understanding of bacterial disease progression in marine shellfish. The simulation results obtained for an individual Manila clam were expanded to cohorts and populations using a probability distribution that prescribed a range of variability for parameters in a three dimensional framework; assimilation rate, clam hemocyte activity rate (the number of bacteria ingested per hemocyte per day), and clam calcification rate (a measure of the ability to recover by covering over the symptomatic brown ring deposit), which sensitivity studies indicated to be processes important in determining BRD prevalence and intensity. This approach allows concurrent simulation of individuals with a variety of different physiological capabilities (phenotypes) and hence by implication differing genotypic composition. Different combinations of the three variables provide robust estimates for the fate of individuals with particular characteristics in a population that consists of mixtures of all possible combinations. The BRD model was implemented using environmental observations from sites in Brittany, France, where Manila clams routinely exhibit BRD signs. The simulated

  5. Therapeutics for Inflammatory-Related Diseases Based on Plasmon-Activated Water: A Review.

    PubMed

    Yang, Chih-Ping; Liu, Yu-Chuan

    2018-05-28

    It is recognized that the properties of liquid water can be markedly different from those of bulk one when it is in contact with hydrophobic surfaces or is confined in nano-environments. Because our knowledge regarding water structure on the molecular level of dynamic equilibrium within a picosecond time scale is far from completeness all of water's conventionally known properties are based on inert "bulk liquid water" with a tetrahedral hydrogen-bonded structure. Actually, the strength of water's hydrogen bonds (HBs) decides its properties and activities. In this review, an innovative idea on preparation of metastable plasmon-activated water (PAW) with intrinsically reduced HBs, by letting deionized (DI) water flow through gold-supported nanoparticles (AuNPs) under resonant illumination at room temperature, is reported. Compared to DI water, the created stable PAW can scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and effectively reduce NO release from lipopolysaccharide-induced inflammatory cells. Moreover, PAW can dramatically induce a major antioxidative Nrf2 gene in human gingival fibroblasts. This further confirms its cellular antioxidative and anti-inflammatory properties. In addition, innovatively therapeutic strategy of daily drinking PAW on inflammatory-related diseases based on animal disease models is demonstrated, examples being chronic kidney disease (CKD), chronic sleep deprivation (CSD), and lung cancer.

  6. Health-related quality of life in youth with Crohn disease: role of disease activity and parenting stress.

    PubMed

    Gray, Wendy N; Boyle, Shana L; Graef, Danielle M; Janicke, David M; Jolley, Christopher D; Denson, Lee A; Baldassano, Robert N; Hommel, Kevin A

    2015-06-01

    Health-related quality of life (HRQOL) is an important, but understudied construct in pediatric inflammatory bowel disease. Family level predictors of HRQOL have been understudied as are the mechanisms through which disease activity affects HRQOL. The present study examines the relation between a family level factor (parenting stress) and HRQOL in youth with Crohn disease. Parenting stress is examined as a mechanism through which disease activity affects HRQOL. A total of 99 adolescents with Crohn disease and their parents were recruited across 3 sites. Adolescents completed the IMPACT-III (inflammatory bowel disease-specific HRQOL). Parents completed the Pediatric Inventory for Parents, a measure of medically related parenting stress that assesses stress because of the occurrence of medical stressors and stress because of the perceived difficulty of stressors. Disease activity was obtained from medical records. Parenting stress because of the occurrence of medical stressors partially mediated the disease severity-HRQOL relation, reducing the relation between these variables from 49.67% to 31.58% (B= -0.56, P < 0.0001). Bootstrapping analysis confirmed that the indirect effect of disease severity on HRQOL via parenting stress significantly differed from zero. Parenting stress because of the perceived difficulty of medical stressors partially mediated the disease severity-HRQOL relation, reducing the relation from 49.67% to 30.29% (B= -0.55, P < 0.0001). The indirect effect was confirmed via bootstrapping procedures. As disease severity increased, parenting stress also increased, and adolescent HRQOL decreased. Parenting stress should be considered and assessed for along with medical factors as part of a comprehensive approach to improve HRQOL in adolescents with Crohn disease.

  7. A vector space model approach to identify genetically related diseases.

    PubMed

    Sarkar, Indra Neil

    2012-01-01

    The relationship between diseases and their causative genes can be complex, especially in the case of polygenic diseases. Further exacerbating the challenges in their study is that many genes may be causally related to multiple diseases. This study explored the relationship between diseases through the adaptation of an approach pioneered in the context of information retrieval: vector space models. A vector space model approach was developed that bridges gene disease knowledge inferred across three knowledge bases: Online Mendelian Inheritance in Man, GenBank, and Medline. The approach was then used to identify potentially related diseases for two target diseases: Alzheimer disease and Prader-Willi Syndrome. In the case of both Alzheimer Disease and Prader-Willi Syndrome, a set of plausible diseases were identified that may warrant further exploration. This study furthers seminal work by Swanson, et al. that demonstrated the potential for mining literature for putative correlations. Using a vector space modeling approach, information from both biomedical literature and genomic resources (like GenBank) can be combined towards identification of putative correlations of interest. To this end, the relevance of the predicted diseases of interest in this study using the vector space modeling approach were validated based on supporting literature. The results of this study suggest that a vector space model approach may be a useful means to identify potential relationships between complex diseases, and thereby enable the coordination of gene-based findings across multiple complex diseases.

  8. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease

    PubMed Central

    Javed, Hayate; Azimullah, Sheikh; Haque, M. Emdadul; Ojha, Shreesh K.

    2016-01-01

    The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial

  9. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research.

    PubMed

    Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi

    2015-10-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

    PubMed

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

    2015-09-22

    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  11. Interleukin 27 is up-regulated in patients with active inflammatory bowel disease.

    PubMed

    Furuzawa Carballeda, Janette; Fonseca Camarillo, Gabriela; Yamamoto-Furusho, Jesús K

    2016-08-01

    The aim of the study was to characterize and quantify tissue gene and protein expression of IL-27 in ulcerative colitis (UC) and Crohn's disease (CD) patients. This is an observational and cross-sectional study. Fifty-four patients with IBD were studied: 27 active UC, 12 inactive UC, 10 active CD, and 5 inactive CD. All patients belonged to the Inflammatory Bowel Disease Clinic at the Instituto Nacional de Ciencias Médicas y Nutrición. We found that IL-27 gene expression was significantly higher in active UC versus inactive UC group (P = 0.015). The IL-27 mRNA expression was increased in patients with active CD compared with inactive CD disease (P = 0.035). The percentage of IL-27 immunoreactive cells was higher in active UC versus active CD patients and non-inflamed tissue controls. The IL-27 was significantly elevated in active UC and CD patients, and it was associated with disease severity.

  12. Sports Participation in Youth With Inflammatory Bowel Diseases: The Role of Disease Activity and Subjective Physical Health Symptoms.

    PubMed

    Greenley, Rachel Neff; Naftaly, Jessica P; Walker, Rachel J; Kappelman, Michael D; Martin, Christopher F; Schneider, Kristin L

    2018-01-18

    Physical activity is important for youth with inflammatory bowel diseases (IBD), and sports participation is a common way in which youth are physically active. Yet, studies examining sports participation in youth with IBD and barriers to sports participation are lacking. This study examined the role of disease complications, body mass index (BMI), subjective physical health, and psychosocial functioning in influencing sports participation in a large sample of youth with IBD participating in the Crohn's and Colitis Foundation of America Partners (CCFA Partners) Kids and Teens Registry. CCFA Partners Kids and Teens is an internet-based cohort study in which participants and their parents self-report demographics, disease characteristics, anthropometrics, and validated assessments of physical health, psychosocial functioning, and perceived impairment in sports participation. We performed a cross-sectional analysis of 450 cohort participants, age 12-17 years. Nearly two-thirds of the sample reported that their IBD resulted in some impairment in sports participation. IBD disease activity was associated with perceived impairment in sports participation. In a forward regression analysis controlling for disease activity, fatigue, pain, and past IBD-related surgery emerged as the most salient correlates of impairment in sports participation. Disease activity and subjective physical health symptoms were the most salient correlates of impairment in sports participation. Whether these barriers interfere with physical activity more generally deserves further study, as does replication of these findings longitudinally. Ultimately, a greater understanding of potential barriers to sports participation may be useful for generating targeted physical activity recommendations for youth with IBD. © 2018 Crohn’s & Colitis Foundation of America. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Changes in Novel Biomarkers of Disease Activity in Juvenile and Adult Dermatomyositis are Sensitive Biomarkers of Disease Course

    PubMed Central

    Reed, Ann M.; Peterson, Erik; Bilgic, Hatice; Ytterberg, Steven R.; Amin, Shreyasee; Hein, Molly S.; Crowson, Cynthia S.; Ernste, Floranne; Gillespie, Emily Baechler

    2012-01-01

    Objective Muscle enzyme levels are insensitive markers of disease activity in juvenile and adult dermatomyositis (DM), especially during the active treatment phase. To improve our ability to monitor DM disease activity longitudinally, especially in the presence of immune modulating agents, we prospectively evaluated whether IFN-dependent peripheral blood gene and chemokine signatures could serve as sensitive and responsive biomarkers for change in disease activity in adult and juvenile DM. Methods Peripheral blood and clinical data were collected from 51 juvenile and adult DM subjects prospectively over 2 study visits. Disease activity measures, whole-blood type I IFN gene and chemokine score were collected. We also measured serum levels of other pro-inflammatory cytokines, including IL-6. Results Changes in juvenile and adult DM global disease activity correlated positively and significantly with changes in the type I IFN gene score before (r=0.33, p=0.023) and IFN chemokine score before and after adjustment for medication use (r=0.53, p<0.001 and r=0.50, p=<0.001). Changes in muscle and extramuscular VAS subscales positively correlated with change in IFN gene and chemokine score (p=0.002). Serum levels of IL-6, IL-8 and TNFα were positively correlated with changes in global, muscle and extra-muscular VAS before and after adjustment for medications (p<0.05). Conclusion Our findings suggest that changes in type I IFN gene and chemokine scores as well as levels of IL-6, IL-8 and TNFα may serve as sensitive and responsive longitudinal biomarkers of change in disease activity in juvenile and adult DM, even in the presence of immunosuppressant use. PMID:22886447

  14. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis.

    PubMed

    Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul

    2017-01-01

    Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.

  15. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, F. K.; Department of Medicine; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease.more » Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.« less

  16. Physical activity and exercise attenuate neuroinflammation in neurological diseases.

    PubMed

    Spielman, Lindsay Joy; Little, Jonathan Peter; Klegeris, Andis

    2016-07-01

    Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Modelling the impacts of pests and diseases on agricultural systems.

    PubMed

    Donatelli, M; Magarey, R D; Bregaglio, S; Willocquet, L; Whish, J P M; Savary, S

    2017-07-01

    The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.

  18. Association of sleep quality in Behcet disease with disease activity, depression, and quality of life in Korean population

    PubMed Central

    Lee, Jimin; Kim, Sung-Soo; Jeong, Hye-Jin; Son, Chang-Nam; Kim, Ji-Min; Cho, Yong-Won; Kim, Sang-Hyon

    2017-01-01

    Background/Aims Sleep disturbance is prime concern in patients with Behcet disease. The purpose of this study was to find out the effects of sleep quality, in Korean patients suffering from Behcet disease. We further investigated the relationship between depression, quality of life and the clinical findings of Behcet disease. Methods The study was performed by the cross-sectional design. Sleep quality was assessed by the Korean version of Pittsburgh sleep quality index (PSQI). Disease activity of Behcet disease was evaluated by Behcet disease current activity form (BDCAF). Depression was assessed by the Korean version of Beck depression inventory second edition (BDI-2). Quality of life was assessed by the Korean version of the Leeds Behcet disease quality of life measure (BDQoL). Results Among the 100 patients studied, 42% reported poor sleep quality (PSQI ≥ 9). These patients have a higher BDI-2, total BDCAF and pain visual analogue scale (VAS) score (p < 0.001, p = 0.022, and p = 0.005). Considering BDCAF, the frequency of genital ulcer was significantly higher (p = 0.01). Behcet was higher in females. The BDQoL was lower in poor sleeper group (p = 0.004 and p < 0.001). Among 7 PSQI components, daytime dysfunction was higher in patients with high disease activity (p = 0.03). Total PSQI score were strongly correlated with BDCAF, BDI-2, BDQoL, and pain VAS score (p = 0.02, p < 0.001, p < 0.001, and p < 0.001, respectively). Conclusions Low sleep quality is directly associated with disease activity, depression, and quality of life in Korean patients with Behcet disease. PMID:28192886

  19. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    PubMed

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  20. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer's disease.

    PubMed

    Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Potier, Marie Claude; Corlier, Fabian; Kuhnast, Bertrand; Caillé, Fabien; Dubois, Bruno; Fillon, Ludovic; Chupin, Marie; Bottlaender, Michel; Sarazin, Marie

    2018-06-01

    .2%) both at the prodromal (15.8%) and at the demented stages (8.3%). The positive correlations between change in 18F-DPA-714 binding over time and the three clinical outcome measures (Clinical Dementia Rating, Mini-Mental State Examination, hippocampal atrophy) suggested a detrimental effect on clinical Alzheimer's disease progression of increased neuroinflammation after the initial PET examination, without correlation with PiB-PET uptake at baseline. High initial 18F-DPA-714 binding was correlated with a low subsequent increase of microglial activation and favourable clinical evolution, whereas the opposite profile was observed when initial 18F-DPA-714 binding was low, independently of disease severity at baseline. Taken together, our results support a pathophysiological model involving two distinct profiles of microglial activation signatures with different dynamics, which differentially impact on disease progression and may vary depending on patients rather than disease stages.

  1. Training Systems Modelers through the Development of a Multi-scale Chagas Disease Risk Model

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Stevens-Goodnight, S.; Kulkarni, S.; Bustamante, D.; Fytilis, N.; Goff, P.; Monroy, C.; Morrissey, L. A.; Orantes, L.; Stevens, L.; Dorn, P.; Lucero, D.; Rios, J.; Rizzo, D. M.

    2012-12-01

    The goal of our NSF-sponsored Division of Behavioral and Cognitive Sciences grant is to create a multidisciplinary approach to develop spatially explicit models of vector-borne disease risk using Chagas disease as our model. Chagas disease is a parasitic disease endemic to Latin America that afflicts an estimated 10 million people. The causative agent (Trypanosoma cruzi) is most commonly transmitted to humans by blood feeding triatomine insect vectors. Our objectives are: (1) advance knowledge on the multiple interacting factors affecting the transmission of Chagas disease, and (2) provide next generation genomic and spatial analysis tools applicable to the study of other vector-borne diseases worldwide. This funding is a collaborative effort between the RSENR (UVM), the School of Engineering (UVM), the Department of Biology (UVM), the Department of Biological Sciences (Loyola (New Orleans)) and the Laboratory of Applied Entomology and Parasitology (Universidad de San Carlos). Throughout this five-year study, multi-educational groups (i.e., high school, undergraduate, graduate, and postdoctoral) will be trained in systems modeling. This systems approach challenges students to incorporate environmental, social, and economic as well as technical aspects and enables modelers to simulate and visualize topics that would either be too expensive, complex or difficult to study directly (Yasar and Landau 2003). We launch this research by developing a set of multi-scale, epidemiological models of Chagas disease risk using STELLA® software v.9.1.3 (isee systems, inc., Lebanon, NH). We use this particular system dynamics software as a starting point because of its simple graphical user interface (e.g., behavior-over-time graphs, stock/flow diagrams, and causal loops). To date, high school and undergraduate students have created a set of multi-scale (i.e., homestead, village, and regional) disease models. Modeling the system at multiple spatial scales forces recognition that

  2. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes

    PubMed Central

    Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin

    2017-01-01

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959

  3. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-05-05

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease.

  4. Synthesis and Neuroprotective Action of Xyloketal Derivatives in Parkinson’s Disease Models

    PubMed Central

    Li, Shichang; Shen, Cunzhou; Guo, Wenyuan; Zhang, Xuefei; Liu, Shixin; Liang, Fengyin; Xu, Zhongliang; Pei, Zhong; Song, Huacan; Qiu, Liqin; Lin, Yongcheng; Pang, Jiyan

    2013-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting people over age 55. Oxidative stress actively participates in the dopaminergic (DA) neuron degeneration of PD. Xyloketals are a series of natural compounds from marine mangrove fungus strain No. 2508 that have been reported to protect against neurotoxicity through their antioxidant properties. However, their protection versus 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity is only modest, and appropriate structural modifications are necessary to discover better candidates for treating PD. In this work, we designed and synthesized 39 novel xyloketal derivatives (1–39) in addition to the previously reported compound, xyloketal B. The neuroprotective activities of all 40 compounds were evaluated in vivo via respiratory burst assays and longevity-extending assays. During the zebrafish respiratory burst assay, compounds 1, 9, 23, 24, 36 and 39 strongly attenuated reactive oxygen species (ROS) generation at 50 μM. In the Caenorhabditis elegans longevity-extending assay, compounds 1, 8, 15, 16 and 36 significantly extended the survival rates (p < 0.005 vs. dimethyl sulfoxide (DMSO)). A total of 15 compounds were tested for the treatment of Parkinson’s disease using the MPP+-induced C. elegans model, and compounds 1 and 8 exhibited the highest activities (p < 0.005 vs. MPP+). In the MPP+-induced C57BL/6 mouse PD model, 40 mg/kg of 1 and 8 protected against MPP+-induced dopaminergic neurodegeneration and increased the number of DA neurons from 53% for the MPP+ group to 78% and 74%, respectively (p < 0.001 vs. MPP+ group). Thus, these derivatives are novel candidates for the treatment of PD. PMID:24351912

  5. Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research

    PubMed Central

    Wangler, Michael F.; Yamamoto, Shinya; Chao, Hsiao-Tuan; Posey, Jennifer E.; Westerfield, Monte; Postlethwait, John; Hieter, Philip; Boycott, Kym M.; Campeau, Philippe M.; Bellen, Hugo J.

    2017-01-01

    Efforts to identify the genetic underpinnings of rare undiagnosed diseases increasingly involve the use of next-generation sequencing and comparative genomic hybridization methods. These efforts are limited by a lack of knowledge regarding gene function, and an inability to predict the impact of genetic variation on the encoded protein function. Diagnostic challenges posed by undiagnosed diseases have solutions in model organism research, which provides a wealth of detailed biological information. Model organism geneticists are by necessity experts in particular genes, gene families, specific organs, and biological functions. Here, we review the current state of research into undiagnosed diseases, highlighting large efforts in North America and internationally, including the Undiagnosed Diseases Network (UDN) (Supplemental Material, File S1) and UDN International (UDNI), the Centers for Mendelian Genomics (CMG), and the Canadian Rare Diseases Models and Mechanisms Network (RDMM). We discuss how merging human genetics with model organism research guides experimental studies to solve these medical mysteries, gain new insights into disease pathogenesis, and uncover new therapeutic strategies. PMID:28874452

  6. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  7. Use of model organism and disease databases to support matchmaking for human disease gene discovery.

    PubMed

    Mungall, Christopher J; Washington, Nicole L; Nguyen-Xuan, Jeremy; Condit, Christopher; Smedley, Damian; Köhler, Sebastian; Groza, Tudor; Shefchek, Kent; Hochheiser, Harry; Robinson, Peter N; Lewis, Suzanna E; Haendel, Melissa A

    2015-10-01

    The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases. © 2015 WILEY PERIODICALS, INC.

  8. Ghrelin and adipokines as circulating markers of disease activity in patients with Takayasu arteritis

    PubMed Central

    2012-01-01

    Introduction The current markers of disease activity in Takayasu arteritis (TA) are insufficient for proper assessment. We investigated circulating levels of unacylated and acylated ghrelin, leptin and adiponectin and their relationships with disease activity in patients with TA. Methods This study included 31 patients with TA and 32 sex-, age- and body mass index-matched healthy controls. Disease activity was assessed in TA patients using various tools, including Kerr's criteria, disease extent index-Takayasu, physician's global assessment, radiological parameters, and laboratory markers. Plasma unacylated and acylated ghrelin, and serum leptin and adiponectin levels were measured using an enzyme-linked immunosorbent assay. Results Unacylated and acylated ghrelin levels were found to be significantly lower in TA patients than that in healthy controls. Patients with active disease had lower unacylated ghrelin levels than those with inactive disease and had lower acylated ghrelin levels than healthy controls. Ghrelin levels were negatively correlated with various parameters of disease activity. The leptin/ghrelin ratio was significantly higher in TA patients than controls. It was positively correlated with disease activity. There was a positive correlation between unacylated and acylated ghrelin and a negative correlation between leptin and ghrelin. There was no statistical difference in adiponectin levels between TA patients and controls. The radiological activity markers were positively correlated with other parameters of disease activity. Conclusions This study suggests that plasma unacylated and acylated ghrelin levels may be useful in monitoring disease activity and planning treatment strategies for patients with TA. The serum leptin level and leptin/ghrelin ratio may also be used to help assess the disease activity. PMID:23259466

  9. Phosphatidylinositol 3-kinase activity in murine motoneuron disease: the progressive motor neuropathy mouse.

    PubMed

    Wagey, R; Lurot, S; Perrelet, D; Pelech, S L; Sagot, Y; Krieger, C

    2001-01-01

    A murine model of motoneuron disease, the pmn/pmn mouse, shows a reduction in the retrograde transport of fluorescent probes applied directly onto the cut end of sciatic nerve. Brain-derived neurotrophic factor (BDNF), when co-applied with fluorescent tracers, increases the number of retrograde labelled motoneurons. We demonstrate here that spinal cord tissue from pmn/pmn mice had significantly reduced phosphatidylinositol 3-kinase activity and expression in the particulate fraction compared to controls, without changes in the activities or expression of the downstream kinases, protein kinase B/Akt or Erk1. Systemic administration of BDNF augmented phosphatidylinositol 3-kinase specific activity in spinal cord tissue from pmn/pmn and control mice, with a greater elevation in the particulate fractions of pmn/pmn mice than in controls. We examined the effect of inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase on the retrograde labelling of motoneurons, 24h following the direct application of inhibitors and Fluorogold to the cut end of sciatic nerve in control and pmn/pmn mice (labelling index). The mitogen-activated protein kinase kinase inhibitor PD 98059 had no effect on the labelling index in control or pmn/pmn mice. In the absence of exogenous BDNF, phosphatidylinositol 3-kinase inhibitors reduced the number of labelled motoneurons in control mice, without changing the labelling index in pmn/pmn. Co-application of phosphatidylinositol 3-kinase inhibitors with BDNF to the cut end of sciatic nerve blocked the action of BDNF on retrograde labelling in pmn/pmn mice. These results indicate that the retrograde labelling of motoneurons is mediated by phosphatidylinositol 3-kinase-dependent and -independent pathways. In pmn/pmn mice, phosphatidylinositol 3-kinase activity in spinal neurons is below the level required for optimal retrograde labelling of motoneurons and labelling can be augmented by the administration of growth

  10. BILAG-2004 index captures systemic lupus erythematosus disease activity better than SLEDAI-2000.

    PubMed

    Yee, C-S; Isenberg, D A; Prabu, A; Sokoll, K; Teh, L-S; Rahman, A; Bruce, I N; Griffiths, B; Akil, M; McHugh, N; D'Cruz, D; Khamashta, M A; Maddison, P; Zoma, A; Gordon, C

    2008-06-01

    To assess the reliability of Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)-2000 index in routine practice and its ability to capture disease activity as compared with the British Isles Lupus Assessment Group (BILAG)-2004 index. Patients with systemic lupus erythematosus from 11 centres were assessed separately by two raters in routine practice. Disease activity was assessed using the BILAG-2004 and SLEDAI-2000 indices. The level of agreement for items was used to assess the reliability of SLEDAI-2000. The ability to detect disease activity was assessed by determining the number of patients with a high activity on BILAG-2004 (overall score A or B) but low SLEDAI-2000 score (<6) and number of patients with low activity on BILAG-2004 (overall score C, D or E) but high SLEDAI-2000 score (>or=6). Treatment of these patients was analysed, and the increase in treatment was used as the gold standard for active disease. 93 patients (90.3% women, 69.9% Caucasian) were studied: mean age was 43.8 years, mean disease duration 10 years. There were 43 patients (46.2%) with a difference in SLEDAI-2000 score between the two raters and this difference was >or=4 in 19 patients (20.4%). Agreement for each of the items in SLEDAI-2000 was between 81.7 and 100%. 35 patients (37.6%) had high activity on BILAG-2004 but a low SLEDAI-2000 score, of which 48.6% had treatment increased. There were only five patients (5.4%) with low activity on BILAG-2004 but a high SLEDAI-2000 score. SLEDAI-2000 is a reliable index to assess systemic lupus erythematosus disease activity but it is less able than the BILAG-2004 index to detect active disease requiring increased treatment.

  11. Antiangiogenic activity of aganirsen in nonhuman primate and rodent models of retinal neovascular disease after topical administration.

    PubMed

    Cloutier, Frank; Lawrence, Matthew; Goody, Robin; Lamoureux, Stéphanie; Al-Mahmood, Salman; Colin, Sylvie; Ferry, Antoine; Conduzorgues, Jean-Pascal; Hadri, Amel; Cursiefen, Claus; Udaondo, Patricia; Viaud, Eric; Thorin, Eric; Chemtob, Sylvain

    2012-03-09

    Aganirsen, an antisense oligonucleotide inhibiting insulin receptor substrate (IRS)-1 expression, has been shown to promote the regression of pathologic corneal neovascularization in patients. In this study, the authors aimed to demonstrate the antiangiogenic activity of aganirsen in animal models of retinal neovascularization. Eyedrops of aganirsen were applied daily in nonhuman primates after laser-induced choroidal neovascularization (CNV; model of wet age-related macular degeneration [AMD]) and in newborn rats after oxygen-induced retinopathy (OIR; model of ischemic retinopathy). Retinal aganirsen concentrations were assessed in rabbits and monkeys after topical delivery (21.5, 43, or 86 μg). Clinical significance was further evaluated by determination of IRS-1 expression in monkey and human retinal biopsy specimens. Topical corneal application of aganirsen attenuated neovascular lesion development dose dependently in African green monkeys. The incidence of high-grade CNV lesions (grade IV) decreased from 20.5% in vehicle-treated animals to 1.7% (P < 0.05) at the 86-μg dose. Topical aganirsen inhibited retinal neovascularization after OIR in rats (P < 0.05); furthermore, a single intravitreal injection of aganirsen reduced OIR as effectively as ranibizumab, and their effects were additive. Significantly, topical applications of aganirsen did not interfere with physiological retinal vessel development in newborn rats. Retinal delivery after topical administration was confirmed, and retinal expression of IRS-1 was demonstrated to be elevated in patients with subretinal neovascularization and AMD. Topical application of aganirsen offers a safe and effective therapy for both choroidal and retinal neovascularization without preventing its normal vascularization. Together, these findings support the clinical testing of aganirsen for human retinal neovascular diseases.

  12. Pharmacological Interventions to Ameliorate Neuropathological Symptoms in a Mouse Model of Lafora Disease.

    PubMed

    Berthier, Arnaud; Payá, Miguel; García-Cabrero, Ana M; Ballester, Maria Inmaculada; Heredia, Miguel; Serratosa, José M; Sánchez, Marina P; Sanz, Pascual

    2016-03-01

    Lafora disease (LD, OMIM 254780) is a rare fatal neurodegenerative disorder that usually occurs during childhood with generalized tonic-clonic seizures, myoclonus, absences, drop attacks, or visual seizures. Unfortunately, at present, available treatments are only palliatives and no curative drugs are available yet. The hallmark of the disease is the accumulation of insoluble polyglucosan inclusions, called Lafora bodies (LBs), within the neurons but also in heart, muscle, and liver cells. Mouse models lacking functional EPM2A or EPM2B genes (the two major loci related to the disease) recapitulate the Lafora disease phenotype: they accumulate polyglucosan inclusions, show signs of neurodegeneration, and have a dysregulation of protein clearance and endoplasmic reticulum stress response. In this study, we have subjected a mouse model of LD (Epm2b-/-) to different pharmacological interventions aimed to alleviate protein clearance and endoplasmic reticulum stress. We have used two chemical chaperones, trehalose and 4-phenylbutyric acid. In addition, we have used metformin, an activator of AMP-activated protein kinase (AMPK), as it has a recognized neuroprotective role in other neurodegenerative diseases. Here, we show that treatment with 4-phenylbutyric acid or metformin decreases the accumulation of Lafora bodies and polyubiquitin protein aggregates in the brain of treated animals. 4-Phenylbutyric acid and metformin also diminish neurodegeneration (measured in terms of neuronal loss and reactive gliosis) and ameliorate neuropsychological tests of Epm2b-/- mice. As these compounds have good safety records and are already approved for clinical uses on different neurological pathologies, we think that the translation of our results to the clinical practice could be straightforward.

  13. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    PubMed

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  14. MCP-1 in urine as biomarker of disease activity in Systemic Lupus Erythematosus.

    PubMed

    Barbado, Julia; Martin, Debora; Vega, Luisa; Almansa, Raquel; Gonçalves, Lisbeth; Nocito, Mercedes; Jimeno, Antonio; Ortiz de Lejarazu, Raúl; Bermejo-Martin, Jesus F

    2012-11-01

    Conventional clinical parameters are not sensitive or specific enough for detecting ongoing disease activity in the Systemic Lupus Erythematosus (SLE). Measurement of cytokines in urine is an encouraging approach to detection of early flares in this disease. Here we have profiled 27 different cytokines, chemokines and celular growth factors in the urine of 48 patients previously diagnosed of SLE as potential biomarkers of disease activity. Correlation analysis with Bonferroni correction showed that MCP-1 was the only immune mediator which levels in urine correlated directly with the SLE Disease Activity Index 2000 (SLEDAI-2K) score (correlation coefficient, p): MCP-1 (0.45,0.003). MCP-1 correlated inversely with levels of C3 complement protein in serum (-0.50,0.001). MCP-1 showed significant higher levels in patients with severe disease activity in comparison with those exhibiting mild activity. Levels of this chemokine were also higher in patients with severe disease activity in comparison with patients with inactive disease and healthy controls. Areas under receiver operating characteristic curves (AUROC) for detection of severe disease (SLEDAI⩾8) was as follows for MCP-1: [AUROC, (IC95%), p]: [0.81 (0.65-0.96) 0.003]. In addition, MCP-1 showed a good result in the AUROC analysis for detecting renal involvement [0.70 (0.52-0.87) 0.050]. When correlation analysis were repeated excluding those patients with active renal disease (n=14), levels of MCP-1 in urine kept on showing a significant positive association with SLEDAI-2K score. In conclusion, multiplex-based cytokine profiling in urine demonstrated the superiority of MCP-1 over a wide range of cytokines as biomarker of disease activity in SLE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Modeling Alzheimer’s disease: from past to future

    PubMed Central

    Saraceno, Claudia; Musardo, Stefano; Marcello, Elena; Pelucchi, Silvia; Di Luca, Monica

    2013-01-01

    Alzheimer’s disease (AD) is emerging as the most prevalent and socially disruptive illness of aging populations, as more people live long enough to become affected. Although AD is placing a considerable and increasing burden on society, it represents the largest unmet medical need in neurology, because current drugs improve symptoms, but do not have profound disease-modifying effects. Although AD pathogenesis is multifaceted and difficult to pinpoint, genetic and cell biological studies led to the amyloid hypothesis, which posits that amyloid β (Aβ) plays a pivotal role in AD pathogenesis. Amyloid precursor protein (APP), as well as β- and γ-secretases are the principal players involved in Aβ production, while α-secretase cleavage on APP prevents Aβ deposition. The association of early onset familial AD with mutations in the APP and γ-secretase components provided a potential tool of generating animal models of the disease. However, a model that recapitulates all the aspects of AD has not yet been produced. Here, we face the problem of modeling AD pathology describing several models, which have played a major role in defining critical disease-related mechanisms and in exploring novel potential therapeutic approaches. In particular, we will provide an extensive overview on the distinct features and pros and contras of different AD models, ranging from invertebrate to rodent models and finally dealing with computational models and induced pluripotent stem cells. PMID:23801962

  16. Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis

    PubMed Central

    Liebl, Martina P.; Windschmitt, Johannes; Besemer, Anna S.; Schäfer, Anne-Kathrin; Reber, Helmut; Behl, Christian; Clement, Albrecht M.

    2015-01-01

    Low-frequency magnetic fields (LF-MF) generated by power lines represent a potential environmental health risk and are classified as possibly carcinogenic by the World Health Organization. Epidemiological studies indicate that LF-MF might propagate neurodegenerative diseases like Alzheimer's disease (AD) or amyotrophic lateral sclerosis (ALS). We conducted a comprehensive analysis to determine whether long-term exposure to LF-MF (50 Hz, 1 mT) interferes with disease development in established mouse models for AD and ALS, namely APP23 mice and mice expressing mutant Cu/Zn-superoxide dismutase (SOD1), respectively. Exposure for 16 months did not aggravate learning deficit of APP23 mice. Likewise, disease onset and survival of SOD1G85R or SOD1G93A mice were not altered upon LF-MF exposure for ten or eight months, respectively. These results and an extended biochemical analysis of protein aggregation, glial activation and levels of toxic protein species suggests that LF-MF do not affect cellular processes involved in the pathogenesis of AD or ALS. PMID:25717019

  17. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.

    PubMed

    Mayers, Michael D; Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W

    2017-02-03

    Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.

  18. Associations between vigorous physical activity and chronic diseases in older adults: a study in 13 European countries.

    PubMed

    Marques, Adilson; Peralta, Miguel; Sarmento, Hugo; Martins, João; González Valeiro, Miguel

    2018-05-14

    This study aimed to assess cross-sectional and prospective relationships between vigorous physical activity (VPA) and the risk of major chronic diseases among European older adults. Participants were 37 524 older adults who responded to the fourth (in 2011) and fifth (in 2013) wave of the SHARE project, from 13 European countries. Participants answered interview questions about the presence of chronic conditions and VPA. The cross-sectional and prospective association between PA and the number of chronic diseases was assessed using logistic regression models. Among men and women, the prevalence of chronic diseases was significantly lower among those who reported VPA once a week or more than once a week. For men, VPA once a week was prospectively related with lower odds of heart attack, chronic lung disease, Parkinson's disease and Alzheimer's disease. VPA more than once a week was prospectively related with lower odds of having all chronic diseases. Women who engaged in VPA once a week presented lower odds of having chronic diseases, except for hypertension, high blood cholesterol and cancer. For VPA more than once a week, cancer was the only disease not associated with physical activity. VPA is associated with reduced risk of chronic diseases in men and women. Even the practice of VPA once a week seems to be sufficient to reduce risks of chronic diseases.

  19. Production and characterization of murine models of classic and intermediate maple syrup urine disease

    PubMed Central

    Homanics, Gregg E; Skvorak, Kristen; Ferguson, Carolyn; Watkins, Simon; Paul, Harbhajan S

    2006-01-01

    Background Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model. Methods To create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels. Results By disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5–6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model. Conclusion These mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease. PMID

  20. The impact of high intensity interval training on disease activity and patient disease perception in patients with psoriatic arthritis: A randomized controlled trial.

    PubMed

    Thomsen, Ruth S; Nilsen, Tom I L; Haugeberg, Glenn; Bye, Anja; Kavanaugh, Arthur; Hoff, Mari

    2018-06-08

    The aim of this study was to evaluate the impact of high intensity interval training (HIIT) on disease activity and patient disease perception in patients with psoriatic arthritis (PsA), and evaluating if a potential effect could be sustained for a longer period. We randomly assigned 67 PsA patients (43 women and 24 men) to an intervention group performing HIIT for 11 weeks or a control group who were instructed to not change their physical exercise habits. Outcomes were assessed at three and nine months with the patient global assessment (PGA), fatigue, and pain measured on a 100 mm visual analog scale and the composite disease activity score of 44 joints (DAS44) was calculated. We used linear mixed models to calculate mean difference with 95% confidence interval (CI) between the groups according to the intention-to-treat principle. At three months there was no clear difference in PGA (-0.49; 95% CI -10.91 to 9.94), DAS44 (-0.08; 95% CI -0.36 to 0.20) or pain intensity (5.45; 95% CI -4.36 to 15.26) between the groups. However, the HIIT group reported less fatigue (-12.83; 95% CI -25.88 to 0.23) than the control group. There was no evidence of long-term effects of HIIT on outcomes measured at nine months. HIIT showed no clear effects on disease activity markers in patients with PsA, but the exercise group reported meaningfully less fatigue after the intervention period. This study suggests that PsA patients tolerate HIIT without deterioration of disease activity and with improvement in fatigue. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Circulating cathelicidin levels correlate with mucosal disease activity in ulcerative colitis, risk of intestinal stricture in Crohn's disease, and clinical prognosis in inflammatory bowel disease.

    PubMed

    Tran, Diana Hoang-Ngoc; Wang, Jiani; Ha, Christina; Ho, Wendy; Mattai, S Anjani; Oikonomopoulos, Angelos; Weiss, Guy; Lacey, Precious; Cheng, Michelle; Shieh, Christine; Mussatto, Caroline C; Ho, Samantha; Hommes, Daniel; Koon, Hon Wai

    2017-05-12

    Cathelicidin (LL-37) is an antimicrobial peptide known to be associated with various autoimmune diseases. We attempt to determine if cathelicidin can accurately reflect IBD disease activity. We hypothesize that serum cathelicidin correlates with mucosal disease activity, stricture, and clinical prognosis of IBD patients. Serum samples were collected from two separate cohorts of patients at the University of California, Los Angeles. Cohort 1 consisted of 50 control, 23 UC, and 28 CD patients. Cohort 2 consisted of 20 control, 57 UC, and 67 CD patients. LL-37 levels were determined by ELISA. Data from both cohorts were combined for calculation of accuracies in indicating mucosal disease activity, relative risks of stricture, and odds ratios of predicting disease development. Serum cathelicidin levels were inversely correlated with Partial Mayo Scores of UC patients and Harvey-Bradshaw Indices of CD patients. Among IBD patients with moderate or severe initial disease activity, the patients with high initial LL-37 levels had significantly better recovery than the patients with low initial LL-37 levels after 6-18 months, suggesting that high LL-37 levels correlate with good prognosis. Co-evaluation of LL-37 and CRP levels was more accurate than CRP alone or LL-37 alone in the correlation with Mayo Endoscopic Score of UC patients. Low LL-37 levels indicated a significantly elevated risk of intestinal stricture in CD patients. Co-evaluation of LL-37 and CRP can indicate mucosal disease activity in UC patients. LL-37 can predict future clinical activity in IBD patients and indicate risk of intestinal stricture in CD patients.

  2. BIRDSHOT CHORIORETINITIS LESIONS ON INDOCYANINE GREEN ANGIOGRAPHY AS AN INDICATOR OF DISEASE ACTIVITY.

    PubMed

    Cao, Jennifer H; Silpa-Archa, Sukhum; Freitas-Neto, Clovis A; Foster, C Stephen

    2016-09-01

    To determine whether classical indocyanine green angiography lesions in patients with birdshot chorioretinitis can be used to monitor disease activity. A retrospective case series was performed on 26 eyes in 26 consecutive patients with birdshot chorioretinitis who had at least one indocyanine green angiography performed during disease activity and another during disease quiescence. Using Photoshop, the mean number, area, and area per spot on indocyanine green angiography were compared between disease activity and quiescence using a paired ratio test. The mean total lesion number, area, and area per spot during disease activity were 75.27 spots, 24,525 pixels, and 364 pixels/spots, respectively. The mean total lesion number, area, and area per spot size during disease quiescence were 28.35 spots (P < 0.01), 7,411 pixels (P < 0.01), and 279 pixels/spot (P = 0.12), respectively. There was a statistically significant decrease in the mean total area and number of lesions between the time of disease activity and disease quiescence (P < 0.01). Our results suggest that indocyanine green angiography has a role not only in diagnosis but also in monitoring treatment effectiveness; lesions can be reversible with treatment and their reappearance may be an indicator of disease relapse.

  3. Modeling Huntington׳s disease with patient-derived neurons.

    PubMed

    Mattis, Virginia B; Svendsen, Clive N

    2017-02-01

    Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Exploratory study of physical activity in persons with Charcot-Marie-Tooth disease.

    PubMed

    Anens, Elisabeth; Emtner, Margareta; Hellström, Karin

    2015-02-01

    To explore and describe the perceived facilitators and barriers to physical activity, and to examine the physical activity correlates in people with Charcot-Marie-Tooth (CMT) disease. Cross-sectional survey study. Community-living subjects. Swedish people with CMT disease (N=44; men, 54.5%; median age, 59.5 y [interquartile range, 45.3-64.8 y]). Not applicable. The survey included open-ended questions and standardized self-reported scales measuring physical activity, fatigue, activity limitation, self-efficacy for physical activity, fall-related self-efficacy, social support, and enjoyment of physical activity. Physical activity was measured by the Physical Activity Disability Survey-Revised. Qualitative content analysis revealed that personal factors such as fatigue, poor balance, muscle weakness, and pain were important barriers for physical activity behavior. Facilitators of physical activity were self-efficacy for physical activity, activity-related factors, and assistive devices. Multiple regression analysis showed that self-efficacy for physical activity (β=.41) and fatigue (β=-.30) explained 31.8% of the variation in physical activity (F2,40=10.78, P=.000). Despite the well-known benefits of physical activity, physical activity in people with CMT disease is very sparsely studied. These new results contribute to the understanding of factors important for physical activity behavior in people with CMT disease and can guide health professionals to facilitate physical activity behavior in this group of patients. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Optimizing agent-based transmission models for infectious diseases.

    PubMed

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  6. Spatial modelling of disease using data- and knowledge-driven approaches.

    PubMed

    Stevens, Kim B; Pfeiffer, Dirk U

    2011-09-01

    The purpose of spatial modelling in animal and public health is three-fold: describing existing spatial patterns of risk, attempting to understand the biological mechanisms that lead to disease occurrence and predicting what will happen in the medium to long-term future (temporal prediction) or in different geographical areas (spatial prediction). Traditional methods for temporal and spatial predictions include general and generalized linear models (GLM), generalized additive models (GAM) and Bayesian estimation methods. However, such models require both disease presence and absence data which are not always easy to obtain. Novel spatial modelling methods such as maximum entropy (MAXENT) and the genetic algorithm for rule set production (GARP) require only disease presence data and have been used extensively in the fields of ecology and conservation, to model species distribution and habitat suitability. Other methods, such as multicriteria decision analysis (MCDA), use knowledge of the causal factors of disease occurrence to identify areas potentially suitable for disease. In addition to their less restrictive data requirements, some of these novel methods have been shown to outperform traditional statistical methods in predictive ability (Elith et al., 2006). This review paper provides details of some of these novel methods for mapping disease distribution, highlights their advantages and limitations, and identifies studies which have used the methods to model various aspects of disease distribution. Copyright © 2011. Published by Elsevier Ltd.

  7. Ileal Crohn disease: mural microvascularity quantified with contrast-enhanced US correlates with disease activity.

    PubMed

    De Franco, Antonio; Di Veronica, Alessandra; Armuzzi, Alessandro; Roberto, Italia; Marzo, Manuela; De Pascalis, Barbara; De Vitis, Italo; Papa, Alfredo; Bock, Enrico; Danza, Francesco M; Bonomo, Lorenzo; Guidi, Luisa

    2012-02-01

    To quantitatively assess microvascular activation in the thickened ileal walls of patients with Crohn disease (CD) by using contrast-enhanced ultrasonography (US) and evaluate its correlation with widely used indexes of CD activity. This prospective study was approved by the ethics committee, and written informed consent was obtained from all patients. The authors examined 54 consecutively enrolled patients (mean age, 35.29 years; age range, 18-69 years; 39 men, 15 women) with endoscopically confirmed CD of the terminal ileum. Ileal wall segments thicker than 3 mm were examined with low-mechanical-index contrast-enhanced US and a second-generation US contrast agent. The authors analyzed software-plotted time-enhancement intensity curves to determine the maximum peak intensity (MPI) and wash-in slope coefficient (β) and evaluated their correlation with (a) the composite index of CD activity (CICDA), (b) the CD activity index (CDAI), and (c) the simplified endoscopic score for CD (SES-CD, evaluated in 37 patients) for the terminal ileum. Statistical analysis was performed with the Mann-Whitney test, Spearman rank test, and receiver operating characteristic (ROC) analysis. MPI and β coefficients were significantly increased in the 36 patients with a CICDA indicative of active disease (P<.0001 for both), the 33 patients with a CDAI of at least 150 (P<.032 and P<.0074, respectively), and the 26 patients with an SES-CD of at least 1 (P<.0001 and P<.002, respectively). ROC analysis revealed accurate identification (compared with CICDA) of active CD with an MPI threshold of 24 video intensity (VI) (sensitivity, 97%; specificity, 83%) and a β coefficient of 4.5 VI/sec (sensitivity, 86%; specificity, 83%). Contrast-enhanced US of the ileal wall is a promising method for objective, reproducible assessment of disease activity in patients with ileal CD. © RSNA, 2011

  8. Disease activity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Albulaihe, Hana; Alabdali, Majed; Alsulaiman, Abdulla; Abraham, Alon; Breiner, Ari; Barnett, Carolina; Katzberg, Hans D; Lovblom, Leif E; Perkins, Bruce A; Bril, Vera

    2016-10-15

    Evaluation of disease status in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) is often done by a combination of clinical evaluation and electrodiagnostic studies. A CIDP disease activity status (CDAS) was developed to standardize outcomes in CIDP patients. We aimed to determine if the CDAS was concordant with classical evaluation and whether CDAS enables benchmarking of CIDP. We performed a retrospective chart review of 305 CIDP patients and identified 206 patients with >1 visit and applied the CDAS to this cohort. We examined relationships between the CDAS and classical evaluation as to outcomes and compared our cohort to other CIDP cohorts who had CDAS. We found that the CDAS mirrored disease severity as measured by electrophysiology and vibration perception thresholds in that CDAS class 5 had more severe neuropathy. Our results are similar to other cohorts in the middle CDAS strata with the exception of fewer subjects in CDAS 1 and more in CDAS 5. The only demographic factor predicting CDAS 5 in our cohort was age, and the overall treatment response rate using the CDAS classification was 79.3%. CDAS appears to have sufficient face-validity as a grading system to assess disease activity in relation to treatment status. The use of CDAS appears to allow benchmarking of patients with CIDP that may be useful in subject selection for clinical trials and also to highlight differences in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Recreational Physical Activity and Risk of Parkinson’s Disease

    PubMed Central

    Thacker, Evan L.; Chen, Honglei; Patel, Alpa V.; McCullough, Marjorie L.; Calle, Eugenia E.; Thun, Michael J.; Schwarzschild, Michael A.; Ascherio, Alberto

    2008-01-01

    Purpose To investigate associations between recreational physical activity and Parkinson’s disease (PD) risk. Methods We prospectively followed 143,325 participants in the Cancer Prevention Study II Nutrition Cohort from 1992 to 2001 (mean age at baseline = 63). Recreational physical activity was estimated at baseline from the reported number of hours per week on average spent performing light intensity activities (walking, dancing) and moderate to vigorous intensity activities (jogging/running, lap swimming, tennis/racquetball, bicycling/stationary bike, aerobics/calisthenics). Incident cases of PD (n = 413) were confirmed by treating physicians and medical record review. Relative risks (RR) were estimated using proportional hazards models, adjusting for age, gender, smoking, and other risk factors. Results Risk of PD declined in the highest categories of baseline recreational activity. The RR comparing the highest category of total recreational activity (men ≥ 23 metabolic equivalent task-h/wk [MET-h/wk], women ≥ 18.5 MET-h/wk) to no activity was 0.8 (95% CI: 0.6, 1.2; p trend = 0.07). When light activity and moderate to vigorous activity were examined separately, only the latter was found to be associated with PD risk. The RR comparing the highest category of moderate to vigorous activity (men ≥ 16 MET-h/wk, women ≥ 11.5 MET-h/wk) to the lowest (0 MET-h/wk) was 0.6 (95% CI: 0.4, 1.0; p trend = 0.02). These results did not differ significantly by gender. The results were similar when we excluded cases with symptom onset in the first four years of follow-up. Conclusions Our results may be explained either by a reduction in PD risk through moderate to vigorous activity, or by decreased baseline recreational activity due to preclinical PD. PMID:17960818

  10. Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn's disease.

    PubMed

    Kiryu, Shigeru; Dodanuki, Keiichi; Takao, Hidemasa; Watanabe, Makoto; Inoue, Yusuke; Takazoe, Masakazu; Sahara, Rikisaburo; Unuma, Kiyohito; Ohtomo, Kuni

    2009-04-01

    To investigate the application of free-breathing diffusion-weighted MR imaging (DWI) to the assessment of disease activity in Crohn's disease. Thirty-one patients with Crohn's disease were investigated using free-breathing DWI without special patient preparation or IV or intraluminal contrast agent. The bowel was divided into seven segments, and disease activity was assessed visually on DWI. For quantitative analysis, the apparent diffusion coefficient (ADC) was measured in each segment. The findings of a conventional barium study or surgery were regarded as the gold standard for evaluating the diagnostic ability of DWI to assess disease activity. Upon visual assessment, the sensitivity, specificity, and accuracy for the detection of disease-active segments were 86.0, 81.4, and 82.4%, respectively. In the quantitative assessment, the ADC value in the disease-active area was lower than that in disease-inactive area in small and large bowels (1.61 +/- 0.44 x 10(-3) mm(2)/s versus 2.56 +/- 0.51 x 10(-3) mm(2)/s in small bowel and 1.52 +/- 0.43 x 10(-3) mm(2)/s versus 2.31 +/- 0.59 x 10(-3) mm(2)/s in large bowel, respectively, P<0.001). Free-breathing DWI is useful in the assessment of Crohn's disease. The accuracy of DWI is high in evaluating disease activity, especially in the small bowel, and the ADC may facilitate quantitative analysis of disease activity.

  11. The role of autophagy in Parkinson's disease: rotenone-based modeling

    PubMed Central

    2013-01-01

    Background Autophagy-mediated self-digestion of cytoplasmic inclusions may be protective against neurodegenerative diseases such as Parkinson’s disease (PD). However, excessive autophagic activation evokes autophagic programmed cell death. Methods In this study, we aimed at exploring the role of autophagy in the pathogenesis of rotenone-induced cellular and animal models for PD. Results Reactive oxygen species over-generation, mitochondrial membrane potential reduction or apoptosis rate elevation occurred in a dose-dependent fashion in rotenone-treated human neuroblastoma cell line SH-SY5Y. The time- and dose-dependent increases in autophagic marker microtubule-associated protein1 light chain 3 (LC3) expression and decreases in autophagic adaptor protein P62 were observed in this cellular model. LC3-positive autophagic vacuoles were colocalized with alpha-synuclein-overexpressed aggregations. Moreover, the number of autophagic vacuoles was increased in rotenone-based PD models in vitro and in vivo. Conclusions These data, along with our previous finding showing rotenone-induced toxicity was prevented by the autophagy enhancers and was aggravated by the autophagy inhibitors in SH-SY5Y, suggest that autophagy contributes to the pathogenesis of PD, attenuates the rotenone toxicity and possibly represents a new subcellular target for treating PD. PMID:23497442

  12. A few bad apples: a model of disease influenced agent behaviour in a heterogeneous contact environment.

    PubMed

    Enright, Jessica; Kao, Rowland R

    2015-01-01

    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent's disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence.

  13. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    PubMed Central

    Lin, Jenny B.; Phillips, Evan H.; Riggins, Ti’Air E.; Sangha, Gurneet S.; Chakraborty, Sreyashi; Lee, Janice Y.; Lycke, Roy J.; Hernandez, Clarissa L.; Soepriatna, Arvin H.; Thorne, Bradford R. H.; Yrineo, Alexa A.; Goergen, Craig J.

    2015-01-01

    Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic. PMID:25993289

  14. Refining Low Physical Activity Measurement Improves Frailty Assessment in Advanced Lung Disease and Survivors of Critical Illness.

    PubMed

    Baldwin, Matthew R; Singer, Jonathan P; Huang, Debbie; Sell, Jessica; Gonzalez, Wendy C; Pollack, Lauren R; Maurer, Mathew S; D'Ovidio, Frank F; Bacchetta, Matthew; Sonett, Joshua R; Arcasoy, Selim M; Shah, Lori; Robbins, Hilary; Hays, Steven R; Kukreja, Jasleen; Greenland, John R; Shah, Rupal J; Leard, Lorriana; Morrell, Matthew; Gries, Cynthia; Katz, Patricia P; Christie, Jason D; Diamond, Joshua M; Lederer, David J

    2017-08-01

    The frail phenotype has gained popularity as a clinically relevant measure in adults with advanced lung disease and in critical illness survivors. Because respiratory disease and chronic illness can greatly limit physical activity, the measurement of participation in traditional leisure time activities as a frailty component may lead to substantial misclassification of frailty in pulmonary and critical care patients. To test and validate substituting the Duke Activity Status Index (DASI), a simple 12-item questionnaire, for the Minnesota Leisure Time Physical Activity (MLTA) questionnaire, a detailed questionnaire covering 18 leisure time activities, as the measure of low activity in the Fried frailty phenotype (FFP) instrument. In separate multicenter prospective cohort studies of adults with advanced lung disease who were candidates for lung transplant and older survivors of acute respiratory failure, we assessed the FFP using either the MLTA or the DASI. For both the DASI and MLTA, we evaluated content validity by testing floor effects and construct validity through comparisons with conceptually related factors. We tested the predictive validity of substituting the DASI for the MLTA in the FFP assessment using Cox models to estimate associations between the FFP and delisting/death before transplant in those with advanced lung disease and 6-month mortality in older intensive care unit (ICU) survivors. Among 618 adults with advanced lung disease and 130 older ICU survivors, the MLTA had a substantially greater floor effect than the DASI (42% vs. 1%, and 49% vs. 12%, respectively). The DASI correlated more strongly with strength and function measures than did the MLTA in both cohorts. In models adjusting for age, sex, comorbidities, and illness severity, substitution of the DASI for the MLTA led to stronger associations of the FFP with delisting/death in lung transplant candidates (FFP-MLTA hazard ratio [HR], 1.42; 95% confidence interval [CI], 0.55-3.65; FFP

  15. Fingolimod: A Disease-Modifier Drug in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Potenza, Rosa Luisa; De Simone, Roberta; Armida, Monica; Mazziotti, Valentina; Pèzzola, Antonella; Popoli, Patrizia; Minghetti, Luisa

    2016-10-01

    Fingolimod phosphate (FTY720), the first approved oral therapy for multiple sclerosis, primarily acts as an immunomodulator. Its concomitant effects in the central nervous system, however, indicate a potentially broader spectrum of activity in neurodegenerative diseases. In the present study, we investigated the possible effects of fingolimod in a mouse model of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by a strong neuroinflammatory component. Fingolimod (0.1 and 1 mg/kg i.p.) was administered to mSOD1 G93A mice, a well-characterized mouse model of ALS, starting from the onset of motor symptoms to the end stage of the disease. The drug was able to improve the neurological phenotype (p < 0.05) and to extend the survival (p < 0.01) of ALS mice. The beneficial effect of fingolimod administration was associated with a significant modulation of neuroinflammatory and protective genes (CD11b, Foxp3, iNOS, Il1β, Il10, Arg1, and Bdnf) in motor cortex and spinal cord of animals. Our data show, for the first time, that fingolimod is protective in ALS mice and that its beneficial effects are accompanied by a modulation of microglial activation and innate immunity. Considering that the treatment was started in already symptomatic mice, our data strongly support fingolimod as a potential new therapeutic approach to ALS.

  16. An object simulation model for modeling hypothetical disease epidemics – EpiFlex

    PubMed Central

    Hanley, Brian

    2006-01-01

    Background EpiFlex is a flexible, easy to use computer model for a single computer, intended to be operated by one user who need not be an expert. Its purpose is to study in-silico the epidemic behavior of a wide variety of diseases, both known and theoretical, by simulating their spread at the level of individuals contracting and infecting others. To understand the system fully, this paper must be read together in conjunction with study of the software and its results. EpiFlex is evaluated using results from modeling influenza A epidemics and comparing them with a variety of field data sources and other types of modeling. EpiFlex is an object-oriented Monte Carlo system, allocating entities to correspond to individuals, disease vectors, diseases, and the locations that hosts may inhabit. EpiFlex defines eight different contact types available for a disease. Contacts occur inside locations within the model. Populations are composed of demographic groups, each of which has a cycle of movement between locations. Within locations, superspreading is defined by skewing of contact distributions. Results EpiFlex indicates three phenomena of interest for public health: (1) R0 is variable, and the smaller the population, the larger the infected fraction within that population will be; (2) significant compression/synchronization between cities by a factor of roughly 2 occurs between the early incubation phase of a multi-city epidemic and the major manifestation phase; (3) if better true morbidity data were available, more asymptomatic hosts would be seen to spread disease than we currently believe is the case for influenza. These results suggest that field research to study such phenomena, while expensive, should be worthwhile. Conclusion Since EpiFlex shows all stages of disease progression, detailed insight into the progress of epidemics is possible. EpiFlex shows the characteristic multimodality and apparently random variation characteristic of real world data, but does

  17. Disease elimination and re-emergence in differential-equation models.

    PubMed

    Greenhalgh, Scott; Galvani, Alison P; Medlock, Jan

    2015-12-21

    Traditional differential equation models of disease transmission are often used to predict disease trajectories and evaluate the effectiveness of alternative intervention strategies. However, such models cannot account explicitly for probabilistic events, such as those that dominate dynamics when disease prevalence is low during the elimination and re-emergence phases of an outbreak. To account for the dynamics at low prevalence, i.e. the elimination and risk of disease re-emergence, without the added analytical and computational complexity of a stochastic model, we develop a novel application of control theory. We apply our approach to analyze historical data of measles elimination and re-emergence in Iceland from 1923 to 1938, predicting the temporal trajectory of local measles elimination and re-emerge as a result of disease migration from Copenhagen, Denmark. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Zero-inflated spatio-temporal models for disease mapping.

    PubMed

    Torabi, Mahmoud

    2017-05-01

    In this paper, our aim is to analyze geographical and temporal variability of disease incidence when spatio-temporal count data have excess zeros. To that end, we consider random effects in zero-inflated Poisson models to investigate geographical and temporal patterns of disease incidence. Spatio-temporal models that employ conditionally autoregressive smoothing across the spatial dimension and B-spline smoothing over the temporal dimension are proposed. The analysis of these complex models is computationally difficult from the frequentist perspective. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of complex models computationally convenient. Recently developed data cloning method provides a frequentist approach to mixed models that is also computationally convenient. We propose to use data cloning, which yields to maximum likelihood estimation, to conduct frequentist analysis of zero-inflated spatio-temporal modeling of disease incidence. One of the advantages of the data cloning approach is that the prediction and corresponding standard errors (or prediction intervals) of smoothing disease incidence over space and time is easily obtained. We illustrate our approach using a real dataset of monthly children asthma visits to hospital in the province of Manitoba, Canada, during the period April 2006 to March 2010. Performance of our approach is also evaluated through a simulation study. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models.

    PubMed

    Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A

    2015-07-15

    Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path

  20. Clinical significance of fibromyalgia syndrome in different rheumatic diseases: Relation to disease activity and quality of life.

    PubMed

    El-Rabbat M, Sarah; Mahmoud, Nermeen K; Gheita, Tamer A

    2017-04-11

    To describe the frequencies of fibromyalgia syndrome (FMS) in various rheumatic diseases; rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Behçets disease (BD) patients and to study the relation to clinical manifestations and quality of life (QoL). 160 patients (50 RA, 50 SLE, 30 SSc and 30 BD) and matched corresponding healthy controls were included. Disease activity was assessed using disease activity score in 28 joints (DAS28) for RA, SLE Disease Activity index (SLEDAI), modified Rodnan skin score for SSc and BD Current Activity Form (BDCAF). The QoL was also recorded. Severity in FMS cases was estimated using the revised Fibromyalgia Impact Questionnaire score. In the RA, SLE, SSc and BD patients, FMS was found in 14%, 18%, 6.67% and 3.33% respectively compared to 2.1%, 3%, 3.3% and 0% in their corresponding controls. In RA patients, DAS28 was significantly higher in those with FMS (p=0.009) and significantly correlated with both Widespread Pain Index (WPI) (p=0.011) and Symptom Severity (SS) scale (p=0.012). The QoL scale in those with FMS was significantly worse (62.3±7.9) compared to those without (71.7±14.4) (p=0.023). In SLE patients, The WPI and SS both significantly correlated with the presence of thrombosis (r=0.28, p=0.049 and r=0.43, p=0.002 respectively). The SS scale tended to correlate with the SLEDAI (r=0.28, p=0.05). In BD patients, BDCAF and WPI significantly correlated (p=0.03). Fibromyalgia syndrome is more frequent in rheumatic diseases, could be related to the disease activity in RA and BD patients and to thrombosis in SLE and affected the QoL in RA. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  1. [Nurse-Led Care Models in the Context of Community Elders With Chronic Disease Management: A Systematic Review].

    PubMed

    Hsieh, Pei-Lun; Chen, Ching-Min

    2016-08-01

    Longer average life expectancies have caused the rapid growth of the elderly as a percentage of Taiwan's population and, as a result of the number of elders with chronic diseases and disability. Providing continuing-care services in community settings for elderly with multiple chronic conditions has become an urgent need. To review the nurse-led care models that are currently practiced among elders with chronic disease in the community and to further examine the effectiveness and essential components of these models using a systematic review method. Twelve original articles on chronic disease-care planning for the elderly or on nurse-led care management interventions that were published between 2000 and 2015 in any of five electronic databases: MEDLINE, PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Plus with Full Text, Cochrane Library, and CEPS (Chinese Electronic Periodicals Service)were selected and analyzed systematically. Four types of nurse-led community care models, including primary healthcare, secondary prevention care, cross-boundary models, and case management, were identified. Chronic disease-care planning, case management, and disease self-management were found to be the essential components of the services that were provided. The care models used systematic processes to conduct assessment, planning, implementation, coordination, and follow-up activities as well as to deliver services and to evaluate disease status. The results revealed that providing continuing-care services through the nurse-led community chronic disease-care model and cross-boundary model enhanced the ability of the elderly to self-manage their chronic diseases, improved healthcare referrals, provided holistic care, and maximized resource utilization efficacy. The present study cross-referenced all reviewed articles in terms of target clients, content, intervention, measurements, and outcome indicators. Study results may be referenced in future

  2. Physical activity and telomere biology: exploring the link with aging-related disease prevention.

    PubMed

    Ludlow, Andrew T; Roth, Stephen M

    2011-02-21

    Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and an aged phenotype. Several reports have recently associated telomeres and telomere-related proteins to diseases associated with physical inactivity and aging including cardiovascular disease, insulin resistance, and hypertension. Interestingly several reports have also shown that longer telomeres are associated with higher physical activity levels, indicating a potential mechanistic link between physical activity, reduced age-related disease risk, and longevity. The primary purpose of this review is to discuss the potential importance of physical activity in telomere biology in the context of inactivity- and age-related diseases. A secondary purpose is to explore potential mechanisms and important avenues for future research in the field of telomeres and diseases associated with physical inactivity and aging.

  3. A simulation model to estimate cost-offsets for a disease-management program for chronic kidney disease.

    PubMed

    Gandjour, Afschin; Tschulena, Ulrich; Steppan, Sonja; Gatti, Emanuele

    2015-04-01

    The aim of this paper is to develop a simulation model that analyzes cost-offsets of a hypothetical disease management program (DMP) for patients with chronic kidney disease (CKD) in Germany compared to no such program. A lifetime Markov model with simulated 65-year-old patients with CKD was developed using published data on costs and health status and simulating the progression to end-stage renal disease (ESRD), cardiovascular disease and death. A statutory health insurance perspective was adopted. This modeling study shows considerable potential for cost-offsets from a DMP for patients with CKD. The potential for cost-offsets increases with relative risk reduction by the DMP and baseline glomerular filtration rate. Results are most sensitive to the cost of dialysis treatment. This paper presents a general 'prototype' simulation model for the prevention of ESRD. The model allows for further modification and adaptation in future applications.

  4. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  5. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  6. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-12-08

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.

  7. Computational Modeling of Interventions and Protective Thresholds to Prevent Disease Transmission in Deploying Populations

    PubMed Central

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings. PMID:25009579

  8. Computational modeling of interventions and protective thresholds to prevent disease transmission in deploying populations.

    PubMed

    Burgess, Colleen; Peace, Angela; Everett, Rebecca; Allegri, Buena; Garman, Patrick

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings.

  9. The effect of online chronic disease personas on activation: within-subjects and between-groups analyses.

    PubMed

    Serio, Catherine Devany; Hessing, Jason; Reed, Becky; Hess, Christopher; Reis, Janet

    2015-02-25

    Although self-management of chronic disease is important, engaging patients and increasing activation for self-care using online tools has proven difficult. Designing more tailored interventions through the application of condition-specific personas may be a way to increase engagement and patient activation. Personas are developed from extensive interviews with patients about their shared values and assumptions about their health. The resulting personas tailor the knowledge and skills necessary for self-care and guide selection of the self-management tools for a particular audience. Pre-post changes in self-reported levels of activation for self-management were analyzed for 11 chronic health personas developed for 4 prevalent chronic diseases. Personas were created from 20 to 25 hour-long nondirected interviews with consumers with a common, chronic disease (eg, diabetes). The interviews were transcribed and coded for behaviors, feelings, and beliefs using the principles of grounded theory. A second group of 398 adults with self-reported chronic disease were recruited for online testing of the personas and their impact on activation. The activation variables, based on an integrated theory of health behavior, were knowledge of a given health issue, perceived self-management skills, confidence in improving health, and intention to take action in managing health. Pre-post changes in activation were analyzed with a mixed design with 1 within-subjects factor (pre-post) and 1 between-group factor (persona) using a general linear model with repeated measures. Sixteen pre-post changes for 4 measures of activation were analyzed. All but 2 of the within-subjects effects were statistically significant and all changes were in the direction of increased activation scores at posttest. Five significant differences between personas were observed, showing which personas performed better. Of low activation participants, 50% or more shifted to high activation across the 4 measures

  10. Predicting survival across chronic interstitial lung disease: the ILD-GAP model.

    PubMed

    Ryerson, Christopher J; Vittinghoff, Eric; Ley, Brett; Lee, Joyce S; Mooney, Joshua J; Jones, Kirk D; Elicker, Brett M; Wolters, Paul J; Koth, Laura L; King, Talmadge E; Collard, Harold R

    2014-04-01

    Risk prediction is challenging in chronic interstitial lung disease (ILD) because of heterogeneity in disease-specific and patient-specific variables. Our objective was to determine whether mortality is accurately predicted in patients with chronic ILD using the GAP model, a clinical prediction model based on sex, age, and lung physiology, that was previously validated in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis (n=307), chronic hypersensitivity pneumonitis (n=206), connective tissue disease-associated ILD (n=281), idiopathic nonspecific interstitial pneumonia (n=45), or unclassifiable ILD (n=173) were selected from an ongoing database (N=1,012). Performance of the previously validated GAP model was compared with novel prediction models in each ILD subtype and the combined cohort. Patients with follow-up pulmonary function data were used for longitudinal model validation. The GAP model had good performance in all ILD subtypes (c-index, 74.6 in the combined cohort), which was maintained at all stages of disease severity and during follow-up evaluation. The GAP model had similar performance compared with alternative prediction models. A modified ILD-GAP Index was developed for application across all ILD subtypes to provide disease-specific survival estimates using a single risk prediction model. This was done by adding a disease subtype variable that accounted for better adjusted survival in connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis, and idiopathic nonspecific interstitial pneumonia. The GAP model accurately predicts risk of death in chronic ILD. The ILD-GAP model accurately predicts mortality in major chronic ILD subtypes and at all stages of disease.

  11. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-02-26

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.

  12. Mathematical Model of Cytomegalovirus (CMV) Disease

    NASA Astrophysics Data System (ADS)

    Sriningsih, R.; Subhan, M.; Nasution, M. L.

    2018-04-01

    The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.

  13. A model to evaluate quality and effectiveness of disease management.

    PubMed

    Lemmens, K M M; Nieboer, A P; van Schayck, C P; Asin, J D; Huijsman, R

    2008-12-01

    Disease management has emerged as a new strategy to enhance quality of care for patients suffering from chronic conditions, and to control healthcare costs. So far, however, the effects of this strategy remain unclear. Although current models define the concept of disease management, they do not provide a systematic development or an explanatory theory of how disease management affects the outcomes of care. The objective of this paper is to present a framework for valid evaluation of disease-management initiatives. The evaluation model is built on two pillars of disease management: patient-related and professional-directed interventions. The effectiveness of these interventions is thought to be affected by the organisational design of the healthcare system. Disease management requires a multifaceted approach; hence disease-management programme evaluations should focus on the effects of multiple interventions, namely patient-related, professional-directed and organisational interventions. The framework has been built upon the conceptualisation of these disease-management interventions. Analysis of the underlying mechanisms of these interventions revealed that learning and behavioural theories support the core assumptions of disease management. The evaluation model can be used to identify the components of disease-management programmes and the mechanisms behind them, making valid comparison feasible. In addition, this model links the programme interventions to indicators that can be used to evaluate the disease-management programme. Consistent use of this framework will enable comparisons among disease-management programmes and outcomes in evaluation research.

  14. Vigorous-intensity leisure-time physical activity and risk of major chronic disease in men.

    PubMed

    Chomistek, Andrea K; Cook, Nancy R; Flint, Alan J; Rimm, Eric B

    2012-10-01

    Although studies have shown health benefits for moderate-intensity physical activity, there is limited evidence to support beneficial effects for high amounts of vigorous activity among middle-age and older men. The objective of this study was to examine the relationship between vigorous-intensity physical activity, compared with moderate-intensity activity, and risk of major chronic disease in men. We prospectively examined the associations between vigorous- and moderate-intensity physical activity and risk of major chronic disease among 44,551 men age 40-75 yr in 1986. Leisure-time physical activity was assessed biennially by questionnaire. During 22 yr of follow-up, we documented 14,162 incident cases of major chronic disease, including 4769 cardiovascular events, 6449 cancer events, and 2944 deaths from other causes. The HR of major chronic disease comparing ≥ 21 to 0 MET.h.wk(-1) of exercise was 0.86 (95% confidence interval (CI), 0.81-0.91) for vigorous-intensity activity and 0.85 (95% CI, 0.80-0.90) for moderate activity. For cardiovascular disease (CVD), the corresponding HRs were 0.78 (95% CI, 0.70-0.86) and 0.80 (95% CI, 0.72-0.88), respectively. When examined separately, running, tennis, and brisk walking were inversely associated with CVD risk. Furthermore, more vigorous activity was associated with lower disease risk; the HR comparing >70 to 0 MET.h.wk(-1) of vigorous-intensity exercise was 0.79 (95% CI, 0.68-0.92; P < 0.0001 for trend) for major chronic disease and 0.73 (95% CI, 0.56-0.96; P < 0.0001 for trend) for CVD. Vigorous- and moderate-intensity physical activities were associated with lower risk of major chronic disease and CVD. Increasing amounts of vigorous activity remained inversely associated with disease risk, even among men in the highest categories of exercise.

  15. Association of diabetic peripheral arterial disease and objectively-measured physical activity: NHANES 2003-2004

    PubMed Central

    2014-01-01

    Background Although much is known about the management of peripheral arterial disease among adults in the general population, the management of this disease among those with diabetes, and the effects of diabetic-induced peripheral arterial disease on objectively-measured physical activity, is unclear. Here, we examined the association between accelerometer-assessed physical activity and peripheral arterial disease among a national sample of U.S. adults with diabetes. Methods Data from the 2003–2004 National Health and Nutrition Examination Survey were used. Physical activity was measured using an accelerometer in 254 adults with diabetes. Peripheral arterial disease was assessed via ankle brachial index. Negative binomial regression analysis was used to examine the association between physical activity and peripheral arterial disease. Results Results were adjusted for age, gender, race-ethnicity, comorbidity index, smoking, HgbA1C, C-reactive protein, homocysteine, glomerular filtration rate, microalbuminuria, peripheral neuropathy, physical functioning, and medication use. After adjustments, participants with peripheral arterial disease engaged in 23% less physical activity (RR = 0.77, 95% CI: 0.62-0.96) than those without peripheral arterial disease. Conclusions These findings demonstrate an inverse association between accelerometer-assessed physical activity and peripheral arterial disease in a national sample of U.S adults with diabetes. PMID:24967220

  16. A review of presented mathematical models in Parkinson's disease: black- and gray-box models.

    PubMed

    Sarbaz, Yashar; Pourakbari, Hakimeh

    2016-06-01

    Parkinson's disease (PD), one of the most common movement disorders, is caused by damage to the central nervous system. Despite all of the studies on PD, the formation mechanism of its symptoms remained unknown. It is still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact understanding of the brain function seems to be impossible. On the other hand, some engineering tools are trying to understand the behavior and performance of complex systems. Modeling is one of the most important tools in this regard. Developing quantitative models for this disease has begun in recent decades. They are very effective not only in better understanding of the disease, offering new therapies, and its prediction and control, but also in its early diagnosis. Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-box modeling, regardless of the system information, the symptom is only considered as the output. Such models, besides the quantitative analysis studies, increase our knowledge of the disorders behavior and the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance as well as the final disease symptoms. These models can effectively save time and be cost-effective for the researchers and help them select appropriate treatment mechanisms among all possible options. In this review paper, first, efforts are made to investigate some studies on PD quantitative analysis. Then, PD quantitative models will be reviewed. Finally, the results of using such models are presented to some extent.

  17. Analysis of a waterborne disease model with socioeconomic classes.

    PubMed

    Collins, O C; Robertson, Suzanne L; Govinder, K S

    2015-11-01

    Waterborne diseases such as cholera continue to pose serious public health problems in the world today. Transmission parameters can vary greatly with socioeconomic class (SEC) and the availability of clean water. We formulate a multi-patch waterborne disease model such that each patch represents a particular SEC with its own water source, allowing individuals to move between SECs. For a 2-SEC model, we investigate the conditions under which each SEC is responsible for driving a cholera outbreak. We determine the effect of SECs on disease transmission dynamics by comparing the basic reproduction number of the 2-SEC model to that of a homogeneous model that does not take SECs into account. We conclude by extending several results of the 2-SEC model to an n-SEC model. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.

    PubMed

    Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao

    2017-06-20

    Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.

  19. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies

    PubMed Central

    Geraets, Ryan D.; Beraldi, Rosanna; Weimer, Jill M.; Pearce, David A.

    2017-01-01

    The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies. PMID:28464005

  20. Gallbladder shape extraction from ultrasound images using active contour models.

    PubMed

    Ciecholewski, Marcin; Chochołowicz, Jakub

    2013-12-01

    Gallbladder function is routinely assessed using ultrasonographic (USG) examinations. In clinical practice, doctors very often analyse the gallbladder shape when diagnosing selected disorders, e.g. if there are turns or folds of the gallbladder, so extracting its shape from USG images using supporting software can simplify a diagnosis that is often difficult to make. The paper describes two active contour models: the edge-based model and the region-based model making use of a morphological approach, both designed for extracting the gallbladder shape from USG images. The active contour models were applied to USG images without lesions and to those showing specific disease units, namely, anatomical changes like folds and turns of the gallbladder as well as polyps and gallstones. This paper also presents modifications of the edge-based model, such as the method for removing self-crossings and loops or the method of dampening the inflation force which moves nodes if they approach the edge being determined. The user is also able to add a fragment of the approximated edge beyond which neither active contour model will move if this edge is incomplete in the USG image. The modifications of the edge-based model presented here allow more precise results to be obtained when extracting the shape of the gallbladder from USG images than if the morphological model is used. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice.

    PubMed

    Anderson, Jaclyn; Caplan, Liron; Yazdany, Jinoos; Robbins, Mark L; Neogi, Tuhina; Michaud, Kaleb; Saag, Kenneth G; O'Dell, James R; Kazi, Salahuddin

    2012-05-01

    Although the systematic measurement of disease activity facilitates clinical decision making in rheumatoid arthritis (RA), no recommendations currently exist on which measures should be applied in clinical practice in the US. The American College of Rheumatology (ACR) convened a Working Group (WG) to comprehensively evaluate the validity, feasibility, and acceptability of available RA disease activity measures and derive recommendations for their use in clinical practice. The Rheumatoid Arthritis Clinical Disease Activity Measures Working Group conducted a systematic review of the literature to identify RA disease activity measures. Using exclusion criteria, input from an Expert Advisory Panel (EAP), and psychometric analysis, a list of potential measures was created. A survey was administered to rheumatologists soliciting input. The WG used these survey results in conjunction with the psychometric analyses to derive final recommendations. Systematic review of the literature resulted in identification of 63 RA disease activity measures. Application of exclusion criteria and ratings by the EAP narrowed the list to 14 measures for further evaluation. Practicing rheumatologists rated 9 of these 14 measures as most useful and feasible. From these 9 measures, the WG selected 6 with the best psychometric properties for inclusion in the final set of ACR-recommended RA disease activity measures. We recommend the Clinical Disease Activity Index, Disease Activity Score with 28-joint counts (erythrocyte sedimentation rate or C-reactive protein), Patient Activity Scale (PAS), PAS-II, Routine Assessment of Patient Index Data with 3 measures, and Simplified Disease Activity Index because they are accurate reflections of disease activity; are sensitive to change; discriminate well between low, moderate, and high disease activity states; have remission criteria; and are feasible to perform in clinical settings. Copyright © 2012 by the American College of Rheumatology.

  2. Active and passive surveillance for communicable diseases in child care facilities, Seattle-King County, Washington.

    PubMed

    MacDonald, J K; Boase, J; Stewart, L K; Alexander, E R; Solomon, S L; Cordell, R L

    1997-12-01

    The purpose of this study was to develop and evaluate models for public health surveillance of illnesses among children in out-of-home child care facilities. Between July 1992 and March 1994, 200 Seattle-King County child care facilities participated in active or enhanced passive surveillance, or both. Reporting was based on easily recognized signs, symptoms, and sentinel events. Published criteria were used in evaluating surveillance effectiveness, and notifiable disease reporting of participating and nonparticipating facilities was compared. Neither surveillance model was well accepted by child care providers. Enhanced passive and active surveillance had comparable sensitivity. Reporting delays and the large amount of time needed for data entry led to problems with timeliness, especially in terms of written reporting during active surveillance. Widespread active public health surveillance in child care facilities is not feasible for most local health departments. Improvements in public health surveillance in child care settings will depend on acceptability to providers.

  3. SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington’s Disease Mice

    PubMed Central

    Tulino, Raffaella; Benjamin, Agnesska C.; Jolinon, Nelly; Smith, Donna L.; Chini, Eduardo N.; Carnemolla, Alisia; Bates, Gillian P.

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies. PMID:26815359

  4. Animal Models of Fibrotic Lung Disease

    PubMed Central

    Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.

    2013-01-01

    Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222

  5. SUBCHRONIC PULMONARY PATHOLOGY, IRON-OVERLOAD AND TRANSCRIPTIONAL ACTIVITY AFTER LIBBY AMPHIBOLE EXPOSURE IN RAT MODELS OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Background: Surface-available iron (Fe) is proposed to contribute to asbestos-induced toxicity through the production of reactive oxygen species.Objective: Our goal was to evaluate the hypothesis that rat models of cardiovascular disease with coexistent Fe overload would be incre...

  6. EULAR Sjögren's syndrome disease activity index (ESSDAI): a user guide

    PubMed Central

    Seror, Raphaèle; Bowman, Simon J; Brito-Zeron, Pilar; Theander, Elke; Bootsma, Hendrika; Tzioufas, Athanasios; Gottenberg, Jacques-Eric; Ramos-Casals, Manel; Dörner, Thomas; Ravaud, Philippe; Vitali, Claudio; Mariette, Xavier

    2015-01-01

    The EULAR Sjögren's syndrome (SS) disease activity index (ESSDAI) is a systemic disease activity index that was designed to measure disease activity in patients with primary SS. With the growing use of the ESSDAI, some domains appear to be more challenging to rate than others. The ESSDAI is now in use as a gold standard to measure disease activity in clinical studies, and as an outcome measure, even a primary outcome measure, in current randomised clinical trials. Therefore, ensuring an accurate and reproducible rating of each domain, by providing a more detailed definition of each domain, has emerged as an urgent need. The purpose of the present article is to provide a user guide for the ESSDAI. This guide provides definitions and precisions on the rating of each domain. It also includes some minor improvement of the score to integrate advance in knowledge of disease manifestations. This user guide may help clinicians to use the ESSDAI, and increase the reliability of rating and consequently of the ability to detect true changes over time. This better appraisal of ESSDAI items, along with the recent definition of disease activity levels and minimal clinically important change, will improve the assessment of patients with primary SS and facilitate the demonstration of effectiveness of treatment for patients with primary SS. PMID:26509054

  7. DYSFUNCTIONAL KYNURENINE PATHWAY METABOLISM IN THE R6/2 MOUSE MODEL OF HUNTINGTON’S DISEASE

    PubMed Central

    Sathyasaikumar, Korrapati V.; Stachowski, Erin K.; Amori, Laura; Guidetti, Paolo; Muchowski, Paul J.; Schwarcz, Robert

    2013-01-01

    Elevated concentrations of neurotoxic metabolites of the kynurenine pathway (KP) of tryptophan degradation may play a causative role in Huntington’s disease (HD). The brain levels of one of these compounds, 3-hydroxykynurenine (3-HK), are increased in both HD and several mouse models of the disease. In the present study, we examined this impairment in greater detail using the R6/2 mouse, a well-established animal model of HD. Initially, mutant and age-matched wild-type mice received an intrastriatal injection of 3H-tryptophan to assess the acute, local de novo production of kynurenine, the immediate bioprecursor of 3-HK, in vivo. No effect of genotype was observed between 4 and 12 weeks of age. In contrast, intrastriatally applied 3H-kynurenine resulted in significantly increased neosynthesis of 3H-3-HK, but not other tritiated KP metabolites, in the R6/2 striatum. Subsequent ex vivo studies in striatal, cortical and cerebellar tissue revealed substantial increases in the activity of the biosynthetic enzyme of 3-HK, kynurenine 3-monooxygenase (KMO) and significant reductions in the activity of its degradative enzyme, kynureninase, in HD mice starting at 4 weeks of age. Decreased kynureninase activity was most evident in the cortex and preceded the increase in KMO activity. The activity of other KP enzymes showed no consistent brain abnormalities in the mutant mice. These findings suggest that impairments in its immediate metabolic enzymes jointly account for the abnormally high brain levels of 3-HK in the R6/2 model of HD. PMID:20236387

  8. The quality of life in Chinese patients with systemic lupus erythematosus is associated with disease activity and psychiatric disorders: a path analysis.

    PubMed

    Shen, Biyu; Feng, Guijuan; Tang, Wei; Huang, Xiaoqing; Yan, Hongyan; He, Yan; Chen, Weijun; Da, Zhanyun; Liu, Hong; Gu, Zhifeng

    2014-01-01

    To identify the socioeconomic status, disease activity and psychiatric disorders that contribute to the health-related quality of life (HRQOL) in systemic lupus erythematosus (SLE) patients. Data were collected from 170 SLE patients and 210 healthy individuals. All of the patients fulfilled the criteria for the classification of SLE and underwent disease activity assessment according to the SLE disease activity index (SLEDAI). Self-rated scales for anxiety (SAS) and depression (SDS) were used to evaluate the levels of anxiety and depression. The patients' general health status was measured using the Short Form (SF)-36 questionnaire. To provide greater clarity regarding the determinants of HRQOL, path analysis was used to explore the relationships between the various predictors and the health-related quality of life (HRQoL). SLE patients who have depression and anxiety are more likely to have a lower quality of life compared to those who are not depressed (r=-0.735, p<0.01; r=-0.684, p<0.01). All of the variables were significantly correlated with depression except age, gender and marital status. Education was negatively correlated with disease activity (r=-0.272, p<0.05) and anxiety (r=-0.312, p<0.01). Disease activity was positively correlated with anxiety (r=0.198, p<0.05). In addition, work status also correlated with anxiety (r=-0.294, p<0.01). A path-analytic models analysis suggested that the main influencing factors of HRQoL are the following: depression, anxiety, education level, income/family, disease activity, age, and work status. A χ2 test (χ215=17.71, p=0.28>0.05) indicated that the path analysis model had an adequate goodness of fit value. Depression (β=-0.616, p<0.05) contributed the most to HRQOL. Depression, anxiety and disease activity contributed to HRQoL both directly and indirectly through other factors. Socioeconomic factors such as education, income/family and work status, however, did not contribute directly to HRQoL. HRQoL in SLE is

  9. Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn's disease.

    PubMed

    Sands, B E; Bank, S; Sninsky, C A; Robinson, M; Katz, S; Singleton, J W; Miner, P B; Safdi, M A; Galandiuk, S; Hanauer, S B; Varilek, G W; Buchman, A L; Rodgers, V D; Salzberg, B; Cai, B; Loewy, J; DeBruin, M F; Rogge, H; Shapiro, M; Schwertschlag, U S

    1999-07-01

    Recombinant human interleukin 11 (rhIL-11) is a cytokine with thrombocytopoietic activity and anti-inflammatory and mucosal protective effects. The objectives of this study were to investigate the safety and tolerability of rhIL-11 in patients with Crohn's disease and to explore the effects of dose and schedule on platelet count and Crohn's disease activity. A multicenter, double-masked, placebo-controlled, dose-escalation study of 76 patients with active Crohn's disease was performed. Patients were randomized to receive subcutaneous placebo or rhIL-11 at doses of 5, 16, or 40 microgram. kg-1. wk-1 given 2 or 5 times weekly for 3 weeks. Clinical and laboratory safety data were recorded, and disease activity was measured at each visit. Subcutaneous injection of rhIL-11 generally was well tolerated. Significantly greater increases in platelet counts were found among patients receiving rhIL-11 40 microgram. kg-1. wk-1 as 2 or 5 weekly doses and 16 microgram. kg-1. week-1 as 5 weekly doses compared with patients receiving placebo (P < 0.05). Patients receiving 16 microgram. kg-1. wk-1 had the highest clinical response rates, with a response seen in 42% of patients (5/12) receiving 5 weekly doses and 33% of patients (4/12) receiving 2 weekly doses, compared with 7% of patients (1/15) receiving placebo. Short-term treatment with rhIL-11 is well tolerated in patients with active Crohn's disease. The thrombocytopoietic effect of rhIL-11 seems to be both dose and schedule dependent and may be minimized with retained clinical benefit in Crohn's disease at 16 microgram. kg-1. wk-1 given in 2 equal doses.

  10. Chitinase activation in patients with fungus-associated cystic fibrosis lung disease.

    PubMed

    Hector, Andreas; Chotirmall, Sanjay H; Lavelle, Gillian M; Mirković, Bojana; Horan, Deirdre; Eichler, Laura; Mezger, Markus; Singh, Anurag; Ralhan, Anjai; Berenbrinker, Sina; Mack, Ines; Ensenauer, Regina; Riethmüller, Joachim; Graepler-Mainka, Ute; Murray, Michelle A; Griese, Matthias; McElvaney, N Gerry; Hartl, Dominik

    2016-10-01

    Chitinases have recently gained attention in the field of pulmonary diseases, particularly in asthma and chronic obstructive pulmonary disease, but their potential role in patients with cystic fibrosis (CF)-associated lung disease remains unclear. The aim of this study was to assess chitinase activity systemically and in the airways of patients with CF and asthma compared with healthy subjects. Additionally, we assessed factors that regulate chitinase activity within the lungs of patients with CF. Chitinase activities were quantified in serum and bronchoalveolar lavage fluid from patients with CF, asthmatic patients, and healthy control subjects. Mechanistically, the role of CF airway proteases and genetic chitinase deficiency was assessed. Chitinase activity was systemically increased in patients with CF compared with that in healthy control subjects and asthmatic patients. Further stratification showed that chitinase activity was enhanced in patients with CF colonized with Candida albicans compared with that in noncolonized patients. CF proteases degraded chitinases in the airway microenvironment of patients with CF. Genetic chitinase deficiency was associated with C albicans colonization in patients with CF. Patients with CF have enhanced chitinase activation associated with C albicans colonization. Therefore chitinases might represent a novel biomarker and therapeutic target for CF-associated fungal disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Scenario tree model for animal disease freedom framed in the OIE context using the example of a generic swine model for Aujeszky's disease in commercial swine in Canada.

    PubMed

    Christensen, Jette; Vallières, André

    2016-01-01

    "Freedom from animal disease" is an ambiguous concept that may have a different meaning in trade and science. For trade alone, there are different levels of freedom from OIE listed diseases. A country can: be recognized by OIE to be "officially free"; self-declare freedom, with no official recognition by the OIE; or report animal disease as absent (no occurrence) in six-monthly reports. In science, we apply scenario tree models to calculate the probability of a population being free from disease at a given prevalence to provide evidence of freedom from animal disease. Here, we link science with application by describing how a scenario tree model may contribute to a country's claim of freedom from animal disease. We combine the idea of a standardized presentation of scenario tree models for disease freedom and having a similar model for two different animal diseases to suggest that a simple generic model may help veterinary authorities to build and evaluate scenario tree models for disease freedom. Here, we aim to develop a generic scenario tree model for disease freedom that is: animal species specific, population specific, and has a simple structure. The specific objectives were: to explore the levels of freedom described in the OIE Terrestrial Animal Health Code; to describe how scenario tree models may contribute to a country's claim of freedom from animal disease; and to present a generic swine scenario tree model for disease freedom in Canada's domestic (commercial) swine applied to Aujeszky's disease (AD). In particular, to explore how historical survey data, and data mining may affect the probability of freedom and to explore different sampling strategies. Finally, to frame the generic scenario tree model in the context of Canada's claim of freedom from AD. We found that scenario tree models are useful to support a country's claim of freedom either as "recognized officially free" or as part of a self-declaration but the models should not stand alone in a

  12. Factors Associated With Ambulatory Activity in De Novo Parkinson Disease.

    PubMed

    Christiansen, Cory; Moore, Charity; Schenkman, Margaret; Kluger, Benzi; Kohrt, Wendy; Delitto, Anthony; Berman, Brian; Hall, Deborah; Josbeno, Deborah; Poon, Cynthia; Robichaud, Julie; Wellington, Toby; Jain, Samay; Comella, Cynthia; Corcos, Daniel; Melanson, Ed

    2017-04-01

    Objective ambulatory activity during daily living has not been characterized for people with Parkinson disease prior to initiation of dopaminergic medication. Our goal was to characterize ambulatory activity based on average daily step count and examine determinants of step count in nonexercising people with de novo Parkinson disease. We analyzed baseline data from a randomized controlled trial, which excluded people performing regular endurance exercise. Of 128 eligible participants (mean ± SD = 64.3 ± 8.6 years), 113 had complete accelerometer data, which were used to determine daily step count. Multiple linear regression was used to identify factors associated with average daily step count over 10 days. Candidate explanatory variable categories were (1) demographics/anthropometrics, (2) Parkinson disease characteristics, (3) motor symptom severity, (4) nonmotor and behavioral characteristics, (5) comorbidities, and (6) cardiorespiratory fitness. Average daily step count was 5362 ± 2890 steps per day. Five factors explained 24% of daily step count variability, with higher step count associated with higher cardiorespiratory fitness (10%), no fear/worry of falling (5%), lower motor severity examination score (4%), more recent time since Parkinson disease diagnosis (3%), and the presence of a cardiovascular condition (2%). Daily step count in nonexercising people recruited for this intervention trial with de novo Parkinson disease approached sedentary lifestyle levels. Further study is warranted for elucidating factors explaining ambulatory activity, particularly cardiorespiratory fitness, and fear/worry of falling. Clinicians should consider the costs and benefits of exercise and activity behavior interventions immediately after diagnosis of Parkinson disease to attenuate the health consequences of low daily step count.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A170).

  13. A model for promoting physical activity among rural South African adolescent girls

    PubMed Central

    Kinsman, John; Norris, Shane A.; Kahn, Kathleen; Twine, Rhian; Riggle, Kari; Edin, Kerstin; Mathebula, Jennifer; Ngobeni, Sizzy; Monareng, Nester; Micklesfield, Lisa K.

    2015-01-01

    Background In South Africa, the expanding epidemic of non-communicable diseases is partly fuelled by high levels of physical inactivity and sedentary behaviour. Women especially are at high risk, and interventions promoting physical activity are urgently needed for girls in their adolescence, as this is the time when many girls adopt unhealthy lifestyles. Objective This qualitative study aimed to identify and describe facilitating factors and barriers that are associated with physical activity among adolescent girls in rural, north-eastern South Africa and, based on these, to develop a model for promoting leisure-time physical activity within this population. Design The study was conducted in and around three secondary schools. Six focus group discussions were conducted with adolescent girls from the schools, and seven qualitative interviews were held with sports teachers and youth leaders. The data were subjected to thematic analysis. Results Seven thematic areas were identified, each of which was associated with the girls’ self-reported levels of physical activity. The thematic areas are 1) poverty, 2) body image ideals, 3) gender, 4) parents and home life, 5) demographic factors, 6) perceived health effects of physical activity, and 7) human and infrastructural resources. More barriers to physical activity were reported than facilitating factors. Conclusions Analysis of the barriers found in the different themes indicated potential remedial actions that could be taken, and these were synthesised into a model for promoting physical activity among South African adolescent girls in resource-poor environments. The model presents a series of action points, seen both from the ‘supply-side’ perspective (such as the provision of resources and training for the individuals, schools, and organisations which facilitate the activities) and from the ‘demand-side’ perspective (such as the development of empowering messages about body image for teenage girls, and

  14. Large Animal Models for Batten Disease: A Review

    PubMed Central

    Weber, Krystal; Pearce, David A.

    2014-01-01

    The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In this review, we discuss the different large animal models and their significance in Batten disease research. PMID:24014507

  15. Zebrafish models of human eye and inner ear diseases.

    PubMed

    Blanco-Sánchez, B; Clément, A; Phillips, J B; Westerfield, M

    2017-01-01

    Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Vitamin D status and its association with quality of life, physical activity, and disease activity in rheumatoid arthritis patients.

    PubMed

    Raczkiewicz, Anna; Kisiel, Bartłomiej; Kulig, Maciej; Tłustochowicz, Witold

    2015-04-01

    Vitamin D deficiency is common in rheumatoid arthritis (RA) and may be related to disease activity. Population-based studies have shown the influence of vitamin D deficiency on quality of life (QoL), but it was not investigated in RA patients. The aim of the study was to determine possible relationship between vitamin D deficiency, QoL, physical activity (PA), and disease activity in RA. In 97 consecutive RA patients without vitamin D supplementation (86 women and 11 men, aged 59.4 ± 12 years), serum 25-hydroxycholecalciferol (25(OH)D), calcium, phosphorus, and parathyroid hormone were measured. The patients completed Short Form 36 (SF-36), Beck Depression Inventory, and Health Assessment Questionnaire, assessed the intensity of pain, fatigue, and PA. Disease Activity Score in 28 Joints was used to assess disease activity. A comparison control group consisted of 28 osteoarthritis patients (25 women and 3 men aged 56.2 ± 15 years). Vitamin D deficiency was detected in 76.3% of RA and in 78.6% of osteoarthritis patients (P = 0.75). There was a negative correlation between 25(OH)D serum concentration and Disease Activity Score in 28 Joints in patients with active arthritis. There was a positive correlation between serum 25(OH)D and the level of PA and most aspects of SF-36, and negative correlation between serum 25(OH)D and Health Assessment Questionnaire and Beck Depression Inventory in patients with disease duration of 1 year or longer. After inclusion of PA into multivariable analysis, only the correlations between 25(OH)D and SF-36 mental subscale (MCS) and pain remained significant. Vitamin D deficiency is highly prevalent in RA patients and is associated with higher disease activity and worse QoL indices. Regular PA correlates with higher vitamin D titers and better QoL in RA. Further studies are needed to explain possible influence of vitamin D on RA activity.

  17. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  18. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    PubMed

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself.

  19. The cost of simplifying air travel when modeling disease spread.

    PubMed

    Lessler, Justin; Kaufman, James H; Ford, Daniel A; Douglas, Judith V

    2009-01-01

    Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.

  20. Neuropathic pain in a Fabry disease rat model

    PubMed Central

    Miller, James J.; Aoki, Kazuhiro; Murphy, Carly A.; O’Hara, Crystal L.; Tiemeyer, Michael; Stucky, Cheryl L.; Dahms, Nancy M.

    2018-01-01

    Fabry disease, the most common lysosomal storage disease, affects multiple organs and results in a shortened life span. This disease is caused by a deficiency of the lysosomal enzyme α-galactosidase A, which leads to glycosphingolipid accumulation in many cell types. Neuropathic pain is an early and severely debilitating symptom in patients with Fabry disease, but the cellular and molecular mechanisms that cause the pain are unknown. We generated a rat model of Fabry disease, the first nonmouse model to our knowledge. Fabry rats had substantial serum and tissue accumulation of α-galactosyl glycosphingolipids and had pronounced mechanical pain behavior. Additionally, Fabry rat dorsal root ganglia displayed global N-glycan alterations, sensory neurons were laden with inclusions, and sensory neuron somata exhibited prominent sensitization to mechanical force. We found that the cation channel transient receptor potential ankyrin 1 (TRPA1) is sensitized in Fabry rat sensory neurons and that TRPA1 antagonism reversed the behavioral mechanical sensitization. This study points toward TRPA1 as a potentially novel target to treat the pain experienced by patients with Fabry disease. PMID:29563343

  1. A Japanese model of disease management.

    PubMed

    Nakashima, Naoki; Kobayashi, Kunihisa; Inoguchi, Toyoshi; Nishida, Daisuke; Tanaka, Naomi; Nakazono, Hiromi; Hoshino, Akihiko; Soejima, Hidehisa; Takayanagi, Ryoichi; Nawata, Hajime

    2007-01-01

    We started a disease management model, Carna, that includes two programs: one for primary prevention of lifestyle diseases and one for secondary/tertiary prevention of diabetes mellitus. These programs support the family doctor system and education for participants to allow the concept of disease management to take root in Japan. We developed a critical pathway system that can optimize health care of individual participants by matching individual status. This is the core technology of the project. Under the primary prevention program, we can perform the health check-up/ instruction tasks in the 'Tokutei Kenshin', which will start for all Japanese citizens aged 40-74 years in April 2008. In the diabetic program, Carna matches doctors and new patients, prevents patient dropout, supports detection of early-stage complications by distributing questionnaires periodically, and facilitates medical specialists' cooperation with family doctors. Carna promotes periodic medical examinations and quickly provides the result of blood tests to patients. We are conducting a study to assess the medical outcomes and business model. The study will continue until the end of 2007.

  2. Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells.

    PubMed

    Xu, Xiao-hong; Zhong, Zhong

    2013-06-01

    With the general decline of pharmaceutical research productivity, there are concerns that many components of the drug discovery process need to be redesigned and optimized. For example, the human immortalized cell lines or animal primary cells commonly used in traditional drug screening may not faithfully recapitulate the pathological mechanisms of human diseases, leading to biases in assays, targets, or compounds that do not effectively address disease mechanisms. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, provide a new paradigm for drug screening by permitting the use of human cells with the same genetic makeup as the patients without the typical quantity constraints associated with patient primary cells. In this article, we will review the progress made to date on cellular disease models using human stem cells, with a focus on patient-specific iPSCs for neurological diseases. We will discuss the key challenges and the factors that associated with the success of using stem cell models for drug discovery through examples from monogenic diseases, diseases with various known genetic components, and complex diseases caused by a combination of genetic, environmental and other factors.

  3. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease.

    PubMed

    Anguiano, Lidia; Riera, Marta; Pascual, Julio; Valdivielso, José Manuel; Barrios, Clara; Betriu, Angels; Mojal, Sergi; Fernández, Elvira; Soler, María José

    2015-07-01

    Patients with cardiovascular (CV) disease have an increased circulating angiotensin-converting enzyme 2 (ACE2) activity, but there is little information about changes in ACE2 in chronic kidney disease (CKD) patients without history of CV disease. We examined circulating ACE2 activity in CKD patients at stages 3-5 (CKD3-5) and in dialysis (CKD5D) without any history of CV disease. Circulating ACE2 activity was measured in human ethylenediamine-tetraacetic acid (EDTA)-plasma samples from the NEFRONA study (n = 2572): control group (CONT) (n = 568), CKD3-5 (n = 1458) and CKD5D (n = 546). Different clinical and analytical variables such as gender; age; history of diabetes mellitus (DM), dyslipidemia and hypertension; glycaemic, renal, lipid and anaemia profiles; vitamin D analogues treatment and antihypertensive treatments (angiotensin-converting enzyme inhibitor and angiotensin receptor blockade) were analysed. Circulating ACE2 and ACE activities were measured using modified fluorimetric assay for EDTA-plasma samples, where zinc chloride was added to recover enzymatic activity. In CKD3-5 and CKD5D, significant decrease in circulating ACE2 activity was observed when compared with CONT, but no differences were found between CKD3-5 and CKD5 when performing paired case-control studies. By multivariate linear regression analysis, male gender and advanced age were identified as independent predictors of ACE2 activity in all groups. Diabetes was identified as independent predictor of ACE2 activity in CKD3-5. Significant increase in the activity of circulating ACE was found in CKD3-5 and CKD5D when compared with CONT and in CKD5D when compared with CKD3-5. By multiple regression analysis, female gender and younger age were identified as independent predictors of ACE activity in CONT and CKD3-5. Diabetes was also identified as an independent predictor of ACE activity in CKD3-5 patients. Circulating ACE2 and ACE activities can be measured in human EDTA-plasma samples with zinc

  4. Mathematical modeling of infectious disease dynamics

    PubMed Central

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  5. Enteric disease episodes and the risk of acquiring a future sexually transmitted infection: a prediction model in Montreal residents.

    PubMed

    Caron, Melissa; Allard, Robert; Bédard, Lucie; Latreille, Jérôme; Buckeridge, David L

    2016-11-01

    The sexual transmission of enteric diseases poses an important public health challenge. We aimed to build a prediction model capable of identifying individuals with a reported enteric disease who could be at risk of acquiring future sexually transmitted infections (STIs). Passive surveillance data on Montreal residents with at least 1 enteric disease report was used to construct the prediction model. Cases were defined as all subjects with at least 1 STI report following their initial enteric disease episode. A final logistic regression prediction model was chosen using forward stepwise selection. The prediction model with the greatest validity included age, sex, residential location, number of STI episodes experienced prior to the first enteric disease episode, type of enteric disease acquired, and an interaction term between age and male sex. This model had an area under the curve of 0.77 and had acceptable calibration. A coordinated public health response to the sexual transmission of enteric diseases requires that a distinction be made between cases of enteric diseases transmitted through sexual activity from those transmitted through contaminated food or water. A prediction model can aid public health officials in identifying individuals who may have a higher risk of sexually acquiring a reportable disease. Once identified, these individuals could receive specialized intervention to prevent future infection. The information produced from a prediction model capable of identifying higher risk individuals can be used to guide efforts in investigating and controlling reported cases of enteric diseases and STIs. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Sarcopenia in rheumatoid arthritis: prevalence, influence of disease activity and associated factors.

    PubMed

    Ngeuleu, Ange; Allali, F; Medrare, L; Madhi, A; Rkain, H; Hajjaj-Hassouni, N

    2017-06-01

    Evaluate the prevalence of sarcopenia on patients with rheumatoid arthritis (RA), the influence of sarcopenia on disease activity and factors associated with sarcopenia. One hundred and twenty-three patients aged over 18 years with RA based on the 1987 ACR/EULAR classification criteria were enrolled. We performed a whole body DXA scan using a dual-energy X-ray absorptiometry (DXA) scanner lunar prodigy to measure fat mass, lean mass, and bone mass in the whole body and body parts. According to the anthropometric equation by Baumgartner et al., sarcopenia was defined as Relative skeletal mass index (RSMI) <5.5 kg/m 2 on women and <7.26 kg/m 2 on men. Body mass index (BMI) and waist circumference were measured and patients were classified according to World Health Organization. Disease activity was evaluated by: disease activity score 28 ESR (DAS28 ESR), disease activity score 28 CRP (DAS28 CRP), clinical disease activity index (CDAI), simplify disease activity index (SDAI). We measured functional disability by Health assessment questionnaire (HAQ). History and previous medication use including steroids were also checked, and comorbidities were recorded. We analyzed the relation between disease parameters and sarcopenia with the r of Pearson and Spearman. Factors associated and related to sarcopenia were assessed using multiple regression analysis and t independent test. We included 123 patients (107 women). 49 subjects (39.8%) where suffering from sarcopenia, of which 40 women. Most of the sarcopenic patients were between 41 and 50 years old. Sarcopenia on female subjects was not related to parameters of disease activity evaluated by DAS 28, CDAI and SDAI. Most of the sarcopenic patients had normal BMI and abnormal waist circumference. In simple regression analysis sarcopenia was related to BMI, DAS 28 ESR, bone erosion, waist circumference and HAQ. In multiple regression analysis, sarcopenia was positively related to an increase cardiometabolic risk [p

  7. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance.

    PubMed

    Blanz, Judith; Saftig, Paul

    2016-10-01

    The role of mutations in the gene GBA1 encoding the lysosomal hydrolase β-glucocerebrosidase for the development of synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, was only very recently uncovered. The knowledge obtained from the study of carriers or patients suffering from Gaucher disease (a common lysosomal storage disorder because of GBA1 mutations) is of particular importance for understanding the role of the enzyme and its catabolic pathway in the development of synucleinopathies. Decreased activity of β-glucocerebrosidase leads to lysosomal dysfunction and the accumulation of its substrate glucosylceramide and related lipid derivatives. Glucosylceramide is suggested to stabilize toxic oligomeric forms of α-synuclein that negatively influence the activity of β-glucocerebrosidase and to partially block export of newly synthesized β-glucocerebrosidase from the endoplasmic reticulum to late endocytic compartments, amplifying the pathological effects of α-synuclein and ultimately resulting in neuronal cell death. This pathogenic molecular feedback loop and most likely other factors (such as impaired endoplasmic reticulum-associated degradation, activation of the unfolded protein response and dysregulation of calcium homeostasis induced by misfolded GC mutants) are involved in shifting the cellular homeostasis from monomeric α-synuclein towards oligomeric neurotoxic and aggregated forms, which contribute to Parkinson's disease progression. From a therapeutic point of view, strategies aiming to increase either the expression, stability or delivery of the β-glucocerebrosidase to lysosomes are likely to decrease the α-synuclein burden and may be useful for an in depth evaluation at the organismal level. Lysosomes are critical for protein and lipid homeostasis. Recent research revealed that dysfunction of this organelle contributes to the development of neurodegenerative diseases such as Parkinson's disease (PD). Mutations in the

  8. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids.

    PubMed

    Nantasanti, Sathidpak; Spee, Bart; Kruitwagen, Hedwig S; Chen, Chen; Geijsen, Niels; Oosterhoff, Loes A; van Wolferen, Monique E; Pelaez, Nicolas; Fieten, Hille; Wubbolts, Richard W; Grinwis, Guy C; Chan, Jefferson; Huch, Meritxell; Vries, Robert R G; Clevers, Hans; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Schotanus, Baukje A

    2015-11-10

    The recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Supplementation of Spirulina (Arthrospira platensis) Improves Lifespan and Locomotor Activity in Paraquat-Sensitive DJ-1βΔ93 Flies, a Parkinson's Disease Model in Drosophila melanogaster.

    PubMed

    Kumar, Ajay; Christian, Pearl K; Panchal, Komal; Guruprasad, B R; Tiwari, Anand K

    2017-09-03

    Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, β-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1β Δ93 flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1β Δ93 flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1β Δ93 flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1β Δ93 flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1β Δ93 flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.

  10. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases.

    PubMed

    Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L

    2015-03-01

    Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Seven challenges for modelling indirect transmission: Vector-borne diseases, macroparasites and neglected tropical diseases

    PubMed Central

    Hollingsworth, T. Déirdre; Pulliam, Juliet R.C.; Funk, Sebastian; Truscott, James E.; Isham, Valerie; Lloyd, Alun L.

    2015-01-01

    Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease. PMID:25843376

  12. mNos2 deletion and human NOS2 replacement in Alzheimer disease models.

    PubMed

    Colton, Carol A; Wilson, Joan G; Everhart, Angela; Wilcock, Donna M; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P

    2014-08-01

    Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease-like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI(+)/(+)mNos2(-/-) (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI(+)/(-)/HuNOS2(tg+)/(+)/mNos2(-/-)) mimicked the pathologic phenotypes found in the CVN-AD strain.

  13. Zebrafish as a disease model for studying human hepatocellular carcinoma.

    PubMed

    Lu, Jeng-Wei; Ho, Yi-Jung; Yang, Yi-Ju; Liao, Heng-An; Ciou, Shih-Ci; Lin, Liang-In; Ou, Da-Liang

    2015-11-14

    Liver cancer is one of the world's most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.

  14. Zebrafish as a disease model for studying human hepatocellular carcinoma

    PubMed Central

    Lu, Jeng-Wei; Ho, Yi-Jung; Yang, Yi-Ju; Liao, Heng-An; Ciou, Shih-Ci; Lin, Liang-In; Ou, Da-Liang

    2015-01-01

    Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury. PMID:26576090

  15. Interprofessional Collaborative Practice Models in Chronic Disease Management.

    PubMed

    Southerland, Janet H; Webster-Cyriaque, Jennifer; Bednarsh, Helene; Mouton, Charles P

    2016-10-01

    Interprofessional collaboration in health has become essential to providing high-quality care, decreased costs, and improved outcomes. Patient-centered care requires synthesis of all the components of primary and specialty medicine to address patient needs. For individuals living with chronic diseases, this model is even more critical to obtain better health outcomes. Studies have shown shown that oral health and systemic disease are correlated as it relates to disease development and progression. Thus, inclusion of oral health in many of the existing and new collaborative models could result in better management of chronic illnesses and improve overall health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery.

    PubMed

    Cole, Banumathi K; Feaver, Ryan E; Wamhoff, Brian R; Dash, Ajit

    2018-02-01

    The progressive disease spectrum of non-alcoholic fatty liver disease (NAFLD), which includes non-alcoholic steatohepatitis (NASH), is a rapidly emerging public health crisis with no approved therapy. The diversity of various therapies under development highlights the lack of consensus around the most effective target, underscoring the need for better translatable preclinical models to study the complex progressive disease and effective therapies. Areas covered: This article reviews published literature of various mouse models of NASH used in preclinical studies, as well as complex organotypic in vitro and ex vivo liver models being developed. It discusses translational challenges associated with both kinds of models, and describes some of the studies that validate their application in NAFLD. Expert opinion: Animal models offer advantages of understanding drug distribution and effects in a whole body context, but are limited by important species differences. Human organotypic in vitro and ex vivo models with physiological relevance and translatability need to be used in a tiered manner with simpler screens. Leveraging newer technologies, like metabolomics, proteomics, and transcriptomics, and the future development of validated disease biomarkers will allow us to fully utilize the value of these models to understand disease and evaluate novel drugs in isolation or combination.

  17. Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease

    PubMed Central

    Chen, Chunnuan; Huang, Jinsha; Zhao, Ying; Zhang, Zhentao; Qiao, Xian; Feng, Yuan; Reesaul, Harrish; Zhang, Yongxue; Sun, Shenggang; Lin, Zhicheng; Wang, Tao

    2011-01-01

    3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD. PMID:21677777

  18. Disease activity return after natalizumab cessation in multiple sclerosis.

    PubMed

    Rasenack, Maria; Derfuss, Tobias

    2016-05-01

    Natalizumab (NAT) was the first monoclonal antibody to be approved for the treatment of relapsing-remitting multiple sclerosis. Its considerable and sustained efficacy has been demonstrated in two phase III studies. However, there are several reasons why its use is limited in clinical practice. The main argument for stopping use of the drug is the risk of the rare but serious progressive multifocal leukencephalopathy. Other reasons are neutralizing antibodies and pregnancy. There is compelling evidence from some clinical trials and many case series that disease activity returns upon suspension or cessation of NAT. Several therapeutic strategies that have been tested to prevent or reduce the recurrence of disease activity will be reviewed in this article. Considering these data, it is evident that the decision to stop NAT treatment has different implications and consequences. A subsequent therapy after cessation of NAT is needed to reduce the risk of disease recurrence.

  19. Seizures and epileptiform activity in the early stages of Alzheimer disease.

    PubMed

    Vossel, Keith A; Beagle, Alexander J; Rabinovici, Gil D; Shu, Huidy; Lee, Suzee E; Naasan, Georges; Hegde, Manu; Cornes, Susannah B; Henry, Maya L; Nelson, Alexandra B; Seeley, William W; Geschwind, Michael D; Gorno-Tempini, Maria L; Shih, Tina; Kirsch, Heidi E; Garcia, Paul A; Miller, Bruce L; Mucke, Lennart

    2013-09-01

    Epileptic activity associated with Alzheimer disease (AD) deserves increased attention because it has a harmful impact on these patients, can easily go unrecognized and untreated, and may reflect pathogenic processes that also contribute to other aspects of the illness. We report key features of AD-related seizures and epileptiform activity that are instructive for clinical practice and highlight similarities between AD and transgenic animal models of the disease. To describe common clinical characteristics and treatment outcomes of patients with amnestic mild cognitive impairment (aMCI) or early AD who also have epilepsy or subclinical epileptiform activity. Retrospective observational study from 2007 to 2012. SETTING Memory and Aging Center, University of California, San Francisco. We studied 54 patients with a diagnosis of aMCI plus epilepsy (n = 12), AD plus epilepsy (n = 35), and AD plus subclinical epileptiform activity (n = 7). Clinical and demographic data, electroencephalogram (EEG) readings, and treatment responses to antiepileptic medications. Patients with aMCI who had epilepsy presented with symptoms of cognitive decline 6.8 years earlier than patients with aMCI who did not have epilepsy (64.3 vs 71.1 years; P = .02). Patients with AD who had epilepsy presented with cognitive decline 5.5 years earlier than patients with AD who did not have epilepsy (64.8 vs 70.3 years; P = .001). Patients with AD who had subclinical epileptiform activity also had an early onset of cognitive decline (58.9 years). The timing of seizure onset in patients with aMCI and AD was nonuniform (P < .001), clustering near the onset of cognitive decline. Epilepsies were most often complex partial seizures (47%) and more than half were nonconvulsive (55%). Serial or extended EEG monitoring appeared to be more effective than routine EEG at detecting interictal and subclinical epileptiform activity. Epileptic foci were predominantly unilateral and temporal. Of the

  20. Mouse models of neurodegenerative diseases: criteria and general methodology.

    PubMed

    Janus, Christopher; Welzl, Hans

    2010-01-01

    The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.

  1. Neurophysiology of Drosophila Models of Parkinson's Disease

    PubMed Central

    West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing. PMID:25960916

  2. A policy model of cardiovascular disease in moderate-to-advanced chronic kidney disease.

    PubMed

    Schlackow, Iryna; Kent, Seamus; Herrington, William; Emberson, Jonathan; Haynes, Richard; Reith, Christina; Wanner, Christoph; Fellström, Bengt; Gray, Alastair; Landray, Martin J; Baigent, Colin; Mihaylova, Borislava

    2017-12-01

    To present a long-term policy model of cardiovascular disease (CVD) in moderate-to-advanced chronic kidney disease (CKD). A Markov model with transitions between CKD stages (3B, 4, 5, on dialysis, with kidney transplant) and cardiovascular events (major atherosclerotic events, haemorrhagic stroke, vascular death) was developed with individualised CKD and CVD risks estimated using the 5 years' follow-up data of the 9270 patients with moderate-to-severe CKD in the Study of Heart and Renal Protection (SHARP) and multivariate parametric survival analysis. The model was assessed in three further CKD cohorts and compared with currently used risk scores. Higher age, previous cardiovascular events and advanced CKD were the main contributors to increased individual disease risks. CKD and CVD risks predicted by the state-transition model corresponded well to risks observed in SHARP and external cohorts. The model's predictions of vascular risk and progression to end-stage renal disease were better than, or comparable to, those produced by other risk scores. As an illustration, at age 60-69 years, projected survival for SHARP participants in CKD stage 3B was 13.5 years (10.6 quality-adjusted life years (QALYs)) in men and 14.8 years (10.7 QALYs) in women. Corresponding projections for participants on dialysis were 7.5 (5.6 QALYs) and 7.8 years (5.4 QALYs). A non-fatal major atherosclerotic event reduced life expectancy by about 2 years in stage 3B and by 1 year in dialysis. The SHARP CKD-CVD model is a novel resource for evaluating health outcomes and cost-effectiveness of interventions in CKD. NCT00125593 and ISRCTN54137607; Post-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers

    PubMed Central

    Gidicsin, Christopher M.; Maye, Jacqueline E.; Locascio, Joseph J.; Pepin, Lesley C.; Philiossaint, Marlie; Becker, J. Alex; Younger, Alayna P.; Dekhtyar, Maria; Schultz, Aaron P.; Amariglio, Rebecca E.; Marshall, Gad A.; Rentz, Dorene M.; Hedden, Trey; Sperling, Reisa A.

    2015-01-01

    Objective: We aimed to determine whether there was a relationship between lifestyle factors and Alzheimer disease biomarkers. Methods: In a cross-sectional study, we evaluated self-reported histories of recent and past cognitive activity, self-reported history of recent physical activity, and objective recent walking activity in 186 clinically normal individuals with mean age of 74 ± 6 years. Using backward elimination general linear models, we tested the hypotheses that greater cognitive or physical activity would be associated with lower Pittsburgh compound B–PET retention, greater 18F-fluorodeoxyglucose–PET metabolism, and larger hippocampal volume, as well as better cognitive performance on neuropsychological testing. Results: Linear regression demonstrated that history of greater cognitive activity was correlated with greater estimated IQ and education, as well as better neuropsychological testing performance. Self-reported recent physical activity was related to objective exercise monitoring. However, contrary to hypotheses, we did not find evidence of an association of Pittsburgh compound B retention, 18F-fluorodeoxyglucose uptake, or hippocampal volume with past or current levels of cognitive activity, or with current physical activity. Conclusions: We conclude that a history of lifelong cognitive activity may support better cognitive performance by a mechanism that is independent of brain β-amyloid burden, brain glucose metabolism, or hippocampal volume. PMID:26062627

  4. Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers.

    PubMed

    Gidicsin, Christopher M; Maye, Jacqueline E; Locascio, Joseph J; Pepin, Lesley C; Philiossaint, Marlie; Becker, J Alex; Younger, Alayna P; Dekhtyar, Maria; Schultz, Aaron P; Amariglio, Rebecca E; Marshall, Gad A; Rentz, Dorene M; Hedden, Trey; Sperling, Reisa A; Johnson, Keith A

    2015-07-07

    We aimed to determine whether there was a relationship between lifestyle factors and Alzheimer disease biomarkers. In a cross-sectional study, we evaluated self-reported histories of recent and past cognitive activity, self-reported history of recent physical activity, and objective recent walking activity in 186 clinically normal individuals with mean age of 74 ± 6 years. Using backward elimination general linear models, we tested the hypotheses that greater cognitive or physical activity would be associated with lower Pittsburgh compound B-PET retention, greater (18)F-fluorodeoxyglucose-PET metabolism, and larger hippocampal volume, as well as better cognitive performance on neuropsychological testing. Linear regression demonstrated that history of greater cognitive activity was correlated with greater estimated IQ and education, as well as better neuropsychological testing performance. Self-reported recent physical activity was related to objective exercise monitoring. However, contrary to hypotheses, we did not find evidence of an association of Pittsburgh compound B retention, (18)F-fluorodeoxyglucose uptake, or hippocampal volume with past or current levels of cognitive activity, or with current physical activity. We conclude that a history of lifelong cognitive activity may support better cognitive performance by a mechanism that is independent of brain β-amyloid burden, brain glucose metabolism, or hippocampal volume. © 2015 American Academy of Neurology.

  5. Assessment of Physical Activity in Chronic Kidney Disease

    PubMed Central

    Robinson-Cohen, Cassianne; Littman, Alyson J; Duncan, Glen E; Roshanravan, Baback; Ikizler, T. Alp; Himmelfarb, Jonathan; Kestenbaum, Bryan R

    2012-01-01

    Background Physical activity (PA) plays important roles in the development of kidney disease and its complications; however, the validity of standard tools for measuring PA is not well understood. Study Design We investigated the performance of several readily-available and widely-used PA and physical function questionnaires, individually and in combination, against accelerometry among a cohort of CKD participants. Setting and Participants Forty-six participants from the Seattle Kidney Study, an observational cohort study of persons with CKD, completed the PA Scale for the Elderly, Human Activity Profile (HAP), Medical Outcomes Study SF-36 questionnaire, and the Four Week PA History Questionnaire (FWH). We simultaneously measured PA using an Actigraph GT3X accelerometer over a 14-day period. We estimated the validity of each instrument by testing its associations with log-transformed accelerometry counts. We used the Akaike information criterion to investigate the performance of combinations of questionnaires. Results All questionnaire scores were significantly associated with log-transformed accelerometry counts. The HAP correlated best with accelerometry counts (r2=0.32) followed by the SF-36 (r2=0.23). Forty-three percent of the variability in accelerometry counts data was explained by a model that combined the HAP, SF-36 and FWH. Conclusion A combination of measurement tools can account for a modest component of PA in patients with CKD; however, a substantial proportion of physical activity is not captured by standard assessments. PMID:22739659

  6. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain.

    PubMed

    Alam, John; Scheper, Wiep

    2016-12-01

    Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic deficiency of Mapk14 in the APP-PS1 mouse stimulates macroautophagy/autophagy, which then leads to reduced amyloid pathology via increasing autophagic-lysosomal degradation of BACE1. The findings resolve at least in the context of the APP-PS1 mouse, prior conflicting in vitro observations that have implicated MAPK14 in autophagic processes, and indicate that inhibition of MAPK14 enzyme activity has potential as a therapeutic approach to mitigate a critical physiological defect within neurons of the Alzheimer disease brain. Moreover, the findings suggest that biomarkers of BACE1 activity could be utilized to evaluate the effects of MAPK14 inhibition and other autophagy-inducing therapeutic approaches in human clinical studies, thereby potentially facilitating the clinical development of such agents.

  7. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain

    PubMed Central

    Alam, John; Scheper, Wiep

    2016-01-01

    ABSTRACT Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic deficiency of Mapk14 in the APP-PS1 mouse stimulates macroautophagy/autophagy, which then leads to reduced amyloid pathology via increasing autophagic-lysosomal degradation of BACE1. The findings resolve at least in the context of the APP-PS1 mouse, prior conflicting in vitro observations that have implicated MAPK14 in autophagic processes, and indicate that inhibition of MAPK14 enzyme activity has potential as a therapeutic approach to mitigate a critical physiological defect within neurons of the Alzheimer disease brain. Moreover, the findings suggest that biomarkers of BACE1 activity could be utilized to evaluate the effects of MAPK14 inhibition and other autophagy-inducing therapeutic approaches in human clinical studies, thereby potentially facilitating the clinical development of such agents. PMID:27715387

  8. Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity.

    PubMed

    Curtis, Jeffrey R; van der Helm-van Mil, Annette H; Knevel, Rachel; Huizinga, Tom W; Haney, Douglas J; Shen, Yijing; Ramanujan, Saroja; Cavet, Guy; Centola, Michael; Hesterberg, Lyndal K; Chernoff, David; Ford, Kerri; Shadick, Nancy A; Hamburger, Max; Fleischmann, Roy; Keystone, Edward; Weinblatt, Michael E

    2012-12-01

    Quantitative assessment of disease activity in rheumatoid arthritis (RA) is important for patient management, and additional objective information may aid rheumatologists in clinical decision making. We validated a recently developed multibiomarker disease activity (MBDA) test relative to clinical disease activity in diverse RA cohorts. Serum samples were obtained from the Index for Rheumatoid Arthritis Measurement, Brigham and Women's Hospital Rheumatoid Arthritis Sequential Study, and Leiden Early Arthritis Clinic cohorts. Levels of 12 biomarkers were measured and combined according to a prespecified algorithm to generate the composite MBDA score. The relationship of the MBDA score to clinical disease activity was characterized separately in seropositive and seronegative patients using Pearson's correlations and the area under the receiver operating characteristic curve (AUROC) to discriminate between patients with low and moderate/high disease activity. Associations between changes in MBDA score and clinical responses 6-12 weeks after initiation of anti-tumor necrosis factor or methotrexate treatment were evaluated by the AUROC. The MBDA score was significantly associated with the Disease Activity Score in 28 joints using the C-reactive protein level (DAS28-CRP) in both seropositive (AUROC 0.77, P < 0.001) and seronegative (AUROC 0.70, P < 0.001) patients. In subgroups based on age, sex, body mass index, and treatment, the MBDA score was associated with the DAS28-CRP (P < 0.05) in all seropositive and most seronegative subgroups. Changes in the MBDA score at 6-12 weeks could discriminate both American College of Rheumatology criteria for 50% improvement responses (P = 0.03) and DAS28-CRP improvement (P = 0.002). Changes in the MBDA score at 2 weeks were also associated with subsequent DAS28-CRP response (P = 0.02). Our findings establish the criterion and discriminant validity of a novel multibiomarker test as an objective measure of RA disease activity to aid

  9. Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity

    PubMed Central

    Curtis, Jeffrey R; van der Helm-van Mil, Annette H; Knevel, Rachel; Huizinga, Tom W; Haney, Douglas J; Shen, Yijing; Ramanujan, Saroja; Cavet, Guy; Centola, Michael; Hesterberg, Lyndal K; Chernoff, David; Ford, Kerri; Shadick, Nancy A; Hamburger, Max; Fleischmann, Roy; Keystone, Edward; Weinblatt, Michael E

    2012-01-01

    Objective Quantitative assessment of disease activity in rheumatoid arthritis (RA) is important for patient management, and additional objective information may aid rheumatologists in clinical decision making. We validated a recently developed multibiomarker disease activity (MBDA) test relative to clinical disease activity in diverse RA cohorts. Methods Serum samples were obtained from the Index for Rheumatoid Arthritis Measurement, Brigham and Women's Hospital Rheumatoid Arthritis Sequential Study, and Leiden Early Arthritis Clinic cohorts. Levels of 12 biomarkers were measured and combined according to a prespecified algorithm to generate the composite MBDA score. The relationship of the MBDA score to clinical disease activity was characterized separately in seropositive and seronegative patients using Pearson's correlations and the area under the receiver operating characteristic curve (AUROC) to discriminate between patients with low and moderate/high disease activity. Associations between changes in MBDA score and clinical responses 6–12 weeks after initiation of anti–tumor necrosis factor or methotrexate treatment were evaluated by the AUROC. Results The MBDA score was significantly associated with the Disease Activity Score in 28 joints using the C-reactive protein level (DAS28-CRP) in both seropositive (AUROC 0.77, P < 0.001) and seronegative (AUROC 0.70, P < 0.001) patients. In subgroups based on age, sex, body mass index, and treatment, the MBDA score was associated with the DAS28-CRP (P < 0.05) in all seropositive and most seronegative subgroups. Changes in the MBDA score at 6–12 weeks could discriminate both American College of Rheumatology criteria for 50% improvement responses (P = 0.03) and DAS28-CRP improvement (P = 0.002). Changes in the MBDA score at 2 weeks were also associated with subsequent DAS28-CRP response (P = 0.02). Conclusion Our findings establish the criterion and discriminant validity of a novel multibiomarker test as an

  10. Elevation of Serum Acid Sphingomyelinase Activity in Acute Kawasaki Disease.

    PubMed

    Konno, Yuuki; Takahashi, Ikuko; Narita, Ayuko; Takeda, Osamu; Koizumi, Hiromi; Tamura, Masamichi; Kikuchi, Wataru; Komatsu, Akira; Tamura, Hiroaki; Tsuchida, Satoko; Noguchi, Atsuko; Takahashi, Tsutomu

    2015-10-01

    Kawasaki disease (KD) is an acute systemic vasculitis that affects both small and medium-sized vessels including the coronary arteries in infants and children. Acid sphingomyelinase (ASM) is a lysosomal glycoprotein that hydrolyzes sphingomyelin to ceramide, a lipid, that functions as a second messenger in the regulation of cell functions. ASM activation has been implicated in numerous cellular stress responses and is associated with cellular ASM secretion, either through alternative trafficking of the ASM precursor protein or by means of an unidentified mechanism. Elevation of serum ASM activity has been described in several human diseases, suggesting that patients with diseases involving vascular endothelial cells may exhibit a preferential elevation of serum ASM activity. As acute KD is characterized by systemic vasculitis that could affect vascular endothelial cells, the elevation of serum ASM activity should be considered in these patients. In the present study, serum ASM activity in the sera of 15 patients with acute KD was determined both before and after treatment with infusion of high-dose intravenous immunoglobulin (IVIG), a first-line treatment for acute KD. Serum ASM activity before IVIG was significantly elevated in KD patients when compared to the control group (3.85 ± 1.46 nmol/0.1 ml/6 h vs. 1.15 ± 0.10 nmol/0.1 ml/6 h, p < 0.001), suggesting that ASM activation may be involved in the pathophysiology of this condition. Serum ASM activity before IVIG was significantly correlated with levels of C-reactive protein (p < 0.05). These results suggest the involvement of sphingolipid metabolism in the pathophysiology of KD.

  11. Omics analysis of mouse brain models of human diseases.

    PubMed

    Paban, Véronique; Loriod, Béatrice; Villard, Claude; Buee, Luc; Blum, David; Pietropaolo, Susanna; Cho, Yoon H; Gory-Faure, Sylvie; Mansour, Elodie; Gharbi, Ali; Alescio-Lautier, Béatrice

    2017-02-05

    The identification of common gene/protein profiles related to brain alterations, if they exist, may indicate the convergence of the pathogenic mechanisms driving brain disorders. Six genetically engineered mouse lines modelling neurodegenerative diseases and neuropsychiatric disorders were considered. Omics approaches, including transcriptomic and proteomic methods, were used. The gene/protein lists were used for inter-disease comparisons and further functional and network investigations. When the inter-disease comparison was performed using the gene symbol identifiers, the number of genes/proteins involved in multiple diseases decreased rapidly. Thus, no genes/proteins were shared by all 6 mouse models. Only one gene/protein (Gfap) was shared among 4 disorders, providing strong evidence that a common molecular signature does not exist among brain diseases. The inter-disease comparison of functional processes showed the involvement of a few major biological processes indicating that brain diseases of diverse aetiologies might utilize common biological pathways in the nervous system, without necessarily involving similar molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Children with chronic disease and extracurricular activities: training needs

    PubMed

    Desserprix, Agnès; Marchand, Claire; Crozet, Cyril

    2016-10-19

    Background: ln the current context of increasing numbers of children living with a chronic disease and increasing numbers of people supervising extracurricular activities, difficulties appear to persist despite the Personalised Core Project (PCP). This study explores the accessibility and usefulness of the information provided by the Personalised Care Project and the value of complementary support. Methods: Based on the key messages identified by experts in the four most common chronic diseases, a questionnaire was deve/oped and sent to people supervising extracurricular activities in three districts of the Saône-et-Loire department. Descriptive statistical analysis was performed. Results: 55 people participated in the study. 30 (54.5%) had already supervised children with a chronic disease, 21 (70%) of them had been able to read the PCP and 17 (57%) had participated in an information meeting. 23 out of 28 (82%) considered thot the information contained in the PCP was helpful and 21 (81%) expressed their needs for further information. 98% of respondents thought thot additional support would be useful. Their main needs corresponded to 3 main self-core ski/Js: to recognize, analyse and measure; to deal with and decide; to resolve prevention problems. Conclusion: This study confirms the value of the PCP, but also the Jack of preparation of people supervising extracurricu/ar activ ities. lt highlights the need for training to allow these people to ensure the safety of chi /dren living with chronic diseases.

  13. Using induced pluripotent stem cells derived neurons to model brain diseases.

    PubMed

    McKinney, Cindy E

    2017-07-01

    The ability to use induced pluripotent stem cells (iPSC) to model brain diseases is a powerful tool for unraveling mechanistic alterations in these disorders. Rodent models of brain diseases have spurred understanding of pathology but the concern arises that they may not recapitulate the full spectrum of neuron disruptions associated with human neuropathology. iPSC derived neurons, or other neural cell types, provide the ability to access pathology in cells derived directly from a patient's blood sample or skin biopsy where availability of brain tissue is limiting. Thus, utilization of iPSC to study brain diseases provides an unlimited resource for disease modelling but may also be used for drug screening for effective therapies and may potentially be used to regenerate aged or damaged cells in the future. Many brain diseases across the spectrum of neurodevelopment, neurodegenerative and neuropsychiatric are being approached by iPSC models. The goal of an iPSC based disease model is to identify a cellular phenotype that discriminates the disease-bearing cells from the control cells. In this mini-review, the importance of iPSC cell models validated for pluripotency, germline competency and function assessments is discussed. Selected examples for the variety of brain diseases that are being approached by iPSC technology to discover or establish the molecular basis of the neuropathology are discussed.

  14. New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.

    PubMed

    Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin

    2012-08-01

    Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.

  15. The association of fatigue, pain, depression and anxiety with work and activity impairment in immune mediated inflammatory diseases.

    PubMed

    Enns, Murray W; Bernstein, Charles N; Kroeker, Kristine; Graff, Lesley; Walker, John R; Lix, Lisa M; Hitchon, Carol A; El-Gabalawy, Renée; Fisk, John D; Marrie, Ruth Ann

    2018-01-01

    Impairment in work function is a frequent outcome in patients with chronic conditions such as immune-mediated inflammatory diseases (IMID), depression and anxiety disorders. The personal and economic costs of work impairment in these disorders are immense. Symptoms of pain, fatigue, depression and anxiety are potentially remediable forms of distress that may contribute to work impairment in chronic health conditions such as IMID. The present study evaluated the association between pain [Medical Outcomes Study Pain Effects Scale], fatigue [Daily Fatigue Impact Scale], depression and anxiety [Hospital Anxiety and Depression Scale] and work impairment [Work Productivity and Activity Impairment Scale] in four patient populations: multiple sclerosis (n = 255), inflammatory bowel disease (n = 248, rheumatoid arthritis (n = 154) and a depression and anxiety group (n = 307), using quantile regression, controlling for the effects of sociodemographic factors, physical disability, and cognitive deficits. Each of pain, depression symptoms, anxiety symptoms, and fatigue individually showed significant associations with work absenteeism, presenteeism, and general activity impairment (quantile regression standardized estimates ranging from 0.3 to 1.0). When the distress variables were entered concurrently into the regression models, fatigue was a significant predictor of work and activity impairment in all models (quantile regression standardized estimates ranging from 0.2 to 0.5). These findings have important clinical implications for understanding the determinants of work impairment and for improving work-related outcomes in chronic disease.

  16. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    PubMed Central

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts. 236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled “amount” and “difficulty”. After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test–retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity. Daily and clinical visit “PROactive physical activity in COPD” instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. PMID:26022965

  17. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease.

    PubMed

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A; Hopkinson, Nicholas S; Polkey, Michael I; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A; Karlsson, Niklas; Garcia-Aymerich, Judith

    2015-10-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD.Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts.236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled "amount" and "difficulty". After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test-retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity.Daily and clinical visit "PROactive physical activity in COPD" instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. Copyright ©ERS 2015.

  18. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model.

    PubMed

    Lamine, Asma; Létourneau, Myriam; Doan, Ngoc Duc; Maucotel, Julie; Couvineau, Alain; Vaudry, Hubert; Chatenet, David; Vaudry, David; Fournier, Alain

    2016-09-01

    Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multinomial model and zero-inflated gamma model to study time spent on leisure time physical activity: an example of ELSA-Brasil.

    PubMed

    Nobre, Aline Araújo; Carvalho, Marilia Sá; Griep, Rosane Härter; Fonseca, Maria de Jesus Mendes da; Melo, Enirtes Caetano Prates; Santos, Itamar de Souza; Chor, Dora

    2017-08-17

    To compare two methodological approaches: the multinomial model and the zero-inflated gamma model, evaluating the factors associated with the practice and amount of time spent on leisure time physical activity. Data collected from 14,823 baseline participants in the Longitudinal Study of Adult Health (ELSA-Brasil - Estudo Longitudinal de Saúde do Adulto ) have been analysed. Regular leisure time physical activity has been measured using the leisure time physical activity module of the International Physical Activity Questionnaire. The explanatory variables considered were gender, age, education level, and annual per capita family income. The main advantage of the zero-inflated gamma model over the multinomial model is that it estimates mean time (minutes per week) spent on leisure time physical activity. For example, on average, men spent 28 minutes/week longer on leisure time physical activity than women did. The most sedentary groups were young women with low education level and income. The zero-inflated gamma model, which is rarely used in epidemiological studies, can give more appropriate answers in several situations. In our case, we have obtained important information on the main determinants of the duration of leisure time physical activity. This information can help guide efforts towards the most vulnerable groups since physical inactivity is associated with different diseases and even premature death.

  20. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  1. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    PubMed

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  2. Computational modeling of the obstructive lung diseases asthma and COPD

    PubMed Central

    2014-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway obstruction and airflow limitation and pose a huge burden to society. These obstructive lung diseases impact the lung physiology across multiple biological scales. Environmental stimuli are introduced via inhalation at the organ scale, and consequently impact upon the tissue, cellular and sub-cellular scale by triggering signaling pathways. These changes are propagated upwards to the organ level again and vice versa. In order to understand the pathophysiology behind these diseases we need to integrate and understand changes occurring across these scales and this is the driving force for multiscale computational modeling. There is an urgent need for improved diagnosis and assessment of obstructive lung diseases. Standard clinical measures are based on global function tests which ignore the highly heterogeneous regional changes that are characteristic of obstructive lung disease pathophysiology. Advances in scanning technology such as hyperpolarized gas MRI has led to new regional measurements of ventilation, perfusion and gas diffusion in the lungs, while new image processing techniques allow these measures to be combined with information from structural imaging such as Computed Tomography (CT). However, it is not yet known how to derive clinical measures for obstructive diseases from this wealth of new data. Computational modeling offers a powerful approach for investigating this relationship between imaging measurements and disease severity, and understanding the effects of different disease subtypes, which is key to developing improved diagnostic methods. Gaining an understanding of a system as complex as the respiratory system is difficult if not impossible via experimental methods alone. Computational models offer a complementary method to unravel the structure-function relationships occurring within a multiscale, multiphysics system such as this. Here we review the current

  3. Quality of life and life satisfaction in patients with Behçet's disease: relationship with disease activity.

    PubMed

    Bodur, Hatice; Borman, Pinar; Ozdemir, Yildiz; Atan, Ciğdem; Kural, Gülcan

    2006-05-01

    Quality of life (QoL) and life satisfaction (LS) are important outcome factors in chronic inflammatory conditions such as Behçet's disease (BD). The aim of this study was to investigate QoL and LS in patients with BD and determine the relationship with disease activity. Forty-one patients with BD and 40 control subjects were involved in the study. Demographic properties were obtained. Disease activity was assessed by Turkish version of BD Current Activity Form (BDCAF) in BD patients. QoL and psychological well-being were assessed by Nottingham Health Profile (NHP) and Life Satisfaction Index (LSI), respectively, in both patients and control groups. The related disease activity measures of QoL and LS were determined. Twenty-two male and 19 female BD patients with a mean age of 33.3+/-9.3 years and 20 male and 20 female control subjects with a mean age of 33.3+/-4.1 years were involved. According to BDCAF, no patient had central nervous system involvement. Thirty-four patients had headache, 33 patients had fatigue, 30 patients had articular involvement, 29 had mucocutaneous lesions, 27 had gastrointestinal involvement, 21 patients had ocular involvement, and 7 patients had vascular involvement. The scores of all dimensions of NHP were significantly higher and the mean score of LSI was significantly lower in BD patients than in control subjects (p<0.001). Correlation analysis indicated that the scores of fatigue, joint involvement, and oral ulcers were the most related factors for physical domains of NHP, whereas joint involvement and genital ulcers were the most related activity measures for psychosocial subscales of NHP. LS was found to be most related with the scores of patient's and physician's impression of disease activity and joint involvement. In conclusion, patients with BD have impaired QoL and disturbed psychological well-being. Current management strategies focusing on fatigue, arthralgia, mucocutaneous lesions, and efforts to measure psychosocial aspects

  4. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    PubMed Central

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neuroprotective as their caffeine and nicotine-containing counterparts and that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco are also evident in Drosophila models of Alzheimer's disease and polyglutamine disease. Finally, we report that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco require the cytoprotective transcription factor Nrf2 and that a known Nrf2 activator in coffee, cafestol, is also able to confer neuroprotection in our fly models of PD. Our findings indicate that coffee and tobacco contain Nrf2-activating compounds that may account for the reduced risk of PD among coffee and tobacco users. These compounds represent attractive candidates for therapeutic intervention in PD and perhaps other neurodegenerative diseases. PMID:20410106

  5. Physical activity and fatigue in chronic obstructive pulmonary disease - A population based study.

    PubMed

    Andersson, Mikael; Stridsman, Caroline; Rönmark, Eva; Lindberg, Anne; Emtner, Margareta

    2015-08-01

    In subjects with chronic obstructive pulmonary disease (COPD), symptoms of fatigue, concomitant heart disease and low physical activity levels are more frequently described than in subjects without COPD. However, there are no population-based studies addressing the relationship between physical activity, fatigue and heart disease in COPD. The aim was to compare physical activity levels among subjects with and without COPD in a population based study, and to evaluate if concomitant heart disease and fatigue was associated to physical activity. In this, 470 subjects with COPD and 659 subjects without COPD (non-COPD) participated in examinations including structured interview and spirometry. A ratio of the forced expiratory volume in one second (FEV1)/best of forced vital capacity (FVC) and vital capacity (VC) < 0.7 was used to define COPD. Physical activity was assessed with the International Physical Activity Questionnaire (IPAQ), and fatigue with the Functional Assessment of Chronic Illness Therapy - Fatigue scale (FACIT-F). The prevalence of low physical activity was higher among subjects with FEV1 < 80% predicted compared to non-COPD subjects (22.4% vs. 14.6%, p = 0.041). The factors most strongly associated with low physical activity in subjects with COPD were older age, OR 1.52, (95% CI 1.12-2.06), a history of heart disease, OR 2.11 (1.10-4.08), and clinically significant fatigue, OR 2.33 (1.31-4.13); while obesity was the only significant factor among non-COPD subjects, OR 2.26 (1.17-4.35). Physical activity levels are reduced when lung function is decreased below 80% of predicted, and the factors associated with low physical activity are different among subject with and without COPD. We propose that the presence of fatigue and heart disease are useful to evaluate when identifying subjects for pulmonary rehabilitation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Activation of the Alternative NFκB Pathway Improves Disease Symptoms in a Model of Sjogren's Syndrome

    PubMed Central

    Gilboa-Geffen, Adi; Wolf, Yochai; Hanin, Geula; Melamed-Book, Naomi; Pick, Marjorie; Bennett, Estelle R.; Greenberg, David S.; Lester, Susan; Rischmueller, Maureen; Soreq, Hermona

    2011-01-01

    The purpose of our study was to understand if Toll-like receptor 9 (TLR9) activation could contribute to the control of inflammation in Sjogren's syndrome. To this end, we manipulated TLR9 signaling in non-obese diabetic (NOD) and TLR9−/− mice using agonistic CpG oligonucleotide aptamers, TLR9 inhibitors, and the in-house oligonucleotide BL-7040. We then measured salivation, inflammatory response markers, and expression of proteins downstream to NF-κB activation pathways. Finally, we labeled proteins of interest in salivary gland biopsies from Sjogren's syndrome patients, compared to Sicca syndrome controls. We show that in NOD mice BL-7040 activates TLR9 to induce an alternative NF-κB activation mode resulting in increased salivation, elevated anti-inflammatory response in salivary glands, and reduced peripheral AChE activity. These effects were more prominent and also suppressible by TLR9 inhibitors in NOD mice, but TLR9−/− mice were resistant to the salivation-promoting effects of CpG oligonucleotides and BL-7040. Last, salivary glands from Sjogren's disease patients showed increased inflammatory and decreased anti-inflammatory biomarkers, in addition to decreased levels of alternative NF-κB pathway proteins. In summary, we have demonstrated that activation of TLR9 by BL-7040 leads to non-canonical activation of NF-κB, promoting salivary functioning and down-regulating inflammation. We propose that BL-7040 could be beneficial in treating Sjogren's syndrome and may be applicable to additional autoimmune syndromes. PMID:22174879

  7. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis.

    PubMed

    Evers, Andrea W M; Verhoeven, Elisabeth W M; van Middendorp, Henriët; Sweep, Fred C G J; Kraaimaat, Floris W; Donders, A Rogier T; Eijsbouts, Agnes E; van Laarhoven, Antoinette I M; de Brouwer, Sabine J M; Wirken, Lieke; Radstake, Timothy R D J; van Riel, Piet L C M

    2014-09-01

    Both stressors and stress vulnerability factors together with immune and hypothalamus-pituitary-adrenal (HPA) axis activity components have been considered to contribute to disease fluctuations of chronic inflammatory diseases, such as rheumatoid arthritis (RA). The aim of the present study was to investigate whether daily stressors and worrying as stress vulnerability factor as well as immune and HPA axis activity markers predict short-term disease activity and symptom fluctuations in patients with RA. In a prospective design, daily stressors, worrying, HPA axis (cortisol) and immune system (interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, tumour necrosis factor α) markers, clinical and self-reported disease activity (disease activity score in 28 joints, RA disease activity index), and physical symptoms of pain and fatigue were monitored monthly during 6 months in 80 RA patients. Multilevel modelling indicated that daily stressors predicted increased fatigue in the next month and that worrying predicted increased self-reported disease activity, swollen joint count and pain in the next month. In addition, specific cytokines of IL-1β and IFN-γ predicted increased fatigue 1 month later. Overall, relationships remained relatively unchanged after controlling for medication use, disease duration and demographic variables. No evidence was found for immune and HPA axis activity markers as mediators of the stress-disease relationship. Daily stressors and the stress-vulnerability factor worrying predict indicators of the short-term course of RA disease activity and fatigue and pain, while specific cytokines predict short-term fluctuations of fatigue. These stress-related variables and immune markers seem to affect different aspects of disease activity or symptom fluctuations independently in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.

    PubMed

    Mykicki, Nadine; Herrmann, Alexander M; Schwab, Nicholas; Deenen, René; Sparwasser, Tim; Limmer, Andreas; Wachsmuth, Lydia; Klotz, Luisa; Köhrer, Karl; Faber, Cornelius; Wiendl, Heinz; Luger, Thomas A; Meuth, Sven G; Loser, Karin

    2016-10-26

    In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (T H 1) and T H 17 cells cause demyelination and neuronal degeneration. Regulatory T cells (T reg ) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, T reg function is impaired. We show that a recently approved drug, Nle 4 -d-Phe 7 -α-melanocyte-stimulating hormone (NDP-MSH), induced functional T reg , resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders. Copyright © 2016, American Association for the Advancement of Science.

  9. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models.

    PubMed

    Portwood, Scott; Lal, Deepika; Hsu, Yung-Chun; Vargas, Rodrigo; Johnson, Megan K; Wetzler, Meir; Hart, Charles P; Wang, Eunice S

    2013-12-01

    Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm. Recent evidence has shown the bone marrow microenvironment in patients with AML to be intrinsically hypoxic. Adaptive cellular responses by leukemia cells to survive under low oxygenation also confer chemoresistance. We therefore asked whether therapeutic exploitation of marrow hypoxia via the hypoxia-activated nitrogen mustard prodrug, TH-302, could effectively inhibit AML growth. We assessed the effects of hypoxia and TH-302 on human AML cells, primary samples, and systemic xenograft models. We observed that human AML cells and primary AML colonies cultured under chronic hypoxia (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic controls. TH-302 treatment resulted in dose- and hypoxia-dependent apoptosis and cell death in diverse AML cells. TH-302 preferentially decreased proliferation, reduced HIF-1α expression, induced cell-cycle arrest, and enhanced double-stranded DNA breaks in hypoxic AML cells. Hypoxia-induced reactive oxygen species by AML cells were also diminished. In systemic human AML xenografts (HEL, HL60), TH-302 [50 mg/kg intraperitoneally (i.p.) 5 times per week] inhibited disease progression and prolonged overall survival. TH-302 treatment reduced the number of hypoxic cells within leukemic bone marrows and was not associated with hematologic toxicities in nonleukemic or leukemic mice. Later initiation of TH-302 treatment in advanced AML disease was as effective as earlier TH-302 treatment in xenograft models. Our results establish the preclinical activity of TH-302 in AML and provide the rationale for further clinical studies of this and other hypoxia-activated agents for leukemia therapy. ©2013 AACR.

  10. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    PubMed

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  11. The Effect of Online Chronic Disease Personas on Activation: Within-Subjects and Between-Groups Analyses

    PubMed Central

    2015-01-01

    Background Although self-management of chronic disease is important, engaging patients and increasing activation for self-care using online tools has proven difficult. Designing more tailored interventions through the application of condition-specific personas may be a way to increase engagement and patient activation. Personas are developed from extensive interviews with patients about their shared values and assumptions about their health. The resulting personas tailor the knowledge and skills necessary for self-care and guide selection of the self-management tools for a particular audience. Objective Pre-post changes in self-reported levels of activation for self-management were analyzed for 11 chronic health personas developed for 4 prevalent chronic diseases. Methods Personas were created from 20 to 25 hour-long nondirected interviews with consumers with a common, chronic disease (eg, diabetes). The interviews were transcribed and coded for behaviors, feelings, and beliefs using the principles of grounded theory. A second group of 398 adults with self-reported chronic disease were recruited for online testing of the personas and their impact on activation. The activation variables, based on an integrated theory of health behavior, were knowledge of a given health issue, perceived self-management skills, confidence in improving health, and intention to take action in managing health. Pre-post changes in activation were analyzed with a mixed design with 1 within-subjects factor (pre-post) and 1 between-group factor (persona) using a general linear model with repeated measures. Results Sixteen pre-post changes for 4 measures of activation were analyzed. All but 2 of the within-subjects effects were statistically significant and all changes were in the direction of increased activation scores at posttest. Five significant differences between personas were observed, showing which personas performed better. Of low activation participants, 50% or more shifted to high

  12. [Infectious diseases research].

    PubMed

    Carratalà, Jordi; Alcamí, José; Cordero, Elisa; Miró, José M; Ramos, José Manuel

    2008-12-01

    There has been a significant increase in research activity into infectious diseases in Spain in the last few years. The Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) currently has ten study groups, with the cooperation of infectious diseases specialists and microbiologists from different centres, with significant research activity. The program of Redes Temáticas de Investigación Cooperativa en Salud (Special Topics Cooperative Health Research Networks) is an appropriate framework for the strategic coordination of research groups from the Spanish autonomous communities. The Spanish Network for Research in Infectious Diseases (REIPI) and the Network for Research in AIDS (RIS) integrate investigators in Infectious Diseases from multiple groups, which continuously perform important research projects. Research using different experimental models in infectious diseases, in numerous institutions, is an important activity in our country. The analysis of the recent scientific production in Infectious Diseases shows that Spain has a good position in the context of the European Union. The research activity in Infectious Diseases carried out in our country is a great opportunity for the training of specialists in this area of knowledge.

  13. Royal Jelly Reduces Cholesterol Levels, Ameliorates Aβ Pathology and Enhances Neuronal Metabolic Activities in a Rabbit Model of Alzheimer's Disease.

    PubMed

    Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W; You, Mengmeng; Chen, Minli; Hu, Fuliang

    2018-01-01

    Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.

  14. The fitting of general force-of-infection models to wildlife disease prevalence data

    USGS Publications Warehouse

    Heisey, D.M.; Joly, D.O.; Messier, F.

    2006-01-01

    Researchers and wildlife managers increasingly find themselves in situations where they must deal with infectious wildlife diseases such as chronic wasting disease, brucellosis, tuberculosis, and West Nile virus. Managers are often charged with designing and implementing control strategies, and researchers often seek to determine factors that influence and control the disease process. All of these activities require the ability to measure some indication of a disease's foothold in a population and evaluate factors affecting that foothold. The most common type of data available to managers and researchers is apparent prevalence data. Apparent disease prevalence, the proportion of animals in a sample that are positive for the disease, might seem like a natural measure of disease's foothold, but several properties, in particular, its dependency on age structure and the biasing effects of disease-associated mortality, make it less than ideal. In quantitative epidemiology, the a??force of infection,a?? or infection hazard, is generally the preferred parameter for measuring a disease's foothold, and it can be viewed as the most appropriate way to a??adjusta?? apparent prevalence for age structure. The typical ecology curriculum includes little exposure to quantitative epidemiological concepts such as cumulative incidence, apparent prevalence, and the force of infection. The goal of this paper is to present these basic epidemiological concepts and resulting models in an ecological context and to illustrate how they can be applied to understand and address basic epidemiological questions. We demonstrate a practical approach to solving the heretofore intractable problem of fitting general force-of-infection models to wildlife prevalence data using a generalized regression approach. We apply the procedures to Mycobacterium bovis (bovine tuberculosis) prevalence in bison (Bison bison) in Wood Buffalo National Park, Canada, and demonstrate strong age dependency in the force of

  15. Validation of the Auto-Inflammatory Diseases Activity Index (AIDAI) for hereditary recurrent fever syndromes

    PubMed Central

    Piram, Maryam; Koné-Paut, Isabelle; Lachmann, Helen J; Frenkel, Joost; Ozen, Seza; Kuemmerle-Deschner, Jasmin; Stojanov, Silvia; Simon, Anna; Finetti, Martina; Sormani, Maria Pia; Martini, Alberto; Gattorno, Marco; Ruperto, Nicolino

    2014-01-01

    Objectives To validate the Auto-Inflammatory Diseases Activity Index (AIDAI) in the four major hereditary recurrent fever syndromes (HRFs): familial Mediterranean fever (FMF), mevalonate kinase deficiency (MKD), tumour necrosis factor receptor-associated periodic syndrome (TRAPS) and cryopyrin-associated periodic syndromes (CAPS). Methods In 2010, an international collaboration established the content of a disease activity tool for HRFs. Patients completed a 1-month prospective diary with 12 yes/no items before a clinical appointment during which their physician assessed their disease activity by a questionnaire. Eight international experts in auto-inflammatory diseases evaluated the patient's disease activity by a blinded web evaluation and a nominal group technique consensus conference, with their consensus judgement considered the gold standard. Sensitivity/specificity/accuracy measures and the ability of the score to discriminate active from inactive patients via the best cut-off score were calculated by a receiver operating characteristic analysis. Results Consensus was achieved for 98/106 (92%) cases (39 FMF, 35 CAPS, 14 TRAPS and 10 MKD), with 26 patients declared as having inactive disease and 72 as having active disease. The median total AIDAI score was 14 (range=0–175). An AIDAI cut-off score ≥9 discriminated active from inactive patients, with sensitivity/specificity/accuracy of 89%/92%/90%, respectively, and an area under the curve of 98% (95% CI 96% to 100%). Conclusions The AIDAI score is a valid and simple tool for assessing disease activity in FMF/MKD/TRAPS/CAPS. This tool is easy to use in clinical practice and has the potential to be used as the standard efficacy measure in future clinical trials. PMID:24026675

  16. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    PubMed Central

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  17. Ultrasound for assessing disease activity in IBD patients: a systematic review of activity scores.

    PubMed

    Bots, S; Nylund, K; Löwenberg, M; Gecse, K; Gilja, O H; D'Haens, G

    2018-04-19

    Ultrasound (US) indices for assessing disease activity in IBD patients have never been critically reviewed. We aimed to systematically review the quality and reliability of available ultrasound (US) indices compared with reference standards for grading disease activity in IBD patients. Pubmed, Embase and Medline were searched from 1990 until June 2017. Relevant publications were identified through full text review after initial screening by 2 investigators. Data on methodology and index characteristics were collected. Study quality was assessed with a modified version of the Quadas-2 tool for risk of bias assessment. Of 20 studies with an US index, 11 studies met the inclusion criteria. Out of these 11 studies, 7 and 4 studied CD and UC activity indices, respectively. Parameters that were used in these indices included bowel wall thickness (BWT), Doppler signal (DS), wall layer stratification (WLS), compressibility, peristalsis, haustrations, fatty wrapping, contrast enhancement (CE) and strain pattern. Study quality was graded high in 5 studies, moderate in 3 studies and low in 3 studies. Ileocolonoscopy was used as the reference standard in 9 studies. In 1 study a combined index of ileocolonoscopy and barium contrast radiography and in 1 study histology was used as the reference standard. Only 5 studies used an established endoscopic index for comparison with US. Several US indices for assessing disease activity in IBD are available; however the methodology for development was suboptimal in most studies. For the development of future indices stringent methodological design is required.

  18. Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems.

    PubMed

    Bauer, Thomas R; Adler, Rima L; Hickstein, Dennis D

    2009-01-01

    Genetic mutations involving the cellular components of the hematopoietic system--red blood cells, white blood cells, and platelets--manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutations in humans. Many of these limitations can be overcome by identifying large animals with genetic diseases of the hematopoietic system corresponding to their human disease counterparts. In this article, we describe human diseases of the cellular components of the hematopoietic system that have counterparts in large animal species, in most cases carrying mutations in the same gene (CD18 in leukocyte adhesion deficiency) or genes in interacting proteins (DNA cross-link repair 1C protein and protein kinase, DNA-activated catalytic polypeptide in radiation-sensitive severe combined immunodeficiency). Furthermore, we describe the potential of these animal models to serve as disease-specific preclinical models for testing the efficacy and safety of clinical interventions such as hematopoietic stem cell transplantation or gene therapy before their use in humans with the corresponding disease.

  19. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  20. Oxidative stress and skin diseases: possible role of physical activity.

    PubMed

    Kruk, Joanna; Duchnik, Ewa

    2014-01-01

    The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

  1. The intermediate-conductance Ca2+ -activated K+ channel (KCa3.1) in vascular disease.

    PubMed

    Tharp, D L; Bowles, D K

    2009-01-01

    The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) was first described by Gardos in erythrocytes and later confirmed to play a significant role in T-cell activation and the immune response. More recently, K(Ca)3.1 has been characterized in numerous cell types which contribute to the development of vascular disease, such as T-cells, B-cells, endothelial cells, fibroblasts, macrophages, and dedifferentiated smooth muscle cells (SMCs). Physiologically, K(Ca)3.1 has been demonstrated to play a role in acetylcholine and endothelium-derived hyperpolarizing factor (EDHF) induced hyperpolarization, and thus control of blood pressure. Pathophysiologically, K(Ca)3.1 contributes to proliferation of T-cells, B-cells, fibroblasts, and vascular SMCs, as well as the migration of SMCs and macrophages and platelet coagulation. Recent studies have indicated that blockade of K(Ca)3.1, by specific blockers such as TRAM-34, could prove to be an effective treatment for vascular disease by inhibiting T-cell activation as well as preventing proliferation and migration of macrophages, endothelial cells, and SMCs. This vasculoprotective potential of K(Ca)3.1 inhibition has been confirmed in both rodent and swine models of restenosis. In this review, we will discuss the physiological and pathophysiological role of K(Ca)3.1 in cells closely associated with vascular biology, and the effect of K(Ca)3.1 blockers on the initiation and progression of vascular disease.

  2. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study.

    PubMed

    Wasserberg, Gideon; Osnas, Erik E; Rolley, Robert E; Samuel, Michael D

    2009-04-01

    Emerging wildlife diseases pose a significant threat to natural and human systems. Because of real or perceived risks of delayed actions, disease management strategies such as culling are often implemented before thorough scientific knowledge of disease dynamics is available. Adaptive management is a valuable approach in addressing the uncertainty and complexity associated with wildlife disease problems and can be facilitated by using a formal model.We developed a multi-state computer simulation model using age, sex, infection-stage, and seasonality as a tool for scientific learning and managing chronic wasting disease (CWD) in white-tailed deer Odocoileus virginianus. Our matrix model used disease transmission parameters based on data collected through disease management activities. We used this model to evaluate management issues on density- (DD) and frequency-dependent (FD) transmission, time since disease introduction, and deer culling on the demographics, epizootiology, and management of CWD.Both DD and FD models fit the Wisconsin data for a harvested white-tailed deer population, but FD was slightly better. Time since disease introduction was estimated as 36 (95% CI, 24-50) and 188 (41->200) years for DD and FD transmission, respectively. Deer harvest using intermediate to high non-selective rates can be used to reduce uncertainty between DD and FD transmission and improve our prediction of long-term epidemic patterns and host population impacts. A higher harvest rate allows earlier detection of these differences, but substantially reduces deer abundance.Results showed that CWD has spread slowly within Wisconsin deer populations, and therefore, epidemics and disease management are expected to last for decades. Non-hunted deer populations can develop and sustain a high level of infection, generating a substantial risk of disease spread. In contrast, CWD prevalence remains lower in hunted deer populations, but at a higher prevalence the disease competes with

  3. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

    PubMed

    Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

    2016-12-01

    : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of

  4. Simulation of Impacts of Annosus Root Disease with the Western Root Disease Model

    Treesearch

    Charles G. Shaw III; Donald J. Goheen; Bov B. Eav

    1989-01-01

    The Western Root Disease Model as it currently exists is described, and the assumptions that were made to adapt the model to simulate attack by Heterobasidion annosum in coniferous forests of south-central Oregon are defined. Some simulations produced by this adapted model are presented to stimulate provocative discussion, thought, and action. These...

  5. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  6. Cardiac image modelling: Breadth and depth in heart disease.

    PubMed

    Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A

    2016-10-01

    With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction. Copyright © 2016. Published by Elsevier B.V.

  7. A model of self-regulation for control of chronic disease.

    PubMed

    Clark, Noreen M; Gong, Molly; Kaciroti, Niko

    2014-10-01

    Chronic disease poses increasing threat to individual and community health. The day-to-day manager of disease is the patient who undertakes actions with the guidance of a clinician. The ability of the patient to control the illness through an effective therapeutic plan is significantly influenced by social and behavioral factors. This article presents a model of patient management of chronic disease that accounts for intrapersonal and external influences on management and emphasizes the central role of self-regulatory processes in disease control. Asthma serves as a case for exploration of the model. Findings from a 5-year study of 637 children with asthma and their care-taking parents supported that the self-regulation elements of the model were reasonably stable over time and baseline values were predictive of important disease management outcomes. © 2014 Society for Public Health Education.

  8. Humanized mouse models: Application to human diseases.

    PubMed

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  9. α4-integrin receptor desaturation and disease activity return after natalizumab cessation.

    PubMed

    Derfuss, Tobias; Kovarik, John M; Kappos, Ludwig; Savelieva, Marina; Chhabra, Richa; Thakur, Avinash; Zhang, Ying; Wiendl, Heinz; Tomic, Davorka

    2017-09-01

    To describe the time course of α4-integrin receptor desaturation and disease activity return in patients with relapsing-remitting MS who discontinued natalizumab and to investigate baseline and on-study predictors for the recurrence of disease activity. In the course of TOFINGO, a 32-week, patient- and rater-blinded multicenter, parallel-group study, we performed MRI, counted relapses, and measured α4-integrin receptor occupancy (RO) at baseline and 8, 12, 16, 20, and 24 weeks. The relationship between RO and total number of new T1 gadolinium-enhancing (Gd+) lesions was modeled using Poisson linear regression. Patients (N = 142) were randomized (1:1:1) to 8-, 12-, or 16-week washout (WO) groups. At randomization, the median RO in the 8-, 12-, and 16-week WO groups was 94.5%, 92.4%, and 90.9%, which declined to 79.8%, 30.7%, and 8.7% after 8, 12, and 16 weeks of WO, respectively. The percentage of patients with new T1 Gd+ lesions increased with longer WO period before commencing fingolimod: 2.1% (8 weeks), 9.1% (12 weeks), and 50.0% (16 weeks). Overall, 71% of patients with first relapse between weeks 6 and 18 had RO values below the time-matched population median. Higher T2 lesion volume (LV) at baseline predicted a higher number of new T1 Gd+ lesions. A faster decline in natalizumab RO, longer WO period, and higher T2 LV at baseline were associated with an increased risk for return of inflammatory disease activity. These results provide a mechanistic rationale and, together with the main outcomes of the TOFINGO study, support initiation of fingolimod within 8 weeks of natalizumab discontinuation. NCT01499667.

  10. MicroRNAs and complex diseases: from experimental results to computational models.

    PubMed

    Chen, Xing; Xie, Di; Zhao, Qi; You, Zhu-Hong

    2017-10-17

    Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation.

    PubMed

    Park, Gunhyuk; Kim, Hyo Geun; Ju, Mi Sun; Ha, Sang Keun; Park, Yongkon; Kim, Sun Yeou; Oh, Myung Sook

    2013-09-01

    6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson's disease (PD) models. Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP(+)(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg(-1)·d(-1), po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR. In MPP(+)-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST. 6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models.

  12. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  13. Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis.

    PubMed

    Drivas, Theodore G; Wojno, Adam P; Tucker, Budd A; Stone, Edwin M; Bennett, Jean

    2015-06-10

    Genetic pleiotropy, the phenomenon by which mutations in the same gene result in markedly different disease phenotypes, has proven difficult to explain with traditional models of disease pathogenesis. We have developed a model of pleiotropic disease that explains, through the process of basal exon skipping, how different mutations in the same gene can differentially affect protein production, with the total amount of protein produced correlating with disease severity. Mutations in the centrosomal protein of 290 kDa (CEP290) gene are associated with a spectrum of phenotypically distinct human diseases (the ciliopathies). Molecular biologic examination of CEP290 transcript and protein expression in cells from patients carrying CEP290 mutations, measured by quantitative polymerase chain reaction and Western blotting, correlated with disease severity and corroborated our model. We show that basal exon skipping may be the mechanism underlying the disease pleiotropy caused by CEP290 mutations. Applying our model to a different disease gene, CC2D2A (coiled-coil and C2 domains-containing protein 2A), we found that the same correlations held true. Our model explains the phenotypic diversity of two different inherited ciliopathies and may establish a new model for the pathogenesis of other pleiotropic human diseases. Copyright © 2015, American Association for the Advancement of Science.

  14. A surface hydrology model for regional vector borne disease models

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  15. Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer's disease.

    PubMed

    Aytan, Nurgul; Choi, Ji-Kyung; Carreras, Isabel; Brinkmann, Volker; Kowall, Neil W; Jenkins, Bruce G; Dedeoglu, Alpaslan

    2016-04-27

    Sphingosine 1-phosphate (SP1) receptors may be attractive targets for modulation of inflammatory processes in neurodegenerative diseases. Recently fingolimod, a functional S1P1 receptor antagonist, was introduced for treatment of multiple sclerosis. We postulated that anti-inflammatory mechanisms of fingolimod might also be protective in Alzheimer's disease (AD). Therefore, we treated a mouse model of AD, the 5xFAD model, with two doses of fingolimod (1 and 5 mg/kg/day) and measured the response of numerous markers of Aβ pathology as well as inflammatory markers and neurochemistry using biochemical, immunohistochemistry and high resolution magic angle spinning magnetic resonance spectroscopy (MRS). In mice at 3 months of age, we found that fingolimod decreased plaque density as well as soluble plus insoluble Aβ measured by ELISA. Fingolimod also decreased GFAP staining and the number of activated microglia. Taurine has been demonstrated to play a role as an endogenous anti-inflammatory molecule. Taurine levels, measured using MRS, showed a very strong inverse correlation with GFAP levels and ELISA measurements of Aβ, but not with plaque density or activated microglia levels. MRS also showed an effect of fingolimod on glutamate levels. Fingolimod at 1 mg/kg/day provided better neuroprotection than 5 mg/kg/day. Together, these data suggest a potential therapeutic role for fingolimod in AD.

  16. Effect of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Inhibitor on Disease Activity in Patients With Rheumatoid Arthritis

    PubMed Central

    Xing, Bin; Yin, Yu-Feng; Zhao, Li-Dan; Wang, Li; Zheng, Wen-Jie; Chen, Hua; Wu, Qing-Jun; Tang, Fu-Lin; Zhang, Feng-Chun; Shan, Guangliang; Zhang, Xuan

    2015-01-01

    Abstract HMG-CoA reductase inhibitors (also known as statins) are widely used as lipid-lowering agents in patients with rheumatoid arthritis (RA) to reduce their cardiovascular risk. However, whether they have an effect on RA disease activity is controversial. This study aimed to investigate the effect of statins on disease activity in RA patients. A systematic literature review was performed using the MEDLINE, EMBASE, Cochrane Library, ISI WEB of Knowledge, Scopus, and Clinical Trials Register databases. Only prospective randomized controlled trials or controlled clinical trials comparing the efficacy of statins with placebo on adult RA patients were included. The efficacy was measured according to the ACR criteria, EULAR criteria, DAS28, HAQ score, ESR, or CRP. The Jadad score was used for quality assessment. The inverse variance method was used to analyze continuous outcomes. A fixed-effects model was used when there was no significant heterogeneity; otherwise, a random-effects model was used. For stability of results, we performed leave-one-study-out sensitivity analysis by omitting individual studies one at a time from the meta-analysis. Publication bias was assessed using Egger test. A total 13 studies involving 737 patients were included in the meta-analysis; 11 studies were included in the meta-analysis based on DAS28, while the other 2 studies were only included in the meta-analysis based on ESR or CRP. The standardized mean difference (SMD) in DAS28 between the statin group and the placebo group was −0.55 (95% CI [−0.83, −0.26], P = 0.0002), with an I2 value of 68%. Subgroup analysis showed that patients with more active disease tended to benefit more from statin therapy (SMD −0.73, P = 0.01) than patients with moderate or low disease activity (SMD −0.38, P = 0.03). Statin therapy also significantly reduced tender joint counts, swollen joint counts, ESR, and CRP compared with placebo, but the reduction in HAQ score and VAS was not

  17. Circulating Follicular Helper-Like T Cells in Systemic Lupus Erythematosus: Association with Disease Activity

    PubMed Central

    Choi, Jin-Young; Ho, John Hsi-en; Pasoto, Sandra G; Bunin, Viviane; Kim, Sangtaek; Carrasco, Solange; Borba, Eduardo F; Gonçalves, Celio R; Costa, Priscila R; Kallas, Esper G; Bonfa, Eloisa; Craft, Joe

    2015-01-01

    Objective To assess circulating follicular helper-like CD4+ T (cTfh-like) cells in systemic lupus erythematosus (SLE) and determine their relationship to disease activity. Methods We analyzed blood samples from SLE patients, and as controls, Behçet’s disease (BD) patients and healthy individuals. We used flow cytometry to enumerate cTfh-like cells using as markers the C-X-C chemokine receptor type 5 (CXCR5), inducible T-cell costimulator (ICOS), programmed cell death protein-1 (PCDC1, PD-1), and secretion of interleukin-21 (IL-21). We compared the frequency of cTfh-like cells with that of circulating plasmablasts (CD19+IgD−CD38+) and evaluated their possible association with disease activity. Results cTfh-like T cells, identified as CXCR5hiICOShiPD-1hi, were expanded in the blood of SLE patients compared to BD and healthy controls. Such cells produced IL-21 with lower expression of CCR7, compared to circulating CXCR5hi central memory (Tcm) cells, enabling their distinction. PD-1, not ICOS or CXCR5, expression was significantly elevated in cTfh-like cells from SLE patients compared to controls. PD-1 expression among CXCR5hi cTfh-like cells correlated with disease activity, circulating plasmablasts, and anti-dsDNA antibody positivity, but not disease duration nor past organ injury; rather, it reflected current active disease. Conclusion We found that cTfh-like cells are associated with disease activity in SLE, suggesting that their presence indicates abnormal homeostasis of T-B cell collaboration with a causal relationship central to disease pathogenesis. These findings also suggest that cTfh-like cells provide a surrogate for aberrant GC activity in SLE, and that their PD-1 expression offers a tool for following disease activity and response to therapies. PMID:25581113

  18. IASM: Individualized activity space modeler

    NASA Astrophysics Data System (ADS)

    Hasanzadeh, Kamyar

    2018-01-01

    Researchers from various disciplines have long been interested in analyzing and describing human mobility patterns. Activity space (AS), defined as an area encapsulating daily human mobility and activities, has been at the center of this interest. However, given the applied nature of research in this field and the complexity that advanced geographical modeling can pose to its users, the proposed models remain simplistic and inaccurate in many cases. Individualized Activity Space Modeler (IASM) is a geographic information system (GIS) toolbox, written in Python programming language using ESRI's Arcpy module, comprising four tools aiming to facilitate the use of advanced activity space models in empirical research. IASM provides individual-based and context-sensitive tools to estimate home range distances, delineate activity spaces, and model place exposures using individualized geographical data. In this paper, we describe the design and functionality of IASM, and provide an example of how it performs on a spatial dataset collected through an online map-based survey.

  19. Gallbladder Boundary Segmentation from Ultrasound Images Using Active Contour Model

    NASA Astrophysics Data System (ADS)

    Ciecholewski, Marcin

    Extracting the shape of the gallbladder from an ultrasonography (US) image allows superfluous information which is immaterial in the diagnostic process to be eliminated. In this project an active contour model was used to extract the shape of the gallbladder, both for cases free of lesions, and for those showing specific disease units, namely: lithiasis, polyps and changes in the shape of the organ, such as folds or turns of the gallbladder. The approximate shape of the gallbladder was found by applying the motion equation model. The tests conducted have shown that for the 220 US images of the gallbladder, the area error rate (AER) amounted to 18.15%.

  20. Preclinical Models for Investigation of Herbal Medicines in Liver Diseases: Update and Perspective

    PubMed Central

    Tan, Hor-Yue; San-Marina, Serban; Wang, Ning; Hong, Ming; Li, Sha; Li, Lei; Cheung, Fan; Wen, Xiao-Yan; Feng, Yibin

    2016-01-01

    Liver disease results from a dynamic pathological process associated with cellular and genetic alterations, which may progress stepwise to liver dysfunction. Commonly, liver disease begins with hepatocyte injury, followed by persistent episodes of cellular regeneration, inflammation, and hepatocyte death that may ultimately lead to nonreversible liver failure. For centuries, herbal remedies have been used for a variety of liver diseases and recent studies have identified the active compounds that may interact with liver disease-associated targets. Further study on the herbal remedies may lead to the formulation of next generation medicines with hepatoprotective, antifibrotic, and anticancer properties. Still, the pharmacological actions of vast majority of herbal remedies remain unknown; thus, extensive preclinical studies are important. In this review, we summarize progress made over the last five years of the most commonly used preclinical models of liver diseases that are used to screen for curative herbal medicines for nonalcoholic fatty liver disease, liver fibrosis/cirrhosis, and liver. We also summarize the proposed mechanisms associated with the observed liver-protective, antifibrotic, and anticancer actions of several promising herbal medicines and discuss the challenges faced in this research field. PMID:26941826