Science.gov

Sample records for active dna sequences

  1. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  2. Prediction of fine-tuned promoter activity from DNA sequence

    PubMed Central

    Siwo, Geoffrey; Rider, Andrew; Tan, Asako; Pinapati, Richard; Emrich, Scott; Chawla, Nitesh; Ferdig, Michael

    2016-01-01

    The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring

  3. Sequence-specific DNA primer effects on telomerase polymerization activity.

    PubMed Central

    Lee, M S; Blackburn, E H

    1993-01-01

    The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo. Images PMID:8413255

  4. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity.

    PubMed Central

    Skerra, A

    1992-01-01

    Two thermostable DNA polymerases with proofreading activity--Vent DNA polymerase and Pfu DNA polymerase--have attracted recent attention, mainly because of their enhanced fidelities during amplification of DNA sequences by the polymerase chain reaction. A severe disadvantage for their practical application, however, results from the observation that due to their 3' to 5' exonuclease activities these enzymes degrade the oligodeoxynucleotides serving as primers for the DNA synthesis. It is demonstrated that this exonucleolytic attack on the primer molecules can be efficiently prevented by the introduction of single phosphorothioate bonds at their 3' termini. This strategy, which can be easily accomplished using routine DNA synthesis methodology, may open the way to a widespread use of these novel enzymes in the polymerase chain reaction. Images PMID:1641322

  5. Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity.

    PubMed

    Correa, Elisa M E; De Tullio, Luisina; Vélez, Pablo S; Martina, Mariana A; Argaraña, Carlos E; Barra, José L

    2013-12-01

    The hallmark of the mismatch repair system in bacterial and eukaryotic organisms devoid of MutH is the presence of a MutL homologue with endonuclease activity. The aim of this study was to analyse whether different DNA structures affect Pseudomonas aeruginosa MutL (PaMutL) endonuclease activity and to determine if a specific nucleotide sequence is required for this activity. Our results showed that PaMutL was able to nick covalently closed circular plasmids but not linear DNA at high ionic strengths, while the activity on linear DNA was only found below 60 mM salt. In addition, single strand DNA, ss/ds DNA boundaries and negatively supercoiling degree were not required for PaMutL nicking activity. Finally, the analysis of the incision sites revealed that PaMutL, as well as Bacillus thuringiensis MutL homologue, did not show DNA sequence specificity. PMID:23969026

  6. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  7. Identification of a DNA methylation-dependent activator sequence in the pseudoxanthoma elasticum gene, ABCC6.

    PubMed

    Arányi, Tamás; Ratajewski, Marcin; Bardóczy, Viola; Pulaski, Lukasz; Bors, András; Tordai, Attila; Váradi, András

    2005-05-13

    ABCC6 encodes MRP6, a member of the ABC protein family with an unknown physiological role. The human ABCC6 and its two pseudogenes share 99% identical DNA sequence. Loss-of-function mutations of ABCC6 are associated with the development of pseudoxanthoma elasticum (PXE), a recessive hereditary disorder affecting the elastic tissues. Various disease-causing mutations were found in the coding region; however, the mutation detection rate in the ABCC6 coding region of bona fide PXE patients is only approximately 80%. This suggests that polymorphisms or mutations in the regulatory regions may contribute to the development of the disease. Here, we report the first characterization of the ABCC6 gene promoter. Phylogenetic in silico analysis of the 5' regulatory regions revealed the presence of two evolutionarily conserved sequence elements embedded in CpG islands. The study of DNA methylation of ABCC6 and the pseudogenes identified a correlation between the methylation of the CpG island in the proximal promoter and the ABCC6 expression level in cell lines. Both activator and repressor sequences were uncovered in the proximal promoter by reporter gene assays. The most potent activator sequence was one of the conserved elements protected by DNA methylation on the endogenous gene in non-expressing cells. Finally, in vitro methylation of this sequence inhibits the transcriptional activity of the luciferase promoter constructs. Altogether these results identify a DNA methylation-dependent activator sequence in the ABCC6 promoter. PMID:15760889

  8. Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence.

    PubMed

    Javani, Siamak; Lorca, Romina; Latorre, Alfonso; Flors, Cristina; Cortajarena, Aitziber L; Somoza, Álvaro

    2016-04-27

    Silver nanoclusters (AgNCs) stabilized by DNA are promising materials with tunable fluorescent properties, which have been employed in a plethora of sensing systems. In this report, we explore their antimicrobial properties in Gram-positive and Gram-negative bacteria. After testing 9 oligonucleotides with different sequence and length, we found that the antibacterial activity depends on the sequence of the oligonucleotide employed. The sequences tested yielded fluorescent AgNCs, which can be grouped in blue, yellow, and red emitters. Interestingly, blue emitters yielded poor antibacterial activity, whereas yellow and red emitters afforded an activity similar to silver nitrate. Furthermore, structural studies using circular dichroism indicate the formation of complexes with different stability and structure, which might be one of the factors that modulate their activity. Finally, we prepared a trimeric structure containing the sequence that afforded the best antimicrobial activity, which inhibited the growth of Gram-positive and negative bacteria in the submicromolar range. PMID:27058628

  9. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  10. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences.

    PubMed

    Todd, R B; Andrianopoulos, A; Davis, M A; Hynes, M J

    1998-04-01

    The facB gene is required for acetate induction of acetamidase (amdS) and the acetate utilization enzymes acetyl-CoA synthase (facA), isocitrate lyase (acuD) and malate synthase (acuE) in Aspergillus nidulans. The facB gene encodes a transcriptional activator with a GAL4-type Zn(II)2Cys6 zinc binuclear cluster DNA-binding domain which is shown to be required for DNA binding. In vitro DNA-binding sites for FacB in the 5' regions of the amdS, facA, acuD and acuE genes have been identified. Mutations in amdS FacB DNA-binding sites affected expression of an amdS-lacZ reporter in vivo and altered the affinity of in vitro DNA binding. This study shows that the FacB Zn(II)2Cys6 cluster binds to dissimilar sites which show similarity in form but not sequence with DNA-binding sites of other Zn(II)2Cys6 proteins. Sequences with homology to FacB sites are found in the 5' regions of genes regulated by the closely related yeast Zn(II)2Cys6 protein CAT8. PMID:9524126

  11. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  12. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  13. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  14. The effect of sequence context on the activity of cytosine DNA glycosylases.

    PubMed

    Kimber, Scott T; Brown, Tom; Fox, Keith R

    2015-12-01

    We have prepared single (N204D) and double (N204D:L272A) mutants of human uracil DNA glycosylase (hUDG), generating two cytosine DNA glycosylases (hCDG and hCYDG). Both these enzymes are able to excise cytosine (but not 5-methylcytosine), when this base is part of a mismatched base pair. hCDG is more active than the equivalent E. coli enzyme (eCYDG) and also has some activity when the cytosine is paired with guanine, unlike eCYDG. hCDG also has some activity against single stranded DNA, while having poor activity towards an unnatural base pair that forces the cytosine into an extrahelical conformation (in contrast to eCYDG for which a bulky base enhances the enzyme's activity). We also examined how sequence context affects the activity of these enzymes, determining the effect of flanking base pairs on cleavage efficiency. An abasic site or a hexaethylene glycol linker placed opposite the target cytosine, also causes an increase in activity compared with an AC mismatch. Flanking an AC mismatch with GC base pairs resulted in a 100-fold decrease in excision activity relative to flanking AT base pairs and the 5'-flanking base pair had a greater effect on the rate of cleavage. However, this effect is not simply due to the stability of the flanking base pairs as adjacent GT mismatches also produce low cleavage efficiency. PMID:26463365

  15. Automated DNA sequencing.

    PubMed

    Wallis, Yvonne; Morrell, Natalie

    2011-01-01

    Fluorescent cycle sequencing of PCR products is a multistage process and several methodologies are available to perform each stage. This chapter will describe the more commonly utilised dye-terminator cycle sequencing approach using BigDye® terminator chemistry (Applied Biosystems) ready for analysis on a 3730 DNA genetic analyzer. Even though DNA sequencing is one of the most common and robust techniques performed in molecular laboratories it may not always produce desirable results. The causes of the most common problems will also be discussed in this chapter. PMID:20938839

  16. Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection.

    PubMed Central

    Huang, J; Blackwell, T K; Kedes, L; Weintraub, H

    1996-01-01

    A method has been developed for selecting functional enhancer/promoter sites from random DNA sequences in higher eukaryotic cells. Of sequences that were thus selected for transcriptional activation by the muscle-specific basic helix-loop-helix protein MyoD, only a subset are similar to the preferred in vitro binding consensus, and in the same promoter context an optimal in vitro binding site was inactive. Other sequences with full transcriptional activity instead exhibit sequence preferences that, remarkably, are generally either identical or very similar to those found in naturally occurring muscle-specific promoters. This first systematic examination of the relation between DNA binding and transcriptional activation by basic helix-loop-helix proteins indicates that binding per se is necessary but not sufficient for transcriptional activation by MyoD and implies a requirement for other DNA sequence-dependent interactions or conformations at its binding site. PMID:8668207

  17. DNA sequencing: chemical methods

    SciTech Connect

    Ambrose, B.J.B.; Pless, R.C.

    1987-01-01

    Limited base-specific or base-selective cleavage of a defined DNA fragment yields polynucleotide products, the length of which correlates with the positions of the particular base (or bases) in the original fragment. Sverdlov and co-workers recognized the possibility of using this principle for the determination of DNA sequences. In 1977 a fully elaborated method was introduced based on this principle, which allowed routine analysis of DNA sequences over distances greater than 100 nucleotide unite from a defined, radiolabeled terminus. Six procedures for partial cleavage were described. Simultaneous parallel resolution of an appropriate set of partial cleavage mixtures by polyacrylamide gel electrophoresis, followed by visualization of the radioactive bands by autoradiography, allows the deduction of nucleotide sequence.

  18. Indexing Similar DNA Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Songbo; Lam, T. W.; Sung, W. K.; Tam, S. L.; Yiu, S. M.

    To study the genetic variations of a species, one basic operation is to search for occurrences of patterns in a large number of very similar genomic sequences. To build an indexing data structure on the concatenation of all sequences may require a lot of memory. In this paper, we propose a new scheme to index highly similar sequences by taking advantage of the similarity among the sequences. To store r sequences with k common segments, our index requires only O(n + NlogN) bits of memory, where n is the total length of the common segments and N is the total length of the distinct regions in all texts. The total length of all sequences is rn + N, and any scheme to store these sequences requires Ω(n + N) bits. Searching for a pattern P of length m takes O(m + m logN + m log(rk)psc(P) + occlogn), where psc(P) is the number of prefixes of P that appear as a suffix of some common segments and occ is the number of occurrences of P in all sequences. In practice, rk ≤ N, and psc(P) is usually a small constant. We have implemented our solution and evaluated our solution using real DNA sequences. The experiments show that the memory requirement of our solution is much less than that required by BWT built on the concatenation of all sequences. When compared to the other existing solution (RLCSA), we use less memory with faster searching time.

  19. Transposon facilitated DNA sequencing

    SciTech Connect

    Berg, D.E.; Berg, C.M.; Huang, H.V.

    1990-01-01

    The purpose of this research is to investigate and develop methods that exploit the power of bacterial transposable elements for large scale DNA sequencing: Our premise is that the use of transposons to put primer binding sites randomly in target DNAs should provide access to all portions of large DNA fragments, without the inefficiencies of methods involving random subcloning and attendant repetitive sequencing, or of sequential synthesis of many oligonucleotide primers that are used to match systematically along a DNA molecule. Two unrelated bacterial transposons, Tn5 and {gamma}{delta}, are being used because they have both proven useful for molecular analyses, and because they differ sufficiently in mechanism and specificity of transposition to merit parallel development.

  20. Next-Generation Sequencing of Apoptotic DNA Breakpoints Reveals Association with Actively Transcribed Genes and Gene Translocations

    PubMed Central

    Fullwood, Melissa J.; Lee, Joanne; Lin, Lifang; Li, Guoliang; Huss, Mikael; Ng, Patrick; Sung, Wing-Kin; Shenolikar, Shirish

    2011-01-01

    DNA fragmentation is a well-recognized hallmark of apoptosis. However, the precise DNA sequences cleaved during apoptosis triggered by distinct mechanisms remain unclear. We used next-generation sequencing of DNA fragments generated in Actinomycin D-treated human HL-60 leukemic cells to generate a high-throughput, global map of apoptotic DNA breakpoints. These data highlighted that DNA breaks are non-random and show a significant association with active genes and open chromatin regions. We noted that transcription factor binding sites were also enriched within a fraction of the apoptotic breakpoints. Interestingly, extensive apoptotic cleavage was noted within genes that are frequently translocated in human cancers. We speculate that the non-random fragmentation of DNA during apoptosis may contribute to gene translocations and the development of human cancers. PMID:22087219

  1. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity.

    PubMed

    Vargas Muñoz, Leidy Johana; Estrada-Gomez, Sebastian; Núñez, Vitelbina; Sanz, Libia; Calvete, Juan J

    2014-08-01

    Snake venoms are complex mixtures of proteins including l-amino acid oxidase (lAAO). A lAAO (named BslAAO) with a mass of 56kDa and a theoretical Ip of 5.79, was purified from Bothriechis schlegelii venom through size-exclusion, ion exchange and affinity chromatography. The entire protein sequence of 498 amino acids, was determined from cDNA using reverse-transcribed mRNA isolated from venom gland. The enzyme showed dose-dependent inhibition of bacterial growth. BslAAO showed inhibitory effect against S. aureus with a MIC of 4μg/mL and a MBC of 8μg/mL. Against Acinetobacter baumannii, showed a MIC of 2μg/mL and MBC of 4μg/mL, No effect was observed in Escherichia coli. This antibacterial activity was inhibited by catalase, indicating that antimicrobial activity was due to H2O2 production. BslAAO did not show any cytotoxic activity toward mouse myoblast cell line C2C12 or peripheral blood mononuclear cells. The enzyme oxidated l-Leu, with a Km of 16.37μM and a Vmax of 0.39μM/min. Snake venoms lAAOs, are potential frames of different therapeutics molecules since these enzymes exhibit low MICs and MBCs and show to be harmless to human cells due to microorganisms being generally several fold more sensitive to reactive oxygen species than human tissues. PMID:24875315

  2. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  3. Stability and sequence-specific DNA binding of activation-labile mutants of the human glucocorticoid receptor

    SciTech Connect

    Elsasser, M.S.; Eisen, L.P.; Harmon, J.M. ); Riegel, A.T. )

    1991-11-19

    The stability and DNA-binding properties of activation-labile (act{sup 1}) human glucocorticoid receptors (hGRs) from the glucocorticoid-resistant mutant 3R7.6TG.4 were investigated. These receptors are able to bind reversible associating ligands with normal affinity and specificity, but become unstable during attempted activation to the DNA binding form. Affinity labeling and immunochemical analysis demonstrated that act{sup 1} receptors are not preferentially proteolyzed during attempted activation. In addition, analysis of binding to calf thymus DNA showed that after loss of ligand, act{sup 1} receptors retain the ability to bind to DNA nonspecifically. A 370 bp MMTV promoter fragment containing multiple GREs and an upstream 342 bp fragment lacking GRE sequences were used to assess the binding of act{sup 1} hGR to specific DNA sequences. Immunoadsorption of hGR-DNA complexes after incubation with {sup 32}P-end-labeled fragments showed that both normal and act{sup 1} both normal and act{sup 1} hGRs could be blocked with a synthetic oligonucleotide containing a perfect palindromic GRE, but not with an oligonucleotide in which the GRE was replaced by and ERE. Analogous results were obtained for normal and act{sup 1} hGR activated in the absence of ligand, or after incubation with the glucocorticoid antagonist RU 38486. These results suggest that sequence-specific binding of the hGR does not require the presence of bound ligand and suggest a role for the ligand in trans-activation of hormonally responsive genes.

  4. Graphene nanodevices for DNA sequencing.

    PubMed

    Heerema, Stephanie J; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology. PMID:26839258

  5. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  6. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  7. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  8. DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein.

    PubMed Central

    Dong, Q; Ebright, R H

    1992-01-01

    The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2. PMID:1322886

  9. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  10. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence

    PubMed Central

    Parmar, Jyotsana J.; Marko, John F.; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted ‘barriers’ co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that ‘statistical’ positioning of nucleosomes against ‘barriers’, hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy. PMID:24068556

  11. Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide.

    PubMed Central

    Bzik, D J; Preston, C M

    1986-01-01

    The far upstream region of herpes simplex virus (HSV) immediate early (IE) gene 3 has previously been shown to increase gene expression in an enhancer-like manner, and to contain sequences which respond to stimulation of transcription by a virion polypeptide, Vmw65. To analyse the specific DNA sequences which mediate these functions, sequential deletions from each end of the far upstream region were made. The effects of the deletions on transcription in the absence or presence of the Vmw65 were measured by use of a transient expression assay. The enhancer-like activity was due to three separable elements, whereas two additional DNA regions were involved in the response to Vmw65. One of the responding elements corresponded to an AT-rich consensus (TAATGARATTC, where R = purine) present in all IE gene far upstream regions, and the other was a GA-rich sequence also present in IE genes 2 and 4/5. The TAATGARATTC element could mediate responsiveness to Vmw65 but it was fully active only in the presence of the GA-rich element. The GA-rich element was unable to confer a strong response alone but could activate an otherwise nonfunctional homologue of TAATGARATTC. PMID:3003700

  12. Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide.

    PubMed

    Bzik, D J; Preston, C M

    1986-01-24

    The far upstream region of herpes simplex virus (HSV) immediate early (IE) gene 3 has previously been shown to increase gene expression in an enhancer-like manner, and to contain sequences which respond to stimulation of transcription by a virion polypeptide, Vmw65. To analyse the specific DNA sequences which mediate these functions, sequential deletions from each end of the far upstream region were made. The effects of the deletions on transcription in the absence or presence of the Vmw65 were measured by use of a transient expression assay. The enhancer-like activity was due to three separable elements, whereas two additional DNA regions were involved in the response to Vmw65. One of the responding elements corresponded to an AT-rich consensus (TAATGARATTC, where R = purine) present in all IE gene far upstream regions, and the other was a GA-rich sequence also present in IE genes 2 and 4/5. The TAATGARATTC element could mediate responsiveness to Vmw65 but it was fully active only in the presence of the GA-rich element. The GA-rich element was unable to confer a strong response alone but could activate an otherwise nonfunctional homologue of TAATGARATTC. PMID:3003700

  13. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  14. DNA sequencing: bench to bedside and beyond†

    PubMed Central

    Hutchison, Clyde A.

    2007-01-01

    Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage ϕX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules >200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ‘sequencing factory’ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ‘massively parallel’ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ‘thousand dollar genome’ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment. PMID:17855400

  15. Image analysis for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Huang, Thomas S.

    1991-07-01

    There is a great deal of interest in automating the process of DNA (deoxyribonucleic acid) sequencing to support the analysis of genomic DNA such as the Human and Mouse Genome projects. In one class of gel-based sequencing protocols autoradiograph images are generated in the final step and usually require manual interpretation to reconstruct the DNA sequence represented by the image. The need to handle a large volume of sequence information necessitates automation of the manual autoradiograph reading step through image analysis in order to reduce the length of time required to obtain sequence data and reduce transcription errors. Various adaptive image enhancement, segmentation and alignment methods were applied to autoradiograph images. The methods are adaptive to the local characteristics of the image such as noise, background signal, or presence of edges. Once the two-dimensional data is converted to a set of aligned one-dimensional profiles waveform analysis is used to determine the location of each band which represents one nucleotide in the sequence. Different classification strategies including a rule-based approach are investigated to map the profile signals, augmented with the original two-dimensional image data as necessary, to textual DNA sequence information.

  16. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases.

    PubMed

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2014-05-01

    Extension rates of a thermostable, deletion-mutant polymerase were measured from 50°C to 90°C using a fluorescence activity assay adapted for real-time PCR instruments. Substrates with a common hairpin (6-base loop and a 14-bp stem) were synthesized with different 10-base homopolymer tails. Rates for A, C, G, T, and 7-deaza-G incorporation at 75°C were 81, 150, 214, 46, and 120 seconds(-1). Rates for U were half as fast as T and did not increase with increasing concentration. Hairpin substrates with 25-base tails from 0% to 100% GC content had maximal extension rates near 60% GC and were predicted from the template sequence and mononucleotide incorporation rates to within 30% for most sequences. Addition of dimethyl sulfoxide at 7.5% increased rates to within 1% to 17% of prediction for templates with 40% to 90% GC. When secondary structure was designed into the template region, extension rates decreased. Oligonucleotide probes reduced extension rates by 65% (5'-3' exo-) and 70% (5'-3' exo+). When using a separate primer and a linear template to form a polymerase substrate, rates were dependent on both the primer melting temperature (Tm) and the annealing/extension temperature. Maximum rates were observed from Tm to Tm - 5°C with little extension by Tm + 5°C. Defining the influence of sequence and temperature on polymerase extension will enable more rapid and efficient PCR. PMID:24607271

  17. Microchips for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Mastrangelo, Carlos H.; Palaniappan, S.; Man, Piu Francis; Burns, Mark A.; Burke, David T.

    1999-08-01

    Genetic information is vital for understanding features and response of an organism. In humans, genetic errors are linked to the development of major diseases such as cancer and diabetes. In order to maximally exploit this information it is necessary to develop miniature sequencing assays that are rapid and inexpensive. In this paper we show how this could be attained with microfluidic chips that contain integrated assays. To date simple silicon/glass chips aimed for sequencing purpose have been realized; but these chips are not yet practical. Some of the solutions that are used to bring these devices closer to commercial applications are discussed.

  18. Statistical properties of DNA sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  19. Statistical properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-02-01

    We review evidence supporting the idea that the DNA sequence in genese containing non-coding regions is correlated, and that the correlation is remarkably long range - indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the “non-stationarity” feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33 301 coding and 29 453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  20. DNA Sequences at a Glance

    PubMed Central

    Pinho, Armando J.; Garcia, Sara P.; Pratas, Diogo; Ferreira, Paulo J. S. G.

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the “information profile”, which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h− and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  1. DNA sequences at a glance.

    PubMed

    Pinho, Armando J; Garcia, Sara P; Pratas, Diogo; Ferreira, Paulo J S G

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the "information profile", which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h(-) and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  2. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  3. Isolation and sequencing of active origins of DNA replication by nascent strand capture and release (NSCR)

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Wang, Jianmin; Pruitt, Steven C.

    2015-01-01

    Nascent strand capture and release (NSCR) is a method for isolation of short nascent strands to identify origins of DNA replication. The protocol provided involves isolation of total DNA, denaturation, size fractionation on a sucrose gradient, 5′-biotinylation of the appropriate size nucleic acids, binding to a streptavidin coated magnetic beads, intensive washing, and specific release of only the RNA-containing chimeric nascent strand DNA using ribonuclease I (RNase I). The method has been applied to mammalian cells derived from proliferative tissues and cell culture but could be used for any system where DNA replication is primed by a small RNA resulting in chimeric RNA-DNA molecules. PMID:26949711

  4. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene.

    PubMed Central

    Schulze-Lefert, P; Dangl, J L; Becker-André, M; Hahlbrock, K; Schulz, W

    1989-01-01

    We began characterization of the protein--DNA interactions necessary for UV light induced transcriptional activation of the gene encoding chalcone synthase (CHS), a key plant defense enzyme. Three light dependent in vivo footprints appear on a 90 bp stretch of the CHS promoter with a time course correlated with the onset of CHS transcription. We define a minimal light responsive promoter by functional analysis of truncated CHS promoter fusions with a reporter gene in transient expression experiments in parsley protoplasts. Two of the three footprinted sequence 'boxes' reside within the minimal promoter. Replacement of 10 bp within either of these 'boxes' leads to complete loss of light responsiveness. We conclude that these sequences define the necessary cis elements of the minimal CHS promoter's light responsive element. One of the functionally defined 'boxes' is homologous to an element implicated in regulation of genes involved in photosynthesis. These data represent the first example in a plant defense gene of an induced change in protein--DNA contacts necessary for transcriptional activation. Also, our data argue strongly that divergent light induced biosynthetic pathways share common regulatory units. Images PMID:2566481

  5. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  6. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  7. Comparison of Antifungal Activities and 16S Ribosomal DNA Sequences of Clinical and Environmental Isolates of Stenotrophomonas maltophilia

    PubMed Central

    Minkwitz, Arite; Berg, Gabriele

    2001-01-01

    In recent years, the gram-negative bacterium Stenotrophomonas maltophilia has become increasingly important in biotechnology and as a nosocomial pathogen, giving rise to a need for new information about its taxonomy and epidemiology. To determine intraspecies diversity and whether strains can be distinguished based on the sources of their isolation, 50 S. maltophilia isolates from clinical and environmental sources, including strains of biotechnological interest, were investigated. The isolates were characterized by in vitro antagonism against pathogenic fungi and the production of antifungal metabolites and enzymes. Phenotypically the strains showed variability that did not correlate significantly with their sources of isolation. Clinical strains displayed remarkable activity against the human pathogenic fungus Candida albicans. Antifungal activity against plant pathogens was more common and generally more severe from the environmental isolates, although not exclusive to them. All isolates, clinical and environmental, produced a range of antifungal metabolites including antibiotics, siderophores, and the enzymes proteases and chitinases. From 16S ribosomal DNA sequencing analysis, the isolates could be separated into three clusters, two of which consisted of isolates originating from the environment, especially rhizosphere isolates, and one of which consisted of clinical and aquatic strains. In contrast to the results of other recent investigations, these strains could be grouped based on their sources of isolation, with the exception of three rhizosphere isolates. Because there was evidence of nucleotide signature positions within the sequences that are suitable for distinguishing among the clusters, the clusters could be defined as different genomovars of S. maltophilia. Key sequences on the 16S ribosomal DNA could be used to develop a diagnostic method that differentiates these genomovars. PMID:11136762

  8. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  9. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  10. Engineered DNA sequence syntax inspector.

    PubMed

    Hsiau, Timothy Hwei-Chung; Anderson, J Christopher

    2014-02-21

    DNAs encoding polypeptides often contain design errors that cause experiments to prematurely fail. One class of design errors is incorrect or missing elements in the DNA, here termed syntax errors. We have identified three major causes of syntax errors: point mutations from sequencing or manual data entry, gene structure misannotation, and unintended open reading frames (ORFs). The Engineered DNA Sequence Syntax Inspector (EDSSI) is an online bioinformatics pipeline that checks for syntax errors through three steps. First, ORF prediction in input DNA sequences is done by GeneMark; next, homologous sequences are retrieved by BLAST, and finally, syntax errors in the protein sequence are predicted by using the SIFT algorithm. We show that the EDSSI is able to identify previously published examples of syntactical errors and also show that our indel addition to the SIFT program is 97% accurate on a test set of Escherichia coli proteins. The EDSSI is available at http://andersonlab.qb3.berkeley.edu/Software/EDSSI/ . PMID:24364864

  11. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats.

    PubMed

    Pagán, Heidi J T; Macas, Jiří; Novák, Petr; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-01

    The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (~5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3-4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family. PMID:22491057

  12. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  13. Single-molecule observations of topotecan-mediated TopIB activity at a unique DNA sequence

    PubMed Central

    Koster, Daniel A.; Czerwinski, Fabian; Halby, Ludovic; Crut, Aurélien; Vekhoff, Pierre; Palle, Komaraiah; Arimondo, Paola B.; Dekker, Nynke H.

    2008-01-01

    The rate of DNA supercoil removal by human topoisomerase IB (TopIB) is slowed down by the presence of the camptothecin class of antitumor drugs. By preventing religation, these drugs also prolong the lifetime of the covalent TopIB–DNA complex. Here, we use magnetic tweezers to measure the rate of supercoil removal by drug-bound TopIB at a single DNA sequence in real time. This is accomplished by covalently linking camptothecins to a triple helix-forming oligonucleotide that binds at one location on the DNA molecule monitored. Surprisingly, we find that the DNA dynamics with the TopIB–drug interaction restricted to a single DNA sequence are indistinguishable from the dynamics observed when the TopIB–drug interaction takes place at multiple sites. Specifically, the DNA sequence does not affect the instantaneous supercoil removal rate or the degree to which camptothecins increase the lifetime of the covalent complex. Our data suggest that sequence-dependent dynamics need not to be taken into account in efforts to develop novel camptothecins. PMID:18292117

  14. Dynamical model for DNA sequences

    NASA Astrophysics Data System (ADS)

    Allegrini, P.; Barbi, M.; Grigolini, P.; West, B. J.

    1995-11-01

    We address the problem of DNA sequences, developing a ``dynamical'' method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic with long-range correlations, and the other random and δ-function correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos that are responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an α-stable Lévy process with 1<α<2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the ``deterministic dynamics'' are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences and their CMM realizations with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon ``dynamics'' is shown to be determined by the entanglement of three distinct and independent CMM's.

  15. Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression

    PubMed Central

    2004-01-01

    Cystathionine γ-lyase (CSE) is the last key enzyme in the trans-sulphuration pathway for biosynthesis of cysteine from methionine. Cysteine could be provided through diet; however, CSE has been shown to be important for the adequate supply of cysteine to synthesize glutathione, a major intracellular antioxidant. With a view to determining physiological roles of CSE in mice, we report the sequence of a complete mouse CSE cDNA along with its associated genomic structure, generation of specific polyclonal antibodies, and the tissue distribution and developmental expression patterns of CSE in mice. A 1.8 kb full-length cDNA containing an open reading frame of 1197 bp, which encodes a 43.6 kDa protein, was isolated from adult mouse kidney. A 35 kb mouse genomic fragment was obtained by λ genomic library screening. It contained promoter regions, 12 exons, ranging in size from 53 to 579 bp, spanning over 30 kb, and exon/intron boundaries that were conserved with rat and human CSE. The GC-rich core promoter contained canonical TATA and CAAT motifs, and several transcription factor-binding consensus sequences. The CSE transcript, protein and enzymic activity were detected in liver, kidney, and, at much lower levels, in small intestine and stomach of both rats and mice. In developing mouse liver and kidney, the expression levels of CSE protein and activity gradually increased with age until reaching their peak value at 3 weeks of age, following which the expression levels in liver remained constant, whereas those in kidney decreased significantly. Immunohistochemical analyses revealed predominant CSE expression in hepatocytes and kidney cortical tubuli. These results suggest important physiological roles for CSE in mice. PMID:15038791

  16. Robustness of nucleosome patterns in the presence of DNA sequence-specific free energy landscapes and active remodeling

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Obermayer, Benedikt; Möbius, Wolfram; Wolff, Michael; Gerland, Ulrich

    Proper positioning of nucleosomes in eukaryotic cells is important for transcription regulation. When averaged over many genes, nucleosome positions in coding regions follow a simple oscillatory pattern, which is described to a surprising degree of accuracy by a simple one-dimensional gas model for particles interacting via a soft-core repulsion. The quantitative agreement is surprising given that nucleosome positions are known to be determined by a complex interplay of mechanisms including DNA sequence-specific nucleosome stability and active repositioning of nucleosomes by remodeling enzymes. We rationalize the observed robustness of the simple oscillatory pattern by showing that the main effect of several known nucleosome positioning mechanisms is a renormalization of the particle interaction. For example, ``disorder'' from sequence-specific affinities leads to an apparent softening, while active remodeling can result in apparent softening for directional sliding or apparent stiffening for clamping mechanisms. We suggest that such parameter renormalization can explain the apparent difference of nucleosome properties in two yeast species, S. cerevisiae and S. pombe.

  17. In Vitro HIV-1 LTR Integration into T-Cell Activation Gene CD27 Segment and the Decoy Effect of Modified-Sequence DNA

    PubMed Central

    Ohmori, Rei; Tsuruyama, Tatsuaki

    2012-01-01

    Integration into the host genome is an essential step in the HIV-1 life cycle. However, the host genome sequence that is favored by HIV-1 during integration has never been documented. Here, we report that CD27, a T cell activation gene, includes a sequence that is a target for in vitro HIV-1 cDNA integration. This sequence has a high affinity for integrase, and the target nucleotides responsible for this higher affinity were identified using a crystal microbalance assay. In experiments involving a segment of the CD27 gene, integration converged in the target nucleotides and flanking sequence DNA, indicating that integration is probably dependent upon the secondary structure of the substrate DNA. Notably, decoy modified CD27 sequence DNAs in which the target nucleotides were replaced suppressed integration when accompanying the original CD27 sequence DNA. Our identified CD27 sequence DNA is useful for investigating the biochemistry of integrase and for in vitro assessment of integrase-binding inhibitors. PMID:23209625

  18. The Chinese Hamster Dihydrofolate Reductase Replication Origin Beta Is Active at Multiple Ectopic Chromosomal Locations and Requires Specific DNA Sequence Elements for Activity

    PubMed Central

    Altman, Amy L.; Fanning, Ellen

    2001-01-01

    To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-β) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-β in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-β region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-β deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-β region is sufficient to direct initiation and that specific DNA sequences in the ori-β region are required for efficient initiation activity. PMID:11158297

  19. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  20. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  1. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  2. Nanopore DNA sequencing with MspA.

    PubMed

    Derrington, Ian M; Butler, Tom Z; Collins, Marcus D; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2010-09-14

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  3. Nanopore DNA sequencing with MspA

    PubMed Central

    Derrington, Ian M.; Butler, Tom Z.; Collins, Marcus D.; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H.

    2010-01-01

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  4. Towards modeling DNA sequences as automata

    NASA Astrophysics Data System (ADS)

    Burks, Christian; Farmer, Doyne

    1984-01-01

    We seek to describe a starting point for modeling the evolution and role of DNA sequences within the framework of cellular automata by discussing the current understanding of genetic information storage in DNA sequences. This includes alternately viewing the role of DNA in living organisms as a simple scheme and as a complex scheme; a brief review of strategies for identifying and classifying patterns in DNA sequences; and finally, notes towards establishing DNA-like automata models, including a discussion of the extent of experimentally determined DNA sequence data present in the database at Los Alamos.

  5. Fluorescence-detected DNA sequencing

    SciTech Connect

    Haugland, R.P.

    1990-01-01

    Our research effort funded by this grant primarily focused on development of suitable fluorescent dyes for DNA sequencing studies. Prior to our efforts, the dyes being sued in commercial DNA sequencers were various versions of fluorescein dyes for the shorter wavelengths and of rhodamine dyes for the longer wavelengths. Our initial goal was to synthesize a set of four dyes that could all be excited by the 488 and 514 nm line of the argon laser lines and that have emission spectra that minimize spectral overlap. The specific result sought was higher fluorescent intensity, particularly of the longest wavelength dyes than was available using existing dyes. Another important property of the desired set of dyes was uniform ionic charge in order to have minimum interference on the electrophoretic mobility during the sequencing. During the period of this grant we prepared and characterized four types of dyes: fluorescent bifluorophores, derivatives of rhodamine dyes, derivatives of rhodol dyes and derivatives of boron dipyrromethene difluoride (BODIPY{trademark}) dyes.

  6. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  7. Genetic mapping and DNA sequencing

    SciTech Connect

    Speed, T.; Waterman, M.S.

    1996-12-31

    The Human Genome Initiative has as its primary objective the characterization of the human genome. High-resolution linkage maps of genetic markers will play an important role in completing the human genome project. This is one of two volumes based on the proceedings of the 1994 IMA Summer Program on Molecular Biology and comprises Weeks 1 and 2 of the four-week program. This volume focuses on genetic mapping and DNA sequencing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity.

    PubMed

    Kovalchuk, Svetlana N; Chikalovets, Irina V; Chernikov, Oleg V; Molchanova, Valentina I; Li, Wei; Rasskazov, Valery A; Lukyanov, Pavel A

    2013-10-01

    An amino acid sequence of GalNAc/Gal-specific lectin from the mussel Crenomytilus grayanus (CGL) was determined by cDNA sequencing. CGL consists of 150 amino acid residues, contains three tandem repeats with high sequence similarities to each other (up to 73%) and does not belong to any known lectins family. According to circular dichroism results CGL is a β/α-protein with the predominance of β-structure. CGL was predicted to adopt a ß-trefoil fold. The lectin exhibits antibacterial activity and might be involved in the recognition and clearance of bacterial pathogens in the shellfish. PMID:23886951

  9. Variable copy number DNA sequences in rice.

    PubMed

    Kikuchi, S; Takaiwa, F; Oono, K

    1987-12-01

    We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3'rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element. PMID:3481021

  10. The Value of DNA Sequencing - TCGA

    Cancer.gov

    DNA sequencing: what it tells us about DNA changes in cancer, how looking across many tumors will help to identify meaningful changes and potential drug targets, and how genomics is changing the way we think about cancer.

  11. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  12. Guanine-rich sequences inhibit proofreading DNA polymerases

    PubMed Central

    Zhu, Xiao-Jing; Sun, Shuhui; Xie, Binghua; Hu, Xuemei; Zhang, Zunyi; Qiu, Mengsheng; Dai, Zhong-Min

    2016-01-01

    DNA polymerases with proofreading activity are important for accurate amplification of target DNA. Despite numerous efforts have been made to improve the proofreading DNA polymerases, they are more susceptible to be failed in PCR than non-proofreading DNA polymerases. Here we showed that proofreading DNA polymerases can be inhibited by certain primers. Further analysis showed that G-rich sequences such as GGGGG and GGGGHGG can cause PCR failure using proofreading DNA polymerases but not Taq DNA polymerase. The inhibitory effect of these G-rich sequences is caused by G-quadruplex and is dose dependent. G-rich inhibitory sequence-containing primers can be used in PCR at a lower concentration to amplify its target DNA fragment. PMID:27349576

  13. Fibonacci Sequence and Supramolecular Structure of DNA.

    PubMed

    Shabalkin, I P; Grigor'eva, E Yu; Gudkova, M V; Shabalkin, P I

    2016-05-01

    We proposed a new model of supramolecular DNA structure. Similar to the previously developed by us model of primary DNA structure [11-15], 3D structure of DNA molecule is assembled in accordance to a mathematic rule known as Fibonacci sequence. Unlike primary DNA structure, supramolecular 3D structure is assembled from complex moieties including a regular tetrahedron and a regular octahedron consisting of monomers, elements of the primary DNA structure. The moieties of the supramolecular DNA structure forming fragments of regular spatial lattice are bound via linker (joint) sequences of the DNA chain. The lattice perceives and transmits information signals over a considerable distance without acoustic aberrations. Linker sequences expand conformational space between lattice segments allowing their sliding relative to each other under the action of external forces. In this case, sliding is provided by stretching of the stacked linker sequences. PMID:27265133

  14. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  15. The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes

    PubMed Central

    Pryor, Edward E.; Waligora, Elizabeth A.; Xu, Binjie; Dellos-Nolan, Sheri; Wozniak, Daniel J.; Hollis, Thomas

    2012-01-01

    AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation. PMID:22511872

  16. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA.

    PubMed

    Kumari, Rupa; Raghavan, Sathees C

    2015-01-01

    RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs. PMID:25327637

  17. Atypical regions in large genomic DNA sequences

    SciTech Connect

    Scherer, S. |; McPeek, M.S.; Speed, T.P.

    1994-07-19

    Large genomic DNA sequences contain regions with distinctive patterns of sequence organization. The authors describe a method using logarithms of probabilities based on seventh-order Markov chains to rapidly identify genomic sequences that do not resemble models of genome organization built from compilations of octanucleotide usage. Data bases have been constructed from Escherichia coli and Saccharomyces cerevisiae DNA sequences of >1000 nt and human sequences of >10,000 nt. Atypical genes and clusters of genes have been located in bacteriophage, yeast, and primate DNA sequences. The authors consider criteria for statistical significance of the results, offer possible explanations for the observed variation in genome organization, and give additional applications of these methods in DNA sequence analysis.

  18. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  19. Sequence Affects the Cyclization of DNA Minicircles.

    PubMed

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  20. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  1. Using DNA looping to measure sequence dependent DNA elasticity

    NASA Astrophysics Data System (ADS)

    Kandinov, Alan; Raghunathan, Krishnan; Meiners, Jens-Christian

    2012-10-01

    We are using tethered particle motion (TPM) microscopy to observe protein-mediated DNA looping in the lactose repressor system in DNA constructs with varying AT / CG content. We use these data to determine the persistence length of the DNA as a function of its sequence content and compare the data to direct micromechanical measurements with constant-force axial optical tweezers. The data from the TPM experiments show a much smaller sequence effect on the persistence length than the optical tweezers experiments.

  2. Complementary DNA sequencing: Expressed sequence tags and human genome project

    SciTech Connect

    Adams, M.D.; Kelley, J.M.; Gocayne, J.D.; Dubnick, M.; Wu, A.; Olde, B.; Moreno, R.F.; Kerlavage, A.R.; McCombie, W.R.; Venter, J.C. ); Polymeropoulos, M.H.; Hong Xiao; Merril, C.R. )

    1991-06-21

    Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

  3. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  4. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  5. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor.

    PubMed Central

    Ny, T; Sawdey, M; Lawrence, D; Millan, J L; Loskutoff, D J

    1986-01-01

    A lambda gt11 expression library containing cDNA inserts prepared from human placental mRNA was screened immunologically using an antibody probe developed against the beta-migrating plasminogen activator inhibitor (beta-PAI) purified from cultured bovine aortic endothelial cells. Thirty-four positive clones were isolated after screening 7 X 10(5) phages. Three clones (lambda 1.2, lambda 3, and lambda 9.2) were randomly picked and further characterized. These contained inserts 1.9, 3.0, and 1.9 kilobases (kb) long, respectively. Escherichia coli lysogenic for lambda 9.2, but not for lambda gt11, produced a fusion protein of 180 kDa that was recognized by affinity-purified antibodies against the bovine aortic endothelial cell beta-PAI and had beta-PAI activity when analyzed by reverse fibrin autography. The largest cDNA insert was sequenced and shown to be 2944 base pairs (bp) long. It has a large 3' untranslated region [1788 bp, excluding the poly(A) tail] and contains the entire coding region of the mature protein but lacks the initiation codon and part of the signal peptide coding region at the 5' terminus. The two clones carrying the 1.9-kb cDNA inserts were partially sequenced and shown to be identical to the 3.0-kb cDNA except that they were truncated, lacking much of the 3' untranslated region. Blot hybridization analysis of electrophoretically fractionated RNA from the human fibrosarcoma cell line HT-1080 was performed using the 3.0-kb cDNA as hybridization probe. Two distinct transcripts, 2.2 and 3.0 kb, were detected, suggesting that the 1.9-kb cDNA may have been copied from the shorter RNA transcript. The amino acid sequence deduced from the cDNA was aligned with the NH2-terminal sequence of the human beta-PAI. Based on this alignment, the mature human beta-PAI is 379 amino acids long and contains an NH2-terminal valine. The deduced amino acid sequence has extensive (30%) homology with alpha 1-antitrypsin and antithrombin III, indicating that the beta

  6. Virogenic BrdU and BrdU-sensitive DNA sequences are disproportionately concentrated in the template-active chromatin of rat embryo cells

    PubMed Central

    Schwartz, Stephen A.

    1979-01-01

    In order to characterize the molecular mechanism responsible for the BrdU-mediated activation of endogenous retrovirus from normal rat embryo cells, the previously reported selective distribution of bromouracil in DNA was correlated with the corresponding organization of the nucleo-protein complex in regard to nucleosome structure and template - active and -inactive chromatin. Following micrococcal nuclease digestion of chromatin labeled with either [3H]thymidine or [3H]BrdU, the amount and specific activities of the respective nucleosomal DNA were indistinguishable. Comparable findings were obtained following direct examination of the nuclease-sensitive, “spacer” DNA. However, when each chromatin type was fractionated into template-active and -inactive components, it was evident that [3H]bromouracil was nonrandomly more concentrated in the template-active portion in comparison to the random distribution of [3H]thymine moieties. Furthermore, it was apparent that the template-active chromatin fraction was substantially enriched in the nucleotide sequences of rat DNA known to be sensitive to the virogenic action of BrdU. PMID:424312

  7. Fractal analysis of DNA sequence data

    SciTech Connect

    Berthelsen, C.L.

    1993-01-01

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the [open quote]sandbox method[close quote]. Analysis of 164 human DNA sequences compared to three types of control sequences (random, base-content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than to invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  8. Fractal Analysis of DNA Sequence Data

    NASA Astrophysics Data System (ADS)

    Berthelsen, Cheryl Lynn

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the "sandbox method." Analysis of 164 human DNA sequences compared to three types of control sequences (random, base -content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than do invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  9. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting

    PubMed Central

    Vlijm, Rifka; v.d. Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix. PMID:26513573

  10. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. ); Arlinghaus, H.F. )

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  11. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A.; Arlinghaus, H.F.

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  12. Data management for re-sequencing DNA

    SciTech Connect

    Ying Jiahsu; Gilson, H.; Long, K.; Gibbs, R.A.

    1993-12-31

    The human genome project has greatly stimulated the advancement of techniques to sequence large fragments of DNA. The development of improved molecular methods has also simplified the process of comparing shorter, homologous DNA sequences from different individuals and species. This process of `re-sequencing` DNA has applications in medical genetics, in evolutionary studies, and for the identification of complex molecular variation that may explain multifactorial traits. Intrinsic differences in the processes of `sequencing` and `re-sequencing` suggest new requirements for data management tools. A data management scheme for a `re-sequencing` project is demonstrated using the Virtual Notebook System, a flexible multi-user tool designed as a metaphor of the laboratory notebook.

  13. The evolutionary pathway from a biologically inactive polypeptide sequence to a folded, active structural mimic of DNA

    PubMed Central

    Kanwar, Nisha; Roberts, Gareth A.; Cooper, Laurie P.; Stephanou, Augoustinos S.; Dryden, David T.F.

    2016-01-01

    The protein Ocr (overcome classical restriction) from bacteriophage T7 acts as a mimic of DNA and inhibits all Type I restriction/modification (RM) enzymes. Ocr is a homodimer of 116 amino acids and adopts an elongated structure that resembles the shape of a bent 24 bp DNA molecule. Each monomer includes 34 acidic residues and only six basic residues. We have delineated the mimicry of Ocr by focusing on the electrostatic contribution of its negatively charged amino acids using directed evolution of a synthetic form of Ocr, termed pocr, in which all of the 34 acidic residues were substituted for a neutral amino acid. In vivo analyses confirmed that pocr did not display any antirestriction activity. Here, we have subjected the gene encoding pocr to several rounds of directed evolution in which codons for the corresponding acidic residues found in Ocr were specifically re-introduced. An in vivo selection assay was used to detect antirestriction activity after each round of mutation. Our results demonstrate the variation in importance of the acidic residues in regions of Ocr corresponding to different parts of the DNA target which it is mimicking and for the avoidance of deleterious effects on the growth of the host. PMID:27095198

  14. The evolutionary pathway from a biologically inactive polypeptide sequence to a folded, active structural mimic of DNA.

    PubMed

    Kanwar, Nisha; Roberts, Gareth A; Cooper, Laurie P; Stephanou, Augoustinos S; Dryden, David T F

    2016-05-19

    The protein Ocr (overcome classical restriction) from bacteriophage T7 acts as a mimic of DNA and inhibits all Type I restriction/modification (RM) enzymes. Ocr is a homodimer of 116 amino acids and adopts an elongated structure that resembles the shape of a bent 24 bp DNA molecule. Each monomer includes 34 acidic residues and only six basic residues. We have delineated the mimicry of Ocr by focusing on the electrostatic contribution of its negatively charged amino acids using directed evolution of a synthetic form of Ocr, termed pocr, in which all of the 34 acidic residues were substituted for a neutral amino acid. In vivo analyses confirmed that pocr did not display any antirestriction activity. Here, we have subjected the gene encoding pocr to several rounds of directed evolution in which codons for the corresponding acidic residues found in Ocr were specifically re-introduced. An in vivo selection assay was used to detect antirestriction activity after each round of mutation. Our results demonstrate the variation in importance of the acidic residues in regions of Ocr corresponding to different parts of the DNA target which it is mimicking and for the avoidance of deleterious effects on the growth of the host. PMID:27095198

  15. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  16. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, A.M.; Dawson, J.

    1993-12-14

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.

  17. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  18. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  19. Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene.

    PubMed Central

    Fung, Y K; Shackleford, G M; Brown, A M; Sanders, G S; Varmus, H E

    1985-01-01

    The mouse int-1 gene is a putative mammary oncogene discovered as a target for transcriptionally activating proviral insertion mutations in mammary carcinomas induced by the mouse mammary tumor virus in C3H mice. We have isolated molecular clones of full- or nearly full-length cDNA transcribed from int-1 RNA (2.6 kilobases) in a virus-induced mammary tumor. Comparison of the nucleotide sequence of the cDNA clones with that of the int-1 gene (A. van Ooyen and R. Nusse, Cell 39:233-240, 1984) shows the following. The coding region of the int-1 gene is composed of four exons. The splice donor and acceptor sites conform to consensus; however, at least two closely spaced polyadenylation sites are used, and the transcriptional initiation site remains ambiguous. The major open reading frame is preceded by an open frame 10 codons in length. The mRNA encodes a 41-kilodalton protein with several striking features--a strongly hydrophobic amino terminus, a cysteine-rich carboxy terminus, and four potential glycosylation sites. There are no differences in nucleotide sequence between the known exons of the normal and a provirally activated allele. The length of the deduced open reading frame was further confirmed by in vitro translation of RNA transcribed from the cDNA clones with SP6 RNA polymerase. Images PMID:3018519

  20. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  1. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  2. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  3. The expanding scope of DNA sequencing

    PubMed Central

    Shendure, Jay; Aiden, Erez Lieberman

    2014-01-01

    In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative ‘recombination’ of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized. PMID:23138308

  4. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  5. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  6. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA.

    PubMed Central

    Morett, E; Cannon, W; Buck, M

    1988-01-01

    The positive control protein NifA activates transcription of nitrogen fixation promoters in Klebsiella pneumoniae. NifA is believed to bind to specific sites, the upstream activator sequences (UAS's), of the nif promoters which it activates. We have now shown by mutation of the carboxy terminus of NifA that this is the DNA-binding domain and that the DNA-binding and positive activator functions of NifA can be separated. Mutational analysis of the nifH UAS and in vivo methylation protection analysis of the interaction of NifA with the nifH promoter demonstrates that the UAS is recognised by the carboxy terminus of NifA. The UAS's of K. pneumoniae nif promoters are also required for activation by the Rhizobium meliloti NifA indicating that this activator also possesses DNA-binding activity. Images PMID:3062575

  7. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  8. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  9. Quadruplex DNA: sequence, topology and structure

    PubMed Central

    Burge, Sarah; Parkinson, Gary N.; Hazel, Pascale; Todd, Alan K.; Neidle, Stephen

    2006-01-01

    G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes. PMID:17012276

  10. Activation-induced cytidine deaminase-mediated sequence diversification is transiently targeted to newly integrated DNA substrates.

    PubMed

    Yang, Shu Yuan; Fugmann, Sebastian D; Gramlich, Hillary S; Schatz, David G

    2007-08-31

    The molecular features that allow activation-induced cytidine deaminase (AID) to target Ig and certain non-Ig genes are not understood, although transcription has been implicated as one important parameter. We explored this issue by testing the mutability of a non-Ig transcription cassette in Ig and non-Ig loci of the chicken B cell line DT40. The cassette did not act as a stable long term mutation target but was able to be mutated in an AID-dependent manner for a limited time post-integration. This indicates that newly integrated DNA has molecular characteristics that render it susceptible to modification by AID, with implications for how targeting and mis-targeting of AID occurs. PMID:17613522

  11. The DNA damage checkpoint allows recombination between divergent DNA sequences in budding yeast

    PubMed Central

    George, Carolyn M.; Lyndaker, Amy M.; Alani, Eric

    2011-01-01

    In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9- dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences. PMID:21978436

  12. Do short, frequent DNA sequence motifs mould the epigenome?

    PubMed

    Quante, Timo; Bird, Adrian

    2016-04-01

    'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming. PMID:26837845

  13. Protease Activity of PprI Facilitates DNA Damage Response: Mn(2+)-Dependence and Substrate Sequence-Specificity of the Proteolytic Reaction

    PubMed Central

    Lu, Huiming; Lin, Lin; Wang, Liangyan; Xu, Hong; Cui, Xianyan; Zhang, Hui; Li, Tingting; Hua, Yuejin

    2015-01-01

    The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+)-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes’ expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism. PMID:25811789

  14. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction.

    PubMed

    Wang, Yunguang; Xu, Qiang; Lu, Huiming; Lin, Lin; Wang, Liangyan; Xu, Hong; Cui, Xianyan; Zhang, Hui; Li, Tingting; Hua, Yuejin

    2015-01-01

    The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+)-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes' expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism. PMID:25811789

  15. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  16. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  17. Pyrosequencing sheds light on DNA sequencing.

    PubMed

    Ronaghi, M

    2001-01-01

    DNA sequencing is one of the most important platforms for the study of biological systems today. Sequence determination is most commonly performed using dideoxy chain termination technology. Recently, pyrosequencing has emerged as a new sequencing methodology. This technique is a widely applicable, alternative technology for the detailed characterization of nucleic acids. Pyrosequencing has the potential advantages of accuracy, flexibility, parallel processing, and can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides, and gel-electrophoresis. This article considers key features regarding different aspects of pyrosequencing technology, including the general principles, enzyme properties, sequencing modes, instrumentation, and potential applications. PMID:11156611

  18. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  19. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  20. Statistical and linguistic features of DNA sequences

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.

  1. A Bioluminometric Method of DNA Sequencing

    NASA Technical Reports Server (NTRS)

    Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)

    2001-01-01

    Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.

  2. Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.

    PubMed

    Gupta, P D

    2016-10-01

    In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology. PMID:27605732

  3. Replication pattern of human repeated DNA sequences.

    PubMed

    Meneveri, R; Agresti, A; Breviario, D; Ginelli, E

    1984-10-01

    Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S. PMID:6089891

  4. A Simulation of DNA Sequencing Utilizing 3M Post-It[R] Notes

    ERIC Educational Resources Information Center

    Christensen, Doug

    2009-01-01

    An inexpensive and equipment free approach to teaching the technical aspects of DNA sequencing. The activity described requires an instructor with a familiarity of DNA sequencing technology but provides a straight forward method of teaching the technical aspects of sequencing in the absence of expensive sequencing equipment. The final sequence…

  5. Sequence change and phylogenetic signal in muscoid COII DNA sequences.

    PubMed

    Szalanski, Allen L; Owens, Carrie B

    2003-08-01

    The complete DNA sequence of the mtDNA cytochrome oxidase II gene from house fly, Musca domestica, face fly, Musca autumnalis, stable fly, Stomoxys calcitrans, horn fly, Haematobia irritans, and black garbage fly, Hydrotaea aenescens, are reported. The nucleotide sequence codes for a 229 amino acid peptide. The COII sequence is A + T rich (74.1%), with up to 12.3% nucleotide and 8.4% amino acid divergence among the five taxa. Of the 688 nucleotides encoding for the gene, 135 nucleotide sites (19.6%) are variable, and 55 (8.0%) are phylogenetically informative. A phylogenetic analysis using three calliphorids as the outgroup taxa, indicates that the two haematophagus species, horn fly and stable fly, form a sister group. PMID:14631656

  6. DNA Sequencing in Cultural Heritage.

    PubMed

    Vai, Stefania; Lari, Martina; Caramelli, David

    2016-02-01

    During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies. PMID:27572991

  7. A microchannel electrophoresis DNA sequencing system

    SciTech Connect

    Madabhushi, R S; Warth, T; Balch, J W; Bass, M; Brewer, L R; Copeland, A C; Davidson, J C; Fitch, J P; Kegelmeyer, L M; Kimbrough, J R; McCready, P; Nelson, D; Pastrone, R L; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-01

    In order to increase the DNA sequencing throughput of the Joint Genome Institute, we have developed a microchannel electrophoresis system. The critical new and unique elements of this system include 1) a process for the production of arrays of 96 and 384 microchannels on bonded glass substrates up to 14 x 58 cm and 2) new sieving media for high resolution and high speed separations. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 micrometers deep x 180 micrometers wide by 46 cm long. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved in roughly half the time of conventional sequencers. In February 1999, we begin a pre-production evaluation protocol for the microchannel and for three glass capillary electrophoresis systems (two from industry and one developed by Lawrence Berkeley National Laboratory for the Joint Genome Institute). In order to utilize these instruments for DNA production sequencing, we have been evaluating and implementing software to convert raw electropherograms into called DNA bases with an associated probability of error. Our original intent was to utilize the DNA base calling software known as Plan and Phred developed by the University of Washington. This software has been outstanding for our slab gel electrophoresis systems currently in the production facility. In our tests and evaluations of this software applied to microchannel data, we observed that the electropherograms are of a different statistical and underlying signal structure compared to slab gels. Even with substantial modifications to the software, base calling performance was not satisfactory for the microchannel data. In this paper, we will present o The

  8. Cloning and sequencing of chloroperoxidase cDNA.

    PubMed Central

    Fang, G H; Kenigsberg, P; Axley, M J; Nuell, M; Hager, L P

    1986-01-01

    An oligod-d(T) 12-18 primed cDNA library has been prepared from Caldariomyces fumago mRNA. A clone containing a full-length insert was sequenced on the supercoiled plasmid, pBR322. The complete primary sequence of chloroperoxidase has been derived. We have also determined about 73% of the peptide sequence by amino acid sequencing. The DNA sequence data matches all of the available known peptide sequences. The mature polypeptide contains 300 amino acids having a combined molecular weight of 32,974 daltons. A putative signal peptide of 21 amino acids is proposed from DNA sequence data. The chloroperoxidase gene encodes three potential glycosylation sites recognized as Asn-X-Thr/Ser sequences. Three cysteine residues are found in the protein sequence. A small region around Cys87 bears a minimal homology to the active site of cytochrome P450cam. No other heme protein homologues can be detected. We propose that Cys87 serves as a thiolate ligand to the iron of heme prosthetic group. A rare arginine codon, AGG, is used three times out of twelve in contrast to the very infrequent use of this codon in E. coli or yeast. PMID:3774552

  9. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  10. DNA sequencing via transverse electronic transport

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan; Zwolak, Michael; di Ventra, Massimiliano

    2006-03-01

    Recently, it was theoretically shown that transverse current measurements could be used to distinguish the different bases of single stranded DNA. [1] If electrodes are embedded in a device, e.g., a nanopore, which allows translocation of ss-DNA, the strand can be sequenced by continuous measurement of the current in the direction perpendicular to the DNA backbone. [1] However, variations of the electronic signatures of each base in a real device due to structural fluctuations, counter-ions, water and other sources of noise will be important obstacles to overcome in order to make this theoretical proposal a reality. In order to explore these effects we have coupled molecular dynamics simulations with transport calculations to obtain the real time transverse current of ss-DNA translocating into a nanopore. We find that distributions of currents for each base are indeed different even in the presence of all the sources of noise discussed above. These results support even more the original proposal [1] that fast DNA sequencing could be done using transverse current measurements. Work supported by the National Humane Genome Research Institute. [1] M. Zwolak and M. Di Ventra, ``Electronic Signature of DNA Nucleotides via Transverse Transport'', Nano Lett. 5, 421 (2005).

  11. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M.; Voyta, J.C.; Murphy, O.J.; Bronstein, I. )

    1990-06-01

    We have coupled a chemiluminescent detection method that uses an alkaline phosphatase label to the genomic DNA sequencing protocol of Church and Gilbert . Images of sequence ladders are obtained on x-ray film with exposure times of less than 30 min, as compared to 40 h required for a similar exposure with a 32P-labeled oligomer. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to DNA oligonucleotides labeled with alkaline phosphatase or with biotin, leading directly or indirectly to deposition of enzyme. If a biotinylated probe is used, an incubation with avidin-alkaline phosphatase conjugate follows. The membrane is soaked in the chemiluminescent substrate (AMPPD) and is exposed to film. Dephosphorylation of AMPPD leads in a two-step pathway to a highly localized emission of visible light. The demonstrated shorter exposure times may improve the efficiency of a serial reprobing strategy such as the multiplex sequencing approach of Church and Kieffer-Higgins.

  12. The DNA sequence of human chromosome 7.

    PubMed

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  13. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  14. Repetitive DNA sequences in Mycoplasma pneumoniae.

    PubMed Central

    Wenzel, R; Herrmann, R

    1988-01-01

    Two types of different repetitive DNA sequences called RepMP1 and RepMP2 were identified in the genome of Mycoplasma pneumoniae. The number of these repeated elements, their nucleotide sequence and their localization on a physical map of the M. pneumoniae genome were determined. The results show that RepMP1 appears at least 10 times and RepMP2 at least 8 times in the genome. The repeated elements are dispersed on the chromosome and, in three cases, linked to each other by a homologous DNA sequence of 400 bp. The elements themselves are 300 bp (for RepMP1) and 150 bp (for RepMP2) long showing a high degree of homology. One copy of RepMP2 is a translated part of the gene for the major cytadhesin protein P1 which is responsible for the adsorption of M. pneumoniae to its host cell. Images PMID:3138660

  15. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity.

    PubMed

    Luna-Ramírez, Karen; Quintero-Hernández, Veronica; Vargas-Jaimes, Leonel; Batista, Cesar V F; Winkel, Kenneth D; Possani, Lourival D

    2013-03-01

    The Urodacidae scorpions are the most widely distributed of the four families in Australia and represent half of the species in the continent, yet their venoms remain largely unstudied. This communication reports the first results of a proteome analysis of the venom of the scorpion Urodacus yaschenkoi performed by mass fingerprinting, after high performance liquid chromatography (HPLC) separation. A total of 74 fractions were obtained by HPLC separation allowing the identification of approximately 274 different molecular masses with molecular weights varying from 287 to 43,437 Da. The most abundant peptides were those from 1 K Da and 4-5 K Da representing antimicrobial peptides and putative potassium channel toxins, respectively. Three such peptides were chemically synthesized and tested against Gram-positive and Gram-negative bacteria showing minimum inhibitory concentration in the low micromolar range, but with moderate hemolytic activity. It also reports a transcriptome analysis of the venom glands of the same scorpion species, undertaken by constructing a cDNA library and conducting random sequencing screening of the transcripts. From the resultant cDNA library 172 expressed sequence tags (ESTs) were analyzed. These transcripts were further clustered into 120 unique sequences (23 contigs and 97 singlets). The identified putative proteins can be assorted in several groups, such as those implicated in common cellular processes, putative neurotoxins and antimicrobial peptides. The scorpion U. yaschenkoi is not known to be dangerous to humans and its venom contains peptides similar to those of Opisthacanthus cayaporum (antibacterial), Scorpio maurus palmatus (maurocalcin), Opistophthalmus carinatus (opistoporines) and Hadrurus gerstchi (scorpine-like molecules), amongst others. PMID:23182832

  16. Sequence-specific DNA nicking endonucleases.

    PubMed

    Xu, Shuang-yong

    2015-08-01

    A group of small HNH nicking endonucleases (NEases) was discovered recently from phage or prophage genomes that nick double-stranded DNA sites ranging from 3 to 5 bp in the presence of Mg2+ or Mn2+. The cosN site of phage HK97 contains a gp74 nicking site AC↑CGC, which is similar to AC↑CGR (R=A/G) of N.ϕGamma encoded by Bacillus phage Gamma. A minimal nicking domain of 76 amino acid residues from N.ϕGamma could be fused to other DNA binding partners to generate chimeric NEases with new specificities. The biological roles of a few small HNH endonucleases (HNHE, gp74 of HK97, gp37 of ϕSLT, ϕ12 HNHE) have been demonstrated in phage and pathogenicity island DNA packaging. Another group of NEases with 3- to 7-bp specificities are either natural components of restriction systems or engineered from type IIS restriction endonucleases. A phage group I intron-encoded HNH homing endonucleases, I-PfoP3I was found to nick DNA sites of 14-16 bp. I-TslI encoded by T7-like ΦI appeared to nick DNA sites with a 9-bp core sequence. DNA nicking and labeling have been applied to optical mapping to aid genome sequence assembly and detection of large insertion/deletion mutations in genomic DNA of cancer cells. Nicking enzyme-mediated amplification reaction has been applied to rapid diagnostic testing of influenza A and B in clinical setting and for construction of DNA-based Boolean logic gates. The clustered regularly interspaced short palindromic repeats-ribonucleoprotein complex consisting of engineered Cas9 nickases in conjunction with tracerRNA:crRNA or a single-guide RNA have been successfully used in genome modifications. PMID:26352356

  17. Construction and evaluation of a capillary electrophoresis DNA sequencer

    SciTech Connect

    Drossman, H.

    1992-01-01

    This dissertation describes the construction and evaluation of an automated DNA sequencer using capillary gel electrophoresis (CGE) for separating single-strand DNA fragments and a fluorescence detector for analyzing labeled fragments. Theories governing the electrophoretic separation of DNA, dispersion processes in CGE and high sensitivity fluorescence detection are reviewed. The CGE DNA sequencer is compared with current DNA sequencing instruments and with projections of future DNA sequencing instruments. Parameters affecting the limits of detection, DNA sample loading, sample mobility and resolution are evaluated. Predictions for the future of capillary electrophoresis for large-scale sequencing projects are presented.

  18. Spatially localized generation of nucleotide sequence-specific DNA damage.

    PubMed

    Oh, D H; King, B A; Boxer, S G; Hanawalt, P C

    2001-09-25

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen-DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320-400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA-psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen-TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  19. Toward a visualization of DNA sequences.

    PubMed

    Cox, David N; Tharp, Alan L

    2010-01-01

    Most biologists associate pattern discovery in DNA with finding repetitive sequences or commonalities across several sequences. However, pattern discovery is not limited to finding repetitions and commonalities. Pattern discovery also involves identifying objects and distinguishing objects from one another. Human vision is unmatched in its ability to identify and distinguish objects. Considerable research into human vision has revealed to a fair degree the visual cues that our brains use to segment an image into separate regions and entities. In this paper, we consider some of these visual cues to construct a novel graphical representation of a DNA sequence. We exploit one of these cues, proximity, to segment DNA into visibly distinct regions and structures. We also demonstrate how to manipulate proximity to identify motifs visually. Lastly, we demonstrate how an additional cue, color, can be used to visualize the Shannon entropy associated with different structures. The presence of large numbers of such regions and structures in DNA suggests that they likely play some important biological role and would be interesting targets for further research. PMID:20865527

  20. DNA Sequencing Using an Engineered Protein Nanopore

    NASA Astrophysics Data System (ADS)

    Gundlach, Jens H.

    2010-03-01

    Inexpensive and fast sequencing of DNA is of paramount importance to medicine, the life sciences and to many other applications. Because of the nanometer diameter of DNA a nanometer-scale reader directly interfaced to macroscopic observables seems particularly attractive. We are working on a new single molecule technique based on a biological pore embedded in a lipid bilayer. When a voltage is applied across the bilayer an ion current is measured that flows through the nanometer opening of the pore. Poly-negatively charged single stranded DNA passes through the pore and reduces the ion current with the remaining ion current being indicative of the nucleotide type in the constriction of the pore. The protein pore that we introduced to the field, MspA, has a shape ideally suited to nanopore sequencing, has robustness comparable to solid state devices, is easily reproduced with sub-nanometer level precision and is engineerable using genetic mutations. I will present proof-of-principle data showing that this technique can lead to a direct very inexpensive and fast sequencing technology. The experimental electronic signatures of the DNA translocation process provide an ideal test bed for molecular dynamics simulations, which in turn allows developing intuition and prediction of nanoscale dynamics.

  1. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  2. Linguistic features of noncoding DNA sequences

    NASA Astrophysics Data System (ADS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C.-K.; Simons, M.; Stanley, H. E.

    1994-12-01

    We extend the Zipf approach to analyzing linguistic texts to the statistical study of DNA base pair sequences, and find that the noncoding regions are more similar to natural languages than the coding regions. We also adapt the Shannon approach to quantifying the ``redundancy'' of a linguistic text in terms of a measurable entropy function, and demonstrate that noncoding regions in eukaryotes display a smaller entropy and larger redundancy B than coding regions, supporting the possibility that noncoding regions of DNA may carry biological information.

  3. Metagenomics: DNA sequencing of environmental samples

    SciTech Connect

    Tringe, Susannah Green; Rubin, Edward M.

    2005-09-01

    While genomics has classically focused on pure,easy-to-obtain samples, such as microbes that grow readily in culture orlarge animals and plants, these organisms represent but a fraction of theliving or once living organisms of interest. Many species are difficultto study in isolation, because they fail to grow in laboratory culture,depend on other organisms for critical processes, or have become extinct.DNA sequence-based methods circumvent these obstacles, as DNA can bedirectly isolated from live or dead cells in a variety of contexts, andhave led to the emergence of a new field referred to asmetagenomics.

  4. Compilation of DNA sequences of Escherichia coli

    PubMed Central

    Kröger, Manfred

    1989-01-01

    We have compiled the DNA sequence data for E.coli K12 available from the GENBANK and EMBO databases and over a period of several years independently from the literature. We have introduced all available genetic map data and have arranged the sequences accordingly. As far as possible the overlaps are deleted and a total of 940,449 individual bp is found to be determined till the beginning of 1989. This corresponds to a total of 19.92% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2% derived from the sequence of lysogenic bacteriophage lambda and the various insertion sequences. This compilation may be available in machine readable form from one of the international databanks in some future. PMID:2654890

  5. Highly multiplexed DNA sequencing by capillary electrophoresis

    SciTech Connect

    Yeung, E.S.; Ueno, K.; Chang, H.T.

    1994-12-31

    It is obvious that irrespective of whichever basic technology is eventually selected to sequence the entire human genome there are substantial gains to be made if a high degree of multiplexing of parallel runs can be implemented. Such multiplexing should not involve expensive instrumentation and should not require additional personnel, or else the main objective of cost reduction will not be satisfied even though the total time for sequencing is reduced. In the last two years, several research groups have shown that capillary electrophoresis (CE) is an attractive alternative for DNA sequencing. Part of the improvement in sequencing speed in CE is counteracted by the inherent ability of slab gels for accommodating multiple lanes in a single run. Recently, the authors have developed several excitation schemes for highly multiplexed capillary electrophoresis. Detection at the pM level was demonstrated. The authors report here the use of a novel excitation geometry to simultaneously monitor 100 capillary tubes during electrophoresis. This represents a truly parallel multiplexing scheme for high-speed DNA sequencing.

  6. ASTRAL, a hyperspectral imaging DNA sequencer

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin M.; Wren, Jonathan; Davé, Varshal K.; Bai, Diane; Anderson, Richard D.; Rayner, Simon; Evans, Glen A.; Dabiri, Ali E.; Garner, Harold R.

    1998-05-01

    We are developing a prototype automatic DNA sequencer which utilizes polyacrylamide slab gels imaged through a novel optical detection system. The design of this prototype sequencer allows the ability to perform direct optical coupling over the entire read area of the gel and hyperspectrographic separation and detection of the fluorescence emission. The machine has no moving parts. All the major components incorporated in this prototype are all currently available "off the shelf," thus reducing equipment development time and decreasing costs. Software developed for data acquisition, analysis, and conversion to other standard formats facilitates compatibility.

  7. Spatially localized generation of nucleotide sequence-specific DNA damage

    PubMed Central

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320–400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA–psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen–TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  8. DNA sequences, recombinant DNA molecules and processes producing human phospholipase inhibitor polypeptides

    SciTech Connect

    Wallner, B.P.; Pepinsky, R.B.; Garwin, J.L.

    1989-11-07

    This patent describes a recombinant DNA molecule. In comprises a DNA sequence coding for a phospholopase inhibitor polypeptide and being selected from the group consisting of: the cDNA insert of ALC, DNA sequences which code on expression for a phospholopase inhibitor, and DNA sequences which are degenerate as a result of the genetic code to either of the foregoing DNA sequences and which code on expression for a phospholipase inhibitor.

  9. Sequencing and Analysis of Neanderthal Genomic DNA

    PubMed Central

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith, Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Pääbo, Svante; Pritchard, Jonathan K.; Rubin, Edward M.

    2008-01-01

    Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor ~706,000 years ago, and that the human and Neanderthal ancestral populations split ~370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics. PMID:17110569

  10. The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences.

    PubMed Central

    Oñate, S A; Prendergast, P; Wagner, J P; Nissen, M; Reeves, R; Pettijohn, D E; Edwards, D P

    1994-01-01

    Steroid hormone receptors are ligand-dependent transcriptional activators that exert their effects by binding as dimers to cis-acting DNA sequences termed hormone response elements. When human progesterone receptor (PR), expressed as a full-length protein in a baculovirus system, was purified to homogeneity, it retained its ability to bind hormonal ligand and to dimerize but exhibited a dramatic loss in DNA binding activity for specific progesterone response elements (PREs). Addition of nuclear extracts from several cellular sources restored DNA binding activity, suggesting that PR requires a ubiquitous accessory protein for efficient interaction with specific DNA sequences. Here we have demonstrated that the high-mobility-group chromatin protein HMG-1, as a highly purified protein, dramatically enhanced binding of purified PR to PREs in gel mobility shift assays. This effect appeared to be highly selective for HMG-1, since a number of other nonspecific proteins failed to enhance PRE binding. Moreover, HMG-1 was effective when added in stoichiometric amounts with receptor, and it was capable of enhancing the DNA binding of both the A and B amino-terminal variants of PR. The presence of HMG-1 measurably increased the binding affinity of purified PR by 10-fold when a synthetic palindromic PRE was the target DNA. The increase in binding affinity for a partial palindromic PRE present in natural target genes was greater than 10-fold. Coimmunoprecipitation assays using anti-PR or anti-HMG-1 antibodies demonstrated that both PR and HMG-1 are present in the enhanced complex with PRE. HMG-1 protein has two conserved DNA binding domains (A and B), which recognize DNA structure rather than specific sequences. The A- or B-box domain expressed and purified from Escherichia coli independently stimulated the binding of PR to PRE, and the B box was able to functionally substitute for HMG-1 in enhancing PR binding. DNA ligase-mediated ring closure assays demonstrated that both the

  11. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M.; Bronstein, I.; Voyta, J.C.; Murphy, O.J.

    1989-12-31

    We have coupled a chemiluminescent method for detecting oligonucleotides labeled with alkaline phosphatase to the genomic DNA sequencing protocol of Church and Gilbert. Images of sequence ladders obtained on x-ray film in a 30 minute exposure are comparable to those from a 40 hour exposure with 3000 Ci/mmol {sup 32}P probes. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to an oligonucleotide probe conjugated either to biotin or to alkaline phosphates. If biotinylated probe is used, then an avidin-alkaline phosphatase conjugate is subsequently bound. This membrane, bearing immobilized alkaline phosphatase, is incubated with the commercially available chemiluminescent substrate disodium 3-(4-methoxyspiro[1,2-dioxetone-3,2{prime}-tricyclo[3.3.1.1.{sup 3.7}]decan]-4-yl)phenyl phosphate. (AMPPD) Dephosphorylation of AMPPD leads in a two step pathway to a highly localized emission of visible light.

  12. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M. ); Bronstein, I.; Voyta, J.C.; Murphy, O.J. )

    1989-01-01

    We have coupled a chemiluminescent method for detecting oligonucleotides labeled with alkaline phosphatase to the genomic DNA sequencing protocol of Church and Gilbert. Images of sequence ladders obtained on x-ray film in a 30 minute exposure are comparable to those from a 40 hour exposure with 3000 Ci/mmol {sup 32}P probes. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to an oligonucleotide probe conjugated either to biotin or to alkaline phosphates. If biotinylated probe is used, then an avidin-alkaline phosphatase conjugate is subsequently bound. This membrane, bearing immobilized alkaline phosphatase, is incubated with the commercially available chemiluminescent substrate disodium 3-(4-methoxyspiro(1,2-dioxetone-3,2{prime}-tricyclo(3.3.1.1.{sup 3.7})decan)-4-yl)phenyl phosphate. (AMPPD) Dephosphorylation of AMPPD leads in a two step pathway to a highly localized emission of visible light.

  13. Accurate restoration of DNA sequences. Progress report

    SciTech Connect

    Churchill, G.A.

    1994-05-01

    The primary of this project are the development of (1) a general stochastic model for DNA sequencing errors (2) algorithms to restore the original DNA sequence and (3) statistical methods to assess the accuracy of this restoration. A secondary objective is to develop new algorithms for fragment assembly. Initially a stochastic model that assumes errors are independent and uniformly distributed will be developed. Generalizations of the basic model will be developed to account for (1) decay of accuracy along fragments, (2) variable error rates among fragments, (3) sequence dependent errors (e.g. homopolymeric, runs), and (4) strand--specific systematic errors (e.g. compressions). The emphasis of this project will be the development of a theoretical basis for determining sequence accuracy. However, new algorithms are proposed and these will be implemented as software (in the C programming language). This software will be tested using real and simulated data. It will be modular in design and will be made available for distribution to the scientific community.

  14. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  15. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  16. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  17. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences

    NASA Technical Reports Server (NTRS)

    Nordheim, A.; Rich, A.

    1983-01-01

    Three 8-base pair (bp) segments of alternating purine-pyrimidine from the simian virus 40 enhancer region form Z-DNA on negative supercoiling; minichromosome DNase I-hypersensitive sites determined by others bracket these three segments. A survey of transcriptional enhancer sequences reveals a pattern of potential Z-DNA-forming regions which occur in pairs 50-80 bp apart. This may influence local chromatin structure and may be related to transcriptional activation.

  18. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  19. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    SciTech Connect

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  20. Porcine parvovirus: DNA sequence and genome organization.

    PubMed

    Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I

    1989-10-01

    We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV. PMID:2794971

  1. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  2. Poincaré recurrences of DNA sequences

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-01-01

    We analyze the statistical properties of Poincaré recurrences of Homo sapiens, mammalian, and other DNA sequences taken from the Ensembl Genome data base with up to 15 billion base pairs. We show that the probability of Poincaré recurrences decays in an algebraic way with the Poincaré exponent β≈4 even if the oscillatory dependence is well pronounced. The correlations between recurrences decay with an exponent ν≈0.6 that leads to an anomalous superdiffusive walk. However, for Homo sapiens sequences, with the largest available statistics, the diffusion coefficient converges to a finite value on distances larger than one million base pairs. We argue that the approach based on Poncaré recurrences determines new proximity features between different species and sheds a new light on their evolution history.

  3. Elucidating population histories using genomic DNA sequences.

    PubMed

    Vigilant, Linda

    2009-04-01

    In 1993, Cliff Jolly suggested that rather than debating species definitions and classifications, energy would be better spent investigating multidimensional patterns of variation and gene flow among populations. Until now, however, genetic studies of wild primate populations have been limited to very small portions of the genome. Access to complete genome sequences of humans, chimpanzees, macaques, and other primates makes it possible to design studies surveying substantial amounts of DNA sequence variation at multiple genetic loci in representatives of closely related but distinct wild primate populations. Such data can be analyzed with new approaches that estimate not only when populations diverged but also the relative amounts and directions of subsequent gene flow. These analyses will reemphasize the difficulty of achieving consistent species and subspecies definitions by revealing the extent of variation in the amount and duration of gene flow accompanying population divergences. PMID:19817223

  4. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  5. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  6. Improving DNA sequencing accuracy and throughput

    SciTech Connect

    Nelson, D.O. |

    1996-12-31

    LLNL is beginning to explore statistical approaches to the problem of determining the DNA sequence underlying data obtained from fluorescence-based gel electrophoresis. Among the features of this problem that make it interesting to statisticians include: (1) the underlying mechanics of electrophoresis is quite complex and still not completely understood; (2) the yield of fragments of any given size can be quite small and variable; (3) the mobility of fragments of a given size can depend on the terminating base; (4) the data consists of samples from one or more continuous, non-stationary signals; (5) boundaries between segments generated by distinct elements of the underlying sequence are ill-defined or nonexistent in the signal; and (6) the sampling rate of the signal greatly exceeds the rate of evolution of the underlying discrete sequence. Current approaches to base calling address only some of these issues, and usually in a heuristic, ad hoc way. In this article we describe some of our initial efforts towards increasing base calling accuracy and throughput by providing a rational, statistical foundation to the process of deducing sequence from signal. 31 refs., 12 figs.

  7. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  8. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  9. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    PubMed

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye. PMID:26774580

  10. Determining orientation and direction of DNA sequences

    DOEpatents

    Goodwin, Edwin H.; Meyne, Julianne

    2000-01-01

    Determining orientation and direction of DNA sequences. A method by which fluorescence in situ hybridization can be made strand specific is described. Cell cultures are grown in a medium containing a halogenated nucleotide. The analog is partially incorporated in one DNA strand of each chromatid. This substitution takes place in opposite strands of the two sister chromatids. After staining with the fluorescent DNA-binding dye Hoechst 33258, cells are exposed to long-wavelength ultraviolet light which results in numerous strand nicks. These nicks enable the substituted strand to be denatured and solubilized by heat, treatment with high or low pH aqueous solutions, or by immersing the strands in 2.times.SSC (0.3M NaCl+0.03M sodium citrate), to name three procedures. It is unnecessary to enzymatically digest the strands using Exo III or another exonuclease in order to excise and solubilize nucleotides starting at the sites of the nicks. The denaturing/solubilizing process removes most of the substituted strand while leaving the prereplication strand largely intact. Hybridization of a single-stranded probe of a tandem repeat arranged in a head-to-tail orientation will result in hybridization only to the chromatid with the complementary strand present.

  11. Using Huffman coding method to visualize and analyze DNA sequences.

    PubMed

    Qi, Zhao-Hui; Li, Ling; Qi, Xiao-Qin

    2011-11-30

    On the basis of the Huffman coding method, we propose a new graphical representation of DNA sequence. The representation can avoid degeneracy and loss of information in the transfer of data from a DNA sequence to its graphical representation. Then a multicomponent vector from the representation is introduced to characterize quantitatively DNA sequences. The components of the vector are derived from the graphical representation of DNA primary sequence. The examination of similarities and dissimilarities among the complete coding sequences of β-globin gene of 11 species and six ND6 proteins shows the utility of the scheme. PMID:21953557

  12. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  13. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  14. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences.

    PubMed

    Paul, Moumita; Murray, Vincent

    2012-03-01

    The determination of the sequence selectivity of DNA-damaging agents is very important in elucidating the mechanism of action of anti-tumour drugs. The development of automated capillary DNA sequencers with fluorescent labelling has enabled a more precise method for DNA sequence specificity analysis. In this work we utilized the ABI 3730 capillary sequencer with laser-induced fluorescence to examine the sequence selectivity of cisplatin with purified DNA sequences. The use of this automated machine enabled a higher degree of precision of both position and intensity of cisplatin-DNA adducts than previously possible with manual and automated slab gel procedures. A problem with artefact bands was overcome by ethanol precipitation. It was found that cisplatin strongly formed adducts with telomeric DNA sequences. PMID:21678458

  15. DNA Shape versus Sequence Variations in the Protein Binding Process.

    PubMed

    Chen, Chuanying; Pettitt, B Montgomery

    2016-02-01

    The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA. PMID:26840719

  16. Inferring coalescence times from DNA sequence data.

    PubMed

    Tavaré, S; Balding, D J; Griffiths, R C; Donnelly, P

    1997-02-01

    The paper is concerned with methods for the estimation of the coalescence time (time since the most recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of prior knowledge of population demography, in addition to the molecular data. While some theoretical results are presented, a central focus is on computational methods. These methods are easy to implement, and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful and more informative in most applications. Extensions are presented that allow for the effects of uncertainty in our knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population. The methods are illustrated using recent data from the human Y chromosome. PMID:9071603

  17. PCR AMPLIFICATION OF WHEAT SEQUENCES FROM DNA EXTRACTED DURING MILLING AND BAKING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of transgenic events are based upon the identification of novel proteins specific activities, detection of specific DNA sequences. Processing steps have a profound effect upon the proteins and DNA present in the final product. DNA-based analysis has several advantages over protein-based me...

  18. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  19. Duplication count distributions in DNA sequences

    NASA Astrophysics Data System (ADS)

    Sindi, Suzanne S.; Hunt, Brian R.; Yorke, James A.

    2008-12-01

    We study quantitative features of complex repetitive DNA in several genomes by studying sequences that are sufficiently long that they are unlikely to have repeated by chance. For each genome we study, we determine the number of identical copies, the “duplication count,” of each sequence of length 40, that is of each “40-mer.” We say a 40-mer is “repeated” if its duplication count is at least 2. We focus mainly on “complex” 40-mers, those without short internal repetitions. We find that we can classify most of the complex repeated 40-mers into two categories: one category has its copies clustered closely together on one chromosome, the other has its copies distributed widely across multiple chromosomes. For each genome and each of the categories above, we compute N(c) , the number of 40-mers that have duplication count c , for each integer c . In each case, we observe a power-law-like decay in N(c) as c increases from 3 to 50 or higher. In particular, we find that N(c) decays much more slowly than would be predicted by evolutionary models where each 40-mer is equally likely to be duplicated. We also analyze an evolutionary model that does reflect the slow decay of N(c) .

  20. What Advances Are Being Made in DNA Sequencing?

    MedlinePlus

    ... the future. For more information about DNA sequencing technologies and their use: Genetics Home Reference discusses whether ... the University of Washington describes the different sequencing technologies and what the new technologies have meant for ...

  1. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing

    NASA Astrophysics Data System (ADS)

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.; Crkvenjakov, R.

    1993-06-01

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

  2. DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoody, J.; Crkvenjakov, R. ); Funkhouser, W.K.; Koop, B.; Hood, L. )

    1993-06-11

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project. 22 refs., 3 figs.

  3. Kinetoplast DNA minicircles: regions of extensive sequence divergence.

    PubMed Central

    Rogers, W O; Wirth, D F

    1987-01-01

    Previous work has shown that the kinetoplast minicircle DNA of Leishmania species exhibits species-specific sequence divergence and this observation has led to the development of a DNA probe-based diagnostic test for leishmaniasis. In the work reported here, we demonstrate that the minicircle is composed of three types of DNA sequences with differing specificities reflecting different rates of DNA sequence change. A library of cloned fragments of kinetoplast DNA (kDNA) from Leishmania mexicana amazonensis was prepared and the cloned subfragments were found to contain DNA sequences with different taxonomic specificities based on hybridization analysis with various species of Leishmania. Four groups of subfragments were found, those that hybridized with a large number of Leishmania sp. as well as sequences unique to the species, subspecies, or isolate. Analysis of nested deletions of a single, full-length minicircle demonstrates that these different taxonomic specificities are contained within a single minicircle. This implies that different regions of a single minicircle have DNA sequences that diverge at different rates. These sequences represent potentially valuable tools in diagnostic, epidemiologic, and ecological studies of leishmaniasis and provide the basis for a model of kDNA sequence evolution. Images PMID:3025880

  4. Method enabling fast partial sequencing of cDNA clones.

    PubMed

    Nordström, T; Gharizadeh, B; Pourmand, N; Nyren, P; Ronaghi, M

    2001-05-15

    Pyrosequencing is a nonelectrophoretic single-tube DNA sequencing method that takes advantage of cooperativity between four enzymes to monitor DNA synthesis. To investigate the feasibility of the recently developed technique for tag sequencing, 64 colonies of a selected cDNA library from human were sequenced by both pyrosequencing and Sanger DNA sequencing. To determine the needed length for finding a unique DNA sequence, 100 sequence tags from human were retrieved from the database and different lengths from each sequence were randomly analyzed. An homology search based on 20 and 30 nucleotides produced 97 and 98% unique hits, respectively. An homology search based on 100 nucleotides could identify all searched genes. Pyrosequencing was employed to produce sequence data for 30 nucleotides. A similar search using BLAST revealed 16 different genes. Forty-six percent of the sequences shared homology with one gene at different positions. Two of the 64 clones had unique sequences. The search results from pyrosequencing were in 100% agreement with conventional DNA sequencing methods. The possibility of using a fully automated pyrosequencer machine for future high-throughput tag sequencing is discussed. PMID:11355860

  5. A Novel Constraint for Thermodynamically Designing DNA Sequences

    PubMed Central

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  6. A novel constraint for thermodynamically designing DNA sequences.

    PubMed

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  7. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence.

    PubMed

    Gu, Jiafeng; Lu, Haihui; Tsai, Albert G; Schwarz, Klaus; Lieber, Michael R

    2007-01-01

    The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles. PMID:17717001

  8. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae.

    PubMed Central

    Huie, M A; Scott, E W; Drazinic, C M; Lopez, M C; Hornstra, I K; Yang, T P; Baker, H V

    1992-01-01

    GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'. Images PMID:1588965

  9. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted. PMID:26846812

  10. Preparing DNA Libraries for Multiplexed Paired-End Deep Sequencing for Illumina GA Sequencers

    PubMed Central

    Son, Mike S.; Taylor, Ronald K.

    2011-01-01

    Whole genome sequencing, also known as deep sequencing, is becoming a more affordable and efficient way to identify SNP mutations, deletions and insertions in DNA sequences across several different strains. Two major obstacles preventing the widespread use of deep sequencers are the costs involved in services used to prepare DNA libraries for sequencing and the overall accuracy of the sequencing data. This Unit describes the preparation of DNA libraries for multiplexed paired-end sequencing using the Illumina GA series sequencer. Self-preparation of DNA libraries can help reduce overall expenses, especially if optimization is required for the different samples, and use of the Illumina GA Sequencer can improve the quality of the data. PMID:21400673

  11. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  12. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  13. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    PubMed Central

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  14. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  15. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    PubMed Central

    Knapp, Michael; Hofreiter, Michael

    2010-01-01

    The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions. PMID:24710043

  16. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  17. Food Fish Identification from DNA Extraction through Sequence Analysis

    ERIC Educational Resources Information Center

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  18. Characteristics of cloned repeated DNA sequences in the barley genome

    SciTech Connect

    Anan'ev, E.V.; Bochkanov, S.S.; Ryzhik, M.V.; Sonina, N.V.; Chernyshev, A.I.; Shchipkova, N.I.; Yakovleva, E.Yu.

    1986-12-01

    A partial clone library of barley DNA fragments based on plasmid pBR325 was created. The cloned EcoRI-fragments of chromosomal DNA are from 2 to 14 kbp in length. More than 95% of the barley DNA inserts comprise repeated sequences of different complexity and copy number. Certain of these DNA sequences are from families comprising at least 1% of the barley genome. A significant proportion of the clones hybridize with numerous sets of restriction fragments of genome DNA and they are dispersed throughout the barley chromosomes.

  19. Deconvolving the recognition of DNA shape from sequence.

    PubMed

    Abe, Namiko; Dror, Iris; Yang, Lin; Slattery, Matthew; Zhou, Tianyin; Bussemaker, Harmen J; Rohs, Remo; Mann, Richard S

    2015-04-01

    Protein-DNA binding is mediated by the recognition of the chemical signatures of the DNA bases and the 3D shape of the DNA molecule. Because DNA shape is a consequence of sequence, it is difficult to dissociate these modes of recognition. Here, we tease them apart in the context of Hox-DNA binding by mutating residues that, in a co-crystal structure, only recognize DNA shape. Complexes made with these mutants lose the preference to bind sequences with specific DNA shape features. Introducing shape-recognizing residues from one Hox protein to another swapped binding specificities in vitro and gene regulation in vivo. Statistical machine learning revealed that the accuracy of binding specificity predictions improves by adding shape features to a model that only depends on sequence, and feature selection identified shape features important for recognition. Thus, shape readout is a direct and independent component of binding site selection by Hox proteins. PMID:25843630

  20. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA.

    PubMed Central

    Price, S R; Nightingale, M; Tsai, S C; Williamson, K C; Adamik, R; Chen, H C; Moss, J; Vaughan, M

    1988-01-01

    Three (two soluble and one membrane) guanine nucleotide-binding proteins (G proteins) that enhance ADP-ribosylation of the Gs alpha stimulatory subunit of the adenylyl cyclase (EC 4.6.1.1) complex by choleragen have recently been purified from bovine brain. To further define the structure and function of these ADP-ribosylation factors (ARFs), we isolated a cDNA clone (lambda ARF2B) from a bovine retinal library by screening with a mixed heptadecanucleotide probe whose sequence was based on the partial amino acid sequence of one of the soluble ARFs from bovine brain. Comparison of the deduced amino acid sequence of lambda ARF2B with sequences of peptides from the ARF protein (total of 60 amino acids) revealed only two differences. Whether these are cloning artifacts or reflect the existence of more than one ARF protein remains to be determined. Deduced amino acid sequences of ARF, Go alpha (the alpha subunit of a G protein that may be involved in regulation of ion fluxes), and c-Ha-ras gene product p21 show similarities in regions believed to be involved in guanine nucleotide binding and GTP hydrolysis. ARF apparently lacks a site analogous to that ADP-ribosylated by choleragen in G-protein alpha subunits. Although both the ARF proteins and the alpha subunits bind guanine nucleotides and serve as choleragen substrates, they must interact with the toxin A1 peptide in different ways. In addition to serving as an ADP-ribose acceptor, ARF interacts with the toxin in a manner that modifies its catalytic properties. PMID:3135549

  1. newDNA-Prot: Prediction of DNA-binding proteins by employing support vector machine and a comprehensive sequence representation.

    PubMed

    Zhang, Yanping; Xu, Jun; Zheng, Wei; Zhang, Chen; Qiu, Xingye; Chen, Ke; Ruan, Jishou

    2014-10-01

    Identification of DNA-binding proteins is essential in studying cellular activities as the DNA-binding proteins play a pivotal role in gene regulation. In this study, we propose newDNA-Prot, a DNA-binding protein predictor that employs support vector machine classifier and a comprehensive feature representation. The sequence representation are categorized into 6 groups: primary sequence based, evolutionary profile based, predicted secondary structure based, predicted relative solvent accessibility based, physicochemical property based and biological function based features. The mRMR, wrapper and two-stage feature selection methods are employed for removing irrelevant features and reducing redundant features. Experiments demonstrate that the two-stage method performs better than the mRMR and wrapper methods. We also perform a statistical analysis on the selected features and results show that more than 95% of the selected features are statistically significant and they cover all 6 feature groups. The newDNA-Prot method is compared with several state of the art algorithms, including iDNA-Prot, DNAbinder and DNA-Prot. The results demonstrate that newDNA-Prot method outperforms the iDNA-Prot, DNAbinder and DNA-Prot methods. More specific, newDNA-Prot improves the runner-up method, DNA-Prot for around 10% on several evaluation measures. The proposed newDNA-Prot method is available at http://sourceforge.net/projects/newdnaprot/ PMID:25240115

  2. Use of robotics in high-throughput DNA sequencing.

    PubMed

    Keeney, Stephen

    2011-01-01

    Until relatively recently, full sequencing of genes consisting of more than several exons was not considered practicable within a routine diagnostic context. As a result, many approaches to unknown mutation detection in a specific gene involved a mutation pre-screening step to limit the amount of DNA sequencing required. Protocols to pre-screen for mutations and limit the amount of DNA sequencing may not localise every base change present and/or require considerable levels of manual intervention. Advances in technology, allied with careful protocol design, now permit direct DNA sequencing to be applied to larger areas of gene sequence, allowing unequivocal mutation identification in the area of a gene being analysed. The protocol described below utilises robotic systems, allied to custom-designed PCR primers, to facilitate rapid DNA sequencing of multiple gene targets. The general approach is amenable to adaptation for use with multi-channel pipettes. PMID:20938842

  3. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  4. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  5. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    NASA Astrophysics Data System (ADS)

    Chechetkin, V. R.; Lobzin, V. V.

    2004-07-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions.

  6. Progress towards DNA sequencing at the single molecule level

    SciTech Connect

    Goodwin, P.M.; Affleck, R.L.; Ambrose, W.P.

    1995-12-01

    We describe progress towards sequencing DNA at the single molecule level. Our technique involves incorporation of fluorescently tagged nucleotides into a targeted sequence, anchoring the labeled DNA strand in a flowing stream, sequential exonuclease digestion of the DNA strand, and efficient detection and identification of single tagged nucleotides. Experiments demonstrating strand specific exonuclease digestion of fluorescently labeled DNA anchored in flow as well as the detection of single cleaved fluorescently tagged nucleotides from a small number of anchored DNA fragments axe described. We find that the turnover rate of Esherichia coli exonuclease III on fluorescently labeled DNA in flow at 36{degree}C is {approximately}7 nucleotides per DNA strand per second, which is approximately the same as that measured for this enzyme on native DNA under static, saturated (excess enzyme) conditions. Experiments demonstrating the efficient detection of single fluorescent molecules delivered electrokinetically to a {approximately}3 pL probe volume are also described.

  7. Base sequence effects on interactions of aromatic mutagens with DNA

    SciTech Connect

    Geacintov, N.E.

    1992-09-30

    The chemical binding of bulky, mutagenic and carcinogenic polynuclear aromatic compounds to certain base-sequences in genomic DNA is known to inhibit DNA replication, and to induce mutations and cancer. In particular, sequences that contain multiple consecutive guanines appear to be hot spots of mutation. The objectives of this research are to determine how the base sequence around the mutagen-modified target bases influences the local DNA conformation and gives rise to mispairing of bases, or deletions, near the lesion. Oligonucleotides containing one, two, or three guanines were synthesized and chemically reacted with the mutagen anti-7,8-dihydroxy-9,10-epoxy-benzo(a)pyrene (BPDE), one of the most mutagenic and tumorigenic metabolites of benzo(a)pyrene. Adducts are formed in which only one of the guanines is modified by trans or cis addition to the exocyclic amino group. The BPDE-oligonucleotides are separated chromatographically, and the site of modification is established by Maxam-Gilbert high resolution gel electrophoresis techniques. The thermodynamic properties of duplexes using complementary, or partially complementary strands were examined. In the latter, the base opposite the modified guanine was varied in order to investigate the probability of mispairing of the modified G with A,T and G. The successful synthesis of stereospecific and site-specific mutagen-oligonucleotide adducts opens new possibilities for correlating adduct structure-biological activity relationships, and thus lead to a better understanding of base-sequence effects in mutagenesis induced by energy-related bulky polynuclear aromatic chemicals.

  8. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  9. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.

    PubMed

    Rathi, Preeti; Maurer, Sara; Kubik, Grzegorz; Summerer, Daniel

    2016-08-10

    We report the direct isolation of user-defined DNA sequences from the human genome with programmable selectivity for both canonical and epigenetic nucleobases. This is enabled by the use of engineered transcription-activator-like effectors (TALEs) as DNA major groove-binding probes in affinity enrichment. The approach provides the direct quantification of 5-methylcytosine (5mC) levels at single genomic nucleotide positions in a strand-specific manner. We demonstrate the simple, multiplexed typing of a variety of epigenetic cancer biomarker 5mC with custom TALE mixes. Compared to antibodies as the most widely used affinity probes for 5mC analysis, i.e., employed in the methylated DNA immunoprecipitation (MeDIP) protocol, TALEs provide superior sensitivity, resolution and technical ease. We engineer a range of size-reduced TALE repeats and establish full selectivity profiles for their binding to all five human cytosine nucleobases. These provide insights into their nucleobase recognition mechanisms and reveal the ability of TALEs to isolate genomic target sequences with selectivity for single 5-hydroxymethylcytosine and, in combination with sodium borohydride reduction, single 5-formylcytosine nucleobases. PMID:27429302

  10. Analysis of separate isolates of Bordetella pertussis repeated DNA sequences.

    PubMed

    McPheat, W L; Hanson, J H; Livey, I; Robertson, J S

    1989-06-01

    Two independent isolates of a Bordetella pertussis repeated DNA unit were sequenced and shown to be an insertion sequence element with five nucleotide differences between the two copies. The sequences were 1053 bp in length with near-perfect terminal inverted repeats of 28 bp, had three open reading frames, and were each flanked by short direct repeats. The two insertion sequences showed considerable homology to two other B. pertussis repeated DNA sequences reported recently: IS481 and a 530 bp repeated DNA unit. The B. pertussis insertion sequence would appear to comprise a group of closely related sequences differing mainly in flanking direct repeats and the terminal inverted repeats. The two isolates reported here, which were from the adenylate cyclase and agglutinogen 2 regions of the genome, were numbered IS48lvl and IS48lv2 respectively. PMID:2559151

  11. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. PMID:26423536

  12. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  13. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  14. Quantitative Comparison of Large-Scale DNA Enrichment Sequencing Data.

    PubMed

    Lienhard, Matthias; Chavez, Lukas

    2016-01-01

    DNA enrichment followed by sequencing (DNA-IP seq) is a versatile tool in molecular biology with a wide variety of applications. Computational analysis of differential DNA enrichment between conditions is important for identifying epigenetic alterations in disease compared to healthy controls and for revealing dynamic epigenetic modifications throughout normal and distorted cell differentiation and development. We present a protocol for genome-wide comparative analysis of DNA-IP sequencing data to identify statistically significant differential sequencing coverage between two conditions by considering variation across replicates. The protocol provides a detailed description for the comparative analysis of DNA-IP sequencing data including basic data processing, quality controls, and identification of differential enrichment using the Bioconductor package "MEDIPS". PMID:27008016

  15. Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

    PubMed Central

    Yoo, Wonseok; Lim, Dongbin

    2016-01-01

    A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA. PMID:27103888

  16. An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm

    PubMed Central

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M.; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements. PMID:22315543

  17. Laser desorption mass spectrometry for DNA analysis and sequencing

    SciTech Connect

    Chen, C.H.; Taranenko, N.I.; Tang, K.; Allman, S.L.

    1995-03-01

    Laser desorption mass spectrometry has been considered as a potential new method for fast DNA sequencing. Our approach is to use matrix-assisted laser desorption to produce parent ions of DNA segments and a time-of-flight mass spectrometer to identify the sizes of DNA segments. Thus, the approach is similar to gel electrophoresis sequencing using Sanger`s enzymatic method. However, gel, radioactive tagging, and dye labeling are not required. In addition, the sequencing process can possibly be finished within a few hundred microseconds instead of hours and days. In order to use mass spectrometry for fast DNA sequencing, the following three criteria need to be satisfied. They are (1) detection of large DNA segments, (2) sensitivity reaching the femtomole region, and (3) mass resolution good enough to separate DNA segments of a single nucleotide difference. It has been very difficult to detect large DNA segments by mass spectrometry before due to the fragile chemical properties of DNA and low detection sensitivity of DNA ions. We discovered several new matrices to increase the production of DNA ions. By innovative design of a mass spectrometer, we can increase the ion energy up to 45 KeV to enhance the detection sensitivity. Recently, we succeeded in detecting a DNA segment with 500 nucleotides. The sensitivity was 100 femtomole. Thus, we have fulfilled two key criteria for using mass spectrometry for fast DNA sequencing. The major effort in the near future is to improve the resolution. Different approaches are being pursued. When high resolution of mass spectrometry can be achieved and automation of sample preparation is developed, the sequencing speed to reach 500 megabases per year can be feasible.

  18. Sequence independent duplex DNA opening reaction catalysed by SV40 large tumor antigen.

    PubMed Central

    Scheffner, M; Wessel, R; Stahl, H

    1989-01-01

    Simian virus 40 (SV40) large tumor antigen (T antigen) is mainly localized in the nucleus where it exhibits two biochemical properties: DNA binding and helicase activity. Both activities are necessary for viral DNA replication and may also enable T antigen to modulate cellular growth. Here we present biochemical and electron microscopic evidence that the helicase activity can start at internal sites of fully double-stranded DNA molecules not containing the SV40 origin or replication. Using T antigen specific monoclonal antibodies, this unwinding reaction can be biochemically divided in an initiation (duplex opening) and a propagation step. The duplex opening reaction (as well as the propagation step) does not depend on a specific DNA sequence or secondary structure. In addition, we have found that T antigen forms an ATP dependent nucleoprotein complex at double-stranded DNA, which may be an essential step for the sequence independent duplex DNA opening reaction. Images PMID:2536153

  19. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore

  20. DNA sequence analysis with droplet-based microfluidics

    PubMed Central

    Abate, Adam R.; Hung, Tony; Sperling, Ralph A.; Mary, Pascaline; Rotem, Assaf; Agresti, Jeremy J.; Weiner, Michael A.; Weitz, David A.

    2014-01-01

    Droplet-based microfluidic techniques can form and process micrometer scale droplets at thousands per second. Each droplet can house an individual biochemical reaction, allowing millions of reactions to be performed in minutes with small amounts of total reagent. This versatile approach has been used for engineering enzymes, quantifying concentrations of DNA in solution, and screening protein crystallization conditions. Here, we use it to read the sequences of DNA molecules with a FRET-based assay. Using probes of different sequences, we interrogate a target DNA molecule for polymorphisms. With a larger probe set, additional polymorphisms can be interrogated as well as targets of arbitrary sequence. PMID:24185402

  1. DNA Methyltransferase Accessibility Protocol for Individual Templates by Deep Sequencing

    PubMed Central

    Darst, Russell P.; Nabilsi, Nancy H.; Pardo, Carolina E.; Riva, Alberto; Kladde, Michael P.

    2013-01-01

    A single-molecule probe of chromatin structure can uncover dynamic chromatin states and rare epigenetic variants of biological importance that bulk measures of chromatin structure miss. In bisulfite genomic sequencing, each sequenced clone records the methylation status of multiple sites on an individual molecule of DNA. An exogenous DNA methyltransferase can thus be used to image nucleosomes and other protein–DNA complexes. In this chapter, we describe the adaptation of this technique, termed Methylation Accessibility Protocol for individual templates, to modern high-throughput sequencing, which both simplifies the workflow and extends its utility. PMID:22929770

  2. An Optimal Seed Based Compression Algorithm for DNA Sequences

    PubMed Central

    Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868

  3. Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing

    PubMed Central

    Huang, Yi-Wen; Huang, Tim H.-M.; Wang, Li-Shu

    2010-01-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  4. Profiling DNA methylomes from microarray to genome-scale sequencing.

    PubMed

    Huang, Yi-Wei; Huang, Tim H-M; Wang, Li-Shu

    2010-04-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  5. Current-voltage characteristics of double-strand DNA sequences

    NASA Astrophysics Data System (ADS)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  6. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA.

    PubMed Central

    Jones, D H; Winistorfer, S C

    1992-01-01

    We present a novel method for the PCR amplification of unknown DNA that flanks a known segment directly from human genomic DNA. PCR requires that primer annealing sites be present on each end of the DNA segment that is to be amplified. In this method, known DNA is placed on the uncharacterized side of the sequence of interest via DNA polymerase mediated generation of a PCR template that is shaped like a pan with a handle. Generation of this template permits specific amplification of the unknown sequence. Taq (DNA) polymerase was used to form the original template and to generate the PCR product. 2.2 kb of the beta-globin gene, and 657 bp of the 5' flanking region of the cystic fibrosis transmembrane conductance regulator gene, were amplified directly from human genomic DNA using primers that initially flank only one side of the region amplified. This method will provide a powerful tool for acquiring DNA sequence information. Images PMID:1371352

  7. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA

    PubMed Central

    2015-01-01

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization. PMID:26401685

  8. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA.

    PubMed

    Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P; Dekker, Cees; Aksimentiev, Aleksei

    2015-11-24

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization. PMID:26401685

  9. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions

    PubMed Central

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D.

    2014-01-01

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  10. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2014-11-15

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  11. Semiconductor-based DNA sequencing of histone modification states.

    PubMed

    Cheng, Christine S; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  12. Semiconductor-based DNA sequencing of histone modification states

    PubMed Central

    Cheng, Christine S.; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O.; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E.; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  13. ATRF Houses the Latest DNA Sequencing Technologies | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer By the end of October, the Advanced Technology Research Facility (ATRF) will be one of the few facilities in the world to house all of the latest DNA sequencing technologies.

  14. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  15. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  16. DNA sequencing using polymerase substrate-binding kinetics.

    PubMed

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  17. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    PubMed Central

    2013-01-01

    Background High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multiplexing approach relies on a specific DNA tag or barcode that is attached to the sequencing or amplification primer and hence appears at the beginning of the sequence in every read. After sequencing, each sample read is identified on the basis of the respective barcode sequence. Alterations of DNA barcodes during synthesis, primer ligation, DNA amplification, or sequencing may lead to incorrect sample identification unless the error is revealed and corrected. This can be accomplished by implementing error correcting algorithms and codes. This barcoding strategy increases the total number of correctly identified samples, thus improving overall sequencing efficiency. Two popular sets of error-correcting codes are Hamming codes and Levenshtein codes. Result Levenshtein codes operate only on words of known length. Since a DNA sequence with an embedded barcode is essentially one continuous long word, application of the classical Levenshtein algorithm is problematic. In this paper we demonstrate the decreased error correction capability of Levenshtein codes in a DNA context and suggest an adaptation of Levenshtein codes that is proven of efficiently correcting nucleotide errors in DNA sequences. In our adaption we take the DNA context into account and redefine the word length whenever an insertion or deletion is revealed. In simulations we show the superior error correction capability of the new method compared to traditional Levenshtein and Hamming based codes in the presence of multiple errors. Conclusion We present an adaptation of Levenshtein codes to DNA contexts capable of correction of a pre-defined number of insertion, deletion, and substitution mutations. Our improved

  18. Sequence-specific interactions between a cellular DNA-binding protein and the simian virus 40 origin of DNA replication

    SciTech Connect

    Traut, W.; Fanning, E.

    1988-02-01

    The core origin of simian virus 40 (SV40) DNA replication is composed of a 64-base-pair sequence encompassing T-antigen-binding site II and adjacent sequences on either side. A 7-base-pair sequence to the early side of T-antigen-binding site II which is conserved among the papovavirus genomes SV40, BK, JC and SA12 was recently shown to be part of a 10-base-pair sequence required for origin activity, but its functional role was not defined. In the present report, the authors used gel retention assays to identify a monkey cell factor that interacts specifically with double-stranded DNA carrying this sequence and also binds to single-stranded DNA. DNA-protein complexes formed with extracts from primate cells are more abundant and display electrophoretic mobilities distinct from those formed with rodent cell extracts. The binding activity of the factor on mutant templates is correlate with the replication activity of the origin. The results suggest that the monkey cell factor may be involved in SV40 DNA replication.

  19. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  20. Discovering simple DNA sequences by the algorithmic significance method.

    PubMed

    Milosavljević, A; Jurka, J

    1993-08-01

    A new method, 'algorithmic significance', is proposed as a tool for discovery of patterns in DNA sequences. The main idea is that patterns can be discovered by finding ways to encode the observed data concisely. In this sense, the method can be viewed as a formal version of the Occam's Razor principle. In this paper the method is applied to discover significantly simple DNA sequences. We define DNA sequences to be simple if they contain repeated occurrences of certain 'words' and thus can be encoded in a small number of bits. Such definition includes minisatellites and microsatellites. A standard dynamic programming algorithm for data compression is applied to compute the minimal encoding lengths of sequences in linear time. An electronic mail server for identification of simple sequences based on the proposed method has been installed at the Internet address pythia/anl.gov. PMID:8402207

  1. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  2. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  3. Effects of sequence on DNA wrapping around histones

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  4. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae.

    PubMed Central

    Goodman, S D; Scocca, J J

    1988-01-01

    DNA segments from Neisseria gonorrhoeae, cloned and propagated in Escherichia coli, were tested for the ability to competitively inhibit gonococcal transformation. The nucleotide sequences of active segments were determined and compared; these sequences contained the sequence 5' GCCGTCTGAA 3' in common. Subcloning studies confirmed the identity of this sequence as the gonococcal DNA recognition site. The three instances of the recognition sequence isolated from N. gonorrhoeae chromosomal DNA contain the sequence in the immediate neighborhood of its inverted repeat. Because a single copy of the sequence functions as a recognition site, the inverted duplication is not required for specific binding. The dyad symmetric arrangements of the chromosomal recognition sequences may form stable stem-loop structures that can function as terminators or attenuators of transcription. These inverted repeats are located at the boundaries of long open reading frames. The recognition sequence also constitutes part of two other probable terminators of gonococcal genes. We conclude that the signal for recognition of transforming DNA by gonococci is a frequent component of transcriptional terminator sequences. This regulatory function might account for the origin and maintenance of recognition sequences in the chromosomes of Gram-negative transformable bacteria. PMID:3137581

  5. Efficient DNA sequencing on microtiter plates using dried reagents and Bst DNA polymerase.

    PubMed

    Earley, J J; Kuivaniemi, H; Prockop, D J; Tromp, G

    1993-01-01

    Sequenase, Taq DNA polymerase and Bst DNA polymerase were tested for sequencing of DNA on microtiter plates using dried down reagents. Several parameters were investigated to expedite the drying process while minimizing damage to the enzyme. Sequenase did not tolerate drying very well, and frequently generated sequences with weak signals and many sites of premature termination. With Taq DNA polymerase it was possible to obtain sequences of good quality. However, there was considerable variation of results between experiments and between batches of microtiter plates. Bst DNA polymerase generated sequences of excellent quality. It was stable for more than a week in dried-down state at -20 degrees C and at least overnight at room temperature. The method described here using Bst DNA polymerase is well suited for laboratory robots and workstations that typically employ 96-well microtiter plates. PMID:8173079

  6. HLA typing by direct DNA sequencing.

    PubMed

    Smith, Linda K

    2012-01-01

    Sequencing-based typing is a high resolution method for the identification of HLA polymorphisms. The majority of HLA Class I alleles can be discriminated by their exon 2 and 3 sequence, and for Class II alleles, exon 2 is generally sufficient. There are polymorphic positions in other exons which may require additional sequencing to exclude certain alleles with differences outside exon 2 and 3, depending on the clinical requirement and relevant accredition guidelines. The process involves selective amplification of target alleles by PCR, agarose gel electrophoresis of the PCR products to assess the quantity and quality, followed by purification of PCR amplicons to remove excess primer and dNTPs. Cycle sequencing reactions using Applied Biosystems™ BigDye(®) Terminator Ready Reaction v1.1 or v3.1 Kit are performed, then purification of sequence reactions before electrophoresing using Applied Biosystems™ 3730 or 3730XL Genetic Analyser (or similar). Data is processed by specialised software packages, which compare the sample sequence to the sequences of all possible theoretical allele combinations to assign an accurate genotype. Examination of all nucleotides, both at conserved and polymorphic positions enables the direct identification of new alleles, which may not be possible with techniques such as SSP and SSO typing. PMID:22665229

  7. Amplification of human papillomavirus DNA sequences by using conserved primers.

    PubMed Central

    Gregoire, L; Arella, M; Campione-Piccardo, J; Lancaster, W D

    1989-01-01

    The polymerase chain reaction has potential for use in the detection of small amounts of human papillomavirus (HPV) viral nucleic acids present in clinical specimens. However, new HPV types for which no probes exist would remain undetected by using type-specific primers for the polymerase chain reaction before hybridization. Primers corresponding to highly conserved HPV sequences may be useful for detecting low amounts of known HPV DNA as well as new HPV types. Here we analyze a pair of primers derived from conserved sequences within the E1 open reading frame for HPV sequence amplification by using the polymerase chain reaction. The longest perfect homology among HPV sequences is a 12-mer within the first exon of E1M. A region of conserved amino acids coded by the E1 open reading frame allowed the detection of another highly conserved region about 850 base pairs downstream. Two 21-mers derived from these conserved regions were used to amplify sequences from all HPV DNAs used as templates. The amplified DNA was shown to be specific for HPV sequences within the E1 open reading frame. DNA from HPVs whose sequences were not available were amplified by using these two primers. HPV DNA sequences in clinical specimens could also be amplified with the primers. Images PMID:2556429

  8. Channel catfish, Ictalurus punctatus, cyclophilin B cDNA sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclophilin B is a member of highly conserved immunophilins and ubiquitously found intracellularly. The complete sequence of the channel catfish cyclophilin B cDNA gene consisted of 996 nucleotides. Analysis of the nucleotide sequence reveals one open reading frame and 5’- and 3’-end untranslated...

  9. Ancient DNA sequence revealed by error-correcting codes.

    PubMed

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  10. An integer programming approach to DNA sequence assembly.

    PubMed

    Chang, Youngjung; Sahinidis, Nikolaos V

    2011-08-10

    De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794

  11. Ancient DNA sequence revealed by error-correcting codes

    PubMed Central

    Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  12. Electronic Transport and Thermopower in Aperiodic DNA Sequences

    NASA Astrophysics Data System (ADS)

    Roche, Stephan; Maciá, Enrique

    A detailed study of charge transport properties of synthetic and genomic DNA sequences is reported. Genomic sequences of the Chromosome 22, λ-bacteriophage, and D1s80 genes of Human and Pygmy chimpanzee are considered in this work, and compared with both periodic and quasiperiodic (Fibonacci) sequences of nucleotides. Charge transfer efficiency is compared for all these different sequences, and large variations in charge transfer efficiency, stemming from sequence-dependent effects, are reported. In addition, basic characteristics of tunneling currents, including contact effects, are described. Finally, the thermoelectric power of nucleobases connected in between metallic contacts at different temperatures is presented.

  13. DNA linking number change induced by sequence-specific DNA-binding proteins

    PubMed Central

    Chen, Bo; Xiao, Yazhong; Liu, Chang; Li, Chenzhong; Leng, Fenfei

    2010-01-01

    Sequence-specific DNA-binding proteins play a key role in many fundamental biological processes, such as transcription, DNA replication and recombination. Very often, these DNA-binding proteins introduce structural changes to the target DNA-binding sites including DNA bending, twisting or untwisting and wrapping, which in many cases induce a linking number change (ΔLk) to the DNA-binding site. Due to the lack of a feasible approach, ΔLk induced by sequence-specific DNA-binding proteins has not been fully explored. In this paper we successfully constructed a series of DNA plasmids that carry many tandem copies of a DNA-binding site for one sequence-specific DNA-binding protein, such as λ O, LacI, GalR, CRP and AraC. In this case, the protein-induced ΔLk was greatly amplified and can be measured experimentally. Indeed, not only were we able to simultaneously determine the protein-induced ΔLk and the DNA-binding constant for λ O and GalR, but also we demonstrated that the protein-induced ΔLk is an intrinsic property for these sequence-specific DNA-binding proteins. Our results also showed that protein-mediated DNA looping by AraC and LacI can induce a ΔLk to the plasmid DNA templates. Furthermore, we demonstrated that the protein-induced ΔLk does not correlate with the protein-induced DNA bending by the DNA-binding proteins. PMID:20185570

  14. Folding complex DNA nanostructures from limited sets of reusable sequences

    PubMed Central

    Niekamp, Stefan; Blumer, Katy; Nafisi, Parsa M.; Tsui, Kathy; Garbutt, John; Douglas, Shawn M.

    2016-01-01

    Scalable production of DNA nanostructures remains a substantial obstacle to realizing new applications of DNA nanotechnology. Typical DNA nanostructures comprise hundreds of DNA oligonucleotide strands, where each unique strand requires a separate synthesis step. New design methods that reduce the strand count for a given shape while maintaining overall size and complexity would be highly beneficial for efficiently producing DNA nanostructures. Here, we report a method for folding a custom template strand by binding individual staple sequences to multiple locations on the template. We built several nanostructures for well-controlled testing of various design rules, and demonstrate folding of a 6-kb template by as few as 10 unique strand sequences binding to 10 ± 2 locations on the template strand. PMID:27036861

  15. Elongation method for electronic structure calculations of random DNA sequences.

    PubMed

    Orimoto, Yuuichi; Liu, Kai; Aoki, Yuriko

    2015-10-30

    We applied ab initio order-N elongation (ELG) method to calculate electronic structures of various deoxyribonucleic acid (DNA) models. We aim to test potential application of the method for building a database of DNA electronic structures. The ELG method mimics polymerization reactions on a computer and meets the requirements for linear scaling computational efficiency and high accuracy, even for huge systems. As a benchmark test, we applied the method for calculations of various types of random sequenced A- and B-type DNA models with and without counterions. In each case, the ELG method maintained high accuracy with small errors in energy on the order of 10(-8) hartree/atom compared with conventional calculations. We demonstrate that the ELG method can provide valuable information such as stabilization energies and local densities of states for each DNA sequence. In addition, we discuss the "restarting" feature of the ELG method for constructing a database that exhaustively covers DNA species. PMID:26337429

  16. Bayesian classification for promoter prediction in human DNA sequences

    NASA Astrophysics Data System (ADS)

    Bercher, J.-F.; Jardin, P.; Duriez, B.

    2006-11-01

    Many Computational methods are yet available for data retrieval and analysis of genomic sequences, but some functional sites are difficult to characterize. In this work, we examine the problem of promoter localization in human DNA sequences. Promoters are regulatory regions that governs the expression of genes, and their prediction is reputed difficult, so that this issue is still open. We present the Chaos Game representation (CGR) of DNA sequences which has many interesting properties, and the notion of `genomic signature' that proved relevant in phylogeny applications. Based on this notion, we develop a (naïve) bayesian classifier, evaluate its performances, and show that its adaptive implementation enable to reveal or assess core-promoter positions along a DNA sequence.

  17. DNA sequence of the yeast transketolase gene.

    PubMed

    Fletcher, T S; Kwee, I L; Nakada, T; Largman, C; Martin, B M

    1992-02-18

    Transketolase (EC 2.2.1.1) is the enzyme that, together with aldolase, forms a reversible link between the glycolytic and pentose phosphate pathways. We have cloned and sequenced the transketolase gene from yeast (Saccharomyces cerevisiae). This is the first transketolase gene of the pentose phosphate shunt to be sequenced from any source. The molecular mass of the proposed translated protein is 73,976 daltons, in good agreement with the observed molecular mass of about 75,000 daltons. The 5'-nontranslated region of the gene is similar to other yeast genes. There is no evidence of 5'-splice junctions or branch points in the sequence. The 3'-nontranslated region contains the polyadenylation signal (AATAAA), 80 base pairs downstream from the termination codon. A high degree of homology is found between yeast transketolase and dihydroxyacetone synthase (formaldehyde transketolase) from the yeast Hansenula polymorpha. The overall sequence identity between these two proteins is 37%, with four regions of much greater similarity. The regions from amino acid residues 98-131, 157-182, 410-433, and 474-489 have sequence identities of 74%, 66%, 83%, and 82%, respectively. One of these regions (157-182) includes a possible thiamin pyrophosphate (TPP) binding domain, and another (410-433) may contain the catalytic domain. PMID:1737042

  18. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  19. Palindromic sequence artifacts generated during next generation sequencing library preparation from historic and ancient DNA.

    PubMed

    Star, Bastiaan; Nederbragt, Alexander J; Hansen, Marianne H S; Skage, Morten; Gilfillan, Gregor D; Bradbury, Ian R; Pampoulie, Christophe; Stenseth, Nils Chr; Jakobsen, Kjetill S; Jentoft, Sissel

    2014-01-01

    Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5' and 3'-ends of sequencing reads. The palindromic sequences themselves have specific properties - the bases at the 5'-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3'-end. The terminal 3' bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3'-end of DNA strands, with the 5'-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias. PMID:24608104

  20. Rényi continuous entropy of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2004-12-01

    Entropy measures of DNA sequences estimate their randomness or, inversely, their repeatability. L-block Shannon discrete entropy accounts for the empirical distribution of all length-L words and has convergence problems for finite sequences. A new entropy measure that extends Shannon's formalism is proposed. Renyi's quadratic entropy calculated with Parzen window density estimation method applied to CGR/USM continuous maps of DNA sequences constitute a novel technique to evaluate sequence global randomness without some of the former method drawbacks. The asymptotic behaviour of this new measure was analytically deduced and the calculation of entropies for several synthetic and experimental biological sequences was performed. The results obtained were compared with the distributions of the null model of randomness obtained by simulation. The biological sequences have shown a different p-value according to the kernel resolution of Parzen's method, which might indicate an unknown level of organization of their patterns. This new technique can be very useful in the study of DNA sequence complexity and provide additional tools for DNA entropy estimation. The main MATLAB applications developed and additional material are available at the webpage . Specialized functions can be obtained from the authors. PMID:15501469

  1. DNA sequence organization in the genomes of five marine invertebrates.

    PubMed

    Goldberg, R B; Crain, W R; Ruderman, J V; Moore, G P; Barnett, T R; Higgins, R C; Gelfand, R A; Galau, G A; Britten, R J; Davidson, E H

    1975-07-21

    The arrangement of repetitive and non-repetitive sequence was studied in the genomic DNA of the oyster (Crassostrea virginica), the surf clam (Spisula solidissima), the horseshoe crab (Limulus polyphemus), a nemertean worm (Cerebratulus lacteus) and a jelly-fish (Aurelia aurita). Except for the jellyfish these animals belong to the protostomial branch of animal evolution, for which little information regarding DNA sequence organization has previously been available. The reassociation kinetics of short (250-300 nucleotide) and long (2,000-3,000 nucleotide) DNA fragments was studied by the hydroxyapatite method. It was shown that in each case a major fraction of the DNA consists of single copy sequences less than about 3,000 nucleotides in length, interspersed with short repetitive sequences. The lengths of the repetitive sequences were estimated by optical hyperchromicity and S1 nuclease measurements made on renaturation products. All the genomes studied include a prominent fraction of interspersed repetitive sequences about 300 nucleotides in length, as well as longer repetitive sequence regions. PMID:238802

  2. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed Central

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-01-01

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  3. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  4. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-10-26

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  5. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase.

    PubMed Central

    Ponti, M; Forrow, S M; Souhami, R L; D'Incalci, M; Hartley, J A

    1991-01-01

    A polymerase stop assay has been developed to determine the DNA nucleotide sequence specificity of covalent modification by antineoplastic agents using the thermostable DNA polymerase from Thermus aquaticus and synthetic labelled primers. The products of linear amplification are run on sequencing gels to reveal the sites of covalent drug binding. The method has been studied in detail for a number of agents including nitrogen mustards, platinum analogues and mitomycin C, and the sequence specificities obtained accord with those obtained by other procedures. The assay is advantageous in that it is not limited to a single type of DNA lesion (as in the piperidine cleavage assay for guanine-N7 alkylation), does not require a strand breakage step, and is more sensitive than other primer extension procedures which have only one cycle of polymerization. In particular the method has considerable potential for examining the sequence selectivity of damage and repair in single copy gene sequences in genomic DNA from cells. Images PMID:2057351

  6. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering.

    PubMed

    Bawazer, Lukmaan A; Newman, Aaron M; Gu, Qian; Ibish, Abdullah; Arcila, Mary; Cooper, James B; Meldrum, Fiona C; Morse, Daniel E

    2014-01-28

    DNA-based information systems drive the combinatorial optimization processes of natural evolution, including the evolution of biominerals. Advances in high-throughput DNA sequencing expand the power of DNA as a potential information platform for combinatorial engineering, but many applications remain to be developed due in part to the challenge of handling large amounts of sequence data. Here we employ high-throughput sequencing and a recently developed clustering method (AutoSOME) to identify single-stranded DNA sequence families that bind specifically to ZnO semiconductor mineral surfaces. These sequences were enriched from a diverse DNA library after a single round of screening, whereas previous screening approaches typically require 5-15 rounds of enrichment for effective sequence identification. The consensus sequence of the largest cluster was poly d(T)30. This consensus sequence exhibited clear aptamer behavior and was shown to promote the synthesis of crystalline ZnO from aqueous solution at near-neutral pH. This activity is significant, as the crystalline form of this wide-bandgap semiconductor is not typically amenable to solution synthesis in this pH range. High-resolution TEM revealed that this DNA synthesis route yields ZnO nanoparticles with an amorphous-crystalline core-shell structure, suggesting that the mechanism of mineralization involves nanoscale coacervation around the DNA template. We thus demonstrate that our new method, termed Single round Enrichment of Ligands by deep Sequencing (SEL-Seq), can facilitate biomimetic synthesis of technological nanomaterials by accelerating combinatorial selection of biomolecular-mineral interactions. Moreover, by enabling direct characterization of sequence family demographics, we anticipate that SEL-Seq will enhance aptamer discovery in applications employing additional rounds of screening. PMID:24341560

  7. Selective enrichment of damaged DNA molecules for ancient genome sequencing

    PubMed Central

    2014-01-01

    Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA—the presence of deoxyuracils—for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also. PMID:25081630

  8. Detection, sequence patterns and function of unusual DNA structures.

    PubMed Central

    Anderson, J N

    1986-01-01

    Unusual DNA structures were detected by an electrophoretic procedure in which DNA fragments were separated according to size on agarose gels and then by shape on polyacrylamide gels. Fragments from yeast centromeres migrated faster in polyacrylamide than predicted from their base composition and size and this property was attributed to a nonrandom distribution of oligomeric A tracts that exhibited minima at 10-11 base intervals. Fragments from seven loci in 107 kb of DNA migrated anomalously slow and these fragments contained blocks of A2-6 in a 10-11 base periodicity which is indicative of bent DNA. The most pronounced bent sequences were found within yeast ARS1 and centered at 245 and 240 bp from the left and right ends of the adenovirus genome. Each sequence is approximately 150 bp away from a replication origin and the adenovirus sequences are within 50 bp of enhancers. Nuclear matrix attachment sites, which are also adjacent to enhancers, contain sequences characteristic of bent DNA. These results suggest that bent structures reside at the base of DNA loops in chromosomes. Images PMID:3786134

  9. Improved Algorithm for Analysis of DNA Sequences Using Multiresolution Transformation

    PubMed Central

    Inbamalar, T. M.; Sivakumar, R.

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  10. Improved algorithm for analysis of DNA sequences using multiresolution transformation.

    PubMed

    Inbamalar, T M; Sivakumar, R

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  11. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework.

    PubMed

    Holland, M M; Parsons, T J

    1999-06-01

    With the discovery of the polymerase chain reaction (PCR) in the mid-1980's, the last in a series of critical molecular biology techniques (to include the isolation of DNA from human and non-human biological material, and primary sequence analysis of DNA) had been developed to rapidly analyze minute quantities of mitochondrial DNA (mtDNA). This was especially true for mtDNA isolated from challenged sources, such as ancient or aged skeletal material and hair shafts. One of the beneficiaries of this work has been the forensic community. Over the last decade, a significant amount of research has been conducted to develop PCR-based sequencing assays for the mtDNA control region (CR), which have subsequently been used to further characterize the CR. As a result, the reliability of these assays has been investigated, the limitations of the procedures have been determined, and critical aspects of the analysis process have been identified, so that careful control and monitoring will provide the basis for reliable testing. With the application of these assays to forensic identification casework, mtDNA sequence analysis has been properly validated, and is a reliable procedure for the examination of biological evidence encountered in forensic criminalistic cases. PMID:26255820

  12. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  13. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences

    PubMed Central

    Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H.

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/. PMID:26987123

  14. Sequence specificity of psoralen photobinding to DNA: a quantitative approach.

    PubMed

    Gia, O; Magno, S M; Garbesi, A; Colonna, F P; Palumbo, M

    1992-12-01

    The effects of different DNA sequences on the photoreaction of various furocoumarin derivatives was investigated from a quantitative point of view using a number of self-complementary oligonucleotides. These contained 5'-TA and 5'-AT residues, having various flanking sequences. The furocoumarins included classical bifunctional derivatives, such as 8-methoxy- and 5-methoxypsoralen, as well as monofunctional compounds, such as angelicin and benzopsoralen. Taking into an account the thermodynamic constant for noncovalent binding of each psoralen to each DNA sequence, the rate constants for the photobinding process to each fragment were evaluated. The extent of photoreaction is greatly affected by the DNA sequence examined. While sequences of the type 5'-(GTAC)n are quite reactive towards all furocoumarins, 5'-TATA exhibited a reduced rate of photobinding using monofunctional psoralens. In addition terminal 5'-TA groups were the least reactive with 5- and 8-methoxypsoralen, but not with angelicin or benzopsoralen. Also 5'-AT-containing fragments exhibited remarkably variable responses toward monofunctional or bifunctional psoralen derivatives. As a general trend the photoreactivity rate of the former is less sequence-sensitive, the ratio between maximum and minimum being less than 2 for the examined fragments. The same ratio is about 3.4 for 8-methoxypsoralen and 6.2 for 5-methoxypsoralen. This approach, in combination with footprinting studies, appears to be quite useful for a quantitative investigation of the process of covalent binding of psoralens to specific sites in DNA. PMID:1445915

  15. Mapping DNA polymerase errors by single-molecule sequencing.

    PubMed

    Lee, David F; Lu, Jenny; Chang, Seungwoo; Loparo, Joseph J; Xie, Xiaoliang S

    2016-07-27

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases. PMID:27185891

  16. Label-free DNA sequencing using Millikan detection.

    PubMed

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-10-15

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications. PMID:26151683

  17. Theoretical modelling of epigenetically modified DNA sequences.

    PubMed

    Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K T S; Platts, Jamie; Kamerlin, Shina Caroline Lynn

    2015-01-01

    We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859

  18. Correlations in DNA sequences across the three domains of life

    NASA Astrophysics Data System (ADS)

    Guharay, Sabyasachi; Hunt, Brian R.; Yorke, James A.; White, Owen R.

    2000-11-01

    We report statistical studies of correlation properties of ∼7500 gene sequences, covering coding (exon) and non-coding (intron) sequences for DNA and primary amino acid sequences for proteins, across all three domains of life, namely Eukaryotes (cells with nuclei), Prokaryotes (bacteria) and Archaea (archaebacteria). Mutual information function, power spectrum and Hölder exponent analyses show exons with somewhat greater correlation content than the introns studied. These results are further confirmed with hypothesis testing. While ∼30% of the Eukaryote coding sequences show distinct correlations above noise threshold, this is true for only ∼10% of the Prokaryote and Archaea coding sequences. For protein sequences, we observe correlation lengths similar to that of “random” sequences.

  19. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  20. Spatial Control of DNA Reaction Networks by DNA Sequence

    PubMed Central

    Allen, Peter B.; Chen, Xi; Ellington, Andrew D.

    2013-01-01

    We have developed a set of DNA circuits that execute during gel electrophoresis to yield immobile, fluorescent features in the gel. The parallel execution of orthogonal circuits led to the simultaneous production of different fluorescent lines at different positions in the gel. The positions of the lines could be rationally manipulated by changing the mobilities of the reactants. The ability to program at the nanoscale so as to produce patterns at the macroscale is a step towards programmable, synthetic chemical systems for generating defined spatiotemporal patterns. PMID:23143151

  1. Dialects of the DNA uptake sequence in Neisseriaceae.

    PubMed

    Frye, Stephan A; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-04-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in

  2. cis-active elements from mouse chromosomal DNA suppress simian virus 40 DNA replication.

    PubMed Central

    Hartl, M; Willnow, T; Fanning, E

    1990-01-01

    Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA. Images PMID:2159549

  3. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  4. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    PubMed Central

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The application to these ultrathin gels of electric fields up to 250 volts/cm permits the rapid separation of multiple DNA sequencing reactions in parallel. When used in conjunction with 32P-based autoradiography, the DNA bands appear substantially sharper than those obtained in conventional electrophoresis. This increased sharpness permits shorter autoradiographic exposure times and longer sequence reads. Images PMID:1870968

  5. Compilation of DNA sequences of Escherichia coli (update 1991)

    PubMed Central

    Kröger, Manfred; Wahl, Ralf; Rice, Peter

    1991-01-01

    We have compiled the DNA sequence data for E.coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the third listing replacing and increasing the former listing roughly by one fifth. However, in order to save space this printed version contains DNA sequence information only. The complete compilation is now available in machine readable form from the EMBL data library (ECD release 6). After deletion of all detected overlaps a total of 1 492 282 individual bp is found to be determined till the beginning of 1991. This corresponds to a total of 31.62% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2,5% derived from lysogenic bacteriophage lambda and various DNA sequences already received for statistical purposes only. PMID:2041799

  6. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1987-10-07

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  7. Sequence-specific binding of luzopeptin to DNA.

    PubMed Central

    Fox, K R; Davies, H; Adams, G R; Portugal, J; Waring, M J

    1988-01-01

    We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure. Images PMID:3362673

  8. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    PubMed Central

    Schmid, Andreas K.; Davis, Ronald W.

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  9. Multiple Base Substitution Corrections in DNA Sequence Evolution

    NASA Astrophysics Data System (ADS)

    Kowalczuk, M.; Mackiewicz, P.; Szczepanik, D.; Nowicka, A.; Dudkiewicz, M.; Dudek, M. R.; Cebrat, S.

    We discuss the Jukes and Cantor's one-parameter model and Kimura's two-parameter model unability to describe evolution of asymmetric DNA molecules. The standard distance measure between two DNA sequences, which is the number of substitutions per site, should include the effect of multiple base substitutions separately for each type of the base. Otherwise, the respective tables of substitutions cannot reconstruct the asymmetric DNA molecule with respect to the composition. Basing on Kimura's neutral theory, we have derived a linear law for the correlation of the mean survival time of nucleotides under constant mutation pressure and their fraction in the genome. According to the law, the corrections to Kimura's theory have been discussed to describe evolution of genomes with asymmetric nucleotide composition. We consider the particular case of the strongly asymmetric Borrelia burgdorferi genome and we discuss in detail the corrections, which should be introduced into the distance measure between two DNA sequences to include multiple base substitutions.

  10. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Moyzis, Robert K.; Ratliff, Robert L.; Shera, E. Brooks; Stewart, Carleton C.

    1990-01-01

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed.

  11. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1990-10-09

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  12. Ancient mtDNA sequences from the First Australians revisited

    PubMed Central

    Subramanian, Sankar; Wright, Joanne L.; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D.; Willerslev, Eske; Lambert, David M.

    2016-01-01

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537–542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the “Out of Africa” model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055

  13. Ancient mtDNA sequences from the First Australians revisited.

    PubMed

    Heupink, Tim H; Subramanian, Sankar; Wright, Joanne L; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D; Willerslev, Eske; Lambert, David M

    2016-06-21

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537-542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the "Out of Africa" model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055

  14. Biased distribution of DNA uptake sequences towards genome maintenance genes.

    PubMed

    Davidsen, Tonje; Rødland, Einar A; Lagesen, Karin; Seeberg, Erling; Rognes, Torbjørn; Tønjum, Tone

    2004-01-01

    Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress. PMID:14960717

  15. Sequence-selective binding of an ellipticine derivative to DNA.

    PubMed Central

    Bailly, C; OhUigin, C; Rivalle, C; Bisagni, E; Hénichart, J P; Waring, M J

    1990-01-01

    The DNA sequence specificity of an ellipticine derivative bearing an aminoalkyl side chain has been determined by a variety of footprinting methods. The drug exhibits sequence selective binding and discriminates against runs of adenines or thymines. Binding is shown to occur at various sequences with a preference for GC rich regions of DNA. A large enhancement of DNAase I and of hydroxyl radical cleavage in regions rich in A's or T's is observed together with hyperreactivity of adenines towards diethylpyrocarbonate in the presence of drug. This indicates the occurrence of drug-induced changes in critical conformational features of DNA. The total absence of hyperreactivity of guanine residues towards diethylpyrocarbonate appears to be related to the sequence selectivity of drug binding. No alteration of the dimethyl sulphate and methylene blue-induced cleavage of DNA is observed. Irradiation of ellipticine derivative-DNA complexes with UV light followed by alkali treatment leads to selective photocleavage at guanine residues, consistent with the deduced degree of selectivity of the binding reaction. Images PMID:2173825

  16. Distribution of repetitious sequences in chick nuclear DNA

    PubMed Central

    Tapiero, H.; Monier, M.N.; Shaool, D.; Harel, J.

    1974-01-01

    By an improved method of hydroxylapatite chromatography, the reassociated sequences of chick nuclear DNA were isolated, and their base composition analysed. By increasing the amount of reassociation, the G + C content of the renatured sequences decreased progressively to reach a mean value corresponding to that of the total DNA. In order to study the distribution of the families, or group of families having different amount of reassociation, DNA was fractionated by CsC1 density gradient centrifugation. Fractions having different G + C content were obtained, and their reassociation rates analysed. At high Cot value of renaturation (Cot=50) the amount of reassociated sequences included in the high or in the low buoyant density DNA fractions was approximately the same, but their G + C content was as expected different. At lower Cot values of renaturation (between Cot of 0.2 and the Cot of 10), the results indicated an heterogeneity of the repeated sequences in the A + T rich DNA fractions, as compared to the G + C rich ones. PMID:4213036

  17. Sequence dependence of transcription factor-mediated DNA looping

    PubMed Central

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-01-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping. PMID:22718983

  18. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  19. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  20. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples

    PubMed Central

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T.; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  1. DNA qualification workflow for next generation sequencing of histopathological samples.

    PubMed

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  2. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing

    PubMed Central

    Genest, Paul-Andre; Baugh, Loren; Taipale, Alex; Zhao, Wanqi; Jan, Sabrina; van Luenen, Henri G.A.M.; Korlach, Jonas; Clark, Tyson; Luong, Khai; Boitano, Matthew; Turner, Steve; Myler, Peter J.; Borst, Piet

    2015-01-01

    Base J (β-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication. PMID:25662217

  3. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  4. An optimization approach and its application to compare DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Liwei; Li, Chao; Bai, Fenglan; Zhao, Qi; Wang, Ying

    2015-02-01

    Studying the evolutionary relationship between biological sequences has become one of the main tasks in bioinformatics research by means of comparing and analyzing the gene sequence. Many valid methods have been applied to the DNA sequence alignment. In this paper, we propose a novel comparing method based on the Lempel-Ziv (LZ) complexity to compare biological sequences. Moreover, we introduce a new distance measure and make use of the corresponding similarity matrix to construct phylogenic tree without multiple sequence alignment. Further, we construct phylogenic tree for 24 species of Eutherian mammals and 48 countries of Hepatitis E virus (HEV) by an optimization approach. The results indicate that this new method improves the efficiency of sequence comparison and successfully construct phylogenies.

  5. DNA sequence of the maize transposable element Dissociation.

    PubMed

    Döring, H P; Tillmann, E; Starlinger, P

    The DNA sequence of the terminal 4.2 kilobases (kb) of the 30-kb insertion in the endosperm sucrose synthase gene of maize mutant sh-m5933 shows that it comprises two identical 2,040-base pair (bp) segments, one inserted in the reverse direction into the other. We suggest that the 2,040-bp sequence is an example of the transposable element Dissociation described by Barbara McClintock. PMID:6318121

  6. Fast DNA sequencing by electrical means inches closer

    NASA Astrophysics Data System (ADS)

    Di Ventra, Massimiliano

    2013-08-01

    The sequencing of the human genome offered a glimpse of future medical practices, where information retrieved from the genome could be harnessed to inform treatment decisions. However, making DNA sequencing accessible enough for widespread use poses a number of challenges. This perspective article traces the progress made in the field so far and looks at how close we may be already to real-life applications.

  7. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    SciTech Connect

    Oshima, A.; Kyle, J.W.; Miller, R.D.; Hoffmann, J.W.; Powell, P.P.; Grubb, J.H.; Sly, W.S.; Tropak, M.; Guise, K.S.; Gravel, R.A.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.

  8. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  9. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  10. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons.

    PubMed

    Rodrigues, Viviane D; Torres, Tatiana T; Ottoboni, Laura M M

    2014-11-01

    Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences. PMID:25129578

  11. Essential DNA sequence for the replication of Rts1.

    PubMed Central

    Itoh, Y; Kamio, Y; Terawaki, Y

    1987-01-01

    The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule. Images PMID:3546265

  12. Mixed-Sequence Recognition of Double-Stranded DNA Using Enzymatically Stable Phosphorothioate Invader Probes.

    PubMed

    Anderson, Brooke A; Karmakar, Saswata; Hrdlicka, Patrick J

    2015-01-01

    Development of probes that allow for sequence-unrestricted recognition of double-stranded DNA (dsDNA) continues to attract much attention due to the prospect for molecular tools that enable detection, regulation, and manipulation of genes. We have recently introduced so-called Invader probes as alternatives to more established approaches such as triplex-forming oligonucleotides, peptide nucleic acids and polyamides. These short DNA duplexes are activated for dsDNA recognition by installment of +1 interstrand zippers of intercalator-functionalized nucleotides such as 2'-N-(pyren-1-yl)methyl-2'-N-methyl-2'-aminouridine and 2'-O-(pyren-1-yl)methyluridine, which results in violation of the nearest neighbor exclusion principle and duplex destabilization. The individual probes strands have high affinity toward complementary DNA strands, which generates the driving force for recognition of mixed-sequence dsDNA regions. In the present article, we characterize Invader probes that are based on phosphorothioate backbones (PS-DNA Invaders). The change from the regular phosphodiester backbone furnishes Invader probes that are much more stable to nucleolytic degradation, while displaying acceptable dsDNA-recognition efficiency. PS-DNA Invader probes therefore present themselves as interesting probes for dsDNA-targeting applications in cellular environments and living organisms. PMID:26230684

  13. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease.

    PubMed

    Butler, Timothy M; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J; Macey, Tara A; Korkola, James E; Koppie, Theresa M; Corless, Christopher L; Gray, Joe W; Spellman, Paul T

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient's resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor. PMID:26317216

  14. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease

    PubMed Central

    Butler, Timothy M.; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J.; Macey, Tara A.; Korkola, James E.; Koppie, Theresa M.; Corless, Christopher L.; Gray, Joe W.; Spellman, Paul T.

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient’s resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor. PMID:26317216

  15. Engineered DNA ligases with improved activities in vitro.

    PubMed

    Wilson, Robert H; Morton, Susan K; Deiderick, Heather; Gerth, Monica L; Paul, Hayden A; Gerber, Ilana; Patel, Ankita; Ellington, Andrew D; Hunicke-Smith, Scott P; Patrick, Wayne M

    2013-07-01

    The DNA ligase from bacteriophage T4 is one of the most widely used enzymes in molecular biology. It has evolved to seal single-stranded nicks in double-stranded DNA, but not to join double-stranded fragments with cohesive or blunt ends. Its poor activity in vitro, particularly with blunt-ended substrates, can lead to failed or sub-optimal experimental outcomes. We have fused T4 DNA ligase to seven different DNA-binding proteins, including eukaryotic transcription factors, bacterial DNA repair proteins and archaeal DNA-binding domains. Representatives from each of these classes improved the activity of T4 DNA ligase, by up to 7-fold, in agarose gel-based screens for cohesive- and blunt-ended fragment joining. Overall, the most active variants were p50-ligase (i.e. NF-κB p50 fused to T4 DNA ligase) and ligase-cTF (T4 DNA ligase fused to an artificial, chimeric transcription factor). Ligase-cTF out-performed T4 DNA ligase by ∼160% in blunt end 'vector + insert' cloning assays, and p50-ligase showed an improvement of a similar magnitude when it was used to construct a library for Illumina sequencing. The activity of the Escherichia coli DNA ligase was also enhanced by fusion to p50. Together, these results suggest that our protein design strategy is a generalizable one for engineering improved DNA ligases. PMID:23754529

  16. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    SciTech Connect

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  17. A novel 2-D graphical representation of DNA sequences of low degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Randic, Milan; Basak, Subhash C.

    2001-12-01

    Some 2-D and 3-D graphical representations of DNA sequences have been given by Nandy, Leong and Mogenthaler, and Randic et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a novel graphical representation of DNA sequences by taking four special vectors in 2-D space to represent the four nucleic acid bases in DNA sequences, so that a DNA sequence is denoted on a plane by a successive vector sequence, which is also a directed walk on the plane. It is showed that the novel graphical representation of DNA sequences has lower degeneracy and less overlapping.

  18. Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes.

    PubMed

    Anderson, Brooke A; Hrdlicka, Patrick J

    2016-04-15

    The development of molecular strategies that enable recognition of specific double-stranded DNA (dsDNA) regions has been a longstanding goal as evidenced by the emergence of triplex-forming oligonucleotides, peptide nucleic acids (PNAs), minor groove binding polyamides, and-more recently-engineered proteins such as CRISPR/Cas9. Despite this progress, an unmet need remains for simple hybridization-based probes that recognize specific mixed-sequence dsDNA regions under physiological conditions. Herein, we introduce pseudocomplementary Invader probes as a step in this direction. These double-stranded probes are chimeras between pseudocomplementary DNA (pcDNA) and Invader probes, which are activated for mixed-sequence dsDNA-recognition through the introduction of pseudocomplementary base pairs comprised of 2-thiothymine and 2,6-diaminopurine, and +1 interstrand zipper arrangements of intercalator-functionalized nucleotides, respectively. We demonstrate that certain pseudocomplementary Invader probe designs result in very efficient and specific recognition of model dsDNA targets in buffers of high ionic strength. These chimeric probes, therefore, present themselves as a promising strategy for mixed-sequence recognition of dsDNA targets for applications in molecular biology and nucleic acid diagnostics. PMID:26998918

  19. Effect of Noise on DNA Sequencing via Transverse Electronic Transport

    PubMed Central

    Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2009-01-01

    Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing. PMID:19804730

  20. Generalized Levy-walk model for DNA nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Simons, M.; Stanley, H. E.

    1993-01-01

    We propose a generalized Levy walk to model fractal landscapes observed in noncoding DNA sequences. We find that this model provides a very close approximation to the empirical data and explains a number of statistical properties of genomic DNA sequences such as the distribution of strand-biased regions (those with an excess of one type of nucleotide) as well as local changes in the slope of the correlation exponent alpha. The generalized Levy-walk model simultaneously accounts for the long-range correlations in noncoding DNA sequences and for the apparently paradoxical finding of long subregions of biased random walks (length lj) within these correlated sequences. In the generalized Levy-walk model, the lj are chosen from a power-law distribution P(lj) varies as lj(-mu). The correlation exponent alpha is related to mu through alpha = 2-mu/2 if 2 < mu < 3. The model is consistent with the finding of "repetitive elements" of variable length interspersed within noncoding DNA.

  1. Decoding long nanopore sequencing reads of natural DNA.

    PubMed

    Laszlo, Andrew H; Derrington, Ian M; Ross, Brian C; Brinkerhoff, Henry; Adey, Andrew; Nova, Ian C; Craig, Jonathan M; Langford, Kyle W; Samson, Jenny Mae; Daza, Riza; Doering, Kenji; Shendure, Jay; Gundlach, Jens H

    2014-08-01

    Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands. PMID:24964173

  2. DNA-sequence-specific erasers of epigenetic memory.

    PubMed

    Mozgova, Iva; Köhler, Claudia

    2016-05-27

    How epigenetic regulators find their specific targets remains a challenging question. Two parallel studies show that REF6, a plant H3K27me3 demethylase, binds a specific DNA motif via its zinc-finger domains and recruits the SWI/SNF-type ATPase BRAHMA, demonstrating a sequence-specific recruitment mechanism for a chromatin-modifying complex. PMID:27230685

  3. Derivatized versions of ligase enzymes for constructing DNA sequences

    DOEpatents

    Mariella, Jr., Raymond P.; Christian, Allen T.; Tucker, James D.; Dzenitis, John M.; Papavasiliou, Alexandros P.

    2006-08-15

    A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.

  4. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed Central

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived. PMID:8415740

  5. Sequence heterogeneity accelerates protein search for targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-01

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  6. Sequence heterogeneity accelerates protein search for targets on DNA

    SciTech Connect

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  7. Metallothionein cDNA, promoter, and genomic sequences of the tropical green mussel, Perna viridis.

    PubMed

    Khoo, H W; Patel, K H

    1999-09-01

    The primary structure of the cDNA and metallothionein (MT) genomic sequences of the tropical green mussel (Perna viridis) was determined. The complete cDNA sequences were obtained using degenerate primers designed from known metallothionein consensus amino acid sequences from the temperate species Mytilus edulis. The amino acid sequences of P. viridis metallothionein deduced from the coding region consisted of 72 amino acids with 21 cysteine residues and 9 Cys-X-Cys motifs corresponding to Type I MT class of other species. Two different genomic sequences coding for the same mRNA were obtained. Each putative gene contained a unique 5'UTR and two unique introns located at the same splice sites. The promoters for both genes were different in length and both contained metal responsive elements and active protein-binding sites. The structures of the genomic clones were compared with those of other species. J. Exp. Zool. 284:445-453, 1999. PMID:10451422

  8. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  9. The DNA sequence and comparative analysis of human chromosome 10.

    PubMed

    Deloukas, P; Earthrowl, M E; Grafham, D V; Rubenfield, M; French, L; Steward, C A; Sims, S K; Jones, M C; Searle, S; Scott, C; Howe, K; Hunt, S E; Andrews, T D; Gilbert, J G R; Swarbreck, D; Ashurst, J L; Taylor, A; Battles, J; Bird, C P; Ainscough, R; Almeida, J P; Ashwell, R I S; Ambrose, K D; Babbage, A K; Bagguley, C L; Bailey, J; Banerjee, R; Bates, K; Beasley, H; Bray-Allen, S; Brown, A J; Brown, J Y; Burford, D C; Burrill, W; Burton, J; Cahill, P; Camire, D; Carter, N P; Chapman, J C; Clark, S Y; Clarke, G; Clee, C M; Clegg, S; Corby, N; Coulson, A; Dhami, P; Dutta, I; Dunn, M; Faulkner, L; Frankish, A; Frankland, J A; Garner, P; Garnett, J; Gribble, S; Griffiths, C; Grocock, R; Gustafson, E; Hammond, S; Harley, J L; Hart, E; Heath, P D; Ho, T P; Hopkins, B; Horne, J; Howden, P J; Huckle, E; Hynds, C; Johnson, C; Johnson, D; Kana, A; Kay, M; Kimberley, A M; Kershaw, J K; Kokkinaki, M; Laird, G K; Lawlor, S; Lee, H M; Leongamornlert, D A; Laird, G; Lloyd, C; Lloyd, D M; Loveland, J; Lovell, J; McLaren, S; McLay, K E; McMurray, A; Mashreghi-Mohammadi, M; Matthews, L; Milne, S; Nickerson, T; Nguyen, M; Overton-Larty, E; Palmer, S A; Pearce, A V; Peck, A I; Pelan, S; Phillimore, B; Porter, K; Rice, C M; Rogosin, A; Ross, M T; Sarafidou, T; Sehra, H K; Shownkeen, R; Skuce, C D; Smith, M; Standring, L; Sycamore, N; Tester, J; Thorpe, A; Torcasso, W; Tracey, A; Tromans, A; Tsolas, J; Wall, M; Walsh, J; Wang, H; Weinstock, K; West, A P; Willey, D L; Whitehead, S L; Wilming, L; Wray, P W; Young, L; Chen, Y; Lovering, R C; Moschonas, N K; Siebert, R; Fechtel, K; Bentley, D; Durbin, R; Hubbard, T; Doucette-Stamm, L; Beck, S; Smith, D R; Rogers, J

    2004-05-27

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence. PMID:15164054

  10. Terminal region sequence variations in variola virus DNA.

    PubMed

    Massung, R F; Loparev, V N; Knight, J C; Totmenin, A V; Chizhikov, V E; Parsons, J M; Safronov, P F; Gutorov, V V; Shchelkunov, S N; Esposito, J J

    1996-07-15

    Genome DNA terminal region sequences were determined for a Brazilian alastrim variola minor virus strain Garcia-1966 that was associated with an 0.8% case-fatality rate and African smallpox strains Congo-1970 and Somalia-1977 associated with variola major (9.6%) and minor (0.4%) mortality rates, respectively. A base sequence identity of > or = 98.8% was determined after aligning 30 kb of the left- or right-end region sequences with cognate sequences previously determined for Asian variola major strains India-1967 (31% death rate) and Bangladesh-1975 (18.5% death rate). The deduced amino acid sequences of putative proteins of > or = 65 amino acids also showed relatively high identity, although the Asian and African viruses were clearly more related to each other than to alastrim virus. Alastrim virus contained only 10 of 70 proteins that were 100% identical to homologs in Asian strains, and 7 alastrim-specific proteins were noted. PMID:8661439

  11. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W. . Dept. of Computer Sciences); Noordewier, M.O. . Dept. of Computer Science)

    1992-01-01

    We are primarily developing a machine teaming (ML) system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being teamed. Using this information, our teaming algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, our KBANN algorithm maps inference rules about a given recognition task into a neural network. Neural network training techniques then use the training examples to refine these inference rules. We call these rules a domain theory, following the convention in the machine teaming community. We have been applying this approach to several problems in DNA sequence analysis. In addition, we have been extending the capabilities of our teaming system along several dimensions. We have also been investigating parallel algorithms that perform sequence alignments in the presence of frameshift errors.

  12. The DNA sequence and comparative analysis of human chromosome 20.

    PubMed

    Deloukas, P; Matthews, L H; Ashurst, J; Burton, J; Gilbert, J G; Jones, M; Stavrides, G; Almeida, J P; Babbage, A K; Bagguley, C L; Bailey, J; Barlow, K F; Bates, K N; Beard, L M; Beare, D M; Beasley, O P; Bird, C P; Blakey, S E; Bridgeman, A M; Brown, A J; Buck, D; Burrill, W; Butler, A P; Carder, C; Carter, N P; Chapman, J C; Clamp, M; Clark, G; Clark, L N; Clark, S Y; Clee, C M; Clegg, S; Cobley, V E; Collier, R E; Connor, R; Corby, N R; Coulson, A; Coville, G J; Deadman, R; Dhami, P; Dunn, M; Ellington, A G; Frankland, J A; Fraser, A; French, L; Garner, P; Grafham, D V; Griffiths, C; Griffiths, M N; Gwilliam, R; Hall, R E; Hammond, S; Harley, J L; Heath, P D; Ho, S; Holden, J L; Howden, P J; Huckle, E; Hunt, A R; Hunt, S E; Jekosch, K; Johnson, C M; Johnson, D; Kay, M P; Kimberley, A M; King, A; Knights, A; Laird, G K; Lawlor, S; Lehvaslaiho, M H; Leversha, M; Lloyd, C; Lloyd, D M; Lovell, J D; Marsh, V L; Martin, S L; McConnachie, L J; McLay, K; McMurray, A A; Milne, S; Mistry, D; Moore, M J; Mullikin, J C; Nickerson, T; Oliver, K; Parker, A; Patel, R; Pearce, T A; Peck, A I; Phillimore, B J; Prathalingam, S R; Plumb, R W; Ramsay, H; Rice, C M; Ross, M T; Scott, C E; Sehra, H K; Shownkeen, R; Sims, S; Skuce, C D; Smith, M L; Soderlund, C; Steward, C A; Sulston, J E; Swann, M; Sycamore, N; Taylor, R; Tee, L; Thomas, D W; Thorpe, A; Tracey, A; Tromans, A C; Vaudin, M; Wall, M; Wallis, J M; Whitehead, S L; Whittaker, P; Willey, D L; Williams, L; Williams, S A; Wilming, L; Wray, P W; Hubbard, T; Durbin, R M; Bentley, D R; Beck, S; Rogers, J

    The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes. PMID:11780052

  13. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W.

    1992-01-01

    We are developing a machine learning system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being learned. Using this information (which we call a domain theory''), our learning algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, the KBANN algorithm maps inference rules, such as consensus sequences, into a neural (connectionist) network. Neural network training techniques then use the training examples of refine these inference rules. We have been applying this approach to several problems in DNA sequence analysis and have also been extending the capabilities of our learning system along several dimensions.

  14. Detection of DNA sequence polymorphisms in human genomic DNA by using denaturing gradient gel blots

    SciTech Connect

    Gray, M.R. )

    1992-02-01

    Denaturing gradient gel electrophoresis can detect sequence differences outside restriction-enzyme recognition sites. DNA sequence polymorphisms can be detected as restriction-fragment melting polymorphisms (RFMPs) in genomic DNA by using blots made from denaturing gradient gels. In contrast to the use of Southern blots to find sequence differences, denaturing gradient gel blots can detect differences almost anywhere, not just at 4-6-bp restriction-enzyme recognition sites. Human genomic DNA was digested with one of several randomly selected 4-bp recognition-site restriction enzymes, electrophoresed in denaturing gradient gels, and transferred to nylon membranes. The blots were hydridized with radioactive probes prepared from the factor VIII, type II collagen, insulin receptor, [beta][sub 2]-adrenergic receptor, and 21-hydroxylase genes; in unrelated individuals, several RFM's were found in fragments from every locus tested. No restriction map or sequence information was used to detect RFMP's.

  15. Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers

    PubMed Central

    2009-01-01

    Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in

  16. Numerical characterization of DNA sequences in a 2-D graphical representation scheme of low degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Nandy, Ashesh

    2003-02-01

    Some 2-D and 3-D graphical representations of DNA sequences have been given by Gate, Nandy, Leong, Randic, and Guo et al. Based on 2-D graphical representation of DNA sequences, Raychaudhury and Nandy introduced the first-order moments of the x and y coordinates and the radius of the plot of a DNA sequence for indexing scheme and similarity measures of DNA sequences. In this Letter, based on Guo's novel 2-D graphical representation of DNA sequences of low degeneracy, we introduce the improved first-order moments of the x and y coordinates and the radius of DNA sequences, and the distance of two DNA sequences. The new descriptors of DNA sequences give a good numerical characterization of DNA sequences, which have lower degeneracy.

  17. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  18. Nanopore-based Fourth-generation DNA Sequencing Technology

    PubMed Central

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-01-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. PMID:25743089

  19. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. PMID:25743089

  20. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  1. A measure of DNA sequence similarity by Fourier Transform with applications on hierarchical clustering.

    PubMed

    Yin, Changchuan; Chen, Ying; Yau, Stephen S-T

    2014-10-21

    Multiple sequence alignment (MSA) is a prominent method for classification of DNA sequences, yet it is hampered with inherent limitations in computational complexity. Alignment-free methods have been developed over past decade for more efficient comparison and classification of DNA sequences than MSA. However, most alignment-free methods may lose structural and functional information of DNA sequences because they are based on feature extractions. Therefore, they may not fully reflect the actual differences among DNA sequences. Alignment-free methods with information conservation are needed for more accurate comparison and classification of DNA sequences. We propose a new alignment-free similarity measure of DNA sequences using the Discrete Fourier Transform (DFT). In this method, we map DNA sequences into four binary indicator sequences and apply DFT to the indicator sequences to transform them into frequency domain. The Euclidean distance of full DFT power spectra of the DNA sequences is used as similarity distance metric. To compare the DFT power spectra of DNA sequences with different lengths, we propose an even scaling method to extend shorter DFT power spectra to equal the longest length of the sequences compared. After the DFT power spectra are evenly scaled, the DNA sequences are compared in the same DFT frequency space dimensionality. We assess the accuracy of the similarity metric in hierarchical clustering using simulated DNA and virus sequences. The results demonstrate that the DFT based method is an effective and accurate measure of DNA sequence similarity. PMID:24911780

  2. Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing. Final report, June 1, 1988--January 31, 1996

    SciTech Connect

    Richardson, C.C.

    1996-08-01

    This project has focused on the DNA polymerase of phage T7 for use in DNA sequencing. A complex of T7 DNA polymerase and E. coli thioredoxin form a highly processive DNA polymerase. The exonuclease activity of the enzyme can be reduced by chemical or genetic modifications resulting in an enzyme that has several properties useful in sequencing including high processivity and lack of discrimination against dideoxynucleotides. Manganese ion eliminates all discrimination against ddNTPs allowing sequence determination based on band intensity. A single tyrosine residue in the active site of T7 DNA polymerase is responsible for the efficient incorporation of ddNMPs. Replacement of the phenylalanine at this position in Klenow or Taq DNA polymerase with tyrosine eliminates discrimination against ddNTPs, a property that has advantages for cycle sequencing. Pyrophosphorolysis catalyzed by a polymerase results in the hydrolysis of specific fragments in DNA sequencing reactions, a problem that is eliminated by the addition of pyrophosphatase. The thioredoxin domain of gene 5 protein has been identified and transferred to Klenow DNA polymerase to make it processive. We have crystallized a complex of T7 DNA polymerase/thioredoxin bound to a primer-template in the presence of a dNTP.

  3. Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context*

    PubMed Central

    Zhou, Jia; Liu, Minmin; Fleming, Aaron M.; Burrows, Cynthia J.; Wallace, Susan S.

    2013-01-01

    The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA. PMID:23926102

  4. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  5. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq).

    PubMed

    Graham, Carly F; Glenn, Travis C; McArthur, Andrew G; Boreham, Douglas R; Kieran, Troy; Lance, Stacey; Manzon, Richard G; Martino, Jessica A; Pierson, Todd; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2015-11-01

    Degraded DNA from suboptimal field sampling is common in molecular ecology. However, its impact on techniques that use restriction site associated next-generation DNA sequencing (RADSeq, GBS) is unknown. We experimentally examined the effects of in situDNA degradation on data generation for a modified double-digest RADSeq approach (3RAD). We generated libraries using genomic DNA serially extracted from the muscle tissue of 8 individual lake whitefish (Coregonus clupeaformis) following 0-, 12-, 48- and 96-h incubation at room temperature posteuthanasia. This treatment of the tissue resulted in input DNA that ranged in quality from nearly intact to highly sheared. All samples were sequenced as a multiplexed pool on an Illumina MiSeq. Libraries created from low to moderately degraded DNA (12-48 h) performed well. In contrast, the number of RADtags per individual, number of variable sites, and percentage of identical RADtags retained were all dramatically reduced when libraries were made using highly degraded DNA (96-h group). This reduction in performance was largely due to a significant and unexpected loss of raw reads as a result of poor quality scores. Our findings remained consistent after changes in restriction enzymes, modified fold coverage values (2- to 16-fold), and additional read-length trimming. We conclude that starting DNA quality is an important consideration for RADSeq; however, the approach remains robust until genomic DNA is extensively degraded. PMID:25783180

  6. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC.

    PubMed

    Kong, Daochun; Coleman, Thomas R; DePamphilis, Melvin L

    2003-07-01

    Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe. PMID:12840006

  7. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    SciTech Connect

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  8. Colloquium: Physical approaches to DNA sequencing and detection

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; di Ventra, Massimiliano

    2008-01-01

    With the continued improvement of sequencing technologies, the prospect of genome-based medicine is now at the forefront of scientific research. To realize this potential, however, a revolutionary sequencing method is needed for the cost-effective and rapid interrogation of individual genomes. This capability is likely to be provided by a physical approach to probing DNA at the single-nucleotide level. This is in sharp contrast to current techniques and instruments that probe (through chemical elongation, electrophoresis, and optical detection) length differences and terminating bases of strands of DNA. Several physical approaches to DNA detection have the potential to deliver fast and low-cost sequencing. Central to these approaches is the concept of nanochannels or nanopores, which allow for the spatial confinement of DNA molecules. In addition to their possible impact in medicine and biology, the methods offer ideal test beds to study open scientific issues and challenges in the relatively unexplored area at the interface between solids, liquids, and biomolecules at the nanometer length scale. This Colloquium emphasizes the physics behind these methods and ideas, critically describes their advantages and drawbacks, and discusses future research opportunities in the field.

  9. A CLIQUE algorithm using DNA computing techniques based on closed-circle DNA sequences.

    PubMed

    Zhang, Hongyan; Liu, Xiyu

    2011-07-01

    DNA computing has been applied in broad fields such as graph theory, finite state problems, and combinatorial problem. DNA computing approaches are more suitable used to solve many combinatorial problems because of the vast parallelism and high-density storage. The CLIQUE algorithm is one of the gird-based clustering techniques for spatial data. It is the combinatorial problem of the density cells. Therefore we utilize DNA computing using the closed-circle DNA sequences to execute the CLIQUE algorithm for the two-dimensional data. In our study, the process of clustering becomes a parallel bio-chemical reaction and the DNA sequences representing the marked cells can be combined to form a closed-circle DNA sequences. This strategy is a new application of DNA computing. Although the strategy is only for the two-dimensional data, it provides a new idea to consider the grids to be vertexes in a graph and transform the search problem into a combinatorial problem. PMID:21511001

  10. Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures

    PubMed Central

    Hunt, Rebecca A.; Munde, Manoj; Kumar, Arvind; Ismail, Mohamed A.; Farahat, Abdelbasset A.; Arafa, Reem K.; Say, Martial; Batista-Parra, Adalgisa; Tevis, Denise; Boykin, David W.; Wilson, W. David

    2011-01-01

    Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure. PMID:21266485

  11. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  12. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  13. cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the indianmeal moth, Plodia interpunctella.

    PubMed

    Zhu, Y C; Oppert, B; Kramer, K J; McGaughey, W H; Dowdy, A K

    2000-02-01

    Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two

  14. Client side decompression technique provides faster DNA sequence data delivery.

    PubMed

    Sufi, Fahim; Fang, Qiang; Cosic, Irena; Ferguson, Roy

    2005-01-01

    DNA sequences are generally very long chains of sequentially linked nucleotides. There are four different nucleotides and combinations of these build the nucleotide information of sequence files contained in data sources. When a user searches for any sequence for an organism, a compressed sequence file can be sent from the data source to the user. The compressed file then can be decompressed at the client end resulting in reduced transmission time over the Internet. A compression algorithm that provides a moderately high compression rate with minimal decompression time is proposed in this paper. We also compare a number of different compression techniques for achieving efficient delivery methods from an intelligent genomic search agent over the Internet. PMID:17282828

  15. gDNA-Prot: Predict DNA-binding proteins by employing support vector machine and a novel numerical characterization of protein sequence.

    PubMed

    Zhang, Yan-Ping; Wuyunqiqige; Zheng, Wei; Liu, Shuyi; Zhao, Chunguang

    2016-10-01

    DNA-binding proteins are the functional proteins in cells, which play an important role in various essential biological activities. An effective and fast computational method gDNA-Prot is proposed to predict DNA-binding proteins in this paper, which is a DNA-binding predictor that combines the support vector machine classifier and a novel kind of feature called graphical representation. The DNA-binding protein sequence information was described with the 20 probabilities of amino acids and the 23 new numerical graphical representation features of a protein sequence, based on 23 physicochemical properties of 20 amino acids. The Principal Components Analysis (PCA) was employed as feature selection method for removing the irrelevant features and reducing redundant features. The Sigmod function and Min-max normalization methods for PCA were applied to accelerate the training speed and obtain higher accuracy. Experiments demonstrated that the Principal Components Analysis with Sigmod function generated the best performance. The gDNA-Prot method was also compared with the DNAbinder, iDNA-Prot and DNA-Prot. The results suggested that gDNA-Prot outperformed the DNAbinder and iDNA-Prot. Although the DNA-Prot outperformed gDNA-Prot, gDNA-Prot was faster and convenient to predict the DNA-binding proteins. Additionally, the proposed gNDA-Prot method is available at http://sourceforge.net/projects/gdnaprot. PMID:27378005

  16. DNA sequence representation by trianders and determinative degree of nucleotides

    PubMed Central

    Duplij, Diana; Duplij, Steven

    2005-01-01

    A new version of DNA walks, where nucleotides are regarded unequal in their contribution to a walk is introduced, which allows us to study thoroughly the “fine structure” of nucleotide sequences. The approach is based on the assumption that nucleotides have an inner abstract characteristic, the determinative degree, which reflects genetic code phenomenological properties and is adjusted to nucleotides physical properties. We consider each codon position independently, which gives three separate walks characterized by different angles and lengths, and that such an object is called triander which reflects the “strength” of branch. A general method for identifying DNA sequence “by triander” which can be treated as a unique “genogram” (or “gene passport”) is proposed. The two- and three-dimensional trianders are considered. The difference of sequences fine structure in genes and the intergenic space is shown. A clear triplet signal in coding sequences was found which is absent in the intergenic space and is independent from the sequence length. This paper presents the topological classification of trianders which can allow us to provide a detailed working out signatures of functionally different genomic regions. PMID:16052707

  17. cDNA sequences of two apolipoproteins from lamprey

    SciTech Connect

    Pontes, M.; Xu, X.; Graham, D.; Riley, M.; Doolittle, R.F.

    1987-03-24

    The messages for two small but abundant apolipoproteins found in lamprey blood plasma were cloned with the aid of oligonucleotide probes based on amino-terminal sequences. In both cases, numerous clones were identified in a lamprey liver cDNA library, consistent with the great abundance of these proteins in lamprey blood. One of the cDNAs (LAL1) has a coding region of 105 amino acids that corresponds to a 21-residue signal peptide, a putative 8-residue propeptide, and the 76-residue mature protein found in blood. The other cDNA (LAL2) codes for a total of 191 residues, the first 23 of which constitute a signal peptide. The two proteins, which occur in the high-density lipoprotein fraction of ultracentrifuged plasma, have amino acid compositions similar to those of apolipoproteins found in mammalian blood; computer analysis indicates that the sequences are largely helix-permissive. When the sequences were searched against an amino acid sequence data base, rat apolipoprotein IV was the best matching candidate in both cases. Although a reasonable alignment can be made with that sequence and LAL1, definitive assignment of the two lamprey proteins to typical mammalian classes cannot be made at this point.

  18. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

    PubMed Central

    2003-01-01

    Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA. PMID:12734555

  19. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison.

    PubMed

    Kato, Mikio

    2003-01-01

    Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA. PMID:12734555

  20. Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains

    SciTech Connect

    Lee, James Weifu; Meller, Amit

    2007-01-01

    Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, which looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.

  1. Silicene as a new potential DNA sequencing device.

    PubMed

    Amorim, Rodrigo G; Scheicher, Ralph H

    2015-04-17

    Silicene, a hexagonal buckled 2D allotrope of silicon, shows potential as a platform for numerous new applications, and may allow for easier integration with existing silicon-based microelectronics than graphene. Here, we show that silicene could function as an electrical DNA sequencing device. We investigated the stability of this novel nano-bio system, its electronic properties and the pronounced effects on the transverse electronic transport, i.e., changes in the transmission and the conductance caused by adsorption of each nucleobase, explored by us through the non-equilibrium Green's function method. Intriguingly, despite the relatively weak interaction between nucleobases and silicene, significant changes in the transmittance at zero bias are predicted by us, in particular for the two nucleobases cytosine and guanine. Our findings suggest that silicene could be utilized as an integrated-circuit biosensor as part of a lab-on-a-chip device for DNA sequencing. PMID:25797645

  2. Effect of dephasing on DNA sequencing via transverse electronic transport

    SciTech Connect

    Zwolak, Michael; Krems, Matt; Pershin, Yuriy V; Di Ventra, Massimiliano

    2009-01-01

    We study theoretically the effects of dephasing on DNA sequencing in a nanopore via transverse electronic transport. To do this, we couple classical molecular dynamics simulations with transport calculations using scattering theory. Previous studies, which did not include dephasing, have shown that by measuring the transverse current of a particular base multiple times, one can get distributions of currents for each base that are distinguishable. We introduce a dephasing parameter into transport calculations to simulate the effects of the ions and other fluctuations. These effects lower the overall magnitude of the current, but have little effect on the current distributions themselves. The results of this work further implicate that distinguishing DNA bases via transverse electronic transport has potential as a sequencing tool.

  3. Recent progress in atomistic simulation of electrical current DNA sequencing.

    PubMed

    Kim, Han Seul; Kim, Yong-Hoon

    2015-07-15

    We review recent advances in the DNA sequencing method based on measurements of transverse electrical currents. Device configurations proposed in the literature are classified according to whether the molecular fingerprints appear as the major (Mode I) or perturbing (Mode II) current signals. Scanning tunneling microscope and tunneling electrode gap configurations belong to the former category, while the nanochannels with or without an embedded nanopore belong to the latter. The molecular sensing mechanisms of Modes I and II roughly correspond to the electron tunneling and electrochemical gating, respectively. Special emphasis will be given on the computer simulation studies, which have been playing a critical role in the initiation and development of the field. We also highlight low-dimensional nanomaterials such as carbon nanotubes, graphene, and graphene nanoribbons that allow the novel Mode II approach. Finally, several issues in previous computational studies are discussed, which points to future research directions toward more reliable simulation of electrical current DNA sequencing devices. PMID:25744599

  4. Model for the distributions of k -mers in DNA sequences

    NASA Astrophysics Data System (ADS)

    Chen, Yaw-Hwang; Nyeo, Su-Long; Yeh, Chiung-Yuh

    2005-07-01

    The evolutionary features based on the distributions of k -mers in the DNA sequences of various organisms are studied. The organisms are classified into three groups based on their evolutionary periods: (a) E. coli and T. pallidum (b) yeast, zebrafish, A. thaliana, and fruit fly, (c) mouse, chicken, and human. The distributions of 6-mers of these three groups are shown to be, respectively, (a) unimodal, (b) unimodal with peaks generally shifted to smaller frequencies of occurrence, (c) bimodal. To describe the bimodal feature of the k -mer distributions of group (c), a model based on the cytosine-guanine “ CG ” content of the DNA sequences is introduced and shown to provide reasonably good agreements.

  5. Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence.

    PubMed Central

    Hadler, H I; Dimitrijevic, B; Mahalingam, R

    1983-01-01

    Although Pst I does not cut the circular mitochondrial genome of the rat, BamHI generates from this genome two unequal fragments of DNA. Each of these fragments was cloned in pBR322. Nuclear DNA was digested from rat liver singly or doubly with Pst I and BamHI, and it was demonstrated that nuclear DNA shared a common sequence with the larger mitochondrial DNA BamHI fragment. The cloned larger mitochondrial DNA fragment was further subdivided with HindIII into four pieces that were labeled and then used to probe the double-digested nuclear DNA. The hybridization data showed that the common sequence is less than 3 kilobase pairs long and lies within the part of the mitochondrial genome containing the D-loop and a portion of the rRNA genes. It therefore appears that, as in lower eukaryotes, there are shared sequences between the nuclear and mitochondrial genomes in mammals. Images PMID:6579536

  6. DNA sequencing by multiple capillaries that form a waveguide

    SciTech Connect

    Dhadwal, S.H.; Quesada, M.A.; Studier, F.W.

    1997-05-01

    A 12-capillary prototype electrophoresis system for DNA sequencing has been constructed. Laser illumination is introduced into an optical waveguide that is formed by an array of individual capillaries that serve both as the optical elements of the periodic array and as the channels containing sieving media for electrophoresis. A theoretical framework and experimental data will be presented to illustrate the viability of this approach.

  7. Computational optimisation of targeted DNA sequencing for cancer detection.

    PubMed

    Martinez, Pierre; McGranahan, Nicholas; Birkbak, Nicolai Juul; Gerlinger, Marco; Swanton, Charles

    2013-01-01

    Despite recent progress thanks to next-generation sequencing technologies, personalised cancer medicine is still hampered by intra-tumour heterogeneity and drug resistance. As most patients with advanced metastatic disease face poor survival, there is need to improve early diagnosis. Analysing circulating tumour DNA (ctDNA) might represent a non-invasive method to detect mutations in patients, facilitating early detection. In this article, we define reduced gene panels from publicly available datasets as a first step to assess and optimise the potential of targeted ctDNA scans for early tumour detection. Dividing 4,467 samples into one discovery and two independent validation cohorts, we show that up to 76% of 10 cancer types harbour at least one mutation in a panel of only 25 genes, with high sensitivity across most tumour types. Our analyses demonstrate that targeting "hotspot" regions would introduce biases towards in-frame mutations and would compromise the reproducibility of tumour detection. PMID:24296834

  8. Color image encryption scheme using CML and DNA sequence operations.

    PubMed

    Wang, Xing-Yuan; Zhang, Hui-Li; Bao, Xue-Mei

    2016-06-01

    In this paper, an encryption algorithm for color images using chaotic system and DNA (Deoxyribonucleic acid) sequence operations is proposed. Three components for the color plain image is employed to construct a matrix, then perform confusion operation on the pixels matrix generated by the spatiotemporal chaos system, i.e., CML (coupled map lattice). DNA encoding rules, and decoding rules are introduced in the permutation phase. The extended Hamming distance is proposed to generate new initial values for CML iteration combining color plain image. Permute the rows and columns of the DNA matrix and then get the color cipher image from this matrix. Theoretical analysis and experimental results prove the cryptosystem secure and practical, and it is suitable for encrypting color images of any size. PMID:27026385

  9. Computational optimisation of targeted DNA sequencing for cancer detection

    NASA Astrophysics Data System (ADS)

    Martinez, Pierre; McGranahan, Nicholas; Birkbak, Nicolai Juul; Gerlinger, Marco; Swanton, Charles

    2013-12-01

    Despite recent progress thanks to next-generation sequencing technologies, personalised cancer medicine is still hampered by intra-tumour heterogeneity and drug resistance. As most patients with advanced metastatic disease face poor survival, there is need to improve early diagnosis. Analysing circulating tumour DNA (ctDNA) might represent a non-invasive method to detect mutations in patients, facilitating early detection. In this article, we define reduced gene panels from publicly available datasets as a first step to assess and optimise the potential of targeted ctDNA scans for early tumour detection. Dividing 4,467 samples into one discovery and two independent validation cohorts, we show that up to 76% of 10 cancer types harbour at least one mutation in a panel of only 25 genes, with high sensitivity across most tumour types. Our analyses demonstrate that targeting ``hotspot'' regions would introduce biases towards in-frame mutations and would compromise the reproducibility of tumour detection.

  10. Contrasting DNA sequence organisation patterns in sauropsidian genomes.

    PubMed

    Epplen, J T; Diedrich, U; Wagenmann, M; Schmidtke, J; Engel, W

    1979-11-01

    The genomic DNA organisation patterns of four sauropsidian species, namely Python reticularis, Caiman crocodilus, Terrapene carolina triungius and Columba livia domestica were investigated by reassociation of short and long DNA fragments, by hyperchromicity measurements of reannealed fragments and by length estimations of S1-nuclease resistant repetitive duplexes. While the genomic DNA of the three reptilian species shows a short period interspersion pattern, the genome of the avian species is organised in a long period interspersion pattern apparently typical for birds. These findings are discussed in view of the close phylogenetic relationships of birds and reptiles, and also with regard to a possible relationship between the extent of sequence interspersion and genome size. PMID:533670

  11. DNA topology confers sequence specificity to nonspecific architectural proteins.

    PubMed

    Wei, Juan; Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2014-11-25

    Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid. PMID:25385626

  12. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase

    SciTech Connect

    Hjalmarsson, K.; Marklund, S.L.; Engstroem, A.; Edlund, T.

    1987-09-01

    A complementary DNA (cDNA) clone from a human placenta cDNA library encoding extracellular superoxide dismutase has been isolated and the nucleotide sequence determined. The cDNA has a very high G + C content. EC-SOD is synthesized with a putative 18-amino acid signal peptide, preceding the 222 amino acids in the mature enzyme, indicating that the enzyme is a secretory protein. The first 95 amino acids of the mature enzyme show no sequence homology with other sequenced proteins and there is one possible N-glycosylation site (Asn-89). The amino acid sequence from residues 96-193 shows strong homology (approx. 50%) with the final two-thirds of the sequences of all know eukaryotic CuZn SODs, whereas the homology with the P. leiognathi CuZn SOD is clearly lower. The ligands to Cu and Zn, the cysteines forming the intrasubunit disulfide bridge in the CuZn SODs, and the arginine found in all CuZn SODs in the entrance to the active site can all be identified in EC-SOD. A comparison with bovine CuZn SOD, the three-dimensional structure of which is known, reveals that the homologies occur in the active site and the divergencies are in the part constituting the subunit contact area in CuZn SOD. Amino acid sequence 194-222 in the carboxyl-terminal end of EC-SOD is strongly hydrophilic and contains nine amino acids with a positive charge. This sequence probably confers the affinity of EC-SOD for heparin and heparan sulfate. An analysis of the amino acid sequence homologies with CuZn SODs from various species indicates that the EC-SODs may have evolved form the CuZn SODs before the evolution of fungi and plants.

  13. Comparison of DNA Quantification Methods for Next Generation Sequencing

    PubMed Central

    Robin, Jérôme D.; Ludlow, Andrew T.; LaRanger, Ryan; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library’s heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  14. Large microchannel array fabrication and results for DNA sequencing

    SciTech Connect

    Pastrone, R L; Balch, J W; Brewer, L R; Copeland, A C; Davidson , J C; Fitch, J P; Kimbrough, J R; Madabhushi, R S; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-07

    We have developed a process for the production of microchannel arrays on bonded glass substrates up to I4 x 58 cm, for DNA sequencing. Arrays of 96 and 384 microchannels, each 46 cm long have been built. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 x 180 micrometers by 46 cm Iong; the etch is approximately isotropic, leaving a key undercut, for forming a rounded channel. The surface roughness at the bottom of the 40 micrometer deep channel has been profilometer measured to be as low as 20 nm; the roughness at the top surface was 2 nm. Etch uniformity of about 5% has been obtained using a 22% vol. HF / 78% Acetic acid solution. The simple lithography, etching, and bonding of these substrates enables efficient production of these arrays and extremely precise replication From master masks and precision machining with a mandrel. Keywords: microchannels, microchannel plates, DNA sequencing, electrophoresis, borosilicate glass

  15. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    PubMed

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  16. Compilation of DNA sequences of Escherichia coli (update 1992)

    PubMed Central

    Kröger, Manfred; Wahl, Ralf; Schachtel, Gabriel; Rice, Peter

    1992-01-01

    We have compiled the DNA sequence data for E.coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the fourth listing replacing and increasing the former listings substantially. However, in order to save space this printed version contains DNA sequence information only, if they are publically available in electronic form. The complete compilation including a full set of genetic map data and the E.coli protein index can be obtained in machine readable form from the EMBL data library (ECD release 10) or from the CD-ROM version of this supplement issue directly. After deletion of all detected overlaps a total of 1 820 237 individual bp is found to be determined till the beginning of 1992. This corresponds to a total of 38.56% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2,5% derived from lysogenic bacteriophage lambda and various DNA sequences already received for other strains of E.coli. PMID:1598239

  17. DNA sequence of the Serratia marcescens lipoprotein gene

    PubMed Central

    Nakamura, Kenzo; Inouye, Masayori

    1980-01-01

    The Serratia marcescens gene for the outer membrane lipoprotein (lpp) was cloned in λ phage vector Charon 14. The recombinant phage was very unstable, and the lpp gene with a 300-base-pair deletion at the transcription termination site was further cloned in pBR322. The DNA sequence of 834 base pairs encompassing the lpp gene was determined and compared with that of the Escherichia coli lpp gene. The sequence comparisons exhibit several unique features. (i) The promoter region is highly conserved (84% homology) and has an extremely high A+T content (78%) as in E. coli (80%). (ii) The 5′ nontranslated region of the lipoprotein mRNA is also highly conserved (95% homology). (iii) In the DNA sequence corresponding to the signal peptide of this secretory protein, there are three drastic changes, including addition of one base pair and deletion of four base pairs in S. marcescens as compared to E. coli. The resultant alterations in the amino acid sequence, however, do not change the basic properties of the signal peptide, which are assumed to be essential for its function in the secretory mechanism. (iv) The DNA sequence from the amino terminus to the 51st residue of the mature lipoprotein is highly conserved (95% homology) and there is no amino acid substitution. (v) The DNA sequence corresponding to the seven amino acid residues at the carboxyl terminus has only 42% homology, resulting in four amino acid substitutions. (vi) Within the section of 40 base pairs beginning with the termination codon (UAA) and ending immediately before the oligo(T) transcription termination site in the E. coli lpp gene, there is about 60% homology. However, after this section, there is no obvious homology between the two sequences, probably because of a deletion of 300 base pairs at this region. (vii) Seven stable stem-and-loop structures could be formed in the mRNA region. (viii) Alterations in the third position of codons used in the lpp gene suggest that the gene has evolved somewhat

  18. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  19. UV-Induced Charge Transfer States in DNA Promote Sequence Selective Self-Repair.

    PubMed

    Bucher, Dominik Benjamin; Kufner, Corinna Lucia; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2016-01-13

    Absorption of UV-radiation in nucleotides initiates a number of photophysical and photochemical processes, which may finally cause DNA damage. One major decay channel of photoexcited DNA leads to reactive charge transfer states. This study shows that these states trigger self-repair of DNA photolesions. The experiments were performed by UV spectroscopy and HPLC on different single and double stranded oligonucleotides containing a cyclobutane pyrimidine dimer (CPD) lesion. In a first experiment we show that photoexcitation of adenine adjacent to a CPD has no influence on this lesion. However, excitation of a guanine (G) adenine (A) sequence leads to reformation of the intact thymine (T) bases. The involvement of two bases for the repair points to a long-living charge transfer state between G and A to be responsible for the repair. The negatively charged A radical anion donates an electron to the CPD, inducing ring splitting and repair. In contrast, a TA sequence, having an inverted charge distribution (T radical anion, A radical cation), is not able to repair the CPD lesion. The investigations show that the presence of an adjacent radical ion is not sufficient for repair. More likely it is the driving power represented by the oxidation potential of the radical ion, which controls the repair. Thus, repair capacities are strongly sequence-dependent, creating DNA regions with different tendencies of self-repair. This self-healing activity represents the simplest sequence-dependent DNA repair system. PMID:26651219

  20. Irreversible and reversible topoisomerase II DNA cleavage stimulated by clerocidin: sequence specificity and structural drug determinants.

    PubMed

    Binaschi, M; Zagotto, G; Palumbo, M; Zunino, F; Farinosi, R; Capranico, G

    1997-05-01

    In contrast to other topoisomerase II poisons, the microbial terpenoid clerocidin was shown to stimulate irreversible topoisomerase II-mediated DNA cleavage. To establish the structural determinants for drug activity, in this study we have investigated intensity patterns and sequence specificity of clerocidin-stimulated DNA cleavage using 5'-end 32P-labeled DNA fragments. At a majority of the sites, clerocidin-stimulated cleavage did not revert upon NaCl addition; nevertheless, at some sites, cleavage completely reverted. Statistical analyses showed that drug-preferred bases were different in the two cases: guanine and cytosine were highly preferred at position -1 at irreversible and reversible sites, respectively. These results demonstrated that cleavage irreversibility was site selective and required a guanine at the 3' end of the cut. Further experiments revealed that some irreversible sites showed an abnormal electrophoretic mobility in sequencing gels with respect to cleaved bands generated by 4-(9-acridinylamino)methanesulfon-m-anisidide, suggesting a chemical alteration of the DNA strand. Interestingly, the ability to stimulate irreversible cleavage progressively decreased over time when clerocidin was stored in ethanol. Under these conditions, nuclear magnetic resonance measurements demonstrated that the drug underwent structural modifications that involved the C-12-C-15 side chain. Thus, the results indicate that a specific moiety of clerocidin may react with the DNA (guanine at -1) in the ternary complex, resulting in cleavage irreversibility and in altered DNA mobility in sequencing gels. PMID:9135013

  1. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.

    PubMed Central

    Okonogi, T M; Alley, S C; Reese, A W; Hopkins, P B; Robinson, B H

    2002-01-01

    The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging. PMID:12496111

  2. DNA Sequence Chromatogram Browsing Using JAVA and CORBA

    PubMed Central

    Parsons, Jeremy D.; Buehler, Eugen; Hillier, LaDeana

    1999-01-01

    DNA sequence chromatograms (traces) are the primary data source for all large-scale genomic and expressed sequence tags (ESTs) sequencing projects. Access to the sequencing trace assists many later analyses, for example contig assembly and polymorphism detection, but obtaining and using traces is problematic. Traces are not collected and published centrally, they are much larger than the base calls derived from them, and viewing them requires the interactivity of a local graphical client with local data. To provide efficient global access to DNA traces, we developed a client/server system based on flexible Java components integrated into other applications including an applet for use in a WWW browser and a stand-alone trace viewer. Client/server interaction is facilitated by CORBA middleware which provides a well-defined interface, a naming service, and location independence. [The software is packaged as a Jar file available from the following URL: http://www.ebi.ac.uk/∼jparsons. Links to working examples of the trace viewers can be found at http://corba.ebi.ac.uk/EST. All the Washington University mouse EST traces are available for browsing at the same URL.] PMID:10077534

  3. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  4. Analysis of the complete DNA sequence of murine cytomegalovirus.

    PubMed Central

    Rawlinson, W D; Farrell, H E; Barrell, B G

    1996-01-01

    The complete DNA sequence of the Smith strain of murine cytomegalovirus (MCMV) was determined from virion DNA by using a whole-genome shotgun approach. The genome has an overall G+C content of 58.7%, consists of 230,278 bp, and is arranged as a single unique sequence with short (31-bp) terminal direct repeats and several short internal repeats. Significant similarity to the genome of the sequenced human cytomegalovirus (HCMV) strain AD169 is evident, particularly for 78 open reading frames encoded by the central part of the genome. There is a very similar distribution of G+C content across the two genomes. Sequences toward the ends of the MCMV genome encode tandem arrays of homologous glycoproteins (gps) arranged as two gene families. The left end encodes 15 gps that represent one family, and the right end encodes a different family of 11 gps. A homolog (m144) of cellular major histocompatibility complex (MHC) class I genes is located at the end of the genome opposite the HCMV MHC class I homolog (UL18). G protein-coupled receptor (GCR) homologs (M33 and M78) occur in positions congruent with two (UL33 and UL78) of the four putative HCMV GCR homologs. Counterparts of all of the known enzyme homologs in HCMV are present in the MCMV genome, including the phosphotransferase gene (M97), whose product phosphorylates ganciclovir in HCMV-infected cells, and the assembly protein (M80). PMID:8971012

  5. Complete VAX/VMS DNA/protein sequence analysis system

    SciTech Connect

    Smith, D.W.

    1987-05-01

    A complete yet flexible system of programs and database libraries for analysis of DNA, RNA and protein sequences is implemented for VAX/VMS computers. Types of analysis include 1) construction and analysis of chimeric sequences (cloning in the VAX), 2) multiple analysis of one or more single sequences, 3) search and comparison studies using sequence libraries, and 4) direct input and analysis of experimental data. Published groups of programs, including the Staden, Los Alamos, Zuker, Pearson, and PHYLIP programs, are used. GenBank and EMBL DNA libraries and PIR and Doolittle NEWAT protein libraries are available, with associated programs. The system is tutorial, with online documentation for relevent VAX software, the programs, and the databases. The complete documentation is flexibly maintained on reserve via computer printout placed in 3-ring binders. Command files are used extensively; porting of the entire system to another VAX/VMS system requires modification of a single command. Users of the system are members of a VAX group, with automatic implementation of the system upon login. The present system occupies about 140,000 blocks, and is easily expanded, or contracted, as desired. The UCSD system is used extensively for both teaching and research purposes. Use of microcomputers emulating Tektronix 4014 graphics terminals permits saving of graphics output to disk for subsequent modification to generate high quality publishable figures.

  6. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis

    PubMed Central

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; Johnson, Reid C.

    2016-01-01

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions. PMID:26959646

  7. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis.

    PubMed

    Hancock, Stephen P; Stella, Stefano; Cascio, Duilio; Johnson, Reid C

    2016-01-01

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions. PMID:26959646

  8. Demographic history of India and mtDNA-sequence diversity.

    PubMed Central

    Mountain, J L; Hebert, J M; Bhattacharyya, S; Underhill, P A; Ottolenghi, C; Gadgil, M; Cavalli-Sforza, L L

    1995-01-01

    The demographic history of India was examined by comparing mtDNA sequences obtained from members of three culturally divergent Indian subpopulations (endogamous caste groups). While an inferred tree revealed some clustering according to caste affiliation, there was no clear separation into three genetically distinct groups along caste lines. Comparison of pairwise nucleotide difference distributions, however, did indicate a difference in growth patterns between two of the castes. The Brahmin population appears to have undergone either a rapid expansion or steady growth. The low-ranking Mukri caste, however, may have either maintained a roughly constant population size or undergone multiple bottlenecks during that period. Comparison of the Indian sequences to those obtained from other populations, using a tree, revealed that the Indian sequences, along with all other non-African samples, form a starlike cluster. This cluster may represent a major expansion, possibly originating in southern Asia, taking place at some point after modern humans initially left Africa. PMID:7717409

  9. Conservation patterns in angiosperm rDNA ITS2 sequences.

    PubMed Central

    Hershkovitz, M A; Zimmer, E A

    1996-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA have become commonly exploited sources of informative variation for interspecific-/intergeneric-level phylogenetic analyses among angiosperms and other eukaryotes. We present an alignment in which one-third to one-half of the ITS2 sequence is alignable above the family level in angiosperms and a phenetic analysis showing that ITS2 contains information sufficient to diagnose lineages at several hierarchical levels. Base compositional analysis shows that angiosperm ITS2 is inherently GC-rich, and that the proportion of T is much more variable than that for other bases. We propose a general model of angiosperm ITS2 secondary structure that shows common pairing relationships for most of the conserved sequence tracts. Variations in our secondary structure predictions for sequences from different taxa indicate that compensatory mutation is not limited to paired positions. PMID:8760866

  10. On-Demand Indexing for Referential Compression of DNA Sequences

    PubMed Central

    Alves, Fernando; Cogo, Vinicius; Wandelt, Sebastian; Leser, Ulf; Bessani, Alysson

    2015-01-01

    The decreasing costs of genome sequencing is creating a demand for scalable storage and processing tools and techniques to deal with the large amounts of generated data. Referential compression is one of these techniques, in which the similarity between the DNA of organisms of the same or an evolutionary close species is exploited to reduce the storage demands of genome sequences up to 700 times. The general idea is to store in the compressed file only the differences between the to-be-compressed and a well-known reference sequence. In this paper, we propose a method for improving the performance of referential compression by removing the most costly phase of the process, the complete reference indexing. Our approach, called On-Demand Indexing (ODI) compresses human chromosomes five to ten times faster than other state-of-the-art tools (on average), while achieving similar compression ratios. PMID:26146838

  11. Compilation of DNA sequences of Escherichia coli (update 1990)

    PubMed Central

    Kröger, Manfred; Wahl, Ralf; Rice, Peter

    1990-01-01

    We have compiled the DNA sequence data for E.coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the second listing replacing and increasing the former listing roughly by one third. After deletion of all detected overlaps a total of 1 248 696 individual bp is found to be determined till the beginning of 1990. This corresponds to a total of 26.46% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2% derived from the sequence of lysogenic bacteriophage lambda and various insertion sequences. This compilation is now available in machine readable form from the EMBL data library. PMID:2185457

  12. Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction

    PubMed Central

    Laehnemann, David; Borkhardt, Arndt

    2016-01-01

    Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete Genomics DNA nanoball sequencing, Illumina sequencing by synthesis, Ion Torrent semiconductor sequencing, Pacific Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the features of the data they analyse, the parameters they determine from them and the data structures and algorithms they use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to consider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific benchmarks would greatly inform tool choices and future software development. The development of stand-alone error correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge about error profiles and from (re)combining ideas from the existing approaches presented here. PMID:26026159

  13. The most frequent short sequences in non-coding DNA.

    PubMed

    Subirana, Juan A; Messeguer, Xavier

    2010-03-01

    The purpose of this work is to determine the most frequent short sequences in non-coding DNA. They may play a role in maintaining the structure and function of eukaryotic chromosomes. We present a simple method for the detection and analysis of such sequences in several genomes, including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. We also study two chromosomes of man and mouse with a length similar to the whole genomes of the other species. We provide a list of the most common sequences of 9-14 bases in each genome. As expected, they are present in human Alu sequences. Our programs may also give a graph and a list of their position in the genome. Detection of clusters is also possible. In most cases, these sequences contain few alternating regions. Their intrinsic structure and their influence on nucleosome formation are not known. In particular, we have found new features of short sequences in C. elegans, which are distributed in heterogeneous clusters. They appear as punctuation marks in the chromosomes. Such clusters are not found in either A. thaliana or D. melanogaster. We discuss the possibility that they play a role in centromere function and homolog recognition in meiosis. PMID:19966278

  14. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing.

    PubMed

    Tamminga, Saskia; van Maarle, Merel; Henneman, Lidewij; Oudejans, Cees B M; Cornel, Martina C; Sistermans, Erik A

    2016-01-01

    Cell-free DNA (cfDNA) testing has recently become indispensable in diagnostic testing and screening. In the prenatal setting, this type of testing is often called noninvasive prenatal testing (NIPT). With a number of techniques, using either next-generation sequencing or single nucleotide polymorphism-based approaches, fetal cfDNA in maternal plasma can be analyzed to screen for rhesus D genotype, common chromosomal aneuploidies, and increasingly for testing other conditions, including monogenic disorders. With regard to screening for common aneuploidies, challenges arise when implementing NIPT in current prenatal settings. Depending on the method used (targeted or nontargeted), chromosomal anomalies other than trisomy 21, 18, or 13 can be detected, either of fetal or maternal origin, also referred to as unsolicited or incidental findings. For various biological reasons, there is a small chance of having either a false-positive or false-negative NIPT result, or no result, also referred to as a "no-call." Both pre- and posttest counseling for NIPT should include discussing potential discrepancies. Since NIPT remains a screening test, a positive NIPT result should be confirmed by invasive diagnostic testing (either by chorionic villus biopsy or by amniocentesis). As the scope of NIPT is widening, professional guidelines need to discuss the ethics of what to offer and how to offer. In this review, we discuss the current biochemical, clinical, and ethical challenges of cfDNA testing in the prenatal setting and its future perspectives including novel applications that target RNA instead of DNA. PMID:27117661

  15. Next generation sequencing of DNA-launched Chikungunya vaccine virus.

    PubMed

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-03-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3' untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. PMID:26855330

  16. Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore.

    PubMed

    Farimani, A Barati; Heiranian, M; Aluru, N R

    2015-02-19

    Biological nanopores have been extensively used for DNA base detection since these pores are widely available and tunable through mutations. Distinguishing bases of nucleic acids by passing them through nanopores has so far primarily relied on electrical signals-specifically, ionic currents through the nanopores. However, the low signal-to-noise ratio makes detection of ionic currents difficult. In this study, we show that the initially closed mechanosensitive channel of large conductance (MscL) protein pore opens for single-stranded DNA (ssDNA) translocation under an applied electric field. As each nucleotide translocates through the pore, a unique mechanical signal is observed-specifically, the tension in the membrane containing the MscL pore is different for each nucleotide. In addition to the membrane tension, we found that the ionic current is also different for the four nucleotide types. The initially closed MscL adapts its opening for nucleotide translocation due to the flexibility of the pore. This unique operation of MscL provides single nucleotide resolution in both electrical and mechanical signals. Finally, we also show that the speed of DNA translocation is roughly 1 order of magnitude slower in MscL compared to Mycobacterium smegmatis porin A (MspA), suggesting MscL to be an attractive protein pore for DNA sequencing. PMID:26262481

  17. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%. PMID:25186028

  18. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation.

    PubMed

    Chakraborty, Anirban; Wakamiya, Maki; Venkova-Canova, Tatiana; Pandita, Raj K; Aguilera-Aguirre, Leopoldo; Sarker, Altaf H; Singh, Dharmendra Kumar; Hosoki, Koa; Wood, Thomas G; Sharma, Gulshan; Cardenas, Victor; Sarkar, Partha S; Sur, Sanjiv; Pandita, Tej K; Boldogh, Istvan; Hazra, Tapas K

    2015-10-01

    Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans. PMID:26245904

  19. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    ERIC Educational Resources Information Center

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  20. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  1. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    PubMed Central

    2011-01-01

    Background High throughput sequencing (HTS) technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR). We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants. PMID:21599914

  2. DNA Targeting Sequence Improves Magnetic Nanoparticle-Based Plasmid DNA Transfection Efficiency in Model Neurons

    PubMed Central

    Vernon, Matthew M.; Dean, David A.; Dobson, Jon

    2015-01-01

    Efficient non-viral plasmid DNA transfection of most stem cells, progenitor cells and primary cell lines currently presents an obstacle for many applications within gene therapy research. From a standpoint of efficiency and cell viability, magnetic nanoparticle-based DNA transfection is a promising gene vectoring technique because it has demonstrated rapid and improved transfection outcomes when compared to alternative non-viral methods. Recently, our research group introduced oscillating magnet arrays that resulted in further improvements to this novel plasmid DNA (pDNA) vectoring technology. Continued improvements to nanomagnetic transfection techniques have focused primarily on magnetic nanoparticle (MNP) functionalization and transfection parameter optimization: cell confluence, growth media, serum starvation, magnet oscillation parameters, etc. Noting that none of these parameters can assist in the nuclear translocation of delivered pDNA following MNP-pDNA complex dissociation in the cell’s cytoplasm, inclusion of a cassette feature for pDNA nuclear translocation is theoretically justified. In this study incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid improved transfection efficiency in model neurons, presumably from increased nuclear translocation. This observation became most apparent when comparing the response of the dividing SH-SY5Y precursor cell to the non-dividing and differentiated SH-SY5Y neuroblastoma cells. PMID:26287182

  3. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGESBeta

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; Johnson, Reid C.; Leng, Fenfei

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  4. Long DNA sequences and large data sets: investigating the Quaternary via ancient DNA

    NASA Astrophysics Data System (ADS)

    Hofreiter, Michael

    2008-12-01

    Progress in technical development has allowed piecing together increasingly long DNA sequences from subfossil remains of both extinct and extant species. At the same time, more and more species are analyzed on the population level, leading to a better understanding of population dynamics over time. Finally, new sequencing techniques have allowed targeting complete nuclear genomes of extinct species. The sequences obtained yield insights into a variety of research fields. First, phylogenetic relationships can be resolved with much greater accuracy and it becomes possible to date divergence events of species during and before the Quaternary. Second, large data sets in population genetics facilitate the assessment of changes in genetic diversity over time, an approach that has substantially revised our views about phylogeographic patterns and population dynamics. In the future, the combination of population genetics with long DNA sequences, e.g. complete mitochondrial (mt) DNA genomes, should lead to much more precise estimates of population size changes to be made. This will enable us to make inferences about - and hopefully understand - the causes for faunal turnover and extinctions during the Quaternary. Third, with regard to the nuclear genome, complete genes and genomes can now be sequenced and studied with regard to their function, revealing insights about the numerous traits of extinct species that are not preserved in the fossil record.

  5. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  6. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  7. cDNA encoding a polypeptide including a hevein sequence

    SciTech Connect

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  8. Sequence Heterogeneity Accelerates Protein Search for Targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey; Kolomeisky, Anatoly

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry and heterogeneity of a genome. The work was supported by the Welch Foundation (Grant C-1559), by the NSF (Grant CHE-1360979), and by the Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-1427654).

  9. Random-breakage mapping method applied to human DNA sequences

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The random-breakage mapping method [Game et al. (1990) Nucleic Acids Res., 18, 4453-4461] was applied to DNA sequences in human fibroblasts. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated calls, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with DNA probes recognizing the single copy sequences of interest. The Southern blots show a band for the unbroken restriction fragments and a smear below this band due to radiation induced random breaks. This smear pattern contains two discontinuities in intensity at positions that correspond to the distance of the hybridization site to each end of the restriction fragment. By analyzing the positions of those discontinuities we confirmed the previously mapped position of the probe DXS1327 within a NotI fragment on the X chromosome, thus demonstrating the validity of the technique. We were also able to position the probes D21S1 and D21S15 with respect to the ends of their corresponding NotI fragments on chromosome 21. A third chromosome 21 probe, D21S11, has previously been reported to be close to D21S1, although an uncertainty about a second possible location existed. Since both probes D21S1 and D21S11 hybridized to a single NotI fragment and yielded a similar smear pattern, this uncertainty is removed by the random-breakage mapping method.

  10. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  11. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  12. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  13. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    PubMed

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. PMID:27506345

  14. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    PubMed

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene. PMID:25687521

  15. 3D-dynamic representation of DNA sequences.

    PubMed

    Wąż, Piotr; Bielińska-Wąż, Dorota

    2014-03-01

    A new 3D graphical representation of DNA sequences is introduced. This representation is called 3D-dynamic representation. It is a generalization of the 2D-dynamic dynamic representation. The sequences are represented by sets of "material points" in the 3D space. The resulting 3D-dynamic graphs are treated as rigid bodies. The descriptors characterizing the graphs are analogous to the ones used in the classical dynamics. The classification diagrams derived from this representation are presented and discussed. Due to the third dimension, "the history of the graph" can be recognized graphically because the 3D-dynamic graph does not overlap with itself. Specific parts of the graphs correspond to specific parts of the sequence. This feature is essential for graphical comparisons of the sequences. Numerically, both 2D and 3D approaches are of high quality. In particular, a difference in a single base between two sequences can be identified and correctly described (one can identify which base) by both 2D and 3D methods. PMID:24567158

  16. Phylogenetic inference of Indian malaria vectors from multilocus DNA sequences.

    PubMed

    Dixit, Jyotsana; Srivastava, Hemlata; Sharma, Meenu; Das, Manoj K; Singh, O P; Raghavendra, K; Nanda, Nutan; Dash, Aditya P; Saksena, D N; Das, Aparup

    2010-08-01

    Inferences on the taxonomic positions, phylogenetic interrelationships and divergence time among closely related species of medical importance is essential to understand evolutionary patterns among species, and based on which, disease control measures could be devised. To this respect, malaria is one of the important mosquito borne diseases of tropical and sub-tropical parts of the globe. Taxonomic status of malaria vectors has been so far documented based on morphological, cytological and few molecular genetic features. However, utilization of multilocus DNA sequences in phylogenetic inferences are still in dearth. India contains one of the richest resources of mosquito species diversity but little molecular taxonomic information is available in Indian malaria vectors. We herewith utilized the whole genome sequence information of An. gambiae to amplify and sequence three orthologous nuclear genetic regions in six Indian malaria vector species (An. culicifacies, An. minimus, An. sundaicus, An. fluviatilis, An. annularis and An. stephensi). Further, we utilized the previously published DNA sequence information on the COII and ITS2 genes in all the six species, making the total number of loci to five. Multilocus molecular phylogenetic study of Indian anophelines and An. gambiae was conducted at each individual genetic region using Neighbour Joining (NJ), Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian approaches. Although tree topologies with COII, and ITS2 genes were similar, for no other three genetic regions similar tree topologies were observed. In general, the reconstructed phylogenetic status of Indian malaria vectors follows the pattern based on morphological and cytological classifications that was reconfirmed with COII and ITS2 genetic regions. Further, divergence times based on COII gene sequences were estimated among the seven Anopheles species which corroborate the earlier hypothesis on the radiation of different species of the Anopheles

  17. Compilation of DNA sequences of Escherichia coli (update 1993).

    PubMed Central

    Kröger, M; Wahl, R; Rice, P

    1993-01-01

    We have compiled the DNA sequence data for E. coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the fifth listing replacing and increasing the former listings substantially. However, in order to save space this printed version contains DNA sequence information only, if they are publically available in electronic form. The complete compilation including a full set of genetic map data and the E. coli protein index can be obtained in machine readable form from the EMBL data library (ECD release 15) as a part of the CD-ROM issue of the EMBL sequence database, released and updated every three months. After deletion of all detected overlaps a total of 2,353,635 individual bp is found to be determined till the end of April 1993. This corresponds to a total of 49.87% of the entire E. coli chromosome consisting of about 4,720 kbp. This number may actually be higher by 9161 bp derived from other strains of E. coli. PMID:8332520

  18. Discovering Motifs in Ranked Lists of DNA Sequences

    PubMed Central

    Eden, Eran; Lipson, Doron; Yogev, Sivan; Yakhini, Zohar

    2007-01-01

    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall

  19. Sequence-dependent Structural Variation in DNA Undergoing Intrahelical Inspection by the DNA glycosylase MutM

    SciTech Connect

    Sung, Rou-Jia; Zhang, Michael; Qi, Yan; Verdine, Gregory L.

    2012-08-31

    MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ('extrudogenic') backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.

  20. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

    PubMed Central

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  1. Legume genomics: understanding biology through DNA and RNA sequencing

    PubMed Central

    O'Rourke, Jamie A.; Bolon, Yung-Tsi; Bucciarelli, Bruna; Vance, Carroll P.

    2014-01-01

    Background The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. Scope and Conclusions This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes. PMID:24769535

  2. Retroviral DNA Sequences as a Means for Determining Ancient Diets

    PubMed Central

    Rivera-Perez, Jessica I.; Cano, Raul J.; Narganes-Storde, Yvonne; Chanlatte-Baik, Luis; Toranzos, Gary A.

    2015-01-01

    For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host’s diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures. PMID:26660678

  3. Retroviral DNA Sequences as a Means for Determining Ancient Diets.

    PubMed

    Rivera-Perez, Jessica I; Cano, Raul J; Narganes-Storde, Yvonne; Chanlatte-Baik, Luis; Toranzos, Gary A

    2015-01-01

    For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host's diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures. PMID:26660678

  4. Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

    PubMed Central

    Catania, Sandra; Pidoux, Alison L.; Allshire, Robin C.

    2015-01-01

    Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription—TFIIS and Ubp3—assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an

  5. Graphical representation for DNA sequences via joint diagonalization of matrix pencil.

    PubMed

    Yu, Hong-Jie; Huang, De-Shuang

    2013-05-01

    Graphical representations provide us with a tool allowing visual inspection of the sequences. To visualize and compare different DNA sequences, a novel alignment-free method is proposed in this paper for both graphical representation and similarity analysis of sequences. We introduce a transformation to represent each DNA sequence with neighboring nucleotide matrix. Then, based on approximate joint diagonalization theory, we transform each DNA primary sequence into a corresponding eigenvalue vector (EVV), which can be considered as numerical characterization of DNA sequence. Meanwhile, we get graphical representation for DNA sequence via the plot of EVV in 2-D plane. Moreover, using k-means, we cluster these feature curves of sequences into several reasonable subclasses. In addition, similarity analyses are performed by computing the distances among the obtained vectors. This approach contains more sequence information, and it analyzes all the involved sequence information jointly rather than separately. A typical dendrogram constructed by this method demonstrates the effectiveness of our approach. PMID:24592449

  6. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase

    PubMed Central

    Minczuk, Michal; Papworth, Monika A.; Kolasinska, Paulina; Murphy, Michael P.; Klug, Aaron

    2006-01-01

    We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selective binding of mitochondria-specific ZFPs to mtDNA was exemplified by targeting the T8993G mutation, which causes two mitochondrial diseases, neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and also maternally inherited Leigh's syndrome. To develop a system that allows the monitoring of site-specific alteration of mtDNA we combined a ZFP with the easily assayed DNA-modifying activity of hDNMT3a methylase. Expression of the mutation-specific chimeric methylase resulted in the selective methylation of cytosines adjacent to the mutation site. This is a proof of principle that it is possible to target and alter mtDNA in a sequence-specific manner by using zinc finger technology. PMID:17170133

  7. Discriminative prediction of mammalian enhancers from DNA sequence

    PubMed Central

    Lee, Dongwon; Karchin, Rachel; Beer, Michael A.

    2011-01-01

    Accurately predicting regulatory sequences and enhancers in entire genomes is an important but difficult problem, especially in large vertebrate genomes. With the advent of ChIP-seq technology, experimental detection of genome-wide EP300/CREBBP bound regions provides a powerful platform to develop predictive tools for regulatory sequences and to study their sequence properties. Here, we develop a support vector machine (SVM) framework which can accurately identify EP300-bound enhancers using only genomic sequence and an unbiased set of general sequence features. Moreover, we find that the predictive sequence features identified by the SVM classifier reveal biologically relevant sequence elements enriched in the enhancers, but we also identify other features that are significantly depleted in enhancers. The predictive sequence features are evolutionarily conserved and spatially clustered, providing further support of their functional significance. Although our SVM is trained on experimental data, we also predict novel enhancers and show that these putative enhancers are significantly enriched in both ChIP-seq signal and DNase I hypersensitivity signal in the mouse brain and are located near relevant genes. Finally, we present results of comparisons between other EP300/CREBBP data sets using our SVM and uncover sequence elements enriched and/or depleted in the different classes of enhancers. Many of these sequence features play a role in specifying tissue-specific or developmental-stage-specific enhancer activity, but our results indicate that some features operate in a general or tissue-independent manner. In addition to providing a high confidence list of enhancer targets for subsequent experimental investigation, these results contribute to our understanding of the general sequence structure of vertebrate enhancers. PMID:21875935

  8. Entropy and long-range correlations in DNA sequences.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-12-01

    We analyze the structure of DNA molecules of different organisms by using the additive Markov chain approach. Transforming nucleotide sequences into binary strings, we perform statistical analysis of the corresponding "texts". We develop the theory of N-step additive binary stationary ergodic Markov chains and analyze their differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain by means of the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses two point correlators instead of probability of block occurring, it makes possible to calculate the entropy of subsequences at much longer distances than with the use of the standard methods. We utilize the obtained analytical result for numerical evaluation of the entropy of coarse-grained DNA texts. We believe that the entropy study can be used for biological classification of living species. PMID:25213853

  9. In vivo generation of DNA sequence diversity for cellular barcoding

    PubMed Central

    Peikon, Ian D.; Gizatullina, Diana I.; Zador, Anthony M.

    2014-01-01

    Heterogeneity is a ubiquitous feature of biological systems. A complete understanding of such systems requires a method for uniquely identifying and tracking individual components and their interactions with each other. We have developed a novel method of uniquely tagging individual cells in vivo with a genetic ‘barcode’ that can be recovered by DNA sequencing. Our method is a two-component system comprised of a genetic barcode cassette whose fragments are shuffled by Rci, a site-specific DNA invertase. The system is highly scalable, with the potential to generate theoretical diversities in the billions. We demonstrate the feasibility of this technique in Escherichia coli. Currently, this method could be employed to track the dynamics of populations of microbes through various bottlenecks. Advances of this method should prove useful in tracking interactions of cells within a network, and/or heterogeneity within complex biological samples. PMID:25013177

  10. Nonlinear analysis of correlations in Alu repeat sequences in DNA

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Huang, Yanzhao; Li, Mingfeng; Xu, Ruizhen; Xiao, Saifeng

    2003-12-01

    We report on a nonlinear analysis of deterministic structures in Alu repeats, one of the richest repetitive DNA sequences in the human genome. Alu repeats contain the recognition sites for the restriction endonuclease AluI, which is what gives them their name. Using the nonlinear prediction method developed in chaos theory, we find that all Alu repeats have novel deterministic structures and show strong nonlinear correlations that are absent from exon and intron sequences. Furthermore, the deterministic structures of Alus of younger subfamilies show panlike shapes. As young Alus can be seen as mutation free copies from the “master genes,” it may be suggested that the deterministic structures of the older subfamilies are results of an evolution from a “panlike” structure to a more diffuse correlation pattern due to mutation.

  11. Optimizing Data Intensive GPGPU Computations for DNA Sequence Alignment

    PubMed Central

    Trapnell, Cole; Schatz, Michael C.

    2009-01-01

    MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the data-intensive computation of aligning next generation DNA sequence data to a reference sequence for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU version of the alignment code and nearly 4× faster in total computation time than MUMmerGPU 1.0. We exhaustively examined 128 GPU data layout configurations to improve register footprint and running time and conclude higher occupancy has greater impact than reduced latency. MUMmerGPU is available open-source at http://mummergpu.sourceforge.net. PMID:20161021

  12. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context

    PubMed Central

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  13. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    PubMed

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  14. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  15. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  16. Sequence dependence of isothermal DNA amplification via EXPAR

    PubMed Central

    Qian, Jifeng; Ferguson, Tanya M.; Shinde, Deepali N.; Ramírez-Borrero, Alissa J.; Hintze, Arend; Adami, Christoph; Niemz, Angelika

    2012-01-01

    Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naïve Bayes classification. The methods identified well and poorly performing EXPAR templates with 67–70% sensitivity and 77–80% specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. PMID:22416064

  17. Dehydromonocrotaline generates sequence-selective N-7 guanine alkylation and heat and alkali stable multiple fragment DNA crosslinks.

    PubMed

    Pereira, T N; Webb, R I; Reilly, P E; Seawright, A A; Prakash, A S

    1998-12-01

    Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences. In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA. PMID:9826770

  18. Dehydromonocrotaline generates sequence-selective N-7 guanine alkylation and heat and alkali stable multiple fragment DNA crosslinks.

    PubMed Central

    Pereira, T N; Webb, R I; Reilly, P E; Seawright, A A; Prakash, A S

    1998-01-01

    Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences. In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA. PMID:9826770

  19. H3 and H4 histone cDNA sequences from Xenopus: a sequence comparison of H4 genes.

    PubMed Central

    Turner, P C; Woodland, H R

    1982-01-01

    Ovarian poly (A) + RNA from Xenopus laevis and Xenopus borealis was used to construct two cDNA libraries which were screened for histone sequences. cDNA clones to H4 mRNA were obtained from both species and an H3 cDNA clone from Xenopus laevis. The complete DNA sequences of these clones have been determined and are presented. These new sequences are compared with other H3 and H4 DNA sequences both in the coding and 3' noncoding regions. We find that there is considerable non-random codon usage in ten H4 genes. In addition there are some sequence similarities in the 3' noncoding regions of H3 and H4 genes. PMID:6896750

  20. Sequence and Temperature Influence on Kinetics of DNA Strand Displacement at Gold Electrode Surfaces.

    PubMed

    Biala, Katarzyna; Sedova, Ada; Flechsig, Gerd-Uwe

    2015-09-16

    Understanding complex contributions of surface environment to tethered nucleic acid sensing experiments has proven challenging, yet it is important because it is essential for interpretation and calibration of indispensable methods, such as microarrays. We investigate the effects of DNA sequence and solution temperature gradients on the kinetics of strand displacement at heated gold wire electrodes, and at gold disc electrodes in a heated solution. Addition of a terminal double mismatch (toehold) provides a reduction in strand displacement energy barriers sufficient to probe the secondary mechanisms involved in the hybridization process. In four different DNA capture probe sequences (relevant for the identification of genetically modified maize MON810), all but one revealed a high activation energy up to 200 kJ/mol during hybridization, that we attribute to displacement of protective strands by capture probes. Protective strands contain 4 to 5 mismatches to ease their displacement by the surface-confined probes at the gold electrodes. A low activation energy (30 kJ/mol) was observed for the sequence whose protective strand contained a toehold and one central mismatch, its kinetic curves displayed significantly different shapes, and we observed a reduced maximum signal intensity as compared to other sequences. These findings point to potential sequence-related contributions to oligonucleotide diffusion influencing kinetics. Additionally, for all sequences studied with heated wire electrodes, we observed a 23 K lower optimal hybridization temperature in comparison with disc electrodes in heated solution, and greatly reduced voltammetric signals after taking into account electrode surface area. We propose that thermodiffusion due to temperature gradients may influence both hybridization and strand displacement kinetics at heated microelectrodes, an explanation supported by computational fluid dynamics. DNA assays with surface-confined capture probes and temperature

  1. Noncontinuously binding loop-out primers for avoiding problematic DNA sequences in PCR and sanger sequencing.

    PubMed

    Sumner, Kelli; Swensen, Jeffrey J; Procter, Melinda; Jama, Mohamed; Wooderchak-Donahue, Whitney; Lewis, Tracey; Fong, Michael; Hubley, Lindsey; Schwarz, Monica; Ha, Youna; Paul, Eleri; Brulotte, Benjamin; Lyon, Elaine; Bayrak-Toydemir, Pinar; Mao, Rong; Pont-Kingdon, Genevieve; Best, D Hunter

    2014-09-01

    We present a method in which noncontinuously binding (loop-out) primers are used to exclude regions of DNA that typically interfere with PCR amplification and/or analysis by Sanger sequencing. Several scenarios were tested using this design principle, including M13-tagged PCR primers, non-M13-tagged PCR primers, and sequencing primers. With this technique, a single oligonucleotide is designed in two segments that flank, but do not include, a short region of problematic DNA sequence. During PCR amplification or sequencing, the problematic region is looped-out from the primer binding site, where it does not interfere with the reaction. Using this method, we successfully excluded regions of up to 46 nucleotides. Loop-out primers were longer than traditional primers (27 to 40 nucleotides) and had higher melting temperatures. This method allows the use of a standardized PCR protocol throughout an assay, keeps the number of PCRs to a minimum, reduces the chance for laboratory error, and, above all, does not interrupt the clinical laboratory workflow. PMID:25017792

  2. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed. PMID:24865923

  3. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing.

    PubMed

    Leaché, Adam D; Chavez, Andreas S; Jones, Leonard N; Grummer, Jared A; Gottscho, Andrew D; Linkem, Charles W

    2015-03-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both "recent" and "deep" timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  4. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes.

    PubMed Central

    Sidhu, H; Ogden, S D; Lung, H Y; Luttge, B G; Baetz, A L; Peck, A B

    1997-01-01

    Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed. PMID:9150242

  5. Hypervariable minisatellite DNA sequences in the Indian peafowl Pavo cristatus.

    PubMed

    Hanotte, O; Burke, T; Armour, J A; Jeffreys, A J

    1991-04-01

    We report here for the first time the large-scale isolation of hypervariable minisatellite DNA sequences from a non-human species, the Indian peafowl (Pavo cristatus). A size-selected genomic DNA fraction, rich in hypervariable minisatellites, was cloned into Charomid 9-36. This library was screened using two multilocus hypervariable probes, 33.6 and 33.15 and also, in a "probe-walking" approach, with five of the peafowl minisatellites initially isolated. Forty-eight positively hybridizing clones were characterized and found to originate from 30 different loci, 18 of which were polymorphic. Five of these variable minisatellite loci were studied further. They all showed Mendelian inheritance. The heterozygosities of these loci were relatively low (range 22-78%) in comparison with those of previously cloned human loci, as expected in view of inbreeding in our semicaptive study population. No new length allele mutations were observed in families and the mean mutation rate per locus is low (less than 0.004, 95% confidence maximum). These loci were also investigated by cross-species hybridization in related taxa. The ability of the probes to detect hypervariable sequences in other species within the same avian family was found to vary, from those probes that are species-specific to those that are apparently general to the family. We also illustrate the potential usefulness of these probes for paternity analysis in a study of sexual selection, and discuss the general application of specific hypervariable probes in behavioral and evolutionary studies. PMID:1674723

  6. Partition enrichment of nucleotide sequences (PINS)--a generally applicable, sequence based method for enrichment of complex DNA samples.

    PubMed

    Kvist, Thomas; Sondt-Marcussen, Line; Mikkelsen, Marie Just

    2014-01-01

    The dwindling cost of DNA sequencing is driving transformative changes in various biological disciplines including medicine, thus resulting in an increased need for routine sequencing. Preparation of samples suitable for sequencing is the starting point of any practical application, but enrichment of the target sequence over background DNA is often laborious and of limited sensitivity thereby limiting the usefulness of sequencing. The present paper describes a new method, Probability directed Isolation of Nucleic acid Sequences (PINS), for enrichment of DNA, enabling the sequencing of a large DNA region surrounding a small known sequence. A 275,000 fold enrichment of a target DNA sample containing integrated human papilloma virus is demonstrated. Specifically, a sample containing 0.0028 copies of target sequence per ng of total DNA was enriched to 786 copies per ng. The starting concentration of 0.0028 target copies per ng corresponds to one copy of target in a background of 100,000 complete human genomes. The enriched sample was subsequently amplified using rapid genome walking and the resulting DNA sequence revealed not only the sequence of a the truncated virus, but also 1026 base pairs 5' and 50 base pairs 3' to the integration site in chromosome 8. The demonstrated enrichment method is extremely sensitive and selective and requires only minimal knowledge of the sequence to be enriched and will therefore enable sequencing where the target concentration relative to background is too low to allow the use of other sample preparation methods or where significant parts of the target sequence is unknown. PMID:25203653

  7. Partition Enrichment of Nucleotide Sequences (PINS) - A Generally Applicable, Sequence Based Method for Enrichment of Complex DNA Samples

    PubMed Central

    Kvist, Thomas; Sondt-Marcussen, Line; Mikkelsen, Marie Just

    2014-01-01

    The dwindling cost of DNA sequencing is driving transformative changes in various biological disciplines including medicine, thus resulting in an increased need for routine sequencing. Preparation of samples suitable for sequencing is the starting point of any practical application, but enrichment of the target sequence over background DNA is often laborious and of limited sensitivity thereby limiting the usefulness of sequencing. The present paper describes a new method, Probability directed Isolation of Nucleic acid Sequences (PINS), for enrichment of DNA, enabling the sequencing of a large DNA region surrounding a small known sequence. A 275,000 fold enrichment of a target DNA sample containing integrated human papilloma virus is demonstrated. Specifically, a sample containing 0.0028 copies of target sequence per ng of total DNA was enriched to 786 copies per ng. The starting concentration of 0.0028 target copies per ng corresponds to one copy of target in a background of 100,000 complete human genomes. The enriched sample was subsequently amplified using rapid genome walking and the resulting DNA sequence revealed not only the sequence of a the truncated virus, but also 1026 base pairs 5′ and 50 base pairs 3′ to the integration site in chromosome 8. The demonstrated enrichment method is extremely sensitive and selective and requires only minimal knowledge of the sequence to be enriched and will therefore enable sequencing where the target concentration relative to background is too low to allow the use of other sample preparation methods or where significant parts of the target sequence is unknown. PMID:25203653

  8. Mylodon darwinii DNA sequences from ancient fecal hair shafts.

    PubMed

    Clack, Andrew A; MacPhee, Ross D E; Poinar, Hendrik N

    2012-01-20

    Preserved hair has been increasingly used as an ancient DNA source in high throughput sequencing endeavors, and it may actually offer several advantages compared to more traditional ancient DNA substrates like bone. However, cold environments have yielded the most informative ancient hair specimens, while its preservation, and thus utility, in temperate regions is not well documented. Coprolites could represent a previously underutilized preservation substrate for hairs, which, if present therein, represent macroscopic packages of specific cells that are relatively simple to separate, clean and process. In this pilot study, we report amplicons 147-152 base pairs in length (w/primers) from hair shafts preserved in a south Chilean coprolite attributed to Darwin's extinct ground sloth, Mylodon darwinii. Our results suggest that hairs preserved in coprolites from temperate cave environments can serve as an effective source of ancient DNA. This bodes well for potential molecular-based population and phylogeographic studies on sloths, several species of which have been understudied despite leaving numerous coprolites in caves across of the Americas. PMID:21640569

  9. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the

  10. Construction of a Sequencing Library from Circulating Cell-Free DNA.

    PubMed

    Fang, Nan; Löffert, Dirk; Akinci-Tolun, Rumeysa; Heitz, Katja; Wolf, Alexander

    2016-01-01

    Circulating DNA is cell-free DNA (cfDNA) in serum or plasma that can be used for non-invasive prenatal testing, as well as cancer diagnosis, prognosis, and stratification. High-throughput sequence analysis of the cfDNA with next-generation sequencing technologies has proven to be a highly sensitive and specific method in detecting and characterizing mutations in cancer and other diseases, as well as aneuploidy during pregnancy. This unit describes detailed procedures to extract circulating cfDNA from human serum and plasma and generate sequencing libraries from a wide concentration range of circulating DNA. © 2016 by John Wiley & Sons, Inc. PMID:27038390

  11. Long-range correlations and charge transport properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui

    2010-04-01

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5sequence displays a transition from correlation behavior to anticorrelation behavior. The resonant peaks of the transmission coefficient in genomic sequences can survive in longer sequence length than in random sequences but in shorter sequence length than in quasiperiodic sequences. It is shown that the genomic sequences have long-range correlation properties to some extent but the correlations are not strong enough to maintain the scale invariance properties.

  12. Human phosphoribosylformylglycineamide amidotransferase (FGARAT): regional mapping, complete coding sequence, isolation of a functional genomic clone, and DNA sequence analysis.

    PubMed

    Patterson, D; Bleskan, J; Gardiner, K; Bowersox, J

    1999-11-01

    Purines play essential roles in many cellular functions, including DNA replication, transcription, intra- and extra-cellular signaling, energy metabolism, and as coenzymes for many biochemical reactions. The de-novo synthesis of purines requires 10 enzymatic steps for the production of inosine monophosphate (IMP). Defects in purine metabolism are associated with human diseases. Further, many anticancer agents function as inhibitors of the de-novo biosynthetic pathway. Genes or cDNAs for most of the enzymes comprising this pathway have been isolated from humans or other mammals. One notable exception is the phosphoribosylformylglycineamide amidotransferase (FGARAT) gene, which encodes the fourth step of this pathway. This gene has been cloned from numerous microorganisms and from Drosophila melanogaster and C. elegans. We report here the identification of a human cDNA containing the coding region of the FGARAT mRNA and the isolation of a P1 clone that contains an intact human FGARAT gene. The P1 clone corrects the purine auxotrophy and protein deficiency of Chinese hamster ovary (CHO) cell mutants (AdeB) deficient in both the activity and the protein for FGARAT. The P1 clone was used to regionally map the FGARAT gene to chromosome region 17p13, a location consistent with our prior assignment of this gene to chromosome 17. A comparison of the DNA sequence of the human FGARAT and FGARAT DNA sequence from 17 other organisms is reported. The isolation of this gene means that DNA clones for all the 10 steps of IMP synthesis have been isolated from humans or other mammals. PMID:10548741

  13. Highly Iterated Palindromic Sequences (HIPs) and Their Relationship to DNA Methyltransferases

    PubMed Central

    Elhai, Jeff

    2015-01-01

    The sequence GCGATCGC (Highly Iterated Palindrome, HIP1) is commonly found in high frequency in cyanobacterial genomes. An important clue to its function may be the presence of two orphan DNA methyltransferases that recognize internal sequences GATC and CGATCG. An examination of genomes from 97 cyanobacteria, both free-living and obligate symbionts, showed that there are exceptional cases in which HIP1 is at a low frequency or nearly absent. In some of these cases, it appears to have been replaced by a different GC-rich palindromic sequence, alternate HIPs. When HIP1 is at a high frequency, GATC- and CGATCG-specific methyltransferases are generally present in the genome. When an alternate HIP is at high frequency, a methyltransferase specific for that sequence is present. The pattern of 1-nt deviations from HIP1 sequences is biased towards the first and last nucleotides, i.e., those distinguish CGATCG from HIP1. Taken together, the results point to a role of DNA methylation in the creation or functioning of HIP sites. A model is presented that postulates the existence of a GmeC-dependent mismatch repair system whose activity creates and maintains HIP sequences. PMID:25789551

  14. PIG11 protein binds to DNA in sequence-independent manner in vitro

    SciTech Connect

    Xiong, Xiu-Fang; Li, Hui; Cao, En-Hua . E-mail: caoeh@sun5.ibp.ac.cn

    2007-06-22

    PIG11 (p53-induced protein 11), one of early transcriptional targets of tumor suppressor p53, was up-regulated in the induction of apoptosis or cell growth inhibition by multiple chemopreventive agents. However, its biological role remains unclear. Here, we expressed His{sub 6}-tagged PIG11 protein in Escherichia coli and demonstrated the recombinant His{sub 6}-tagged PIG11 protein could bind to supercoiled and relaxed closed circular plasmid DNA or linear DNA with different length using gel retardation assays in vitro. The interaction between DNA and PIG11 protein was sequence-independent and related to charge effect. The reducing thiol group in PIG11 protein was involved in the binding activity of PIG11 to DNA. Furthermore, the images of atomic force microscopy directly confirmed the binding of DNA and PIG11 protein and showed the PIG11-DNA complex formed a beads-on-a-string appearance in which PIG11 protein associated with DNA as polymer. These findings suggest that PIG11 protein may play an important role by interaction with other biological molecules in the regulation of apoptosis and provided us a novel angel of view to explore the possible function of PIG11 in vivo.

  15. DNA sequences, recombinant DNA molecules and processes for producing bovine growth hormone-like polypeptides in high yield

    SciTech Connect

    Buell, G.N.

    1987-09-15

    This patent describes a process for increasing the yield of a bovine growth hormone-like polypeptide to at least 100 times that of a bovine growth hormone-like polypeptide encoded by a DNA sequence. The process comprises the steps of culturing a host transformed with a recombinant DNA molecule comprising DNA sequence encoding a Met ..lambda.. or ..lambda.. bovine growth hormone-like polypetide operatively linked to an expression control sequence. The ..lambda.. is an amino terminal deletion from the amino acid sequence of mature bovine growth hormone.

  16. DNA sequence-specific recognition by a transcriptional regulator requires indirect readout of A-tracts

    PubMed Central

    Mendieta, Jesús; Pérez-Lago, Laura; Salas, Margarita; Camacho, Ana

    2007-01-01

    The bacteriophage Ø29 transcriptional regulator p4 binds to promoters of different intrinsic activities. The p4–DNA complex contains two identical protomers that make similar interactions with the target sequence 5′-AACTTTTT-15 bp-AAAATGTT-3′. To define how the various elements in the target sequence contribute to p4's affinity, we studied p4 binding to a series of mutated binding sites. The binding specificity depends critically on base pairs of the target sequence through both direct as well as indirect readout. There is only one specific contact between a base and an amino acid residue; other contacts take place with the phosphate backbone. Alteration of direct amino acid–base contacts, or mutation of non-contacted A·T base pairs at A-tracts abolished binding. We generated three 5 ns molecular dynamics (MD) simulations to investigate the basis for the p4–DNA complex specificity. Recognition is controlled by the protein and depends on DNA dynamic properties. MD results on protein–DNA contacts and the divergence of p4 affinity to modified binding sites reveal an inherent asymmetry, which is required for p4-specific binding and may be crucial for transcription regulation. PMID:17452358

  17. Sequence rearrangement and duplication of double stranded fibronectin cDNA probably occurring during cDNA synthesis by AMV reverse transcriptase and Escherichia coli DNA polymerase I.

    PubMed Central

    Fagan, J B; Pastan, I; de Crombrugghe, B

    1980-01-01

    Two cloned cDNAs derived from the mRNA for cell fibronectin have been sequenced, providing evidence that transcription with AMV reverse transcriptase or Escherichia coli DNA polymerase I may not always result in double stranded cDNA that is exactly homologous with its mRNA template. Instead, the sequences of these cloned cDNAs are consistent with the duplication and rearrangement of sequences during synthesis of double stranded cDNA. PMID:6159581

  18. The evolution processes of DNA sequences, languages and carols

    NASA Astrophysics Data System (ADS)

    Hauck, Jürgen; Henkel, Dorothea; Mika, Klaus

    2001-04-01

    The sequences of bases A, T, C and G of about 100 enolase, secA and cytochrome DNA were analyzed for attractive or repulsive interactions by the numbers T 1,T 2,T 3; r of nearest, next-nearest and third neighbor bases of the same kind and the concentration r=other bases/analyzed base. The area of possible T1, T2 values is limited by the linear borders T 2=2T 1-2, T 2=0 or T1=0 for clustering, attractive or repulsive interactions and the border T2=-2 T1+2(2- r) for a variation from repulsive to attractive interactions at r⩽2. Clustering is preferred by most bases in sequences of enolases and secA’ s. Major deviations with repulsive interactions of some bases are observed for archaea bacteria in secA and for highly developed animals and the human species in enolase sequences. The borders of the structure map for enthalpy stabilized structures with maximum interactions are approached in few cases. Most letters of the natural languages and some music notes are at the borders of the structure map.

  19. The DNA sequence of the human X chromosome.

    PubMed

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  20. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  1. Sequence-selective metal ion binding to DNA oligonucleotides.

    PubMed

    Frøystein, N A; Davis, J T; Reid, B R; Sletten, E

    1993-07-01

    Metal ion titrations of several DNA oligonucleotides, 10 dodecamers and one decamer have been monitored by 1H NMR spectroscopy in order to elucidate metal ion binding patterns. Also, the effects of paramagnetic impurities on resonance linewidths and NOESY cross-peak intensities have been reversed by EDTA back-titration experiments. 1H 1D NMR spectra were recorded after successive additions of aliquots of different metal salts to oligonucleotide samples. Paramagnetic manganese(II) salts were used in most cases, but a few samples were also titrated with diamagnetic zinc(II). From this study, we conclude that there exists a sequence-selective metal ion binding pattern. The metal ions bind predominantly to 5'-G in the contexts 5'-GC and 5'-GA. The order of preference seems to be GG > or = GA > GT > > GC. No evidence of metal ion binding to 5'-G in 5'-GC steps or to non-G residues was found. The H6 or H8 resonances on preceding (5'-) bases were affected by the adjacent bound paramagnetic metal ion, but no effect was observed on the protons of the succeeding (3'-) base. The metal binding site in the duplexes is most likely at G-N7, as manifested by the pronounced paramagnetic line broadening or diamagnetic shift of the G-H8 signal. This sequence selectivity may be qualitatively explained by a sequence-dependent variation in the molecular electrostatic potentials of guanine residues (MEPs) along the oligonucleotide chain. PMID:8363924

  2. Challenges in DNA motion control and sequence readout using nanopore devices

    PubMed Central

    Carson, Spencer; Wanunu, Meni

    2016-01-01

    Nanopores are being hailed as a potential next-generation DNA sequencer that could provide cheap, high-throughput DNA analysis. In this review we present a detailed summary of the various sensing techniques being investigated for use in DNA sequencing and mapping applications. A crucial impasse to the success of nanopores as a reliable DNA analysis tool is the fast and stochastic nature of DNA translocation. We discuss the incorporation of biological motors to step DNA through a pore base-by-base, as well as the many experimental modifications attempted for the purpose of slowing and controlling DNA transport. PMID:25642629

  3. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence

    PubMed Central

    Littler, D. R.; Alvarez-Fernández, M.; Stein, A.; Hibbert, R. G.; Heidebrecht, T.; Aloy, P.; Medema, R. H.; Perrakis, A.

    2010-01-01

    FoxM1 is a member of the Forkhead family of transcription factors and is implicated in inducing cell proliferation and some forms of tumorigenesis. It binds promoter regions with a preference for tandem repeats of a consensus ‘TAAACA’ recognition sequence. The affinity of the isolated FoxM1 DNA-binding domain for this site is in the micromolar range, lower than observed for other Forkhead proteins. To explain these FoxM1 features, we determined the crystal structure of its DNA-binding domain in complex with a tandem recognition sequence. FoxM1 adopts the winged-helix fold, typical of the Forkhead family. Neither ‘wing’ of the fold however, makes significant contacts with the DNA, while the second, C-terminal, wing adopts an unusual ordered conformation across the back of the molecule. The lack of standard DNA–‘wing’ interactions may be a reason for FoxM1’s relatively low affinity. The role of the ‘wings’ is possibly undertaken by other FoxM1 regions outside the DBD, that could interact with the target DNA directly or mediate interactions with other binding partners. Finally, we were unable to show a clear preference for tandem consensus site recognition in DNA-binding, transcription activation or bioinformatics analysis; FoxM1's moniker, ‘Trident’, is not supported by our data. PMID:20360045

  4. Was cDNA sequences modulate transgene expression of was promoter-driven lentiviral vectors.

    PubMed

    Toscano, Miguel G; Benabdellah, Karim; Muñoz, Pilar; Frecha, Cecilia; Cobo, Marién; Martín, Francisco

    2009-11-01

    Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation. PMID:19630517

  5. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes.

    PubMed Central

    Stoneking, M; Hedgecock, D; Higuchi, R G; Vigilant, L; Erlich, H A

    1991-01-01

    A method for detecting sequence variation of hypervariable segments of the mtDNA control region was developed. The technique uses hybridization of sequence-specific oligonucleotide (SSO) probes to DNA sequences that have been amplified by PCR. The nucleotide sequences of the two hypervariable segments of the mtDNA control region from 52 individuals were determined; these sequences were then used to define nine regions suitable for SSO typing. A total of 23 SSO probes were used to detect sequence variants at these nine regions in 525 individuals from five ethnic groups (African, Asian, Caucasian, Japanese, and Mexican). The SSO typing revealed an enormous amount of variability, with 274 mtDNA types observed among these 525 individuals and with diversity values, for each population, exceeding .95. For each of the nine mtDNA regions significant differences in the frequencies of sequence variants were observed between these five populations. The mtDNA SSO-typing system was successfully applied to a case involving individual identification of skeletal remains; the probability of a random match was approximately 0.7%. The potential useful applications of this mtDNA SSO-typing system thus include the analysis of individual identity as well as population genetic studies. Images Figure 3 PMID:1990843

  6. No-wash ethanol precipitation of dye-labeled reaction products improves DNA sequencing reads.

    PubMed

    Fujikura, Kohei

    2015-01-01

    The advent of DNA sequencing has significantly accelerated molecular biology and clinical genetic testing. Despite recent increases in next-generation sequencing throughput, the most popular platform for DNA sequencing is still the multi-capillary DNA sequencer, which is ideally suited for small-scale sequencing projects and is highly accurate. However, the methods remain time-consuming and laborious. Here, I describe a modified ethylenediaminetetraacetic acid (EDTA) method that skips the washing step in ethanol precipitation. My improvements to standard methods save labor, time, and cost per run and increase the sequence reads by 5 to 10%. This modified method will provide immediate benefits to many researchers. PMID:25256164

  7. DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening.

    PubMed

    Jing, Xiaoying; Cao, Xianqing; Wang, Li; Lan, Tian; Li, Yiyan; Xie, Guoming

    2014-08-15

    A sensitive and selective electrochemical method was developed for the detection of DNA methylation, determination of DNA methyltransferase (MTase) activity and screening of MTase inhibitor. Methylene blue (MB) was employed as electrochemical indicator and DNA-modified gold nanoparticles (AuNPs) were used as signal amplification unit because the DNA strands in this composite have strong adsorption ability for MB. First, the thiolated single-stranded DNA S1 was self-assembled on gold electrode, hybridization between the lower portion of DNA S1 and its complementary DNA S2 formed an identical double-stranded tetranucleotide target sequence for both DNA adenine methylation (Dam) MTase and methylation-resistant endonuclease Mbo I, then the upper portion of DNA S1 was hybridized with its complementary DNA S3 modified on AuNPs to bring the DNA S3-AuNPs amplification units onto the electrode. The DNA S1/S2/S3-AuNPs bioconjugate has lots of DNA strands, and they can adsorb abundant MB. Mbo I endounuclease could not cleave the identical target sequence after it was methylated by Dam MTase. On the contrary, the sequence without methylation could be cleaved, which would decrease the amount of adsorbed MB. The presence of redox-active MB was detected electrochemically by differential pulse voltammetry (DPV). Thus, the activity of Dam MTase and methylation status were sensitively converted to the DNA S3-AuNPs amplified DPV signals. The DPV signal demonstrated a linear relationship with logarithm of Dam concentration ranging from 0.075 to 30U/mL, achieving a detection limit of 0.02U/mL (S/N=3). Also, screening of Dam MTase inhibitor 5-fluorouracil was successfully investigated using this fabricated sensor. PMID:24613968

  8. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  9. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

    PubMed

    Hancock-Hanser, Brittany L; Frey, Amy; Leslie, Matthew S; Dutton, Peter H; Archer, Frederick I; Morin, Phillip A

    2013-03-01

    Next-generation sequencing (NGS) is emerging as an efficient and cost-effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi-genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross-species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low-coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species-level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles. PMID:23351075

  10. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.

    PubMed

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-10-23

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. PMID:26338705

  11. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    PubMed Central

    Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241

  12. Episodic Statistics of Evolutionary Substitutions in DNA Sequences

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    1998-03-01

    The number of molecular substitutions occurring in a DNA sequence in a given time interval is described by a fractional-difference equation whose statistics are described by a truncated Levy distribution and which has an inverse power law correlation function. This is an empirically motivated stochastic model of molecular evolution and does not address the evolutionary mechanisms that lead to substitutions. The Levy stable process yields a Fano Factor, the ratio of the variance to the mean in the number of molecular substitutions, that increases as a power law in time. This prediction agrees with the observed statistics across 49 different genes in mammals. This model of molecular evolution is episodic and is consistent with the punctuated equilibrium model of macroevolution without making additional statistical assumptions.

  13. Rapid removal of unincorporated label and proteins from DNA sequencing reactions.

    PubMed

    Kaczorowski, T; Sektas, M

    1996-04-01

    This article presents a simple and rapid method for removal of unincorporated label and proteins from DNA sequencing reactions by using Wizard purification resin. This method can be successfully applied for preparation of end-labeled oligonucleotides free of unincorporated label, which is important in experiments (including DNA sequencing) when the level of background should be as low as possible. Also, this method is effective in removal of proteins from DNA sequencing reactions. PMID:8734430

  14. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    SciTech Connect

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  15. Factorial Moments Analyses Show a Characteristic Length Scale in DNA Sequences

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.; Narayana Rao, A. V. S. S.

    2000-02-01

    A unique feature of most of the DNA sequences, found through the factorial moments analysis, is the existence of a characteristic length scale around which the density distribution is nearly Poissonian. Above this point, the DNA sequences, irrespective of their intron contents, show long range correlations with a significant deviation from the Gaussian statistics, while, below this point, the DNA statistics are essentially Gaussian. The famous DNA walk representation is also shown to be a special case of the present analysis.

  16. Brain feminization requires active repression of masculinization via DNA methylation

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  17. Epigenetics and cortical spreading depression: changes of DNA methylation level at retrotransposon sequences.

    PubMed

    Drongitis, Denise; Rainone, Sara; Piscopo, Marina; Viggiano, Emanuela; Viggiano, Alessandro; De Luca, Bruno; Fucci, Laura; Donizetti, Aldo

    2016-08-01

    Cortical spreading depression (CSD) is an evolutionarily conserved phenomenon that involves a slow and self-propagating depolarization wave associated with spontaneous depression of electrical neuronal activity. CSD plays a central role in the pathophysiology of several brain diseases and is considered to be able to promote "Preconditioning". This phenomenon consists of the brain protecting itself against future injury by adaptation. Understanding of the molecular mechanisms underlying Preconditioning has significant clinical implications. We have already proposed that the long-lasting effects of CSD could be related to silencing of retrotransposon sequences by histone methylation. We analyzed DNA methylation of two retrotransposon sequences, LINE1 and L1, and their corresponding expression pattern after CSD induction. Based on immunoprecipitation assay of the methylated DNA (meDIP), we demonstrated hypermethylation of both sequences in preconditioned rat brain cortex compared with a control 24 h after CSD induction. Using quantitative PCR, we also showed that CSD induction caused a decrease of the transcript level of both retrotransposon sequences. Our data are consistent with the hypothesis of epigenetic modifications in Preconditioning-dependent neuroprotection by increasing genome stability via the silencing of retrotransposon sequences. PMID:27169424

  18. Voltammetric detection of sequence-selective DNA hybridization related to Toxoplasma gondii in PCR amplicons.

    PubMed

    Gokce, Gultekin; Erdem, Arzum; Ceylan, Cagdas; Akgöz, Muslum

    2016-03-01

    This work describes the single-use electrochemical DNA biosensor technology developed for voltammetric detection of sequence selective DNA hybridization related to important human and veterinary pathogen; Toxoplasma gondii. In the principle of electrochemical label-free detection assay, the duplex of DNA hybrid formation was detected by measuring guanine oxidation signal occured in the presence of DNA hybridization. The biosensor design consisted of the immobilization of an inosine-modified (guanine-free) probe onto the surface of pencil graphite electrode (PGE), and the detection of the duplex formation in connection with the differential pulse voltammetry(DPV) by measuring the guanine signal. Toxoplasma gondii capture probe was firstly immobilized onto the surface of the activated PGE by wet adsorption. The extent of hybridization at PGE surface between the probe and the target was then determined by measuring the guanine signal observed at +1.0V. The electrochemical monitoring of optimum DNA hybridization has been performed in the target concentration of 40µg/mL in 50min of hybridization time. The specificity of the electrochemical biosensor was then tested using non-complementary, or mismatch short DNA sequences. Under the optimum conditions, the guanine oxidation signal indicating full hybridization was measured in various target concentration from 0.5 to 25µg/mL and a detection limit was found to be 1.78µg/mL. This single-use biosensor platform was successfully applied for the voltammetric detection of DNA hybridization related to Toxoplasma gondii in PCR amplicons. PMID:26717837

  19. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence.

    PubMed

    Qiu, Wanwei; Xu, Hui; Takalkar, Sunitha; Gurung, Anant S; Liu, Bin; Zheng, Yafeng; Guo, Zebin; Baloda, Meenu; Baryeh, Kwaku; Liu, Guodong

    2015-02-15

    In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1 nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40 pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5 nM, Mao et al. Anal. Chem. 2009, 81, 1660-1668). Another important feature is that the preparation of MWCNT-DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT-antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents. PMID:25262062

  20. DNA STRETCHING AND OPTIMISATION OF NUCLEOBASE RECOGNITION FOR ENZYMATIC NANOPORE SEQUENCING

    PubMed Central

    Stoddart, David; Franceschini, Lorenzo; Heron, Andrew; Bayley, Hagan; Maglia, Giovanni

    2015-01-01

    In nanopore sequencing, where single DNA strands are electrophoretically translocated through a nanopore and the resulting ionic signal is used to identify the four DNA bases, an enzyme has been used to ratchet the nucleic acid stepwise through the pore at a controlled speed. In this work, we investigated the ability of αHL nanopores to distinguish the four DNA bases under conditions that are compatible with the activity of DNA-handling enzymes. Our findings suggest that in immobilised strands, the applied potential exerts a force on DNA (~ 10 pN at +160 mV) that increases the distance between nucleobases by about 2.2 Å/V. The four nucleobases can be resolved over wide ranges of applied potentials (from +60 mV to +220 mV in 1 m KCl) and ionic strengths (from 200 mM KCl to 1 M KCl at +160 mV) and nucleobase recognition can be improved when the ionic strength on the side of the DNA-handling enzyme is low, while the ionic strength on the opposite side is high. PMID:25648138

  1. "Doublex" fluorescent DNA sequencing: two independent sequences obtained simultaneously in one reaction with internal labeling and unlabeled primers.

    PubMed

    Wiemann, S; Stegemann, J; Zimmermann, J; Voss, H; Benes, V; Ansorge, W

    1996-02-15

    The novel "doublex" DNA sequencing technique that makes it possible to obtain simultaneously two independent sequences from one sequencing reaction with the use of unlabeled primers and internal labeling is described. The different sequencing products are labeled in parallel with fluorescein-15-dATP and Texas red-5-dCTP present in the same tube. The characteristics of T7 DNA polymerase are exploited to ensure that only either of the labeled dNTPs is incorporated into the corresponding sequencing products. Specificity of labeling is ensured by the selection of primers. One of the unlabeled primers is chosen to be followed by an "A," the other by a "C" to be incorporated immediately downstream from the primer binding site. The doublex sequencing technique is applicable to the simultaneous sequencing of either the same DNA template/strand or a mixture of different templates. Combinations of unlabeled and labeled primers in the same sequencing reaction are also possible. The two sequences can be determined in parallel and on-line in the same lanes of a gel with a novel automated DNA sequencer, which was previously described for use with labeled primers. PMID:8714594

  2. Rate variation of DNA sequence evolution in the Drosophila lineages.

    PubMed Central

    Takano, T S

    1998-01-01

    Rate constancy of DNA sequence evolution was examined for three species of Drosophila, using two samples: the published sequences of eight genes from regions of the normal recombination rates and new data of the four AS-C (ac, sc, l'sc and ase) and ci genes. The AS-C and ci genes were chosen because these genes are located in the regions of very reduced recombination in Drosophila melanogaster and their locations remain unchanged throughout the entire lineages involved, yielding less effect of ancestral polymorphism in the study of rate constancy. The synonymous substitution pattern of the three lineages was found to be erratic in both samples. The dispersion index for replacement substitution was relatively high for the per, G6pd and ac genes. A significant heterogeneity was found in the number of synonymous substitutions in the three lineages between the two samples of genes with different recombination rates. This is partly due to a lack of the lineage effect in the D. melanogaster and Drosophila simulans lineages in the AS-C and ci genes in contrast to Akashi's observation of genes in regions of normal recombination. The higher codon bias in Drosophila yakuba as compared with D. melanogaster and D. simulans was observed in the four AS-C genes, which suggests change(s) in action of natural selection involved in codon usage on these genes. Fluctuating selection intensity may also be responsible for the observed locus-lineage interaction effects in synonymous substitution. PMID:9611206

  3. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics.

    PubMed

    Harvey, Michael G; Smith, Brian Tilston; Glenn, Travis C; Faircloth, Brant C; Brumfield, Robb T

    2016-09-01

    Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and read overlap at recovered loci, and the high overall information that results. Sequence capture's benefits include flexibility and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets and studies for the purpose of drawing general conclusions about the impact of

  4. True single-molecule DNA sequencing of a pleistocene horse bone

    PubMed Central

    Orlando, Ludovic; Ginolhac, Aurelien; Raghavan, Maanasa; Vilstrup, Julia; Rasmussen, Morten; Magnussen, Kim; Steinmann, Kathleen E.; Kapranov, Philipp; Thompson, John F.; Zazula, Grant; Froese, Duane; Moltke, Ida; Shapiro, Beth; Hofreiter, Michael; Al-Rasheid, Khaled A.S.; Gilbert, M. Thomas P.; Willerslev, Eske

    2011-01-01

    Second-generation sequencing platforms have revolutionized the field of ancient DNA, opening access to complete genomes of past individuals and extinct species. However, these platforms are dependent on library construction and amplification steps that may result in sequences that do not reflect the original DNA template composition. This is particularly true for ancient DNA, where templates have undergone extensive damage post-mortem. Here, we report the results of the first “true single molecule sequencing” of ancient DNA. We generated 115.9 Mb and 76.9 Mb of DNA sequences from a permafrost-preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing libraries of ancient DNA molecules, as required for second-generation sequencing, introduce biases into the data that reduce the efficiency of the sequencing process and limit our ability to fully explore the molecular complexity of ancient DNA extracts. We demonstrate that simple modifications to the standard Helicos DNA template preparation protocol further increase the proportion of horse DNA for this sample by threefold. Comparison of Helicos-specific biases and sequence errors in modern DNA with those in ancient DNA also reveals extensive cytosine deamination damage at the 3′ ends of ancient templates, indicating the presence of 3′-sequence overhangs. Our results suggest that paleogenomes could be sequenced in an unprecedented manner by combining current second- and third-generation sequencing approaches. PMID:21803858

  5. A highly selective and sensitive electrochemical CS-MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection.

    PubMed

    Sun, Yange; He, Xingxing; Ji, Jian; Jia, Min; Wang, Zhouping; Sun, Xiulan

    2015-08-15

    This paper presents a new electrochemical DNA biosensor constructed using a substrate electrode composed of a novel nanocomposite material prepared using gold nanoparticles (Au-NPs) and multiwalled carbon nanotubes (MWCNTs) and further modified with an Au electrode (AuE), which was used as the substrate electrode. A single-stranded DNA (ssDNA) probe was immobilized on the Au-NPs/CS-MWCNTs/AuE electrode by means of facile gold-thiol affinity, which resulted in hybridization with the target ssDNA sequence. Hybridization reactions were assessed by using the reduction peak current of methylene blue (MB) as an electrochemical indicator. The advantages of the nanomaterials were found to include high surface area, favorable electronic properties, and strong electrocatalytic activity. The amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB accelerated. The differential pulse voltammetric responses of MB were in line with the specific target ssDNA sequence within the concentration range 1.0×10(-15)-1.0×10(-8)M with the detection limit 3.3×10(-16)M (3σ). In the colony forming unit (CFU) we were able to detect 10CFU mL(-1)of Staphylococcus aureus in the tap water, achieving good discrimination ability between one- and three-base mismatched ssDNA sequences. The polymerase chain reaction (PCR) amplification products of S. aureus nuc gene sequence were also detected with satisfactory results. PMID:25966418

  6. Sequence analysis of mitochondrial DNA hypervariable regions using infrared fluorescence detection.

    PubMed

    Steffens, D L; Roy, R

    1998-06-01

    The non-coding region of the mitochondrial genome provides an attractive target for human forensic identification studies. Two hypervariable (HV) regions, each approximately 250-350 bp in length, contain the majority of mitochondrial DNA (mtDNA) sequence variability among different individuals. Various approaches to determine mtDNA sequence were evaluated utilizing highly sensitive infrared (IR) fluorescence detection. HV regions were amplified either together or separately and cycle-sequenced using a Thermo Sequenase protocol. An M13 universal primer sequence tail covalently attached to the 5' terminus of an amplification primer facilitated electrophoretic analysis and direct sequencing of the amplification products using IR detection. PMID:9631201

  7. Extraction of complementary from non-complementary DNA sequences through phase separation and centrifugation

    NASA Astrophysics Data System (ADS)

    Robins, Taiquitha; McPherson, Dacia; Zhu, Chenhui; Moran, Mark; Walba, Dave; Zanchetta, Giuliano; Bellini, Tommaso; Clark, Noel

    2008-03-01

    Double stranded deoxyribonucleic acid (DNA) is known to form lyotropic liquid crystal (LC) phases, nematic and then columnar with increasing DNA concentration in water. Single stranded (DNA) does not form liquid crystal phases. We study the phase separation of both long (900bp) and short (6-20bp) DNA. In the mixture solution of a self complementary sequences (scDNA) and non complementary sequences (nscDNA), the scDNA forms DNA double helices and hence forms LC phases while the nscDNA stays in the isotropic phase, the LC appearing in the form of phase separated droplets. We report results of the use of centrifugation to produce complete spatial segregation of complementary and noncomplementary DNA, based on their different LC-formation tendencies.

  8. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences. PMID:26812576

  9. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  10. A Glance at Microsatellite Motifs from 454 Sequencing Reads of Watermelon Genomic DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single 454 (Life Sciences Sequencing Technology) run of Charleston Gray watermelon (Citrullus lanatus var. lanatus) genomic DNA was performed and sequence data were assembled. A large scale identification of simple sequence repeat (SSR) was performed and SSR sequence data were used for the develo...

  11. [Sequencing of low-molecular-weight DNA in blood plasma of irradiated rats].

    PubMed

    Vasilieva, I N; Bespalov, V G; Zinkin, V N; Podgornaya, O I

    2015-01-01

    Extracellular low-molecular-weight DNA in blood of irradiated rats was sequenced for the first time. The screening of sequences in the DDBJ database displayed homology of various parts of the rodent genome. Sequences of low-molecular-weight DNA in rat's plasma are enriched with G/C pairs and long interspersed elements relative to rat genome. DNA sequences in blood of rats irradiated at the doses of 8 and 100 Gy have marked distinctions. Data of sequencing of extracellular DNA from normal humans and with pathology were analyzed. DNA sequences of irradiated rats differ from the human ones by a wealth of long interspersed elements. This new knowledge lays the foundation for development of minimally invasive technologies of diagnosing the probability of pathology and controlling the adaptive resources of people in extreme environments. PMID:25958466

  12. Redox state of p63 and p73 core domains regulates sequence-specific DNA binding.

    PubMed

    Tichý, Vlastimil; Navrátilová, Lucie; Adámik, Matej; Fojta, Miroslav; Brázdová, Marie

    2013-04-19

    Cysteine oxidation and covalent modification of redox sensitive transcription factors including p53 are known, among others, as important events in cell response to oxidative stress. All p53 family proteins p53, p63 and p73 act as stress-responsive transcription factors. Oxidation of p53 central DNA binding domain destroys its structure and abolishes its sequence-specific binding by affecting zinc ion coordination at the protein-DNA interface. Proteins p63 and p73 can bind the same response elements as p53 but exhibit distinct functions. Moreover, all three proteins contain highly conserved cysteines in central DNA binding domain suitable for possible redox modulation. In this work we report for the first time the redox sensitivity of p63 and p73 core domains to a thiol oxidizing agent azodicarboxylic acid bis[dimethylamide] (diamide). Oxidation of both p63 and p73 abolished sequence-specific binding to p53 consensus sequence, depending on the agent concentration. In the presence of specific DNA all p53 family core domains were partially protected against loss of DNA binding activity due to diamide treatment. Furthermore, we detected conditional reversibility of core domain oxidation for all p53 family members and a role of zinc ions in this process. We showed that p63 and p73 proteins had greater ability to resist the diamide oxidation in comparison with p53. Our results show p63 and p73 as redox sensitive proteins with possible functionality in response of p53 family proteins to oxidative stress. PMID:23501101

  13. Activation of an Mg2+-dependent DNA endonuclease of avian myeloblastosis virus alpha beta DNA polymerase by in vitro proteolytic cleavage.

    PubMed Central

    Grandgenett, D P; Golomb, M; Vora, A C

    1980-01-01

    Partial chymotryptic digestion of purified avian myeloblastosis virus alpha beta DNA polymerase resulted in the activation of a Mg2+-dependent DNA endonuclease activity. Incubation of the polymerase-protease mixture in the presence of super-coiled DNA and Mg2+ permitted detection of the cleaved polymerase fragment possessing DNA nicking activity. Protease digestion conditions were established permitting selective cleavage of beta to alpha, which contained DNA polymerase and RNase H activity and to a family of polypeptides ranging in size from 30,000 to 34,000 daltons. These latter beta-unique fragments were purified by polyuridylate-Sepharose 4B chromatography and were shown to contain both DNA binding and DNA endonuclease activities. We have demonstrated that this group of polymerase fragments derived by chymotryptic digestion of alpha beta DNA polymerase is similar to the in vivo-isolated avian myeloblastosis virus p32pol in size, sequence, and DNA endonuclease activity. Images PMID:6154149

  14. Rational design, synthesis, and DNA binding properties of novel sequence-selective peptidyl congeners of ametantrone.

    PubMed

    Gianoncelli, Alessandra; Basili, Serena; Scalabrin, Matteo; Sosic, Alice; Moro, Stefano; Zagotto, Giuseppe; Palumbo, Manlio; Gresh, Nohad; Gatto, Barbara

    2010-07-01

    Natural and synthetic compounds characterized by an anthraquinone nucleus represent an important class of anti-neoplastic agents, the mechanism of action of which is related to intercalation into DNA. Ametantrone (AM) is a synthetic 9,10-anthracenedione bearing two (hydroxyethylamino)ethylamino residues at positions 1 and 4; along with other anthraquinones and anthracyclines, it shares a polycyclic intercalating moiety and charged side chains that stabilize DNA binding. All these drugs elicit adverse side effects, which represent a challenge for antitumor chemotherapy. In the present work the structure of AM was augmented with appropriate groups that target well-defined base pairs in the major groove. These should endow AM with DNA sequence selectivity. We describe the rationale for the synthesis and the evaluation of activity of a new series of compounds in which the planar anthraquinone is conjugated at positions 1 and 4 through the side chains of AM or other bioisosteric linkers to appropriate dipeptides. The designed novel AM derivatives were shown to selectively stabilize two oligonucleotide duplexes that both have a palindromic GC-rich hexanucleotide core, but their stabilizing effects on a random DNA sequence was negligible. In the case of the most effective compound, the 1,4-bis-[Gly-(L-Lys)] derivative of AM, the experimental results confirm the predictions of earlier theoretical computations. In contrast, AM had equal stabilizing effects on all three sequences and showed no preferential binding. This novel peptide derivative can be classified as a strong binder regarding the sequences that it selectively targets, possibly opening the exploitation of less cytotoxic conjugates of AM to the targeted treatment of oncological and viral diseases. PMID:20458714

  15. Formation of DNA Methylation Patterns: Nonmethylated GATC Sequences in gut and pap Operons

    PubMed Central

    van der Woude, Marjan; Hale, W. Bradley; Low, David A.

    1998-01-01

    Most of the adenine residues in GATC sequences in the Escherichia coli chromosome are methylated by the enzyme deoxyadenosine methyltransferase (Dam). However, at least 20 GATC sequences remain nonmethylated throughout the cell cycle. Here we examined how the DNA methylation patterns of GATC sequences within the regulatory regions of the pyelonephritis-associated pilus (pap) operon and the glucitol utilization (gut) operon were formed. The results obtained with an in vitro methylation protection assay showed that the addition of the leucine-responsive regulatory protein (Lrp) to pap DNA was sufficient to protect the two GATC sequences in the pap regulatory region, GATC-I and GATC-II, from methylation by Dam. This finding was consistent with previously published data showing that Lrp was essential for methylation protection of these DNA sites in vivo. Methylation protection also occurred at a GATC site (GATC-44.5) centered 44.5 bp upstream of the transcription start site of the gutABD operon. Two proteins, GutR and the catabolite gene activator protein (CAP), bound to DNA sites overlapping the GATC-44.5-containing region of the gutABD operon. GutR, an operon-specific repressor, was essential for methylation protection in vivo, and binding of GutR protected GATC-44.5 from methylation in vitro. In contrast, binding of CAP at a site overlapping GATC-44.5 did not protect this site from methylation. Mutational analyses indicated that gutABD gene regulation was not controlled by methylation of GATC-44.5, in contrast to regulation of Pap pilus expression, which is directly controlled by methylation of the pap GATC-I and GATC-II sites. PMID:9811649

  16. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    NASA Astrophysics Data System (ADS)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  17. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore.

    PubMed

    Bhattacharya, Swati; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-04-26

    Electric field-driven translocation of DNA strands through biological nanopores has been shown to produce blockades of the nanopore ionic current that depend on the nucleotide composition of the strands. Coupling a biological nanopore MspA to a DNA processing enzyme has made DNA sequencing via measurement of ionic current blockades possible. Nevertheless, the physical mechanism enabling the DNA sequence readout has remained undetermined. Here, we report the results of all-atom molecular dynamics simulations that elucidated the physical mechanism of ionic current blockades in the biological nanopore MspA. We find that the amount of water displaced from the nanopore by the DNA strand determines the nanopore ionic current, whereas the steric and base-stacking properties of the DNA nucleotides determine the amount of water displaced. Unexpectedly, we find the effective force on DNA in MspA to undergo large fluctuations, which may produce insertion errors in the DNA sequence readout. PMID:27054820

  18. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    PubMed Central

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchi