Science.gov

Sample records for active dna synthesis

  1. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    SciTech Connect

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. )

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  2. Replication stress activates DNA repair synthesis in mitosis.

    PubMed

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.

  3. Replication stress activates DNA repair synthesis in mitosis.

    PubMed

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach. PMID:26633632

  4. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  5. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    PubMed

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  6. Synthesis and biological activity of benzamide DNA minor groove binders.

    PubMed

    Khan, Gul Shahzada; Pilkington, Lisa I; Barker, David

    2016-02-01

    A range of di- and triaryl benzamides were synthesised to investigate the effect of the presence and nature of a polar sidechain, bonding and substitution patterns and functionalisation of benzylic substituents. These compounds were tested for their antiproliferative activity as well as their DNA binding activity. The most active compounds in all assays were unsymmetrical triaryl benzamides with a bulky or alkylating benzylic substituent and a polar amino sidechain.

  7. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    PubMed

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  8. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    PubMed

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.

  9. Pyroglutamic acid stimulates DNA synthesis in rat primary hepatocytes through the mitogen-activated protein kinase pathway.

    PubMed

    Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo

    2015-01-01

    We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.

  10. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen.

    PubMed

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne E A; Deegan, Tom D; Havens, Courtney G; MacNeill, Stuart A; Walter, Johannes C; Kearsey, Stephen E

    2012-04-24

    Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation. PMID:22464192

  11. Deoxyribonucleotide synthesis and DNA polymerase activity in plant cells (Vicia faba and Glycine max).

    PubMed

    Hovemann, B; Follmann, H

    1979-01-26

    Enzymes of deoxyribonucleotide and DNA biosynthesis, which are little known in plants, were studied in root tips of germinating broad beans (Vicia faba) and in fast-growing cultures of soybean cells (Glycine max). The plant cells contain a ribonucleoside 5'-diphosphate reductase which is detected in vitro only during a limited period of growth, viz. 30--32 h after inhibition of Vicia seeds, and between the second and third day after inoculation of soybean cultures. In both species ribonucleotide reductase activity precedes maximum DNA synthesis. The reductases could be precipitated with ammonium sulfate but were not purified further due to the extremely low enzyme content of the plant extracts. Therefore the reductive pathway of deoxyribotide formation was also established in Vicia root tips by efficient labeling of the plant DNA with a ribonucleoside, [5-3H]cytidine, which reaches a maximum at the same time as the reductase activity measured in vitro. Cycloheximide inhibits this process, indicating the need for de novo enzyme induction. In contrast, DNA polymerase is present in the tissue throughout the entire development and rises only 2-fold in activity during the S phase. The soluble polymerases were partially characterized in both legume species and were found very similar to the DNA polymerase of pea seedlings. Ribonucleotide reductase is more likely a limiting component of DNA formation during the plant cell cycle than DNA polymerase.

  12. DNA polymerase κ-dependent DNA synthesis at stalled replication forks is important for CHK1 activation

    PubMed Central

    Bétous, Rémy; Pillaire, Marie-Jeanne; Pierini, Laura; van der Laan, Siem; Recolin, Bénédicte; Ohl-Séguy, Emma; Guo, Caixia; Niimi, Naoko; Grúz, Petr; Nohmi, Takehiko; Friedberg, Errol; Cazaux, Christophe; Maiorano, Domenico; Hoffmann, Jean-Sébastien

    2013-01-01

    Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells. PMID:23799366

  13. [Interrelationships in experiments in vitro between the migration activity of leukocytes and RNA and DNA synthesis].

    PubMed

    Nazarov, P G; Volgarev, A P; Ermakov, S A

    1978-06-01

    The following correlations were revealed in the parallel study of leukocyte migration in vitro in the presence of a specific antigen and of spontaneous RNA and DNA synthesis in the cultured lymphocytes: 1) a direct correlation between the RNA and DNA synthesis in lymphocytes; 2) a close correlation between the antigen-induced migration and the levels of RNA and DNA synthesis. The effect of the antigen was evidenced by the inhibition or stimulation of leukocyte migration. A high ratio of RNA synthesis to DNA synthesis corresponded to the migration inhibition and a low one--to the migration stimulation. The ratio value varied mainly on account of the changes in the level of DNA synthesis. Participation of T and B cells in the regulation of the antigen-induced leukocyte mobility is discussed. PMID:352440

  14. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis

    PubMed Central

    1988-01-01

    We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti- bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells. PMID:3417781

  15. Wheat DNA Primase (RNA Primer Synthesis in Vitro, Structural Studies by Photochemical Cross-Linking, and Modulation of Primase Activity by DNA Polymerases).

    PubMed Central

    Laquel, P.; Litvak, S.; Castroviejo, M.

    1994-01-01

    DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants. PMID:12232187

  16. Synthesis and antiproliferative activity of some new DNA-targeted alkylating pyrroloquinolines.

    PubMed

    Ferlin, M G; Dalla Via, L; Gia, O M

    2004-02-15

    Two novel DNA-direct alkylating agents, consisting of aniline mustard linked to an angular 3H-pyrrolo[3,2-f]quinoline nucleus, were synthetized and assayed for their in vitro antiproliferative activity. Simple convergent synthesis, consisting of separate preparation of 9-chloro-3H-pyrrolo[3,2-f]quinoline and p-amino-aniline derivatives, and following their linkage by substitution reactions 8a, b and 10, yielded the corresponding diol derivatives 7b and 9. Biological properties were evaluated with respect to cell growth inhibition, ability to form cross-links with DNA, and capacity to give rise to a molecular complex with the macromolecule for 7b, 8b, 9 and 10.

  17. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis.

    PubMed

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S

    2016-04-26

    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs. PMID:27074628

  18. A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template.

    PubMed

    Yuan, Yijia; Li, Wenhua; Liu, Zhuoliang; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2014-11-15

    In the present day, oligonucleotide-encapsulated silver clusters (DNA-AgNCs) have been widely applied into bio-analysis as a signal producer. Herein, we developed a novel method to synthesize DNA-AgNCs encapsulated by long-chain cytosine (C)-rich DNA. Such DNA was polymerized in a template-free way by terminal deoxynucleotidyl transferase (TdT). We demonstrated that TdT-polymerized long chain C-rich DNA can serve as an excellent template for AgNCs synthesis. Based on this novel synthesis strategy, we developed a label-free and turn-on fluorescence assay to detect TdT activity with ultralow limit of detection (LOD) of 0.0318 U and ultrahigh signal to background (S/B) of 46.7. Furthermore, our proposed method was extended to a versatile biosensing strategy for turn-on nucleases activity assay based on the enzyme-activated TdT polymerization. Two nucleases, EcoRI and ExoIII as model of endonuclease and exonuclease, respectively, have been detected with high selectivity and competitive low LOD of 0.0629 U and 0.00867 U, respectively. Our work demonstrates the feasibility of TdT polymerization-based DNA-AgNCs synthesis strategy as a versatile and potent biosensing platform to detect the activity of DNA-related enzymes.

  19. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  20. Initiation of lymphocyte DNA synthesis.

    PubMed

    Coffman, F D; Fresa, K L; Cohen, S

    1991-01-01

    The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways. PMID:2005180

  1. Translesion DNA synthesis

    PubMed Central

    Vaisman, Alexandra; McDonald, John P.; Woodgate, Roger

    2014-01-01

    All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell’s replicase. Under these situations, cells are forced to choose between recombination-mediated “damage avoidance” pathways, or use a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions, but also downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases. PMID:26442823

  2. Evidence that a critical threshold of DNA polymerase-alpha activity may be required for the initiation of DNA synthesis in mammalian cell heterokaryons.

    PubMed

    Pendergrass, W R; Saulewicz, A C; Burmer, G C; Rabinovitch, P S; Norwood, T H; Martin, G M

    1982-10-01

    The specific activity of DNA polymerase (90% alpha) was determined in nine "neoplastoid" cell lines (Martin and Sprague, 1973) and in three different strains of HDF (human diploid fibroblast-like cells), all examined in logarithmic phases of growth. This was compared to the ability of each cell type to "rescue" (reinitiate DNA synthesis in) senescent HDF cells subsequent to polyethylene glycol-mediated cell fusions. A sharp "threshold" value of DNA polymerase activity was observed below which reinitiation of DNA synthesis in heterokaryons with senescent HDF does not occur. This threshold was especially obvious when the specific activity of DNA polymerase (p moles dTTP incorporated per mg protein or per cell) was divided by the percent of S-phase cells present in each culture as determined by flow microfluorometry. Our results indicate that the specific activity of DNA polymerase-alpha (or some other factor tightly coregulated with it) in "recessive" cell types (those unable to rescue senescent cells) is only about two times this theoretical "threshold" value, and that fusion of recessive cell types to senescent HDF cells reduces the specific activity in the heterokaryon to below this minimum, thus preventing the cells from entering S phase.

  3. Antibacterial activity and inhibition of protein synthesis in Escherichia coli by antisense DNA analogs.

    PubMed

    Rahman, M A; Summerton, J; Foster, E; Cunningham, K; Stirchak, E; Weller, D; Schaup, H W

    1991-01-01

    Protein synthesis, which takes place within ribosomes, is essential for the survival of any living organism. Ribosomes are composed of both proteins and RNA. Specific interaction between the 3' end CCUCC sequence of prokaryotic 16S rRNA and a partially complementary sequence preceding the initiating codon of mRNA is believed to be a prerequisite for initiation of protein synthesis. Here we report the use of short (three to six nucleotides) synthetic DNA analogs complementary to this sequence to block protein synthesis in vitro and in vivo in Escherichia coli. In the DNA analogs the normal phosphodiester bond in the antisense DNA was replaced by methylcarbamate internucleoside linkages to enhance transport across plasma membranes. Of the analogs tested, those with the sequence AGG and GGA inhibit protein synthesis and colony formation by E. coli strains lacking an outer cell wall. Polyethylene glycol 1000 (PEG 1000) was attached to the 5' end of some of the test methylcarbamate DNAs to enhance solubility. Analogs of AGG and GGAG with PEG 1000 attached inhibited colony formation in normal E. coli. These analogs may be useful food additives to control bacterial spoilage and biomedically as antibiotics. PMID:1821653

  4. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    PubMed Central

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  5. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives.

    PubMed

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; da Silva, Lúcia Patrícia Bezerra Gomes; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 10(4) to 1.0 × 10(6) M(-1) and quenching constants from -0.2 × 10(4) to 2.18 × 10(4) M(-1) indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N- (4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  6. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity.

    PubMed

    Dilović, Ivica; Rubcić, Mirta; Vrdoljak, Visnja; Kraljević Pavelić, Sandra; Kralj, Marijeta; Piantanida, Ivo; Cindrić, Marina

    2008-05-01

    The paper describes synthesis of several novel thiosemicarbazone derivatives. Furthermore, crystal and molecular structure of 4-diethylamino-salicylaldehyde 4-phenylthiosemicarbazone revealed planarity of conjugated aromatic system, which suggested the possibility of DNA binding by intercalation, especially for here studied naphthalene derivatives. However, here presented DNA binding studies excluded this mode of action. Physicochemical and structural properties of novel derivatives were compared with previously studied analogues, taken as reference compounds, revealing distinctive differences. In addition, novel thiosemicarbazone derivatives (1, 2 and 5-8) clearly display stronger antiproliferative activity on five tumor cell lines than the reference compounds 3 and 4, which supports their further investigation as potential antitumor agents.

  7. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    PubMed

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies.

  8. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    PubMed

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies. PMID:25665519

  9. Synthesis, characterization, DNA/BSA interactions and anticancer activity of achiral and chiral copper complexes.

    PubMed

    Zhou, Xue-Quan; Sun, Qian; Jiang, Lin; Li, Si-Tong; Gu, Wen; Tian, Jin-Lei; Liu, Xin; Yan, Shi-Ping

    2015-05-28

    Six novel copper(ii) complexes of [CuCl]ClO4 (), [Cu(acac)]PF6 (), [CuCl]2(PF6)2 (), [CuCl]2(PF6)2 (), [Cu(acac)]PF6 () and [Cu(acac)]PF6 (), ( = 1-naphthyl-N,N-[bis(2-pyridyl)methyl]amine, = R/S-1-naphthyl-N,N-[bis(2-pyridyl)methyl]ethanamine, acac = diacetone) were synthesized to serve as artificial nucleases. All complexes were structurally characterized using X-ray crystallography. The crystal structures showed the presence of distorted square-planar CuLCl (, and ) and distorted tetragonal-pyramidal CuL(acac) (, and ) geometry. The interaction of these complexes with calf thymus DNA (CT-DNA) was researched by means of several spectroscopy methods, which indicated that the complexes were bound to CT-DNA by an intercalation binding mode. DNA cleavage experiments revealed that the complexes exhibited remarkable DNA cleavage activities in the presence of H2O2, and single oxygen ((1)O2) or hydroxyl radicals may serve as the major cleavage active species. In particular, the in vitro cytotoxicity of the complexes on four human cancer cell lines (HeLa, MCF-7, Bel-7404 and HepG-2) demonstrated that the six compounds had broad-spectrum anti-cancer activity with low IC50 values. The stronger cytotoxicity and DNA cleavage activity of the chiral enantiomers compared with chiral analogues verified the influence of chirality on the antitumor activity of complexes. Meanwhile, the protein binding ability was revealed by quenching of tryptophan emission with the addition of complexes using BSA as a model protein. The results indicated that the quenching mechanism of BSA by the complexes was a static process.

  10. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  11. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  12. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    NASA Astrophysics Data System (ADS)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  13. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  14. Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles.

    PubMed

    Perin, Nataša; Nhili, Raja; Ester, Katja; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2014-06-10

    The synthesis of 5-amino substituted benzimidazo[1,2-a]quinolines prepared by microwave assisted amination from halogeno substituted precursor was described. The majority of compounds were active at micromolar concentrations against colon, lung and breast carcinoma cell lines in vitro. The N,N-dimethylaminopropyl 9 and piperazinyl substituted derivative 19 showed the most pronounced activity towards all of the three tested tumor cell lines, which could be correlated to the presence of another N heteroatom and its potential interactions with biological targets. The DNA binding studies, consisting of UV/Visible absorbency, melting temperature studies, and fluorescence and circular dichroism titrations, revealed that compounds 9, 19 and 20 bind to DNA as strong intercalators. The cellular distribution analysis, based on compounds' intrinsic fluorescence, showed that compound 20 does not enter the cell, while compounds 9 and 19 do, which is in agreement with their cytotoxic effects. Compound 9 efficiently targets the nucleus whereas 19, which also showed DNA intercalating properties in vitro, was mostly localised in the cytoplasm suggesting that the antitumor mechanism of action is DNA-independent. PMID:24780599

  15. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    PubMed

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  16. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  17. Synthesis of new steroidal imidazo [1,2-a] pyridines: DNA binding studies, cleavage activity and in vitro cytotoxicity.

    PubMed

    Dar, Ayaz Mahmood; Shamsuzzaman; Gatoo, Manzoor Ahmad

    2015-12-01

    A one-pot strategy for the catalytic synthesis of series of new 5α-cholestan-6-spiro-5'-phenylamino-2H-imidazo [1',2'-a] pyridines (4-14) has been investigated. The synthesized products were obtained in good yields (85-90%) and the protocol uses Multi-component Reaction (MCR) involving steroidal ketones, 2-aminopyridines, isocyanides and propylphosphonic anhydride (®T3P) as a catalyst. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were studied by UV-vis, fluorescence spectroscopy, gel electrophoresis and molecular docking. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.35×10(4), 3.71×10(4) and 3.24×10(4) M(-1), respectively, indicating the higher binding affinity of compound 5 towards DNA. Gel electrophoresis showed the concentration dependent cleavage activity of compounds 4-6 with DNA. Molecular docking studies suggested that compounds bind through minor groove to DNA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted promising anti-proliferative activity of compound 4-9 against different given cancer cells. In Western blotting, the expressions of relevant apoptotic markers depicted an apoptosis by steroidal imidazopyridines in A549 cells. Annexin V-FITC/PI staining data indicated that compounds could effectively induce apoptosis in A549 cells in a dose-dependent manner. FACS analysis shows that the compound 6 bring about cell cycle arrest at 2.62 μM concentration.

  18. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    PubMed

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone. PMID:27139727

  19. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  20. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258)

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1994-12-01

    A series of nitrogen mustard analogues of the DNA minor groove binding fluorophore pibenzimol (Hoechst 33258) have been synthesized and evaluated for antitumor activity. Conventional construction of the bisbenzimidazole ring system from the piperazinyl terminus, via two consecutive Pinner-type reactions, gave low yields of products contaminated with the 2-methyl analogue which proved difficult to separate. An alternative synthesis was developed, involving construction of the bisbenzimidazole from the mustard terminus, via Cu(2+)-promoted oxidative coupling of the mustard aldehydes with 3,4-diaminobenzonitrile to form the monobenzimidazoles, followed by a Pinner-type reaction and condensation with 4-(1-methyl-4-piperazinyl)-o-phenylenediamine. This process gives higher yields and pure products. The mustard analogues showed high hypersensitivity factors (IC50AA8/IC50 UV4), typical of DNA alkylating agents. There was a large increase in cytotoxicity (85-fold) across the homologous series which cannot be explained entirely by changes in mustard reactivity and may be related to altering orientation of the mustard with respect to the DNA resulting in different patterns of alkylation. Pibenzimol itself (which has been evaluated clinically as an anticancer drug) was inactive against P388 in vivo using a single-dose protocol, but the short-chain mustard homologues were highly effective, eliciting a proportion of long-term survivors.

  1. Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53

    PubMed Central

    Pletsas, Dimitrios; Garelnabi, Elrashied A.E.; Li, Li; Phillips, Roger M.; Wheelhouse, Richard T.

    2014-01-01

    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed. PMID:23895620

  2. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  3. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  4. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling.

    PubMed

    Rescifina, Antonio; Zagni, Chiara; Varrica, Maria Giulia; Pistarà, Venerando; Corsaro, Antonino

    2014-03-01

    The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.

  5. Induction of a cytoplasmic activator of DNA synthesis in lymphocytes is mediated through a membrane-associated protein kinase.

    PubMed Central

    Autieri, M V; Fresa, K L; Coffman, F D; Katz, M E; Cohen, S

    1990-01-01

    We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein. PMID:1725128

  6. Induction of a cytoplasmic activator of DNA synthesis in lymphocytes is mediated through a membrane-associated protein kinase.

    PubMed

    Autieri, M V; Fresa, K L; Coffman, F D; Katz, M E; Cohen, S

    1990-12-01

    We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein. PMID:1725128

  7. DNA specific fluorescent symmetric dimeric bisbenzimidazoles DBP(n): the synthesis, spectral properties, and biological activity.

    PubMed

    Ivanov, Alexander A; Koval, Vasiliy S; Susova, Olga Yu; Salyanov, Victor I; Oleinikov, Vladimir A; Stomakhin, Andrey A; Shalginskikh, Natalya A; Kvasha, Margarita A; Kirsanova, Olga V; Gromova, Elizaveta S; Zhuze, Alexei L

    2015-07-01

    A series of new fluorescent symmetric dimeric bisbenzimidazoles DBP(n) bearing bisbenzimidazole fragments joined by oligomethylene linkers with a central 1,4-piperazine residue were synthesized. The complex formation of DBP(n) in the DNA minor groove was demonstrated. The DBP(n) at micromolar concentrations inhibit in vitro eukaryotic DNA topoisomerase I and prokaryotic DNA methyltransferase (MTase) M.SssI. The DBP(n) were soluble well in aqueous solutions and could penetrate cell and nuclear membranes and stain DNA in live cells. The DBP(n) displayed a moderate effect on the reactivation of gene expression.

  8. Effects of o-phenanthroline, 2,2'-dipyridyl and neocuproine on the activities of bleomycin to inhibit DNA synthesis and growth of cultured cells.

    PubMed

    Takahashi, K; Takita, T; Umezawa, H

    1986-10-01

    Effects of o-phenanthroline, 2,2'-dipyridyl and neocuproine, which form stable complexes preferentially with Fe(II), Fe(II) and specifically with Cu(I), respectively, on the inhibitory activity of bleomycin against DNA synthesis of rat ascites hepatoma AH66 cells were examined. The inhibitory activity of metal-free bleomycin was suppressed in the presence of o-phenanthroline or 2,2'-dipyridyl, but not by neocuproine, though these chelating agents also showed the inhibitory activity against the DNA synthesis of the cells by themselves alone. The activity of bleomycin-Cu(II) was also suppressed by o-phenanthroline, but bleomycin-Fe(II) and bleomycin-Fe(III) exhibited some activities in the presence of o-phenanthroline. The growth inhibitory activity of bleomycin against HeLa cells was also suppressed by o-phenanthroline. From these results, bleomycin-iron complexes were suggested to be responsible to the bleomycin action in cells.

  9. Effect of various doses of chalone-containing alcohol precipitate from Ehrlich's ascites tumor on mitotic activity and DNA synthesis in that tumor

    SciTech Connect

    Matsak, N.Ya.; Romanov, Yu.A.; Antokhin, A.I.

    1987-06-01

    Experiments were carried out on noninbred male albino mice to assess the effects of varying doses of chalone-containing alcohol precipitates on mitotic activity and DNA synthesis in Ehrlich ascites tumor. Histological preparations of the tumor and small intestine were made by standard methods. Hydrolysis of the tumor in HCl was carried out before application of the nuclear photographic emulsion in order to prepare autoradiographs of the tumor. Tritium-labelled thymidine was injected as the radioactive marker.

  10. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    SciTech Connect

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  11. Selective tumor DNA synthesis inhibition: in vivo prodrug activation by an exogenous enzyme.

    PubMed

    Tschiersch, B; Schwabe, K; Sydow, G; Graffi, A

    1977-11-01

    Using the combination of alpha-L-arabinofuranosidase from Aspergillus niger with beta-peltatin A-alpha-L-arabinofuranoside, the selective effect of a new cancer of chemotherapy method based on a pH-dependent activation of cancerostatic prodrugs by exogenous enzymes was studied. In comparative experiments the selectivity of prodrug activation was measured by 3H-thymidine incorporation in tumor and normal tissues of CBA mice inoculated im with the transplantable mammary carcinoma, MA-21224. The results show that this special type of carrier principle may lead to a higher degree of selectivity than the usual direct application of cancerostatic drugs.

  12. Study of DNA synthesis and mitotic activity of hepatocytes and its relation to angiogenesis in hepatectomised tumour bearing mice.

    PubMed

    Andrini, Laura B; García, Marcela N; Inda, Ana María; Errecalde, Ana Lía

    2013-11-01

    Partial hepatectomy (PH) alters serum concentrations of substances involved in cellular proliferation, leading to the compensatory liver hyperplasia. Furthermore, angiogenesis is mainly stimulated by vascular endothelial growth factor (VEGF) and is a fundamental requirement either in liver regeneration or in tumours growth. This study looks at the expression of VEGF, DNA synthesis (DNAs) and mitotic activity (MA) in hepatectomised (H) and hepatectomised-tumour bearing (HTB) mice throughout a 24 h period. Adult male mice were sacrificed every 4 h from 26 to 50 h post-hepatectomy. H mice show a circadian rhythm in VEGF expression with a maximum value of 2.6 ± 0.1 at 08/46 h of day/hours posthepatectomy (HD/HPH); in DNAs, the maximum value was 3.4 ± 0.3 at 16/30 (HD/HPH) and in MA it was 2.3 ± 0.01 at 12/50 (HD/HPH). In HTB animals the peak of VEGF expression appears at 16/30 (HD/HPH) with a maximum value of 3.7 ± 0.1, the peak of DNAs was at 00/38 (HD/HPH) with a value of 4.6 ± 0.3 and the maximum value of MA of 08/46 (HD/HPH) with a value of 3.01 ± 0.3. We can conclude that the presence of the tumour induces modifications in the intensity and the temporal distribution of the circadian curves of VEGF expression, DNAs and MA of hepatectomised animals.

  13. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, 1H, and 13C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  14. RNA-Primed DNA Synthesis In Vitro

    PubMed Central

    Keller, Walter

    1972-01-01

    In vitro DNA synthesis on single-stranded circular DNA can be initiated by RNA primers. RNA chains are covalently extended by DNA polymerase II from KB cells and DNA polymerase I from Micrococcus luteus, but not by an RNA-dependent DNA polymerase from avian myeloblastosis virus. The reaction product consists of DNA chains with a piece of RNA at their 5′-ends, hydrogen bonded to the template DNA. The primer RNA is linked to the product DNA via a 3′:5′-phosphodiester bond, and can be specifically removed by ribonuclease H. The possible role of ribonuclease H in RNA-primed DNA synthesis in vivo is discussed. Images PMID:4338598

  15. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin.

    PubMed

    Bhatia, N; Zhao, J; Wolf, D M; Agarwal, R

    1999-12-01

    Several studies from our laboratory have shown the cancer chemopreventive and anti-carcinogenic effects of silymarin, a flavonoid antioxidant isolated from milk thistle, in long-term tumorigenesis models and in human prostate, breast and cervical carcinoma cells. Since silymarin is composed mainly of silibinin with small amounts of other stereoisomers of silibinin, in the present communication, studies were performed to assess whether the cancer preventive and anti-carcinogenic effects of silymarin are due to its major component silibinin. Treatment of different prostate, breast, and cervical human carcinoma cells with silibinin resulted in a highly significant inhibition of both cell growth and DNA synthesis in a time-dependent manner with large loss of cell viability only in case of cervical carcinoma cells. When compared with silymarin, these effects of silibinin were consistent and comparable in terms of cell growth and DNA synthesis inhibition, and loss of cell viability. Based on the comparable results of silibinin and silymarin, we suggest that the cancer chemopreventive and anti-carcinogenic effects of silymarin reported earlier are due to the main constituent silibinin.

  16. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells.

    PubMed

    Takahashi, T; Ueno, H; Shibuya, M

    1999-04-01

    KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.

  17. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  18. Pyridine-3-carboxamide-6-yl-ureas as novel inhibitors of bacterial DNA gyrase: structure based design, synthesis, SAR and antimicrobial activity.

    PubMed

    Yule, Ian A; Czaplewski, Lloyd G; Pommier, Stephanie; Davies, David T; Narramore, Sarah K; Fishwick, Colin W G

    2014-10-30

    The development of antibacterial drugs based on novel chemotypes is essential to the future management of serious drug resistant infections. We herein report the design, synthesis and SAR of a novel series of N-ethylurea inhibitors based on a pyridine-3-carboxamide scaffold targeting the ATPase sub-unit of DNA gyrase. Consideration of structural aspects of the GyrB ATPase site has aided the development of this series resulting in derivatives that demonstrate excellent enzyme inhibitory activity coupled to potent Gram positive antibacterial efficacy.

  19. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes.

    PubMed

    Chennam, Kishan Prasad; Ravi, Mudavath; Ushaiah, B; Srinu, V; Eslavath, Ravi Kumar; Devi, Ch Sarala

    2016-01-01

    The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 10(5) M(-1)) compared to [Co (II)-(L2)] (4.378× 10(5) M(-1)) and [Zn (II)-(L2)] (3.1x10(5) M(-1)). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines.

  20. Preclinical activity of 8-chloroadenosine with mantle cell lymphoma: Roles of energy depletion and inhibition of DNA and RNA synthesis

    PubMed Central

    Dennison, Jennifer B.; Balakrishnan, Kumudha; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado), an RNA-directed nucleoside analog, is currently being evaluated in phase I clinical trials for treatment of chronic lymphocytic leukemia. In the current study, the efficacy of 8-Cl-Ado was evaluated using mantle cell lymphoma (MCL) cell lines: Granta 519, JeKo, Mino, and SP-53. After continuous exposure to 10 μM 8-Cl-Ado for 24 h, loss of mitochondrial transmembrane potential and PARP cleavage were detected in 3 of 4 cell lines. Reduced ATP levels (30 to 60% reduction) and concurrent 8-Cl-ATP accumulation were highly associated with cell death (P < 0.01). The intracellular 8-Cl-ATP concentrations were also highly correlated with inhibition of global transcription (50 to 90%, r2 = 0.90, P < 0.01). However, the inhibition of transcription only accounted for 30 to 40% of cell death as determined by equivalent inhibition with actinomycin D. Likewise, short-lived mRNAs, those encoding cyclin D1 and Mcl-1, were not consistently reduced after treatment. Unique to MCL as compared to other hematological malignancies, 8-Cl-Ado inhibited the rates of DNA synthesis and selectively depleted dATP pools (50 to 80%). We conclude that the DNA and RNA directed actions of 8-Cl-Ado in combination with depleted energetics may promote cell death and inhibit growth of MCL cell lines. PMID:19709085

  1. Systematic synthesis of galloyl-substituted procyanidin B1 and B2, and their ability of DPPH radical scavenging activity and inhibitory activity of DNA polymerases.

    PubMed

    Saito, Akiko; Mizushina, Yoshiyuki; Ikawa, Hiroshi; Yoshida, Hiromi; Doi, Yuki; Tanaka, Akira; Nakajima, Noriyuki

    2005-04-15

    Six galloyl-substituted procyanidin B1 and B2, 3-O-gallate, 3''-O-gallate, and 3,3''-di-O-gallate, were systematically synthesized with the condensation method using TMSOTf as a catalyst. Their ability of DPPH radical scavenging activity and DNA polymerase inhibitory activity were also investigated. The results indicated that the galloyl group of these compounds is very important for both activities. 3,3''-Di-O-gallate dimers acted as strong inhibitor against DNA polymerase alpha and beta, whereas the desgalloyl and monogalloyl compounds did not exhibit any appreciable inhibitory activity against the DNA polymerase beta.

  2. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes.

    PubMed

    Patel, Mohan N; Dosi, Promise A; Bhatt, Bhupesh S; Thakkar, Vasudev R

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram(+ve) Staphylococcus aureus, Bacillus subtilis, and three Gram((-ve)) Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3×10(4)-3.7×10(4). The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O2.-) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  3. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  4. Translesion DNA synthesis in the context of cancer research

    PubMed Central

    2011-01-01

    During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy. PMID:22047021

  5. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities.

    PubMed

    Andaloussi, Mounir; Moreau, Emmanuel; Masurier, Nicolas; Lacroix, Jacques; Gaudreault, René C; Chezal, Jean-Michel; El Laghdach, Anas; Canitrot, Damien; Debiton, Eric; Teulade, Jean-Claude; Chavignon, Olivier

    2008-11-01

    Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel. PMID:18403058

  6. Synthesis, anti-mycobacterial activity and DNA sequence-selectivity of a library of biaryl-motifs containing polyamides.

    PubMed

    Brucoli, Federico; Guzman, Juan D; Maitra, Arundhati; James, Colin H; Fox, Keith R; Bhakta, Sanjib

    2015-07-01

    The alarming rise of extensively drug-resistant tuberculosis (XDR-TB) strains, compel the development of new molecules with novel modes of action to control this world health emergency. Distamycin analogues containing N-terminal biaryl-motifs 2(1-5)(1-7) were synthesised using a solution-phase approach and evaluated for their anti-mycobacterial activity and DNA-sequence selectivity. Thiophene dimer motif-containing polyamide 2(2,6) exhibited 10-fold higher inhibitory activity against Mycobacterium tuberculosis compared to distamycin and library member 2(5,7) showed high binding affinity for the 5'-ACATAT-3' sequence.

  7. Facile synthesis of a dimeric dipyrrole-polyamide and synergetic DNA-cleaving activity of its Cu(II) complex.

    PubMed

    Zhou, Chun-Qiong; Lin, Yan-Ling; Chen, Jin-Xiang; Wang, Lu-Sheng; Yang, Na-Na; Zeng, Wei; Chen, Wen-Hua

    2012-09-15

    Inspired by the potent DNA-cleaving activity of the Cu(II) complex of monopyrrole-polyamide dimer 1 (i.e., 1@Cu(2+)), we designed a new dimeric dipyrrole-polyamide analog 2 with the aim to optimize the catalytic activities of the metal complexes of this type of polypyrrole-polyamides. Compound 2 was prepared in 50% yield from the reaction of 1-methyl-4-[(1-methyl-4-nitro-1H-pyrrole-2-carbonyl)-amino]-1H-pyrrole-2-carboxylic acid with 2,2'-(ethane-1,2-diylbis(oxy))diethanamine, and fully characterized on the basis of NMR ((1)H and (13)C), MS (ESI and HR) and IR. Spectrophotometric titration, ESI-MS and conductivity measurements indicated that compound 2 formed a 1:1 complex with Cu(2+) ion (i.e., 2@Cu(2+)). Agarose gel electrophoresis studies indicated that 2@Cu(2+) was capable of efficiently converting pBR322 DNA into open circular and linear forms under physiological conditions, most probably via an oxidative mechanism. Its overall catalytic activity was estimated to be at least 30-fold higher than that of 1@Cu(2+). The fact that the cleaving activities of these Cu(II) complexes parallel, exactly, their binding affinities, raises the possibility that the cleaving activities of polypyrrole-polyamide derivatives of the type can be regulated by the binding affinities.

  8. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  9. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  10. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with norcantharidin and benzimidazole derivatives.

    PubMed

    Song, Wen-Ji; Lin, Qiu-Yue; Jiang, Wen-Jiao; Du, Fang-Yuan; Qi, Qing-Yuan; Wei, Qiong

    2015-02-25

    Two novel complexes [Cu(L)2(Ac)2]·3H2O (1) (L=N-2-methyl benzimidazole demethylcantharate imide, C16H15N3O3, Ac=acetate, C2H3O2) and [Cu(bimz)2(DCA)] (2) (bimz=benzimidazole, C7H6N2; DCA=demethylcantharate, C8H8O5) were synthesized and characterized by elemental analysis, infrared spectra and X-ray diffraction techniques. Cu(II) ion was four-coordinated in complex 1, Cu(II) ion was five-coordinated in complex 2. A large amount of intermolecular hydrogen-bonding and π-π stacking interactions were observed in these complex structures. The DNA-binding properties of these complexes were investigated using electronic absorption spectra, fluorescence spectra, viscosity measurements and agarose gel electrophoresis. The interactions between the complexes and bovine serum albumin (BSA) were investigated by fluorescence spectra. The antiproliferative activities of the complexes against human hepatoma cells (SMMC7721) were tested in vitro. And the results showed that these complexes could bind to DNA in moderate intensity via partial intercalation, and complexes 1 and 2 could cleave plasmid DNA through hydroxyl radical mechanism. Title complexes could effectively quench the fluorescence of BSA through static quenching. Meanwhile, title complexes had stronger antiproliferative effect compared to L and Na2(DCA) within the tested concentration range. And complex 1 possessed more antiproliferative active than complex 2.

  11. Synthesis, molecular structure, theoretical calculation, DNA/protein interaction and cytotoxic activity of manganese(III) complex with 8-hydroxyquinoline.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Siva, A

    2015-01-01

    Manganese(III) complex (1) [Mn(8-hq)3] (where 8-hq=8-hydroxyquinoline) has been synthesized and characterized by elemental, spectral (UV-vis, FT-IR) and thermal analysis. The structure of complex (1) has been determined by single crystal X-ray diffraction studies and the configuration around manganese(III) ion was elongated octahedral coordination geometry. Density functional theory calculations were performed for ligand and its complex. Binding studies of ligand and complex 1 with calf thymus DNA (CT-DNA) was investigated by absorption, fluorescence, circular dichroic (CD) spectroscopy and viscosity measurements. Absorption spectral studies revealed that ligand and complex 1 binds to DNA groove and its intrinsic binding strength has been found to be 2.57×10(4) and 2.91×10(4)M(-1). A molecular docking study confirm that the complex 1 is a minor groove binder and was stabilized through hydrogen bonding interactions. Complex 1 exhibits a good binding propensity to bovine serum albumin (BSA) protein. The in vitro cytotoxicity study of complex 1 on breast cancer cell line (MCF-7) indicate that it has the potential to act as effective anticancer drug, with IC50 values of 3.25μM. The ligand and its complex have been screened for antimicrobial activities and the complex showed better antimicrobial activity than the free ligand.

  12. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with norcantharidin and benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Song, Wen-Ji; Lin, Qiu-Yue; Jiang, Wen-Jiao; Du, Fang-Yuan; Qi, Qing-Yuan; Wei, Qiong

    2015-02-01

    Two novel complexes [Cu(L)2(Ac)2]·3H2O (1) (L = N-2-methyl benzimidazole demethylcantharate imide, C16H15N3O3, Ac = acetate, C2H3O2) and [Cu(bimz)2(DCA)] (2) (bimz = benzimidazole, C7H6N2; DCA = demethylcantharate, C8H8O5) were synthesized and characterized by elemental analysis, infrared spectra and X-ray diffraction techniques. Cu(II) ion was four-coordinated in complex 1, Cu(II) ion was five-coordinated in complex 2. A large amount of intermolecular hydrogen-bonding and π-π stacking interactions were observed in these complex structures. The DNA-binding properties of these complexes were investigated using electronic absorption spectra, fluorescence spectra, viscosity measurements and agarose gel electrophoresis. The interactions between the complexes and bovine serum albumin (BSA) were investigated by fluorescence spectra. The antiproliferative activities of the complexes against human hepatoma cells (SMMC7721) were tested in vitro. And the results showed that these complexes could bind to DNA in moderate intensity via partial intercalation, and complexes 1 and 2 could cleave plasmid DNA through hydroxyl radical mechanism. Title complexes could effectively quench the fluorescence of BSA through static quenching. Meanwhile, title complexes had stronger antiproliferative effect compared to L and Na2(DCA) within the tested concentration range. And complex 1 possessed more antiproliferative active than complex 2.

  13. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  14. Novel metal-based pharmacologically dynamic agents of transition metal(II) complexes: Designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Raman, N.; Jeyamurugan, R.; Sakthivel, A.; Mitu, L.

    2010-01-01

    Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV-vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 10 6, 1.8 × 10 6, 2.0 × 10 6 and 1.5 × 10 6 M -1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D 2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.

  15. Direct electrical detection of DNA synthesis

    PubMed Central

    Pourmand, Nader; Karhanek, Miloslav; Persson, Henrik H. J.; Webb, Chris D.; Lee, Thomas H.; Zahradníková, Alexandra; Davis, Ronald W.

    2006-01-01

    Rapid, sequence-specific DNA detection is essential for applications in medical diagnostics and genetic screening. Electrical biosensors that use immobilized nucleic acids are especially promising in these applications because of their potential for miniaturization and automation. Current DNA detection methods based on sequencing by synthesis rely on optical readouts; however, a direct electrical detection method for this technique is not available. We report here an approach for direct electrical detection of enzymatically catalyzed DNA synthesis by induced surface charge perturbation. We discovered that incorporation of a complementary deoxynucleotide (dNTP) into a self-primed single-stranded DNA attached to the surface of a gold electrode evokes an electrode surface charge perturbation. This event can be detected as a transient current by a voltage-clamp amplifier. Based on current understanding of polarizable interfaces, we propose that the electrode detects proton removal from the 3′-hydroxyl group of the DNA molecule during phosphodiester bond formation. PMID:16614066

  16. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    PubMed

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines.

  17. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole

    NASA Astrophysics Data System (ADS)

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-03-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL1 (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL2 (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol-1) were 1.81 × 104 (1), 1.37 × 104 (2), 6.27 × 103 (HL1) and 3.14 × 103 (HL2) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL1 had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50 = 16.9 ± 1.5 μmol L-1) and against COLO205 lines (IC50 = 16.5 ± 3.4 μmol L-1) is much stronger than that of HL1, which had the potential to develop anti-cancer drug.

  18. Synthesis of DNA and Poly(Adenosine Diphosphate Ribose) in Normal and Chronic Lymphocytic Leukemia Lymphocytes

    PubMed Central

    Berger, Nathan A.; Adams, Jessie W.; Sikorski, Georgina W.; Petzold, Shirley J.; Shearer, William T.

    1978-01-01

    Peripheral blood lymphocytes were isolated from 9 patients with chronic lymphocytic leukemia (CLL) and 12 normal control donors. The cells were assayed for synthesis of DNA and poly-(adenosine diphosphate ribose) (poly[ADPR]) immediately after isolation and on successive days following their treatment with phytohemagglutinin (PHA). Two different techniques were used to measure DNA synthesis. In the standard technique, DNA synthesis was measured by incubating intact cells with [3H]deoxythymidine. In the new technique, the lymphocytes were first rendered permeable to nucleotides, then DNA synthesis was measured by incubating them with [3H]deoxythymidine triphosphate in the presence of deoxyATP, deoxyGTP, deoxyCTP, ATP, and Mg++. Both assays showed the anticipated rise in DNA synthesis after PHA stimulation of normal cells. PHA-stimulated lymphocytes from patients with CLL demonstrated low levels of DNA synthesis in both assay systems. The initial levels of poly(ADPR) synthesis were greater in CLL lymphocytes than in normal cells. Studies with a T-cell-depleted population of normal cells showed the same activity for poly(ADPR) synthesis that was demonstrated by the original population of normal cells. PHA stimulation produced an increase in poly(ADPR) synthesis in both the normal and CLL cells. The increase in poly(ADPR) synthesis in normal cells was coincident with the increase in DNA synthesis. The increase in poly(ADPR) synthesis in the CLL cells was dissociated from the delayed and diminished increase in DNA synthesis. Thus, CLL cells have higher than normal initial levels of poly(ADPR) synthesis. Poly(ADPR) synthesis is dissociated from DNA synthesis in CLL cells whereas it varies directly with DNA synthesis in normal lymphocytes. PMID:659624

  19. Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-02-01

    New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from bidentate Schiff base ligand, 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol (HL) have been synthesized. The molar ratio for all synthesized complexes is M: L = 1:2 which was established from the results of chemical analysis. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1H and 13C) NMR, mass, ESR, XRD, CV, fluorescence, and magnetic as well as thermal analysis measurements. The IR spectra of the prepared complexes were suggested that the Schiff base ligand behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. From the modeling studies, the bond length, bond angle, core-core interaction, heat of formation, electronic energy, binding energy, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern, Horowitz-Metzger and Piloyan-Novikova methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and three Gram -ve) and three antifungal to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed.

  20. A complex between replication factor A (SSB) and DNA helicase stimulates DNA synthesis of DNA polymerase alpha on double-stranded DNA.

    PubMed

    Zhang, S; Grosse, F

    1992-11-01

    A helicase-like DNA unwinding activity was found in highly purified fractions of the calf thymus single-stranded DNA binding protein (ctSSB), also known as replication protein A (RP-A) or replication factor A (RF-A). This activity depended on the hydrolysis of ATP or dATP, and used CTP with a lower efficiency. ctSSB promoted the homologous DNA polymerase alpha to perform DNA synthesis on double-stranded templates containing replication fork-like structures. The rate and amount of DNA synthesis was found to be dependent on the concentration of ctSSB. At a 10-fold mass excess of ctSSB over double-stranded DNA, products of 200-600 nucleotides in length were obtained. This comprises or even exceeds the length of a eukaryotic Okazaki fragment. The ctSSB-associated DNA helicase activity is most likely a distinct protein rather than an inherent property of SSB, as inferred from titration experiments between SSB and DNA. The association of a helicase with SSB and the stimulatory action of this complex to the DNA polymerase alpha-catalyzed synthesis of double-stranded DNA suggests a cooperative function of the three enzymatic activities in the process of eukaryotic DNA replication.

  1. Diorganotin (IV) complexes with 4-nitro-N-phthaloyl-glycine: Synthesis, characterization, antitumor activity and DNA-binding studies.

    PubMed

    Yan, Chaoqun; Zhang, Jiali; Liang, Taigang; Li, Qingshan

    2015-04-01

    Two novel diorganotin (IV) complexes, based on 4-nitro-N-phthaloyl-glycine (HL), namely {4-NO2C6H3(CO)2NCH2COO}2Sn(n-Bu)2 (1) and {4-NO2C6H3(CO)2NCH2COO}2SnMe2 (2), were synthesized and characterized by elemental analysis, FT-IR, (1)H- and (13)C-NMR spectroscopic techniques. In vitro antitumor activities of both complexes were evaluated by the 3-(4,5-dimethylthiazoly-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against three human cancer cell lines: HepG-2 (human liver carcinoma), SGC-7901 (human gastric carcinoma) and LS174T (human colon carcinoma). Complex 1 exhibited strong antitumor activity with IC50 values of 1.51±0.41, 1.80±0.63, and 2.48±0.96 μM, respectively; while complex 2 had no obvious effects on the three selected cancer cell lines at high concentrations up to 100 μM. Complex 1-induced apoptosis was further confirmed by morphological observations and annexin V-FITC/PI staining flow cytometry analysis in HepG-2 cells. Cell cycle analysis revealed that complex 1 caused cell cycle arrest at G2/M phase. Molecular mechanism studies suggested that the apoptosis was mediated through the mitochondrial pathway with intracellular reactive oxygen species (ROS) promotion and mitochondrial membrane potential (MMP) disruption by finally activating effector caspase-3/9 to trigger cell apoptosis. Moreover, the interactions of both complexes with calf thymus DNA (CT-DNA) were investigated by using UV-Vis titration and fluorometric competition measurements. The DNA-binding constants Kb (intrinsic binding constant) and K(sv) (quenching constant) had been obtained in the order: 1>2, consisted with the antitumor activity results. Taken together, complex 1 exhibited excellent antitumor activity suggesting that it may be a potential candidate for further chemical optimization and cancer therapy.

  2. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    PubMed

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases. PMID:22320201

  3. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity.

    PubMed

    Zhao, Hui-Fang; Liang, Ru-Ping; Wang, Jing-Wu; Qiu, Jian-Ding

    2015-01-15

    DNA methyltransferases catalyze the transfer of a methyl group from S-adenosylmethionine to the target adenine or cytosine, eventually inducing the DNA methylation in both prokaryotes and eukaryotes. Herein, we developed a novel electrochemiluminescence biosensor to quantify DNA adenine methylation (Dam) methyltransferase (MTase) employing signal amplification of GO/AgNPs/luminol composites to enhance the assay sensitivity. The method was developed by designing a capture probe DNA, which was immobilized on gold electrode surface, to hybridize with azide complementary DNA to form the azide-terminated dsDNA. Then, alkynyl functionalized GO/AgNPs/luminol composites as the signal probe were immobilized to azide-terminated dsDNA modified electrode via click chemistry, resulting in a high electrochemiluminescence (ECL) signal. Once the DNA hybrid was methylated (under catalysis of Dam MTase) and further cleaved by Dpn I endonuclease (a site-specific endonuclease recognizing the duplex symmetrical sequence of 5'-G-Am-T-C-3'), GO/AgNPs/luminol composites release from the electrode surface to the solution, leading to significant reduction of the ECL signal. The change of the ECL intensity is related to the methylation status and MTase activity, which forms the basis of MTase activity assay and site-specific methylation determination. This novel strategy can be further used as a universal method for other transferase determination by designing various transferase-specific DNA sequences. In addition, this method can be used for the screening of antimicrobial drugs and has a great potential to be further applied in early clinical diagnosis.

  4. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  5. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  6. D-ribose inhibits DNA repair synthesis in human lymphocytes

    SciTech Connect

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  7. Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity.

    PubMed Central

    Ruesch, M N; Laimins, L A

    1997-01-01

    The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity. PMID:9188631

  8. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  9. Synthesis and biological evaluation of some 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones: antibacterial, DNA photocleavage, and anticancer activities.

    PubMed

    Kumar, Vinod; Kaur, Kamalneet; Karelia, Deepkamal N; Beniwal, Vikas; Gupta, Girish Kumar; Sharma, Arun K; Gupta, Akhilesh Kumar

    2014-06-23

    In continuation of our efforts to find new biologically active agents, regioselective synthesis of a series of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones 4a-k has been achieved under facile, extremely mild and greener reaction conditions with excellent yields. Moreover, one pot multicomponent reaction has also been reinvestigated under previously reported solvent conditions to prepare 4a-b and found that the reaction generates significant amount of side products. The chemical structures of 4a-k were established on the basis of a combined use of IR, NMR ((1)H, (13)C) spectroscopy, mass spectrometry and elemental analysis. All the compounds were evaluated for their antibacterial, DNA photocleavage and anticancer activities. Among all, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-(naphth-2-yl)ethanone 4j displayed good inhibitory profile against Escherichia coli and Staphylococcus aureus which was about 50% and 25% of the Ampicillin (standard drug), respectively. The compounds, 4a and 4f showed relatively moderate inhibition against Psuedomonas aeruginosa and E. coli. In DNA photocleavage study, compounds 4c and 4d were found to be highly active and completely degraded both forms of DNA (SC and OC), even at a very low concentration of 1 μg (4c) under irradiation of UV light. However, 4h and 4f resulted in complete DNA degradation at 30 μg concentration. Moreover, 4h showed fluorescence at 15 μg concentration and increased the intensity of both bands of DNA (SC and OC) as compared to control. On the other hand, to valorize the biological potential, the compounds were screened for their cytotoxic activity on colon (HCT116 and HT29), prostate (DU145), ovarian (SKOV3) and lung (A549) cancer cell lines. The compound 4j was found to be cytotoxic to all the cancer cell lines, except SKOV3, with more selectivity towards the colon cancer cell lines (HCT116, HT29) and A549 lung cancer cell line. On A549 lung cancer cell line, 4j and 4k exhibited similar potency as

  10. Two water-soluble copper(II) complexes: synthesis, characterization, DNA cleavage, protein binding activities and in vitro anticancer activity studies.

    PubMed

    Lu, Jing; Sun, Qian; Li, Jun-Ling; Jiang, Lin; Gu, Wen; Liu, Xin; Tian, Jin-Lei; Yan, Shi-Ping

    2014-08-01

    Two water-soluble ternary copper(II) complexes of [Cu(L)Cl](ClO4) (1) and [Cu(L)Br2] (2) (L=(2-((quinolin-8-ylimino)methyl)pyridine)) were prepared and characterized by various physico-chemical techniques. Both 1 and 2 were structurally characterized by X-ray crystallography. The crystal structures show the presence of a distorted square-pyramidal CuN3Cl2 (1) or CuN3Br2 (2) geometry in which Schiff-base L acts as a neutral tridentate ligand. Both complexes present intermolecular π-π stacking interactions between quinoline and pyridine rings. The interaction of two complexes with CT-DNA (calf thymus-DNA) and BSA (bovine serum albumin) was studied by means of various spectroscopy methods, which revealed that 1 and 2 could interact with CT-DNA through intercalation mode, and could quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the competition experiment using Hoechst 33258 indicated that two complexes may bind to CT-DNA by a minor groove. DNA cleavage experiments indicate that the complexes exhibit efficient DNA cleavage activities without any external agents, and hydroxyl radical (HO) and singlet oxygen ((1)O2) may serve as the major cleavage active species. Notably, the in vitro cytotoxicity of the complexes on three human tumor cells lines (HeLa, MCF-7, and A549) demonstrates that two compounds have broad-spectrum antitumor activity with quite low IC50 ranges of 0.43-1.85μM. Based on the cell cycle experiments, 1 and 2 could delay or inhibit cell cycle progression through the S phase.

  11. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  12. Transcriptional template activity of covalently modified DNA.

    PubMed

    Tolwińska-Stańczyk, Z; Wilmańska, D; Studzian, K; Gniazdowski, M

    1997-03-01

    The transcriptional template activity of covalent modified DNA is compared. 8-Methoxypsoralen (MOP), 3,4'dimethyl-8-methoxypsoralen (DMMOP) and benzopsoralen (BP) forming with DNA covalent complexes upon UV irradiation and exhibiting preference to pyrimidines, mostly thymines, differ in their cross-linking potency. MOP and DMMOP form both monoadducts and diadducts while no cross-links are formed by BP. Nitracrine (NC) forms covalent complexes with DNA upon reductive activation with dithiothreitol exhibiting a preference to purines and low cross-linking potency. Semilogarithmic plots of the relative template activity against the number of the drugs molecules covalently bound per 10(3) DNA nucleotides fit to regression lines corresponding to one-hit inactivation characteristics. The number of drug molecules decreasing RNA synthesis to 37% differ from 0.25 to 1.26 depending on the template used and the base preference but no dependence on the cross-linking potency was found. PMID:9067423

  13. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    PubMed

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin.

  14. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  15. Novel complexes of Co(III) and Ni(II) containing peptide ligands: Synthesis, DNA binding and photonuclease activity

    NASA Astrophysics Data System (ADS)

    Sudhamani, C. N.; Bhojya Naik, H. S.; Girija, D.; Sangeetha Gowda, K. R.; Giridhar, M.; Arvinda, T.

    2014-01-01

    The new cobalt(III) and nickel(II) complexes of the type [M(L)2(H2O)2]n+ (where M = Co(III) or Ni(II) ion, n = 3 for Co and 2 for Ni, L = peptides Fmoc. Ala-val-OH (F-AVOH), Fmoc-Phe-Leu-Ome (F-PLOMe) and Z-Ala-Phe-COsbnd NH2 (Z-APCONH2)) were synthesized and structurally characterized by FTIR, 1H NMR, elemental analysis and electronic spectral data. An octahedral geometry has been proposed for all the synthesized Co(III) and Ni(II) metal complexes. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation.

  16. Neutral and ionic platinum compounds containing a cyclometallated chiral primary amine: synthesis, antitumor activity, DNA interaction and topoisomerase I-cathepsin B inhibition.

    PubMed

    Albert, Joan; Bosque, Ramon; Crespo, Margarita; Granell, Jaume; López, Concepción; Martín, Raquel; González, Asensio; Jayaraman, Anusha; Quirante, Josefina; Calvis, Carme; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Cascante, Marta; Messeguer, Ramon

    2015-08-14

    The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R.

  17. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Roy, Roshni; Roy, Bidyut

    2016-01-10

    Enzymes responsible for mitochondrial (mt) DNA synthesis and transcription are encoded by nuclear genome and inherited mutations in these genes may play important roles in enhancing risk of precancer and cancer. Here, genetic variations in 23 functionally relevant tagSNPs in 6 genes responsible for mtDNA synthesis and transcription were studied in 522 cancer and 241 precancer (i.e. leukoplakia) patients and 525 healthy controls using Illumina Golden Gate assay to explore association with risk of oral precancer and cancer. Two SNPs, rs41553913 at POLRMT and rs9905016 at POLG2, significantly increased risk of oral leukoplakia and cancer, respectively, at both genotypic and allelic levels. Gene-environment interaction models also revealed that tobacco habits and SNPs at POLG2 and TFAM may modulate risk of both leukoplakia and cancer. In silico analysis of published data-set also revealed that variant heterozygote (TC) significantly increased transcription of POLG2 compared to wild genotype (p=0.03). Cancer tissues having variant allele genotypes (TC+CC) at POLG2 contained 1.6 times (p<0.01) more mtDNA compared to cancer tissues having wild genotype (TT). In conclusion, polymorphisms at POLG2 and POLRMT increased risk of oral cancer and leukoplakia, respectively, probably modulating synthesis and activity of the enzymes. Enhanced synthesis of mtDNA in cancer tissues may have implication in carcinogenesis, but the mechanism is yet to be explored. PMID:26403317

  18. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Roy, Roshni; Roy, Bidyut

    2016-01-10

    Enzymes responsible for mitochondrial (mt) DNA synthesis and transcription are encoded by nuclear genome and inherited mutations in these genes may play important roles in enhancing risk of precancer and cancer. Here, genetic variations in 23 functionally relevant tagSNPs in 6 genes responsible for mtDNA synthesis and transcription were studied in 522 cancer and 241 precancer (i.e. leukoplakia) patients and 525 healthy controls using Illumina Golden Gate assay to explore association with risk of oral precancer and cancer. Two SNPs, rs41553913 at POLRMT and rs9905016 at POLG2, significantly increased risk of oral leukoplakia and cancer, respectively, at both genotypic and allelic levels. Gene-environment interaction models also revealed that tobacco habits and SNPs at POLG2 and TFAM may modulate risk of both leukoplakia and cancer. In silico analysis of published data-set also revealed that variant heterozygote (TC) significantly increased transcription of POLG2 compared to wild genotype (p=0.03). Cancer tissues having variant allele genotypes (TC+CC) at POLG2 contained 1.6 times (p<0.01) more mtDNA compared to cancer tissues having wild genotype (TT). In conclusion, polymorphisms at POLG2 and POLRMT increased risk of oral cancer and leukoplakia, respectively, probably modulating synthesis and activity of the enzymes. Enhanced synthesis of mtDNA in cancer tissues may have implication in carcinogenesis, but the mechanism is yet to be explored.

  19. Surfactant-copper(II) Schiff base complexes: synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity.

    PubMed

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Solomon, Rajadurai Vijay; Venuvanalingam, Ponnambalam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    A series of surfactant-copper(II) Schiff base complexes (1-6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal=salicylaldehyde, 5-OMe-sal=5-methoxy- salicylaldehyde, and R2=dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant-copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.

  20. Surfactant-copper(II) Schiff base complexes: synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity.

    PubMed

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Solomon, Rajadurai Vijay; Venuvanalingam, Ponnambalam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    A series of surfactant-copper(II) Schiff base complexes (1-6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal=salicylaldehyde, 5-OMe-sal=5-methoxy- salicylaldehyde, and R2=dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant-copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent. PMID:24854148

  1. Evaluation of DNA synthesis with carbon-11-labeled 4′-thiothymidine

    PubMed Central

    Toyohara, Jun

    2016-01-01

    In the cancer research field, the preferred method for evaluating the proliferative activity of cancer cells in vivo is to measure DNA synthesis rates. The cellular proliferation rate is one of the most important cancer characteristics, and represents the gold standard of pathological diagnosis. Positron emission tomography (PET) has been used to evaluate in vivo DNA synthetic activity through visualization of enhanced nucleoside metabolism. However, methods for the quantitative measurement of DNA synthesis rates have not been fully clarified. Several groups have been engaged in research on 4′-[methyl-11C]-thiothymidine (11C-4DST) in an effort to develop a PET tracer that allows quantitative measurement of in vivo DNA synthesis rates. This mini-review summarizes the results of recent studies of the in vivo measurement of cancer DNA synthesis rates using 11C-4DST. PMID:27721942

  2. DNA Nanoparticles for Improved Protein Synthesis In Vitro.

    PubMed

    Galinis, Robertas; Stonyte, Greta; Kiseliovas, Vaidotas; Zilionis, Rapolas; Studer, Sabine; Hilvert, Donald; Janulaitis, Arvydas; Mazutis, Linas

    2016-02-24

    The amplification and digital quantification of single DNA molecules are important in biomedicine and diagnostics. Beyond quantifying DNA molecules in a sample, the ability to express proteins from the amplified DNA would open even broader applications in synthetic biology, directed evolution, and proteomics. Herein, a microfluidic approach is reported for the production of condensed DNA nanoparticles that can serve as efficient templates for in vitro protein synthesis. Using phi29 DNA polymerase and a multiple displacement amplification reaction, single DNA molecules were converted into DNA nanoparticles containing up to about 10(4)  clonal gene copies of the starting template. DNA nanoparticle formation was triggered by accumulation of inorganic pyrophosphate (produced during DNA synthesis) and magnesium ions from the buffer. Transcription-translation reactions performed in vitro showed that individual DNA nanoparticles can serve as efficient templates for protein synthesis in vitro.

  3. Lanthanide cofactors accelerate DNA-catalyzed synthesis of branched RNA.

    PubMed

    Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2013-08-28

    Most deoxyribozymes (DNA catalysts) require metal ions as cofactors for catalytic activity, with Mg(2+), Mn(2+), and Zn(2+) being the most represented activators. Trivalent transition-metal ions have been less frequently considered. Rare earth ions offer attractive properties for studying metal ion binding by biochemical and spectroscopic methods. Here we report the effect of lanthanide cofactors, in particular terbium (Tb(3+)), for DNA-catalyzed synthesis of 2',5'-branched RNA. We found up to 10(4)-fold increased ligation rates for the 9F7 deoxribozyme using 100 μM Tb(3+) and 7 mM Mg(2+), compared to performing the reaction with 7 mM Mg(2+) alone. Combinatorial mutation interference analysis (CoMA) was used to identify nucleotides in the catalytic region of 9F7 that are essential for ligation activity with different metal ion combinations. A minimized version of the DNA enzyme sustained high levels of Tb(3+)-assisted activity. Sensitized luminescence of Tb(3+) bound to DNA in combination with DMS probing and DNase I footprinting results supported the CoMA data. The accelerating effect of Tb(3+) was confirmed for related RNA-ligating deoxyribozymes, pointing toward favorable activation of internal 2'-OH nucleophiles. The results of this study offer fundamental insights into nucleotide requirements for DNA-catalyzed RNA ligation and will be beneficial for practical applications that utilize 2',5'-branched RNA.

  4. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    SciTech Connect

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  5. Patterns of DNA synthesis during pollen embryogenesis in henbane.

    PubMed

    Raghavan, V

    1977-05-01

    Continued DNA synthesis in the generative cell nucleus, followed by mitosis and cytokinesis, results in the formation of pollen embryoids in cultured anthers of H. niger. In contrast, the nucleus of the vegetative cell undergoes no DNA synthesis after it is cut off, or synthesizes DNA only during a limited number of cell cycles. DNA synthetic patterns in the generative and vegetative cell nuclei confirm the ontogeny of embryoids described in this plant.

  6. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: Antimicrobial activity and DNA binding

    NASA Astrophysics Data System (ADS)

    Latha, P.; Kodisundaram, P.; Sundararajan, M. L.; Jeyakumar, T.

    2014-08-01

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, 1H, 13C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular Csbnd H⋯N and Csbnd H⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814 a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404 a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method.

  7. Viral DNA synthesis-dependent titration of a cellular repressor activates transcription of the human adenovirus type 2 IVa2 gene.

    PubMed

    Iftode, C; Flint, S J

    2004-12-21

    Synthesis of progeny DNA genomes in cells infected by human subgroup C adenoviruses leads to several changes in viral gene expression. These changes include transcription from previously silent, late promoters, such as the IV(a2) promoter, and a large increase in the efficiency of major-late (ML) transcription. Some of these changes appear to take place sequentially, because the product of the IV(a2) gene has been implicated in stimulation of ML transcription. Our previous biochemical studies suggested that IV(a2) transcription is regulated by viral DNA synthesis-dependent relief of transcriptional repression by a cellular protein that we termed IV(a2)-RF. To test the relevance of such a repressor-titration mechanism during the viral infectious cycle, we introduced into the endogenous IV(a2) promoter two mutations that impair in vitro-binding of IV(a2)-RF, but introduce no change (Rep7) or one conservative amino acid substitution (Rep6) into the overlapping coding sequence for the viral DNA polymerase. The results of run-on transcription assays indicated that both mutations induced earlier-than-normal and more efficient IV(a2) transcription. Both mutations were also observed to result in modest increases in the efficiency of viral DNA synthesis. However, measurement of the concentration of IV(a2) transcripts as a function of IV(a2) template concentration demonstrated that the Rep mutations increased by up to 60-fold the efficiency with which IV(a2) templates were used during the initial period of the late phase of infection, as predicted by the repressor titration hypothesis. These mutations also increased the efficiency of ML transcription in infected cells.

  8. Chemoenzymatic synthesis and antibody detection of DNA glycoconjugates.

    PubMed

    Wang, Yingli; Sheppard, Terry L

    2003-01-01

    A chemoenzymatic approach for the efficient synthesis of DNA-carbohydrate conjugates was developed and applied to an antibody-based strategy for the detection of DNA glycoconjugates. A phosphoramidite derivative of N-acetylglucosamine (GlcNAc) was synthesized and utilized to attach GlcNAc sugars to the 5'-terminus of DNA oligonucleotides by solid-phase DNA synthesis. The resulting GlcNAc-DNA conjugates were used as substrates for glycosyl transferase enzymes to synthesize DNA glycoconjugates. Treatment of GlcNAc-DNA with beta-1,4-galactosyl transferase (GalT) and UDP-Gal produced N-acetyllactosamine-modified DNA (LacNAc-DNA), which could be converted quantitatively to the trisaccharide Lewis X (LeX)-DNA conjugate by alpha-1,3-fucosyltransferase VI (FucT) and GDP-Fuc. The facile enzymatic synthesis of LeX-DNA from GlcNAc-DNA also was accomplished in a one-pot reaction by the combined action of GalT and FucT. The resulting glycoconjugates were characterized by gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and glycosidase digestion experiments. Covalent modification of the 5'-terminus of DNA with carbohydrates did not interfere with the ability of DNA glycoconjugates to hybridize with complementary DNA, as indicated by UV thermal denaturation analysis. The trisaccharide DNA glycoconjugate, LeX-DNA, was detected by a dual DNA hybridization/monoclonal antibody (mAb) detection protocol ("Southwestern"): membrane-immobilized LeX-DNA was visualized by Southern detection with a radiolabeled complementary DNA probe and by Western chemiluminescence detection with a mAb specific for the LeX antigen. The efficient chemoenzymatic synthesis of DNA glycoconjugates and the Southwestern detection protocol may facilitate the application of glycosylated DNA to cellular targeting and DNA glycoconjugate detection strategies. PMID:14624649

  9. Chemoenzymatic synthesis and antibody detection of DNA glycoconjugates.

    PubMed

    Wang, Yingli; Sheppard, Terry L

    2003-01-01

    A chemoenzymatic approach for the efficient synthesis of DNA-carbohydrate conjugates was developed and applied to an antibody-based strategy for the detection of DNA glycoconjugates. A phosphoramidite derivative of N-acetylglucosamine (GlcNAc) was synthesized and utilized to attach GlcNAc sugars to the 5'-terminus of DNA oligonucleotides by solid-phase DNA synthesis. The resulting GlcNAc-DNA conjugates were used as substrates for glycosyl transferase enzymes to synthesize DNA glycoconjugates. Treatment of GlcNAc-DNA with beta-1,4-galactosyl transferase (GalT) and UDP-Gal produced N-acetyllactosamine-modified DNA (LacNAc-DNA), which could be converted quantitatively to the trisaccharide Lewis X (LeX)-DNA conjugate by alpha-1,3-fucosyltransferase VI (FucT) and GDP-Fuc. The facile enzymatic synthesis of LeX-DNA from GlcNAc-DNA also was accomplished in a one-pot reaction by the combined action of GalT and FucT. The resulting glycoconjugates were characterized by gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and glycosidase digestion experiments. Covalent modification of the 5'-terminus of DNA with carbohydrates did not interfere with the ability of DNA glycoconjugates to hybridize with complementary DNA, as indicated by UV thermal denaturation analysis. The trisaccharide DNA glycoconjugate, LeX-DNA, was detected by a dual DNA hybridization/monoclonal antibody (mAb) detection protocol ("Southwestern"): membrane-immobilized LeX-DNA was visualized by Southern detection with a radiolabeled complementary DNA probe and by Western chemiluminescence detection with a mAb specific for the LeX antigen. The efficient chemoenzymatic synthesis of DNA glycoconjugates and the Southwestern detection protocol may facilitate the application of glycosylated DNA to cellular targeting and DNA glycoconjugate detection strategies.

  10. In vitro activation of T lymphocytes from human immunodeficiency virus (HIV)-seropositive blood donors. I. Soluble interleukin 2 receptor (IL2R) production parallels cellular IL2R expression and DNA synthesis.

    PubMed

    Prince, H E; Kleinman, S H; Maino, V C; Jackson, A L

    1988-03-01

    We investigated the relationship of soluble interleukin 2 receptor (sIL2R) production to cellular IL2R expression and DNA synthesis by mitogen-stimulated mononuclear cells from blood donors seropositive for human immunodeficiency virus (HIV). SIL2R was measured using an enzyme-linked immunosorbent assay which employed 2 anti-IL2R monoclonal antibodies recognizing distinct IL2R epitopes. Decreased phytohemagglutinin-induced DNA synthesis and cellular IL2R expression were accompanied by decreased levels of sIL2R in cell culture supernatants. Similar findings were observed for pokeweed mitogen-induced responses. There was no detectable spontaneous secretion of sIL2R into culture supernatants by unstimulated mononuclear cells from either HIV-seropositive or control seronegative donors. These findings indicate that the in vitro T-cell activation defects which characterize HIV infection include decreased sIL2R production, as well as decreased cellular IL2R expression and DNA synthesis. Further, they show that assessment of supernatant sIL2R levels can be used as a valid, reliable assay for T-cell activation.

  11. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    SciTech Connect

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  12. Biosynthesis, Synthesis and Biological Activities of Pyrrolobenzodiazepines

    PubMed Central

    Gerratana, Barbara

    2014-01-01

    Pyrrolobenzodiazepines (PBDs) are sequence selective DNA alkylating agents with remarkable antineoplastic activity. They are either naturally produced by actinomycetes or synthetically produced. The remarkable broad spectrum of activities of the naturally produced PBDs encouraged the synthesis of several PBDs, including dimeric and hybrid PBDs yielding to an improvement in the DNA binding sequence specificity and in the potency of this class of compounds. However, limitation in the chemical synthesis prevented the testing of one of the most potent PBDs, sibiromycin, a naturally produced glycosylated PBDs. Only recently the biosynthetic gene clusters for PBDs have been identified opening the doors to the production of glycosylated PBDs by mutasynthesis and biosynthetic engineering. The present review describes the recent studies on the biosynthesis of naturally produced pyrrolobenzodiazepines. In addition, it provides an overview on the isolation and characterization of naturally produced PBDs, on the chemical synthesis of PBDs, on the mechanism of DNA alkylation, and on the DNA binding affinity and cytotoxic properties of both naturally produced and synthetic pyrrolobenzodiazepines. PMID:20544978

  13. DNA replication origin activation in space and time.

    PubMed

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  14. Antitumour benzothiazoles. Part 32: DNA adducts and double strand breaks correlate with activity; synthesis of 5F203 hydrogels for local delivery.

    PubMed

    Stone, Erica L; Citossi, Francesca; Singh, Rajinder; Kaur, Balvinder; Gaskell, Margaret; Farmer, Peter B; Monks, Anne; Hose, Curtis; Stevens, Malcolm F G; Leong, Chee-Onn; Stocks, Michael; Kellam, Barrie; Marlow, Maria; Bradshaw, Tracey D

    2015-11-01

    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.

  15. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    SciTech Connect

    Lee, E.W.; Johnson, J.T.; Garner, C.D. )

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of ({sup 3}H)thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 {mu}M. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of ({sup 3}H)thymidine triphosphate into DNA up to 24 {mu}M but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase {alpha}, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase {alpha}, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause.

  16. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    SciTech Connect

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-12-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of (/sup 3/H)thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of (/sup 3/H)thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density.

  17. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis.

    PubMed

    Kawamoto, Takuo; Araki, Kasumi; Sonoda, Eiichiro; Yamashita, Yukiko M; Harada, Kouji; Kikuchi, Koji; Masutani, Chikahide; Hanaoka, Fumio; Nozaki, Kazuhiko; Hashimoto, Nobuo; Takeda, Shunichi

    2005-12-01

    Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles. PMID:16337602

  18. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  19. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    PubMed

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-01

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  20. Repair synthesis step involving ERCC1-XPF participates in DNA repair of the Top1-DNA damage complex.

    PubMed

    Takahata, Chiaki; Masuda, Yuji; Takedachi, Arato; Tanaka, Kiyoji; Iwai, Shigenori; Kuraoka, Isao

    2015-08-01

    Topoisomerase 1 (Top1) is the intercellular target of camptothecins (CPTs). CPT blocks DNA religation in the Top1-DNA complex and induces Top1-attached nick DNA lesions. In this study, we demonstrate that excision repair cross complementing 1 protein-xeroderma pigmentosum group F (ERCC1-XPF) endonuclease and replication protein A (RPA) participate in the repair of Top1-attached nick DNA lesions together with other nucleotide excision repair (NER) factors. ERCC1-XPF shows nuclease activity in the presence of RPA on a 3'-phosphotyrosyl bond nick-containing DNA (Tyr-nick DNA) substrate, which mimics a Top1-attached nick DNA lesion. In addition, ERCC1-XPF and RPA form a DNA/protein complex on the nick DNA substrate in vitro, and co-localize in CPT-treated cells in vivo. Moreover, the DNA repair synthesis of Tyr-nick DNA lesions occurred in the presence of NER factors, including ERCC1-XPF, RPA, DNA polymerase delta, flap endonuclease 1 and DNA ligase 1. Therefore, some of the NER repair machinery might be an alternative repair pathway for Top1-attached nick DNA lesions. Clinically, these data provide insights into the potential of ERCC1 as a biomarker during CPT regimens.

  1. DNA sequencing by synthesis based on elongation delay detection

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2015-03-01

    The one of most important problem in modern genetics, biology and medicine is determination of the primary nucleotide sequence of the DNA of living organisms (DNA sequencing). This paper describes the label-free DNA sequencing approach, based on the observation of a discrete dynamics of DNA sequence elongation phase. The proposed DNA sequencing principle are studied by numerical simulation. The numerical model for proposed label-free DNA sequencing approach is based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) and dynamics of nucleotides incorporation to rising DNA strand. The estimates for number of copied DNA sequences for required probability of nucleotide incorporation event detection and correct DNA sequence determination was obtained. The proposed approach can be applied at all known DNA sequencing devices with "sequencing by synthesis" principle of operation.

  2. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  3. Apicobasal gradient of chloroplast DNA synthesis and distribution in Acetabularia.

    PubMed

    Hoursiangou-Neubrun, D; Lüttke, A; Arapis, G; Puiseux-Dao, S; Bonotto, S

    1982-01-01

    Autoradiographic and biochemical experiments have revealed the presence, in vegetative cells of Acetabularia, of an apicobasal gradient of penetration and incorporation of labelled DNA precursors into the chloroplasts. Staining of chloroplasts with the DNA-specific fluorochrome DAPI has shown that the number of chloroplasts without DNA increases from the apex towards the base of the cell. All together, our findings support the existence of an apicobasal gradient of chloroplast DNA synthesis and distribution in Acetabularia.

  4. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid.

    PubMed

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR ((1)H, and (13)C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular OH⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  5. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  6. De novo DNA synthesis using single molecule PCR

    PubMed Central

    Yehezkel, Tuval Ben; Linshiz, Gregory; Buaron, Hen; Kaplan, Shai; Shabi, Uri; Shapiro, Ehud

    2008-01-01

    The throughput of DNA reading (sequencing) has dramatically increased recently due to the incorporation of in vitro clonal amplification. The throughput of DNA writing (synthesis) is trailing behind, with cloning and sequencing constituting the main bottleneck. To overcome this bottleneck, an in vitro alternative for in vivo DNA cloning must be integrated into DNA synthesis methods. Here we show how a new single molecule PCR (smPCR)-based procedure can be employed as a general substitute to in vivo cloning thereby allowing for the first time in vitro DNA synthesis. We integrated this rapid and high fidelity in vitro procedure into our earlier recursive DNA synthesis and error correction procedure and used it to efficiently construct and error-correct a 1.8-kb DNA molecule from synthetic unpurified oligos completely in vitro. Although we demonstrate incorporating smPCR in a particular method, the approach is general and can be used in principle in conjunction with other DNA synthesis methods as well. PMID:18667587

  7. Heterogeneity in the properties of burst-forming units of erythroid lineage in sickle cell anemia: DNA synthesis and burst-promoting activity production is related to peripheral hemoglobin F levels

    SciTech Connect

    Croizat, H.; Billett, H.H.; Nagel, R.L. )

    1990-02-15

    Circulating 14-day erythroid progenitors (BFU-E) from 28 sickle cell anemia (SS) patients with hemoglobin F (HbF) levels ranging from 2% to 16% were studied to determine their sensitivity to ({sup 3}H) thymidine kill and burst-promoting activity (BPA)-like factor production. We find that the proportion of BFU-E sensitive to 3H-dT kill, and hence active in DNA synthesis, was inversely correlated with the percent of peripheral HbF when light density (LD) mononuclear cells were used for plating. Regression analysis showed that the correlation between HbF level and BFU-E kill was highly significant (r = .88; P less than .00003). We confirmed the BPA-like factor(s) production by LD mononuclear cells of SS patients, and found, in addition, that this phenomenon is restricted to the population of SS patients with HbF levels lower than 9%. Circulating BFU-E of patients with high HbF levels are not sensitive to 3H-dT, and their mononuclear cells do not release BPA-like factor. In summary, SS patients exhibit differences in the capacity of their mononuclear cells to produce BPA activity according to their peripheral HbF level, as well as to the DNA synthesis-state of their circulating BFU-E. We conclude that erythroid progenitors differ among SS patients in relation to their peripheral HbF level.

  8. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori.

    PubMed

    Li, Yao-Feng; Chen, Xiang-Yun; Zhang, Chun-Dong; Tang, Xiao-Fang; Wang, La; Liu, Tai-Hang; Pan, Min-Hui; Lu, Cheng

    2016-08-01

    Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E.

  9. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    PubMed

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-01

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  10. The effect of vinyl chloride monomer, chloroethylene oxide and chloracetaldehyde on DNA synthesis in regenerating rat liver.

    PubMed

    Border, E A; Webster, I

    1977-05-01

    Vinyl chloride monomer used in the manufacture of polyvinyl chloride is a chemical of increasing industrial importance but has recently been incriminated as a carcinogen, producing a mutagenic effect after being metabolized to active metabolites. The initial effect of vinyl chloride monomer and two of its presumed metabolites, chloracetaldehyde and chloroethylene oxide, on DNA synthesis was investigated in vivo in regenerating rat liver. The established control curve for the DNA synthesis rate after partial hepatectomy demonstrated two waves of synthetic activity at 21 and 30 h. Vinyl chloride, injected intravenously immediately on completion of the operation, depressed the first wave of DNA synthesis by 49.6%. The second peak of DNA synthetic activity was similar to that of the control. Chloracetaldehyde and chloroethylene oxide both produced similar effects on the first wave of DNA synthesis after partial hepatectomy, inhibiting the DNA synthesis rate by approx. 50%. After a regenerating period of 27 h, however, they produced very different effects, chloroethylene oxide raising the control DNA synthesis rate at 30 h by 49% while chloracetaldehyde tended to desynchronize the well-defined second peak of the control. The test compounds have been compared to literature reports of the inhibitory effects of various carcinogens on DNA synthesis.

  11. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells.

    PubMed

    Canitrot, Y; Hoffmann, J S; Calsou, P; Hayakawa, H; Salles, B; Cazaux, C

    2000-09-01

    The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions. PMID:10973926

  12. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  13. The identification of translesion DNA synthesis regulators: Inhibitors in the spotlight.

    PubMed

    Bertolin, A P; Mansilla, S F; Gottifredi, V

    2015-08-01

    Over the past half-century, we have become increasingly aware of the ubiquity of DNA damage. Under the constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA synthesis on damaged and undamaged templates.

  14. Control of left ventricular mass by moxonidine involves reduced DNA synthesis and enhanced DNA fragmentation

    PubMed Central

    Paquette, P-A; Duguay, D; Ayoubi, R El-; Menaouar, A; Danalache, B; Gutkowska, J; DeBlois, D; Mukaddam-Daher, S

    2007-01-01

    Background and purpose: Left ventricular hypertrophy (LVH) is a maladaptive process associated with increased cardiovascular risk. Regression of LVH is associated with reduced complications of hypertension. Moxonidine is an antihypertensive imidazoline compound that reduces blood pressure primarily by central inhibition of sympathetic outflow and by direct actions on the heart to release atrial natriuretic peptide, a vasodilator and an antihypertrophic cardiac hormone. This study investigated the effect of moxonidine on LVH and the mechanisms involved in this effect. Experimental approach: Spontaneously hypertensive rats were treated with several doses of moxonidine (s.c.) over 4 weeks. Blood pressure and heart rate were continuously monitored by telemetry. Body weight and water and food intake were measured weekly. Measurements also included left ventricular mass, DNA content, synthesis, fragmentation, and apoptotic/anti-apoptotic pathway proteins. Key results: The decrease in mean arterial pressure stabilized at ∼ −10 mm Hg after 1 week of treatment and thereafter. Compared to vehicle-treated rats (100%), left ventricular mass was dose- and time-dependently reduced by treatment. This reduction remained significantly lower after normalizing to body weight. Moxonidine reduced left ventricular DNA content and inhibited DNA synthesis. DNA fragmentation transiently, but significantly increased at 1 week of moxonidine treatment and was paralleled by elevated active caspase-3 protein. The highest dose significantly decreased the apoptotic protein Bax and all doses stimulated anti-apoptotic Bcl-2 after 4 weeks of treatment. Conclusions and implications: These studies implicate the modulation of cardiac DNA dynamics in the control of left ventricular mass by moxonidine in a rat model of hypertension. PMID:18059325

  15. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies.

    PubMed

    Dhanaraj, C Justin; Johnson, Jijo

    2015-10-01

    Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized from N(2), N(3)-bis(4-nitrophenyl)quinoxaline-2,3-diamine and 1,10-phenanthroline. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, UV-Vis., (1)H NMR, mass and ESR spectra. Octahedral geometry has been assigned for Co(II), Ni(II) and Zn(II) complexes and distorted octahedral geometry for Cu(II) complex. Electrochemical behavior of the synthesized complexes was studied using cyclic voltammetry. Grain size and surface morphologies of the complexes were determined by powder XRD and SEM analyses. The mixed ligand metal complexes were screened for antimicrobial activity against bacterial species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species Aspergillus niger, and Candida albicans by disc diffusion method. The DNA binding and DNA cleavage activities of the compounds were determined using electronic absorption titration and agarose gel electrophoresis respectively. The superoxide radical scavenging and free radical scavenging activities of the Cu(II) complex was also evaluated. Molecular docking studies of the synthesized mixed ligand metal complexes were carried out against B-DNA dodecamer and the protein Plasmodium falciparum dihydrofolate reductase (pf DHFR).

  16. Inhibition of DNA-dependent RNA synthesis by 8-methoxypsoralen.

    PubMed

    Gniazdowski, M; Czyz, M; Wilmańska, D; Studzian, K; Frasunek, M; Płucienniczak, A; Szmigiero, L

    1988-09-01

    The effect of the photobinding of 8-methoxypsoralen to phage T7 DNA on different steps of RNA synthesis in vitro was assayed. Total RNA synthesis is reduced to a few percent and the transcript size is decreased, as shown by means of gel filtration on a Sepharose 4B column when DNA of the adduct content of six drug molecules per 10(3) nucleotides is used. The initiation of RNA chains seems to be less affected, as inferred from an abortive initiation assay. Synthesis of pppApU on DNA of the same adduct content is inhibited to 34% of the corresponding controls, while the overall RNA synthesis is inhibited to 6%. The amount of the enzyme needed for maximal retention of DNA, the kinetics of its binding and the decay of the polymerase-DNA complex at high ionic strength (or on decrease of the temperature) are similar with DNA either irradiated in the absence of the drug or DNA bearing six 8-methoxypsoralen molecules per 10(3) nucleotides. It is concluded from this study that 8-methoxypsoralen partially inhibits initiation and blocks movement of RNA polymerase along the template, inducing premature termination. It does not appear to influence the binding of the enzyme to DNA. PMID:3048406

  17. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  18. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    PubMed

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  19. Substrate-induced DNA polymerase β activation.

    PubMed

    Beard, William A; Shock, David D; Batra, Vinod K; Prasad, Rajendra; Wilson, Samuel H

    2014-11-01

    DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain. PMID:25261471

  20. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  1. Antiinflammatory drug effects on ultraviolet light-induced epidermal ornithine decarboxylase and DNA synthesis

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1980-06-01

    Epidermal ornithine decarboxylase activity is greatly elevated in response to tumor promoting agents and ultraviolet light. The purpose of this paper is to report modification of ultraviolet-induced epidermal ornithine decarboxylase activity by antiinflammatory agents. Topical triamoinolone acetonide and indomethacin were found to significantly inhibit the UV-B induction of epidermal ornithine decarboxylase in hairless mice when applied following ultraviolet light irradiation. The corticosteroid also showed inhibition of ultraviolet light increased epidermal DNA synthesis. Indomethacin failed to show any inhibition of DNA synthesis.

  2. Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors.

    PubMed

    Filosa, Rosanna; Peduto, Antonella; Micco, Simone Di; Caprariis, Paolo de; Festa, Michela; Petrella, Antonello; Capranico, Giovanni; Bifulco, Giuseppe

    2009-01-01

    A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N'-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N'-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours pi-pi stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 microM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.

  3. Zonal differences in DNA synthesis activity and cytochrome P450 gene expression in livers of male F344 rats treated with five nongenotoxic carcinogens

    SciTech Connect

    Chen, Zhi-Ying; White, C.C.; He, Cheng-Yi; Liu, Ying-Fei; Eaton, D.L.

    1995-12-31

    Both increased cell proliferation and {open_quotes}altered{close_quotes}CYP gene expression are prominent phenomena associated with liver tumor promotion by nongenotoxic carcinogen treatment. BRDU-labeled parenchymal nuclei were observed primarily in the periportal area of groups of rats, independent of nongenotoxic carcinogen treatment. Treatment with each of the 5 nongenotoxic carcinogens resulted in profound alterations in CPY gene expression at both the transcriptional and translational levels. Expression of CYP1A1, 1A1/2, 3A1, 2B1/2, and 4A immunoproteins demonstrated nongenotoxic carcinogen-specific patterns in both magnitude and zonal distribution. In agreement with the CYP immunoprotein data, treatment with each of the five nongenotoxic carcinogens resulted in a unique composition of mRNAs of CYP2B1, 2B2, 2C6, 2C11, 3A1, 3A2, and 4A1, which were variably increased or decreased relative to the untreated control livers, depending on the treatment. Similarly, the rate and pattern of CYP enzyme-mediated hydroxylation toward testosterone, 17{beta}-estradiol, corticosterone, and lauric acid were greatly altered by nongenotoxic carcinogen treatment. Because many endogenous substrates are modulators of DNA and RNA synthesis, intracellular kinetics of endogenous substrates of CYP enzymes in the corresponding hepatocytes could contribute, at least in part, to the differences in gene expression, differentiation, and cell proliferation among the hepatocytes in the cell plate. 64 refs., 11 figs., 2 tabs.

  4. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps.

    PubMed

    Koc, Katrina N; Stodola, Joseph L; Burgers, Peter M; Galletto, Roberto

    2015-04-30

    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.

  5. Induction of internucleosomal DNA fragmentation by carcinogenic chromate: relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis.

    PubMed Central

    Manning, F C; Blankenship, L J; Wise, J P; Xu, J; Bridgewater, L C; Patierno, S R

    1994-01-01

    Hexavalent chromium (Cr) compounds are respiratory carcinogens in humans and animals. Treatment of Chinese hamster ovary cells with 150 and 300 microM sodium chromate (Na2CrO4) for 2 hr decreased colony-forming efficiency by 46 and 92%, respectively. These treatments induced dose-dependent internucleosomal fragmentation of cellular DNA beyond 24 hr after chromate treatment. This fragmentation pattern is characteristic of apoptosis as a mechanism of cell death. These treatments also induced an immediate inhibition of macromolecular synthesis and delayed progression of cells through S-phase of the cell cycle. Cell growth (as evidenced by DNA synthesis) was inhibited for at least 4 days and transcription remained suppressed for at least 32 hr. Many of the cells that did progress to metaphase exhibited chromosome damage. Chromate caused the dose-dependent formation of DNA single-strand breaks and DNA-protein cross-links, but these were repaired 8 and 24 hr after removal of the treatment, respectively. In contrast, Cr-DNA adducts (up to 1/100 base-pairs) were extremely resistant to repair and were still detectable even 5 days after treatment. Compared with other regions of the genome, DNA-protein cross-links and Cr adducts were preferentially associated with the nuclear matrix DNA of treated cells, which was 4.5-fold enriched in actively transcribed genes. Chromium adducts, formed on DNA in vitro at a similar level to that detected in nuclear matrix DNA, arrested the progression of a DNA polymerase in a sequence-specific manner, possibly through the formation of DNA-DNA cross-links.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2. Figure 3. Figure 7. PMID:7843091

  6. DNA binding, antioxidant activity, and DNA damage protection of chiral macrocyclic Mn(III) salen complexes.

    PubMed

    Pandya, Nirali; Khan, Noor-ul H; Prathap, K Jeya; Kureshy, Rukhsana I; Abdi, Sayed H R; Mishra, Sandhya; Bajaj, Hari C

    2012-12-01

    We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S-1, R-1, S-2, and R-2. These chiral complexes showed ability to bind with DNA, where complex S-1 exhibits the highest DNA binding constant 1.20 × 10(6) M(-1). All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S-1 exhibited significant activity with IC(50) 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S-1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage.

  7. Control of DNA replication in a transformed lymphoid cell line: coexistence of activator and inhibitor activities.

    PubMed

    Coffman, F D; Fresa, K L; Oglesby, I; Cohen, S

    1991-12-01

    Proliferating lymphocytes contain an intracellular factor, ADR (activator of DNA replication), which can initiate DNA synthesis in isolated quiescent nuclei. Resting lymphocytes lack ADR activity and contain an intracellular inhibitory factor that suppresses DNA synthesis in normal but not transformed nuclei. In this study we describe a MOLT-4 subline that produces both the activator and inhibitory activities which can be separated by ammonium sulfate fractionation. The inhibitor is heat stable and inhibits ADR-mediated DNA replication in a dose-dependent manner. It does not inhibit DNA polymerase alpha activity. The inhibitor must be present at the initiation of DNA replication to be effective, as it loses most of its effectiveness if it is added after replication has begun. The presence of inhibitory activity in proliferating MOLT-4 cells, taken with the previous observation that inhibitor derived from normal resting cells does not affect DNA synthesis by MOLT-4 nuclei, suggests that failure of a down-regulating signal may play an important role in proliferative disorder. PMID:1934078

  8. Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair

    PubMed Central

    Latimer, Jean J.; Kelly, Crystal M.

    2016-01-01

    The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. PMID:24623250

  9. Chromophore-modified antitumor anthracenediones: synthesis, DNA binding, and cytotoxic activity of 1,4-bis[(aminoalkyl)amino]benzo[g]-phthalazine-5,10-diones.

    PubMed

    Gandolfi, C A; Beggiolin, G; Menta, E; Palumbo, M; Sissi, C; Spinelli, S; Johnson, F

    1995-02-01

    As part of a program aimed at exploring the effect of the introduction of heteroatoms into the anthracene-9,10-dione chromophore, we have synthesized novel 1,4-bis[(aminoalkyl)amino]-benzo[g]phthalazine-5,10-diones (BPDs) 1 which are related to the antitumor agents ametantrone and mitoxantrone. Derivatives 1 were prepared by chromic acid oxidation of acylated benzo[g]phthalazines 5 followed by acid hydrolysis or by silylation-amination of 5,10-dihydroxybenzo[g]phthalazine-1,4-dione (8). The 1-[(aminoalkyl)amino]-4-amino congeners 2 were isolated in low yields as byproducts from the oxidation of 5. Against a panel of human tumor cell lines, the benzo[g]phthalazine-5,10-diones 1 and 2 exhibited cytotoxic activity comparable or even superior to that of mitoxantrone. In compounds 1, structure-activity relationships different than those operative in the carbocyclic series appeared to emerge. DNA-binding studies with the ametantrone-like compound 1c and its single-armed congener 2c indicated that the introduction of a 2,3-diaza subunit into the anthracene-9,10-dione chromophore reduces the affinity of the drug for DNA in comparison with ametantrone. On the other hand, the number of side-chain groups does not affect binding to a great extent. These findings seem to suggest mechanisms of cell death other than those induced by simple interaction of the 1,4-BPDs 1 and 2 with DNA.

  10. Cu(II)-dipeptide complexes of 2-(4'-thiazolyl)benzimidazole: synthesis, DNA oxidative damage, antioxidant and in vitro antitumor activity.

    PubMed

    Fu, Xia-Bing; Zhang, Jia-Jia; Liu, Dan-Dan; Gan, Qian; Gao, Hong-Wei; Mao, Zong-Wan; Le, Xue-Yi

    2015-02-01

    Two new Cu(II)-dipeptide complexes of 2-(4'-thiazolyl)benzimidazole, [Cu(Gly-Gly)(TBZ)(Cl)]·4H2O (1) and [Cu(Gly-l-Leu)(TBZ)(Cl)]·H2O (2) (Gly-Gly=glycyl-glycine anion, Gly-l-Leu=glycyl-l-leucine anion and TBZ=2-(4'-thiazolyl)benzimidazole) have been synthesized and characterized by elemental analyses, molar conductance measurements and spectroscopy methods (IR, UV-visible, electrospray ionization mass spectra (ESI-MS) and EPR). The DNA binding and cleavage properties of the complexes monitored by multi-spectroscopic techniques (UV absorption, fluorescence and circular dichroism), viscosity determination and agarose gel electrophoresis indicated that the complexes bound to calf thymus (CT)-DNA via a partial intercalative mode with considerable intrinsic binding constants (Kb=1.64×10(5)M(-1) for 1 and 2.59×10(5)M(-1) for 2), and cleaved pBR322 DNA efficiently in the mediation of ascorbic acid (AA), probably via an oxidative damage mechanism induced by OH. The antioxidant activities of the complexes have been evaluated by means of modified nitroblue tetrazolium (NBT) photoreduction and cellular antioxidant activity (CAA) assays using HepG2 cells as a model, and it was found that IC50 values of 1 and 2 for dismutation of O2(-) were 0.172 and 0.247μM, respectively, and the CAA50 values were 10.57 and 10.74μM. In addition, the complexes were subjected to in vitro cytotoxicity against three human carcinoma cell lines (HeLa, A549 and HepG2), which revealed that the complexes exhibited effective cytotoxicity (IC50 values varying from 33.17 to 100μM) and selective inhibition toward HeLa cell lines. These findings indicate that the complexes have the potential to act as effective metallopeptide chemotherapeutic agents.

  11. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    PubMed

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  12. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    PubMed Central

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  13. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    SciTech Connect

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.

  14. Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity*

    PubMed Central

    Kamath-Loeb, Ashwini S.; Balakrishna, Sharath; Whittington, Dale; Shen, Jiang-Cheng; Emond, Mary J.; Okabe, Takayoshi; Masutani, Chikahide; Hanaoka, Fumio; Nishimura, Susumu; Loeb, Lawrence A.

    2014-01-01

    Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼3000 small molecules, including one comprising ∼600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress. PMID:24928506

  15. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    SciTech Connect

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.

  16. Synthesis, structure, DNA/BSA interaction and in vitro cytotoxic activity of nickel(II) complexes derived from S-allyldithiocarbazate.

    PubMed

    Nanjundan, Nanjan; Selvakumar, Ponnusamy; Narayanasamy, Ramaswamy; Haque, Rosenani A; Velmurugan, Krishnaswamy; Nandhakumar, Raju; Silambarasan, Tamilselvan; Dhandapani, Ramamurthy

    2014-12-01

    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations. PMID:25463665

  17. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    PubMed

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  18. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  19. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  20. Design, synthesis and DNA binding activities of late first row transition metal(II) complexes of bi- functional tri - and tetratopic imines.

    PubMed

    Netalkar, Priya P; Kamath, Anupama; Netalkar, Sandeep P; Revankar, Vidyanand K

    2012-11-01

    A series of novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of tri and tetratopic hydrazones have been prepared. Ligands L(1)H(2) and L(2)H(2) were synthesized by the condensation of 2-formylphenoxyacetic acid with 2-hydrazinobenzothiazole and 2-hydroxy-3-hydrazinebenzopyrazine, respectively. The prepared complexes were characterized by the analytical and spectral techniques. All the complexes were found to be monomeric in nature with octahedral geometry. Both ligands were found to be electrochemically active in the working potential range showing single electron transfer process attributed to the deprotonation of carboxylic group of the 2-formylphenoxyacetic acid. The potency of the ligand and its complexes as antimicrobial agents has been investigated and made to interact with Escherichia coli DNA to investigate the binding/cleaving ability by absorption, hydrodynamic and electrophoresis studies.

  1. Polyaniline nanowire synthesis templated by DNA

    NASA Astrophysics Data System (ADS)

    Nickels, Patrick; Dittmer, Wendy U.; Beyer, Stefan; Kotthaus, Jörg P.; Simmel, Friedrich C.

    2004-11-01

    DNA-templated polyaniline nanowires and networks are synthesized using three different methods. The resulting DNA/polyaniline hybrids are fully characterized using atomic force microscopy, UV-vis spectroscopy and current-voltage measurements. Oxidative polymerization of polyaniline at moderate pH values is accomplished using ammonium persulfate as an oxidant, or alternatively in an enzymatic oxidation by hydrogen peroxide using horseradish peroxidase, or by photo-oxidation using a ruthenium complex as photo-oxidant. Atomic force microscopy shows that all three methods lead to the preferential growth of polyaniline along DNA templates. With ammonium persulfate, polyaniline can be grown on DNA templates already immobilized on a surface. Current-voltage measurements are successfully conducted on DNA/polyaniline networks synthesized by the enzymatic method and the photo-oxidation method. The conductance is found to be consistent with values measured for undoped polyaniline films.

  2. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis.

    PubMed

    Gao, Yang; Yang, Wei

    2016-06-10

    It is generally assumed that an enzyme-substrate (ES) complex contains all components necessary for catalysis and that conversion to products occurs by rearrangement of atoms, protons, and electrons. However, we find that DNA synthesis does not occur in a fully assembled DNA polymerase-DNA-deoxynucleoside triphosphate complex with two canonical metal ions bound. Using time-resolved x-ray crystallography, we show that the phosphoryltransfer reaction takes place only after the ES complex captures a third divalent cation that is not coordinated by the enzyme. Binding of the third cation is incompatible with the basal ES complex and requires thermal activation of the ES for entry. It is likely that the third cation provides the ultimate boost over the energy barrier to catalysis of DNA synthesis.

  3. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse.

    PubMed

    Sabatinos, Sarah A; Green, Marc D; Forsburg, Susan L

    2012-12-01

    Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork "collapse point" in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.

  4. PIDD orchestrates translesion DNA synthesis in response to UV irradiation

    PubMed Central

    Logette, E; Schuepbach-Mallepell, S; Eckert, M J; Leo, X H; Jaccard, B; Manzl, C; Tardivel, A; Villunger, A; Quadroni, M; Gaide, O; Tschopp, J

    2011-01-01

    PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death. PMID:21415862

  5. Effect of low molecular weight epidermal material upon DNA synthesis in primary cultures of newborn rat keratinocytes

    SciTech Connect

    Abler, A.S.

    1985-01-01

    The objective of this study was to isolate inhibitors of replicative DNA synthesis from newborn rat epidermis. The strategy for this study was to assay epidermal extracts for inhibitors of DNA synthesis in primary cultures of newborn rat keratinocytes. DNA synthesis was measured as the incorporation of /sup 4/H-TdR into acid precipitable material. The low molecular weight fraction, LMWF (less than 10Kd), of an aqueous epidermal extract was found to contain activity that inhibits replicative DNA synthesis in primary cultures. The inhibitory activity of the LMWD was detected in a novel assay utilizing primary cultures that were synchronized at the G1/S boundary with the DNA polymerase alpha inhibitor, aphidicolin. LMWF caused a dose dependent inhibition of replicative DNA synthesis as measured by the incorporation of /sup 3/H-TdR into acid precipitable material. The magnitude of the inhibitory effect for a given dose of LMWF was dependent upon the duration of exposure to that dose. The results presented in this investigation suggest that newborn rat epidermis contains a small polypeptide factor that inhibits replicative DNA synthesis in primary culture of newborn rat keratinocytes.

  6. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain.

    PubMed

    Kuan, Chia-Yi; Schloemer, Aryn J; Lu, Aigang; Burns, Kevin A; Weng, Wei-Lan; Williams, Michael T; Strauss, Kenneth I; Vorhees, Charles V; Flavell, Richard A; Davis, Roger J; Sharp, Frank R; Rakic, Pasko

    2004-11-24

    Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.

  7. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  8. Metal based pharmacologically active agents: synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates.

    PubMed

    Abdel-Rahman, Laila H; El-Khatib, Rafat M; Nassr, Lobna A E; Abu-Dief, Ahmed M; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]·nH2O. The conductivity values between 37 and 64 ohm(-1) mol(-1) cm(2) in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH=7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari>bshi>bsali>bsasi>bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus

  9. One-pot synthesis of podophyllotoxin-thiourea congeners by employing NH₂SO₃H/NaI: Anticancer activity, DNA topoisomerase-II inhibition, and apoptosis inducing agents.

    PubMed

    Shankaraiah, Nagula; Kumar, Niggula Praveen; Amula, Suresh Babu; Nekkanti, Shalini; Jeengar, Manish Kumar; Naidu, V G M; Reddy, T Srinivasa; Kamal, Ahmed

    2015-10-01

    A facile one-pot method for the synthesis of novel podophyllotoxin-thiourea congeners has been developed by using NH2SO3H/NaI system. Interestingly, 4β-azido podophyllotoxin reduction with concomitant aryl isothiocyanates coupling under mild reaction conditions has been achieved. These compounds have been investigated for their in vitro cytotoxicity against A549, MDA MB-231, DU-145, LNCaP, and HGC-27 cancer cell lines. Some of the representative compounds have selectively exhibited cytotoxicity on DU-145 (human prostate cancer) cells and the most potent compound was 4a (IC50 of 0.50 ± 0.03 μM) with optimal safety therapeutic window (81.7 fold) on normal human prostate cell line (RWPE-1, IC50 of 40.85 ± 0.78). The flow-cytometric analysis of the compound 4a in prostate cancer cells indicated a strong G2/M-phase arrest and significant topoisomerase II inhibition activity. Furthermore, these compounds induce apoptosis as observed by Acridine Orange and Ethidium Bromide (AO/EB) staining and Annexin V binding assay. Molecular docking results of the title compounds with topoisomerase-IIα were presented as theoretical support for the experimental data.

  10. On-Flow Synthesis of Co-Polymerizable Oligo-Microspheres and Application in ssDNA Amplification

    PubMed Central

    Lee, Se Hee; Lee, Jae Ha; Lee, Ho Won; Kim, Yang-Hoon; Jeong, Ok Chan; Ahn, Ji-Young

    2016-01-01

    We fabricated droplet-based microfluidic platform for copolymerizable microspheres with acrydite modified DNA probe. The copolymerizable 3-D polyacrylamide microspheres were successfully produced from microcontinuous-flow synthesis with on-channel solidification. DNA copolymerization activity, surface presentation and thermostability were assessed by using fluorescent labeled complementary probe. The binding performance was only visible on the surface area of oligo-microspheres. We show that the resulting oligo-microspheres can be directly integrated into a streamlined microsphere-PCR protocol for amplifying ssDNA. Our microspheres could be utilized as a potential material for ssDNA analysis such as DNA microarray and automatic DNA SELEX process. PMID:27447941

  11. The coordinate induction of DNA synthesis after tuber wounding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuber wounding induces a cascade of biological responses involved in processes required to heal and protect surviving plant issues. Little is known about the coordination of these processes, including essential wound-induced DNA synthesis, yet they play critical roles in maintaining marketability o...

  12. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  13. Quinoxaline-2-carboxamide as a carrier ligand in two new platinum(II) compounds: Synthesis, crystal structure, cytotoxic activity and DNA interaction.

    PubMed

    Marqués-Gallego, Patricia; Gamiz-Gonzalez, M Amparo; Fortea-Pérez, Francisco R; Lutz, Martin; Spek, Anthony L; Pevec, Andrej; Kozlevčar, Bojan; Reedijk, Jan

    2010-06-01

    The search for platinum compounds structurally different from cisplatin has led to two new platinum(II) compounds containing quinoxaline-2-carboxamide as a carrier ligand, i.e. cis-[Pt(qnxca)(MeCN)Cl2] (1) and the [Pt(qnxca-H)(dmso)Cl] (2). Both compounds have been synthesized and characterized using different spectroscopic methods. In addition, single-crystal structures have been determined by X-Ray diffraction for both compounds. In each case a square planar Pt(II) is present; in (1) the qnxca is monodentate and neutral, whereas in (2) the ligand has lost a hydrogen, to form the anionic chelating ligand abbreviated as qnxca-H. The biological activity of both compounds has been investigated in a panel of seven human tumour cells, displaying poor cytotoxic activity, compared to cisplatin. The interaction of the new compounds with 1 or 2 equiv. of 9-ethylguanine has been studied using (1)H NMR, (195)Pt NMR and ESI-MS spectroscopy, finding poor reactivity of 1 towards the model base, forming only the monosubstituted adduct. Surprisingly, compound 2, which is more sterically crowded, interacts more efficiently with the 9-EtG, forming a bifunctional adduct with two 9-EtG with substitution of the dmso and the chloride ligand. Unwinding studies of pUC19 plasmid DNA by compound 1 show similar unwinding properties to cisplatin.

  14. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins.

    PubMed

    Bellelli, Roberto; Castellone, Maria Domenica; Guida, Teresa; Limongello, Roberto; Dathan, Nina Alayne; Merolla, Francesco; Cirafici, Anna Maria; Affuso, Andrea; Masai, Hisao; Costanzo, Vincenzo; Grieco, Domenico; Fusco, Alfredo; Santoro, Massimo; Carlomagno, Francesca

    2014-07-01

    NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.

  15. L-arginine improves DNA synthesis in LPS-challenged enterocytes.

    PubMed

    Tan, Bi'e; Xiao, Hao; Xiong, Xia; Wang, Jing; Li, Guangran; Yin, Yulong; Huang, Bo; Hou, Yongqing; Wu, Guoyao

    2015-01-01

    The neonatal small intestine is susceptible to damage by endotoxin, and this cytotoxicity may involve intracellular generation of reactive oxygen species (ROS), resulting in DNA damage and mitochondrial dysfunction. L-Arginine (Arg) confers a cytoprotective effect on lipopolysaccharide (LPS)-treated enterocytes through activation of the mammalian target of the rapamycin (mTOR) signaling pathway. Arg improves DNA synthesis and mitochondrial bioenergetics, which may also be responsible for beneficial effects of Arg on intestinal mucosal cells. In support of this notion, results of recent studies indicate that elevated Arg concentrations enhances DNA synthesis, cell-cycle progression, and mitochondrial bioenergetics in LPS-treated intestinal epithelial cells through mechanisms involving activation of the PI3K-Akt pathway. These findings provide a biochemical basis for dietary Arg supplementation to improve the regeneration and repair of the small-intestinal mucosa in both animals and humans.

  16. Induction of DNA synthesis in isolated nuclei by cytoplasmic factors: inhibition by protease inhibitors

    SciTech Connect

    Wong, R.L.; Gutowski, J.K.; Katz, M.; Goldfarb, R.H.; Cohen, S.

    1987-01-01

    Cytoplasmic extracts from spontaneously proliferating and mitogen-activated lymphoid cells contain a protein factor called ADR (activator of DNA replication) that induces DNA synthesis in isolated quiescent nuclei. ADR-containing preparations have proteolytic activity, as indicated by their ability to degrade fibrin in a plasminogen-independent and plasminogen-dependent manner. In addition, aprotinin, a nonspecific protease inhibitor, abrogates ADR-induced DNA synthesis in a dose-dependent fashion. Preincubation studies demonstrated that the effect of aprotinin is not due to its suppressive effects on the nuclei themselves. Other protease inhibitors such as leupeptin, p-aminobenzamidine, and N-..cap alpha..-tosyllysine chloromethyl ketone are also inhibitory, but soybean trypsin inhibitor is without effect. ADR activity can be removed from active extracts by adsorption with aprotinin-conjugated agarose beads and can be recovered by elution with an acetate buffer (pH 5). These finding are consistent with the interpretation that the initiation of DNA synthesis in resting nuclei may be protease dependent and, further, that the cytoplasmic stimulatory factor the authors have called ADR may be a protease itself.

  17. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  18. ATP-Releasing Nucleotides: Linking DNA Synthesis to Luciferase Signaling.

    PubMed

    Ji, Debin; Mohsen, Michael G; Harcourt, Emily M; Kool, Eric T

    2016-02-01

    A new strategy is reported for the production of luminescence signals from DNA synthesis through the use of chimeric nucleoside tetraphosphate dimers in which ATP, rather than pyrophosphate, is the leaving group. ATP-releasing nucleotides (ARNs) were synthesized as derivatives of the four canonical nucleotides. All four derivatives are good substrates for DNA polymerase, with Km values averaging 13-fold higher than those of natural dNTPs, and kcat values within 1.5-fold of those of native nucleotides. Importantly, ARNs were found to yield very little background signal with luciferase. DNA synthesis experiments show that the ATP byproduct can be harnessed to elicit a chemiluminescence signal in the presence of luciferase. When using a polymerase together with the chimeric nucleotides, target DNAs/RNAs trigger the release of stoichiometrically large quantities of ATP, thereby allowing sensitive isothermal luminescence detection of nucleic acids as diverse as phage DNAs and short miRNAs.

  19. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  20. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  1. DNA Methyltransferase Activity Assays: Advances and Challenges.

    PubMed

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.

  2. Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Zhou, Long Yin; Luo, Hong Qun; Li, Nian Bing

    2013-03-20

    The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6](3+) (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au-S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6](3+)) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10UmL(-1) with a detection limit of 0.18UmL(-1) (S/N=3), which might promise this method as a good candidate for monitoring DNA methylation in the future. PMID:23473252

  3. DNA-directed in vitro synthesis of proteins involved in bacterial transcription and translation.

    PubMed Central

    Zarucki-Schulz, T; Jerez, C; Goldberg, G; Kung, H F; Huang, K H; Brot, N; Weissbach, H

    1979-01-01

    The in vitro synthesis of elongation factor (EF)-Tu (tufB), the beta beta' subunits of RNA polymerase, ribosomal proteins L10 and L12 directed by DNA from the transducing phage lambda rifd 18, EF-Tu (tufA), EF-G, and the alpha subunit of RNA polymerase directed by DNA from the transducing phage lambda fus3 has been investigated in a crude and a partially defined protein-synthesizing system. Proteins L10 and L12 are synthesized in the partially defined system almost as well as in the crude system. However, the synthesis of EF-Tu, EF-G, and the alpha and beta beta' subunits of RNA polymerase is far less efficient in the partially defined system. An active fraction that stimulates the synthesis of these latter proteins has been obtained by fractionation of a high-speed supernatant on DEAE-cellulose. Because previous studies showed that this fraction (1 M DEAE salt eluate) contains a protein, called L factor, that stimulates beta-galactosidase synthesis in vitro, L factor was tested for activity. Although L factor stimulates the synthesis of the beta beta' subunits, it has little or no effect on the in vitro synthesis of the other products studied. In the present experiments, the ratio of L12/L10 and of EF-Tu (tufA)/EF-G formed is 4-6. These values are consistent with in vivo results. Images PMID:160561

  4. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  5. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    PubMed

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. PMID:27506345

  6. Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol.

    PubMed

    Martínez-Jiménez, María I; García-Gómez, Sara; Bebenek, Katarzyna; Sastre-Moreno, Guillermo; Calvo, Patricia A; Díaz-Talavera, Alberto; Kunkel, Thomas A; Blanco, Luis

    2015-05-01

    PrimPol is a recently described DNA polymerase that has the virtue of initiating DNA synthesis. In addition of being a sensu stricto DNA primase, PrimPol's polymerase activity has a large capacity to tolerate different kind of lesions. The different strategies used by PrimPol for DNA damage tolerance are based on its capacity to "read" certain lesions, to skip unreadable lesions, and as an ultimate solution, to restart DNA synthesis beyond the lesion thus acting as a TLS primase. This lesion bypass potential, revised in this article, is strengthened by the preferential use of moderate concentrations of manganese ions as the preferred metal activator. We show here that PrimPol is able to extend RNA primers with ribonucleotides, even when bypassing 8oxoG lesions, suggesting a potential new scenario for PrimPol as a TLS polymerase assisting transcription. We also show that PrimPol displays a high degree of versatility to accept or induce distortions of both primer and template strands, creating alternative alignments based on microhomology that would serve to skip unreadable lesions and to connect separate strands. In good agreement, PrimPol is highly prone to generate indels at short nucleotide repeats. Finally, an evolutionary view of the relationship between translesion synthesis and primase functions is briefly discussed.

  7. 'Shotgun DNA synthesis' for the high-throughput construction of large DNA molecules.

    PubMed

    Kim, Hwangbeom; Han, Hyojun; Ahn, Jinwoo; Lee, Joongoo; Cho, Namjin; Jang, Hoon; Kim, Hyoki; Kwon, Sunghoon; Bang, Duhee

    2012-10-01

    We developed a highly scalable 'shotgun' DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.

  8. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η

    PubMed Central

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G.; Schärer, Orlando D.

    2016-01-01

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. PMID:27257072

  9. Synthesis, DNA-binding, DNA-photonuclease profiling and antimicrobial activity of novel tetra-aza macrocyclic Ni(II), Co(II) and Cu(II) complexes constrained by thiadiazole

    NASA Astrophysics Data System (ADS)

    Vinay Kumar, B.; Bhojya Naik, H. S.; Girija, D.; Sharath, N.; Pradeepa, S. M.; Joy Hoskeri, H.; Prabhakara, M. C.

    A new tetra-aza macrocyclic ligand, L (C24H16N12O2S4) and its complexes of type, [MLCl2] and [CuL]Cl2 (where M = Ni(II), Co(II); L = N,N'-(benzene-1,3-diyldi-1,3,4-thiadiazole-5,2-diyl)bis{2-[(5-benzene-1,3-diyl-1,3,4-thiadiazol-2-yl)amino]acetamide}) were synthesized and characterized by the spectral and analytical techniques. An octahedral geometry has been proposed for Ni(II) and Co(II) complexes while Cu(II) complex exhibit a square planar geometry. All the synthesized metal complexes were screened for their in vitro antimicrobial activity against selected species of pathogenic bacteria and fungi. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. The photo induced cleavage studies revealed that the complexes possess photonuclease property against pUC19 DNA under UV-visible irradiation.

  10. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    PubMed

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  11. Mechanism of translesion DNA synthesis by DNA polymerase II. Comparison to DNA polymerases I and III core.

    PubMed

    Paz-Elizur, T; Takeshita, M; Goodman, M; O'Donnell, M; Livneh, Z

    1996-10-01

    Bypass synthesis by DNA polymerase II was studied using a synthetic 40-nucleotide-long gapped duplex DNA containing a site-specific abasic site analog, as a model system for mutagenesis associated with DNA lesions. Bypass synthesis involved a rapid polymerization step terminating opposite the nucleotide preceding the lesion, followed by a slow bypass step. Bypass was found to be dependent on polymerase and dNTP concentrations, on the DNA sequence context, and on the size of the gap. A side-by-side comparison of DNA polymerases I, II, and III core revealed the following. 1) Each of the three DNA polymerases bypassed the abasic site analog unassisted by other proteins. 2) In the presence of physiological-like salt conditions, only DNA polymerase II bypassed the lesion. 3) Bypass by each of the three DNA polymerases increased dramatically in the absence of proofreading. These results support a model (Tomer, G., Cohen-Fix, O. , O'Donnell, M., Goodman, M. and Livneh, Z. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1376-1380) by which the RecA, UmuD, and UmuC proteins are accessory factors rather than being absolutely required for the core mutagenic bypass reaction in induced mutagenesis in Escherichia coli.

  12. A rational design strategy of the novel topoisomerase II inhibitors for the synthesis of the 4-O-(2-pyrazinecarboxylic)-4'-demethylepipodophyllotoxin with antitumor activity by diminishing the relaxation reaction of topoisomerase II-DNA decatenation.

    PubMed

    Zhao, Wei; Chen, Lu; Li, Hong-Mei; Wang, Duan-Ji; Li, Dong-Sheng; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie

    2014-06-01

    A rational design strategy of the novel podophyllum topoisomerase II (Topo II) inhibitors for the synthesis of the esterification and amidation substituted 4'-demethylepipodophyllotoxin (DMEP) derivates was developed in order to discover the potential antitumor prodrug. Firstly, according to the structure-activity relationship, drug combination principle and bioisosterism, the -COO- and the -NH- bond substituents at the 4 position of cycloparaffin would be a great modification direction to improve antitumor activity of 4'-demethylepipodophyllotoxin (DMEP). Secondly, from the prodrug principle view, the esterification and amidation at the C-4 position of DMEP would be two useful structure modifications for improve solubility. Thirdly, from the activity pocket in Topo II-DNA cleavage complex point of view, a series of heterocyclic with pharmacological activity were chosen as module for improving antitumor activity by binding with Topo II. Finally, nine novel esterification and amidation DMEP derivates were designed and synthesized for the potential Topo II inhibitors with the superior biological activity. All the novel compounds exhibited promising in vitro antitumor activity, especially 4-O-(2-pyrazinecarboxylic)-4'-demethylepipodophyllotoxin (compound 1). The antitumor activity of compound 1 against tumor cell line HeLa (i.e., the IC50 value of 0.60 ± 0.20 μM), A549 (i.e., the IC50 value of 3.83 ± 0.08 μM), HepG2 (i.e., the IC50 value of 1.21 ± 0.05 μM), and BGC-823 (i.e., the IC50 value of 4.15 ± 1.13 μM) was significantly improved by 66, 16, 12, and 6 times than that of the clinically important podophyllum anticancer drug etoposide (i.e., the IC50 values of 15.32 ± 0.10, 59.38 ± 0.77, 67.25 ± 7.05, and 30.74 ± 5.13 μM), respectively. Compound 1 could arrest HeLa cell cycle G2/M and induce apoptosis by strongly diminishing the relaxation reaction of Topo II-DNA decatenation. The correctness of rational drug design was strictly demonstrated by the

  13. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  14. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  15. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  16. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  17. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Yıldız, Mustafa; Karpuz, Özge; Zeyrek, Celal Tuğrul; Boyacıoğlu, Bahadır; Dal, Hakan; Demir, Neslihan; Yıldırım, Nuray; Ünver, Hüseyin

    2015-08-01

    Synthesis, biological activity, spectroscopic and crystallographic characterization and density functional theory (DFT) studies of the Schiff base 3,5-bis(triflouromethyl)aniline and salicylaldehyde are reported. It crystallizes as a monoclinic space group P21/c with a = 7.7814(3) Å, b = 26.8674(9) Å, c = 7.4520(2) Å, V = 1379.98(8), Z = 4, Dc = 1.6038 g cm-3, and μ = 0.156 mm-1. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state was compared using Hartree-Fock (HF) and density functional theory (DFT) with the functionals B3LYP and B1B95 using the 6-311++G(d,p) basis set. The antimicrobial activities of the compound were investigated for its minimum inhibitory concentration (MIC). The interaction of the Schiff base with calf thymus DNA was investigated using UV-visible spectra. The colorimetric response of the Schiff base receptors in DMSO was investigated before and after the addition of an equivalent amount of each anion to evaluate the anion recognition properties.

  18. Structural specificity of steroids in stimulating DNA synthesis and protooncogene expression in primary rat hepatocyte cultures.

    PubMed

    Lee, C H; Edwards, A M

    2002-05-01

    Among the chemical compounds of varied structure which possess liver tumour-promoting are steroids, such as estrogens, pregnenolone derivatives and anabolic steroids. Although the mechanism(s) of tumour promotion in liver by these xenobiotics is not well understood, it is clear that growth stimulation is one important element in their action. As a basis for better defining whether steroids stimulate growth by a common mechanism or fall into sub-groups with differing actions, the effects of 46 steroids on DNA synthesis and the expression of protooncogenes c-fos and c-myc were examined in primary cultures of normal rat hepatocytes. Tentative groupings of steroids have been identified based on apparent structural requirements for stimulation of DNA synthesis, and effects of auxiliary factors in modulating this growth stimulus. For a "progestin" group, insulin appeared to be permissive for stimulation of DNA synthesis, and presence of an ester or hydroxyl group at 17alpha-position in combination with a non-polar group at C(6) appeared to be required for stimulation. For the pregnenes, dexamethasone was stimulatory. Structural requirements include a non-polar substitution at 16alpha-position and presence of a 6alpha-methyl group. Androgens were weak or ineffective stimulators of DNA synthesis. Anabolic steroids were weak to strong stimulators and alteration to A ring structure in combination with non-polar substitution at 17alpha-position appeared to be required for the activity. With the exception of the anabolic steroid, dianabol, there do not appear to be strong correlation between ability to stimulate DNA synthesis and ability to induce protooncogene expression among the steroids. This study provides a starting point for future more detailed examination of growth-stimulatory mechanism(s) of action of steroids in the liver. PMID:12127039

  19. Synthesis, structure, DNA-binding properties and antioxidant activity of a nickel(II) complex with bis(N-allylbenzimidazol-2-ylmethyl)benzylamine.

    PubMed

    Wu, Huilu; Yuan, Jingkun; Bai, Ying; Pan, Guolong; Wang, Hua; Shu, Xingbin

    2012-02-01

    A V-shape ligand bis(N-allylbenzimidazol-2-ylmethyl)benzylamine (babb) and its nickel complex, [Ni(babb)(2)](pic)(2) (pic=picrate), have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray revealed that the coordination sphere around Ni(II) is distorted octahedral with a N(6) ligand set, in which six nitrogen atoms were afforded by two tridentate ligand babb. The DNA-binding properties of the free ligand babb and Ni(II) complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that babb and Ni(II) complex both bind to DNA via an intercalative binding mode, and the affinity for DNA is more strong in case of Ni(II) complex when compared with babb. The intrinsic binding constants (K(b)) of the Ni(II) complex and ligand with DNA were 3.65×10(4) M(-1) and 2.26×10(3) M(-1), respectively. Additionally, Ni(II) complex also exhibited potential antioxidant properties in vitro studies. PMID:22226085

  20. A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity.

    PubMed

    Shokohi-Pour, Zahra; Chiniforoshan, Hossein; Momtazi-Borojeni, Amir Abbas; Notash, Behrouz

    2016-09-01

    A novel Schiff base [C20H23NO3], has been prepared and characterized using FT-IR, UV-vis, (1)H NMR spectroscopy, elemental analysis and X-ray crystallography. A copper (II) complex [Cu(C20H22NO3)2]·H2O has also been synthesized and characterized. The new ligand and complex thus obtained were investigated by their interaction with calf thymus DNA and BSA using electronic absorption spectroscopy, fluorescence spectroscopy, and thermal denaturation. The intrinsic binding constants Kb of the ligand and Cu (II) complex, with CT-DNA obtained from UV-vis absorption studies were 1.53×10(4)M(-1) and 3.71×10(5)M(-1), respectively. Moreover the addition of the two compounds to CT-DNA (1:2) led to an increase of the melting temperature of DNA up to around 2.61°C for the ligand and 3.99°C for the Cu (II) complex. The ligand and Cu (II) complex bind to CT-DNA via a partial intercalative, as shown by the experimental data. In addition, the albumin interactions of the two compounds were studied by fluorescence quenching spectra, the results indicating that the binding mechanism is a static quenching process. The in vitro cytotoxicity of the two compounds on three different cancer cell lines was evaluated by MTT assay. The results showed that the copper complex exerted enhanced cytotoxicity compared with the Schiff base ligand; thereby, this complex clearly implies a positive synergistic effect. Furthermore, the copper complex showed a high, selective, and dose-dependent cytotoxicity against cancer cell lines.

  1. A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos.

    PubMed Central

    Conaway, R C; Lehman, I R

    1982-01-01

    Preparations of DNA polymerase alpha from early embryos of Drosophila melanogaster catalyze the ATP-dependent synthesis of DNA with single-stranded M13 DNA or poly(dT) templates. In the case of M13 DNA, GTP, but not UTP or CTP, can replace ATP. The reaction is completely dependent on added template and is not inhibited by alpha-amanitin. Alkaline hydrolysis of the product synthesized in the presence of [alpha-32P]dATP and poly(dT) generates 32P-labeled 3'(2') adenylate, showing that a covalent ribo-deoxynucleotide linkage is formed. Furthermore, incorporation of ribonucleotides occurs at the 5' end of the newly synthesized polynucleotide chain. These findings are consistent with the hypothesis that a ribo-oligonucleotide primer is synthesized by primase action and subsequently elongated by DNA polymerase. Under the appropriate conditions, DNA polymerase I from Escherichia coli can elongate primers formed by primase in the presence of ATP and poly(dT). Primase activity copurifies with DNA polymerase alpha and may be part of the multisubunit polymerase molecule. Images PMID:6806812

  2. Further purification and characterization of a multienzyme complex for DNA synthesis in human cells.

    PubMed

    Li, C; Cao, L G; Wang, Y L; Baril, E F

    1993-12-01

    The 21 S complex of enzymes for DNA synthesis in the combined low salt nuclear extract-post microsomal supernatant from HeLa cells [Malkas et al. (1990) Biochemistry 29:6362-6374] was purified by poly (ethylene glycol) precipitation, Q-Sepharose chromatography, Mono Q Fast Protein Liquid Chromatography (FPLC), and velocity gradient centrifugation. The procedure gives purified enzyme complex at a yield of 45%. The 21 S enzyme complex remains intact and functional in the replication of simian virus 40 DNA throughout the purification. Sedimentation analysis showed that the 21 S enzyme complex exists in the crude HeLa cell extract and that simian virus 40 in vitro DNA replication activity in the cell extract resides exclusively with the 21 S complex. The results of enzyme and immunological analysis indicate that DNA polymerase alpha-primase, a 3',5' exonuclease, DNA ligase I, RNase H, and topoisomerase I are associated with the purified enzyme complex. Denaturing polyacrylamide gel electrophoresis of the purified enzyme complex showed the presence of about 30 polypeptides in the size range of 300 to 15 kDa. Immunofluorescent imaging analysis, with antibodies to DNA polymerase alpha,beta and DNA ligase I, showed that polymerase alpha and DNA ligase I are localized to granular-like foci within the nucleus during S-phase. In contrast, DNA polymerase beta, which is not associated with the 21 S complex, is diffusely distributed throughout the nucleoplasm. PMID:8300757

  3. Active DNA Demethylation in Plants and Animals

    PubMed Central

    Zhang, H.; Zhu, J.-K.

    2013-01-01

    Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders. PMID:23197304

  4. Synthesis and Structure of a New Copper(II) Coordination Polymer Alternately Bridged by Oxamido and Carboxylate Groups: Evaluation of DNA/BSA Binding and Cytotoxic Activities.

    PubMed

    Jin, Xiao-Ting; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.

  5. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  6. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    DOEpatents

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  7. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis.

    PubMed

    Ortega, Janice; Li, Jessie Y; Lee, Sanghee; Tong, Dan; Gu, Liya; Li, Guo-Min

    2015-05-01

    Proliferating cell nuclear antigen (PCNA) plays essential roles in eukaryotic cells during DNA replication, DNA mismatch repair (MMR), and other events at the replication fork. Earlier studies show that PCNA is regulated by posttranslational modifications, including phosphorylation of tyrosine 211 (Y211) by the epidermal growth factor receptor (EGFR). However, the functional significance of Y211-phosphorylated PCNA remains unknown. Here, we show that PCNA phosphorylation by EGFR alters its interaction with mismatch-recognition proteins MutSα and MutSβ and interferes with PCNA-dependent activation of MutLα endonuclease, thereby inhibiting MMR at the initiation step. Evidence is also provided that Y211-phosphorylated PCNA induces nucleotide misincorporation during DNA synthesis. These findings reveal a novel mechanism by which Y211-phosphorylated PCNA promotes cancer development and progression via facilitating error-prone DNA replication and suppressing the MMR function.

  8. RNA primer used in synthesis of anticomplementary DNA by reverse transcriptase of avian myeloblastosis virus.

    PubMed Central

    Myers, J C; Dobkin, C; Spiegelman, S

    1980-01-01

    When either the homologous RNA (avian myeloblastosis virus RNA) or a heterologous RNA (poliovirus RNA) was used as a template, the anticomplementary DNA synthesized in vitro by avian myeloblastosis virus reverse transcriptase (RNA-directed DNA nucleotidyltransferase, EC 2.7.7.7) was primed by fragments of the original RNA template that usually had adenosine at their 3' ends. When we used phage T/ RNA ligase (EC 6.5.1.3) to label the 3' end of the RNA template fragments contained in the RNA . cDNA hybrid intermediate, adenosine was found to be the principal nucleoside carrying the label. We infer from these results that the ribonuclease H (hybrid nuclease) activity of the reverse transcriptase creates fragments of the original RNA template with adenosine as the principal 3' terminus and that these fragments serve as primers for the synthesis of anticomplementary DNA. Images PMID:6154930

  9. A new paradigm of DNA synthesis: three-metal-ion catalysis.

    PubMed

    Yang, Wei; Weng, Peter J; Gao, Yang

    2016-01-01

    Enzyme catalysis has been studied for over a century. How it actually occurs has not been visualized until recently. By combining in crystallo reaction and X-ray diffraction analysis of reaction intermediates, we have obtained unprecedented atomic details of the DNA synthesis process. Contrary to the established theory that enzyme-substrate complexes and transition states have identical atomic composition and catalysis occurs by the two-metal-ion mechanism, we have discovered that an additional divalent cation has to be captured en route to product formation. Unlike the canonical two metal ions, which are coordinated by DNA polymerases, this third metal ion is free of enzyme coordination. Its location between the α- and β-phosphates of dNTP suggests that the third metal ion may drive the phosphoryltransfer from the leaving group opposite to the 3'-OH nucleophile. Experimental data indicate that binding of the third metal ion may be the rate-limiting step in DNA synthesis and the free energy associated with the metal-ion binding can overcome the activation barrier to the DNA synthesis reaction. PMID:27602203

  10. A DNA-hairpin model for repeat-addition processivity in telomere synthesis.

    PubMed

    Yang, Wei; Lee, Young-Sam

    2015-11-01

    We propose a DNA-hairpin model for the processivity of telomeric-repeat addition. Concomitantly with template-RNA translocation after each repeat synthesis, the complementary DNA repeat, for example, AGGGTT, loops out in a noncanonical base-paired hairpin, thus freeing the RNA template for the next round of repeat synthesis. The DNA hairpin is temporarily stabilized by telomerase and the incoming dGTP but becomes realigned for processive telomere synthesis.

  11. Reovirus inhibition of cellular DNA synthesis: role of the S1 gene.

    PubMed

    Sharpe, A H; Fields, B N

    1981-04-01

    Type 3 reovirus inhibits L cell DNA synthesis, whereas type 1 reovirus exerts little or no effect on L cell DNA synthesis. By using recombinant viruses containing both type 1 and type 3 double-standard RNA segments, we determined that one double-stranded RNA segment, the reovirus type 3 S1 double-stranded RNA segment which encodes the viral hemagglutinin, segregates with and is responsible for the capacity of reovirus type 3 to inhibit L cell DNA synthesis.

  12. Thermodynamic impact of abasic sites on simulated translesion DNA synthesis.

    PubMed

    Malina, Jaroslav; Brabec, Viktor

    2014-06-16

    Loss of a base in DNA and the creation of an abasic (apurinic/apyrimidinic, AP) site is a frequent lesion that may occur spontaneously, or as a consequence of the action of DNA-damaging agents. The AP lesion is mutagenic or lethal if not repaired. We report a systematic thermodynamic investigation by differential scanning calorimetry on the evolution, during primer extension, of a model AP site in chemically simulated DNA translesion synthesis. Incorporation of dAMP (deoxyadenosine monophosphate), as well as dTMP (deoxythymidine monophosphate), opposite an AP site is enthalpically unfavorable, although incorporation of dTMP is more enthalpically unfavorable than that of dAMP. This finding is in a good agreement with experimental data showing that AP sites block various DNA polymerases of eukaryotic and prokaryotic origin and that, if bypassed, dAMP is preferentially inserted, whereas insertion of dTMP is less likely. The results emphasize the importance of thermodynamic contributions to the insertion of nucleotides opposite an AP site by DNA polymerases.

  13. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    PubMed Central

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe; Nielsen, Katrine E.; Højland, Torben; Wengel, Jesper; Petersen, Michael

    2011-01-01

    We report the synthesis of two C4′-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4′-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization to a maximum of 9°C per incorporation. Using fluorescence, ultraviolet and nuclear magnetic resonance (NMR) spectroscopy, we show that the stabilization is achieved by pyrene intercalation in the dsDNA duplex. The pyrene moiety is not restricted to one intercalation site but rather switches between multiple sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface. PMID:21062815

  14. Structure and mechanism of human PrimPol, a DNA polymerase with primase activity

    PubMed Central

    Rechkoblit, Olga; Gupta, Yogesh K.; Malik, Radhika; Rajashankar, Kanagalaghatta R.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2016-01-01

    PrimPol is a novel human enzyme that contains both DNA primase and DNA polymerase activities. We present the first structure of human PrimPol in ternary complex with a DNA template-primer and an incoming deoxynucleoside triphosphate (dNTP). The ability of PrimPol to function as a DNA primase stems from a simple but remarkable feature—almost complete lack of contacts to the DNA primer strand. This, in turn, allows two dNTPs to bind initiation and elongation sites on the enzyme for the formation of the first dinucleotide. PrimPol shows the ability to synthesize DNA opposite ultraviolet (UV) lesions; however, unexpectedly, the active-site cleft of the enzyme is constrained, which precludes the bypass of UV-induced DNA lesions by conventional translesion synthesis. Together, the structure addresses long-standing questions about how DNA primases actually initiate synthesis and how primase and polymerase activities combine in a single enzyme to carry out DNA synthesis.

  15. Isolation and Characterization of a Protein That Stimulates DNA Synthesis from Avian Myeloblastosis Virus*

    PubMed Central

    Leis, Jonathan P.; Hurwitz, Jerard

    1972-01-01

    A protein has been isolated from avian myeloblastosis virus that stimulates the rate and yield of DNA synthesis primed by viral RNA with purified viral polymerase. It specifically affects the viral polymerase and does not stimulate other DNA polymerases under the conditions tested. The viral polymerase, in conjunction with this protein, transcribes extended single-stranded regions of DNA, and permits the enzyme to initiate synthesis from single-strand breaks in DNA. PMID:4340754

  16. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  17. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    SciTech Connect

    Dai Heqiao; Liu Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi

    2009-04-15

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of

  18. A pool of peptides extracted from wheat bud chromatin inhibits tumor cell growth by causing defective DNA synthesis

    PubMed Central

    2013-01-01

    Background We previously reported that a pool of low molecular weight peptides can be extracted by alkali treatment of DNA preparations obtained from prokaryotic and eukaryotic cells after intensive deproteinization. This class of peptides, isolated from wheat bud chromatin, induces growth inhibition, DNA damage, G2 checkpoint activation and apoptosis in HeLa cells. In this work we studied their mechanism of action by investigating their ability to interfere with DNA synthesis. Methods BrdUrd comet assays were used to detect DNA replication defects during S phase. DNA synthesis, cell proliferation, cell cycle progression and DNA damage response pathway activation were assessed using 3H-thymidine incorporation, DNA flow cytometry and Western blotting, respectively. Results BrdUrd labelling close to DNA strand discontinuities (comet tails) detects the number of active replicons. This number was significantly higher in treated cells (compared to controls) from entry until mid S phase, but markedly lower in late S phase, indicating the occurrence of defective DNA synthesis. In mid S phase the treated cells showed less 3H-thymidine incorporation with respect to the controls, which supports an early arrest of DNA synthesis. DNA damage response activation was also shown in both p53-defective HeLa cells and p53-proficient U2OS cells by the detection of the phosphorylated form of H2AX after peptide treatment. These events were accompanied in both cell lines by an increase in p21 levels and, in U2OS cells, of phospho-p53 (Ser15) levels. At 24 h of recovery after peptide treatment the cell cycle phase distribution was similar to that seen in controls and CDK1 kinase accumulation was not detected. Conclusion The data reported here show that the antiproliferative effect exhibited by these chromatin peptides results from their ability to induce genomic stress during DNA synthesis. This effect seems to be S-phase specific since surviving cells are able to progress through their

  19. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  20. Peptide Synthesis on a Next-Generation DNA Sequencing Platform.

    PubMed

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R

    2016-09-01

    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.

  1. Replication Protein A: Single-stranded DNA's first responder : Dynamic DNA-interactions allow Replication Protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair

    PubMed Central

    Chen, Ran; Wold, Marc S.

    2015-01-01

    Summary Replication Protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. PMID:25171654

  2. [Pseudo-furocoumarin: synthesis, DNA-binding behavior and cytotoxicity].

    PubMed

    Xie, Li-Juan; Chen, Zhuo

    2014-11-01

    Furocoumarin shows some antitumor activity when it is radiated by the UV light. In order to improve the antitumor activity of furocoumarin under standard environment conditions, the "minimal DNA-intercalating" hypothesis was firstly introduced to the structural modification of furocoumarin, which resulted in the design of pseudo-furocoumarin. The pseudo-furocoumarin was synthesized by two-step reaction including Pechmann reaction catalyzed by conc. H2SO4 and Suzuki coupling reaction catalyzed by Pd(PPh3)4. The structural character of the pseudo-furocoumarin is that the bonding mode of furan ring fused to the coumarin is replaced by a chemical single bond between furan ring and coumarin. The interaction of the pseudo-furocoumarin with calf thymus DNA (CT-DNA) has been respectively investigated by using DNA melting curve, UV-Vis absorption spectra, fluorescence spectra and viscosity titration, and the modes of DNA-binding for the pseudo-furocoumarin have been proposed. Based on the results of DNA melting curve, spectra and viscosity titration, it was suggested that 5a and 5b bind to DNA by the partial intercalation and classical intercalation, respectively. The DNA-binding behaviors of 5c and 5d have been rarely reported in literature and may be interpreted in terms of bridge-structure. All target compounds, except 5b, show a decreasing capability of intercalation to DNA. Further, the antiproliferative activities of the pseudo-furocoumarin on human lung adenocarcinoma (A549), human breast cancer (MCF-7) and human ovarian carcinoma cell line (SKOV-3) in vitro were evaluated using the sulforhodamine B (SRB) protein statin assay. All pseudo-furocoumarin exhibited an improved anti-proliferative activity as compared with the control compound psoralen (PS, a linear furocoumarin). Interestingly the pseudo-furocoumarin binding to DNA by a non-classical intercalation mode showed a stronger anti-proliferative activity than PS. The present study extended the applied areas of

  3. Centrosomal Localization of Cyclin E-Cdk2 is Required for Initiation of DNA Synthesis

    PubMed Central

    Ferguson, Rebecca L.; Maller, James L.

    2010-01-01

    Summary Cyclin E-Cdk2 is known to regulate both DNA replication and centrosome duplication during the G1-S transition in the cell cycle [1–4], and disruption of centrosomes results in a G1 arrest in some cell types [5–7]. Localization of cyclin E on centrosomes is mediated by a 20 amino acid domain termed the centrosomal localization sequence (CLS), and expression of the GFP-tagged CLS displaces both cyclin E and cyclin A from the centrosome [8]. In asynchronous cells CLS expression inhibits the incorporation of bromodeoxyuridine (BrdU) into DNA, an effect proposed to reflect a G1 arrest. Here we show in synchronized cells that the reduction in BrdU incorporation reflects not a G1 arrest but rather direct inhibition of the initiation of DNA replication in S phase. The loading of essential DNA replication factors such as Cdc45 and PCNA onto chromatin is blocked by CLS expression, but DNA synthesis can be rescued by retargeting active cyclin E-Cdk2 to the centrosome. These results suggest that initial steps of DNA replication require centrosomally localized Cdk activity and link the nuclear cycle with the centrosome cycle at the G1-S transition. PMID:20399658

  4. Design and synthesis of the novel DNA topoisomerase II inhibitors: esterification and amination substituted 4'-demethylepipodophyllotoxin derivates exhibiting anti-tumor activity by activating ATM/ATR signaling pathways.

    PubMed

    Xiao, Li; Zhao, Wei; Li, Hong-Mei; Wan, Duan-Ji; Li, Dong-Sheng; Chen, Tao; Tang, Ya-Jie

    2014-06-10

    According to the structure-activity relationship, drug combination principle and bioisosterism, a series of the novel esterification and amination 4'-demethylepipodophyllotoxin derivates were rationally designed in order to discover the potential antitumor prodrug. And then these compounds were tested by the drug-topoisomerase II docking models for virtual screening. Thus, twelve target compounds were screened out and synthesized. Most of compounds exhibited promising in vitro anti-tumor activity, particularly 4-N-tris(hydroxymethyl)metylaminomethane-4-deoxy-4'-demethylepipodophyllotoxin (Compound 1). The anti-tumor activity of Compound 1 against the tumor cell lines BGC-823 (i.e., the IC50 value of 5.35 ± 0.77 μM), HeLa (i.e., the IC50 value of 160.48 ± 14.50 μM), and A549 (i.e., the IC50 value of 13.95 ± 5.41 μM) was significantly improved by 706%, 31% and 900% than that of etoposide (i.e., the IC50 values of 43.74 ± 5.13, 209.90 ± 13.42, and 139.54 ± 7.05 μM), respectively. Moreover, the IC50 value of Compound 1 against the normal human cell line HK-2 (i.e., 16.3 ± 3.77 μM) was 78% lower than that of etoposide (i.e., 9.17 ± 1.58 μM). Compound 1 could diminish the relaxation reaction topoisomerase II DNA decatenation at a concentration of 10 μM and induce BGC-823 apoptosis by breaking DNA double-strand and activating ATM/ATR signaling pathways.

  5. Depletion of Kupffer cells modulates ethanol-induced hepatocyte DNA synthesis in C57Bl/6 mice.

    PubMed

    Owumi, Solomon E; Corthals, Stacy M; Uwaifo, Anthony O; Kamendulis, Lisa M; Klaunig, James E

    2014-08-01

    Kupffer cells (KCs) are important in hepatic homeostasis and responses to xenobiotics. KCs are activated on interaction with endotoxin, releasing cytokines, and reactive oxygen species normally associated with increased gene expression, cellular growth, or hepatic injury. Ethanol-induced endotoxemia is one means of KC activation. We propose that KC depletion attenuates the effect of EtOH-induced endotoxemia to impact the hepatic growth response. Hepatic DNA synthesis was examined in KC competent (KC+) or KC-depleted (KC-) C57BL/6 mice fed EtOH-containing diet in the presence or absence of polyphenol-60 antioxidant. KC depletion was assessed by F4/80 antigen, and DNA synthesis was assessed by 5-bromo-2'-deoxyuridine incorporation. Tumor necrosis factor alpha (TNF-α) messenger RNA released was quantified by RT-PCR/electrophoresis. ERK1/2 phosphorylation was evaluated by Western blotting, and Nrf2 and CYP2E1protein were also assayed. Apoptosis and hepatic injury were examined by the Tunnel assay and hepatic transaminases in serum, respectively. Hepatic transaminases in serum (AST and ALT) were within normal range. Over 90% of KC was depleted by clodronate treatment. KC depletion decreased TNF-α mRNA release, ERK1/2 phosphorylation, and hepatocyte DNA synthesis. KC depletion is associated with increased numbers of apoptotic cells bodies in KC- mice. Antioxidant treatment decreased DNA synthesis, Nrf2, and CYP2E1 protein expression in EtOH-consuming mice. Our data indicate that upon ethanol exposure, KC participates in hepatic DNA synthesis and growth responses. Collectively, these observations suggest that KC depletion attenuates the downstream effect of ethanol-induced endotoxemia by reduced cytokine and reactive oxygen species production with its concomitant effect on MAPK-signaling pathway on hepatocyte DNA synthesis.

  6. SYNTHESIS, IN VITRO METABOLISM, MUTAGENICITY, AND DNA-ADDUCTION OF NAPHTHO[1,2-E]PYRENE

    EPA Science Inventory

    SYNTHESIS, IN V1TRO METABOLISM, MUTAGENICITY , AND DNA-ADDUCnON OF NAPHTHO[l ,2-e ]PYRENE

    Literature data, although limited, underscore the contribution of C24HI4 polycyclic aromatic hydrocarbons to the biological activity of the extracts of complex environmental samples....

  7. Activation of mammalian Chk1 during DNA replication arrest

    PubMed Central

    Feijoo, Carmen; Hall-Jackson, Clare; Wu, Rong; Jenkins, David; Leitch, Jane; Gilbert, David M.; Smythe, Carl

    2001-01-01

    Checkpoints maintain order and fidelity in the cell cycle by blocking late-occurring events when earlier events are improperly executed. Here we describe evidence for the participation of Chk1 in an intra-S phase checkpoint in mammalian cells. We show that both Chk1 and Chk2 are phosphorylated and activated in a caffeine-sensitive signaling pathway during S phase, but only in response to replication blocks, not during normal S phase progression. Replication block–induced activation of Chk1 and Chk2 occurs normally in ataxia telangiectasia (AT) cells, which are deficient in the S phase response to ionizing radiation (IR). Resumption of synthesis after removal of replication blocks correlates with the inactivation of Chk1 but not Chk2. Using a selective small molecule inhibitor, cells lacking Chk1 function show a progressive change in the global pattern of replication origin firing in the absence of any DNA replication. Thus, Chk1 is apparently necessary for an intra-S phase checkpoint, ensuring that activation of late replication origins is blocked and arrested replication fork integrity is maintained when DNA synthesis is inhibited. PMID:11535615

  8. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. PMID:27418514

  9. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  10. Activity and Regulation of Archaeal DNA Alkyltransferase

    PubMed Central

    Perugino, Giuseppe; Vettone, Antonella; Illiano, Giuseppina; Valenti, Anna; Ferrara, Maria C.; Rossi, Mosè; Ciaramella, Maria

    2012-01-01

    Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability. PMID:22167184

  11. A Transcriptional Repressor ZBTB1 Promotes Chromatin Remodeling and Translesion DNA Synthesis

    PubMed Central

    Kim, Hyungjin; Dejsuphong, Donniphat; Adelmant, Guillaume; Ceccaldi, Raphael; Yang, Kailin; Marto, Jarrod A.; D’Andrea, Alan D.

    2014-01-01

    SUMMARY Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for PCNA monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for PCNA monoubiquitination, by localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a new ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair. PMID:24657165

  12. Transcriptional repressor ZBTB1 promotes chromatin remodeling and translesion DNA synthesis.

    PubMed

    Kim, Hyungjin; Dejsuphong, Donniphat; Adelmant, Guillaume; Ceccaldi, Raphael; Yang, Kailin; Marto, Jarrod A; D'Andrea, Alan D

    2014-04-10

    Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for proliferating cell nuclear antigen (PCNA) monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair.

  13. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.

    PubMed Central

    Xanthoudakis, S; Miao, G; Wang, F; Pan, Y C; Curran, T

    1992-01-01

    The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes. Images PMID:1380454

  14. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin.

    PubMed

    Tsurimoto, T; Melendy, T; Stillman, B

    1990-08-01

    Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.

  15. Nuclear DNA synthesis in vitro is mediated via stable replication forks assembled in a temporally specific fashion in vivo.

    PubMed Central

    Heintz, N H; Stillman, B W

    1988-01-01

    A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately

  16. Aphidicolin-resistant polyomavirus and subgenomic cellular DNA synthesis occur early in the differentiation of cultured myoblasts to myotubes.

    PubMed Central

    DePolo, N J; Villarreal, L P

    1993-01-01

    Small DNA viruses have been historically used as probes of cellular control mechanisms of DNA replication, gene expression, and differentiation. Polyomavirus (Py) DNA replication is known to be linked to differentiation of may cells, including myoblasts. In this report, we use this linkage in myoblasts to simultaneously examine (i) cellular differentiation control of Py DNA replication and (ii) an unusual type of cellular and Py DNA synthesis during differentiation. Early proposals that DNA synthesis was involved in the induced differentiation of myoblasts to myotubes were apparently disproved by reliance on inhibitors of DNA synthesis (cytosine arabinoside and aphidicolin), which indicated that mitosis and DNA replication are not necessary for differentiation. Theoretical problems with the accessibility of inactive chromatin to trans-acting factors led us to reexamine possible involvement of DNA replication in myoblast differentiation. We show here that Py undergoes novel aphidicolin-resistant net DNA synthesis under specific conditions early in induced differentiation of myoblasts (following delayed aphidicolin addition). Under similar conditions, we also examined uninfected myoblast DNA synthesis, and we show that soon after differentiation induction, a period of aphidicolin-resistant cellular DNA synthesis can also be observed. This drug-resistant DNA synthesis appears to be subgenomic, not contributing to mitosis, and more representative of polyadenylated than of nonpolyadenylated RNA. These results renew the possibility that DNA synthesis plays a role in myoblast differentiation and suggest that the linkage of Py DNA synthesis to differentiation may involve a qualitative cellular alteration in Py DNA replication. Images PMID:8389922

  17. Effect of dexamethasone on proliferating osteoblasts: inhibition of prostaglandin E2 synthesis, DNA synthesis, and alterations in actin cytoskeleton.

    PubMed

    Hughes-Fulford, M; Appel, R; Kumegawa, M; Schmidt, J

    1992-11-01

    Elevated levels of glucocorticoids caused by disease (Cushing's syndrome) or therapeutic treatment of asthma are known to cause osteoporosis. Space flight, an environmental condition, is known to cause a rise in endogenous cortisols accompanied by a significant loss of bone and calcium. Long-term space inhabitants have lost up to 18% of weight bearing bone during long-term flight. This study demonstrates that elevated concentrations of glucocorticoids lower the endogenous production of PGE2 and interfere with osteoblast proliferation. Osteoblasts grown with dexamethasone had significantly lower DNA synthesis and endogenous synthesis of PGE2. Addition of exogenous dmPGE2 to the dexamethasone growth-inhibited cells stimulated DNA synthesis over twofold. In synchronous control cultures, we found that endogenous prostaglandin synthesis increased in late G1, preceding S-phase DNA synthesis by several hours. The addition of exogenous dexamethasone to synchronous cultures resulted in a significant decrease in the prostaglandin synthesis followed by a significant decrease in DNA synthesis in parallel cultures. Further, dexamethasone caused the actin cytoskeleton to collapse and the cell morphology to become rounded and spindle shaped. Addition of exogenous PGE2 to the dexamethasone-treated osteoblasts caused recovery of the actin architecture and phenotype. These data support the hypothesis that the glucocorticoid-mediated decrease in prostaglandin synthesis may be a contributing factor in the reduced bone quality and trabecular bone formation seen in glucocorticoid-induced osteoporosis. PMID:1426038

  18. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  19. Relationship between DNA adduct formation and unscheduled DNA synthesis (UDS) in cultured mouse epidermal keratinocytes

    SciTech Connect

    Gill, R.D.; Nettikumara, A.N.; DiGiovanni, J. ); Butterworth, B.E. )

    1991-01-01

    Primary cultures of mouse epidermal keratinocytes from SENCAR mice were treated with 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (B(a)P), ({plus minus}) 7{beta}-8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (({plus minus}) anti-BPDE), and ({plus minus}) 7{beta},8{alpha}-dihydroxy-9{beta},10{beta}-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (({plus minus})syn-BPDE) to examine the relationship between DNA adduct formation and the induction of unscheduled DNA synthesis (UDS). DNA adducts were measured as pmol hydrocarbon bound per mg of DNA, and UDS was quantitated autoradiographically as net grains per nucleus. A good correlation was observed between the levels of UDS detected and the amount of DNA adducts present int he cell population when comparing similar compounds within the linear dose-response range of 0.005 {mu}g/ml-0.25 {mu}g/ml. These results suggest that the present UDS assay with MEKs is a useful assay for the rapid screening of potential genotoxic agents. However, the limits of sensitivity are such that the current assay may be unable to detect a low level of DNA damage induced by some weakly genotoxic (carcinogenic) agents. In addition, while the limits of sensitivity determined in these experiments apply to the polycyclic aromatic hydrocarbon class, other classes of genotoxic compounds such as alkylating agents or crosslinking agents may exhibit different thresholds of detection.

  20. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    PubMed

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action.

  1. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    PubMed

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action. PMID:1661619

  2. Design and synthesis of threading intercalators to target DNA.

    PubMed

    Howell, Lesley A; Gulam, Rosul; Mueller, Anja; O'Connell, Maria A; Searcey, Mark

    2010-12-01

    Threading intercalators are high affinity DNA binding agents that bind by inserting a chromophore into the duplex and locating one group in each groove. The first threading intercalators that can be conjugated to acids, sulfonic acids and peptides to target them to duplex DNA are described, based upon the well studied acridine-3- or 4-carboxamides. Cellular uptake of the parent acridine is rapid and it can be visualized in the nucleus of cells. Both the parent compounds and their conjugates maintain antitumor activity.

  3. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates.

    PubMed Central

    Lamothe, P; Baril, B; Chi, A; Lee, L; Baril, E

    1981-01-01

    Three forms of DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] were partially purified from the combined nuclear extract and postmicrosomal supernatant solution of synchronized HeLa cells. These enzymes, designated DNA polymerases alpha 1, alpha 2, and alpha 3, on the basis of their order of elution from DEAE-Bio-Gel, differ in their abilities to utilize single-strand DNA templates. DNA polymerase alpha 2 has equal catalytic activities with activated and single-strand DNAs as template-primers. DNA polymerase alpha 1 has only partial catalytic activity with single-strand DNA templates, and DNA polymerase alpha 3 is essentially inactive with this template. Successive steps of hydrophobic affinity chromatography and phosphocellulose chromatography of DNA polymerase alpha 2 resolved the polymerase alpha activity and two protein factors (C1 and C2) that are required for its catalytic activity with a DNA template-primer that contains extended single-strand regions. In the absence of the factors, DNA polymerase alpha activity is measurable with activated but not single-strand DNA templates. In the presence of the C1 and C2 factors DNA polymerase alpha activity with single-strand DNA templates is restored to about 75% of the catalytic activity of DNA polymerase alpha 2 with this template. Images PMID:6946421

  4. The effect of bleomycin on DNA synthesis in ataxia telangiectasia lymphoid cells

    SciTech Connect

    Cohen, M.M.; Simpson, S.J.

    1982-01-01

    Bleomycin, a radiomimetic glycopeptide, inhibits de novo DNA synthesis in ataxia telangiectasia lymphoblastoid B cells to a markedly lesser extent than in normal and xeroderma pigmentosum lymphoid cells. This observation is similar to that following ionizing radiation; however, the effect is slower following the chemical treatment. Recovery of the normal cells occurs 15-18 hours after treatment, whereas the ataxia telangiectasia lines do not attain normal levels of DNA synthesis during the entire 24-hour observation period. Similar differences were not observed following treatment with mitomycin C, a bifunctional alkylating agent, indicating a specific effect of bleomycin on DNA synthesis in ataxia telangiectasia cells. Following bleomycin treatment and preincubation with hydroxyurea, residual DNA synthesis in ataxia telangiectasia cells was similar to that in both normal and xeroderma pigmentosum lymphoid lines, suggesting that the capacity to repair the induced DNA lesion is present.

  5. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  6. Synthesis, chemical characterization, DNA binding and antioxidant studies of ferrocene incorporated selenoure

    NASA Astrophysics Data System (ADS)

    Hussain, Raja Azadar; Badshah, Amin; Sohail, Manzar; Lal, Bhajan; Akbar, Kamran

    2013-09-01

    In this article we have reported synthesis, chemical characterization (with single crystal XRD, elemental analysis, FTIR and multinuclear NMR spectroscopy), DNA binding (with cyclic voltammetry, UV-vis spectroscopy, molecular docking and viscometry) and antioxidant activities (1,1-diphenyl-2-picrylhydrazyl scavenging) of 1-(2-methylbenzoyl)-3-(3-ferrocenylphenyl)selenourea (MOT). We found that this compound interacts electrostatically with DNA and has a binding constant value of 1.703 × 104 M-1. Lower value of diffusion coefficient for MOT-DNA adduct (1.35 × 106 cm2 s-1) relative to free MOT (1.66 × 106 cm2 s-1) in cyclic voltammetry (CV) indicated the binding of the compound with DNA. Smaller value of binding site size (0.88 base pairs) in CV, hyperchromism in UV-vis spectroscopy and decrease of relative specific viscosity of DNA in viscometry favored electrostatic interactions. Binding energy of experimental (-5.77 kcal mol-1) and simulated (-5.86 kcal mol-1) work are in close agreement with each other. IC50 value of MOT for 1,1-diphenyl-2-picrylhydrazyl scavenging was found to be 27 μM.

  7. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  8. Nuclear DNA synthesis in vitro is mediated via stable replication forks assembled in a temporally specific fashion in vivo

    SciTech Connect

    Heintz, N.H.; Stillman, B.W.

    1988-05-01

    A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4/sup 0/C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases.

  9. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  10. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.

    PubMed

    Maddocks, Oliver D K; Labuschagne, Christiaan F; Adams, Peter D; Vousden, Karen H

    2016-01-21

    Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids.

  11. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  12. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases

    SciTech Connect

    Moore, P.D.; Bose, K.K.; Rabkin, S.D.; Strauss, B.S.

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4DNA polymerase a polymerase ..cap alpha.. from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' ..-->.. 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase ..cap alpha.. preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase ..cap alpha..-catalyzed reactions terminate at the site of the lesion. Substitution of Mn/sup 2 +/ for Mg/sup 2 +/ changes the pattern of pol I-catalyzed termination sites. The data sugest that termination is a complicated process that does not depend exclusively on the 3' ..-->.. 5' exonuclease activity associated with many polymerases.

  13. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases.

    PubMed

    Moore, P D; Bose, K K; Rabkin, S D; Strauss, B S

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4 DNA polymerase, a polymerase alpha from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' leads to 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase alpha preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase alpha-catalyzed reactions terminate at the site of the lesion. Substitution of Mn2+ for Mg2+ changes the pattern of pol I-catalyzed termination sites. The data suggest that termination is a complicated process that does not depend exclusively on the 3' leads to 5' exonuclease activity associated with many polymerases.

  14. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases.

    PubMed

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-03-15

    New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.

  15. The effect of human milk on DNA synthesis of neonatal rat hepatocytes in primary culture.

    PubMed

    Kohno, Y; Shiraki, K; Mura, T

    1991-03-01

    We studied the effect of human milk on DNA synthesis of neonatal hepatocytes to elucidate the physiologic role of human milk in growth of the liver. Neonatal hepatocytes were isolated from 5-d-old rats and cultured in serum-free medium. Human milk stimulated DNA synthesis of these hepatocytes in a concentration-dependent manner. The stimulatory activity of 7.5% (vol/vol) human milk plus 0.1 mumol/L insulin was five times that of control and was almost the same as that of 20 micrograms/L human epidermal growth factor (hEGF) plus insulin. The effect of human milk was additive with treatment with hEGF and insulin. The milk associated with prolonged jaundice of infants was significantly more active than the milk that was not associated with jaundice, although the concentration of hEGF was not different between the two types of milk. The mitogenic activity of milk was heat-labile, inactivated by DTT and stable after treatment with trypsin. Three peaks of the activity were detected in milk by gel filtration and the fraction containing proteins of molecular weight between 36,000 and 76,000 showed the highest activity. Anti-hEGF antibody did not inhibit this activity completely. These results suggested the presence of mitogens other than hEGF or a more active form of hEGF in human milk. The milk associated with breast-milk jaundice exerts a different influence on cell growth and may affect maturation of the liver function related to bilirubin metabolism. The mitogenic activity of milk might be important for growth and development of the liver in infants.

  16. Protein-Template-Directed Synthesis across an Acrolein-Derived DNA Adduct by Yeast Rev1 DNA Polymerase

    SciTech Connect

    Nair, Deepak T.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2008-07-08

    Acrolein is generated as the end product of lipid peroxidation and is also a ubiquitous environmental pollutant. Its reaction with the N{sup 2} of guanine leads to a cyclic {gamma}-HOPdG adduct that presents a block to normal replication. We show here the yeast Rev1 incorporates the correct nucleotide C opposite a permanently ring-closed form of {gamma}-HOPdG (PdG) with nearly the same efficiency as opposite an undamaged G. The structural bais of this action lies in the eviction of PdG adduct from the Rev1 active site, and the pairing of incoming dCTP with a surrogate' arginine residue. We also show that yeast Pol{zeta} can carry out the subsequent extension reaction. Together, our studies reveal how the exocyclic PdG adduct is accommodated in a DNA polymerase active site, and they show that the combined action of Rev1 and Pol{zeta} provides for accurate and efficient synthesis through this potentially carcinogenic DNA lesion.

  17. A cytoplasmic activator of DNA replication is involved in signal transduction in antigen-specific T cell lines.

    PubMed

    Wong, R L; Clark, R B; Gutowski, J K; Katz, M E; Fresa, K L; Cohen, S

    1990-05-01

    Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes

  18. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  19. Trehalose glycolipids--synthesis and biological activities.

    PubMed

    Khan, Ashna A; Stocker, Bridget L; Timmer, Mattie S M

    2012-07-15

    A variety of trehalose glycolipids have been isolated from natural sources, and several of these glycolipids exhibit important biological properties. These molecules also represent challenging synthetic targets due to their highly amphiphilic character, their large number of functional groups and additional chiral centres. This review highlights some of the recent advances made in the synthesis of trehalose glycolipids, and their associated biological activities.

  20. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    ERIC Educational Resources Information Center

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  1. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  2. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  3. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  4. RNase-sensitive DNA polymerase activity in cell fractions and mutants of Neurospora crassa

    SciTech Connect

    Dutta, S.K.; Mukhopadhyay, D.K.; Bhattachryya, J.

    1980-01-01

    RNase-sensitive DNA polymerase activity was tested in different cell fractions of Neurospora crassa cell types and its morphological mutants. This RSDP was found localized in the microsomal pellet fraction and absent in the purified nuclear pellets isolated from different N. crassa cell types: conidia, germinated conidia, and mycelia. This enzyme is capable of synthesizing a DNA product only in the presence of all four deoxyribonucleoside-5'-triphosphates and Mg/sup 2 +/. Removal of RNA from the pellet fraction by RNase strongly inhibited the DNA synthesis. The endogenous synthesis of DNA in the microsomal pellet fraction was associated with the formation of an RNA:DNA hybrid as analyzed by Cs/sub 2/SO/sub 4/ equilibrium density gradient centrifugation. The DNA product after alkali hydrolysis hybridizes with the RNA isolated from the same pellet fraction, as analyzed by elution from hydroxylapatite column at 60 C. This DNA product did not hybridize with poly(A). A few mutants tested showed this RNase-sensitive DNA polymerase activity.

  5. DNA Methyltransferase protein synthesis is reduced in CXXC finger protein 1-deficient embryonic stem cells.

    PubMed

    Butler, Jill S; Palam, Lakshmi R; Tate, Courtney M; Sanford, Jeremy R; Wek, Ronald C; Skalnik, David G

    2009-05-01

    CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity. This study investigated the underlying mechanism for reduced DNMT1 expression in CFP1-deficient ES cells. DNMT1 transcript levels were significantly elevated in ES cells lacking CFP1, despite the observed reduction in DNMT1 protein levels. To address the posttranscriptional mechanisms by which CFP1 regulates DNMT1 protein activity, pulse/chase analyses were carried out, demonstrating a modest reduction in DNMT1 protein half-life in CFP1-deficient ES cells. Additionally, global protein synthesis was decreased in ES cells lacking CFP1, contributing to a reduction in the synthesis of DNMT1 protein. ES cells lacking CFP1 were found to contain elevated levels of phosphorylated eIF2alpha, and an accompanying reduction in translation initiation as revealed by a lower level of polyribosomes. These results reveal a novel role for CFP1 in the regulation of translation initiation, and indicate that loss of CFP1 function leads to decreased DNMT1 protein synthesis and half-life. PMID:19388845

  6. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA.

    PubMed

    Kaltschmidt, E; Kahan, L; Nomura, M

    1974-02-01

    In vitro synthesis of a number of E. coli 30S ribosomal proteins has been demonstrated in a cell-free system consisting of ribosomes, initiation factors, RNA polymerase, a fraction containing soluble enzymes and factors, and E. coli DNA. DNA-dependent synthesis of the following 30S proteins has been demonstrated: S4, S5, S7, S8, S9, S10, S13, S14, S16, S19, and S20.

  7. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    PubMed

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  8. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips.

    PubMed

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M

    2010-12-01

    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  9. Effects of phenolic antioxidants and flavonoids on DNA synthesis in rat liver, spleen, and testis in vitro.

    PubMed

    Wong, W S; McLean, A E

    1999-12-01

    Paracetamol (acetaminophen) and hydroxyurea were found to inhibit DNA synthesis in a dose-dependent manner in tissue slices in vitro, with little effect on protein synthesis. Considerable variation in the sensitivity of the different tissues was also observed with an order of least sensitive to most sensitive tissue of liver < testis < spleen. The phenolic antioxidant properties of paracetamol are thought to be the mechanism by which paracetamol inhibits DNA synthesis, which led us to study other phenolic antioxidant molecules and flavonoids for specific inhibition of DNA synthesis. (+)-catechin, m-aminophenol, p-aminophenol and p-cresol all displayed a highly specific inhibition of DNA synthesis. Quercetin displayed a preferential inhibition of DNA synthesis but a significant level of inhibition of protein synthesis was also seen. Nordihydroguaiaretic acid (NDGA) and n-propyl gallate showed preferential inhibition of DNA synthesis at the lower doses tested, but at higher doses showed significant inhibition of protein synthesis, presumably because of cytotoxicity. Caffeic acid and naringenin did not display any specific inhibition of DNA synthesis as protein synthesis was equally inhibited at all doses tested. This study demonstrates that certain phenolic antioxidants can inhibit DNA synthesis specifically but this is not a property shared by all phenolic antioxidants; and that these inhibitors show considerable variation in effectiveness between different tissues. PMID:10647924

  10. Short-step chemical synthesis of DNA by use of MMTrS group for protection of 5'-hydroxyl group.

    PubMed

    Shiraishi, Miyuki; Utagawa, Eri; Ohkubo, Akihiro; Sekine, Mitsuo; Seio, Kohji

    2007-01-01

    4-methoxytrithylthio (MMTrS) group was applied for the appropriately protected four canonical nucleosides. We prepared the phosphoroamidite units by use of these nucleosides and developed the synthesis of oligodeoxynucleotides without any acidic treatment. Moreover, the new DNA synthesis protocol was applied to an automated DNA synthesizer for the synthesis of longer oligodeoxynucleotides. PMID:18029620

  11. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    PubMed

    Azeroglu, Benura; Mawer, Julia S P; Cockram, Charlotte A; White, Martin A; Hasan, A M Mahedi; Filatenkova, Milana; Leach, David R F

    2016-02-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  12. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  13. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    PubMed Central

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-01-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable. PMID:26174478

  14. Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N'-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies.

    PubMed

    Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.194(3) and 5.1714(8)Å, respectively. In the crystals of the two complexes, there are abundant hydrogen bonds and π-π stacking interactions contributing to the supramolecular structure. The reactivities toward herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) of the two complexes are studied both theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively bind to BSA via the favored binding sites Trp134 for the complex 1 and Trp213 for the complex 2. Interestingly, the in vitro anticancer activities of the two complexes against the selected tumor cell lines are consistent with their DNA/BSA-binding affinities following the order of 1>2. The effects of coordinated counterions in the two complexes on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed.

  15. A proposed role played by benzene itself in the induction of acute cytopenia: inhibition of DNA synthesis.

    PubMed

    Lee, E W; Garner, C D; Johnson, J T

    1988-04-01

    A single intraperitoneal dose of benzene (880 mg/kg) in mice inhibited DNA synthesis of bone marrow cells within one hour postinjection. However, there was no inhibitory effect on the synthesis of heme and protein at that dosage. Dose-dependent inhibition of DNA synthesis by benzene was observed over the range of 440 to 1760 mg/kg, supporting the idea that cytopenia which was observed by others following multiple doses of benzene (e.g., 440 or 880 mg/kg) might be due to the inhibitory effect of benzene on DNA synthesis. In our studies, benzene concentrations above 81 micrograms/g wet bone marrow resulted in inhibition of DNA synthesis, regardless of whether it was given ip or by inhalation. The effect of benzene itself, rather than its toxic metabolites, on DNA synthesis was further seen in experiments using a bone marrow cell culture system and cell-free DNA synthetic system. Experimental results demonstrated that benzene alone was capable of inhibiting the DNA synthesis of bone marrow cells and that the reduced DNA synthesis resulted from the inhibitory effect of benzene on DNA polymerase alpha, the enzyme that catalyzes the last step of the DNA synthetic pathway. Thus, benzene itself could play a significant role in inducing myelotoxicity in the case of acute or subacute toxicity by exerting its inhibitory effect on DNA synthesis.

  16. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases.

    PubMed Central

    DeStefano, J J; Mallaber, L M; Fay, P J; Bambara, R A

    1994-01-01

    We have determined the extent of RNA cleavage carried out during DNA synthesis by either human immunodeficiency virus (HIV) or avian myeloblastosis virus (AMV) reverse transcriptases (RTs). Conditions were chosen that allowed the analysis of the cleavage and synthesis performed by the RT during one binding event on a given template-primer. The maximum quantity of ribonuclease H (RNase H) sensitive template RNA left after synthesis by the RTs was determined by treatment with Escherichia coli RNase H. RNA cleavage products that were expected to be too short to remain hybridized, less than 13 nucleotides in length, were quantitated. Results showed that HIV- and AMV-RT degraded about 80% and less than 20%, respectively, of the potentially degradable RNA to these short products. Survival of longer, hybridized RNA was not a result of synthesis by a population of RTs that had selectively lost RNase H activity. Using an assay that evaluated the proportion of primers extended versus RNA templates cleaved during primer-extension by the RTs, we determined that essentially each molecule of HIV- and AMV-RT with polymerase also has RNase H activity. The results indicate that although both HIV- and AMV-RTs cleave the RNA template during synthesis, the number of cleavages per nucleotide addition with HIV-RT is much greater. They also suggest that some hybridized RNA segments remain right after the passage of the RT making the first DNA strand. In vivo, these segments would have to be cleaved or displaced in later reactions before second strand DNA synthesis could be completed. Images PMID:7524028

  17. Chk2 Activation Dependence on Nbs1 after DNA Damage

    PubMed Central

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  18. Synthesis and crystal structure of a new copper(II) complex with N,N‧-(4,4‧-bithiazole-2,2‧-diyl)diacetimidamide as ligand: Molecular docking, DNA-binding and cytotoxicity activity studies

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Dong; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-04-01

    A new mononuclear copper(II) complex with formula of [Cu2H(DABTA)2](pic)ṡ6H2O, where H2DABTA and pic- stand for N,N'-(4,4'-bithiazole-2,2'-diyl)diacetimidamide and picrate ion, respectively, has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectra studies, and single-crystal X-ray diffraction. The crystal structure reveals that the copper(II) ion has a {CuN4} square-planar coordination environment. The solvent water molecules form a column parallel to c axis by hydrogen bonds. Then the mononuclear copper complexes link to the water columns to make a three-dimensional hydrogen bonding grid with the cavities filled by pic- anions. Besides, there are offset π-π stacking interactions between thiazole rings in the supramolecular system. The interactions between the copper(II) complex and herring sperm DNA (HS-DNA) have been investigated by using electronic absorption titration, fluorescence titration and viscometry. The molecular docking of the complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 demonstrates that the complex is stabilized by additional electrostatic and hydrogen bonding interaction with the DNA. The copper(II) complex exhibits potent anticancer activities against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549.

  19. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ

    PubMed Central

    Hirota, Kouji; Tsuda, Masataka; Mohiuddin; Tsurimoto, Toshiki; Cohen, Isadora S.; Livneh, Zvi; Kobayashi, Kaori; Narita, Takeo; Nishihara, Kana; Murai, Junko; Iwai, Shigenori; Guilbaud, Guillaume; Sale, Julian E.; Takeda, Shunichi

    2016-01-01

    The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass. PMID:27185888

  20. Replitase: a complex integrating dNTP synthesis and DNA replication.

    PubMed

    Reddy, G P; Fager, R S

    1993-01-01

    Replitase is a multienzyme complex of mammalian cells that produces deoxynucleoside triphosphates and delivers them to the DNA polymerase activity, which also resides in the complex. Structural interactions within this complex form the basis of internal controls to keep these key biosynthetic processes efficient and in balance. The active complex is formed in the nuclear region in only the S phase of the cell cycle, when the cell's DNA is being replicated. Replitase is a member of the growing family of structured, multienzyme, biosynthetic complexes for which very similar complexes are found in prokaryotes and eukaryotes. Logically, the most basic of all biosynthetic pathways should show the efficiency and precise controls that even lesser pathways possess and, in fact, this seems to be so. In this article, we have outlined a broad range of evidence supporting the existence of the replitase complex in mammalian cells, a complex for dNTP synthesis and polymerase that exists only in the S phase and only in the nuclear region. This is consistent with localization studies in intact cells and after various forms of cell fractionation and, particularly, with experiments of incorporation of precursors into DNA in isolated complexes and S phase permeabilized cells. A most forceful argument for replitase is the existence of three striking phenomena--channeling, compartmentation, and cross-inhibition. These are very difficult, perhaps impossible, to explain without replitase; with replitase, their explanation is beautifully simple.

  1. Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons.

    PubMed

    Thompson, Robert E; Collin, Frédéric; Maxwell, Anthony; Jolliffe, Katrina A; Payne, Richard J

    2014-03-14

    Microcin B17 (MccB17) is a post-translationally modified peptide containing thiazole and oxazole heterocycles that interrupt the peptide backbone. MccB17 is capable of poisoning DNA gyrase through stabilization of the gyrase-DNA cleavage complex and has therefore attracted significant attention. Using a combination of Fmoc-strategy solid-phase peptide synthesis and solution-phase fragment assembly we have prepared a library of full-length and truncated MccB17 analogues to investigate key structural requirements for gyrase-poisoning activity. Synthetic peptides lacking the glycine-rich N-terminal portion of the full-length sequence showed strong stabilization of the gyrase-DNA cleavage complex with increased potency relative to the full-length sequences. This truncation, however, led to a decrease in antibacterial activity of these analogues relative to their full-length counterparts indicating a potential role of the N-terminal region of the natural product for cellular uptake.

  2. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  3. Deglycobleomycin: solid-phase synthesis and DNA cleavage by the resin-bound ligand.

    PubMed

    Smith, Kenneth L; Tao, Zhi-Fu; Hashimoto, Shigeki; Leitheiser, Christopher J; Wu, Xihan; Hecht, Sidney M

    2002-04-01

    [structure: see text] A greatly improved solid-phase synthesis of deglycobleomycin using a Dde-based linker is reported. The resin-bound deglycobleomycin could be completely deblocked and assayed for DNA plasmid relaxation, sequence-selective DNA cleavage, and light production from a molecular beacon.

  4. Aphidicolin does not inhibit DNA repair synthesis in ultraviolet-irradiated HeLa cells. A radioautographic study.

    PubMed Central

    Hardt, N; Pedrali-Noy, G; Focher, F; Spadari, S

    1981-01-01

    A radioautographic examination of nuclear DNA synthesis in unirradiated and u.v.-irradiated HeLa cells, in the presence and in the absence of aphidicolin, showed that aphidicolin inhibits nuclear DNA replication and has no detectable effect on DNA repair synthesis. Although the results establish that in u.v.-irradiated HeLa cells most of the DNA repair synthesis is not due to DNA polymerase alpha, they do not preclude a significant role for this enzyme in DNA repair processes. Images PLATE 1 PMID:6803764

  5. Synthesis, characterization, DNA binding, cleavage activity, cytotoxicity and molecular docking of new nano water-soluble [M(5-CH₂PPh₃-3,4-salpyr)](ClO₄)₂ (M = Ni, Zn) complexes.

    PubMed

    Mandegani, Zeinab; Asadi, Zahra; Asadi, Mozaffar; Karbalaei-Heidari, Hamid Reza; Rastegari, Banafsheh

    2016-04-21

    theory (DFT) studies were performed using the GAUSSIAN 03 program. The DFT method with B3LYP functional, LANL2DZ basis set for metal centers and 6-311g* for other atoms was used. The synthesized compounds and DNA were simulated by molecular docking to explore more details of the ligands conformation and their orientations in the active site of the receptor. PMID:26961248

  6. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity

    PubMed Central

    Lipps, Georg; Röther, Susanne; Hart, Christina; Krauss, Gerhard

    2003-01-01

    Although DNA replication is a process common in all domains of life, primase and replicative DNA polymerase appear to have evolved independently in the bacterial domain versus the archaeal/eukaryal branch of life. Here, we report on a new type of replication protein that constitutes the first member of the DNA polymerase family E. The protein ORF904, encoded by the plasmid pRN1 from the thermoacidophile archaeon Sulfolobus islandicus, is a highly compact multifunctional enzyme with ATPase, primase and DNA polymerase activity. Recombinant purified ORF904 hydrolyses ATP in a DNA-dependent manner. Deoxynucleotides are preferentially used for the synthesis of primers ∼8 nucleotides long. The DNA polymerase activity of ORF904 synthesizes replication products of up to several thousand nucleotides in length. The primase and DNA polymerase activity are located in the N-terminal half of the protein, which does not show homology to any known DNA polymerase or primase. ORF904 constitutes a new type of replication enzyme, which could have evolved indepen dently from the eubacterial and archaeal/eukaryal proteins of DNA replication. PMID:12743045

  7. A cytosolic activator of DNA replication is tyrosine phosphorylated in its active form.

    PubMed

    Fresa, K L; Autieri, M V; Coffman, F D; Georgoff, I; Cohen, S

    1993-04-01

    Cytosolic extracts from actively dividing lymphoid cells have been shown to induce DNA synthesis in isolated, quiescent nuclei. An initiating factor in such extracts (activator of DNA replication; ADR) is a > 90-kDa aprotinin-binding protein whose activity is inhibitable not only by aprotinin, but also by several other protease inhibitors as well. Although cytosol from non-proliferating lymphocytes is devoid of ADR activity, we have shown that these preparations can be induced to express ADR activity by brief exposure to a membrane-enriched fraction of spontaneously proliferating MOLT-4 cells via a kinase-dependent mechanism. In the present study, we examine the role of tyrosine kinases in this process. Three inhibitors of tyrosine kinases (genistein, kaempferol, and quercetin) can inhibit the in vitro generation of ADR activity. In vitro generation of ADR activity is associated with the de novo phosphorylation of several proteins, many of which are detectable using anti-phosphotyrosine monoclonal antibodies. ADR itself may be tyrosine phosphorylated in active form as immunoprecipitation using such monoclonal antibodies leads to the depletion of its activity. Moreover, immunoprecipitation results in the removal of several de novo tyrosine-phosphorylated proteins, including species at approximately 122, 105, 93, 86, 79, and 65 kDa. A subset of de novo-phosphorylated proteins, migrating at approximately 105, 93, and 70 kDa, also bound to aprotinin, suggesting that at least one of these proteins may represent ADR itself. PMID:7683270

  8. Repair synthesis by human cell extracts in DNA damaged by cis- and trans-diamminedichloroplatinum(II).

    PubMed Central

    Hansson, J; Wood, R D

    1989-01-01

    DNA damage was induced in closed circular plasmid DNA by treatment with cis- or trans-diamminedichloroplatinum(II). These plasmids were used as substrates in reactions to give quantitative measurements of DNA repair synthesis mediated by cell free extracts from human lymphoid cell lines. Adducts induced by both drugs stimulated repair synthesis in a dose dependent manner by an ATP-requiring process. Measurements by an isopycnic gradient sedimentation method gave an upper limit for the average patch sizes in this in vitro system of around 140 nucleotides. It was estimated that up to 3% of the drug adducts induce the synthesis of a repair patch. The repair synthesis is due to repair of a small fraction of frequent drug adducts, rather than extensive repair of a rare subclass of lesions. Nonspecific DNA synthesis in undamaged plasmids, caused by exonucleolytic degradation and resynthesis, was reduced by repeated purification of intact circular forms. An extract made from cells belonging to xeroderma pigmentosum complementation group A was deficient in repair synthesis in response to the presence of cis- or trans-diamminedichloroplatinum(II) adducts in DNA. Images PMID:2554251

  9. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069

  10. DnaB Helicase Activity Is Modulated by DNA Geometry and Force

    PubMed Central

    Ribeck, Noah; Kaplan, Daniel L.; Bruck, Irina; Saleh, Omar A.

    2010-01-01

    The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity. PMID:20923651

  11. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase

    PubMed Central

    Vaithiyalingam, Sivaraja; Arnett, Diana R.; Aggarwal, Amit; Eichman, Brandt F.; Fanning, Ellen; Chazin, Walter J.

    2013-01-01

    DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8–10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique sub-domain not found in the archaeal and bacterial primases. Calorimetry experiments reveal Mn2+ but not Mg2+ significantly enhances the binding of nucleotide to primase, which correlates with in vitro higher catalytic efficiency. The structure of p48 with bound UTP and Mn2+ provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding altered nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions were not viable. Our results revealed two residues (S160 and H166) in direct contact with the nucleotide that were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis. PMID:24239947

  12. Marine Natural Meroterpenes: Synthesis and Antiproliferative Activity

    PubMed Central

    Simon-Levert, Annabel; Menniti, Christophe; Soulère, Laurent; Genevière, Anne-Marie; Barthomeuf, Chantal; Banaigs, Bernard; Witczak, Anne

    2010-01-01

    Meroterpenes are compounds of mixed biogenesis, isolated from plants, microorganisms and marine invertebrates. We have previously isolated and determined the structure for a series of meroterpenes extracted from the ascidian Aplidium aff. densum. Here, we demonstrate the chemical synthesis of three of them and their derivatives, and evaluate their biological activity on two bacterial strains, on sea urchin eggs, and on cancerous and healthy human cells. PMID:20390109

  13. Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands.

    PubMed

    Gao, Chunmei; Zhang, Wei; He, Shengnan; Li, Shangfu; Liu, Feng; Jiang, Yuyang

    2015-06-01

    A novel series of l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives with terminal ammonium substituents at C2 and C7 positions on the acridone ring were successfully synthesized as antiproliferation agents. The biologic activity of the acridone compounds against leukemia CCRF-CEM cells demonstrated that some of the compounds displayed good antiproliferative activity, among which compound 6a containing dimethylamine substituents at the terminal C2 and C7 positions exhibited the highest cytotoxicity with IC50 at 0.3μM. In addition compound 6a showed little toxicity against normal 293T cells proliferation with IC50 more than 100μM. Further study indicated that compound 6a had strong binding activity to human telomeric G-quadruplex DNA, as detected by mass spectrometry, CD spectroscopy, UV absorption, FRET and fluorescence quenching assays. Our data suggested that the activity of 6a might be associated with its stabilization of G-quadruplex DNA, which can be developed as potent antitumor agent.

  14. A DNA polymerase activity is associated with Cauliflower Mosaic Virus.

    PubMed Central

    Menissier, J; Laquel, P; Lebeurier, G; Hirth, L

    1984-01-01

    A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa. Images PMID:6514573

  15. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity.

  16. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels.

    PubMed

    Stallings, Jonathan D; Zeng, Yue X; Narvaez, Francisco; Rebecchi, Mario J

    2008-05-16

    We previously reported that phospholipase C-delta1 (PLC-delta1) accumulates in the nucleus at the G1/S transition, which is largely dependent on its binding to phosphatidylinositol 4,5-bisphosphate ( Stallings, J. D., Tall, E. G., Pentyala, S., and Rebecchi, M. J. (2005) J. Biol. Chem. 280, 22060-22069 ). Here, using small interfering RNA (siRNA) that specifically targets rat PLC-delta1, we investigated whether this enzyme plays a role in cell cycle control. Inhibiting expression of PLC-delta1 significantly decreased proliferation of rat C6 glioma cells and altered S phase progression. [3H]Thymidine labeling and fluorescence-activated cell sorting analysis indicated that the rates of G1/S transition and DNA synthesis were enhanced. On the other hand, knockdown cultures released from the G1/S boundary were slower to reach full G2/M DNA content, consistent with a delay in S phase. The levels of cyclin E, a key regulator of the G1/S transition and DNA synthesis, were elevated in asynchronous cultures as well as those blocked at the G1/S boundary. Epifluorescence imaging showed that transient expression of human phospholipase C-delta1, resistant to these siRNA, suppressed expression of cyclin E at the G1/S boundary despite treatment of cultures with rat-specific siRNA. Although whole cell levels of phosphatidylinositol 4,5-bisphosphate were unchanged, suppression of PLC-delta1 led to a significant rise in the nuclear levels of this phospholipid at the G1/S boundary. These results support a role for PLC-delta1 and nuclear phospholipid metabolism in regulating cell cycle progression.

  17. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities.

    PubMed

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong

    2015-07-01

    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1<2<3DNA-binding properties are also discussed. Moreover, the complex 3 possess significant antioxidant activity against superoxide and hydroxyl radicals, and the scavenging effects of it are stronger than standard mannitol and vitamin C.

  18. Antifolate-induced misincorporation of deoxyuridine monophosphate into DNA: inhibition of high molecular weight DNA synthesis in human lymphoblastoid cells.

    PubMed Central

    Sedwick, W D; Kutler, M; Brown, O E

    1981-01-01

    In vitro exposure of a human lymphoblastoid cell line (WIL-2) to the antifolate metoprine (DDMP), when followed by the addition of exogenous deoxyuridine, led to intracellular accumulation of deoxyuridine triphosphate (dUTP) and incorporation of deoxyuridine monophosphate (dUMP) into DNA. When newly synthesized DNA was extracted from DDMP-treated cells that had been labeled with deoxyuridine for up to 3 min, most of the DNA synthesized was no larger than 4 S on alkaline sucrose gradients. In contrast, the predominant form of newly synthesized alkali-stable DNA in cells not treated with drug was larger than 4 S. Abnormal progression of DNA synthesis, degradation of newly synthesized DNA, or both occurred as a delayed consequence of DDMP treatment in the absence of exogenous deoxyuridine when thymidine was used to label DNA of DDMP-treated stability of antifolate-induced misincorporation of dUMP into DNA was not elucidated, it was clear that antifolates can directly perturb the quality as well as the quantity of DNA synthesized by drug-treated cells. PMID:6940156

  19. Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density.

    PubMed

    Deka, Jashmini; Měch, Rostislav; Ianeselli, Luca; Amenitsch, Heinz; Cacho-Nerin, Fernando; Parisse, Pietro; Casalis, Loredana

    2015-04-01

    We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA-DNA hybridization, as shown from UV-vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.

  20. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper(II) complex with in vitro anticancer activity: A combined study from experiment verification and docking calculation on DNA/protein-binding property.

    PubMed

    Zhu, Ling; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2016-02-01

    A new oxamido-bridged dicopper(II) complex with formula of [Cu2(deap)(pic)2], where H2deap and pic represent N,N'-bis[3-(diethylamino)propyl]oxamide and picrate, respectively, was synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral study, and single-crystal X-ray diffraction. The crystal structure analyses revealed that the two copper(II) atoms in the dicopper(II) complex are bridged by the trans-deap(2-) ligand with the distances of 5.2116(17)Å, and the coordination environment around the copper(II) atoms can be described as a square-planar geometry. Hydrogen bonding and π-π stacking interactions link the dicopper(II) complex into a three-dimensional infinite network. The DNA/protein-binding properties of the complex are investigated by molecular docking and experimental assays. The results indicate that the dicopper(II) complex can interact with HS-DNA in the mode of intercalation and effectively quench the intrinsic fluorescence of protein BSA by 1:1 binding with the most possible binding site in the proximity of Trp134. The in vitro anticancer activities suggest that the complex is active against the selected tumor cell lines, and IC50 values for SMMC-7721 and HepG2 are lower than cisplatin. The effects of the electron density distribution of the terminal ligand and the chelate ring arrangement around copper(II) ions bridged by symmetric N,N'-bis(substituted)oxamides on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed.

  1. Synthesis and crystal structure of new dicopper(II) complexes with N,N'-bis-(dipropylenetriamine)oxamide as bridging ligand: effects of the counterions on DNA/protein-binding property and in vitro antitumor activity.

    PubMed

    Zhao, Feng-Jia; Zhao, Hong-Qin; Liu, Fang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-02-01

    Two new dicopper(II) complexes bridged by N,N'-bis(dipropylenetriamine)oxamide (H2oxdipn), namely, [Cu2(oxdipn)](pic)2(1) and [Cu2(oxdipn)(ClO4)2] (2), where pic represents picrate ion, have been synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral studies, and X-ray single crystal diffraction. In both dicopper(II) complexes, the two copper(II) ions are bridged by trans-oxdipn ligand with the Cu⋯Cu separations of 5.2536(15) and 5.231(2)Å, respectively. The copper(II) ion in complex 1 has a square-planar coordination geometry, while that in 2, a square-pyramidal. Linked with classical hydrogen bonds, the molecules of complex 1 consist of a one-dimensional chain, while complex 2 molecules result in a two-dimensional structure. Numerous hydrogen bonds link complex 1 or 2 into a 2-D infinite network. In vitro cytotoxicity experiment shows that the two dicopper(II) complexes exhibit cytotoxic effects against the selected tumor cell lines. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) reveals that the two dicopper(II) complexes can interact with the DNA in the mode of intercalation, and effectively quench the intrinsic fluorescence of BSA via a static mechanism. The influence of different counterions in this kind of dicopper(II) complexes on DNA/BSA-binding properties, and the in vitro cytotoxic activities was investigated.

  2. Perylenequinones: Isolation, Synthesis, and Biological Activity

    PubMed Central

    Mulrooey, Carol A.; O'Brien, Erin M.; Morgan, Barbara J.

    2013-01-01

    The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided. PMID:24039544

  3. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation.

    PubMed

    Drake, Joshua C; Bruns, Danielle R; Peelor, Frederick F; Biela, Laurie M; Miller, Richard A; Hamilton, Karyn L; Miller, Benjamin F

    2014-11-01

    Increasing mouse litter size [crowded litter (CL)] presumably imposes a transient nutrient stress during suckling and extends lifespan through unknown mechanisms. Chronic calorically restricted and rapamycin-treated mice have decreased DNA synthesis and mTOR complex 1 (mTORC1) signaling but maintained protein synthesis, suggesting maintenance of existing cellular structures. We hypothesized that CL would exhibit similar synthetic and signaling responses to other long-lived models and, by comparing synthesis of new protein to new DNA, that insight may be gained into the potential preservation of existing cellular structures in the CL model. Protein and DNA synthesis was assessed in gastroc complex, heart, and liver of 4- and 7-mo CL mice. We also examined mTORC1 signaling in 3- and 7-mo aged animals. Compared with controls, 4-mo CL had greater DNA synthesis in gastroc complex with no differences in protein synthesis or mTORC1 substrate phosphorylation across tissues. Seven-month CL had less DNA synthesis than controls in heart and greater protein synthesis and mTORC1 substrate phosphorylation across tissues. The increased new protein-to-new DNA synthesis ratio suggests that new proteins are synthesized more so in existing cells at 7 mo, differing from 4 mo, in CL vs. controls. We propose that, in CL, protein synthesis shifts from being directed toward new cells (4 mo) to maintenance of existing cellular structures (7 mo), independently of decreased mTORC1.

  4. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules

    PubMed Central

    Pastrana, Cesar L.; Carrasco, Carolina; Akhtar, Parvez; Leuba, Sanford H.; Khan, Saleem A.; Moreno-Herrero, Fernando

    2016-01-01

    Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate. PMID:27488190

  5. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity

    PubMed Central

    Berjón-Otero, Mónica; Villar, Laurentino; de Vega, Miguel; Salas, Margarita; Redrejo-Rodríguez, Modesto

    2015-01-01

    DNA polymerases (DNAPs) responsible for genome replication are highly faithful enzymes that nonetheless cannot deal with damaged DNA. In contrast, translesion synthesis (TLS) DNAPs are suitable for replicating modified template bases, although resulting in very low-fidelity products. Here we report the biochemical characterization of the temperate bacteriophage Bam35 DNA polymerase (B35DNAP), which belongs to the protein-primed subgroup of family B DNAPs, along with phage Φ29 and other viral and mobile element polymerases. B35DNAP is a highly faithful DNAP that can couple strand displacement to processive DNA synthesis. These properties allow it to perform multiple displacement amplification of plasmid DNA with a very low error rate. Despite its fidelity and proofreading activity, B35DNAP was able to successfully perform abasic site TLS without template realignment and inserting preferably an A opposite the abasic site (A rule). Moreover, deletion of the TPR2 subdomain, required for processivity, impaired primer extension beyond the abasic site. Taken together, these findings suggest that B35DNAP may perform faithful and processive genome replication in vivo and, when required, TLS of abasic sites. PMID:26100910

  6. Inhibitor of DNA synthesis is present in normal chicken serum

    SciTech Connect

    Franklin, R.A.; Davila, D.R.; Westly, H.J.; Kelley, K.W.

    1986-03-05

    The authors have found that heat-inactivated serum (57/sup 0/C for 1 hour) from normal chickens reduces the proliferation of mitogen-stimulated chicken and murine splenocytes as well as some transformed mammalian lymphoblastoid cell lines. Greater than a 50% reduction in /sup 3/H-thymidine incorporation was observed when concanavalin A (Con A)-activated chicken splenocytes that were cultured in the presence of 10% autologous or heterologous serum were compared to mitogen-stimulated cells cultured in the absence of serum. Normal chicken serum (10%) also caused greater than 95% suppression of /sup 3/H-thymidine incorporation by bovine (EBL-1 and BL-3) and gibbon ape (MLA 144) transformed lymphoblastoid cell lines. The only cell line tested that was not inhibited by chicken serum was an IL-2-dependent, murine cell line. Chicken serum also inhibited both /sup 3/H-thymidine incorporation and IL-2 synthesis by Con A-activated murine splenocytes. Suppression was caused by actions other than cytotoxicity because viability of chicken splenocytes was unaffected by increasing levels of chicken serum. Furthermore, dialyzed serum retained its activity, which suggested that thymidine in the serum was not inhibiting uptake of radiolabeled thymidine. Suppressive activity was not due to adrenal glucocorticoids circulating in plasma because neither physiologic nor pharmacologic doses of corticosterone had inhibitory effects on mitogen-stimulated chicken splenocytes. These data demonstrate that an endogenous factor that is found in normal chicken serum inhibits proliferation of T-cells from chickens and mice as well as some transformed mammalian lymphoblastoid cell lines.

  7. Threonine 79 is a hinge residue that governs the fidelity of DNA polymerase beta by helping to position the DNA within the active site.

    PubMed

    Maitra, Mausumi; Gudzelak, Andrew; Li, Shu-Xia; Matsumoto, Yoshihiro; Eckert, Kristin A; Jager, Joachim; Sweasy, Joann B

    2002-09-20

    DNA polymerase beta (pol beta) is an ideal system for studying the role of its different amino acid residues in the fidelity of DNA synthesis. In this study, the T79S variant of pol beta was identified using an in vivo genetic screen. T79S is located in the N-terminal 8-kDa domain of pol beta and has no contact with either the DNA template or the incoming dNTP substrate. The T79S protein produced 8-fold more multiple mutations in the herpes simplex virus type 1-thymidine kinase assay than wild-type pol beta. Surprisingly, T79S is a misincorporation mutator only when using a 3'-recessed primer-template. In the presence of a single nucleotide-gapped DNA substrate, T79S displays an antimutator phenotype when catalyzing DNA synthesis opposite template C and has similar fidelity as wild type opposite templates A, G, or T. Threonine 79 is located directly between two helix-hairpin-helix motifs located within the 8-kDa and thumb domains of pol beta. As the pol beta enzyme closes into its active form, the helix-hairpin-helix motifs appear to assist in the production and stabilization of a 90 degrees bend of the DNA. The function of the bent DNA is to present the templating base to the incoming nucleotide substrate. We propose that Thr-79 is part of a hydrogen bonding network within the helix-hairpin-helix motifs that is important for positioning the DNA within the active site. We suggest that alteration of Thr-79 to Ser disrupts this hydrogen bonding network and results in an enzyme that is unable to bend the DNA into the proper geometry for accurate DNA synthesis.

  8. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  9. Synthesis, spectral investigations, antimicrobial activity and DNA-binding studies of novel charge transfer complex of 1,10-phenanthroline as an electron donor with π-acceptor p-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2010-08-01

    Proton or charge transfer (CT) complex of donor, 1,10-phenanthroline (Phen) with π-acceptor, p-Nitrophenol (PNP) has been studied spectrophotometrically in methanol at room temperature. The binding of the CT complex with calf thymus (ct) DNA has been investigated by fluorescence spectrum, to establish the ability of the CT complex of its interaction with DNA. Stern-Volmer quenching constant ( Ksv) has also been calculated. The formation constant ( KCT), molar extinction coefficient ( ɛCT), free energy (Δ Go) and stoichiometric ratio of the CT complex have been determined by Benesi-Hildebrand equation. The stoichiometry was found to be 1:1. The CT complex was screened for its pharmacology as antibacterial and antifungal activity against various bacterial and fungal strains, showing excellent antibacterial and antifungal activity. The newly synthesized CT complex has been characterized by FTIR spectra, elemental analysis, 1H NMR, electronic absorption spectra. TGA-DTA studies were also carried out to check the stability of CT complex.

  10. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

    PubMed

    Izhar, Lior; Ziv, Omer; Cohen, Isadora S; Geacintov, Nicholas E; Livneh, Zvi

    2013-04-16

    DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis. PMID:23530190

  11. Analysis of bacteriophage phi X174 gene A protein-mediated termination and reinitiation of phi X DNA synthesis. I. Characterization of the termination and reinitiation reactions.

    PubMed

    Brown, D R; Roth, M J; Reinberg, D; Hurwitz, J

    1984-08-25

    with dGTP in reaction mixtures, DNA synthesis proceeded with linear kinetics for up to 10 min. These results suggested that in the presence of all four dNTPs, active templates supported more than 40 rounds of DNA synthesis.

  12. Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified ‘ultra-mild’ DNA synthesis

    PubMed Central

    Gillet, Ludovic C. J.; Alzeer, Jawad; Schärer, Orlando D.

    2005-01-01

    Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified ‘ultra-mild’ DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of β-mercaptoethanol) designed to remove protecting groups of commercially available ‘ultra-mild’ phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA. PMID:15814813

  13. Integrity and biological activity of DNA after UV exposure.

    PubMed

    Lyon, Delina Y; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m(2)s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  14. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  15. New coal tar extract and coal tar shampoos. Evaluation by epidermal cell DNA synthesis suppression assay.

    PubMed

    Lowe, N J; Breeding, J H; Wortzman, M S

    1982-07-01

    Coal tar therapy has been used for many years in the treatment of scaling skin diseases, including psoriasis and eczema. Previous studies of the potential effectiveness of tar have utilized phototoxic erythema assays with long-wave ultraviolet light (UV-A). However, in clinical use, coal tar is rarely used with UV-A, particularly for scalp disease. Therefore, we investigated a nonphototoxic approach to evaluate different coal tar products. Coal tar was found to suppress epidermal cell DNA synthesis in the hairless mouse model, and this is the basis for the assay presented. Using the epidermal cell DNA synthesis suppression assay, we observed that crude coal tar and a new extract of crude coal tar were equally effective and that a concentration gradient effect was achieved. In addition, four commercial coal tar shampoos assayed varied greatly in their ability to suppress epidermal cell DNA synthesis. One shampoo was washed after ten minutes and no significant alteration of suppressive effect was seen.

  16. Efficient Automated Solid-Phase Synthesis of DNA and RNA 5'-Triphosphates.

    PubMed

    Sarac, Ivo; Meier, Chris

    2015-11-01

    A fast, high-yielding and reliable method for the synthesis of DNA- and RNA 5'-triphosphates is reported. After synthesizing DNA or RNA oligonucleotides by automated oligonucleotide synthesis, 5-chloro-saligenyl-N,N-diisopropylphosphoramidite was coupled to the 5'-end. Oxidation of the formed 5'-phosphite using the same oxidizing reagent used in standard oligonucleotide synthesis led to 5'-cycloSal-oligonucleotides. Reaction of the support-bonded 5'-cycloSal-oligonucleotide with pyrophosphate yielded the corresponding 5'-triphosphates. The 5'-triphosphorylated DNA and RNA oligonucleotides were obtained after cleavage from the support in high purity and excellent yields. The whole reaction sequence was adapted to be used on a standard oligonucleotide synthesizer.

  17. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  18. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword.

    PubMed

    Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew; van Oijen, Antoine M; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2016-04-26

    1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.

  19. The Roles of Tryptophans in Primer Synthesis by the DNA Primase of Bacteriophage T7*

    PubMed Central

    Zhang, Huidong; Lee, Seung-Joo; Richardson, Charles C.

    2012-01-01

    DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step. PMID:22605336

  20. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  1. In vivo studies of the control of DNA synthesis in the rat adrenal cortex and medulla.

    PubMed

    McEwan, P E; Lindop, G B; Kenyon, C J

    1995-01-01

    The control of zonation in the adrenal cortex has been studied by measuring DNA synthesis using an analogue of thymidine, bromodeoxyuridine (BrDUrd). Groups of rats were infused with BrDUrd for 10-14 days whilst being treated with: high or low sodium diets; captopril; angiotensin II; dexamethasone; an inhibitor of nitric oxide synthesis, L-NAME. DNA synthesis in the zona glomerulosa was increased by low sodium food and angiotensin and was decreased by dexamethasone, captopril L-NAME and a high sodium diet. Dexamethasone, not manipulations of the renin-angiotensin system, affected DNA synthesis in the outer zona fasciculata. The BrDUrd index in the zona intermedia was unaffected by any of the treatments and was generally lower than in adjacent zona fasciculata and zona glomerulosa cells. Cells of the zona reticularis appeared to be regulated independent of the zona fasciculata. BrDUrd uptake in nuclei of the adrenal medulla was inversely related to blood pressure. We conclude that DNA synthesis in each adrenocortical zone is independently controlled. Migration of cells within zones after proliferation is likely.

  2. Gene activation by induced DNA rearrangements

    SciTech Connect

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A. )

    1989-12-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome.

  3. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    PubMed

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  4. Loss of Smu1 function de-represses DNA replication and over-activates ATR-dependent replication checkpoint.

    PubMed

    Ren, Laifeng; Liu, Yao; Guo, Liandi; Wang, Haibin; Ma, Lei; Zeng, Ming; Shao, Xin; Yang, Chunlei; Tang, Yaxiong; Wang, Lei; Liu, Cong; Li, Mingyuan

    2013-06-28

    Smu1 is an evolutionarily conserved gene that encodes a member of the WD40-repeat protein family. Disruption of Smu1 function leads to multiple cellular defects including chromosomal instability, aberrant DNA replication and alternative RNA splicing events. In this paper, we show that Smu1 is a chromatin-bound protein that functions as a negative regulator of DNA replication. Knockdown of Smu1 gene expression promotes excessive incorporation of dNTP analogue, implicating the acceleration of DNA synthesis. Smu1-silenced cells show an excessive activation of replication checkpoint in response to ultraviolate (UV) or hydroxyurea treatment, indicating that abnormal stimulation of DNA replication leads to instability of genomic structure. Hence, we propose that Smu1 participates in the protection of genomic integrity by negatively regulating the process of DNA synthesis. PMID:23727573

  5. Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not.

    PubMed

    de Castro, R D; van Lammeren, A A; Groot, S P; Bino, R J; Hilhorst, H W

    2000-02-01

    We studied cell cycle events in embryos of tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds during imbibition in water and during osmoconditioning ("priming") using both quantitative and cytological analysis of DNA synthesis and beta-tubulin accumulation. Most embryonic nuclei of dry, untreated control seeds were arrested in the G(1) phase of the cell cycle. This indicated the absence of DNA synthesis (the S-phase), as confirmed by the absence of bromodeoxyuridine incorporation. In addition, beta-tubulin was not detected on western blots and microtubules were not present. During imbibition in water, DNA synthesis was activated in the radicle tip and then spread toward the cotyledons, resulting in an increase in the number of nuclei in G(2). Concomitantly, beta-tubulin accumulated and was assembled into microtubular cytoskeleton networks. Both of these cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The activation of DNA synthesis and the formation of microtubular cytoskeleton networks were also observed throughout the embryo when seeds were osmoconditioned. However, this pre-activation of the cell cycle appeared to become arrested in the G(2) phase since no mitosis was observed. The pre-activation of cell cycle events in osmoconditioned seeds appeared to be correlated with enhanced germination performance during re-imbibition in water.

  6. Accurate multiplex gene synthesis from programmable DNA microchips

    NASA Astrophysics Data System (ADS)

    Tian, Jingdong; Gong, Hui; Sheng, Nijing; Zhou, Xiaochuan; Gulari, Erdogan; Gao, Xiaolian; Church, George

    2004-12-01

    Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of `construction' oligonucleotides and tagged complementary `selection' oligonucleotides are synthesized on photo-programmable microfluidic chips, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

  7. Recombination hotspot activity of hypervariable minisatellite DNA requires minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Moore, P D

    1998-01-01

    Hypervariable minisatellite DNA repeats are found at tens of thousands of loci in the mammalian genome. These sequences stimulate homologous recombination in mammalian cells [Cell 60:95-103]. To test the hypothesis that protein-DNA interaction is required for hotspot function in vivo, we determined whether a second protein binding nearby could abolish hotspot activity. Intermolecular recombination between pairs of plasmid substrates was measured in the presence or absence of the cis-acting recombination hotspot and in the presence or absence of the second trans-acting DNA binding protein. Minisatellite DNA had hotspot activity in two cell lines, but lacked hotspot activity in two closely related cell lines expressing a site-specific helicase that bound to DNA adjacent to the hotspot. Suppression of hotspot function occurred for both replicating and non-replicating recombination substrates. These results indicate that hotspot activity in vivo requires site occupancy by minisatellite DNA binding proteins. PMID:9776980

  8. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    SciTech Connect

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  9. In vivo measurement of DNA synthesis rates of colon epithelial cells in carcinogenesis

    SciTech Connect

    Kim, Sylvia Jeewon; Turner, Scott; Killion, Salena; Hellerstein, Marc K. . E-mail: march@nature.berkeley.edu

    2005-05-27

    We describe here a highly sensitive technique for measuring DNA synthesis rates of colon epithelial cells in vivo. Male SD rats were given {sup 2}H{sub 2}O (heavy water). Colon epithelial cells were isolated, DNA was extracted, hydrolyzed to deoxyribonucleosides, and the deuterium enrichment of the deoxyribose moiety was determined by gas chromatographic/mass spectrometry. Turnover time of colon crypts and the time for migration of cells from basal to top fraction of the crypts were measured. These data were consistent with cell cycle analysis and bromodeoxyuridine labeling. By giving different concentrations of a promoter, dose-dependent increases in DNA synthesis rates were detected, demonstrating the sensitivity of the method. Administration of a carcinogen increased DNA synthesis rates cell proliferation in all fractions of the crypt. In conclusion, DNA synthesis rates of colon epithelial cells can be measured directly in vivo using stable-isotope labeling. Potential applications in humans include use as a biomarker for cancer chemoprevention studies.

  10. Stimulation of adrenal DNA synthesis in cadmium-treated male rats

    SciTech Connect

    Nishiyama, S.; Nakamura, K.

    1984-07-01

    Cadmium chloride (CdCl2) at a dose of 1 mg/kg body wt was injected into male rats of the Wistar strain, weighing 250 g on the average, twice a day (12-hr intervals) for 7 consecutive days. DNA and RNA contents and (/sup 3/H)-thymidine and (/sup 3/H)-uridine incorporation into the acid-insoluble fraction significantly increased in the adrenals of rats treated with Cd for 2 and 7 consecutive days. Adrenal protein content and weight also significantly increased. These results indicate that continued treatment with Cd stimulates DNA and RNA synthesis in the adrenal cortex, which in turn results in the increase of the total protein contents of the adrenal gland and subsequently in the enlargement of the gland. Serum adrenocorticotrophin (ACTH) and insulin levels in Cd-treated rats were not higher than control levels, suggesting that the stimulation of DNA synthesis in the adrenals of Cd-treated rats is due to factor(s) other than serum ACTH and insulin. Treatment with Cd inhibited DNA synthesis in cultured adrenocortical cells at concentrations of 10(-4) to 10(-8) M, suggesting that Cd does not directly stimulate DNA synthesis in the adrenal gland in vivo. Although the adrenal gland became enlarged, the total adrenal corticosterone content decreased significantly. The decrease of total adrenal corticosterone content may be due to the fall in serum ACTH level of Cd-treated rats.

  11. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics.

    PubMed

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-02-29

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  12. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics.

    PubMed

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-02-29

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.

  13. Post-synthesis DNA Modifications Using a trans-Cyclooctene Click Handle

    PubMed Central

    Wang, Ke; Wang, Danzhu; Ji, Kaili; Chen, Weixuan; Zheng, Yueqin; Dai, Chaofeng

    2015-01-01

    Post-synthesis DNA modification is a very useful method for DNA functionalization. This is achieved by using a modified NTP, which has a handle for further modifications, replacing the corresponding natural NTP in polymerase-catalyzed DNA synthesis. Subsequently, the handle can be used for further functionalization after PCR, preferably through a very fast reaction. Herein we describe polymerase-mediated incorporation of trans-cyclooctene modified thymidine triphosphate (TCO-TTP). Subsequently, the trans-cyclooctene group was reacted with a tetrazine tethered to other functional groups through a very fast click reaction. The utility of this DNA functionalization method was demonstrated with the incorporation of a boronic acid group and a fluorophore. The same approach was also successfully used in modifying a known aptamer for fluorescent labelling applications. PMID:25407744

  14. Post-synthesis DNA modifications using a trans-cyclooctene click handle.

    PubMed

    Wang, Ke; Wang, Danzhu; Ji, Kaili; Chen, Weixuan; Zheng, Yueqin; Dai, Chaofeng; Wang, Binghe

    2015-01-21

    Post-synthesis DNA modification is a very useful method for DNA functionalization. This is achieved by using a modified NTP, which has a handle for further modifications, replacing the corresponding natural NTP in polymerase-catalyzed DNA synthesis. Subsequently, the handle can be used for further functionalization after PCR, preferably through a very fast reaction. Herein we describe polymerase-mediated incorporation of trans-cyclooctene modified thymidine triphosphate (TCO-TTP). Subsequently, the trans-cyclooctene group was reacted with a tetrazine tethered to other functional groups through a very fast click reaction. The utility of this DNA functionalization method was demonstrated with the incorporation of a boronic acid group and a fluorophore. The same approach was also successfully used in modifying a known aptamer for fluorescent labelling applications.

  15. DNA-mediated silver nanoclusters: synthesis, properties and applications.

    PubMed

    Latorre, Alfonso; Somoza, Álvaro

    2012-05-01

    Fluorescent DNA-AgNCs have emerged as an alternative to standard emitters because of their unique properties: high fluorescent quantum yield, photostability, a broad pallet of colors (blue to near-IR), and the fact that their properties are easily modulated by the DNA sequence and environment. Applications as gene, ion, or small-molecule sensors have been reported. PMID:22508551

  16. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.

    PubMed

    Xu, Wenyan; Ouellette, Adam; Ghosh, Souradyuti; O'Neill, Tylor C; Greenberg, Marc M; Zhao, Linlin

    2015-12-22

    5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic site that is produced by several antitumor agents and γ-radiolysis. DOB reacts reversibly with a dA opposite the 3'-adjacent nucleotide to form DNA interstrand cross-links (ICLs), genotoxic DNA lesions that can block DNA replication and transcription. Translesion synthesis (TLS) is an important step in several ICL repair pathways to bypass unhooked intermediates generated by endonucleolytic incision. The instability of DOB-ICLs has made it difficult to learn about their TLS-mediated repair capability and mutagenic potential. We recently developed a method for chemically synthesizing oligonucleotides containing a modified DOB-ICL analogue. Herein, we examined the capabilities of several highly relevant eukaryotic TLS DNA polymerases (pols), including human pol η, pol κ, pol ι, pol ν, REV1, and yeast pol ζ, to bypass this DOB-ICL analogue. The prelesion, translesion, and postlesion replication efficiency and fidelity were examined. Pol η showed moderate bypass activity when encountering the DOB-ICL, giving major products one or two nucleotides beyond the cross-linked template nucleotide. In contrast, DNA synthesis by the other pols was stalled at the position before the cross-linked nucleotide. Steady-state kinetic data and liquid chromatography-mass spectrometry sequencing of primer extension products by pol η unambiguously revealed that pol η-mediated bypass is highly error-prone. Together, our study provides the first set of in vitro evidence that the DOB-ICL is a replication-blocking and highly miscoding lesion. Compared to several other TLS pols examined, pol η is likely to contribute to the TLS-mediated repair of the DOB-ICL in vivo.

  17. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  18. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  19. [Analysis of effectiveness of cDNA synthesis, induced using complementary primers and primers containing a noncomplementary base matrix].

    PubMed

    D'iachenko, L B; Chenchik, A A; Khaspekov, G L; Tatarenko, A O; Bibilashvili, R Sh

    1994-01-01

    We have studied the efficiency of DNA synthesis catalyzed by M-MLV reverse transcriptase or Thermus aquaticus DNA polymerase for primers (4-17 nucleotides long) either completely matched or possessing a single mismatched base pair at all possible positions in the primer. It has been shown that DNA synthesis efficiency depends not only on the position of mismatched base pair but on the length and primary structure of the primer. The enzyme, template, and primer concentrations determine the relative level of mismatched DNA synthesis.

  20. Effect of hypolipidemic peroxisome proliferators on unscheduled DNA synthesis in cultured hepatocytes and on mutagenesis in Salmonella.

    PubMed

    Glauert, H P; Reddy, J K; Kennan, W S; Sattler, G L; Rao, V S; Pitot, H C

    1984-09-01

    The peroxisome proliferators Wy-14,643, BR-931, nafenopin and ciprofibrate were tested in the primary hepatocyte culture-unscheduled DNA synthesis assay and in the Ames Salmonella microsome mutagenicity assay. The amount of unscheduled DNA synthesis (UDS) in hepatocytes was determined by quantifying the amount of [3H]thymidine incorporated into DNA in the presence of hydroxyurea after isolation of nuclei from hepatocytes treated with the test agent. Wy-14,643 and BR-931 induced unscheduled DNA synthesis in rat hepatocytes, whereas nafenopin and ciprofibrate had no effect. All of the peroxisome proliferators were negative in the Ames Salmonella assay.

  1. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  2. Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity.

    PubMed

    Chrobak, Elwira; Bębenek, Ewa; Kadela-Tomanek, Monika; Latocha, Małgorzata; Jelsch, Christian; Wenger, Emmanuel; Boryczka, Stanisław

    2016-01-01

    Betulin derivatives are a widely studied group of compounds of natural origin due to their wide spectrum of biological activities. This paper describes new betulin derivatives, containing a phosphonate group. The allyl-vinyl isomerization and synthesis of acetylenic derivatives have been reported. Structural identification of products as E and Z isomers has been carried out using ¹H-, (13)C-, (31)P-NMR, and crystallographic analysis. The crystal structure in the orthorhombic space group and analysis of crystal packing contacts for 29-diethoxyphosphoryl-28-cyclopropylpropynoyloxy-lup-20E(29)-en-3β-ol 8a are reported. All new compounds were tested in vitro for their antiproliferative activity against human T47D (breast cancer), SNB-19 (glioblastoma), and C32 (melanoma) cell lines. PMID:27571057

  3. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  4. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ.

    PubMed

    Wang, Xiaoxiao; Zhang, Sufang; Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A; Lee, Ernest Y C; Zhang, Zhongtao; Lee, Marietta Y W T

    2016-02-01

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.

  5. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras

    PubMed Central

    Roviello, G. N.; Gröschel, S.; Pedone, C.

    2009-01-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy. PMID:19629638

  6. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras.

    PubMed

    Roviello, G N; Gröschel, S; Pedone, C; Diederichsen, U

    2010-05-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the alpha-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy.

  7. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    PubMed

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  8. Synthesis of PCR-derived, single-stranded DNA probes suitable for in situ hybridization.

    PubMed

    Hannon, K; Johnstone, E; Craft, L S; Little, S P; Smith, C K; Heiman, M L; Santerre, R F

    1993-08-01

    We report the novel synthesis of polymerase chain reaction (PCR)-derived single-stranded DNA (ssDNA) probes and their subsequent application in in situ hybridizations. Serial transverse sections of an 11.5-day postcoitum mouse embryo were hybridized to a 33P-ssDNA, 33P-RNA, or 35S-RNA probe corresponding to the same 181-bp sequence in the myogenin cDNA. Signal obtained using 33P-ssDNA was more intense than that using 33P-RNA probe, while signal/noise ratios obtained with both 33P-probes were far superior to those obtained with 35S-probe. Digoxigenin-labeled chicken growth hormone (GH) ssDNA gave slightly more intense signal than did digoxigenin-labeled chicken GH RNA when hybridized to chicken pituitary sections. 32P-ssDNA probes were found to be suitable for Northern blot hybridization. Advantages of using ssDNA probes for in situ hybridization include: (1) The ssDNA technique is rapid and simple. There was no need to clone a DNA template into a special RNA vector or order special T7-containing PCR primers. ssDNA probes can be synthesized in less than 1 day using any primers which currently exist in a laboratory (optimal probe length for in situ hybridization is between 50 and 200 bp). (2) In three separate in situ experiments, ssDNA probes yielded more intense signal than RNA probes. (3) ssDNA probes are potentially more stable than RNA probes. (4) Since the RNAse rinse is eliminated, posthybridization rinses are shortened when hybridizing with ssDNA probes. The ssDNA probes produced by this protocol can be labeled with a variety of different isotopes (both radioactive and nonradioactive), and are excellent probes for use in in situ hybridizations.

  9. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair.

    PubMed

    Han, Chunhua; Wani, Gulzar; Zhao, Ran; Qian, Jiang; Sharma, Nidhi; He, Jinshan; Zhu, Qianzheng; Wang, Qi-En; Wani, Altaf A

    2015-01-01

    Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3' side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4(Cdt2). Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4(Cdt2) for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.

  10. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    PubMed

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  11. Assessment of potential damage to DNA in urine of coke oven workers: an assay of unscheduled DNA synthesis.

    PubMed Central

    Roos, F; Renier, A; Ettlinger, J; Iwatsubo, Y; Letourneux, M; Haguenoer, J M; Jaurand, M C; Pairon, J C

    1997-01-01

    OBJECTIVES: A study was conducted in coke oven workers to evaluate the biological consequences of the exposure of these workers, particularly production of potential genotoxic factors. METHODS: 60 coke oven workers and 40 controls were recruited in the same iron and steel works. Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed by job and measurement of 1-hydroxypyrene (1OHP) in urine samples. An unscheduled DNA synthesis assay was performed on rat pleural mesothelial cells used as a test system to evaluate the effect of the workers' filtered urine on the DNA repair capacity of rat cells to determine whether DNA damaging agents are present in the urine of these workers. RESULTS: Urinary concentrations of 1OHP ranged from 0.06 to 24.2 (mean (SD) 2.1 (3.6)) mumol/mol creatinine in exposed coke oven workers, and from 0.01 to 0.9 in controls (0.12 (0.15)). These high concentrations in coke oven workers reflected recent exposure to PAHs and were in agreement with the assessment of exposure by job. No significant difference was found between coke oven workers and controls in the DNA repair level of rat cells treated with urine samples. However, the rat cell repair capacity decreased with increasing 1OHP concentrations in the exposed population (r = -0.28, P < 0.05). CONCLUSIONS: As high concentrations of 1OHP were found in the urine of some workers, a more stringent control of exposures to PAHs in the workplace is required. Exposure to PAHs was not associated with a clear cut modification of the urinary excretion of DNA damaging factors in this test, as shown by the absence of increased unscheduled DNA synthesis in rat cells. However, impairment of some repair mechanisms by urinary constituents is suspected. PMID:9470892

  12. Some Characteristics of DNA Synthesis and the Mitotic Cycle in Ehrlich Ascites Tumor Cells

    PubMed Central

    Edwards, Joshua L.; Koch, Arthur L.; Youcis, Pauline; Freese, Herbert L.; Laite, Melville B.; Donalson, J. Thomas

    1960-01-01

    In vivo studies of Ehrlich ascites tumor cells during the first 5 days of growth in peritoneal cavities of mice consisted of the following: 1. Determination of growth curves by direct enumeration of cells. 2. Estimation of the duration of each phase of the mitotic cycle based on incidence of cells in different phases. 3. Radioautographic studies to determine the proportion of cells in different phases of the mitotic cycle that incorporate tritiated thymidine during a single brief exposure to this precursor of DNA. 4. Estimation of the rate of incorporation of tritiated thymidine at different times during the period of DNA synthesis by comparison of mean grain counts over nuclei in radioautographs at different times following exposure to tritiated thymidine. The assumptions underlying these experiments and our observations concerning the duration of the period of DNA synthesis and its relation to the mitotic cycle are discussed. It is concluded that DNA synthesis is continuous, occupying a period of 8.5 hours during the interphase and that the average rate of synthesis is approximately constant. PMID:13819420

  13. Effect of hypertonicity and X radiation on DNA synthesis in normal and ataxia-telangiectasia cells

    SciTech Connect

    Painter, R.B.; Young, B.R.

    1982-12-01

    Normal human cells and cells from patients with ataxia-telangiectasia (A-T) were exposed to culture medium made hypertonic by raising the NaCl concentration. The rate of DNA synthesis in both types of cells was depressed as a function of increasing hypertonicity. When cells of both types were exposed to X radiation and incubated in hypertonic medium, DNA synthesis appeared to be more radioresistant than in cells incubated in normal medium. Velocity sedimentation analysis showed that this was due to a hypertonicity-induced inhibition of replicon initiation, which is the same process affected by X radiation, indicating that the two treatments were not additive. After a 5-hr incubation in hypertonic medium, there was a new steady state of replicon initiation and elongation similar to that existing in cells grown in normal medium, except that fewer replicons were participating. At this time DNA synthesis in each type of cell had a characteristic response to radiation, i.e., radiosenstivie in normal cells and radioresistant in A-T cells. These results suggest that radioresistant DNA synthesis in A-T cells is not due to increased condensation of chromatin.

  14. Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

    PubMed Central

    Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.

    2013-01-01

    Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030

  15. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA.

    PubMed

    Furukohri, Asako; Nishikawa, Yoshito; Akiyama, Masahiro Tatsumi; Maki, Hisaji

    2012-07-01

    DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.

  16. Sm(III)nitrate-catalyzed one-pot synthesis of furano[3,2c]-1,2,3,4-tetrahydroquinolines and DNA photocleavage studies

    NASA Astrophysics Data System (ADS)

    Bindu, P. J.; Mahadevan, K. M.; Ravikumar Naik, T. R.

    2012-08-01

    The synthesis and DNA photocleavage studies of furano[3,2-c]-1,2,3,4-tetrahydroquinolines have been reported. Sm(III)nitrate was found to be an efficient for the Diels-Alder reaction of aryl amines with 2,3-dihydrofuran to offer the corresponding furano[3,2-c]-1,2,3,4-tetrahydroquinolines derivatives as a mixture of cis/trans stereoisomers in moderate yields. The aqueous solubility of acid catalyst can be recycled without significant loss of activity. The DNA photocleavage studies shows that, the cis/trans stereoisomers are good DNA cleavage mimic in terms of molecular structure.

  17. Activation of DNA Damage Response Pathways during Lytic Replication of KSHV.

    PubMed

    Hollingworth, Robert; Skalka, George L; Stewart, Grant S; Hislop, Andrew D; Blackbourn, David J; Grand, Roger J

    2015-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human malignancies. Human tumour viruses such as KSHV are known to interact with the DNA damage response (DDR), the molecular pathways that recognise and repair lesions in cellular DNA. Here it is demonstrated that lytic reactivation of KSHV leads to activation of the ATM and DNA-PK DDR kinases resulting in phosphorylation of multiple downstream substrates. Inhibition of ATM results in the reduction of overall levels of viral replication while inhibition of DNA-PK increases activation of ATM and leads to earlier viral release. There is no activation of the ATR-CHK1 pathway following lytic replication and CHK1 phosphorylation is inhibited at later times during the lytic cycle. Despite evidence of double-strand breaks and phosphorylation of H2AX, 53BP1 foci are not consistently observed in cells containing lytic virus although RPA32 and MRE11 localise to sites of viral DNA synthesis. Activation of the DDR following KSHV lytic reactivation does not result in a G1 cell cycle block and cells are able to proceed to S-phase during the lytic cycle. KSHV appears then to selectively activate DDR pathways, modulate cell cycle progression and recruit DDR proteins to sites of viral replication during the lytic cycle.

  18. Synthesis and antiviral activity of substituted quercetins.

    PubMed

    Thapa, Mahendra; Kim, Yunjeong; Desper, John; Chang, Kyeong-Ok; Hua, Duy H

    2012-01-01

    Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.

  19. : Synthesis, Characterization, and Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fu, Feng; Li, Wenhong

    2014-12-01

    3D hierarchical microspheres of Cu-loaded Bi2WO6 are successfully prepared by the hydrothermal synthesis method on a large scale. The as-prepared samples are characterized by UV-Vis DRS, BET, XRD, XPS, and SEM. The results reveal that the light absorption of Cu-loaded Bi2WO6 has higher intensity in the visible range and a bathochromic shift of the absorption edge compared to that of pure Bi2WO6. The photocatalytic activity is evaluated by phenol removal from aqueous solution under visible-light irradiation. The results demonstrate that loaded Cu significantly enhances the photocatalytic activity of Bi2WO6, for the loaded Cu acts as the electron receptor on the surface of Bi2WO6, and inhibits the recombination of photogenerated electron-hole. The content of loaded Cu has an impact on the catalytic activity, and the 1.0 wt.% Cu-loaded Bi2WO6 exhibits the best photocatalytic activity in the degradation of phenol. Furthermore, the reaction kinetics of phenol removal from aqueous solution over the Cu-loaded Bi2WO6 is established by the way of the Langmuir-Hinshelwood model. The results indicate that the process of photodegradation of phenol on Cu-loaded Bi2WO6 match the Langmuir-Hinshelwood kinetic model.

  20. Microinjected pBR322 stimulates cellular DNA synthesis in Swiss 3T3 cells.

    PubMed Central

    Hyland, J K; Hirschhorn, R R; Avignolo, C; Mercer, W E; Ohta, M; Galanti, N; Jonak, G J; Baserga, R

    1984-01-01

    When pBR322 is manually microinjected into the nuclei of quiescent Swiss 3T3 cells it stimulates the incorporation of [3H]thymidine into DNA. The evidence clearly shows that this increased incorporation that is detected by in situ autoradiography in microinjected cells represents cellular DNA synthesis and not DNA repair or plasmid replication. The effect is due to pBR322 and not due to impurities, mechanical perturbances due to the microinjection technique, or aspecific effects. This stimulation is striking in Swiss 3T3 cells. Some NIH 3T3 cells show a slight stimulation, but hamster cells, derived from baby hamster kidney (BHK) cells, are not stimulated when microinjected with pBR322. The preliminary evidence seems to indicate that the integrity of the pBR322 genome is important for the stimulation of cellular DNA synthesis in quiescent Swiss 3T3 cells. These results, although of a preliminary nature, are of interest because they indicate that a prokaryotic genome may alter the cell cycle of mammalian cells. From a practical point of view the stimulatory effect of microinjected pBR322 on cellular DNA synthesis has a more immediate interest, because pBR322 is the vector most commonly used for molecular cloning and 3T3 cells are very frequently used for gene transfer experiments. Images PMID:6582497

  1. Template strand scrunching during DNA gap repair synthesis by human polymerase [lamda

    SciTech Connect

    Garcia-Diaz, Miguel; Bebenek, Katarzyna; Larrea, Andres A.; Havener, Jody M.; Perera, Lalith; Krahn, Joseph M.; Pedersen, Lars C.; Ramsden, Dale A.; Kunkel, Thomas A.

    2009-09-25

    Family X polymerases such as DNA polymerase {lambda}(Pol {lambda}) are well suited for filling short gaps during DNA repair because they simultaneously bind both the 5{prime} and 3{prime} ends of short gaps. DNA binding and gap filling are well characterized for 1-nucleotide (nt) gaps, but the location of yet-to-be-copied template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that, when bound to a 2-nt gap, Pol {lambda} scrunches the template strand and binds the additional uncopied template base in an extrahelical position within a binding pocket that comprises three conserved amino acids. Replacing these amino acids with alanine results in less processive gap filling and less efficient NHEJ when 2-nt gaps are involved. Thus, akin to scrunching by RNA polymerase during transcription initiation, scrunching occurs during gap filling DNA synthesis associated with DNA repair.

  2. Changes in the amplitude of cyclic load biphasically modulate endothelial cell DNA synthesis and division.

    PubMed

    Upchurch, G R; Loscalzo, J; Banes, A J

    1997-01-01

    Several physical factors, including shear stress and cyclic load, modulate the ability of endothelial cells to respond to injury. The objective of these experiments was to test the hypothesis that cyclic mechanical load stimulates endothelial cell DNA synthesis and division in vitro. Rabbit aortic endothelial cells were cultured on Flex I flexible-bottomed culture plates, and subjected to load amplitudes of increasing magnitude (0, 0.18, 0.24 and 0.27 load at 1 Hz) using a Flexercell strain unit. Cells were harvested enzymatically and cell numbers determined on days 1, 3 and 5 after initiating the load regimen. DNA synthesis was quantified after trichloroacetic acid precipitation of [3H]thymidine-labeled cells from: (1) whole culture wells and (2) areas of minimum and maximum strain in culture cells. Data were analyzed using analysis of variance and a Tukey's test (n = 6 observations/strain regimen per day in triplicate). Results from analysis of endothelial cells in whole, subconfluent cultures showed that cells subjected to strains of 0.18 had a decreased rate of cell division (76% of control) and DNA synthesis (63% of control), while cells subjected to strains of 0.24 and 0.27 had an increased rate of cell division (108 and 83% increase, respectively, compared with control; p < 0.001) and DNA synthesis (39 and 172% increase, respectively, compared with control; p < 0.001 for 0.27) on day 3 when compared with control cells. The results indicate that endothelial cells respond to various physiologic levels of cyclic load in a biphasic manner to initiate DNA synthesis and cell division. These data suggest that endothelial cell mitogenesis may be modulated by specific levels of cyclic load. PMID:9546945

  3. Site Specific Synthesis and in-situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds Using Tollens Reaction

    SciTech Connect

    Pal, Suchetan; Varghese, R.; Deng, Z.; Zhao, Z.; Kumar, A.; Yan, Hao; Liu, Yan

    2011-04-06

    DNA strands with specific sequences and covalently attached sugar moieties were used for the site-specific incorporation of the sugar units on a DNA origami scaffold. This approach enabled the subsequent site-specific synthesis and in situ immobilization of fluorescent Ag clusters at predefined positions on the DNA nanoscaffold by treatment with the Tollens reagent.

  4. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    PubMed

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction. PMID:26815240

  5. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    PubMed

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction.

  6. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  7. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    SciTech Connect

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  8. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms

    PubMed Central

    de Souza, Lesley S.; Godwin, James C.; Renshaw, Mark A.; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs. PMID:27776150

  9. Design and Synthesis of Triangulated DNA Origami Trusses.

    PubMed

    Matthies, Michael; Agarwal, Nayan P; Schmidt, Thorsten L

    2016-03-01

    DNA nanotechnology offers unique control over matter on the nanoscale. Here, we extend the DNA origami method to cover a range of wireframe truss structures composed of equilateral triangles, which use less material per volume than standard multiple-helix bundles. From a flat truss design, we folded tetrahedral, octahedral, or irregular dodecahedral trusses by exchanging few connector strands. Other than standard origami designs, the trusses can be folded in low-salt buffers that make them compatible with cell culture buffers. The structures also have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. Our graph routing program and a simple design pipeline will enable other laboratories to make use of this valuable and potent new construction principle for DNA-based nanoengineering.

  10. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  11. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  12. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    PubMed

    Hocek, Michal

    2014-11-01

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  13. The DNA methylation inhibitor 5-azacytidine decreases melanin synthesis by inhibiting CREB phosphorylation.

    PubMed

    Shin, Jun Seob; Jeong, Hyo-Soon; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Kim, Dong-Seok

    2015-10-01

    Here we examined the effects of a DNA methylation inhibitor, 5-azacytidine, on melanogenesis in Mel-Ab cells. We found that 5-azacytidine decreased the melanin content and tyrosinase activity in these cells in a dose-dependent manner; importantly, 5-azacytidine was not cytotoxic at the concentrations used in these experiments. On the other hand, 5-azacytidine did not affect tyrosinase activity in a cell-free system, indicating that 5-azacytidine is not a direct tyrosinase inhibitor. Instead, 5-azacytidine decreased the protein levels of microphthalmia-associated transcription factor (MITF) and tyrosinase. Thus, we investigated the effects of 5-azacytidine on signal transduction pathways related to melanogenesis. However, 5-azacytidine did not have any effect on either Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation. The phosphorylation of cAMP response element-binding protein (CREB) is well known to regulate MITF expression, thereby also regulating tyrosinase expression. We found that 5-azacytidine decreased the phosphorylation of CREB. Therefore, we propose that 5-azacytidine may decrease melanin synthesis by downregulating MITF and tyrosinase via CREB inactivation.

  14. Synthesis of DNA Oligodeoxynucleotides Containing Site-Specific 1,3-Butadiene- Deoxyadenosine Lesions

    PubMed Central

    Wickramaratne, Susith; Seiler, Christopher L.

    2016-01-01

    Post-oligomerization synthesis is a useful technique for preparing site-specifically modified DNA oligomers. This approach involves site-specific incorporation of inherently reactive halogenated nucleobases into DNA strands using standard solid phase synthesis, followed by post-oligomerization nucleophilic aromatic substitution (SNAr) reactions with carcinogen-derived synthons. In these reactions, the inherent reactivities of DNA and carcinogen-derived species are reversed: the modified DNA nucleobase acts as an electrophile, while the carcinogen-derived species acts as a nucleophile. In the present protocol, we describe the use of the post-oligomerization approach to prepare DNA strands containing site- and stereospecific N6-adenine and N1, N6-adenine adducts induced by epoxide metabolites of the known human and animal carcinogen, 1,3-butadiene (BD). The resulting oligomers containing site specific, structurally defined DNA adducts can be used in structural and biological studies to reveal the roles of specific BD adducts in carcinogenesis and mutagenesis. PMID:26344227

  15. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis.

    PubMed

    Qiao, Man; Luo, Dan; Kuang, Yi; Feng, Haiyan; Luo, Guangping; Liang, Peng

    2015-01-01

    p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.

  16. Structural Basis of High-Fidelity DNA Synthesis by Yeast DNA Polymerase δ

    SciTech Connect

    Swan, M.; Johnson, R; Prakash, L; Prakash, S; Aggarwal, A

    2009-01-01

    DNA polymerase ? (Pol ?) has a crucial role in eukaryotic replication. Now the crystal structure of the yeast DNA Pol ? catalytic subunit in complex with template primer and incoming nucleotide is presented at 2.0-A resolution, providing insight into its high fidelity and a framework to understand the effects of mutations involved in tumorigenesis.

  17. A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis

    PubMed Central

    Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2012-01-01

    SUMMARY DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and co-localize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway. PMID:22325353

  18. Pyrosequencing for the quantitative assessment of 8-oxodG bypass DNA synthesis.

    PubMed

    Nachtergael, Amandine; Belayew, Alexandra; Duez, Pierre

    2014-10-01

    Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) is highly mutagenic due to its ability to pair with either cytosine or adenine during DNA synthesis, depending on its conformation and involved DNA polymerases. To measure the correct or mutagenic outcome of lesion bypass, an original quantitative pyrosequencing method was developed and analytically validated. The method was applied to the study of DNA synthesis fidelity through an 8-oxodG or an undamaged guanine. After an in vitro primer-extension through 8-oxodG in the presence of the four deoxynucleotides triphosphates and a total nuclear protein extract, obtained from normal human intestinal epithelial cells (FHs 74 Int cell line), the reaction products were amplified by polymerase chain reaction and analyzed by pyrosequencing to measure nucleotides inserted opposite the lesion. The 8-oxodG bypass fidelity of FHs 74 Int cells nuclear extract is about 85.3%. We calculated within-day and total precisions for both 8-oxodG (2.8% and 2.8%, respectively) and undamaged templates (1.0% and 1.1%, respectively). We also demonstrated that only cytosine is incorporated opposite a normal guanine and that both cytosine and adenine can be incorporated opposite an 8-oxodG lesion. The proposed method is straightforward, fast, reproducible and easily adaptable to other sequences and lesions. It thus has a wide range of applications in the biological field, notably to elucidate TLS mechanisms and modulators. PMID:25200840

  19. An improved method of gene synthesis based on DNA works software and overlap extension PCR.

    PubMed

    Dong, Bingxue; Mao, Runqian; Li, Baojian; Liu, Qiuyun; Xu, Peilin; Li, Gang

    2007-11-01

    A bottleneck in recent gene synthesis technologies is the high cost of oligonucleotide synthesis and post-synthesis sequencing. In this article, a simple and rapid method for low-cost gene synthesis technology was developed based on DNAWorks program and an improved single-step overlap extension PCR (OE-PCR). This method enables any DNA sequence to be synthesized with few errors, then any mutated sites could be corrected by site-specific mutagenesis technology or PCR amplification-assembly method, which can amplify different DNA fragments of target gene followed by assembly into an entire gene through their overlapped region. Eventually, full-length DNA sequence without error was obtained via this novel method. Our method is simple, rapid and low-cost, and also easily amenable to automation based on a DNAWorks design program and defined set of OE-PCR reaction conditions suitable for different genes. Using this method, several genes including Manganese peroxidase gene (Mnp) of Phanerochaete chrysosporium (P. chrysosporium), Laccase gene (Lac) of Trametes versicolor (T. versicolor) and Cip1 peroxidase gene (cip 1) of Coprinus cinereus (C. cinereus) with sizes ranging from 1.0 kb to 1.5 kb have been synthesized successfully.

  20. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.

    PubMed

    Fisher, Timothy S; Darden, Tom; Prasad, Vinayaka R

    2003-01-17

    Unlike most DNA polymerases, retroviral reverse transcriptases (RTs) are capable of strand displacement DNA synthesis in vitro, unassisted by other proteins. While human immunodeficiency virus type 1 (HIV-1) RT has been shown to possess this rare ability, the structural determinants responsible are unknown. X-Ray crystallographic and biochemical studies have indicated that the beta3-beta4 hairpin of the fingers subdomain of HIV-1 RT contains key contacts for the incoming template strand. In order to assess the possible role of the fingers subdomain in strand displacement synthesis, a set of substitutions was created at the highly conserved Phe61 residue, which is thought to contact the template strand immediately ahead of the dNTP-binding site. Purified heterodimeric RTs containing Phe61 substitutions displayed altered degrees of strand displacement synthesis on nicked and gapped duplex DNA templates with the relative order being: F61Y > or = F61L > wild-type = F61A > F61W. In order to verify that the effects on strand displacement synthesis were not an indirect effect of alterations in processivity, all Phe61 mutants were tested for processive polymerization. While the strand displacement activity of F61W RT variant was affected severely, it displayed a wild-type-like processivity. In contrast, both F61L and F61Y substitutions, despite showing enhanced strand displacement synthesis, displayed reduced processivity. In contrast, the processivity of F61A mutant, which had displayed nearly wild-type-like strand displacement synthesis, was affected most. These results showed that the effects of Phe61 substitutions on strand displacement are not due to global changes in polymerase processivity. Analysis of pause sites during DNA polymerization on double-stranded templates revealed that the wild-type and the Phe61 mutant RTs interact with the template quite differently. Modeling a 5 nt duplex DNA ahead of the dNTP-binding site of HIV-1 RT suggested a correlation between

  1. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    PubMed Central

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; van Oijen, Antoine M.

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments1,2. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki-fragment synthesis3. Here, we employ single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment. PMID:19029884

  2. Cytoplasmic DNA synthesis in Amoeba proteus. I. On the particulate nature of the DNA-containing elements.

    PubMed

    RABINOVITCH, M; PLAUT, W

    1962-12-01

    The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 micro particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H(3)-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.

  3. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N.; Mariella, Jr., Raymond P.; Christian, Allen T.; Young, Jennifer A.; Clague, David S.

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  4. Endotoxin or cytokines attenuate ozone-induced DNA synthesis in rat nasal transitional epithelium

    SciTech Connect

    Hotchkiss, J.A.; Harkema, J.R. )

    1992-06-01

    Pretreatment of rats with endotoxin (E), a potent inducer of tumor necrosis factor alpha (TNF), and interleukin 1 beta (IL 1), or a combination of TNF and IL1, has been shown to increase levels of lung antioxidant enzymes and protect against pulmonary toxicity associated with hyperoxia. Inhalation of ozone (O3) induces cell injury, followed by increased DNA synthesis, cell proliferation, and secretory cell metaplasia in rat nasal transitional epithelium (NTE). This study was designed to test the effects of E, TNF, and IL1 pretreatment on acute O3-induced NTE cell injury as measured by changes in NTE cell DNA synthesis. Rats were exposed to either 0.8 ppm O3 or air for 6 hr in whole-body inhalation chambers. Immediately before exposure, rats in each group were injected intraperitoneally (ip) with either saline alone or saline containing E, TNF, IL1, or both TNF and IL1. Eighteen hours postexposure, rats were injected ip with bromodeoxyuridine to label cells undergoing DNA synthesis and were euthanized 2 hr later. NTE was processed for light microscopy and immunochemically stained to identify cells that had incorporated BrdU into nuclear DNA. The number of BrdU-labeled NTE nuclei per millimeter of basal lamina was quantitated. There were no significant differences in the number of BrdU-labeled NTE nuclei in air-exposed rats that were injected with E, TNF, IL1, or TNF/IL1 compared with those in saline-injected, air-exposed controls. Rats that were injected with saline and exposed to O3 had approximately 10 times the number of BrdU-labeled NTE nuclei than saline-injected, air-exposed control rats. O3 exposure also induced a significant increase in labeled nuclei in rats that were pretreated with TNF alone. In contrast, pretreatment with E, IL1, or TNF/IL1 attenuated the O3-induced increase in NTE DNA synthesis.

  5. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  6. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA.

    PubMed

    Brutlag, D; Fry, K; Nelson, T; Hung, P

    1977-03-01

    Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes. PMID:403010

  7. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  8. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  9. Rb regulates C/EBPbeta-DNA-binding activity during 3T3-L1 adipogenesis.

    PubMed

    Cole, Kathryn A; Harmon, Anne W; Harp, Joyce B; Patel, Yashomati M

    2004-02-01

    Two pathways are initiated upon 3T3-L1 preadipocyte differentiation: the reentry of cells into the cell cycle and the initiation of a cascade of transcriptional events that "prime" the cell for differentiation. The "priming" event involves the synthesis of members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. However, the relationship between these two pathways is unknown. Here we report that in the 3T3-L1 preadipocytes induced to differentiate, cell cycle progression and the initiation of differentiation are linked by a cell cycle-dependent Rb-C/EBPbeta interaction. Cell cycle arrest in G1 by l-mimosine inhibited differentiation-induced C/EBPbeta-DNA-binding activity and Rb phosphorylation. However, cell cycle arrest after the G1/S transition by aphidicolin or nocodazole did not prevent C/EBPbeta-DNA-binding activity or Rb phosphorylation. Furthermore, hypophosphorylated Rb and C/EBPbeta coimmunoprecipitated, whereas phosphorylated Rb and C/EBPbeta did not. Electrophoretic mobility shift assays demonstrated that recombinant hypophosphorylated Rb decreased C/EBPbeta-DNA-binding activity and that Rb overexpression inhibited C/EBPbeta-induced transcriptional activation of a C/EBPalpha-promoter-luciferase reporter gene. We conclude that C/EBPbeta-DNA-binding activity is regulated by its interaction with hypophosphorylated Rb, thereby linking the progression of the cell cycle to the initiation of differentiation during 3T3-L1 adipogenesis. PMID:14576085

  10. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI

    SciTech Connect

    Vieira, P.; De Waal-Malefyt, R.; Dang, M.N.; Johnson, K.E.; Kastelein, R.; Fiorentino, D.F.; DeVries, J.E.; Roncarolo, M.G.; Mosmann, T.R.; Moore, K.W. )

    1991-02-15

    The authors demonstrated the existence of human cytokine synthesis inhibitory factor (DSIF) (interleukin 10 (IL-10)). cDNA clones encoding human IL-10 (hIL-10) were isolated from a tetanus toxin-specific human T-cell clone. Like mouse IL-10, hIL-10 exhibits strong DNA and amino acid sequence homology to an open reading frame in the Epstein-Barr virus, BDRFL. hIL-10 and the BCRFI product inhibit cytokine synthesis by activated human peripheral blood mononuclear cells and by a mouse Th1 clone. Both hIL-10 and mouse IL-10 sustain the viability of a mouse mast cell line in culture, but BCRFI lacks comparable activity in this way, suggesting that BCRFI may have conserved only a subset of hIL-10 activities.

  11. Cytotoxic activity and DNA-binding properties of isoeuxanthone derivatives.

    PubMed

    Wang, Hui Fang; Yan, Hong; Gao, Xianghua; Niu, Baolong; Guo, Ruijie; Wei, Liqiao; Xu, Bingshe; Tang, Ning

    2014-01-01

    In this study, the interactions of different groups substituted isoeuxanthone derivatives with calf thymus DNA (ct DNA) were investigated by spectrophotometric methods and viscosity measurements. Results indicated that the xanthone derivatives could intercalate into the DNA base pairs by the plane of xanthone ring and the various substituents may influence the binding affinity with DNA according to the calculated quenching constant values. Furthermore, two tumor cell lines including the human cervical cancer cell line (HeLa) and human hepatocellular liver carcinoma cell line (HepG2) were used to evaluate the cytotoxic activities of xanthone derivatives by acid phosphatase assay. Analyses showed that the oxiranylmethoxy substituted xanthone exhibited more effective cytotoxic activity against the cancer cells than the other substituted xanthones. The effects on the inhibition of tumor cells in vitro agreed with the studies of DNA-binding. PMID:24583780

  12. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    PubMed Central

    Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A

    2016-01-01

    This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of

  13. Mutagenicity and pausing of HIV reverse transcriptase during HIV plus-strand DNA synthesis.

    PubMed Central

    Ji, J; Hoffmann, J S; Loeb, L

    1994-01-01

    The unusually high frequency of misincorporation by HIV-1 reverse transcriptase (HIV RT) is likely to be the major factor in the rapid accumulation of viral mutations in AIDS, especially in the env gene. To investigate the ability of HIV RT to copy the env gene, we subcloned an HIV env gene fragment into a single-stranded DNA vector and measured the progression of synthesis by HIV RT. We observed that HIV RT, but not RT from avian myeloblastosis virus, DNA polymerase-alpha or T7 DNA polymerase, pauses specifically at poly-deoxyadenosine stretches within the env gene. The frequency of bypassing the polyadenosine stretches by HIV RT is enhanced by increasing the ratio of enzyme to template. We measured the fidelity of DNA synthesis within a segment of the hypervariable region 1 of the env gene (V-1) containing a poly-deoxyadenosine sequence by repetitively copying the DNA by HIV RT, and then cloning and sequencing the copied fragments. We found that 27% of the errors identified in V-1 sequence were frameshift mutations opposite the poly-adenosine tract, a site where strong pausing was observed. Pausing of HIV RT at the polyadenosine tract could be enhanced by either distamycin A or netropsin, (A-T)-rich minor groove binding peptides. Moreover, netropsin increases the frequency of frameshift mutations in experiments in which HIV RT catalyzes gap filling synthesis within the lacZ gene in double-stranded circular M13mp2 DNA. These combined results suggest that the enhanced mutation frequency may be due to increased pausing at netropsin-modified polyadenosine tracts. Therefore, netropsin and related A-T binding chemicals may selectively enhance frameshift mutagenesis induced by HIV RT and yield predominantly non-viable virus. Images PMID:7510388

  14. Translesion synthesis is the main component of SOS repair in bacteriophage lambda DNA.

    PubMed Central

    Defais, M; Lesca, C; Monsarrat, B; Hanawalt, P

    1989-01-01

    Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode. Images PMID:2527845

  15. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  16. Effects of different methods of DNA extraction for activated sludge on the subsequent analysis of bacterial community profiles.

    PubMed

    Sun, Lianpeng; Ouyang, Xiong; Tang, Yueheng; Yang, Ying; Luo, Ying

    2012-02-01

    The effect of different DNA extraction protocols on activated sludge DNA yield and bacterial community composition was evaluated by temperature gradient gel electrophoresis (TGGE). Nine different procedures to extract DNA were compared-sonication (30s), sonication (40s), sonication (50s), freezing-thawing, bead milling, sodium dodecyl sulfate (SDS)-lysozyme, SDS-proteinase K, SDS-lysozyme-proteinase, and a commercial extraction kit. It was found that the TGGE profiles and the DNA band numbers made significant differences via various extraction methods. The yield and purity of DNA extracted by sonication and other physical methods were not satisfactory, while the DNA purity extracted by SDS and other chemical-biological methods were better. Crude DNA extracts isolated by sonication and other physical methods passed the polymerase chain reaction, despite the absence of purification and acquired affluent DNA bands in TGGE. The affluence of bands in TGGE was not consistent with the yield and purification of DNA, but was correlative with extraction protocols. To analyze the activated sludge bacterial community by TGGE fingerprint, it is necessary to make a synthesis of the TGGE fingerprint profiles of chemical and physical DNA extraction methods to overcome the representative bias.

  17. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.

    PubMed

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar

    2016-04-27

    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed. PMID:27019201

  18. Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells.

    PubMed Central

    Vigne, P; Marsault, R; Breittmayer, J P; Frelin, C

    1990-01-01

    Endothelin-1 (ET-1) is a novel vasoconstricting and cardiotonic peptide that is synthesized by the vascular endothelium. Bovine aortic endothelial cells which secrete ET in vitro lack membrane receptor sites for the peptide. Endothelial cells from rat brain microvessels that do not secrete ET in vitro express large amounts of high-affinity receptors for 125I-labelled ET-1 (Kd 0.8 nM). The ET receptor is recognized by sarafotoxin S6b and the different ET peptides with the following order of potency: ET-1 (Kd 0.5 nM) approximately equal to ET-2 (Kd 0.7 nM) greater than sarafotoxin S6b (Kd 27 nM) greater than ET-3 (Kd 450 nM). This structure-activity relationship is different from those found in vascular smooth muscle cells, renal cells and cardiac cells. ET-1 stimulates DNA synthesis in brain capillary endothelial cells. It is more potent than basic fibroblast growth factor. The action of ET on endothelial cells from microvessels involves phosphatidylinositol hydrolysis and intracellular Ca2+ mobilization. These observations suggest that brain endothelial cells might be an important target for ET. PMID:2156495

  19. Stimulators and inhibitors of lymphocyte DNA synthesis in supernatants from human lymphoid cell lines.

    PubMed

    Vesole, D H; Goust, J M; Fett, J W; Fudenberg, H H

    1979-09-01

    Some T and B lymphoid cell lines (LCL) were found to secrete into their supernatants a substance able to stimulate lymphocyte proliferation. This substance produced an increase in [3H]thymidine uptake by mononuclear cells when added to unstimulated cultures (mitogenic effect) or when added to cultures stimulated with phytohemagglutinin (PHA) or pokeweed mitogen (PWM) (potentiating effect). When complete supernatants were used, the potentiating effect was sometimes masked by an inhibitor of DNA synthesis. Fractionation on Sephadex G-100 separated these two activities. The stimulatory substance eluted at a m.w. range of 15,000 to 30,000, and the inhibitor eluted with the albumin peak. B cells with or without monocytes were the most sensitive to the mitogenic effect, whereas T cells were unaffected. Responses to PHA and PWM were potentiated when T cells were present, but the maximum effect was observed when the proportion of T cells was less than 50%. The stimulatory material may be similar to lymphocyte mitogenic factor and may function as a T cell-replacing factor in B cell stimulation. PMID:313950

  20. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA.

    PubMed

    Schinn, Song-Min; Broadbent, Andrew; Bradley, William T; Bundy, Bradley C

    2016-06-25

    A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems. PMID:27085957

  1. An autoradiographic study of DNA synthesis in lymphoid cells of leucotic and healthy cattle.

    PubMed

    Rodák, L; Procházka, Z

    1976-01-01

    The present study on 3H-thymidine incorporation using the histouatoradiographic method showed that spontaneous DNA synthesis occurred, on average, in 0.526 (+/- 0.233) per cent of lymphoid cells in 19 cattle with the normal blood picture (6,355+/-1,866 leucocytes/cu. mm). In 17 leucotic cattle with persistent leuco- and lymphocytosis (19,138+/-8,817 leucocytes/cu. mm) the proportion of these cells was insignificantly different, hovering about 0.554 (+/-0.191) per cent. The present sample did not include cases with marked changes in the blood picture (50,000-600,000 leucocytes/cu. mm) which occur in only 5-10 per cent of leucotic animals. This fact, however, could not influence the conclusion that even when used in conjunction with other methods, the determination of spontaneous DNA synthesis in peripheral lymphocytes is not a useful tool for the detection of preclinical phases of bovine leucosis.

  2. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins.

    PubMed Central

    Podust, V N; Hübscher, U

    1993-01-01

    By using a defined gapped DNA substrate that mimics a lagging strand of 230 nucleotides and that contains a defined pause site, we have analyzed calf thymus DNA polymerases (pol) alpha, beta, delta, and epsilon in the presence of the three auxiliary proteins proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) for their ability to complete an Okazaki fragment. Pol alpha alone could fill the gap to near completion, but was strongly stopped by the pause site. Addition of low amounts of RP-A resulted in an increased synthesis by pol alpha past the pause site. In contrast, high amounts of RP-A strongly inhibited gap filling by pol alpha. Further inhibition was evident when the two other auxiliary proteins, PCNA and RF-C, were added in addition to RP-A. Pol beta could completely fill the gap without specific pausing and also was strongly inhibited by RP-A. PCNA and RF-C had no detectable effect on pol beta. Pol delta, relied as expected, on all three auxiliary proteins for complete gap filling synthesis and could, upon longer incubation, perform a limited amount of strand displacement synthesis. Pol epsilon core enzyme was able to fill the gap completely, but like pol alpha, essentially stopped at the pause site. This pausing could only be overcome upon addition of PCNA, RF-C and E. coli single-stranded DNA binding protein. Thus pol epsilon holoenzyme preferentially synthesized to the end of the gap without pausing. Ligation of the DNA products indicated that pol beta core enzyme, pol delta and pol epsilon holoenzymes (but not pol alpha and pol epsilon core enzyme) synthesized products that were easily ligatable. Our results indicate that pol epsilon holoenzyme fills a defined lagging strand gapped template to exact completion and is able to pass a pause site. The data favour the hypothesis of Burgers (Burgers, P.M.J. (1991) J. Biol. Chem. 266, 22698-22706) that pol epsilon might be a candidate for the second

  3. Enzymatic synthesis of a DNA triblock copolymer that is composed of natural and unnatural nucleotides.

    PubMed

    Mitomo, Hideyuki; Watanabe, Yukie; Matsuo, Yasutaka; Niikura, Kenichi; Ijiro, Kuniharu

    2015-02-01

    DNA molecules have come under the spotlight as potential templates for the fabrication of nanoscale products, such as molecular-scale electronic or photonic devices. Herein, we report an enhanced approach for the synthesis of oligoblock copolymer-type DNA by using the Klenow fragment exonuclease minus of E. coli DNA polymerase I (KF(-) ) in a multi-step reaction with natural and unnatural nucleotides. First, we confirmed the applicability of unnatural nucleotides with 7-deaza-nucleosides-which was expected because they were non-metalized nucleotides-on the unique polymerization process known as the "strand-slippage model". Because the length of the DNA sequence could be controlled by tuning the reaction time, analogous to a living polymerization reaction on this process, stepwise polymerization provided DNA block copolymers with natural and unnatural bases. AFM images showed that this DNA block copolymer could be metalized sequence-selectively. This approach could expand the utility of DNA as a template.

  4. Isohelical DNA-Binding Oligomers: Antiviral Activity and Application for the Design of Nanostructured Devices

    NASA Astrophysics Data System (ADS)

    Gursky, Georgy; Nikitin, Alexei; Surovaya, Anna; Grokhovsky, Sergey; Andronova, Valeria; Galegov, Georgy

    We performed a systematic search for new structural motifs isohelical to double-stranded DNA and found five motifs that can be used for the design and synthesis of new DNA-binding oligomers. Some of the DNA-binding oligomers can be equipped with fluorescence chromophores and metal-chelating groups and may serve as conductive wires in nano-scaled electric circuits. A series of new DNA-binding ligands were synthesized by a modular assembly of pyrrole carboxamides and novel pseudopeptides of the form (XY)n. Here, Y is a glycine residue; n is the degree of polymerization. X is an unusual amino acid residue containing a five-membered aromatic ring. Antiviral activity of bis-linked netropsin derivatives is studied. Bis-netropsins containing 15 and 31 lysine residues at the N-termini inhibit most effectively reproduction of the herpes virus type 1 in the Vero cell culture, including virus variants resistant to acyclovir and its analogues. Antiviral activity of bis-linked netropsin derivatives is correlated with their ability to interact with long clusters of AT-base pairs in the origin of replication of the viral DNA.

  5. Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Durmus, Selvi; Sarimahmut, Mehmet; Buyukgungor, Orhan; Ulukaya, Engin

    2015-11-01

    Four new cationic Pd(II) and Pt(II) 5,5-diethylbarbiturate (barb) complexes, [M(barb)(bpma)]X·H2O [M = Pd(II), X = Cl (1); M = Pt(II), X = NO3(-) (2)] and [M(barb)(terpy)]NO3·0.5H2O [M = Pd(II) (3); M = Pt(II) (4)], where bpma = bis(2-pyridylmethyl)amine and terpy = terpyridine, were synthesized and characterized by elemental analysis, IR, UV–vis, NMR, ESI-MS and X-ray crystallography. The DNA binding properties of the cationic complexes were investigated by spectroscopic titrations, displacement experiments, viscosity, DNA melting and electrophoresis measurements. The results revealed that the complexes effectively bind to FS-DNA (fish sperm DNA) via intercalative/minor groove binding modes with intrinsic binding constants (Kb) in the range of 0.50 × 10(4)–1.67 × 10(5) M(-1). Absorption, emission and synchronous fluorescence measurements showed strong association of the complexes with protein (BSA) through a static mechanism. The mode of interaction of complexes towards DNA and protein was also supported by molecular docking. Complexes 1 and 3 showed significant nuclear uptake in HT-29 cells. In addition, 1 and 3 showed higher inhibition than cisplatin on the growth of MCF-7 and HT-29 cells and induced apoptosis on these cells much more effectively than the rest of the complexes as evidenced by pyknotic nuclear morphology. The levels of caspase-cleaved cytokeratin 18 (M30 antigen) in HT-29 cells treated with 1 and 3 increased in a dose-dependent manner, suggesting apoptosis. Moreover, qRT-PCR experiments showed that 1 and 3 caused significant increases in the expression of TNFRSF10B in HT-29 cells, indicating the initiation of apoptosis via cell surface death receptors.

  6. Design and synthesis of fluorescence-labeled nucleotide with a cleavable azo linker for DNA sequencing.

    PubMed

    Tan, Lianjiang; Liu, Yazhi; Yang, Qinglai; Li, Xiaowei; Wu, Xin-Yan; Gong, Bing; Shen, Yu-Mei; Shao, Zhifeng

    2016-01-18

    A cleavable azo linker was synthesized and reacted with 5-(6)-carboxytetramethyl rhodamine succinimidyl ester, followed by further reactions with di(N-succinimidyl) carbonate and 5-(3-amino-1-propynyl)-2'-deoxyuridine 5'-triphosphate [dUTP(AP3)] to obtain the terminal product dUTP-azo linker-TAMRA as a potential reversible terminator for DNA sequencing by synthesis with no need for 3'-OH blocking. PMID:26587573

  7. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  8. The Foundry: the DNA synthesis and construction Foundry at Imperial College

    PubMed Central

    Chambers, Stephen; Kitney, Richard; Freemont, Paul

    2016-01-01

    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms. PMID:27284027

  9. The Foundry: the DNA synthesis and construction Foundry at Imperial College.

    PubMed

    Chambers, Stephen; Kitney, Richard; Freemont, Paul

    2016-06-15

    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms. PMID:27284027

  10. Total synthesis of the antitumor natural product polycarcin V and evaluation of its DNA binding profile.

    PubMed

    Cai, Xiao; Ng, Kevin; Panesar, Harmanpreet; Moon, Seong-Jin; Paredes, Maria; Ishida, Keishi; Hertweck, Christian; Minehan, Thomas G

    2014-06-01

    The convergent total synthesis of polycarcin V, a gilvocarcin-type natural product that shows significant cytotoxicity with selectivity for nonsmall-cell lung cancer, breast cancer, and melanoma cells, has been achieved in 13 steps from 7, 8, and 22; the sequence features a stereoselective α-C-glycosylation reaction for the union of protected carbohydrate 7 and naphthol 8. The association constant for the binding of polycarcin V to duplex DNA is similar to that previously reported for gilvocarcin V.

  11. Is Ap4A an activator of eukaryotic DNA replication?

    PubMed

    Bambara, R A; Crute, J J; Wahl, A F

    1985-01-01

    The most well established fact concerning Ap4A metabolism is that the concentration of this compound is cell cycle and cell proliferation dependent. An additional intriguing fact is that Ap4A can stimulate DNA synthesis in cell extracts, and when injected into living cells. In view of these facts, it is not surprising that Ap4A has been postulated to regulate the initiation of DNA replication. However, in our opinion, experimental efforts designed to test this hypothesis do not conclusively link Ap4A to DNA replication. Work on the mechanism of stimulation of DNA synthesis in vitro indicates that Ap4A and a variety of adenylated nucleotides increase DNA synthetic rates by acting as primers. Thus far there is no evidence that this primer function plays a role in the initiation of normal DNA replication in vivo, or that Ap4A is unique in this capacity to stimulate initiation processes. Additional experiments have shown an association of partially purified DNA alpha polymerase with both tryptophanyl-tRNA synthetase and a protein capable of binding Ap4A. The Ap4A-binding protein appears to be necessary for Ap4A to assume the correct conformation for priming, since physiological levels of Ap4A are not stimulatory for highly purified DNA alpha polymerase. The relevance of tRNA synthetases to the regulation hypothesis is their ability to produce Ap4A. Ironically, mammalian tryptophanyl-tRNA synthetase does not appear to have this capacity. Furthermore, the association of alpha polymerase with either Ap4A-binding protein or tryptophanyl-tRNA synthetase in vivo has not been conclusively demonstrated. Although Ap4A has been postulated to regulate many phenomena in eukaryotes and bacteria, such as entry into S phase and the response to oxygen deprivation, the links between Ap4A and these processes are still only circumstantial. It is tempting to extrapolate from the alarmone and stringent responses of bacteria to other systems, but these phenomena are not known to occur in

  12. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases.

    PubMed

    Mačková, Michaela; Boháčová, Soňa; Perlíková, Pavla; Poštová Slavětínská, Lenka; Hocek, Michal

    2015-10-12

    Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.

  13. DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein.

    PubMed

    Chen, Xi; Yang, Bin; Qi, Chao; Sun, Tuan-Wei; Chen, Feng; Wu, Jin; Feng, Xi-Ping; Zhu, Ying-Jie

    2016-01-28

    Hydroxyapatite (HA) is promising in various biomedical applications owing to its similar chemical composition, structure and properties to the inorganic component in natural hard tissues. Herein, we report a DNA-templated microwave-assisted hydrothermal strategy for the preparation of HA nanostructured materials. As a kind of natural biomacromolecule, DNA molecules open up a new way to the synthesis of HA nanostructured materials with well-defined structures and morphologies. The HA nanostructured materials with a nanosheet-assembled hierarchical structure and a HA nanorod ordered structure are successfully prepared. The important roles of DNA molecules and pH values in the formation of HA nanostructured materials are investigated, and a possible formation mechanism is proposed. The as-prepared HA nanostructured materials exhibit a relatively high adsorption ability for chicken immunoglobulin Y (IgY) protein and a sustained protein release behavior. The as-prepared HA nanostructured materials after loading the IgY protein show a high antimicrobial activity. Thus, the HA nanostructured materials prepared by the DNA-templated microwave hydrothermal method are promising for the applications in various areas such as the prevention and treatment of dental caries.

  14. Synthesis, dark toxicity and induction of in vitro DNA photodamage by a tetra(4-nido-carboranylphenyl)porphyrin.

    PubMed

    Vicente, M G H; Nurco, D J; Shetty, S J; Osterloh, J; Ventre, E; Hegde, V; Deutsch, W A

    2002-11-01

    The total synthesis of tetra(4-carboranylphenyl)porphyrins 4 and 6 and their zinc(II) complexes 5 and 7 are described. These compounds were characterized by analytical and spectroscopic methods and, in the case of 5, by X-ray crystallography. The water-soluble nido-carboranylporphyrins 6 and 7 were found to have low dark toxicity towards V79 hamster lung fibroblast cells, using a clonogenic assay (50% colony survival, CS(50)>300 microM). Upon light activation nido-carboranylporphyrin 6 effectively induced DNA damage in vitro. Two different methods were used to assess the extent of DNA damage: the super-coiled to nicked DNA and the alkaline Comet assay using human leukemia K562 cells. Significant PDT-induced DNA damage was observed for porphyrin 6 using both assays, compared to light-only and porphyrin-only experiments. It is concluded that this type of nido-carboranylporphyrin is a promising sensitizer for both the boron neutron capture therapy and the photodynamic therapy of tumors.

  15. DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein.

    PubMed

    Chen, Xi; Yang, Bin; Qi, Chao; Sun, Tuan-Wei; Chen, Feng; Wu, Jin; Feng, Xi-Ping; Zhu, Ying-Jie

    2016-01-28

    Hydroxyapatite (HA) is promising in various biomedical applications owing to its similar chemical composition, structure and properties to the inorganic component in natural hard tissues. Herein, we report a DNA-templated microwave-assisted hydrothermal strategy for the preparation of HA nanostructured materials. As a kind of natural biomacromolecule, DNA molecules open up a new way to the synthesis of HA nanostructured materials with well-defined structures and morphologies. The HA nanostructured materials with a nanosheet-assembled hierarchical structure and a HA nanorod ordered structure are successfully prepared. The important roles of DNA molecules and pH values in the formation of HA nanostructured materials are investigated, and a possible formation mechanism is proposed. The as-prepared HA nanostructured materials exhibit a relatively high adsorption ability for chicken immunoglobulin Y (IgY) protein and a sustained protein release behavior. The as-prepared HA nanostructured materials after loading the IgY protein show a high antimicrobial activity. Thus, the HA nanostructured materials prepared by the DNA-templated microwave hydrothermal method are promising for the applications in various areas such as the prevention and treatment of dental caries. PMID:26696032

  16. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    PubMed

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  17. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed

    Kubota, R; Yamada, S; Ishiwata, K; Tada, M; Ido, T; Kubota, K

    1993-04-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content.

  18. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed Central

    Kubota, R.; Yamada, S.; Ishiwata, K.; Tada, M.; Ido, T.; Kubota, K.

    1993-01-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content. Images Figure 1 PMID:8471428

  19. Synthesis of (-)-arctigenin derivatives and their anticancer activity.

    PubMed

    Gui-Rong, Chen; Li-Ping, Cai; De-Qiang, Dou; Ting-Guo, Kang; Hong-Fu, Li; Fu-Rui, Li; Ning, Jiang

    2012-01-01

    The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin, which was prepared from fructus arctii, showed obvious anticancer activity. The synthesis of four new (-)-arctigenin derivatives and their anticancer bioactivities were examined. The structures of the four new synthetic derivatives were elucidated.

  20. Synthesis and in vitro antiproliferative activities of quinoline derivatives.

    PubMed

    Broch, Sidonie; Aboab, Bettina; Anizon, Fabrice; Moreau, Pascale

    2010-04-01

    The synthesis of new di- and trimeric quinoline derivatives is described as well as their in vitro antiproliferative activities toward a human fibroblast primary culture and two human solid cancer cell lines (MCF-7 and PA 1).

  1. Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome

    SciTech Connect

    Ringborg, U.; Lambert, B.; Landergen, J.; Lewensohn, R.

    1981-04-01

    The uv-induced DNA repair synthesis in peripheral leukocytes from 7 patients with the nevoid basal cell carcinoma syndrome was compared to that in peripheral leukocytes from 5 patients with basal cell carcinomas and 39 healthy subjects. A dose response curve was established for each individual, and maximum DNA repair synthesis was used as a measure of the capacity for DNA repair. The patients with the nevoid basal cell carcinoma syndrome had about 25% lower level of maximum DNA repair synthesis as compared to the patients with basal cell carcinomas and control individuals. The possibility that DNA repair mechanisms may be involved in the etiology to the nevoid basal cell carcinoma syndrome is discussed.

  2. Deoxyadenosine family: improved synthesis, DNA damage and repair, analogs as drugs.

    PubMed

    Biswas, Himadri; Kar, Indrani; Chattopadhyaya, Rajagopal

    2013-08-01

    Improved synthesis of 2'-deoxyadenosine using Escherichia coli overexpressing some enzymes and gram-scale chemical synthesis of 2'-deoxynucleoside 5'-triphosphates reported recently are described in this review. Other topics include DNA damage induced by chromium(VI), Fenton chemistry, photoinduction with lumazine, or by ultrasound in neutral solution; 8,5'-cyclo-2'-deoxyadenosine isomers as potential biomarkers; and a recapitulation of purine 5',8-cyclonucleoside studies. The mutagenicities of some products generated by oxidizing 2'-deoxyadenosine 5'-triphosphate, nucleotide pool sanitization, and translesion synthesis are also reviewed. Characterizing cross-linking between nucleosides in opposite strands of DNA and endonuclease V-mediated deoxyinosine excision repair are discussed. The use of purine nucleoside analogs in the treatment of rarer chronic lymphoid leukemias is reviewed. Some analogs at the C8 position induced delayed polymerization arrest during HIV-1 reverse transcription. The susceptibility of clinically metronidazole-resistant Trichomonas vaginalis to two analogs, toyocamycin and 2-fluoro-2'-deoxyadenosine, were tested in vitro. GS-9148, a dAMP analog, was translocated to the priming site in a complex with reverse transcriptase and double-stranded DNA to gain insight into the mechanism of reverse transcriptase inhibition. PMID:25436589

  3. DNA repair after ultraviolet irradiation of ICR 2A frog cells: pyrimidine dimers are long acting blocks to nascent DNA synthesis

    SciTech Connect

    Rosenstein, B.S.; Setlow, R.B.

    1980-08-01

    The ability of ICR 2A frog cells to repair DNA damage induced by ultraviolet irradiation was examined. These cells are capable of photoreactivation but are nearly totally deficient in excision repair. They have the ability to convert the small molecular weight DNA made after irradiation into large molecules but do not show an enhancement in this process when the UV dose is delivered in two separate exposures separated by a 3- or 24-h incubation. Total DNA synthesis is depressed and low molecular weight DNA continues to be synthesized during pulse-labeling as long as 48 h after irradiation. The effects of pyrimidine dimer removal through exposure of UV irradiated cells to photoreactivating light indicate that dimers act as the critical lesions blocking DNA synthesis.

  4. Temporal relationships of chromatin protein synthesis, DNA synthesis, and assembly of deoxyribonucleoprotein.

    PubMed Central

    Seale, R L

    1976-01-01

    Chromatin assembly has been investigated in terms of the sites on DNA where newly synthesized chromatin proteins associate. Chromatin from cells labeled with [14C]-BrdUrd and [3H]lysine was fixed with formaldehyde and resolved in CsCl gradients. By varying the spacing of the labeling intervals of the two isotopes so as to encompass all possible periods in S-phase, the association of labeled, newly synthesized proteins on newly synthesized (BrdUrd-substituted) or preexisting chromatin DNA was determined. In all experiments it was found that newly synthesized chromatin proteins predominantly associated with nonreplicating DNA. Possible mechanisms by which cells recycle preexisting chromatin proteins to restore the protein content of newly synthesized DNA are discussed. PMID:1065876

  5. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units.

    PubMed

    Wang, Fuan; Lu, Chun-Hua; Liu, Xiaoqing; Freage, Lina; Willner, Itamar

    2014-02-01

    The amplified, highly sensitive detection of DNA using the dendritic rolling circle amplification (RCA) is introduced. The analytical platform includes a circular DNA and a structurally tailored hairpin structure. The circular nucleic acid template includes a recognition sequence for the analyte DNA (the Tay-Sachs mutant gene), a complementary sequence to the Mg(2+)-dependent DNAzyme, and a sequence identical to the loop region of the coadded hairpin structure. The functional hairpin in the system consists of the analyte-sequence that is caged in the stem region and a single-stranded loop domain that communicates with the RCA product. The analyte activates the RCA process, leading to DNA chains consisting of the Mg(2+)-dependent DNAzyme and sequences that are complementary to the loop of the functional hairpin structure. Opening of the coadded hairpin releases the caged analyte sequence, resulting in the dendritic RCA-induced synthesis of the Mg(2+)-dependent DNAzyme units. The DNAzyme-catalyzed cleavage of a fluorophore/quencher-modified substrate leads to a fluorescence readout signal. The method enabled the analysis of the target DNA with a detection limit corresponding to 1 aM. By the design of two different circular DNAs that include recognition sites for two different target genes, complementary sequences for two different Mg(2+)-dependent DNAzyme sequences and two different functional hairpin structures, the dendritic RCA-stimulated multiplexed analysis of two different genes is demonstrated. The amplified dendritic RCA detection of DNA is further implemented to yield the hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme as catalytic labels that provide colorimetric or chemiluminescent readout signals.

  6. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  7. Encapsulation and controlled release of active DNA from uncrosslinked gelatin microspheres

    NASA Astrophysics Data System (ADS)

    Hardin, James Otey, IV

    This thesis work investigates the encapsulation of DNA in gelatin microspheres (GMS) and the subsequent temperature controlled release of the encapsulated DNA from these GMS. DNA-loaded GMS were then used as templates for colloidal satellite assemblies and the released DNA was shown to competitively displace the original partner strands of immobilized DNA on the surface of the assemblies. To support these investigations, hybridization of DNA at colloidal surfaces was also investigated using in situ measurements. DNA hybridization is of particular interest as means of controlling the functionality of colloidal structures because it is uniquely reversible and tunable as well as biocompatible. Gelatin was chosen as the encapsulation matrix for its superior biocompatibility, convenient gel to liquid phase transition at ˜35°C, and economical availability. This thesis is divided into five chapters. Chapter 1 covers the motivation of this work and provides a general background for the materials used. Chapter 2 details the synthesis of GMS and the use of these uncrosslinked GMS as controlled release matrices for active DNA. Bare GMS were not found to be able to inhibit DNA release on their own. With the addition of a polyelectrolyte bilayer, however, clear inhibition of DNA release at room temperature and permitted release at 37 °C was observed. Chapter 3 is an investigation of the thermodynamics and kinetics of primary and secondary DNA hybridization at colloidal surfaces. Flow cytometry was used to quantify the hybridization reaction in situ and compare it to more conventional measurement protocols involving washing steps. The post washing results illuminated the importance of the toehold region and demonstrated changes in kinetics with changing toehold length which are consistent with published solution studies of toehold-mediated strand displacement. The in situ studies enabled the measurement of primary hybridization rate as well as secondary hybridization rate

  8. A microfluidic DNA computing processor for gene expression analysis and gene drug synthesis.

    PubMed

    Zhang, Yu; Yu, Hao; Qin, Jianhua; Lin, Bingcheng

    2009-11-06

    Boolean logic performs a logical operation on one or more logic input and produces a single logic output. Here, we describe a microfluidic DNA computing processor performing Boolean logic operations for gene expression analysis and gene drug synthesis. Multiple cancer-related genes were used as input molecules. Their expression levels were identified by interacting with the computing related DNA strands, which were designed according to the sequences of cancer-related genes and the suicide gene. When all the expressions of the cancer-related genes fit in with the diagnostic criteria, positive diagnosis would be confirmed and then a complete suicide gene (gene drug) could be synthesized as an output molecule. Microfluidic chip was employed as an effective platform to realize the computing process by integrating multistep biochemical reactions involving hybridization, displacement, denaturalization, and ligation. By combining the specific design of the computing related molecules and the integrated functions of the microfluidics, the microfluidic DNA computing processor is able to analyze the multiple gene expressions simultaneously and realize the corresponding gene drug synthesis with simplicity and fast speed, which demonstrates the potential of this platform for DNA computing in biomedical applications.

  9. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities

    PubMed Central

    Guilliam, Thomas A.; Bailey, Laura J.; Brissett, Nigel C.; Doherty, Aidan J.

    2016-01-01

    Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPol's enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing both its capacity to bind DNA and the processivity of the catalytic domain. In addition, PolDIP2 stimulates both the efficiency and error-free bypass of 8-oxo-7,8-dihydrodeoxyguanosine (8-oxoG) lesions by PrimPol. We show that PolDIP2 binds to PrimPol's catalytic domain and identify potential binding sites. Finally, we demonstrate that depletion of PolDIP2 in human cells causes a decrease in replication fork rates, similar to that observed in PrimPol−/− cells. However, depletion of PolDIP2 in PrimPol−/− cells does not produce a further decrease in replication fork rates. Together, these findings establish that PolDIP2 can regulate the TLS polymerase and primer extension activities of PrimPol, further enhancing our understanding of the roles of PolDIP2 and PrimPol in eukaryotic DNA damage tolerance. PMID:26984527

  10. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent. PMID:27372838

  11. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA.

    PubMed

    Lan, Guo-Yu; Chen, Wei-Yu; Chang, Huan-Tsung

    2011-01-15

    In this study, we prepared fluorescent, functional oligonucleotide-stabilized silver nanoclusters (FFDNA-Ag NCs) through one-pot synthesis and then employed them as probes for single nucleotide polymorphisms (SNPs). The FFDNA-Ag NCs were obtained through the NaBH(4)-mediated reduction of AgNO(3) in the presence of a DNA strand having the sequence 5'-C(12)-CCAGATACTCACCGG-3'. The specific DNA scaffold combines a fluorescent base motif (C(12)) and a specific sequence (CCAGATACTCACCGG) that recognizes a gene for fumarylacetoacetate hydrolase (FAH). The sensing mechanism of our new probe is based on the FFDNA-Ag NCs having different stabilities (fluorescence intensities) in solutions containing 150 mM NaCl in the absence and presence of perfect match DNA (DNA(pmt)). Under the optimal conditions (150 mM NaCl, 20 mM phosphate solution, pH 7.0), the fluorescence ratios of the FFDNA-Ag NC probes in the presence and absence of DNA(pmt), plotted against the concentration of DNA(pmt), was linear over the range 25-1000 nM (R(2)=0.98), with a limit of detection (S/N=3) of 14 nM. This cost-effective and simple FFDNA-Ag NC probe is sensitive and selective for SNPs of a gene for FAH.

  12. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    SciTech Connect

    Lovrinovic, Marina; Niemeyer, Christof M. . E-mail: christof.niemeyer@uni-dortmund.de

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.

  13. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    PubMed

    Robinson, Andrew; McDonald, John P; Caldas, Victor E A; Patel, Meghna; Wood, Elizabeth A; Punter, Christiaan M; Ghodke, Harshad; Cox, Michael M; Woodgate, Roger; Goodman, Myron F; van Oijen, Antoine M

    2015-08-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.

  14. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time

    PubMed Central

    Robinson, Andrew; McDonald, John P.; Caldas, Victor E. A.; Patel, Meghna; Wood, Elizabeth A.; Punter, Christiaan M.; Ghodke, Harshad; Cox, Michael M.; Woodgate, Roger; Goodman, Myron F.; van Oijen, Antoine M.

    2015-01-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  15. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    PubMed

    Robinson, Andrew; McDonald, John P; Caldas, Victor E A; Patel, Meghna; Wood, Elizabeth A; Punter, Christiaan M; Ghodke, Harshad; Cox, Michael M; Woodgate, Roger; Goodman, Myron F; van Oijen, Antoine M

    2015-08-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  16. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  17. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit.

    PubMed

    Goldin, Svetlana; Kertesz Rosenfeld, Karin; Manor, Haim

    2012-08-01

    Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA-DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5'-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5'-end of the RNA template. The upstream DNA-TBE interaction may also function as an anchor for the subsequent realignment of the 3'-end of the DNA with the 3'-end of the template to enable initiation of synthesis of a new telomeric repeat.

  18. Purification of a Factor from Human Placenta That Stimulates Capillary Endothelial Cell Protease Production, DNA Synthesis, and Migration

    NASA Astrophysics Data System (ADS)

    Moscatelli, David; Presta, Marco; Rifkin, Daniel B.

    1986-04-01

    A protein that stimulates the production of plasminogen activator and latent collagenase in cultured bovine capillary endothelial cells has been purified 106-fold from term human placenta by using a combination of heparin affinity chromatography, ion-exchange chromatography, and gel chromatography. The purified molecule has a molecular weight of 18,700 as determined by NaDodSO4/PAGE under both reducing and nonreducing conditions. The purified molecule stimulates the production of plasminogen activator and latent collagenase in a dose-dependent manner between 0.1 and 10 ng of protein/ml. The purified protein also stimulates DNA synthesis and chemotaxis in capillary endothelial cells in the same concentration range. Thus, this molecule has all of the properties predicted for an angiogenic factor.

  19. Aniline mustard analogues of the DNA-intercalating agent amsacrine: DNA interaction and biological activity.

    PubMed

    Fan, J Y; Valu, K K; Woodgate, P D; Baguley, B C; Denny, W A

    1997-04-01

    Two series of analogues of the clinical antileukemic drug and DNA-intercalating ligand amsacrine have been prepared, containing aniline mustard sidechains of varying reactivity, linked either at the 4-position of the intercalating acridine chromophore (type A) or at the 1'-position of the 9-anilino group (type B). DNase I footprinting assays showed that compounds of type B had stronger reversible binding to DNA than did compounds of type A. Compounds of each type showed similar patterns of alkylation-induced cleavage of DNA, and alkylate at the N7 of guanines in runs of guanines (similar to the pattern for untargeted mustards) as well as some adenines. Both classes of compounds crosslinked DNA, although those bearing relatively inactive mustards did so only at high drug/base pair ratios. However, while the patterns of DNA alkylation were broadly similar, the compounds were considerably more cytotoxic than analogous untargeted mustards. Comparison of their cytotoxicities in wild-type and DNA repair-deficient lines indicated this toxicity was due to DNA crosslinks (except for the least reactive SO2-linked mustards). The 4-linked analogues showed slightly higher in vivo antileukemic activity than the corresponding 1'-linked analogues.

  20. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  1. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  2. A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes.

    PubMed Central

    Goldkorn, T; Prockop, D J

    1986-01-01

    Single-stranded DNAs (ssDNAs) were covalently bound by a simple and efficient enzymatic method to a solid support matrix and used to develop several new procedures for gene analysis. The novel procedure to prepare a ssDNA stably coupled to a solid support employed T4 DNA ligase to link covalently oligo (dT)-cellulose and (dA)-tailed DNA. Beginning with essentially any double stranded DNA the procedure generates a ssDNA linked by its 5' end to a cellulose matrix in a concentration of over 500 ng per mg. DNA from the plasmid pBR322 (4300 bp) and a fragment of the beta-globin gene (1800 bp) were coupled to the solid support and used for several experiments. The ssDNAs on the cellulose efficiently hybridized with as little as 5 pg of complementary double-stranded DNAs. The DNA hybrids formed on the solid support were specifically and efficiently cleaved by restriction endonucleases. These specific restriction cuts were utilized for the diagnosis of correct sequences. In addition, the ssDNA on the solid support served as an efficient template for the synthesis of complementary ssDNAs. The complementary synthesized ssDNAs were uniformly labeled, more than two kilobases in size, and largely full length. About 85% of the ssDNA linked to cellulose was available for the synthesis of complementary DNA, and after strand-separation, the preparation was reusable for the synthesis of additional complementary DNA. Images PMID:3024131

  3. Protein kinase C controls activation of the DNA integrity checkpoint

    PubMed Central

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  4. A Novel Styryldehydropyridocolinium Homodimer: Synthesis and Fluorescence Properties Upon Interaction with DNA.

    PubMed

    Yao, Huirong; Chang, Lifang; Liu, Chang; Jiao, Xiaojie; He, Song; Liu, Haijun; Zeng, Xianshun

    2015-11-01

    A novel homodimer of the styryldehydropyridocolinium dye (TPTP) has been synthesized and characterized. Free TPTP exhibited low fluorescence quantum yield and large Stokes shift (over 160 nm) in water. However, it showed a significant fluorescence turn-on effect upon intercalation into DNA base pairs. Meanwhile, the fluorescence intensity of the intercalated structures formed by TPTP and DNA decreased quickly upon addition of deoxyribonuclease I, indicating that the dye can be used to monitor deoxyribonuclease I activity and DNA hydrolysis. Electrophoresis analysis revealed that the dye had intercalative binding to DNA and can potentially be used for DNA staining in electrophoresis. Thus, the innate nature of large Stokes shift and excellent fluorescence turn on effect upon interaction with DNA endue the dye with a wide range of applications.

  5. A Novel Styryldehydropyridocolinium Homodimer: Synthesis and Fluorescence Properties Upon Interaction with DNA.

    PubMed

    Yao, Huirong; Chang, Lifang; Liu, Chang; Jiao, Xiaojie; He, Song; Liu, Haijun; Zeng, Xianshun

    2015-11-01

    A novel homodimer of the styryldehydropyridocolinium dye (TPTP) has been synthesized and characterized. Free TPTP exhibited low fluorescence quantum yield and large Stokes shift (over 160 nm) in water. However, it showed a significant fluorescence turn-on effect upon intercalation into DNA base pairs. Meanwhile, the fluorescence intensity of the intercalated structures formed by TPTP and DNA decreased quickly upon addition of deoxyribonuclease I, indicating that the dye can be used to monitor deoxyribonuclease I activity and DNA hydrolysis. Electrophoresis analysis revealed that the dye had intercalative binding to DNA and can potentially be used for DNA staining in electrophoresis. Thus, the innate nature of large Stokes shift and excellent fluorescence turn on effect upon interaction with DNA endue the dye with a wide range of applications. PMID:26384336

  6. Synthesis, characterization, crystal structure, DNA and BSA binding, molecular docking and in vitro anticancer activities of a mononuclear dioxido-uranium(VI) complex derived from a tridentate ONO aroylhydrazone.

    PubMed

    Mohamadi, Maryam; Ebrahimipour, S Yousef; Castro, Jesus; Torkzadeh-Mahani, Masoud

    2016-05-01

    A mononuclear dioxido-uranium(IV) complex [UO2(L)(DMSO)2], was prepared from the reaction of (2-hydroxy-3-methoxybenzylidene)benzohydrazide [HL] with UO2(OAc)2·2H2O in DMSO. The obtained complex was fully characterized. Single crystal X-ray diffraction analysis of [UO2(L)(DMSO)2] revealed that U(VI) ion has been coordinated by ONO donor atoms of the dianionic ligand (L(2-)), oxo groups and two DMSO molecules in a pentagonal bipyramid geometry. In addition, interactions of the complex with salmon sperm DNA and bovine serum albumin (BSA) were thoroughly investigated using UV-vis absorption, voltammetry and molecular docking methods. The experimental studies showed an intercalative mode of interaction between the complex and DNA. Experiments on BSA interaction indicated a change in the polarity of the environment surrounded the complex as a result of the interaction between BSA and [UO2(L)(DMSO)2]. Finally, MTT assays indicated that the U(VI) complex had excellent cytotoxicity against human carcinoma cell lines of MCF-7, HPG-2, and HT-29, with IC50 values of 8.4, 10.6 and 10.0μM, respectively.

  7. Effects of Glyprolines on DNA Synthesis and Free Radical Oxidation in Mouse Gastric Mucosa Under Physiological Conditions and During Therapy with Oral Non-Steroid Anti-Inflammatory Drugs.

    PubMed

    Fleishman, M Yu; Tolstenok, I V; Lebed'ko, O A; Andreeva, L A; Myasoedov, N F; Timoshin, S S

    2015-08-01

    Studies by (3)H-thymidin autoradiography showed that injections of Pro-Gly-Pro and Arg-Gly-Pro peptides caused no changes in the DNA synthesis processes in the gastric mucosa. Both peptides induced a reduction of free radical oxidation activity, which was shown by chemiluminescence. Indomethacin induced lesions in the gastric mucosa, triggered oxidative stress, and reduced proliferative activity. Injection of Pro-Gly-Pro peptide before indomethacin corrected disorders in oxidative status and normalized DNA synthesis. Preinjection of Arg-Gly-Pro led to enlargement (by 4.6 times) of the focus of lesions in animals treated by indomethacin and augmented oxidative stress.

  8. Effects of Glyprolines on DNA Synthesis and Free Radical Oxidation in Mouse Gastric Mucosa Under Physiological Conditions and During Therapy with Oral Non-Steroid Anti-Inflammatory Drugs.

    PubMed

    Fleishman, M Yu; Tolstenok, I V; Lebed'ko, O A; Andreeva, L A; Myasoedov, N F; Timoshin, S S

    2015-08-01

    Studies by (3)H-thymidin autoradiography showed that injections of Pro-Gly-Pro and Arg-Gly-Pro peptides caused no changes in the DNA synthesis processes in the gastric mucosa. Both peptides induced a reduction of free radical oxidation activity, which was shown by chemiluminescence. Indomethacin induced lesions in the gastric mucosa, triggered oxidative stress, and reduced proliferative activity. Injection of Pro-Gly-Pro peptide before indomethacin corrected disorders in oxidative status and normalized DNA synthesis. Preinjection of Arg-Gly-Pro led to enlargement (by 4.6 times) of the focus of lesions in animals treated by indomethacin and augmented oxidative stress. PMID:26388565

  9. p53-dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts

    SciTech Connect

    Cao Feng |; Zhou Tong; Simpson, Dennis; Zhou Yingchun; Boyer, Jayne; Chen Bo |; Jin Taiyi; Cordeiro-Stone, Marila; Kaufmann, William . E-mail: wkarlk@med.unc.edu

    2007-01-15

    This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45{alpha} was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21{sup Cip1/Waf1} or activation of Chk1.

  10. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases.

    PubMed

    Gao, Daxing; Li, Tuo; Li, Xiao-Dong; Chen, Xiang; Li, Quan-Zhen; Wight-Carter, Mary; Chen, Zhijian J

    2015-10-20

    TREX1 is an exonuclease that digests DNA in the cytoplasm. Loss-of-function mutations of TREX1 are linked to Aicardi-Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE) in humans. Trex1(-/-) mice exhibit autoimmune and inflammatory phenotypes that are associated with elevated expression of interferon (IFN)-induced genes (ISGs). Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates the IFN pathway. Upon binding to DNA, cGAS is activated to catalyze the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce IFNs and other cytokines. Here we show that genetic ablation of cGas in Trex1(-/-) mice eliminated all detectable pathological and molecular phenotypes, including ISG induction, autoantibody production, aberrant T-cell activation, and lethality. Even deletion of just one allele of cGas largely rescued the phenotypes of Trex1(-/-) mice. Similarly, deletion of cGas in mice lacking DNaseII, a lysosomal enzyme that digests DNA, rescued the lethal autoimmune phenotypes of the DNaseII(-/-) mice. Through quantitative mass spectrometry, we found that cGAMP accumulated in mouse tissues deficient in Trex1 or DNaseII and that this accumulation was dependent on cGAS. These results demonstrate that cGAS activation causes the autoimmune diseases in Trex1(-/-) and DNaseII(-/-) mice and suggest that inhibition of cGAS may lead to prevention and treatment of some human autoimmune diseases caused by self-DNA. PMID:26371324

  11. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  12. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  13. Phototriggered DNA phosphoramidate ligation in a tandem 5'-amine deprotection/3'-imidazole activated phosphate coupling reaction.

    PubMed

    Cape, Jonathan L; Edson, Joseph B; Spencer, Liam P; DeClue, Michael S; Ziock, Hans-Joachim; Maurer, Sarah; Rasmussen, Steen; Monnard, Pierre-Alain; Boncella, James M

    2012-10-17

    We report the preparation and use of an N-methyl picolinium carbamate protecting group for applications in a phototriggered nonenzymatic DNA phosphoramidate ligation reaction. Selective 5'-amino protection of a modified 13-mer oligonucleotide is achieved in aqueous solution by reaction with an N-methyl-4-picolinium carbonyl imidazole triflate protecting group precursor. Deprotection is carried out by photoinduced electron transfer from Ru(bpy)(3)(2+) using visible light photolysis and ascorbic acid as a sacrificial electron donor. Phototriggered 5'- amino oligonucleotide deprotection is used to initiate a nonenzymatic ligation of the 13-mer to an imidazole activated 3'-phospho-hairpin template to generate a ligated product with a phosphoramidate linkage. We demonstrate that this methodology offers a simple way to exert control over reaction initiation and rates in nonenzymatic DNA ligation for potential applications in the study of model protocellular systems and prebiotic nucleic acid synthesis.

  14. Human DNA Polymerase ν Catalyzes Correct and Incorrect DNA Synthesis with High Catalytic Efficiency.

    PubMed

    Gowda, A S Prakasha; Moldovan, George-Lucian; Spratt, Thomas E

    2015-06-26

    DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s(-1)and an on-rate constant of 14 μm(-1) s(-1). dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s(-1). Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s(-1); rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s(-1), for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.

  15. Inhibition of thrombin activity with DNA-aptamers.

    PubMed

    Dobrovolsky, A B; Titaeva, E V; Khaspekova, S G; Spiridonova, V A; Kopylov, A M; Mazurov, A V

    2009-07-01

    The effects of two DNA aptamers (oligonucleotides) 15TBA and 31TBA (15- and 31-mer thrombin-binding aptamers, respectively) on thrombin activity were studied. Both aptamers added to human plasma dose-dependently increased thrombin time (fibrin formation upon exposure to exogenous thrombin), prothrombin time (clotting activation by the extrinsic pathway), and activated partial thromboplastin time (clotting activation by the intrinsic pathway). At the same time, these aptamers did not modify amidolytic activity of thrombin evaluated by cleavage of synthetic chromogenic substrate. Aptamers also inhibited thrombin-induced human platelet aggregation. The inhibitory effects of 31TBA manifested at lower concentrations than those of 15TBA in all tests. These data indicate that the studied antithrombin DNA aptamers effectively suppress its two key reactions, fibrin formation and stimulation of platelet aggregation, without modifying active center of the thrombin molecule. PMID:19902090

  16. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases. PMID:26928226

  17. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.

  18. (C-11)-thymidine PET imaging as a measure of DNA synthesis rate: A preliminary quantitative study of human brain glioblastoma

    SciTech Connect

    Wong, C.Y.O.; Yung, B.C.Y.; Conti, P.

    1994-05-01

    (C-11)-Thymidine (TdR) PET imaging can potentially be used to measure the tumor proliferation in-vivo and monitor treatment. Twenty-four stereotactic brain biopsies (SBB) following in-vivo bromodeoxyuridine (BUDR) under MRI guidance were obtained to correlate with TdR PET imaging of primary glioblastoma in human brain. Following data acquisition, standard 4 by 4 pixel (2mm/pixel) regions of interest (ROIs) were placed over the tumor site based on SBB and the corresponding homologous region of contralateral normal cortices. After correcting input function for major metabolites and subtracting TdR activity in the normal side from the tumor side of the brain, 2- and 3- compartmental analysis was performed for all the ROIs. Akaike :(AIC) and Bayes (BIC) information criteria was calculated to compare these 2 kinetic models for differentiating pure blood pool effects from TdR incorporation into DNA. Of 24 SBB regions, 20 non-overlapping and corresponding ROIs in PET were identified and quantified. Eight ROIs were selected based on the AIC, BIC and root-mean-square errors (RMSE < 0.1) (4 couldn`t be modelled and 8 most likely represented blood flow effects). The percentage (%) of BUDR per high power field area %BUDR labelling. The k3, the forward phosphorylation rate (hence an index of DNA synthesis), was categorized into 2 groups according to a threshold value of %BUDR/hpfa - 5%. The tumor regions with low proliferative index (%BUDR/hpfa<5%) have significantly lower k3 than those with high proliferative index (p<0.005). We also find that k4 is at least an order less than k3, suggesting minimal effects of dephosphorylation and efflux of metabolites. We conclude that 3-compartmental, 4-parameter modeling is adequate for TdR PET studies and k3 correlates with DNA synthesis rate.

  19. Temporal and topographic changes in DNA synthesis after induced follicular atresia

    SciTech Connect

    Greenwald, G.S. )

    1989-07-01

    Hamsters were hypophysectomized on the morning of estrus (Day 1) and injected immediately with 30 IU pregnant mare's serum (PMS). This was followed on Day 4 by the injection of an antiserum to PMS (PMS-AS) that initiated follicular atresia (Time zero). From 0 to 72 h after PMS-AS, the animals were injected with (3H)thymidine and killed 4 h later. One ovary was saved for autoradiography and histology; from the other ovary, 5-10 large antral follicles were dissected and pooled, and incorporation into DNA was determined by scintillation counting. DNA synthesis dropped sharply between 12 and 18 h, coinciding with a fall in labeling index of the cumulus oophorus and thecal endothelial cells and a sharp fall in thecal vascularity. In contrast, for the mural granulosa cells bordering on the antral cavity, labeling index dropped sharply between 8 and 12 h when thecal vascularity was still high. The earliest sign of atresia was evident by 4 h in cumulus cells when, paradoxically, DNA synthesis was still high. It took 3 days for atresia of the antral follicles to progress to advanced stages, as evidenced by pseudo-pronuclei in the free floating ovum, further erosion of the mural granulosa, and minimal DNA/follicle. However, the theca still retained its histological integrity and contained no pyknotic cells. Although by 48 h the granulosal compartment was in disarray (DNA/follicle significantly different from earlier values), the egg was still viable, as judged by maximal fluorescence after the addition of fluoroscein diacetate.

  20. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G.

    2015-01-01

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa–Atr–Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  1. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    SciTech Connect

    Ching, A.S.L.; Berger, J.D.

    1986-11-01

    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.

  2. Activation of cell division and nucleic acid synthesis in the corneal epithelium of albino rats by repeated stress

    SciTech Connect

    Berezhnova, N.I.; Timoshin, S.S.

    1985-05-01

    Adaption to unfavorable factors is accompanied by activation of nucleic acid and protein synthesis in systems responsible for adaption. The authors investigate the possibility of similar changes taking place in structures not actively participating in adaptation. The corneas of the dead male albin rats were preincubated with tritium-uridine for 1.5 hours. The mitotic index, the index of tritium-thymidine-labeled nuclei and the intensity of thymidine labeling were determined. The results indicate that after a single exposure to hypoxia, hyperthermia, and immobilization, mitotic index in the corneal epithelium decreased and DNA synthesis under these circumstances remained stable.

  3. [Overgrowth and DNA synthesis of neuroepithelium in embryonic stages of induced Long-Evans rat myeloschisis].

    PubMed

    Chono, Y

    1993-01-01

    Overgrowth of the myeloschisis, namely the excessive amount of the neural plate tissue, has been reported in the human myeloschisis. However, it is still debatable how the overgrowth develops and whether the overgrowth is the cause, or the secondary effect of spinal dysraphism. The author induced myeloschisis in the fetuses of Long-Evans rats by the administration of ethylenethiourea (ETU) to pregnant rats on day 10 of gestation. The fetuses were removed 1 hour after the treatment with bromodeoxyuridine (BrdU) to the dams on day 14 and 21. The fetuses were fixed in alcohol and embedded in paraffin. H-E staining and the immunohistologic examination were performed on the staining patterns to anti-neurofilament (NFP), anti-glial fibrillary acidic protein (GFAP) and anti-BrdU antibody by ABC method. On day 14, the lateral portion of everted neural plate showed a loose arrangement of cells and there was rosette formation in the mesoderm. On day 21, cell necrosis was observed at the dorsolateral portion of myeloschisis, although the ventral portion showed almost normal cytoarchitecture and was positive to NFP and GFAP. The cause of myeloschisis in this model is supposed to be the local and direct cytotoxic effect of ETU to neuro-ectodermal junction. On day 14, control animals contained few BrdU-incorporated cells at the basal plate of neural tube. In contrast, everted neural plate showed an active uptake of BrdU diffusely in the subependymal matrix layer cells. Overgrowth was not yet identified. On day 21, overgrowth of myeloschisis was found in spite of a few positive cells to BrdU which was identical to the control animals. These findings seem to suggest that cells in the myeloschisis retain their ability of DNA synthesis for longer periods of development and overgrowth found on day 21 is possibly a secondary effect of spinal dysraphism in this model.

  4. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    SciTech Connect

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-03-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s).

  5. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct.

    PubMed

    Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J

    2015-04-15

    Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.

  6. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  7. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM).

  8. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase. PMID:19648931

  9. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  10. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  11. Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine.

    PubMed

    Pack, Seung Pil; Kamisetty, Nagendra Kumar; Nonogawa, Mitsuru; Devarayapalli, Kamakshaiah Charyulu; Ohtani, Kairi; Yamada, Kazunari; Yoshida, Yasuko; Kodaki, Tsutomu; Makino, Keisuke

    2007-01-01

    Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5'-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42 degrees C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface.

  12. Modulation of the equilibrative nucleoside transporter by inhibitors of DNA synthesis.

    PubMed Central

    Pressacco, J.; Wiley, J. S.; Jamieson, G. P.; Erlichman, C.; Hedley, D. W.

    1995-01-01

    Expression of the equilibrative, S-(p-nitrobenzyl)-6-thioinosine (NBMPR)-sensitive nucleoside transporter (es), a component of the nucleoside salvage pathway, was measured during unperturbed growth and following exposure to various antimetabolites at growth-inhibitory concentrations. The probe 5-(SAENTA-x8)-fluorescein is a highly modified form of adenosine incorporating a fluorescein molecule. It binds. with high affinity and specificity to the (es) nucleoside transporter at a 1:1 stoichiometry, allowing reliable estimates of es expression by flow cytometry. Using a dual labelling technique which combined the vital DNA dye Hoechst-33342 and 5-(SAENTA-x8)-fluorescein, we found that surface expression of es approximately doubled between G1 and G2 + M phases of the cell cycle. To address the question of whether es expression could be modulated in cells exposed to drugs which inhibit de novo synthesis of nucleotides, cells were exposed to antimetabolite drugs having different modes of action. Hydroxyurea and 5-fluorouracil (5-FU), which inhibit the de novo synthesis of DNA precursors, produced increases in the expression of es. In contrast, cytosine arabinoside (ara-C) and aphidicolin, which directly inhibit DNA synthesis, produced no significant increase in es expression. Thymidine (TdR), which is an allosteric inhibitor of ribonucleotide reductase that depletes dATP, dCTP and dGTP pools while repleting the dTTP pool, had no significant effect on es expression. These data suggest that surface expression of the es nucleoside transporter is regulated by a mechanism which is sensitive to the supply of deoxynucleotides. Because 5-FU (which specifically depletes dTTP pools) causes a large increase in expression whereas TdR (which depletes all precursors except dTTP) does not, this mechanism might be particularly sensitive to dTTP pools. PMID:7547244

  13. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  14. Coordinate synthesis and turnover of heat shock proteins in Borrelia burgdorferi: degradation of DnaK during recovery from heat shock.

    PubMed Central

    Cluss, R G; Goel, A S; Rehm, H L; Schoenecker, J G; Boothby, J T

    1996-01-01

    The synthesis and turnover of heat shock proteins (Hsps) by Borrelia burgdorferi, the Lyme disease spirochete, was investigated by radiolabeling of whole spirochetes and spheroplasts, comparison of one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and use of immunochemistry. The approximately 72-kDa DnaK homolog and three additional Hsps of 39, 27, and 21 kDa increased in amount by 3- to 15-fold between 2 and 6 h following temperature upshift from 28 to 39 degrees C. Temperature downshift experiments following the transfer of spirochetes from 40 to 28 degrees C showed that within 15 to 30 min, synthesis of most of the major Hsps returned to levels seen in spirochetes statically maintained at the lower temperature. Spheroplasts of B. burgdorferi produced by treatment with EDTA and lysozyme were radiolabeled, and specific Hsps were localized to either the cytoplasm or membrane fraction. Further analysis by two-dimensional electrophoresis demonstrated three constitutively expressed DnaK isoforms with pIs near 5.5. A pattern suggestive of DnaK degradation was observed following recovery from heat shock but not in spirochetes maintained entirely at a low temperature. Some of these putative degradation products were recognized by monoclonal antibodies directed against the B. burgdorferi DnaK protein. These data suggest that following a period of peak synthesis, DnaK is actively degraded as the spirochete reestablishes its metabolic thermometer. These findings provide a new interpretation of previous work suggesting that 10 to 15 B. burgdorferi polypeptides, including DnaK have a common epitope. PMID:8613385

  15. Total Synthesis of the Antitumor Natural Product Polycarcin V and Evaluation of Its DNA Binding Profile

    PubMed Central

    2015-01-01

    The convergent total synthesis of polycarcin V, a gilvocarcin-type natural product that shows significant cytotoxicity with selectivity for nonsmall-cell lung cancer, breast cancer, and melanoma cells, has been achieved in 13 steps from 7, 8, and 22; the sequence features a stereoselective α-C-glycosylation reaction for the union of protected carbohydrate 7 and naphthol 8. The association constant for the binding of polycarcin V to duplex DNA is similar to that previously reported for gilvocarcin V. PMID:24824354

  16. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus.

    PubMed

    Yuan, Cong; Zhang, Yingying; Liu, Yan; Zhang, Ting; Wang, Zaizhao

    2016-09-01

    DNA methylation is a commonly studied epigenetic modification. The mechanism of BPA on DNA methylation is poorly understood. The present study aims to explore whether GSH synthesis affects DNA methylation in the testes of adult male rare minnow Gobiocypris rarus in response to Bisphenol A (BPA). Male G. rarus was exposed to 1, 15 and 225μgL(-1) BPA for 7 days. The levels of global DNA methylation, hydrogen peroxide (H2O2) and glutathione (GSH) in the testes were analyzed. Meanwhile, the levels of enzymes involved in DNA methylation and de novo GSH synthesis, and the substrate contents for GSH production were measured. Furthermore, gene expression profiles of the corresponding genes of all studied enzymes were analyzed. Results indicated that BPA at 15 and 225μgL(-1) caused hypermethylation of global DNA in the testes. The 15μgL(-1) BPA resulted in significant decrease of ten-eleven translocation proteins (TETs) while 225μgL(-1) BPA caused significant increase of DNA methyltransferase proteins (DNMTs). Moreover, 225μgL(-1) BPA caused significant increase of H2O2 and GSH levels, and the de novo GSH synthesis was enhanced. These results indicated that the significant decrease of the level of TETs may be sufficient to cause the DNA hypermethylation by 15μgL(-1) BPA. However, the significantly increased of DNMTs contributed to the significant increase of DNA methylation levels by 225μgL(-1) BPA. Moreover, the elevated de novo GSH synthesis may promote the DNA methylation process. PMID:27474941

  17. Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA.

    PubMed Central

    Meyers, C; Mayer, T J; Ozbun, M A

    1997-01-01

    The lack of a permissive system for the propagation of viral stocks containing abundant human papillomavirus (HPV) particles has hindered the study of infectivity and the early stages of HPV replication. The organotypic (raft) culture system has permitted the study of a number of the differentiation-specific aspects of HPV, including amplification of viral DNA, expression of late genes, and viral morphogenesis. However, these investigations have been limited to a single virus type, namely, HPV type 31 (HPV31). We have artificially introduced linearized HPV18 genomic DNA into primary keratinocytes by electroporation, followed by clonal expansion and induction of epithelial stratification and differentiation in organotypic culture. We report the synthesis of infectious HPV18 virions. Virus particles approximately 50 nm in diameter were observed by electron microscopy. HPV18 virions purified by isopycnic gradient were capable of infecting keratinocytes in vitro, as shown by the expression of multiple HPV18-specific, spliced transcripts. PMID:9311816

  18. Fabrication of polyurethane molecular stamps for the synthesis of DNA microarray

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; He, Nongyao; Lu, Zuhong; Bo, Liang

    2001-10-01

    Polyurethane based on polypropylene glycol (PPG) and Toluene diisocyanate (TDI) using 3,3'-dichloride-4,4'- methylenedianiline (MOCA) as the crosslinker is presented for the first time to fabricate molecular stamps (PU stamps) for the synthesis of DNA microarray with contact procedure. The predictability of the process is achieved by utilizing commercially available starting materials. SEM analysis of the morphology of PU stamps and master showed that PU elastometer could replicate subtly the motherboard's patterns with high fidelity. It was proved from the contact angle measurement that PU stamps surface has good affinity with acetonitrile, which guarantee the well-distribution of DNA monomers on patterned stamps. Laser confocal fluorescence microscopy images of oligonucleotide arrays confirmed polyurethane is an excellent material for molecular stamps.

  19. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  20. Coupling of the thrombin receptor to G12 may account for selective effects of thrombin on gene expression and DNA synthesis in 1321N1 astrocytoma cells.

    PubMed Central

    Post, G R; Collins, L R; Kennedy, E D; Moskowitz, S A; Aragay, A M; Goldstein, D; Brown, J H

    1996-01-01

    In 1321N1 astrocytoma cells, thrombin, but not carbachol, induces AP-1-mediated gene expression and DNA synthesis. To understand the divergent effects of these G protein-coupled receptor agonists on cellular responses, we examined Gq-dependent signaling events induced by thrombin receptor and muscarinic acetylcholine receptor stimulation. Thrombin and carbachol induce comparable changes in phosphoinositide and phosphatidylcholine hydrolysis, mobilization of intracellular Ca2+, diglyceride generation, and redistribution of protein kinase C; thus, activation of these Gq-signaling pathways appears to be insufficient for gene expression and mitogenesis. Thrombin increases Ras and mitogen-activated protein kinase activation</